
US009020277B1

(12) United States Patent (10) Patent No.: US 9,020,277 B1
O'Riordan et al. (45) Date of Patent: Apr. 28, 2015

(54) IMAGE-BASED STIMULUS FORCIRCUIT OTHER PUBLICATIONS
SIMULATION

“Bitmap’. Wikipedia, (Sep. 24, 2012 accessed), 3 pgs.
(71) Applicant: Cadence Design Systems, Inc., San “C Preprocessor'. Wikipedia, http://en.wikipedia.org/wiki/C pre

Jose, CA (US) processor, (Jun. 16, 2011 accessed), 17 pgs.
s “ECE Software'. UC Davis Department of Electrical and Computer

Engineering. http://www.ece.ucdavis.edu/cad/hspice? sci.electron
(72) Inventors: Donal O'Riordan, El CA ics.cad-spice.html, (Jun. 14, 2011 accessed), 6 pgs.

(US); David Varghese, Kochi (IN) “Edge Detection'. Wikipedia, (Sep. 21, 2012 accessed), 8 pgs.
“Grayscale”, Wikipedia, (Sep. 21, 2012 accessed), 4pgs.

(73) Assignee: Cadence Design Systems, Inc., San “Imagine gradient'. Wikipedia, (Sep. 21, 2012 accessed), 4pgs.
Jose, CA (US) "Netlist'. Wikipedia, http://en.wikipedia.org/wiki/Netlist, (Aug. 15.

2011 accessed), 3 pgs.
(*) Notice: Subject to any disclaimer, the term of this “PHP, Wikipedia, http://en.wikipedia.org/w/index.php?title=PHP

patent is extended or adjusted under 35 &printable-yes, (Aug. 17, 2011 accessed), 10 pgs.
U.S.C. 154(b) by 232 days. “Prewitt operator'. Wikipedia, (Sep. 17, 2012 accessed), 3 pgs.

"Python (Programming Language)”. Wikipedia, http://en.wikipedia.
(21) Appl. No.: 13/666,414 org/wiki/Python (programming language), (Aug. 17, 2011

accessed), 14pgs.
(22) Filed: Nov. 1, 2012 "SPICE (Simulation Program with Integrated Circuit Emphasis)'.

Wikipedia, http://en.wikipedia.org/wiki/SPICE. (Aug. 15, 2011
(51) Int. Cl. accessed), 7 pgs.

G06K 9/46 (2006.01) * cited b
G06K 9/00 (2006.01) cited by examiner

(52) U.S. Cl.
CPC G06K 9/0053 (2013.01) Primary Examiner — Ruiping Li

(58) Field of Classification Search (74) Attorney, Agent, or Firm — Kenyon & Kenyon LLP
CPC G06K9/186; G06K9/00791; G06K9/03;

G06T 770075; G06T 2207/30148; G06T 5/001 (57) ABSTRACT
USPC 382/207, 106, 149, 167, 227
See application file for complete search history. Certain embodiments enable image-based stimulus for circuit

simulations by extracting a waveform from an image and
(56) References Cited using that waveform to simulate a circuit. Image-processing

2007/O198967 A1*
2012, OO16652 A1*

U.S. PATENT DOCUMENTS

8, 2007
1/2012 Stamoulis et al.

Ren et al. T16/21
. TO3/14

S2

Y --- ACCESS ISAAGEvijLES

first vities.
Si:Sia:ES

aspects may include edge-detection processes to identify a
boundary of the waveform in the image.

21 Claims, 22 Drawing Sheets

80)

ENCE OF

U.S. Patent Apr. 28, 2015 Sheet 1 of 22 US 9,020,277 B1

OO =

S

s

US 9,020,277 B1 Sheet 2 of 22 Apr. 28, 2015 U.S. Patent

US 9,020,277 B1 Sheet 3 of 22 Apr. 28, 2015 U.S. Patent

U.S. Patent Apr. 28, 2015 Sheet 4 of 22 US 9,020,277 B1

5.

s

stressertserrrrrrrrrrrrrrrrrrrrrrrrrrr irrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrrrrrr -
s

& s: s s: &
sy S. se w sixss : we as KS: ... y issy is is six &

& & A. {k} is

f A
K

r s s s 3.

