US 20230297817A1

a2y Patent Application Publication o) Pub. No.: US 2023/0297817 A1

a9y United States

Oh 43) Pub. Date: Sep. 21, 2023
(54) NEURAL PROCESSING DEVICE (52) US. CL
CPC ..ot GO6N 3/063 (2013.01)
(71) Applicant: Rebellions Inc., Seongnam-si (KR)
57 ABSTRACT

(72) Inventor: Jinwook Oh, Seongnam-si (KR)

(21) Appl. No.: 18/184,543

(22) Filed: Mar. 15, 2023

(30) Foreign Application Priority Data

Mar. 15,2022 (KR) .cceovieee 10-2022-0031884
Mar. 15,2022 (KR) .cceovieee 10-2022-0031888
Mar. 15,2022 (KR) .cceovieee 10-2022-0031890

Publication Classification

(51) Int. CL

GO6N 3/063 (2006.01)

A neural processing device comprising processing circuitry
are provided. A neural processing device comprises a plu-
rality of processing engine groups; a first memory shared by
the plurality of engine groups; a first interconnection con-
figured to transmit data between the first memory and the
plurality of processing engine groups. The neural processing
device is configured to provide hardware resource to the
plurality of processing engine groups. The at least one of the
plurality of processing engine groups comprises a plurality
of processing engines, each of the plurality of processing
engines comprising an array of a plurality of processing
elements interconnected by a mesh style network, the pro-
cessing elements being reconfigurable; a second memory
shared by the plurality of processing engines; and a second
interconnection configured to transmit data between the
second memory and the plurality of processing engines.

NPS

ol

Neural
Processing
device

HIO

Host /0

/
Host System

Patent Application Publication Sep. 21, 2023 Sheet 1 of 33 US 2023/0297817 A1

NPS
1 HS
4 /
HIO
Neural
Processing < Host /0 ™ Host System
device { v

Patent Application Publication Sep. 21, 2023 Sheet 2 of 33 US 2023/0297817 A1

FIG. 2

; 30
\ ff
10 T BEChis Memory R
/ p viermary ;
o |
/w\\ et 31
L NVM I Pu Non-Volatile Memory |
Neural Core 500
50
A LN, . a0
< UMIE D Volatile Memory T
D E— ;
AN
e
HIO 1%

Patent Application Publication Sep. 21, 2023 Sheet 3 of 33 US 2023/0297817 A1

FIG. 3

o
HIO- 1%
2 HS
. H_OCM
Host System 7
T i Host Off-Chip Memory
H_IFf

< Host NVM IF > Host Non-Volatile Memory |1}~ H.NVM

|
1
1
1

HF2

K Host VM IF Host Volatile Memory [T}—H VM

Host Processor |

Patent Application Publication Sep. 21, 2023 Sheet 4 of 33 US 2023/0297817 A1

FI1G. 4
NPS
1 HS
Lo ;
HIO

Neural
Processing m Host System
device

Patent Application Publication Sep. 21, 2023 Sheet 5 of 33 US 2023/0297817 A1

FIG. S

10
/
110 100 700
3 } , ‘ £ 3/0 °
' - > L2 Memory
% CGRA Engine B N
Group D 490
% S
! B Sl DMA
=
200) 500
2 / 40
= : /
=10 .| Non-Volatile Memory | NV
Sequencer - > Controtter N,
ad
600
Hg) / 30
N | Volatile Memory | *
< Host /0 AT Controller VM IF

Patent Application Publication Sep. 21, 2023 Sheet 6 of 33 US 2023/0297817 A1

110
/
A\/1 30
111
N . 120
1 y S /
._
. o
CGRA Engine -« = > L1 Memory
S
o
L
=
700
\
< L2 INTERCONNECTION >

Patent Application Publication Sep. 21, 2023 Sheet 7 of 33 US 2023/0297817 A1

FIG. 7

100
CGRA Engine Cluster 110
/
CGRA Engine Group CGRA Engine Group CGRA Engine Group
CGRA| {CGRA| , , . | CGRA CGRA| |CGRAL , , . | CGRA CGRA| {GGRA| , , . | CGRA
Engine{ |{Engine Engine Engine | |Engine Engine Engine | {Engine Engine
CGRAL {CGRAL , . ., {CGRA CGRA| |CBRA! _ , . |CGRA CGRA | {CGRAL , . , {CGRA
Engine{ |Engine Engine Enging { | Engine Engine Engine | {Engine Engine
|
701 — 111
CGRA Engine Group CGRA Engine Group CGRA Engine Group
CGRA | [CGRA| _ , , {CGRA CGRA| |CGRA Y , , , | CGRA CGRA| {CGRA{ , . , | CGRA
Engine{ |{Engine Engine Engine | | Engine Engine Engine | |{Engine Engine
CGRA| {CGRA| , , , | CGRA CGRA| |CBRA , , . |CGRA CGRA| {CGRAL , , , | CGRA
Engine{ |Engine Engine Engine | |Engine Engine Engine ! {Engine Engine
3 1
110 111

US 2023/0297817 Al

Sep. 21, 2023 Sheet 8 of 33

Patent Application Publication

S ES B ESHER) wi_mm 301130 {30 {30}{30]|30 {30} 30}{30 {30)| 30 | 30}i30 [30){)i 3030 ||
AN 7 7 5 ~] N)
/ \\ N N N N4 N N . /\ .
dnoig onoig anoig dnoig dnoig dnory | dnoun dnoiyy | dnoig
aubuy aubuy auibuy aubuy aubug aubuy | anbug aubuy | aubug 71
YHOO YHOG Y490 Yu8a YH93 vHOD | fideialt vHa0 | vug0
-~ S ed e e -
mmw /// \\\\ ///.X \\\, .//// \.\\.\,
zzzzzzzzzzzzzz ye/z/s/cxs z;zM\;\szz«xszz;zs«zszz;zs«zszi;zs LT sz;\%\zz;x;czszi;zs«z;zz;zsczszz,,»/,,,/(/zstz;zstV\o,zszz,,zs(x;zz;zs,
~ .\\ ///. o /f/ ,\.\\
s suibuy ygan mengg awbug vyno Jagsnygy auibug vyno ¢
\\ (?«.ft}écil}{.i} \\‘c\\\s\s;\.\\\‘\\\t\
YA tmmwﬁmﬁwmm
108 2107 RIEN
v
0t

V8 DI

Patent Application Publication

s2

st

Sep. 21, 2023 Sheet 9 of 33

FIG. 8B

CE1

52b

sla

CE2

51t

US 2023/0297817 Al

CE3

US 2023/0297817 Al

Sep. 21, 2023 Sheet 10 of 33

Patent Application Publication

30]{30}{30 {30}{30 1|30 | 30]{30]{30] {30]{ 30|30 || 30]| 30|30 {30 {30 {30 | 30){30 | 30]| 30 || 30|{ 30
T 7 A N
N VAN / // / \ \\ AN / NS / / N
4 / 4 5, S \ N1/ . \ 7

dnoin dnoig anoig dnoin dnoig dnaig dnosg onoig dnoin

aufug suifig suifug sufug suibuy ausfiug suifug sufiug aufug

¥HOD LELA YH52 ¥HOO ¥ ¥HOD ¥d) YH5 YHOD

\\. ~ e \\\ - < e "
i // \\\\ qot1 S \\\ 111§ /z// 7
TToTmrm ommemem fTemm omeem ot /}/ T oTTTT Tmrmr Lt mmmmemes ToTm ommrmrme et R e S S (\.\. TToTTeT Tt Tmomnm st S ..ﬂ.t/.'. i e
. \\\ // 7 ~ 7
nge-— cimouanbog T B Zissuenhas _ ozt {saousnbag
P3g suliuy yung BmY Uiy vHoo Jaienyy susbug yues
\\~ . T
/ RS U
@@w. 1:1.....0!}{?'!{}.)‘(’ \‘\\}1\5{1&\\\\
fff{}fiflt}ll«. .x.\\\.x{\\.\..\\\\‘
70§ 8107 iy
~
18

6 "OIAd

¢l

¢

US 2023/0297817 Al

Sep. 21, 2023 Sheet 11 of 33

Patent Application Publication

39|} 30 E 30 {30 30 30 }] 30 ET& HESE SN EY W&H 30 {39 {30){30}{30}{30i{20 | 30|{30]
; S
N/ / N/ \ NS NV
Ny N S R N 7 / T
dnoin dnom dnom anoig aneig ooy dnaun dnam dnosn
auibuy auiluy auiliug aufiug atfuz auifiug aurfug aufiug sufiug
Y893 Y493 Y840 Y43 ¥da YH90 YHOS YHOO YH50
7/ .
" . - - R \\\ \\ ~ d
4 . e p . \.\.\
g e N e ~o 7
izt SIeouanhay " QoL zissusnbag w i T Lisnusntag
Jsisryg Ul vyag sisryy subug vED sy enbul vyes
7 R P——
QO i .l!..!.:.:fil,iil.. o e
j{jl{f&c]f »\\\x\\\i&\s\s‘\\\s\
108 407 jINBN
-
gl

01 “OId

&l

€1

US 2023/0297817 Al

Sep. 21, 2023 Sheet 12 of 33

Patent Application Publication

¢

£1

{30]]30}{30/{30{30]{30]{30]{ 30|30 {30 {30}{30]| 30| 20 Eg_w&_mo:wuw s0ii30]}30]|30 {30){30i{30}{0] |,
7 N\, Vs AN / N / / N / N N\, / \ /
TN VA4 N L/ NS AN \\ AN \ NS N/ N\ NS
N AV LT AV VAN VA /A AV AV
_{[esbeg] Zeheg Lietes i Heohss] {zabag | flebegll Herheg] {z1bag |
122 dnay dnorg dnoug | g7z gnosg tnay dnoig | Lig dnean dnougy gnpin
aufu sufug Sy sufiuy vy subug suiBug suliug suifiuy
WHB) bE Y490 Y30 igeisd] YB3 L1 M] VHG bEsaN)
\\ // Ve \\\ ~ \\\ \\ N \\\\
201 . d 4041 b ~ 0L . -
. - /// \\.\ e, ~
amwx\}(* {HamIEnhaY 022 Zientenbag @wm\)s\u LaausnhaY _
eenyg suibug yuso ssrg aubug yyno Jsny suibug yuno
m\w :.v/l{,f}t}l.:(.)rll.. \\1{\5}.\\\\\\\\\\».{»\\\\
001 T — e

405 8I07 BN

[ARNIK

Patent Application Publication

inp

Bandwidth

Temperature

FIG. 12

200
/

Sequencer

Sep. 21, 2023 Sheet 13 of 33

BW/Latenc
Control

US 2023/0297817 Al

111
/

CGRA Engine

700
/

L2 Interconnection

300
/

L2 Memory

30
/

Off-chip Memory

Patent Application Publication Sep. 21, 2023 Sheet 14 of 33 US 2023/0297817 A1l
FIG. 13
300 32 31
2 / 2
Volatile Non-Volatile
L2 Memory Memory Memory
200
J A A /
700
\ Y Y A4
< L2 INTERCONNECTION >
A A A Fy 3 A f [
Im
f) N | - Sequencer
~ Inter_Cont,
Ex Mem_Cont
A4 A4 A 4 Y y v Y A
I
Y a T’roc_Com

Patent Application Publication Sep. 21, 2023 Sheet 15 of 33 US 2023/0297817 A1l

111
/
CGRA Engine
200 790
/
L2 Interconnection
Seguencer

300
/

L2 Memory
30
/
qw Off-chip Memory
T st)

Patent Application Publication

Vst
/

Virtual device status

Sep. 21, 2023 Sheet 16 of 33

FIG. 15

200
/

— Sequencer

US 2023/0297817 Al

ik
/

CGRA Engine

700
/

L2 Interconnection

300
/

L2 Memory

30
/

Off-chip Memory

Patent Application Publication Sep. 21, 2023 Sheet 17 of 33 US 2023/0297817 A1l

FIG. 16

260
J
Processor Proc Cont|
250 Controller
270
/
Im | Monitoring . Compression Mem_Cont|
Module Activator
280
/
Interconnect Inter_Cont .
Controller

Patent Application Publication Sep. 21,2023 Sheet 18 of 33 US 2023/0297817 Al
FIG. 17
111
/
111 3 111 _3a
Instruction Lo 4
Memory || Memory PE1 | — PE1 \——— PEI LSU
l I l
Instruction Lo
Memory || Memory PEY |— PET f——— PE1 - LSU
Instruction LO
Memory || Memory PET — PET PET = LSU
) I I
Instruction LO “4
Memory | | Memory PE2 — PE2 PE2 LSU
Instruction Lo
Memory | Memory PE2 — PE2 PE2 (] LSy
\ RN
\ g)
m 111 3b

Patent Application Publication Sep. 21, 2023 Sheet 19 of 33 US 2023/0297817 A1l

FIG. 18
1111
/
4
inst0 ~ /
- :
Inst(n-1) -~) B

Patent Application Publication Sep. 21, 2023 Sheet 20 of 33 US 2023/0297817 Al

111 3a
/
iQ
,_/
Instruction Queue
I_Forg N E S WGRF
Yy v ; ¥ \ Y
Sre, CVT
Y \ 4 \
R1 a b c
Bypass
Y \ 4

opcode v v
R2 g —
0_Form
\-\
Y
dst, CVT ()
Yy vy vy Yy
R3 N E S W

FI1G. 20

Patent Application Publication Sep. 21, 2023 Sheet 21 of 33 US 2023/0297817 A1l

FIG. 21

111
/
1113 111 _3a
1111 1112 1@ — — | 111 4
/ / \) L] [Y/ /
instruction L0 A - . T
Memory » Memory fed PE 1L PE T e e (L] PE < {'} LSU
| l | |
Instruction Lo
Memory | Memory _JPE P JPE PR < LSU
b " dil
lnstruction LO F"'E [[t
Memory || Memory _PE [IPE LIPE e WU
l l l i
instruction Lo 4
Memory | Memory | ISPE | ISPE | ISPE " LSU
: ’
Instruction L0 - . o
Memory [] Memory L.JSPEI— | [SPE LJSPE] LU
} N \
\ -~ / \
m 111_3b 0

Patent Application Publication Sep. 21, 2023 Sheet 22 of 33 US 2023/0297817 Al

e B F R

SE /
Yy
ST Engine

LD Engine

Patent Application Publication Sep. 21, 2023 Sheet 23 of 33 US 2023/0297817 Al
FIG. 23
A A A
1112
I

Arb

¥

Y

Arbiter

4

3

Bank

Bank

Bank

Patent Application Publication Sep. 21, 2023 Sheet 24 of 33 US 2023/0297817 Al

FIG. 24

bkc bkca

LM Bank
Controller

> LM Cell Array

A
y

Patent Application Publication Sep. 21, 2023 Sheet 25 of 33 US 2023/0297817 Al
FIG. 25
DL Frameworks 10000
Compiler Stack 20000
Main Compiler ,\, Mep
CGep Adaptation Layer »~ 21000
CGRA Frontend Compiler %w2308{}
Compiler
Compute ; np
| Library Backend Comgpiler 24060
22000~ 7]
Runtime Driver 425000
Backends
ASIC FPGA e 30000
5 N 1Y
3 3)
31000 32000 33000
CGep
4

CE dimension determiner —~1-26000

CE Scheduler —~J4--27000

Patent Application Publication Sep. 21, 2023 Sheet 26 of 33 US 2023/0297817 Al

27{{})00
27100 27400
l Jd
OFG Generating . Scheduling SC
module - module
A
CFG 27200 Cst 27500
A4 ¢ ¢
Unrolling Constraint
module module

UCFG 27}(}9 HCFG

¥

Hyperblocking
module

Patent Application Publication

Sep. 21,2023 Sheet 27 of 33

FIG. 28

US 2023/0297817 Al

—
—
—

111r3a P 111 4
1111 1112 | vieign
- " | | !
/ ! ¥ V7 | Pust
Instruction LG
Memory |1 Memory Mul - Mul Mut p— LSy -
! [I activation 1
instruction 10
Memory [} Memory Mul +— Mul Mul — LSU
activation
. i} -
) . Push W
!nﬁgggl&n Melfr?ory act — ace ace Lsu
7 ¢ | activation
N\ - }
m 111_3b

Patent Application Publication

Sep. 21, 2023 Sheet 28 of 33 US 2023/0297817 Al

FIG. 29
23000
/
L2 Scheduler —~4-23100
FIG. 30
24000
’
Code Generator —~4-24100

Y

GE code Generator —4-24200

Patent Application Publication Sep. 21, 2023 Sheet 29 of 33 US 2023/0297817 A1l

FI1G. 31
40000
/
ilOLTOO e Y e N SN _‘_“iZOO

XS X

\ S A

\A =T)

X

41000 42000 43000 44000

Patent Application Publication Sep. 21, 2023 Sheet 30 of 33 US 2023/0297817 Al

FIG. 32

Training Phase

inference Phase

US 2023/0297817 Al

Sep. 21, 2023 Sheet 31 of 33

Patent Application Publication

(_m)

3

A10Was 7730 e Buanpay

LOHIAUUN0IBIU! 10
aauniioped Buueyug

{088
39 10 aoustopad Huouey Arousmu diys-4j0 10 oen Buonpay
; Ar 0083
I :
7 peuREsug 3 DRUIRISUNSD
<. BuRLopsd UoiRINmED mw\\ e, &oawa HH0-40 S St Y
@D&w MHV:I../.}.} Pt .\...\ Qmwm \..\Ilzlfa/ T

Rl

omwzmm&wmag: mmﬁmgwmmm
N QONW \s.l.ff s\\\\\\(

goneoi Bulonumy Bulsiasal
Ag wionosd soupunoped Bugsesg

aBis—
eI }

..

e O

A o

0063

US 2023/0297817 Al

Sep. 21, 2023 Sheet 32 of 33

Patent Application Publication

00G1S

00¥1S

00€1S

001L1LS

G

!

Asrigy aindiod oy Buipiod

28 apo9 Areulq Buieisusy

4

3

i 01 Bupioase Buinpsyos pas) 21

4

3

ydeid Suinnies; desp Buiziundo AqQ Yy Buneisusy

Aresqy amdwios u uoiepdwiod

YHO9 yinoiy 8poa uonemoed Buuols

A

3

|

yiomawuel Buiuies) dasp ul
paieiauah ydesb Bususes dasp Buingnay

4

3

(ws)

be “OId

/e/
00¢1S

Patent Application Publication Sep. 21, 2023 Sheet 33 of 33 US 2023/0297817 Al

FIG. 35

51210

Determining dimension of CGRA engine

Y S$1220
CGRA engine level scheduling

FIG. 36

S1221
Generating CFG
Y S1222
Performing unrolling of CFG
v §1223
Generating hyperblock
Y S1224
Performing CGRA engine fevel scheduling
according to preset hardware constraint
' 51225
Generating calculation code

FIG. 37

51510

Generating partial binary code

\d 51520
Generating binary code

US 2023/0297817 Al

NEURAL PROCESSING DEVICE

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority under 35 U.S.C. §
119 to Korean Patent Application No. 10-2022-0031884
filed on Mar. 15, 2022, Korean Patent Application No.
10-2022-0031890 filed on Mar. 15, 2022, and Korean Patent
Application No. 10-2022-0031888 filed on Mar. 15, 2022, in
the Korean Intellectual Property Office, the entire contents
of which are hereby incorporated by reference.

TECHNICAL FIELD

[0002] The disclosure relates to a neural processing
device. Specifically, the disclosure relates to a neural pro-
cessing device capable of being reconfigured and extended
in a hierarchical structure and a processing element included
in the neural processing device.

BACKGROUND

[0003] For the last few years, artificial intelligence tech-
nology has been the core technology of the Fourth Industrial
Revolution and the subject of discussion as the most prom-
ising technology worldwide. The biggest problem with such
artificial intelligence technology is computing performance.
For artificial intelligence technology which realizes human
learning ability, reasoning ability, perceptual ability, natural
language implementation ability, etc., it is of utmost impor-
tant to process a large amount of data quickly.

[0004] The central processing unit (CPU) or graphics
processing unit (GPU) of off-the-shelf computers was used
for deep-learning training and inference in early artificial
intelligence, but had limitations on the tasks of deep-learn-
ing training and inference with high workloads, and thus,
neural processing units (NPUs) that are structurally special-
ized for deep learning tasks have received a lot of attention.
[0005] Such a neural processing device may include a
large number of processing elements and processor struc-
tures therein and may have a hierarchical structure of several
levels such that each structure may be optimized for a task.
The hierarchical structure may exhibit the highest efficiency
when composed of units optimized for deep learning tasks.
[0006] The description set forth in the background section
should not be assumed to be prior art merely because it is set
forth in the background section. The background section
may describe aspects or embodiments of the disclosure.

SUMMARY

[0007] Aspects of the disclosure provide a neural process-
ing device having a unit configuration optimized for deep
learning tasks and having a hierarchical structure that is
extensible and reconfigurable.

[0008] Aspects of the disclosure provide a processing
element included in a neural processing device having a unit
configuration optimized for deep learning tasks and having
a hierarchical structure that is extensible and reconfigurable.
[0009] According to some aspects of the disclosure, a
neural processing device comprising processing circuitry
comprises a plurality of processing engine groups; a first
memory shared by the plurality of engine groups; and a first
interconnection configured to transmit data between the first
memory and the plurality of processing engine groups,
wherein the processing circuitry is configured to provide

Sep. 21, 2023

hardware resource to the plurality of processing engine
groups, at least one of the plurality of processing engine
groups comprises: a plurality of processing engines, each of
the plurality of processing engines comprising an array of a
plurality of processing elements interconnected by a mesh
style network, the processing elements being reconfigurable;
a second memory shared by the plurality of processing
engines; and a second interconnection configured to transmit
data between the second memory and the plurality of
processing engines.

[0010] According to some aspects of the disclosure, the
processing circuitry is configured to perform monitoring at
least one of the plurality of processing engines, the first
interconnection, or the first memory, and individually pro-
vides the hardware resource according to a monitoring.
[0011] According to some aspects of the disclosure,
latency sensitivity of the second interconnection is higher
than latency sensitivity of the first interconnection.

[0012] According to some aspects of the disclosure, a
bandwidth of the first interconnection is greater than a
bandwidth of the second interconnection.

[0013] According to some aspects of the disclosure, a first
set of processing engine groups is included in a first pro-
cessing engine cluster, and a first processing engine cluster
further includes a local interconnection between the first set
of processing engine groups.

[0014] According to some aspects of the disclosure, a
second set of processing engine groups is included in a
second processing engine cluster, and the first processing
engine cluster and the second processing engine cluster are
managed by separate modules.

[0015] According to some aspects of the disclosure, the
plurality of processing engine groups are managed by sepa-
rate modules.

[0016] According to some aspects of the disclosure, the
first processing engine cluster includes at least one process-
ing engine group belonging to a first region and at least one
processing engine group belonging to a second region, and
the at least one processing engine group belonging to the
first region and the at least one processing engine group
belonging to the second region are managed by separate
modules.

[0017] According to some aspects of the disclosure, inter-
connection between the plurality of processing elements is
reconfigurable.

[0018] According to some aspects of the disclosure, the
each of the plurality of processing engines further com-
prises: at least one third memory storing input data input to
the processing elements and output data output from the
processing elements; and at least one fourth memory pro-
viding an instruction for an operation of the processing
elements.

[0019] According to some aspects of the disclosure, the
processing elements includes a first type of at least one
processing element and a second type of at least one
processing element.

[0020] According to some aspects of the disclosure, the
plurality of processing engine groups perform deep learning
calculation tasks.

[0021] According to some aspects of the disclosure, a
compiler stack configuring the plurality of processing engine
groups comprises: a first compiler configured to compile
operations of the plurality of processing engines; and a
second compiler configured to compile operations of the first

US 2023/0297817 Al

memory, the first interconnection and at least one of the
plurality of processing engine groups.

[0022] According to some aspects of the disclosure, the
second compiler comprises: a compute library configured to
store a preset calculation code; an adaptation layer config-
ured to quantize a deep learning graph to generate a quan-
tization model; a frontend compiler configured to receive the
quantization model and convert the quantization model into
intermediate representation (IR); and a backend compiler
configured to convert the IR into a binary code by referring
to the calculation code.

[0023] According to some aspects of the disclosure,
wherein the first compiler is further configured to determine
a dimension of the plurality of processing engines, and
perform, on a circuit, optimization scheduling of the plural-
ity of processing engines.

[0024] According to some aspects of the disclosure, per-
forming the optimization scheduling comprises: generating
a control-flow graph (CFG) according to the deep learning
graph; unrolling a loop of the CFG to generate an unrolling
CFG; generating a hyperblock of the unrolling CFG to
generate a hyperblocking CFG; storing preset hardware
constraints; and generating a calculation code at a process-
ing engine level by scheduling the hyperblocking CFG
based on the preset hardware constraints.

[0025] According to some aspects of the disclosure, a
neural processing device comprising processing circuitry
comprises: a plurality of processing engines, each of the
plurality of processing engine including a processing ele-
ment (PE) array of a plurality of processing elements
interconnected by a mesh style network, at least one first
memory configured to store data for the PE array, at least one
second memory configured to provide instructions for oper-
ating the plurality of processing elements, and at least one
load/store unit (LSU) configured to perform load and store
for the data, wherein the plurality of processing elements
being reconfigurable; a third memory shared by the plurality
of processing engines; and an interconnection configured to
transmit data between the third memory and the plurality of
processing engines.

[0026] According to some aspects of the disclosure, the
processing circuitry is configured to provide a hardware
resource to the plurality of processing engines according to
importance of operations performed by the plurality of
processing engines.

[0027] According to some aspects of the disclosure, a first
set of processing engines are included in a first processing
engine group, and a second set of processing engines are
included in a second processing engine group.

[0028] According to some aspects of the disclosure, the
first processing group is managed by an upper module; a first
subset of processing engines in the first processing engine
group is managed by a first lower module associated with the
upper module; and a second subset of processing engine in
the first processing engine group is managed by a second
lower module associated with the upper module.

[0029] According to some aspects of the disclosure, each
of the plurality of processing elements comprises: an
instruction queue configured to receive and divide an
instruction including precision; and an input formatter and
an output formatter configured to perform precision conver-
sion through the precision.

[0030] According to some aspects of the disclosure, a
neural processing device comprising processing circuitry

Sep. 21, 2023

comprises: at least one processing engine group comprising
a plurality of processing engines, wherein at least one of the
plurality of processing engines comprises a plurality of
processing elements, the plurality of processing elements are
reconfigurable, the processing circuitry is configured to
provide the plurality of processing engines with hardware
resources, wherein at least one of the plurality of processing
element comprises: an instruction queue configured to
receive an instruction including precision, a source, an
opcode, and a destination; a first register configured to
receive the source and the precision from the instruction
queue; an input formatter configured to determine an oper-
and through the first register and configured to perform
precision conversion; a second register configured to receive
the opcode from the instruction queue and configured to
determine an operator; and a third register configured to
receive the destination and the precision from the instruction
queue.

[0031] According to some aspects of the disclosure, the
neural processing device further comprises an output for-
matter configured to perform the precision conversion of an
output according to the operator of the operand through the
third register.

[0032] According to some aspects of the disclosure, the
input formatter receives the output in bypass by the output
formatter.

[0033] Aspects of the disclosure are not limited to those
mentioned above, and other objects and advantages of the
disclosure that have not been mentioned can be understood
by the following description, and will be more clearly
understood by embodiments of the disclosure. In addition, it
will be readily understood that the objects and advantages of
the disclosure can be realized by the means and combina-
tions thereof set forth in the claims.

[0034] The neural processing device in accordance with
the disclosure has a processing unit with a scale optimized
for calculations used in deep learning tasks, and thus,
efficiency of expansion and reconstruction according to
tasks may be maximized.

[0035] In addition, the processing element internally per-
forms precision conversion, and thus, it is possible to
minimize hardware overhead and to increase a speed of all
calculation tasks.

[0036] In addition to the foregoing, the specific effects of
the disclosure will be described together while elucidating
the specific details for carrying out the embodiments below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0037] FIG. 1 is a block diagram illustrating a neural
processing system in accordance with some embodiments of
the disclosure;

[0038] FIG. 2 is a block diagram specifically illustrating a
neural processing device of FIG. 1;

[0039] FIG. 3 is a block diagram specifically illustrating a
host system of FIG. 1;

[0040] FIG. 4 is a block diagram illustrating a neural
processing system in accordance with some embodiments of
the disclosure;

[0041] FIG. 5 is a block diagram specifically illustrating a
neural core system on chip (SoC) of FIG. 2;

[0042] FIG. 6 is a block diagram specifically illustrating a
coarse grained reconfigurable architecture (CGRA) engine
group of FIG. 5;

US 2023/0297817 Al

[0043] FIG. 7 is a conceptual diagram illustrating a hard-
ware structure of a CGRA engine group of FIG. 5;

[0044] FIG. 8A is a conceptual diagram illustrating a
hierarchical structure of a neural core SoC of FIG. 2;
[0045] FIG. 8B is a diagram illustrating variability of
granules of a CGRA engine of a neural processing device in
accordance with some embodiments of the disclosure;
[0046] FIG. 9 is a conceptual diagram illustrating a neural
processing device in accordance with some embodiments of
the disclosure;

[0047] FIG. 10 is a conceptual diagram illustrating a
neural processing device in accordance with some embodi-
ments of the disclosure;

[0048] FIG. 11 is a conceptual diagram illustrating a
neural processing device in accordance with some embodi-
ments of the disclosure;

[0049] FIG. 12 is a conceptual diagram illustrating an
operation of a sequencer of FIG. 5;

[0050] FIG. 13 is a block diagram illustrating monitoring
and a control operation of a sequencer of FIG. 5;

[0051] FIG. 14 is a conceptual diagram illustrating
dynamic voltage frequency scaling (DVFS) according to
work characteristics of a sequencer of FIG. 5;

[0052] FIG. 15 is a conceptual diagram illustrating DVFS
according to a virtual device state of a sequencer of FIG. 5;
[0053] FIG. 16 is a block diagram specifically illustrating
a structure of a sequencer of FIG. 5;

[0054] FIG. 17 is a block diagram specifically illustrating
a structure of CGRA engine of FIG. 6;

[0055] FIG. 18 is a conceptual diagram specifically illus-
trating an instruction memory of FIG. 17;

[0056] FIG. 19 is a diagram specifically illustrating a
processing element of FIG. 17;

[0057] FIG. 20 is a diagram illustrating an instruction set
architecture (ISA) of a neural processing device in accor-
dance with some embodiments of the disclosure;

[0058] FIG. 21 is a block diagram illustrating an operation
of an instruction queue in a CGRA engine of FIG. 6;
[0059] FIG. 22 is a block diagram specifically illustrating
a load/store unit (LSU) of FIG. 17;

[0060] FIG. 23 is a block diagram specifically illustrating
an L.O memory of FIG. 17;

[0061] FIG. 24 is a block diagram specifically illustrating
an LO memory bank of FIG. 23;

[0062] FIG. 25 is a block diagram for illustrating a soft-
ware hierarchy of a neural processing device in accordance
with some embodiments of the disclosure.