U.S. Patent Apr. 28, 2015 Sheet 5 of 22 US 9,020,277 B1

EXRAC SERENCE OF
8. WAESAN

Siii. SAS

SO ——
PROVIES SEQUENCE
As WAVEFORMINPUT

:
~

F.G. 5

U.S. Patent Apr. 28, 2015 Sheet 6 of 22 US 9,020,277 B1

------AFPLY GRAYSCALE FILTER

804.

Y- APPLY EDGE-DETECTION
rwror FER

APPLY BACK-AN)-
WEE TER

APPY ROFLNG FER

U.S. Patent Apr. 28, 2015 Sheet 7 of 22 US 9,020,277 B1

&
n

3.SSSSSSS

U.S. Patent Apr. 28, 2015 Sheet 8 of 22 US 9,020,277 B1

s

• is r s
8. : ; : 3 g : 8 c : x s : : & : s * x x x- x x x

it. A i: A

w r: a
O .

. c is
OC) .

US 9,020,277 B1 Sheet 9 of 22 Apr. 28, 2015 U.S. Patent

US 9,020,277 B1 Sheet 10 of 22 Apr. 28, 2015 U.S. Patent

US 9,020,277 B1 Sheet 11 of 22 Apr. 28, 2015 U.S. Patent

00 || ||

80 || ||

US 9,020,277 B1 Sheet 12 of 22 Apr. 28, 2015 U.S. Patent

B is

s

r

g?.

US 9,020,277 B1 Sheet 13 of 22 Apr. 28, 2015 U.S. Patent

&

º ? ’943 4, ?

US 9,020,277 B1

ssssssssssssssss&ssssssss

Sheet 14 of 22

s ss.
s

s

SS.

w

Apr. 28, 2015

w S. S. SSsssssssssssssssssssss &ssass: Ssssss

U.S. Patent

\

US 9,020,277 B1 Sheet 15 of 22 Apr. 28, 2015 U.S. Patent

g t

US 9,020,277 B1

st

U.S. Patent

U.S. Patent Apr. 28, 2015 Sheet 17 of 22 US 9,020,277 B1

s

c

n

2
sixss
&

six-x-SS

xxxxx
w-r- *xx&ssex

U.S. Patent Apr. 28, 2015 Sheet 19 of 22 US 9,020,277 B1

S.

U.S. Patent Apr. 28, 2015 Sheet 21 of 22 US 9,020,277 B1

200

2O2 MAGE-ACCESS
Y-- WODE

2104.

N SEQUENERACTION sk- VODULE

21 O3

\ INPUT WAVEFORM Y- MODE

U.S. Patent Apr. 28, 2015 Sheet 22 of 22 US 9,020,277 B1

- 220

RCCESSC - W - - Y

W{} :
SAY C

--ex-swww.www.www.wrwr-wswww.rwww.x.

233 -

224 --

AANVERC
28. -- Nritic 2212
22 --

STAC & EMORY CURSOR
28 k-e CONTROt. r. 224
R DEVICE

--a .

ENT MAC-NE- * 23.
REAAE

NETWORK
2g28 - NERFACS

RCE

SCNA
38NERAO\;

EVEE

-N- Y-N
28 -(\EWORK

Y---
28

US 9,020,277 B1
1.

IMAGE-BASED STMULUS FOR CIRCUIT
SIMULATION

FIELD

The present disclosure relates generally to computing and
more particularly to computer simulations of circuits.