[0063] FIG. 26 is a block diagram specifically illustrating
a structure of a CGRA compiler of FIG. 25;

[0064] FIG. 27 is a block diagram specifically illustrating
a structure of a CGRA engine scheduler of FIG. 26;

[0065] FIG. 28 is a block diagram illustrating a CGRA
engine compiled according to a constraint module of FIG.
27,

[0066] FIG. 29 is a block diagram specifically illustrating

a structure of a frontend compiler of FIG. 25;

[0067] FIG. 30 is a block diagram specifically illustrating
a structure of a backend compiler of FIG. 25;

[0068] FIG. 31 is a conceptual diagram for illustrating
deep learning calculations performed by a neural processing
device in accordance with some embodiments of the disclo-
sure;

Sep. 21, 2023

[0069] FIG. 32 is a conceptual diagram for illustrating
training and inference operations of a neural network of a
neural processing device in accordance with some embodi-
ments of the disclosure;

[0070] FIG. 33 is a flowchart illustrating a control method
of a neural processing device, in accordance with some
embodiments of the disclosure;

[0071] FIG. 34 is a flowchart illustrating a compiling
method of a neural processing device, in accordance with
some embodiments of the disclosure;

[0072] FIG. 35 is a flowchart specifically illustrating the
storing of FIG. 34;

[0073] FIG. 36 is a flowchart specifically illustrating the
scheduling of the storing of FIG. 35; and

[0074] FIG. 37 is a flowchart specifically illustrating gen-
erating a binary code of FIG. 34.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0075] The terms or words used in the disclosure and the
claims should not be construed as limited to their ordinary
or lexical meanings. They should be construed as the mean-
ing and concept in line with the technical idea of the
disclosure based on the principle that the inventor can define
the concept of terms or words in order to describe his/her
own embodiments in the best possible way. Further, since
the embodiment described herein and the configurations
illustrated in the drawings are merely one embodiment in
which the disclosure is realized and do not represent all the
technical ideas of the disclosure, it should be understood that
there may be various equivalents, variations, and applicable
examples that can replace them at the time of filing this
application.

[0076] Although terms such as first, second, A, B, etc.
used in the description and the claims may be used to
describe various components, the components should not be
limited by these terms. These terms are used only for the
purpose of distinguishing one component from another. For
example, a first component may be referred to as a second
component, and similarly, a second component may be
referred to as a first component, without departing from the
scope of the disclosure. The term ‘and/or’ includes a com-
bination of a plurality of related listed items or any item of
the plurality of related listed items.

[0077] The terms used in the description and the claims
are merely used to describe particular embodiments and are
not intended to limit the disclosure. Singular expressions
include plural expressions unless the context explicitly indi-
cates otherwise. In the application, terms such as “com-
prise,” “have,” “include™, “contain,” etc. should be under-
stood as not precluding the possibility of existence or
addition of features, numbers, steps, operations, compo-
nents, parts, or combinations thereof described herein.
Terms such as a “circuit” or “circuitry”, refers to a circuit in
hardware but may also refer to a circuit in software.
[0078] Unless otherwise defined, the phrases “A, B, or C,”
“at least one of A, B, or C,” or “at least one of A, B, and C”
may refer to only A, only B, only C, both A and B, both A
and C, both B and C, all of A, B, and C, or any combination
thereof.

[0079] Unless otherwise defined, all terms used herein,
including technical or scientific terms, have the same mean-
ing as commonly understood by those of ordinary skill in the
art to which the disclosure pertains.

US 2023/0297817 Al

[0080] Terms such as those defined in commonly used
dictionaries should be construed as having a meaning con-
sistent with the meaning in the context of the relevant art,
and are not to be construed in an ideal or excessively formal
sense unless explicitly defined in the disclosure.

[0081] Inaddition, each configuration, procedure, process,
method, or the like included in each embodiment of the
disclosure may be shared to the extent that they are not
technically contradictory to each other.

[0082] Hereinafter, a neural processing device in accor-
dance with some embodiments of the disclosure will be
described with reference to FIGS. 1 to 32.

[0083] FIG. 1 is a block diagram illustrating a neural
processing system in accordance with some embodiments of
the disclosure.

[0084] Referring to FIG. 1, a neural processing system
NPS according to some embodiments of the disclosure may
include a first neural processing device 1, a host system HS,
and a host interface HIO.

[0085] The first neural processing device 1 may perform
calculation by using an artificial neural network. The first
neural processing device 1 may be, for example, a device
specialized in performing deep learning calculations. How-
ever, the embodiment is not limited thereto.

[0086] In this case, the first neural processing device 1
may be a processing device other than a neural processing
device. That is, the first neural processing device 1 may be
a graphics processing unit (GPU), a central processing unit
(CPU), or a processing unit of another type. Hereinafter, for
the sake of convenience, the first neural processing device 1
will be described as a neural processing device.

[0087] The host system HS may instruct the first neural
processing device 1 to perform calculations and retrieves a
result of the calculations. The host system HS may not be
specialized for the deep learning calculations compared to
the first neural processing device 1. However, the embodi-
ment is not limited thereto.

[0088] The host interface HIO may transmit and receive
data and control signals to and from the first neural process-
ing device 1 and the host system HS. The host interface HIO
may transmit, for example, commands and data of the host
system HS to the first neural processing device 1, and
accordingly, the first neural processing device 1 may per-
form calculations. When the calculations completed, the first
neural processing device 1 may transmit a result the calcu-
lation task to the host system HS in response to an interrupt
request. The host interface HIO may be, for example, PCI
express (PCle) but is not limited thereto.

[0089] FIG. 2 is a block diagram specifically illustrating
the neural processing device of FIG. 1.

[0090] Referring to FIG. 2, the first neural processing
device 1 may include a neural core system on chip (SoC) 10,
an off-chip memory 30, a non-volatile memory interface 40,
and a volatile memory interface 50.

[0091] The neural core SoC 10 may be a system on chip
device. The neural core SoC 10 may be an accelerator
serving as an artificial intelligence computing unit. The
neural core SoC 10 may be any one of, for example, a GPU,
a field programmable gate array (FPGA), or an application-
specific integrated circuit (ASIC). The embodiment is not
limited thereto.

[0092] The neural core SoC 10 may exchange data with
other external computing units through a separate external
interface. In addition, the neural core SoC 10 may be

Sep. 21, 2023

connected to the non-volatile memory 31 through the non-
volatile memory interface 40. The neural core SoC 10 may
be connected to the volatile memory 32 through the volatile
memory interface 50.

[0093] The off-chip memory 30 may be arranged outside
a chip of the neural core SoC 10. The off-chip memory 30
may include the non-volatile memory 31 and the volatile
memory 32.

[0094] The non-volatile memory 31 may continuously
maintain stored information even when power is not sup-
plied. The non-volatile memory 31 may include at least one
of, for example, read-only memory (ROM), programmable
ROM (PROM), erasable alterable ROM (EAROM), eras-
able programmable ROM (EPROM), electrically erasable
PROM (EEPROM) (for example, NAND Flash memory, or
NOR Flash memory), ultra-violet erasable PROM (UVE-
PROM), ferroelectric random access memory (FeRAM),
magnetoresistive RAM (MRAM), phase-change RAM
(PRAM), silicon-oxide-nitride-oxide-silicon (SONOS) flash
memory, resistive RAM (RRAM), nanotube RAM
(NRAM), a magnetic computer memory device (for
example, a hard disk, a diskette drive, or a magnetic tape),
an optical disk drive, or three-dimensional (3D) XPoint
memory. However, the embodiment is not limited thereto.
[0095] Unlike the non-volatile memory 31, the volatile
memory 32 may continuously require power to maintain
stored information. The volatile memory 32 may include at
least one of, for example, dynamic RAM (DRAM), static
RAM (SRAM), synchronous dynamic RAM (SDRAM), or
double data rate SDRAM (DDR SDRAM). However, the
embodiment is not limited thereto.

[0096] The non-volatile memory interface 40 may include
at least one of, for example, a parallel advanced technology
attachment (PATA) interface, a small computer system inter-
face (SCSI), a serial attached SCSI (SAS), a serial advanced
technology attachment (SATA) interface, or a PCI express
(PCle) interface. However, the embodiment is not limited
thereto.

[0097] The volatile memory interface 50 may include at
least one of, for example, a single data rate (SDR), a double
data rate (DDR), a quad data rate (QDR), or an extreme data
rate (XDR). However, the embodiment is not limited
thereto.

[0098] FIG. 3 is a block diagram specifically illustrating
the host system HS of FIG. 1.

[0099] Referring to FIG. 3, the host system HS may
include a host processor H_pr, a host off-chip memory
H_OCM, a host non-volatile memory interface H_IF1, and
a host volatile memory interface H_IF2.

[0100] The host processor H_pr may be a controller that
controls a system of the first neural processing device 1 and
performs calculations of a program. The host processor H_pr
may be a general-purpose calculation unit and may have low
efficiency to perform simple parallel calculations widely
used in deep learning. Accordingly, the neural core SoC 10
may perform calculations for deep learning inference and
learning operations, thereby achieving high efficiency.
[0101] The host processor H_pr may be coupled with a
host non-volatile memory H_NVM through the host non-
volatile memory interface H_IF1. The host processor H_pr
may be coupled with a host volatile memory H_VM through
the host volatile memory interface H_IF2.

[0102] The host processor H_pr may transmit tasks to the
neural core SoC 10 through commands. In this case, the host

US 2023/0297817 Al

processor H_pr may be a kind of host that gives instructions
to the neural core SoC 10, and may be a subject that gives
instructions for operations. That is, the neural core SoC 10
may efficiently perform parallel calculation tasks such as
deep learning calculation tasks according to instructions
from the host processor H_pr.

[0103] The host off-chip memory H_OCM may be
arranged outside a chip of the host processor H_pr. The host
off-chip memory H_OCM may include the host non-volatile
memory H_NVM and the host volatile memory H_VM.
[0104] The host non-volatile memory H_NVM may main-
tain stored information even when power is not supplied.
The host non-volatile memory H_NVM may include at least
one of, for example, ROM, PROM, EAROM, EPROM,
EEPROM (for example, NAND Flash memory, or NOR
Flash memory), UVEPROM, FeRAM, MRAM, PRAM,
SONOS flash memory, RRAM, NRAM, a magnetic com-
puter memory device (for example, a hard disk, a diskette
drive, or a magnetic tape), an optical disk drive, or 3D
XPoint memory. However, the embodiment is not limited
thereto.

[0105] Unlike the host non-volatile memory H_NVM, the
host volatile memory H_VM may be a memory that con-
tinuously requires power to maintain stored information.
The host volatile memory H_VM may include at least one
of, for example, DRAM, SRAM, SDRAM, or DDR
SDRAM. However, the embodiment is not limited thereto.
[0106] The host non-volatile memory interface H_IF1
may include at least one of, for example, a PATA interface,
a SCSI, a SAS, a SATA interface, or PCle interface. How-
ever, the embodiment is not limited thereto.

[0107] Each of the host volatile memory interfaces H_IF2
may include at least one of, for example, an SDR, a DDR,
a QDR, or an XDR. However, the embodiment is not limited
thereto.

[0108] FIG. 4 is a block diagram illustrating a neural
processing system according to some embodiments of the
disclosure.

[0109] Referring to FIG. 4, The neural processing system
may include a plurality of first neural processing devices 1.
Each of the first neural processing devices 1 may be coupled
with the host system HS through the host interface HIO.
Although one host interface HIO is illustrated in the FIG. 4,
the host interface HIO may include a plurality of interfaces
respectively coupling the plurality of first neural processing
devices 1 with the host system HS.

[0110] The plurality of first neural processing devices 1
may exchange data and signals with each other. The plurality
of first neural processing devices 1 may transmit and receive
data and signals to and from each other through separate
interfaces thereof without passing through the host system
HS. However, the embodiment is not limited thereto.
[0111] FIG. 5 is a block diagram specifically illustrating
the neural core SoC of FIG. 2.

[0112] Referring to FIGS. 2 and 5, the neural core SoC 10
may include a coarse grained reconfigurable architecture
(CGRA) engine cluster 100, a sequencer 200, an [.2 memory
300, direct memory access (DMA) 400, a non-volatile
memory controller 500, a volatile memory controller 600,
and an L2 interconnection 700.

[0113] The CGRA engine cluster 100 may include a
plurality of CGRA engine groups 110. Although FIG. 5
illustrates only one CGRA engine cluster 100, the embodi-
ment is not limited thereto.

Sep. 21, 2023

[0114] FEach of the CGRA engine groups 110 may be a
calculation device that directly performs calculations. When
there are the plurality of CGRA engine groups 110, the
calculation tasks may be respectively assigned to the plu-
rality of CGRA engine groups 110. Each of the CGRA
engine groups 110 may be coupled with each other through
the L2 interconnection 700.

[0115] The sequencer 200 may individually provide hard-
ware resources to the CGRA engine groups 110. In this case,
the sequencer 200 may be named a sequencer circuit, but for
the sake of convenience, the terms are unified as a sequencer.
In addition, the sequencer 200 may be implemented as a
circuit or circuitry. In some embodiments, the sequencer 200
may determine importance of operations of the CGRA
engine groups 110, and accordingly, provide the CGRA
engine groups 110 with the hardware resources differently.
In some embodiments, the sequencer 200 may determine
importance of operations of CGRA engines in the CGRA
engine groups 110, and accordingly, provide the CGRA
engines with the hardware resources differently. In other
words, the sequencer 200 may determine priority of opera-
tions of CGRA engines in the CGRA engine groups 110, and
may provide the CGRA engines the hardware resources
according to the priority. In this case, the hardware resources
may include at least one of a voltage, power, a frequency, or
a bandwidth. However, the embodiment is not limited
thereto.

[0116] The sequencer 200 may perform sequencing opera-
tions to individually provide the hardware resources to the
CGRA engine groups 110, and the sequencing operations
may be performed by a circuit of the neural processing
device according to the embodiment.

[0117] The sequencer 200 may monitor operations of the
CGRA engine groups 110 in the CGRA engine cluster 100
and provide the hardware resources to the CGRA engine
groups 110. The sequencer 200 may monitor various per-
formance parameters of the CGRA engine groups 110. The
sequencer 200 may detect a performance problem deter-
mined by the monitoring and provide hardware resources
according thereto. Accordingly, the CGRA engine groups
110 may efficiently perform various calculation tasks
according to instructions from the sequencer 200.

[0118] The sequencer 200 may determine the importance
based on various criteria. First, the sequencer may determine
the importance according to quality of service (QoS). That
is, a priority selection method for guaranteeing performance
of a specific level may be used by the sequencer 200.

[0119] In addition, the sequencer 200 may determine the
importance according to service level objectives (SLOs).
The SL.Os may be set to appropriate values in advance and
may be updated in various ways later.

[0120] That is, the sequencer 200 may determine impor-
tance of an operation based on criteria, such as QoS and/or
SLO and provide hardware resources according thereto.

[0121] The L2 memory 300 may be shared by the CGRA
engine groups 110. The L2 memory 300 may store data of
the CGRA engine groups 110. In addition, the [.2 memory
300 may receive data from the off-chip memory 30, tem-
porarily store the data, and transmit the data to each of the
CGRA engine groups 110. In contrast to this, the [.2 memory
300 may receive data from the CGRA engine groups 110,
temporarily store the data, and transmit the data to the
off-chip memory 30.

US 2023/0297817 Al

[0122] The L2 memory 300 may require a relatively fast
memory. Accordingly, the .2 memory 300 may include, for
example, SRAM. However, the embodiment is not limited
thereto. That is, the L2 memory 300 may include DRAM.

[0123] The L2 memory 300 may correspond to an SoC
level, that is, a level 2 (L.2). That is, the [.2 memory 300 may
operate at the level 2 of a hierarchical structure. The hier-
archical structure is described in more detail below.

[0124] The DMA 400 may directly control movement of
data without the need for the CGRA engine groups 110 to
control the input/output of data. Accordingly, the number of
interrupts of the CGRA engine groups 110 may be mini-
mized by the DMA 400 controlling data movement between
memories.

[0125] The DMA 400 may control movement of data
between the 1.2 memory 300 and the off-chip memory 30.
Through authority of the DMA 400, the non-volatile
memory controller 500 and the volatile memory controller
600 may transmit data.

[0126] The non-volatile memory controller 500 may con-
trol a read operation or a write operation of the non-volatile
memory 31. The non-volatile memory controller 500 may
control the non-volatile memory 31 through the first non-
volatile memory interface 40.

[0127] The volatile memory controller 600 may control a
read operation or a write operation of the volatile memory
32. In addition, the volatile memory controller 600 may
perform a refresh operation of the volatile memory 32. The
volatile memory controller 600 may control the non-volatile
memory 31 through the first volatile memory interface 50.

[0128] The L2 interconnection 700 may couple at least
one of the CGRA engine groups 110, the L.2 memory 300,
the DMA 400, the non-volatile memory controller 500, or
the volatile memory controller 600 with each other. In
addition, the host interface HIO may be coupled with the [.2
interconnection 700. The L2 interconnection 700 may be a
path through which data is transmitted and received between
at least one of the CGRA engine groups 110, the .2 memory
300, the DMA 400, the non-volatile memory controller 500,
the volatile memory controller 600, and the host interface
HIO.

[0129] The L2 interconnection 700 may transmit signals
for synchronization and transmission of control signals as
well as data. That is, in the neural processing device accord-
ing to some embodiments of the disclosure, a separate
control processor does not manage synchronization signals,
and the CGRA engine groups 110 may directly transmit and
receive the synchronization signals. Accordingly, latency of
the synchronization signals generated by the control proces-
sor may be blocked.

[0130] That is, when there are the plurality of CGRA
engine groups 110, there may be dependency of individual
operation in which another CGRA engine group 110 may
start a new operation after an operation of one of the
plurality of CGRA engine groups 110 is finished. Accord-
ingly, in the neural processing device according to some
embodiments of the disclosure, the plurality of CGRA
engine groups 110, instead of a control processor, may each
directly transmit a synchronization signal to another one of
the plurality of CGRA engine groups 110 according to the
dependency of an operation. In this case, the plurality of
CGRA engine groups 110 may perform synchronization

Sep. 21, 2023

operations in parallel compared to a method managed by a
control processor, and thus, latency due to synchronization
may be minimized.

[0131] FIG. 6 is a block diagram specifically illustrating
one of the CGRA engine groups of FIG. 5.

[0132] Referring to FIGS. 5 and 6, each of the CGRA
engine groups 110 may include at least one CGRA engine
(CE) 111, an L1 memory 120, or an L1 interconnection 130.
In this case, the CGRA engine 111 may be named a CGRA
engine circuit, but for the sake of convenience, the terms are
unified as a CGRA engine. In addition, each of the at least
one CGRA engine 111 may be implemented as a circuit or
circuitry.

[0133] The at least one CGRA engine 111 may share
operations of one of the CGRA engine groups 110. The at
least one CGRA engine 111 may be a kind of processor. That
is, the at least one CGRA engine 111 may derive calculation
results by performing calculation tasks.

[0134] There may be a plurality of the CGRA engines 111.
However, the embodiment is not limited thereto. Although
FIG. 6 illustrates that the plurality of CGRA engines 111 are
included in the one of the CGRA engine groups 110, but the
embodiment is not limited thereto. That is, one of the CGRA
engine groups 110 may include only one CGRA engine 111.
[0135] The L1 memory 120 may be shared by the at least
one CGRA engine 111 within the one of the CGRA engine
groups 110. The L1 memory 120 may store data of the at
least one CGRA engine 111. In addition, the I.1 memory 120
may receive data from the L2 memory 300, temporarily
store the data, and transmit the data to the at least one CGRA
engine 111. In contrast to this, the L1 memory 120 may
receive data from the at least one CGRA engine 111,
temporarily store the data, and transmit the data to the 1.2
memory 300.

[0136] The L1 memory 120 may correspond to the CGRA
engine group level, that is, a level 1 (L1). That is, the L2
memory 300 may be shared by the CGRA engine groups
110, and the [.1 memory 120 may be shared by the at least
one CGRA engine 111.

[0137] The L1 interconnection 130 may couple the at least
one CGRA engine 111 with the [.1 memory 120 each other.
The L1 interconnection 130 may be a path through which
data is transmitted and received between the at least one
CGRA engine 111 and the L.1 memory 120. The L1 inter-
connection 130 may be coupled with the [.2 interconnection
700 such that data is transmit therebetween.

[0138] The L1 interconnection 130 may have relatively
higher latency sensitivity than the 1.2 interconnection 700.
That is, data transmission through the [.1 interconnection
130 may be performed faster than through the L2 intercon-
nection 700.

[0139] In contrast to this, the L2 interconnection 700 may
have greater bandwidth than the L1 interconnection 130.
Since the [.2 interconnection 700 requires more data to be
transmitted than the L1 interconnection 130, bottleneck
effects may occur when the bandwidth is smaller, and
performance of the entire device may be reduced. Accord-
ingly, the L1 interconnection 130 and the .2 interconnection
700 may be designed to focus on different performance
parameters.

[0140] Additionally, the L2 interconnection 700 may have
an expandable structure. That is, a dimension of the at least
one CGRA engine 111 or a dimension of one of the CGRA
engine groups 110 may be fixed to some extent for optimi-

US 2023/0297817 Al

zation of operations. In contrast to this, a dimension of the
CGRA engine cluster 100 increases as a hardware resource
increases, and thus, expandability of the L2 interconnection
700 may be one of very important characteristics.

[0141] Here, the dimension may indicate a scale of the at
least one CGRA engine 111 or one of the CGRA engine
groups 110. That is, the CGRA engine groups 110 may
include at least one CGRA engine 111, and accordingly, the
dimension of one of the CGRA engine groups 110 may be
determined according to the number of the at least one
CGRA engine 111 included in the one of the CGRA engine
groups 110. Similarly, the at least one CGRA engine 111
may also include at least one component among processing
elements, instruction memories, LO memories, or load/store
units (LSU), and accordingly, the dimension of the CGRA
engine 111 may be determined according to the number of
components.

[0142] FIG. 7 is a conceptual diagram illustrating a hard-
ware structure of the CGRA engine group of FIG. 5.
[0143] Referring to FIG. 7, the CGRA engine cluster 100
may include at least one CGRA engine group 110. Each of
the at least one CGRA engine group 110 may transmit data
to each other through a local interconnection 701. The local
interconnection 701 may be an interconnection formed
separately from the L2 interconnection 700. Alternatively,
the local interconnection 701 may be a separate private
channel for communication between the at least one CGRA
engine group 110 within the L2 interconnection 700.
[0144] Each of the at least one CGRA engine group 110
may include at least one CGRA engine 111. Each of the at
least one CGRA engine 111 may be a processing unit
optimized for deep learning calculation tasks. That is, the
deep learning calculation tasks may be represented as a
sequential or parallel combination of several operations.
Each of the at least one CGRA engine 111 may be a
processing unit capable of processing one operation and may
be a minimum operation unit that may be considered for
scheduling from the viewpoint of a compiler.

[0145] In the neural processing device according to the
embodiment, a scale of a minimum calculation unit consid-
ered from the viewpoint of compiler scheduling is config-
ured in the same manner as a scale of a hardware processing
unit, and thus, fast and efficient scheduling and calculation
tasks may be performed. In addition, according to the
embodiment, efficiency may be maximized by flexibly
changing a size and the number of processing units, and
hardware scaling may be optimized by the hierarchical
structure of a processor and a memory.

[0146] That is, when a divisible processing unit of hard-
ware is too large compared to an calculation task, ineffi-
ciency of the calculation task may occur in driving the
processing unit. In contrast to this, it is not appropriate to
schedule every time a processing unit smaller than an
operation which is the minimum scheduling unit of a com-
piler, because scheduling inefficiency may occur and hard-
ware design cost may increase.

[0147] Therefore, according to the embodiment, a scale of
scheduling unit of a compiler and a scale of a hardware
processing unit may be approximated, and thus, scheduling
of a fast calculation task and efficient calculation task may
be performed at the same time without wasting of hardware
resources.

[0148] FIG. 8A is a conceptual diagram illustrating a
hierarchical structure of a neural core SoC.

Sep. 21, 2023

[0149] Referring to FIG. 8A, the neural core SoC 10 may
include at least one CGRA engine cluster 100 at the highest
level. Each of the at least one CGRA engine cluster 100 may
include at least one CGRA engine group 110. Furthermore,
each of the at least one CGRA engine group 110 may include
at least one CGRA engine 111.

[0150] Inthis case, a level of the CGRA engine 111, which
is the lowest level, may be defined as L1, that is, a first level.
Accordingly, a level of the at least one CGRA engine group
110, which is a higher level than the first level, may be
defined as 1.2, that is, the second level, and a level of the at
least one CGRA engine cluster 100, which is a higher level
than the second level, may be defined as L3, that is, a third
level.

[0151] Although FIG. 8A illustrates three levels of a
hierarchical structure of the neural processing device
according to some embodiments of the disclosure, the
embodiment is not limited thereto. That is, according to the
embodiment, a cluster in a higher level than the at least one
CGRA engine cluster 100 may be defined, and a hierarchical
structure having four or more levels may be provided.
[0152] In contrast to this, a neural processing device
according to some embodiments of the disclosure may be
implemented to have three or less levels. That is, the number
of levels of the hierarchical structure may be defined as two
or one. In particular, when there is one level, the at least one
CGRA engine 111 may be in a flat unfolded form. In this
case, the total number of the at least one CGRA engine 111
may change depending on size of the at least one CGRA
engine 111. That is, a granule size of the at least one CGRA
engine 111 may be a major parameter for determining a
shape of the neural processing device.

[0153] In contrast to this, when the embodiment is imple-
mented to have multiple levels, hardware optimization may
be further improved as the number of levels increases. That
is, the embodiment has a hierarchy of shared memories and
an calculation device of various levels, and thus additional
inefficiency resulting from parallel calculation according to
the type of an operation may be eliminated. Accordingly, as
long as the number of levels does not exceed the number of
levels in the hierarchy that the hardware may provide, the
higher the number of levels is, the higher the hardware
optimization may be implemented. In this case, the number
of'levels may be an important parameter for determining the
type of the neural processing device along with the granule
size.

[0154] The embodiment may determine the granule size
and the number of levels in a desired direction. Accordingly,
it is possible to flexibly increase efficiency according to the
size of an operation and to adjust the number of levels of a
hierarchical structure for optimization of hardware. Accord-
ingly, the embodiment may flexibility perform a parallel
operation while maintaining hardware optimization through
such adjustment. Through this, the embodiment may flexibly
and efficiently perform an operation by determining sizes of
the plurality of CGRA engines 111 according to the size of
operations to be tiled due to the nature of a deep learning
calculation task.

[0155] FIG. 8B is a diagram illustrating variability of
granules of a CGRA engine of a neural processing device
according to some embodiments of the disclosure.

[0156] Referring to FIGS. 8A and 8B, the CGRA engine
111 may be a calculation element unit that may be recon-
figured at any time. That is, the CGRA engine 111 may be

US 2023/0297817 Al

defined aa a standard of a first size (s1*s2) previously set
like a first CE CE1, but the disclosure is not limited thereto.
[0157] That is, the CGRA engine 111 may also be defined
to have a standard of a second size (sla*s2a) less than the
first size (s1*s2), such as a second CE CE2. In addition, the
CGRA engine 111 may also be defined to have a standard of
a third size (s1b*s2b) greater than the first size (s1*¥s2), such
as a third CE CE3.

[0158] That is, the CGRA engine 111 may flexibly deter-
mine the number of elements, such as processing elements
selected therein, so as to vary a size thereof, and the CGRA
engine 111 of which size is determined may form a basic unit
of the entire hierarchical structure.

[0159] Referring again to FIG. 8 A, the sequencer 200 may
control all of the plurality of CGRA engine clusters 100, the
plurality of CGRA engine groups 110, and the plurality of
CGRA engines 111 at the highest level. Specifically, the
sequencer 200 may control distribution and operation per-
formance of calculation tasks of the plurality of CGRA
engine clusters 100, and the distribution and operation
performance of the calculation tasks of the plurality of
CGRA engine groups 110 may be performed through con-
trol. Furthermore, the sequencer 200 may perform the dis-
tribution and operation performance of the calculation tasks
of the plurality of CGRA engines 111 through control and
perform control of the plurality of CGRA engine groups 110.
Since the sequencer 200 may control all of the plurality of
CGRA engine clusters 100, it is possible to smoothly control
all operations.

[0160] That is, the sequencer 200 may control all levels of
L1, L2, and L3. In addition, the sequencer 200 may monitor
all levels.

[0161] FIG. 9 is a conceptual diagram illustrating a neural
processing device according to some embodiments of the
disclosure.

[0162] Referring to FIGS. 5 and 9, there may be a plurality
of sequencers 200 so as to be divided and managed for each
CGRA engine cluster 100 at the level L3. That is, the
sequencer 200 may include a first sequencer 210, a second
sequencer 220, and a third sequencer 230 which are man-
aged by different CGRA engine clusters 100. Although FIG.
7 illustrates three CGRA engine clusters 100 and the first,
second, and third sequencers 210, 220, and 230, the embodi-
ment is not limited thereto. The number of CGRA engine
clusters 100 and the number of sequencers 210, 220, and 230
corresponding thereto may be changed.

[0163] Each of the plurality of CGRA engine clusters 100
may include a plurality of CGRA engine groups. For
example, a first CGRA engine cluster of the plurality of
CGRA engine clusters 100 may include a first set of CGRA
engine groups 110a. The second CGRA engine cluster of the
plurality of CGRA engine clusters 100 may include a second
set of CGRA engine groups 1105. The third CGRA engine
cluster of the plurality of CGRA engine clusters 100 may
include a third set of CGRA engine groups 110c¢. In this case,
the first sequencer 210 may control and monitor an operation
of'the first set of CGRA engine groups 110a and an operation
of the CGRA engines 111 included in the first set of CGRA
engine groups 110q. Similarly, the second sequencer 220
may control and monitor an operation of the second set of
CGRA engine groups 1105 and an operation of the CGRA
engines 111 included in the second set of CGRA engine
groups 1105. The third sequencer 230 may control and
monitor an operation of the third set of CGRA engine groups

Sep. 21, 2023

110¢ and an operation of the CGRA engines 111 included in
the third set of CGRA engine groups 110c.

[0164] In the embodiment, overhead concentrated on one
sequencer 200 may be distributed. Accordingly, latency due
to the sequencer 200 or performance degradation of the
entire device may be prevented, and parallel control for each
CGRA engine cluster 100 may be performed.

[0165] FIG. 10 is a conceptual diagram illustrating a
neural processing device according to some embodiments of
the disclosure.

[0166] Referring to FIGS. 5 and 10, one CGRA engine
cluster 100 may include a plurality of sequencers 210q,
2105, and 210c. That is, the sequencer 200 may include a
first region sequencer 210aq, a second region sequencer 2105,
and a third region sequencer 210c. In this case, the number
of the first, second, and third region sequencers 210a, 2105,
and 210c¢ may be changed.

[0167] The first region sequencer 210a may manage the
first set of CGRA engine groups 110a corresponding to a
first region of one CGRA engine cluster 100 and the CGRA
engines 111 included in the first set of CGRA engine groups
110a. The second region sequencer 2105 may manage the
second set of CGRA engine groups 1105 corresponding to a
second region of one CGRA engine cluster 100 and the
CGRA engines 111 included in the second set of CGRA
engine groups 1105. The third region sequencer 210¢ may
manage the third set of CGRA engine groups 110¢ corre-
sponding to a third region of one CGRA engine cluster 100
and the CGRA engines 111 included in the third set of
CGRA engine groups 110c.