BACKGROUND

Circuit simulators typically operate on netlist code that
describes the circuit model and specifies the simulation con
ditions. For example, the circuit model typically includes
model elements (e.g., transistors), parameters (e.g., process/
device), and connectivity (e.g., topology), and the simulation
conditions typically include model inputs for the simulation
interval including waveform profiles for inputs and power
Supplies. However, related Software for simulating circuits
has typically not enabled direct imaged-based inputs (e.g.,
bitmap images) even though image-based representations
may be available or easily generated to capture relevant
behavioral characteristics of circuit stimulus. Thus, there is a
need for improved methods and related systems for enabling
circuit simulations with image-based stimulus.

SUMMARY

Certain embodiments enable image-based stimulus for cir
cuit simulations by extracting a waveform from an image and
using that waveform to simulate a circuit.
One embodiment relates a method of using an image as an

input for simulating a circuit. A first operation includes
accessing image values for the image, the image characteriz
ing a stimulus profile for the circuit over time, and the image
values including to a two-dimensional array of pixel values
for the image. A second operation includes extracting a
sequence of time values and stimulus values for the stimulus
profile from the image values, the time values being scaled by
a time-scale value for a first dimension of the image, the
stimulus values being scaled by a stimulus-scale value for a
second dimension of the image, and the stimulus values cor
responding to Voltages or currents for the stimulus profile. A
third operation includes providing the sequence of time val
ues and stimulus values as an input waveform for simulating
the circuit.

Another embodiment relates to an apparatus for carrying
out any one of the above-described methods, where the appa
ratus includes a computer for executing instructions related to
the method. For example, the computer may include a pro
cessor for executing at least Some of the instructions. Addi
tionally or alternatively the computer may include circuitry or
other specialized hardware for executing at least some of the
instructions. In some operational settings, the apparatus may
be configured as a system that includes one or more units,
each of which is configured to carry out some aspects of the
method either in Software, in hardware or in Some combina
tion thereof. At least some values for the results of the method
can be saved for later use in a computer-readable medium,
including memory units and storage devices. Another
embodiment relates to a computer-readable medium that
stores (e.g., tangibly embodies) a computer program for car
rying out the any one of the above-described methods with a
computer. In these ways aspects of the disclosed embodi
ments enable circuit simulations with image-based stimulus.

BRIEF DESCRIPTION OF DRAWINGS

Some embodiments are illustrated by way of example and
not limitation in the figures of the accompanying drawings.

10

15

25

30

35

40

45

50

55

60

65

2
FIG. 1 is a diagram that shows an inverter-circuit testbench

for an example embodiment.
FIG. 2 is a listing of a code segment that shows a netlist

description for the inverter in the inverter-circuit testbench of
FIG 1.

FIG. 3 is a listing of a code segment that shows example
voltage inputs for the inverter-circuit testbench of FIG. 1.

FIG. 4 is a diagram that shows a waveform display related
to the inverter-circuit testbench of FIG. 1 including a voltage
waveform, an input waveform, and an output waveform.

FIG.5 is a flowchart that shows a method ofusing an image
as an input for simulating a circuit according to an example
embodiment.

FIG. 6 is a flowchart that shows a method of extracting a
sequence of time values and stimulus values for the embodi
ment of FIG. 5.

FIG. 7 is a process diagram that shows image transforma
tions from a display image to a grayscale image after edge
detection and to a black-and-white image.

FIG. 8 is a diagram that shows a waveform display related
to the inverter-circuit testbench of FIG. 1 including an input
waveform and an output waveform.

FIG. 9 is a listing of a code segment that shows example
voltage inputs for the inverter-circuit testbench of FIG. 1 in
accordance with an example embodiment.

FIG. 10 is a diagram that shows a circuit simulation system
in accordance with an example embodiment.

FIG. 11 is a diagram that shows an amplifier-circuit test
bench for an example embodiment.

FIG. 12 is a listing of a code segment that shows a netlist
description for the amplifier in the amplifier-circuit testbench
of FIG. 11.

FIG. 13 is a process diagram that shows image transforma
tions from a display image to a grayscale image after edge
detection and to a black-and-white image.

FIG.14 is a diagram that shows a waveform display related
to the amplifier-circuit testbench of FIG. 11 including an
input waveform and an output waveform.