[0168] In the embodiment, an operation of a sequencer
may be divided simply by dividing only a region without
separately designing hardware for configuring the CGRA
engine cluster 100. That is, overhead concentrated on one
sequencer 200 may be distributed while minimizing hard-
ware resources. Accordingly, latency due to the sequencer
200 or performance degradation of the entire device may be
prevented, and parallel control for each CGRA engine
cluster 100 may be performed.

[0169] FIG. 11 is a conceptual diagram illustrating a
neural processing device according to some embodiments of
the disclosure.

[0170] Referring to FIGS. 5 and 11, each of a plurality of
CGRA engine clusters 100 may include a plurality of CGRA
engine groups. For example, a first CGRA engine cluster of
the plurality of CGRA engine clusters 100 may include a
first set of CGRA engine groups 110a. The second CGRA
engine cluster of the plurality of CGRA engine clusters 100
may include a second set of CGRA engine groups 11056. The
third CGRA engine cluster of the plurality of CGRA engine
clusters 100 may include a third set of CGRA engine groups
110c¢. In this case, the first sequencer 210 may control and
monitor an operation of the first set of CGRA engine groups
1104 and an operation of the CGRA engines 111 included in
the first set of CGRA engine groups 110a. Similarly, the
second sequencer 220 may control and monitor an operation
of the second set of CGRA engine groups 1105 and an
operation of the CGRA engines 111 included in the second
set of CGRA engine groups 1105. The third sequencer 230
may control and monitor an operation of the third set of
CGRA engine groups 110c¢ and an operation of the CGRA
engines 111 included in the third set of CGRA engine groups
110c.

US 2023/0297817 Al

[0171] In this case, the first sequencer 210, the second
sequencer 220, and the third sequencer 230 may control
operation of the plurality of CGRA engine groups 110 as
upper sequencers. A first lower sequencer 211, a second
lower sequencer 221, and a third lower sequencer 231 may
be included in each of the plurality of CGRA engine groups
110 and may control operations of a plurality of CGRA
engines 111 under each of the plurality of CGRA engine
groups 110. The first sequencer 210, the second sequencer
220, and the third sequencer 230 may be respectively
associated with the first lower sequencer 211, the second
lower sequencer 221, and the third lower sequencer 231.
[0172] The sequencers divided into an upper part and a
lower part distribute operation control according to each
level, and accordingly, overhead may be reduced, and a
speed of the entire device may be increased through parallel
control.

[0173] FIG. 12 is a conceptual diagram illustrating an
operation of the sequencer of FIG. 5.

[0174] Referring to FIG. 12, the sequencer 200 may
control the at least one CGRA engine 111, the [.2 intercon-
nection 700, the L2 memory 300, and the off-chip memory
30 by monitoring an input parameter In_p. The sequencer
200 may control parameters, such as a bandwidth or latency,
of'the CGRA engine 111, the [.2 interconnection 700, the [.2
memory 300, and the off-chip memory 30. The sequencer
200 may also control the .1 memory 120, the L.1 intercon-
nection 130, and the local interconnection 701. However, for
the sake of convenience of description, only the controls of
the CGRA engine 111, the .2 interconnection 700, the 1.2
memory 300, and the off-chip memory 30 are described
below.

[0175] In this case, the input parameter In_p may include
at least one of a bandwidth, latency, supply power, or
temperature.

[0176] In this case, the bandwidth may indicate a size of
data transmission traffic between the CGRA engine 111 and
the outside according to time. The bandwidth may be related
to a situation of a memory corresponding to the CGRA
engine 111, that is, the L2 memory 300 or the off-chip
memory 30, the traffic of the L2 interconnection 700 con-
necting the L2 memory 300 to the off-chip memory 30, or
SO on.

[0177] In this case, latency is one of parameters of calcu-
lation performance of the CGRA engine 111 and may mean
a period during which a result processed by the CGRA
engine 111 is delayed. The latency may be reduced by
increasing a frequency of the CGRA engine 111 or increas-
ing supply power of the CGRA engine 111. The supply
power and temperature are parameters related to an operat-
ing environment of hardware, and performance of the hard-
ware may be increased by controlling the parameters.
[0178] The sequencer 200 may control an operation of the
at least one CGRA engine 111, the L2 interconnection 700,
the L.2 memory 300, or the off-chip memory 30 by using the
input parameter In_p described above and may solve a
performance problem.

[0179] FIG. 13 is a block diagram illustrating monitoring
and control operations of the sequencer of FIG. 5.

[0180] Referring to FIG. 13, the CGRA engine 111 may be
mapped to a virtual processor VP. That is, the virtual
processor VP may be implemented to efficiently provide
necessary hardware resources according to characteristics of
an calculation task. Two or more CGRA engines 111 may be

Sep. 21, 2023

mapped to one virtual processor VP, and in this case, the two
or more CGRA engines 111 mapped to one virtual processor
VP may operate as one unit.

[0181] Accordingly, the number of actual CGRA engines
111 may be different from the number of virtual processors
VP. In this case, the number of virtual processors VP may be
equal to or less than the number of actual CGRA engines
111.

[0182] The virtual processor VP may exchange data with
the [.2 interconnection 700. The data exchange Ex may be
recorded through the virtual processor VP and the 1.2
interconnection 700 and may be monitored by the sequencer
200.

[0183] The sequencer 200 may monitor an operation of the
CGRA engine 111. In this case, latency, power supply, and
temperature of the CGRA engine 111 may be monitored. In
addition, the sequencer 200 may monitor a bandwidth
between the CGRA engine 111 and the L2 interconnection
700. That is, the sequencer 200 may check the bandwidth by
monitoring the data exchange Ex. In this case, the sequencer
200 may receive monitoring information Im in real time. In
this case, the monitoring information Im may include at least
one of latency of the CGRA engine 111, power supplied to
the CGRA engine 111, temperature of the CGRA engine 111,
or a bandwidth between the CGRA engine 111 and the [.2
interconnection 700.

[0184] The sequencer 200 may detect a performance prob-
lem by receiving the monitoring information Im. The per-
formance problem may mean that latency or a bandwidth of
hardware is detected below a preset reference value. Spe-
cifically, the performance problem may be at least one of a
constrained bandwidth problem or a constrained calculation
performance problem.

[0185] Inresponse to this, the sequencer 200 may generate
and transmit at least one of a processor control signal
Proc_Cont, a memory control signal Mem_Cont, or an
interconnection control signal Inter_Cont. The sequencer
200 may transmit at least one of the processor control signal
Proc_Cont, the memory control signal Mem_Cont, or the
interconnection control signal Inter Cont to the CGRA
engine 111 and the L2 interconnection 700. The processor
control signal Proc_Cont, the memory control signal Mem_
Cont, and the interconnection control signal Inter_Cont are
described in detail below.

[0186] FIG. 14 is a conceptual diagram illustrating
dynamic voltage frequency scaling (DVFS) according to
task statistics of the sequencer of FIG. 5.

[0187] Referring to FIG. 14, the sequencer 200 may
receive characteristics of an input calculation task Task, that
is, task statistics T_st. The task statistics T_st may include an
operation and an order of the calculation task Task, the type
and number of operands, and so on.

[0188] The sequencer 200 may optimize hardware perfor-
mance by adjusting a voltage and/or a frequency in real time
when an calculation task is assigned to each CGRA engine
111 according to the task statistics T_st. In this case, the
hardware controlled by the sequencer 200 may include the
at least one CGRA engine 111, the L2 interconnection 700,
the L2 memory 300, or the off-chip memory 30. The
hardware controlled by the sequencer 200 may also include
at least one of the [.1 interconnection 130, the [.1 memory
120, or the local interconnection 701.

US 2023/0297817 Al

[0189] FIG. 15 is a conceptual diagram illustrating DVFS
according to a virtual device state of the sequencer of FIG.
5.

[0190] Referring to FIGS. 13 and 15, the sequencer 200
may receive a status of the virtual processor VP, that is, a
virtual device status V_st. The virtual device status V_st
may indicate information according to which CGRA engine
111 is being used as which virtual processor VP.

[0191] When an calculation task is assigned to each
CGRA engine 111 according to the virtual device status
V_st, the sequencer 200 may adjust a voltage and/or a
frequency in real time to optimize hardware performance.
That is, real-time scaling, such as lowering supply power of
a memory corresponding to the CGRA engine 111 that is not
used in the virtual device status V_st and increasing the
supply power to the most actively used CGRA engine 111 or
memory, may be performed.

[0192] In this case, hardware controlled by the sequencer
200 may include the at least one CGRA engine 111, the [.2
interconnection 700, the L.2 memory 300, or the off-chip
memory 30. The hardware controlled by the sequencer 200
may also include at least one of the L1 interconnection 130,
the .1 memory 120, or the local interconnection 701.
[0193] FIG. 16 is a block diagram specifically illustrating
a structure of the sequencer of FIG. 5.

[0194] Referring to FIGS. 13 and 16, the sequencer 200
may include a monitoring module 250, a processor control-
ler 260, a compression activator 270, and an interconnect
controller 280.

[0195] The monitoring module 250 may receive the moni-
toring information Im. The monitoring module 250 may
detect any performance problem through the monitoring
information Im. For example, it is possible to analyze
whether bandwidth is constrained or whether calculation
performance is constrained. When a bandwidth is con-
strained or limited, the monitoring module 250 may identity
what constrains or limits the bandwidth among the off-chip
memory 30, the .2 memory 300, or the [.2 interconnection
700.

[0196] The processor controller 260 may generate a pro-
cessor control signal Proc_Cont for controlling supply
power or a frequency of the CGRA engine 111 to increase
when calculation performance is constrained. The processor
controller 260 may transmit the processor control signal
Proc_Cont to the CGRA engine 111. In this case, the
processor controller 260 may be referred to as a processor
controller circuit, but for the sake of convenience, the terms
are unified as a processor controller. In addition, the pro-
cessor controller 260 may be implemented as a circuit or
circuitry.

[0197] The compression activator 270 may perform com-
pression and decompression of data when a bandwidth is
constrained and the off-chip memory 30 or the .2 memory
300 is constrained. That is, when the off-chip memory 30 is
constrained, the compression activator 270 may generate a
memory control signal Mem_Cont for compressing traffic of
the off-chip memory 30 and decompressing the traffic again.
Through this, the compression activator 270 may solve a
traffic problem of the off-chip memory 30. The memory
control signal Mem_Cont may activates a compression
engine and a decompression engine to perform compression
and decompression. In this case, the compression engine and
the decompression engine may be implemented in various
ways as general means for compressing and decompressing

Sep. 21, 2023

data. In addition, compression and decompression are only
an example of traffic reduction control, and the embodiment
is not limited thereto.

[0198] In addition, when the [.2 memory 300 is con-
strained, the compression activator 270 may generate the
memory control signal Mem_Cont for compressing traffic of
the L2 memory 300 and decompressing the traffic again.
Through this, the compression activator 270 may solve a
traffic problem of the .2 memory 300. In this case, com-
pression and decompression are only an example of traffic
downlink control, and the embodiment is not limited thereto.
In this case, the compression activator 270 may be referred
to as a compression activator circuit, but for the sake of
convenience, the terms are unified as a compression activa-
tor. In addition, the compression activator 270 may be
implemented as a circuit or circuitry.

[0199] When a bandwidth is constrained and the off-chip
memory 30 or the L2 memory 300 is constrained, the
interconnect controller 280 may generate the interconnec-
tion control signal Inter_Cont for overdriving a frequency of
the L2 interconnection 700. The interconnection control
signal Inter_Cont may increase the frequency of the [.2
interconnection 700 to solve a bandwidth constraint prob-
lem. In this case, the overdrive of the frequency is only an
example of interconnection performance enhancement con-
trol, and the embodiment is not limited thereto. In this case,
the interconnect controller 280 may be referred to as an
interconnect controller circuit, but for the sake of conve-
nience, the terms are unified as an interconnect controller. In
addition, the interconnect controller 280 may be imple-
mented as a circuit or circuitry.

[0200] FIG. 17 is a block diagram specifically illustrating
a structure of the CGRA engine of FIG. 6.

[0201] Referring to FIG. 17, the CGRA engine 111 may
include at least one instruction memory 111_1, at least one
LO memory 111_2, a PE array 111_3, and at least one LSU
111_4. The PE array 111_3 may include a plurality of
processing elements interconnected by a mesh style net-
work. The mesh style network may be two-dimensional,
three-dimensional, or higher-dimensional. In the CGRA, the
plurality of processing elements may be reconfigurable or
programmable. The interconnection between the plurality of
processing elements may be reconfigurable or program-
mable. In some embodiments, the interconnection between
the plurality of processing elements may be statically recon-
figurable or programmable when the interconnection is fixed
after the plurality of processing elements are configurated or
programed. In some embodiments, the interconnection
between the plurality of processing elements may be
dynamically reconfigurable or programmable when the
interconnection is reconfigurable or programmable even
after the plurality of processing elements are configurated or
programed.

[0202] FIG. 18 is a conceptual diagram specifically illus-
trating the instruction memory 111_1 of FIG. 17.

[0203] Referring to FIG. 18, the instruction memory
111_1 may receive and store an instruction. The instruction
memory 111_1 may sequentially store instructions therein
and provide the stored instructions to the PE array 111_3. In
this case, the instructions may cause operations of the first
type of a plurality of processing elements 111_3a included
in the PE array 111_3 to be performed.

[0204] Referring again to FIG. 17, the LO memory 111_2
is located inside the CGRA engine 111 and may receive all

US 2023/0297817 Al

input data necessary for an operation of the CGRA engine
111 from the outside and temporarily store the data. In
addition, the L0 memory 111_2 may temporarily store
output data calculated by the CGRA engine 111 to be
transmitted to the outside. The L.O memory 111_2 may serve
as a cache memory of the CGRA engine 111.

[0205] The LO memory 111_2 may transmit and receive
data to and from the PE array 111_3. The L.O memory 111_2
may be a memory corresponding to LO (a level 0) lower than
L1. In this case, the LO memory may be a private memory
of the CGRA engine 111 that is not shared unlike the [.1
memory 120 and the 1.2 memory 300. The LO memory
111_2 may transmit data and a program, such as activation
or weight, to the PE array 111_3.

[0206] The PE array 111_3 may be a module that performs
calculation. The PE array 111_3 may perform not only a
one-dimensional operation but also a two-dimensional
operation or a higher matrix/tensor operation. The PE array
111_3 may include a first type of a plurality of processing
elements 111_3a and a second type of a plurality of pro-
cessing elements 111_35 therein.

[0207] The first type of the plurality of processing ele-
ments 111_3a and the second type of the plurality of
processing elements 111_35 may be arranged in rows and
columns. The first type of the plurality of processing ele-
ments 111_3a and the second type of the plurality of
processing elements 111_35 may be arranged in m columns.
In addition, the first type of the plurality of processing
elements 111_3a may be arranged in n rows, and the second
type of the plurality of processing elements 111_35 may be
arranged in 1 rows. Accordingly, the first type of the
plurality of processing elements 111_3a and the second type
of the plurality of processing element 111_35 may be
arranged in (n+1) rows and m columns.

[0208] The LSU 111_4 may receive at least one of data, a
control signal, or a synchronization signal from the outside
through the L1 interconnection 130. The LSU 111_4 may
transmit at least one of the received data, the received
control signal, or the received synchronization signal to the
LO memory 111_2. Similarly, the LSU 111_4 may transmit
at least one of data, a control signal, or a synchronization
signal to the outside through the .1 interconnection 130.
The LSU 111_4 may be referred to as an LSU circuit, but for
the sake of convenience, the terms are unified as an LSU. In
addition, the LSU 111_4 may be implemented as a circuit or
circuitry.