FIG. 15 is a listing of a code segment that shows example
voltage inputs for the amplifier-circuit testbench of FIG.11 in
accordance with an example embodiment.

FIG. 16 is a listing of a code segment that shows example
voltage inputs for the amplifier-circuit testbench of FIG. 11
after pre-processing the code segment of FIG. 15 in accor
dance with an example embodiment.

FIG. 17 is a process diagram that shows image transforma
tions from a display image to a Voltage waveform for the
amplifier-circuit testbench of FIG. 11 in accordance with an
example embodiment.

FIG. 18 is a diagram that shows a waveform display related
to the amplifier-circuit testbench of FIG. 11 including a volt
age waveform, an input waveform and an output waveform.

FIG. 19 is a diagram that shows a display image for a
voltage profile related to the inverter-circuit testbench of FIG.
1.
FIG.20 is a diagram that shows a waveform display related

to the inverter-circuit testbench of FIG. 1 including a voltage
waveform, an input waveform, an output waveform, a first
transistor waveform, and a second transistor waveform 2010.

FIG. 21 is a block diagram that shows a schematic repre
sentation of an apparatus for an example embodiment.
FIG.22 is a block diagram that shows a computer process

ing system within which a set of instructions for causing the
computer to performany one of the methodologies discussed
herein may be executed.

DETAILED DESCRIPTION

Example methods and systems are directed to circuit simu
lation. The disclosed examples merely typify possible varia

US 9,020,277 B1
3

tions. Unless explicitly stated otherwise, components and
functions are optional and may be combined or Subdivided,
and operations may vary in sequence or be combined or
subdivided. In the following description, for purposes of
explanation, numerous specific details are set forth to provide
a thorough understanding of example embodiments. It will be
evident to one skilled in the art, however, that the present
Subject matter may be practiced without these specific details.

FIG. 1 is a diagram that shows an inverter-circuit testbench
100 for an example embodiment. As shown in FIG. 1, the
inverter-circuit testbench 100 includes an inverter 102 with
input elements 104, output elements 106 and a power supply
108. Circuit simulators (e.g., e.g., SPECTRE or SPICE lan
guage-based simulators) typically employ software descrip
tions of the testbench 100 in order to simulate the behavior of
the inverter 104 under a variety of conditions. The relevant
input deck for the circuit simulator typically includes: process
and device parameters and models representing the manufac
turing process, the topology of the circuit to be simulated/
Verified, the types of analyses that are of interest (transient, ac,
dc etc), a list of Voltage/current node probing points under
analyses for waveform generation/measurements, and appro
priate stimuli which can test the functionality of the circuit

For example, FIG. 2 is a listing of a code segment that
shows a corresponding netlist description for the inverter 102
including a first transistor PMO (lines 5-6) and a second
transistor NM0 (lines 7-8). (Note that words such as first and
second are used here and elsewhere for labeling purposes
only and are not intended to denote any specific spatial or
temporal ordering. Furthermore, the labeling of a first ele
ment does not imply the presence a second element.)

FIG. 3 is a listing of a code segment that shows example
voltage inputs for the inverter-circuit testbench 100 including
constant voltages V1 (line 4) and V2 (line 1), which corre
spond to the power supply 108, and a voltage input V0 that is
defined as an ideal pulse waveform that switches between OV
and 5V with additional arguments including period, rise time,
fall time, and width. FIG. 4 is a diagram that shows a corre
sponding waveform display 400 for the inverter-circuit test
bench 100 of FIG. 1 including a voltage waveform 402 for the
power-supply Voltage V1 (e.g., FIG. 3, line 4), an input wave
form 404 for the voltage inputVO (e.g., FIG.3, lines 2-3), and
a corresponding output waveform 406. For example, with
reference to FIG. 1, the input waveform 404 may correspond
to values at node A of the inverter 102 and the output wave
form 406 may correspond to values at node Y of the inverter
102.
The simulation shown in FIG. 4 characterizes behavior of

the inverter 102 the absence of non-idealistic effects includ
ing noise in the input waveform 404 and the Voltage wave
form 404. Although an idealistic simulation can verify fun
damental properties of a circuit, the introduction of noise and
other non-idealistic effects is becoming increasingly impor
tant as performance requirements have become increasingly
stringent. For example, with greater process variations in
Small-geometry processes coupled with related issues such as
power-grid Voltage drops that affect local power Voltages,
circuit reliability for critical circuits is now being verified
under a variety of adverse conditions where the inputs to the
circuit deviate substantially from the ideal conditions.

Responding to these enhanced requirements, designers
have tried to model various effects and encapsulate them to
modify otherwise ideal stimuli that drive circuit inputs or
power Supplies. Typical approaches have included parasitics
based Resistance-Capacitance (RC) modeling, transmission

5

10

15

25

30

35

40

45

50

55

60

65

4
line modeling, input and output Voltage source noise model
ing, Substrate noise modeling, IR (voltage) drop modeling,
and so forth.

In the context of behavioral modeling, the designer can
approximately model the behavior of complex stimuli (e.g.,
using Verilog-A, or other similar behavioral description lan
guages) in order to analyze the circuit response. However, the
behavior of complex stimuli is often difficult to model accu
rately. Although N-degree polynomial approximations have
been used successfully in some applications, the modeling
requirements impose a substantial burden on the designer.
More accurate models have also been derived through real

time probing of a fabricated circuit under test combined with
Subsequent data-characterization. For example, Some design
ers extensively use high-end oscilloscopes to probe the test
chip in order to model difficult characteristics such as sub
strate noise behavior (e.g., in a high speed mixed signal chip)
by using the current data as an input for the next chip. While
this gives designers a more intuitive visualization of the actual
input vector shape, this approach incurs both cost and diffi
culty in transferring the scoped characteristics to the simula
tion testbench.
As discussed below, example embodiments enable a

designer to use image data as an input for simulating a circuit,
where this image may correspond to measured circuit data
(e.g., oscilloscope data) or more general user input such as an
image drawing tool (e.g., MS Paint, GIMP, etc.).

FIG. 5 is a flowchart that shows a method 500 of using an
image as an input for simulating a circuit according to an
example embodiment. A first operation 502 includes access
ing image values for the image, where the image character
izes a stimulus profile for the circuit over time, and the image
values include a two-dimensional array of pixel values for the
image. A second operation 504 includes extracting a
sequence of time values and stimulus values for the stimulus
profile from the image values, where the time values are
scaled by a time-scale value for a first dimension of the image,
the stimulus values are scaled by a stimulus-scale value for
the second dimension of the image, and the stimulus values
correspond to Voltages or currents for the stimulus profile. A
third operation 506 includes providing the sequence of time
values and stimulus values as an input waveform for simulat
ing the circuit.

Accessing the image values (e.g., operation 502) may
include scanning a display of the image to determine the
image values. For example, a conventional image scanning
device operating on the display (e.g., a bitmap image) may
return a two-dimensional array of pixel values for the image
in a variety of formats (e.g., multi-colored, grayscale, black
and white). The image may be a single Snapshot or a series of
Snapshots (e.g., Stitched together). As discussed above, the
image may be measurement-based (e.g., a Snapshot of an
oscilloscope) or more generally based on user input (e.g., a
drawing tool). Expert designers often intuitively know the
general shape of the relevant input waveforms and can con
Veniently draw the waveform profile with a drawing program
and then connect the drawing to the circuit by providing
appropriate scale factors (e.g., the time-scale factor and the
stimulus-scale factor).
As discussed below in greater detail, extracting the

sequence of time values and stimulus values may include a
combination of image processing methods. FIG. 6 is a flow
chart that shows a method 600 of extracting a sequence of
time values and stimulus values for an example embodiment
of operation 504 in FIG. 5. A first operation 602 includes
applying a grayscale filter to the image values to determine
first grayscale image values for the image by comparing one