[0209] The CGRA engine 111 may have a CGRA struc-
ture. Accordingly, each of the first type of the plurality of
processing elements 111_3a¢ and the second type of the
plurality of processing elements 111_3b of the PE array
111_3 included in the CGRA engine 111 may be connected
to at least one of the L.O memory 111_2, the instruction
memory 111_1, or the LSU 111_4. That is, the first type of
the plurality of processing elements 111_3a and the second
type of the plurality of processing elements 111_35 do not
need to be connected to all of the LO memory 111_2, the
instruction memory 111_1, and the LSU 111_4, but may be
connected to some thereof.

[0210] In addition, the first type of the plurality of pro-
cessing elements 111_3a may be different types of process-
ing elements from the second type of the plurality of
processing elements 111_35. Accordingly, among the 1O
memory 111_2, the instruction memory 111_1, and the LSU
111_4, components connected to the first type of the plural-

Sep. 21, 2023

ity of processing elements 111_3a may be different from
components connected to the second type of the plurality of
processing elements 111_35.

[0211] The CGRA engine 111 of the disclosure having a
CGRA structure enables a high level of parallel operation
and direct data exchange between the first type of the
plurality of processing elements 111_3a and the second type
of the plurality of processing elements 111_34, and thus,
power consumption may be reduced. In addition, optimiza-
tion according to various calculation tasks may be per-
formed by including two or more types of processing
elements.

[0212] For example, when the first type of the plurality of
processing elements 111_3a performs a two-dimensional
operation, the second type of the plurality of processing
element 111_35 may perform a one-dimensional operation.
However, the embodiment is not limited thereto. Addition-
ally, the PE array 111_3 may include more types of pro-
cessing elements. Accordingly, the CGRA structure of the
disclosure may be a heterogeneous structure including vari-
ous types of processing elements.

[0213] FIG. 19 is a diagram specifically illustrating the
processing element of FIG. 17.

[0214] Referring to FIG. 19, the first type of the plurality
of processing elements 111_3a may include an instruction
queue IQ, a first register R1, a second register R2, a third
register R3, an input formatter I_Form, and an output
formatter O_Form.

[0215] The instruction queue 1Q may receive an instruc-
tion received from the instruction memory 111_1, divide the
instruction, and sequentially provide the divided instructions
to the first register R1, the second register R2, and the third
register R3. The first register R1 may receive source infor-
mation Src and converting information CVT. The second
register R2 may receive opcode information opcode. The
third register R3 may receive destination information dst and
the converting information CVT. The converting informa-
tion CVT may include information of converting precision.
[0216] In this case, the opcode opcode may mean a code
of an operation of a corresponding instruction, that is, an
operator. The opcode opcode may include, for example,
calculation operations, such as ADD, SUB, MUL, DIV, and
calculation shift, and logical operations, such as AND, OR,
NOT, XOR, logical shift, rotation shift, complement, and
clear.

[0217] The input formatter I_Form may receive the source
information src from the first register R1 to determine an
operand. In addition, the input formatter I_Form may
receive the converting information CVT from the first reg-
ister R1 to convert precision of the operand. That is, preci-
sion of input data may be different from precision required
for calculation, and accordingly, the input formatter I_Form
may convert the precision. In this case, the source informa-
tion src may include at least one of a north N, an east E, a
south S, a west W, a global register file GRF, or bypass
bypass. The bypass bypass may be a path transmitted from
the output formatter O_Form.

[0218] The second register R2 may generate an operator
by receiving opcode opcode information. The operator may
generate an output which is a result of calculation by using
an operand. The output formatter O_Form may receive an
output. The output formatter O_Form may receive destina-
tion information dst from the third register R3 and transmit
the output. In addition, the output formatter O_Form may

US 2023/0297817 Al

receive the converting information CVT from the third
register R3 to convert precision of the output. That is,
precision required for calculation may be different from
precision required for the output, and accordingly, the output
formatter O_Form may convert the precision.

[0219] In this case, the destination information dst may
include at least one of the north N, the east E, the south S,
or the west W. In addition, the output formatter O_Form may
transmit the output to the input formatter I_Form through the
bypass bypass.

[0220] The processing element according to the embodi-
ment may directly perform precision conversion in an
instruction queue without having a separate precision con-
version device, and accordingly, hardware efficiency may be
increased.

[0221] FIG. 20 is a diagram illustrating an instruction set
architecture (ISA) of a neural processing device according to
some embodiments of the disclosure.

[0222] Referring to FIGS. 19 and 20, the ISA of the neural
processing device according to some embodiments of the
disclosure may include a precision precision, opcode infor-
mation opcode, pieces of source information src0 to src2,
and destination information dst.

[0223] The precision precision may be included in the
input formatter I_Form and the output formatter O_Form so
as to generate the converting information CVT. In other
words, information about precision converted may be
included in the ISA. The opcode information opcode may be
used to determine an operator, the pieces of source infor-
mation may be used to determine operands, and the desti-
nation information may be included in the ISA for trans-
mission of an output.

[0224] FIG. 21 is a block diagram illustrating an operation
of an instruction queue of the CGRA engine in FIG. 6.

[0225] Referring to FIGS. 19 to 21, the instruction queue
1Q may be loaded through the LSU 111_4 and transmitted to
the first type of the plurality of processing elements 111_3a
and the second type of the plurality of processing elements
111_35. The first type of the plurality of processing elements
111_3a and the second type of the plurality of processing
elements 111_35b may receive instructions and perform cal-
culation tasks.

[0226] FIG. 22 is a block diagram specifically illustrating
the LSU of FIG. 17.

[0227] Referring to FIG. 22, the LSU 111_4 may include
a local memory load unit LMLU, a local memory store unit
LMSU, a neural core load unit NCLU, a neural core store
unit NCSU, a load buffer LB, a store buffer SB, a load
engine LE, a store engine SE, and a translation lookaside
buffer TLB.

[0228] The local memory load unit LMLU, the local
memory store unit LMSU, the neural core load unit NCLU,
the neural core store unit NCSU, the load engine LE, and the
store engine SE may be referred to respectively as a local
memory load circuit, a local memory store circuit, a neural
core load circuit, a neural core store circuit, a load engine
circuit, and a store engine circuit, but may be unified
respectively as a local memory load unit, a local memory
store unit, a neural core load unit, a neural core store unit,
a load engine, and a store engine. In addition, the local
memory load unit LMLU, the local memory store unit
LMSU, the neural core load unit NCLU, the neural core

Sep. 21, 2023

store unit NCSU, the load engine LE, and the store engine
SE may be implemented as circuits (that is, circuits or
circuitry).

[0229] The local memory load unit LMLU may fetch a
load instruction for the LO memory 111_2 and issue a load
instruction. When the local memory load unit LMLU pro-
vides the issued load instruction to the load buffer LB, the
load buffer LB may sequentially transmit a memory access
request to the load engine LE according to an input order.
[0230] In addition, the local memory store unit LMSU
may fetch a store instruction for the LO memory 111_2 and
issue the store instruction. When the local memory store unit
LMSU provides the issued store instruction to the store
buffer SB, the store buffer SB may sequentially transmit a
memory access request to the store engine SE according to
an input order.

[0231] The neural core load unit NCL.U may fetch a load
instruction for the CGRA engine 111 and issue the load
instruction. When the neural core load unit NCLU provides
the issued load instruction to the load buffer LB, the load
buffer LB may sequentially transmit a memory access
request to the load engine LE according to an input order.
[0232] In addition, the neural core store unit NCSU may
fetch a store instruction for the CGRA engine 111 and issue
the store instruction. When the neural core store unit NCSU
provides the issued store instruction to the store buffer SB,
the store buffer SB may sequentially transmit a memory
access request to the store engine SE according to an input
order.

[0233] The load engine LE may receive a memory access
request and load data through the [.2 interconnection 700. In
this case, the load engine LE may quickly find data by using
a translation table of a recently used virtual address and a
recently used physical address in the translation lookaside
buffer TL.B. When the virtual address of the load engine LE
is not in the translation lookaside buffer TLB, address
translation information may be found in another memory.
[0234] The store engine SE may receive a memory access
request and load data through the [.2 interconnection 700. In
this case, the store engine SE may quickly find data by using
a translation table of a recently used virtual address and a
recently used physical address in the translation lookaside
buffer TLB. When the virtual address of the store engine SE
is not in the translation lookaside buffer TLB, address
translation information may be found in other memory.
[0235] FIG. 23 is a block diagram specifically illustrating
the L.O memory of FIG. 17.

[0236] Referring to FIG. 23, the LO memory 111_2 may
include an arbiter Arb and at least one memory bank bk.
[0237] When data is stored in the LO memory 111_2, the
arbiter Arb may receive data from the load engine LE. In this
case, the data may be allocated to the memory bank bk in a
round robin manner. Accordingly, the data may be stored in
any one of the at least one memory bank bk.

[0238] In contrast to this, when data is loaded to the LO
memory 111_2, the arbiter Arb may receive data from the
memory bank bk and transmit the data to the store engine
SE. The store engine SE may store data in the outside
through the local interconnection 701.

[0239] FIG. 24 is a block diagram specifically illustrating
the L.O memory bank bk of FIG. 23.

[0240] Referring to FIG. 24, the memory bank bk may
include a bank controller bkc and a bank cell array bkca.

US 2023/0297817 Al

[0241] The bank controller bkc may manage read and
write operations through addresses of data stored in the
memory bank bk. That is, the bank controller bkc may
manage the input/output of data as a whole.

[0242] The bank cell array bkca may have a structure in
which memory cells directly storing data are aligned in rows
and columns. The bank cell array bkca may be controlled by
the bank controller bkc.

[0243] FIG. 25 is a block diagram for illustrating a soft-
ware hierarchy of a neural processing device in accordance
with some embodiments of the disclosure.

[0244] Referring to FIG. 25, the software hierarchy of the
neural processing device in accordance with some embodi-
ments may include a deep learning (DL) framework 10000,
a compiler stack 20000, and a back-end module 30000.
[0245] The DL framework 10000 may refer to a frame-
work for a deep learning model network used by a user. For
example, a trained neural network, that is, a deep learning
graph, may be generated by using a program, such as
TensorFlow or PyTorch. The deep learning graph may be
represented in a code form of an calculation task.

[0246] The compiler stack 20000 may include a CGRA
compiler CGep and a main compiler Mcp. The CGRA
compiler CGep may perform CGRA engine level compila-
tion. That is, the CGRA compiler CGcp may perform
internal optimization of the CGRA engine 111. The CGRA
compiler CGep may store calculation codes in a compute
library 22000 through the CGRA engine level compilation.
[0247] Unlike this, the main compiler Mcp may perform
L2 level compilation, that is, CGRA engine group level
compilation. That is, the main compiler Mcp may perform
compilation, such as task scheduling, between the CGRA
engine groups 110, the [.2 memory 300, and the L2 inter-
connection 700. The embodiment may perform optimization
twice through CGRA compilation and main compilation.
[0248] The main compiler Mcp may include an adaptation
layer 21000, a compute library 22000, a frontend compiler
23000, a backend compiler 24000, and a runtime driver
25000.

[0249] The adaptation layer 21000 may be in contact with
the DL framework 10000. The adaptation layer 21000 may
quantize a user’s neural network model generated by the DL
framework 10000, that is, a deep learning graph, and gen-
erate a quantization model. In addition, the adaptation layer
21000 may convert a type of a model into a required type.
The quantization model may also have a form of the deep
learning graph.

[0250] The front-end compiler 23000 may convert various
neural network models and graphs transferred from the
adaptation layer 21000 into a constant intermediate repre-
sentation (IR). The converted IR may be a preset represen-
tation that is easy to handle later by the back-end compiler
24000.

[0251] The optimization that can be done in advance in the
graph level may be performed on such an IR of the front-end
compiler 23000. In addition, the front-end compiler 23000
may finally generate the IR through the task of converting it
into a layout optimized for hardware.

[0252] The back-end compiler 24000 optimizes the IR
converted by the front-end compiler 23000 and converts it
into a binary file, enabling it to be used by the runtime driver.
The back-end compiler 24000 may generate an optimized
code by dividing a job at a scale that fits the details of
hardware.

Sep. 21, 2023

[0253] The compute library 22000 may store a template
operation designed in a form suitable for hardware among
various operations. The compute library 22000 may provide
the backend compiler 24000 with several template opera-
tions that require hardware to generate optimized codes. In
this case, the compute library 22000 may receive an calcu-
lation code from the CGRA compiler CGcep and store the
calculation code as a template operation. Accordingly, in the
embodiment, the previously optimized template operation
may be optimized again through the backend compiler
24000, and accordingly, it is regarded optimization is per-
formed twice.

[0254] The runtime driver 25000 may continuously per-
form monitoring during driving, thereby making it possible
to drive the neural network device in accordance with some
embodiments. Specifically, it may be responsible for the
execution of an interface of the neural network device.
[0255] Unlike FIG. 25, the CGRA compiler CGep may
also be located inside the compute library 22000. The
CGRA compiler CGep may also store calculation codes in
the compute library 22000 through the CGRA engine level
compilation in the compute library 22000. In this case, the
main compiler Mcp may internally perform the optimization
twice.

[0256] The back-end module 30000 may include an ASIC
(application-specific integrated circuit) 31000, an FPGA
(field-programmable gate array) 32000, and a C-model
33000. The ASIC 31000 may refer to a hardware chip
determined according to a predetermined design method.
The FPGA 32000 may be a programmable hardware chip.
The C-model 33000 may refer to a model implemented by
simulating hardware on software.

[0257] The back-end module 30000 may perform various
tasks and derive results by using the binary code generated
through the compiler stack 20000.

[0258] FIG. 26 is a block diagram specifically illustrating
a structure of the CGRA compiler of FIG. 25.

[0259] Referring to FIGS. 7 and 26, the CGRA compiler
CGep may include a CGRA engine (CE) dimension deter-
miner 26000 and a CE scheduler 27000. In this case, the CE
dimension determiner 26000 and the CE scheduler 27000
may be referred to respectively as a CE dimension deter-
miner circuit and a CE scheduler circuit, but for the sake of
convenience, the terms are respectively unified as the CE
dimension determiner and the CE scheduler. In addition, the
CE dimension determiner 26000 and the CE scheduler
27000 may each be implemented as a circuit or circuitry
[0260] The CE dimension determiner 26000 may deter-
mine a scale of the CGRA engine 111 according to an input
calculation task. That is, the CE dimension determiner
26000 may determine the number of the first type of the
plurality of processing elements 111_3a and the second type
of the plurality of processing elements 111_34 included in
the CGRA engine 111 to perform an optimal calculation
task.

[0261] Furthermore, the CE dimension determiner 26000
may also determine the number of CGRA engines 111
included in the CGRA engine groups 110. That is, a dimen-
sion of the CGRA engine 111 and a dimension of the CGRA
engine groups 110 may be determined, and a unit structure
and a cluster structure of the final hierarchical structure may
be determined.

[0262] The CE scheduler 27000 may perform CE level
scheduling. The CE scheduler 27000 may perform task

US 2023/0297817 Al

scheduling of the first type of the plurality of processing
elements 111_3a and the second type of the plurality of
processing elements 111_35 included in the CGRA engine
111. Accordingly, an calculation code for calculation of each
task may be generated.

[0263] FIG. 27 is a block diagram specifically illustrating
a structure of the CGRA engine scheduler of FIG. 26.

[0264] Referring to FIG. 27, a CGRA engine scheduler
27000 may include a control flow graph (CFG) generating
module 27100, an unrolling module 27200, a hyperblocking
module 27300, a constraint module 27500, and a scheduling
module 27400.

[0265] In this case, the CFG generating module 27100, the
unrolling module 27200, the hyperblocking module 27300,
the constraint module 27500, and the scheduling module
27400 may be referred to respectively as a CFG generating
module circuit, an unrolling module circuit, a hyperblocking
module circuit, a constraint module circuit, and a scheduling
module circuit, but for the sake of convenience, the terms are
unified respectively as a CFG generating module, an unroll-
ing module, a hyperblocking module, a constraint module,
and a scheduling module. In addition, the CFG generating
module 27100, the unrolling module 27200, the hyperblock-
ing module 27300, the constraint module 27500, and the
scheduling module 27400 may each be implemented as a
circuit or circuitry.

[0266] The CFG generating module 27100 may receive a
deep learning graph from the deep learning DL framework
10000. The deep learning graph may be represented in the
form of code written by a DL framework. The CFG gener-
ating module 27100 may convert the deep learning graph
into a control flow graph CFG composed of nodes and edges
of an operation unit. The control flow graph CFG may
include a loop that is repeatedly processed a specified
number of times or may also include a conditional branch
structure that branches according to conditions.

[0267] The unrolling module 27200 may unroll a loop
included in the control flow graph CFG. Additionally, the
unrolling module may perform roof filling and roof flatten-
ing and inlining. The unrolling module 27200 may generate
an unrolling control flow graph UCFG by unrolling the loop
included in the control flow graph CFG.

[0268] The hyperblocking module 27300 may generate a
hyperblock by receiving the unrolling control flow graph
UCFG and reconstructing a conditional branch structure. A
hyperblock may be generated by merging blocks with the
same condition among different blocks. The hyperblocking
module 27300 may generate a hyperblocking control flow
graph HCFG.

[0269] The constraint module 27500 may store hardware
constraint Cst generated based on knowledge of experts
previously prepared. The hardware constraint Cst may
include information previously designed by optimizing a
specific operation. That is, the hardware constraint may act
as a guideline on how to reconfigure the CGRA engine 111
when performing a specific input operation.

[0270] The scheduling module 27400 may receive the
hyperblocking control flow graph HCFG and receive the
hardware constraint Cst. The scheduling module 27400 may
generate an calculation code SC by converting the hyper-
blocking control flow graph HCFG based on the hardware
constraint Cst.

Sep. 21, 2023

[0271] FIG. 28 is a block diagram illustrating a CGRA
engine compiled according to a constraint module of FIG.
27.

[0272] Referring to FIG. 28, the PE array 111_3 of the

CGRA engine 111 may configure a first type of the plurality
of processing element 111_3a as a multiplier and configure
the second type of the plurality of processing element
111_3b as an accumulator when performing matrix multi-
plication. The configurations may be established through a
history of existing hardware implementation. That is, the
hardware constraint Cst may provide a guide on how oper-
ands and operators should be configured.

[0273] FIG. 29 is a block diagram specifically illustrating
a structure of the frontend compiler of FIG. 25.

[0274] Referring to FIG. 29, the frontend compiler 23000
may include an [.2 scheduler 23100.

[0275] The L2 scheduler 23100 may perform L2 level
scheduling, that is, CGRA engine group level scheduling.
That is, the L2 scheduler 23100 may receive a deep learning
graph and perform scheduling at levels of the CGRA engine
cluster 100 and the CGRA engine groups 110 by tiling an
calculation task. The embodiment may maximize optimiza-
tion efficiency because there are both the CGRA engine level
scheduling and the CGRA engine group level scheduling.
The L2 scheduler 23100 may be referred to as an L2
scheduler circuit, but for the sake of convenience, the terms
are unified as an L2 scheduler. In addition, the L2 scheduler
23100 may be implemented as a circuit or circuitry.
[0276] FIG. 30 is a block diagram specifically illustrating
a structure of the backend compiler of FIG. 25.

[0277] Referring to FIG. 30, the backend compiler 24000
may include a code generator 24100 and a CE code gen-
erator 24200. The code generator 24100 and the CE code
generator 24200 may be referred to respectively as a code
generator circuit and a CE code generator circuit, but for the
sake of convenience, the terms are respectively unified as a
code generator and a CE code generator. In addition, the
code generator 24100 and the CE code generator 24200 may
be implemented as circuits or circuitry.

[0278] The code generator 24100 may refer to the com-
pute library 22000. The code generator 24100 may generate
partial binary codes based on the calculation code SC stored
in the compute library 22000. The partial binary codes may
constitute a binary code by being added to each other later.
The calculation code SC is stored based on an operation, and
accordingly, the partial binary codes may also be generated
based on an operation.

[0279] The CE code generator 24200 may receive the
partial binary codes. The CE code generator 24200 may
generate a final binary code by summing several partial
binary codes. The CE code generator 24200 may transmit
the binary code to the runtime driver 25000.

[0280] FIG. 31 is a conceptual diagram for illustrating
deep learning calculations performed by a neural processing
device in accordance with some embodiments of the disclo-
sure.

[0281] Referring to FIG. 31, an artificial neural network
model 40000 is one example of a machine learning model,
and is a statistical learning algorithm implemented based on
the structure of a biological neural network or is a structure
for executing the algorithm, in machine learning technology
and cognitive science.

[0282] The artificial neural network model 40000 may
represent a machine learning model having an ability to

US 2023/0297817 Al

solve problems by learning to reduce the error between an
accurate output corresponding to a particular input and an
inferred output by repeatedly adjusting the weight of the
synapse by nodes, which are artificial neurons that have
formed a network by combining synapses, as in a biological
neural network. For example, the artificial neural network
model 40000 may include any probabilistic model, neural
network model, etc., used in artificial intelligence learning
methods such as machine learning and deep learning.
[0283] A neural processing device in accordance with
some embodiments may implement the form of such an
artificial neural network model 40000 and perform calcula-
tions. For example, the artificial neural network model
40000 may receive an input image, and may output infor-
mation on at least a part of an object included in the input
image.

[0284] The artificial neural network model 40000 may be
implemented by a multilayer perceptron (MLP) including
multilayer nodes and connections between them. An artifi-
cial neural network model 40000 in accordance with the
embodiment may be implemented using one of various
artificial neural network model structures including the
MLP. As shown in FIG. 25, the artificial neural network
model 40000 includes an input layer 41000 that receives
input signals or data 40100 from the outside, an output layer
44000 that outputs output signals or data 40200 correspond-
ing to the input data, and n (where n is a positive integer)
hidden layers 42000 to 43000 that are located between the
input layer 41000 and the output layer 44000 and that
receive a signal from the input layer 41000, extract charac-
teristics, and forward them to the output layer 44000. Here,
the output layer 44000 receives signals from the hidden
layers 42000 to 43000 and outputs them to the outside.
[0285] The learning methods of the artificial neural net-
work model 40000 include a supervised learning method for
training to be optimized to solve a problem by the input of
supervisory signals (correct answers), and an unsupervised
learning method that does not require supervisory signals.
[0286] The neural processing device may directly generate
training data, through simulations, for training the artificial
neural network model 40000. In this way, by matching a
plurality of input variables and a plurality of output variables
corresponding thereto with the input layer 41000 and the
output layer 44000 of the artificial neural network model
40000, respectively, and adjusting the synaptic values
between the nodes included in the input layer 41000, the
hidden layers 42000 to 43000, and the output layer 44000,
training may be made to enable a correct output correspond-
ing to a particular input to be extracted. Through such a
training phase, it is possible to identify the characteristics
hidden in the input variables of the artificial neural network
model 40000, and to adjust synaptic values (or weights)
between the nodes of the artificial neural network model
40000 so that an error between an output variable calculated
based on an input variable and a target output is reduced.
[0287] FIG. 32 is a conceptual diagram for illustrating
training and inference operations of a neural network of a
neural processing device in accordance with some embodi-
ments of the disclosure.

[0288] Referring to FIG. 32, the training phase may be
subjected to a process in which a large number of pieces of
training data TD are passed forward to the artificial neural
network model NN and are passed backward again. Through
this, the weights and biases of each node of the artificial

Sep. 21, 2023

neural network model NN are tuned, and training may be
performed so that more and more accurate results can be
derived through this. Through the training phase as such, the
artificial neural network model NN may be converted into a
trained neural network model NNT.

[0289] Referring to FIG. 32, the training phase may be
subjected to a process in which a large number of pieces of
training data TD are passed forward to the artificial neural
network model NN and are passed backward again. Through
this, the weights and biases of each node of the artificial
neural network model NN are tuned, and training may be
performed so that more and more accurate results can be
derived through this. Through the training phase as such, the
artificial neural network model NN may be converted into a
trained neural network model NNT.

[0290] Hereinafter, a control method of a neural process-
ing device, according to some embodiments of the disclo-
sure will be described with reference to FIGS. 13, 16, and
33. Descriptions previously given with reference to FIGS. 1
to 32 are omitted or simplified.

[0291] FIG. 33 is a flowchart illustrating a control method
of a neural processing device, according to some embodi-
ments of the disclosure.

[0292] Referring to FIG. 33, the neural processing device
may receive monitoring information and detect a perfor-
mance problem at S100.

[0293] Specifically, referring to FIGS. 13 and 16, the
sequencer 200 may detect the performance problem by
receiving the monitoring information Im. Specifically, the
performance problem may be at least one of a bandwidth
constraint problem or an calculation performance constraint
problem.

[0294] The monitoring module 250 may receive the moni-
toring information Im. The monitoring module 250 may
detect any performance problem through the monitoring
information Im. For example, the monitoring module 250
may analyze whether a bandwidth is constrained or calcu-
lation performance is constrained. When the bandwidth is
constrained, the monitoring module 250 may identify
whether the off-chip memory 30 is constrained, the 1.2
memory 300 is constrained, or the .2 interconnection 700 is
constrained.

[0295] Referring again to FIG. 33, the monitoring module
250 may determine whether the bandwidth is constrained at
S200.

[0296] When the bandwidth is not constrained, the moni-
toring module 250 may determine whether calculation per-
formance is constrained at S300. When the calculation
performance is constrained, control for increasing perfor-
mance of CGRA engine may be performed at S500.

[0297] Specifically, referring to FIG. 16, the processor
controller 260 may generate the processor control signal
Proc_Cont for controlling an increase of power supply or a
frequency of the CGRA engine 111 when the calculation
performance is constrained. The processor controller 260
may transmit the processor control signal Proc_Cont to the
CGRA engine 111.

[0298] Referring again to FIG. 33, when the bandwidth is
constrained in step S200, the monitoring module 250 may
determine whether the off-chip memory is constrained at
S400. When the off-chip memory is constrained, control for
reducing traffic of the off-chip memory may be performed at
S600.

US 2023/0297817 Al

[0299] Specifically, referring to FIG. 16, the compression
activator 270 may generate the memory control signal
Mem_Cont that performs compression of the traffic of the
off-chip memory 30 and decompresses the traffic again when
the off-chip memory 30 is constrained. Through this, the
compression activator 270 may solve a traffic problem of the
off-chip memory 30. The memory control signal Mem_Cont
may activate a compression engine or a decompression
engine to perform compression or decompression. In this
case, the compression and decompression are only examples
of traffic reduction control, and the embodiment is not
limited thereto.

[0300] Referring again to FIG. 33, when the off-chip
memory is not constrained in step S400, the monitoring
module 250 may determine whether the [.2 memory is
constrained at S700. When the .2 memory is constrained,
control for reducing traffic of the [.2 memory may be
performed at S800.

[0301] Specifically, referring to FIG. 16, when the [.2
memory 300 is constrained, the compression activator 270
may generate the memory control signal Mem_Cont for
compressing the traffic of the L2 memory 300 and decom-
presses the traffic again. Through this, the compression
activator 270 may solve the traffic problem of the L2
memory 300. In this case, compression and decompression
are only examples of traffic reduction control, and the
embodiment is not limited thereto.

[0302] Referring again to FIG. 33, when the [.2 memory
is not constrained in step S700, control for increasing
performance of interconnection is performed at S900.

[0303] Specifically, referring to FIG. 16, the interconnect
controller 280 may generate the interconnection control
signal Inter_Cont for overdriving a frequency of the L2
interconnection 700 when the bandwidth is constrained and
the off-chip memory 30 or the .2 memory 300 is con-
strained. The interconnection control signal Inter_Cont may
increase the frequency of the [.2 interconnection 700 to
solve a bandwidth constraint problem. In this case, the
frequency overdrive is only one example of interconnection
performance enhancement control, and the embodiment is
not limited thereto.

[0304] Hereinafter, a control method of a neural process-
ing device, according to some embodiments of the disclo-
sure will be described with reference to FIGS. 25 to 27, FIG.
29, and FIGS. 34 to 37. Descriptions previously given with
reference to FIGS. 1 to 33 are omitted or simplified.
[0305] FIG. 34 is a flowchart illustrating a method of
compiling a neural processing device, according to some
embodiments of the disclosure, and FIG. 35 is a flowchart
specifically illustrating the storing of FIG. 34. FIG. 36 is a
flowchart specifically illustrating the scheduling of the stor-
ing of FIG. 35, and FIG. 37 is a flowchart specifically
illustrating generating a binary code of FIG. 34.

[0306] Referring to FIG. 34, the .2 scheduler 23100 may
receive a deep learning graph generated in a deep learning
framework at S1100.

[0307] Specifically, referring to FIG. 25, the DL frame-
work 10000 may indicate a framework for a deep learning
model network used by a user. For example, a trained neural
network, that is, a deep learning graph, may be generated by
using a program, such as TensorFlow or PyTorch. The deep
learning graph may be represented in the form of codes of
an calculation task.

Sep. 21, 2023

[0308] Referring again to FIG. 34, the CGRA compiler
CGep may store an calculation code through CGRA com-
pilation in a compute library at S1200.

[0309] In detail, referring to FIG. 35, CE dimension deter-
miner 26000 may determine a dimension of a CGRA engine
at S1210.

[0310] Specifically, referring to FIG. 26, the CE dimen-
sion determiner 26000 may determine a scale, that is, a
dimension, of the CGRA engine 111 according to an input
calculation task. That is, the CE dimension determiner
26000 may determine the number of the first type of the
plurality of processing elements 111_3a and the number of
the second type of the plurality of processing elements
111_35 included in the CGRA engine 111 to perform an
optimal calculation task.

[0311] Furthermore, the CE dimension determiner 26000
may also determine the number of CGRA engines 111
included in the one of the CGRA engine groups 110. That is,
the dimension of the CGRA engine 111 and the dimension
of the one of the CGRA engine groups 110 may be deter-
mined, and accordingly, a unit structure and a cluster struc-
ture of a final hierarchical structure may be determined.
[0312] Referring again to FIG. 35, the CE scheduler 27000
may perform CGRA engine level scheduling at S1220.
[0313] Referring to FIG. 36 in detail, the CFG generating
module 27100 may generate a CFG at S1221.

[0314] Specifically, referring to FIG. 27, the CFG gener-
ating module 27100 may receive a deep learning graph from
the deep learning DL framework 10000. The deep learning
graph may be represented in the form of code written by a
DL framework. The CFG generating module 27100 may
convert the deep learning graph into a CFG composed of
nodes and edges of operation units. The CFG may include a
loop that is repeatedly processed a specified number of times
or may include a conditional branch structure that branches
according to conditions.

[0315] Referring again to FIG. 36, CFG unrolling may be
performed at S1222.

[0316] Specifically, referring to FIG. 27, the unrolling
module 27200 may unroll a loop included in the CFG.
Additionally, the unrolling module 27200 may perform loop
peeling, and loop flattening and inlining. The unrolling
module 27200 may generate the unrolling control flow graph
UCFG by unrolling the loop included in the CFG.

[0317] Referring again to FIG. 36, a hyperblock may be
generated at S1223.

[0318] Specifically, referring to FIG. 27, the hyperblock-
ing module 27300 may generate a hyperblock by receiving
the unrolling control flow graph UCFG and reconstructing a
conditional branch structure. The hyperblock may be gen-
erated by merging blocks with the same condition among
different blocks. The hyperblocking module 27300 may
generate the hyperblocking control flow graph HCFG.
[0319] Referring again to FIG. 36, CGRA engine level
scheduling according to preset hardware constraint may be
performed at S1224. Next, a calculation code may be
generated at S1225.