US 9,020,277 B1
5

or more grayscale threshold values to the image values, where
the first grayscale image values include a two-dimensional
array of first grayscale pixel values. A second operation 604
includes applying an edge-detection filter to the first gray
scale image values to determine second grayscale image val
ues for the image by calculating transitions between the first
grayscale image values, where the second grayscale image
values include a two-dimensional array of second grayscale
pixel values. A third operation 606 includes applying a black
and-white filter to the second grayscale image values to deter
mine black-and-white image values for the image by compar
ing one or more black-and-white threshold values to the
second grayscale image values, where the black-and-white
image values include a two-dimensional array of black-and
white pixel values that each correspond to black or white. A
fourth operation 608 includes applying a profiling filter to the
black-and-white image values to extract the sequence of time
values and stimulus values by identifying black-and-white
pixel values that correspond to the stimulus profile in the
black and white. The time-scale value and the stimulus-scale
value then provide the Scaling connection to circuit.

Although FIG. 6 shows four filter stages, the number and
arrangement of filters may vary according to the nature of the
image data. FIG. 7 is a process diagram 700 that shows image
transformations for an example embodiment from a display
image 702 to a grayscale image 704 after edge detection and
a black-and-white image 706. In this example embodiment,
the display image 702 corresponds to an oscilloscope Voltage
display, which is typically multi-colored. The grayscale
image 704 may then be the result of a using a grayscale filter
(e.g., operation 602) to replace multiple colors with grayscale
colors plus an edge-detection filter (e.g., operation 604) to
emphasize the likely boundary of the waveform in the display
image 702. For example, the edge-detection filter may oper
ate to identify pixel-value transitions that correspond to a
boundary of the stimulus profile, and Subsequently these
pixel-value transitions may be used to identify the time values
and stimulus values corresponding to the stimulus profile. For
example, the edge-detection filter may use a difference opera
tor (e.g., a Prewitt operator) to estimate the gradient of the
image intensity function in order to identify maximal pixel
value transitions. Note that this example assumes a Zero
crossing line in the display image 702 So that there is an
approximately even split above and below a central horizontal
line that corresponds to a Zero value in the display image 702.
However, depending on the operational setting, the user may
employ a user interface to set a Zero or non-zero reference
value on the vertical scale of the display image 702, and
similarly the user may set a reference value on the horizontal
scale of the display image 702 (e.g., for a reference time
value).
When an edge-detection filter is applied after a grayscale

filter or combined with a grayscale filter, the grayscale filter
may determine grayscale image values for the image by com
paring one or more grayscale threshold values to the image
values, where the grayscale image values include a two-di
mensional array of grayscale pixel values. Then, the edge
detection filter operates to identify transitions in the grayscale
pixel values to identify the boundary of the stimulus profile.
The black-and-white image 706 may then result from using a
black-and-white filter (e.g., operation 606) that applies
threshold values to restrict each pixel value to black or white.

Finally the sequence of time values and stimulus values can
be extracted from the black-and-white image 706 by using a
profiling filter (e.g., operation 608) that identities the under
ling profile (e.g., as a black pixel). Two points should be
emphasized. First, black-and-white image 706 may include

10

15

25

30

35

40

45

50

55

60

65

6
multiple stimulus values for a given time value because the
edge-detection filter has identified both an upper boundary
and a lower boundary for the underlying profile (e.g., as in
grayscale mage 704). Therefore, the profiling filter may
include a monotonicity filter that that restricts the sequence to
be monotonic in the time values. For example in the case of
two stimulus values for a given time, the lower stimulus value
corresponding to the lower boundary may be selected. Alter
natively, the higher stimulus value may be chosen oran aver
age value may be chosen.