[0320] Specifically, referring to FIG. 27, the constraint
module 27500 may store the hardware constraint Cst gen-
erated based on knowledge previously written by an expert.
The hardware constraint Cst may be previously designed
about how to implement when a certain operation is opti-
mized. That is, the hardware constraint may act as a guide-

US 2023/0297817 Al

line on how to reconfigure the CGRA engine 111 when a
certain input operation is performed.

[0321] The scheduling module 27400 may receive the
hyperblocking CFG (HCFG) and receive the hardware con-
straint Cst. The scheduling module 27400 may generate the
hyperblocking control flow graph HCFG by converting the
hyperblocking control flow graph HCFG into the calculation
code SC based on the hardware constraint Cst. The CGRA
compiler CGep may store calculation codes in the compute
library 22000 through CGRA engine level compilation.
[0322] Referring again to FIG. 34, the frontend compiler
23000 may optimize a deep learning graph to generate IR at
$1300.

[0323] Specifically, referring to FIG. 25, the frontend
compiler 23000 may convert various neural network models
and graphs transmitted from the adaptation layer 21000 into
a constant IR. The converted IR may be a preset represen-
tation that is easily handled by the backend compiler 24000
later.

[0324] Referring again to FIG. 34, the 1.2 scheduler 23100
may perform [.2 level scheduling according to IR at S1400.
[0325] Referring to FIG. 29, the .2 scheduler 23100 may
perform L2 level scheduling, that is, CGRA engine group
level scheduling. That is, the L2 scheduler 23100 may
receive the deep learning graph and tile the calculation task,
thereby performing scheduling at levels of the CGRA engine
cluster 100 and the one of the CGRA engine groups 110. In
the embodiment, there may be both the CGRA engine level
scheduling and the CGRA engine group level scheduling,
and accordingly, optimization efficiency may be maximized.
[0326] Referring again to FIG. 34, the code generator
24100 may generate a binary code according to the compute
library at S1500.

[0327] In detail, referring to FIG. 37, partial binary codes
may be generated at S1510.

[0328] Referring to FIG. 30, the code generator 24100
may refer to the compute library 22000. The code generator
24100 may generate a partial binary code based on the
calculation code SC stored in the compute library 22000.
The partial binary code may be a code that is added later to
configure a binary code. Since the calculation code SC is
stored based on an operation, the partial binary code may
also be generated based on the operation.

[0329] Referring again to FIG. 37, a binary code may be
generated at S1520.

[0330] Referring to FIG. 30, the CE code generator 24200
may receive the partial binary code. The CE code generator
24200 may generate a final binary code by summing several
partial binary codes. The CE code generator 24200 may
transmit the binary codes to the runtime driver 25000.
[0331] Hereinafter, various aspects of the disclosure will
be described according to some embodiments.

[0332] According to some aspects of the disclosure, a
neural processing device comprises: a first coarse-grained
reconfigurable architecture (CGRA) engine group and a
second CGRA engine group; an [.2 memory shared by the
first CGRA engine group and the second CGRA engine
group; an L2 interconnection configured to transmit data
between the L2 memory, the first CGRA engine group, and
the second CGRA engine group; and a sequencer configure
to provide a hardware resource individually to the first
CGRA engine group and the second CGRA engine group,
wherein the first CGRA engine group comprises: at least one
first CGRA engine; a first L1 memory shared by the at least

Sep. 21, 2023

one first CGRA engine; and a first L1 interconnection
configured to transmit data between the first [.1 memory and
the at least one first CGRA engine.

[0333] According to some aspects, the sequencer receives
monitoring information on at least one of the at least one first
CGRA engine, the [.2 interconnection, or the L2 memory,
and individually provides the hardware resource according
to the monitoring information.

[0334] According to some aspects, latency sensitivity of
the first L1 interconnection is higher than latency sensitivity
of the L2 interconnection.

[0335] According to some aspects, a bandwidth of the [.2
interconnection is greater than a bandwidth of the first L1
interconnection.

[0336] According to some aspects, the neural processing
device, further comprises: a first CGRA engine cluster
including the first CGRA engine group, the second CGRA
engine group and a local interconnection between the first
CGRA engine group and the second CGRA engine group.

[0337] According to some aspects, the neural processing
device, further comprises: a second CGRA engine cluster
different from the first CGRA engine cluster, wherein the
second CGRA engine cluster includes a third CGRA engine
group different from the first CGRA engine group and the
second CGRA engine group, and the sequencer includes a
first sequencer managing the first CGRA engine cluster and
a second sequencer managing the second CGRA engine
cluster.

[0338] According to some aspects, the sequencer com-
prises: at least one first lower sequencer managing each of
the at least one first CGRA engine; and at least one second
lower sequencer managing each of the at least one second
CGRA engine.

[0339] According to some aspects, the first CGRA engine
cluster includes a fourth CGRA engine group different from
the first CGRA engine group and the second CGRA engine
group, the first CGRA engine group and the second CGRA
engine group belong to a first region, the fourth CGRA
engine group belongs to a second region, and the sequencer
includes a third sequencer managing the first CGRA engine
group and the second CGRA engine group, and a fourth
sequencer managing the fourth CGRA engine group.

[0340] According to some aspects, each of the at least one
first CGRA engine has a CGRA structure.

[0341] According to some aspects, the at least one first
CGRA engine comprises: a PE array including a plurality of
processing elements; at least one 1O memory storing input
data input to the processing elements and output data output
from the processing elements; and at least one instruction
memory providing an instruction for an operation of the
processing elements.

[0342] According to some aspects, the PE array further
includes at least one specific processing element different
from the processing elements.

[0343] According to some aspects, the first CGRA engine
group and the second CGRA engine group perform deep
learning calculation tasks.

[0344] According to some aspects, a compiler stack imple-
mented by the first CGRA engine group and the second
CGRA engine group comprises: a CGRA compiler config-
ured to compile operations of the at least one first CGRA
engine; and a main compiler configured to compile opera-

US 2023/0297817 Al

tions of the L.2 memory, the [.2 interconnection and at least
one of the first CGRA engine group or the second CGRA
engine group,

[0345] According to some aspects, the main compiler
comprises: a compute library configured to store a preset
calculation code; an adaptation layer configured to quantize
a deep learning graph to generate a quantization model; a
frontend compiler configured to receive the quantization
model and convert the quantization model into intermediate
representation (IR); and a backend compiler configured to
convert the IR into a binary code by referring to the
calculation code.

[0346] According to some aspects, the CGRA compiler
determines a dimension of the at least one first CGRA
engine, and performs, on a circuit, optimization scheduling
of the at least first CGRA engine.

[0347] According to some aspects, the CGRA compiler
determines a dimension of the at least one first CGRA
engine, and performs, on a circuit, optimization scheduling
of the at least first CGRA engine.

[0348] According to some aspects of the disclosure, a
neural processing device comprises: at least one first CGRA
engine including a PE array including a plurality of pro-
cessing elements, at least one [.O memory configured to store
data for the PE array, at least one instruction memory
configured to provide instructions for operating the plurality
of processing elements, and at least one load/store unit
(LSU) configured to perform load and store for the data; a
first L1 memory shared by the at least one first CGRA
engine; and a first L1 interconnection configured to transmit
data between the first L1 memory and the at least one first
CGRA engine.

[0349] According to some aspects, the at least one first
CGRA engine is managed by a sequencer, and the sequencer
provides a hardware resource individually to the at least one
first CGRA engine according to importance.

[0350] According to some aspects, the at least first CGRA
engine is included in a first CGRA engine group, the
sequencer manages at least one second CGRA engine, and
the at least one second CGRA engine is included in a second
CGRA engine group different from the first CGRA engine
group.

[0351] According to some aspects, the sequencer com-
prises: an upper sequencer managing the first CGRA engine
group; a first lower sequencer associated with the upper
sequencer and configured to control the at least one first
CGRA engine; and a second lower sequencer associated
with the upper sequencer and configured to control the at
least one second CGRA engine.

[0352] According to some aspects, each of the plurality of
processing elements comprises: an instruction queue con-
figured to receive and divide an instruction including pre-
cision; and an input formatter and an output formatter
configured to perform precision conversion through the
precision.

[0353] According to some aspects of the disclosure, a
processing element in which at least one is included at least
one CGRA engine included in a CGRA engine group
individually provided with hardware resources by a
sequencer, the processing element comprising: an instruc-
tion queue configured to receive an instruction set architec-
ture including precision, at least one source, an opcode, and
a destination; a first register configured to receive the at least
one source and the precision from the instruction queue; an

Sep. 21, 2023

input formatter configured to determine an operand through
the first register and configured to perform precision con-
version; a second register configured to receive the opcode
from the instruction queue and configured to determine an
operator; and a third register configured to receive the
destination and the precision from the instruction queue.
[0354] According to some aspects, the processing ele-
ment, further comprises an output formatter configured to
perform the precision conversion of an output according to
the operator of the operand through the third register.
[0355] According to some aspects, the input formatter
receives the output in bypass by the output formatter.
[0356] While the inventive concept has been particularly
shown and described with reference to exemplary embodi-
ments thereof, it will be understood by those of ordinary
skill in the art that various changes in form and details may
be made therein without departing from the spirit and scope
of the inventive concept as defined by the following claims.
It is therefore desired that the embodiments be considered in
all respects as illustrative and not restrictive, reference being
made to the appended claims rather than the foregoing
description to indicate the scope of the disclosure.

What is claimed is:

1. A neural processing device comprising processing
circuitry comprising:

a plurality of processing engine groups;

a first memory shared by the plurality of engine groups;

and

a first interconnection configured to transmit data between
the first memory and the plurality of processing engine
groups,

wherein the processing circuitry is configured to provide
hardware resource to the plurality of processing engine
groups,

at least one of the plurality of processing engine groups
comprises:

a plurality of processing engines, each of the plurality of
processing engines comprising an array of a plurality of
processing elements interconnected by a mesh style
network, the processing elements being reconfigurable;

a second memory shared by the plurality of processing
engines; and

a second interconnection configured to transmit data
between the second memory and the plurality of pro-
cessing engines.

2. The neural processing device of claim 1, wherein the
processing circuitry is configured to perform monitoring at
least one of the plurality of processing engines, the first
interconnection, or the first memory, and individually pro-
vides the hardware resource according to a monitoring.

3. The neural processing device of claim 1, wherein
latency sensitivity of the second interconnection is higher
than latency sensitivity of the first interconnection.

4. The neural processing device of claim 1, wherein a
bandwidth of the first interconnection is greater than a
bandwidth of the second interconnection.

5. The neural processing device of claim 1, wherein:

a first set of processing engine groups is included in a first

processing engine cluster, and

a first processing engine cluster further includes a local
interconnection between the first set of processing
engine groups.

US 2023/0297817 Al

6. The neural processing device of claim 5, wherein:

a second set of processing engine groups is included in a
second processing engine cluster, and

the first processing engine cluster and the second pro-
cessing engine cluster are managed by separate mod-
ules.

7. The neural processing device of claim 6, wherein the
plurality of processing engine groups are managed by sepa-
rate modules.

8. The neural processing device of claim 1, wherein

the first processing engine cluster includes at least one
processing engine group belonging to a first region and
at least one processing engine group belonging to a
second region, and

the at least one processing engine group belonging to the
first region and the at least one processing engine group
belonging to the second region are managed by sepa-
rate modules.

9. The neural processing device of claim 1, wherein
interconnection between the plurality of processing ele-
ments is reconfigurable.

10. The neural processing device of claim 9, wherein the
each of the plurality of processing engines further com-
prises:

at least one third memory storing input data input to the
processing elements and output data output from the
processing elements; and

at least one fourth memory providing an instruction for an
operation of the processing elements.

11. The neural processing device of claim 10, wherein the
processing elements includes a first type of at least one
processing element and a second type of at least one
processing element.

12. The neural processing device of claim 1, wherein the
plurality of processing engine groups perform deep learning
calculation tasks.

13. The neural processing device of claim 1, wherein a
compiler stack configuring the plurality of processing engine
groups comprises:

a first compiler configured to compile operations of the

plurality of processing engines; and

a second compiler configured to compile operations of the
first memory, the first interconnection and at least one
of the plurality of processing engine groups.

14. The neural processing device of claim 13, wherein the

second compiler comprises:

a compute library configured to store a preset calculation
code;

an adaptation layer configured to quantize a deep learning
graph to generate a quantization model;

a frontend compiler configured to receive the quantization
model and convert the quantization model into inter-
mediate representation (IR); and

a backend compiler configured to convert the IR into a
binary code by referring to the calculation code.

15. The neural processing device of claim 14, wherein

the first compiler is further configured to determine a
dimension of the plurality of processing engines, and

perform, on a circuit, optimization scheduling of the
plurality of processing engines.

16. The neural processing device of claim 15, wherein

performing the optimization scheduling comprises:
generating a control-flow graph (CFG) according to the
deep learning graph;

Sep. 21, 2023

unrolling a loop of the CFG to generate an unrolling CFG;

generating a hyperblock of the unrolling CFG to generate
a hyperblocking CFG;

storing preset hardware constraints; and

generating a calculation code at a processing engine level
by scheduling the hyperblocking CFG based on the
preset hardware constraints.

17. A neural processing device comprising processing

circuitry comprising:

a plurality of processing engines, each of the plurality of
processing engine including a processing element (PE)
array of a plurality of processing elements intercon-
nected by a mesh style network, at least one first
memory configured to store data for the PE array, at
least one second memory configured to provide instruc-
tions for operating the plurality of processing elements,
and at least one load/store unit (LSU) configured to
perform load and store for the data, wherein the plu-
rality of processing elements being reconfigurable;

a third memory shared by the plurality of processing
engines; and

an interconnection configured to transmit data between
the third memory and the plurality of processing
engines.

18. The neural processing device of claim 17, wherein

the processing circuitry is configured to provide a hard-
ware resource to the plurality of processing engines
according to importance of operations performed by the
plurality of processing engines.

19. The neural processing device of claim 18, wherein

a first set of processing engines are included in a first
processing engine group, and

a second set of processing engines are included in a
second processing engine group.

20. The neural processing device of claim 19, wherein

the first processing group is managed by an upper module;

a first subset of processing engines in the first processing
engine group is managed by a first lower module
associated with the upper module; and

a second subset of processing engine in the first process-
ing engine group is managed by a second lower module
associated with the upper module.

21. The neural processing device of claim 17, wherein

each of the plurality of processing elements comprises:

an instruction queue configured to receive and divide an
instruction including precision; and

an input formatter and an output formatter configured to
perform precision conversion through the precision.

22. A neural processing device comprising processing

circuitry comprising:

at least one processing engine group comprising a plu-
rality of processing engines,

wherein at least one of the plurality of processing engines
comprises a plurality of processing elements,

the plurality of processing elements are reconfigurable,

the processing circuitry is configured to provide the
plurality of processing engines with hardware
resources,

wherein at least one of the plurality of processing element
comprises:

an instruction queue configured to receive an instruction
including precision, a source, an opcode, and a desti-
nation;

US 2023/0297817 Al

a first register configured to receive the source and the
precision from the instruction queue;

an input formatter configured to determine an operand
through the first register and configured to perform
precision conversion;

a second register configured to receive the opcode from
the instruction queue and configured to determine an
operator; and

a third register configured to receive the destination and
the precision from the instruction queue.

23. The neural processing device of claim 22, further
comprising an output formatter configured to perform the
precision conversion of an output according to the operator
of the operand through the third register.

24. The neural processing device of claim 23, wherein the
input formatter receives the output in bypass by the output
formatter.

20

Sep. 21, 2023