Second, the resulting sequence may be missing a stimulus
value for a given time value because of the threshold values
used or other filtering details. For example, the black-and
white image 706 appears to be ragged, especially at transi
tions between high Voltage values and low Voltage values.
Additional resolution can be added adaptively by changing
filter values to identify missing points (e.g., adjusting thresh
old values until a stimulus value is identified). However, it is
generally sufficient to rely on a linear interpolation between
the identified points. FIG. 8 is a diagram that shows a wave
form display 800 related to the inverter-circuit testbench 100
of FIG. 1 including an input waveform 802 that corresponds
to a piece-wise linear interpolation of the profile extracted
from the black-and-white image 706. The corresponding out
put waveform 804 is also shown.

Providing the sequence of time values and stimulus values
as an input waveform (e.g., operation 506) may include add
ing the sequence to a netlist description for simulating the
circuit as a piecewise-linear waveform that interpolates the
time values and the stimulus values. As illustrated in FIG.9,
conventional simulators (e.g., SPECTRE or SPICE language
based simulators) enable the piecewise-linear interpolation of
waveform data as an input to a circuit simulation, and the
extracted sequence data can be provided to the simulator
through operations of conventional scripting languages (e.g.,
Python and PHP).

FIG. 9 is a listing of a Python-based code segment that
shows example Voltage inputs for the inverter-circuit test
bench 100 of FIG. 1 in accordance with an example embodi
ment. Comparing FIG. 9 with FIG. 3, one can see that the
original pulse waveform (lines 2-3, FIG. 3) has been replaced
with a Python script (lines 6-13, FIG.9). In particular line 10
of FIG. 9 indicates to apply the image captured in the file
"scope.gif as an input stimulus V0 that is characterized as a
piece-wise linear source with a peak-to-peak Voltage of 200
mv 200e-03(e.g., a stimulus-scale value) over a transient
time of 2 ms 2e-03(e.g., a time-scale value). Here, “PWL
Gen' represents a Python class that wraps the function called
“Image2XY,” which implements an image processing algo
rithm in order to convert the graphical image stored in file
"scope.gif into a XY Voltage-time pair piecewise-linear
(PWL) source suitable for use in the circuit simulator. Related
intermediate values are also shown including grayscale image
values (“gs3.png), black-and-white image values
(“bw3.png'), and a record of the time values and stimulus
values for debugging purposes ("vector.txt.). Python-lan
guage operations on lines 11-12 of FIG. 9 then generate a
sequence of time values and stimulus values for circuit simu
lation.

Programming languages can be used to generate netlist
code for circuit simulation by using language preprocessors
that implement embedded code segments (e.g., FIG. 9) as
described in U.S. application Ser. No. 13/270,052, filed Oct.
10, 2011, entitled “Chained Programming Language Prepro
cessors for Circuit Simulation, and which is incorporated
herein by reference in its entirety.

US 9,020,277 B1
7

FIG. 10 is a diagram that shows a circuit simulation system
1000 that incorporates programming language functionality
including scripting operations that enable the generation of
executable netlist code in accordance with an example
embodiment. These scripting operations may include internal
variables (e.g., to be evaluated for different circuit options),
control structures (e.g., if-then-else statements, execution
loops), external access (e.g., to a repository site via the Inter
net). Programming structures may also incorporate advanced
features from Object Oriented Programming such as data
abstraction, encapsulation, messaging, modularity, polymor
phism, and inheritance.

For example, referencing an external site through a Uni
form Resource Identifier (URI) can enable access to circuit
models in specific netlist languages (e.g., SPICE). Similarly,
referencing an external site can enable the creation of a stimu
lus whose voltage or current waveform tracks the results of a
previous simulation of the same or a different circuit. Control
structures can be used to create parameterized topology gen
erators for model elements (e.g., a parameterized cell
(PCell)). Control structures can also be used to create an
analysis generator (or option generator) that is capable of
performing analysis loops, a desirable feature that is gener
ally unavailable in netlist languages, in order to obtain a range
of node Voltages or to run an arbitrary loop-based analysis
Sequence.
The system includes a simulator 1002 that receives an input

file 1004 that includes a netlist description that can be more
general than executable netlist code. That is, the input file
1004 may include embedded code segments written in pro
gramming languages that include Scripting operations for
generating executable netlist code (e.g., as in FIG. 9). The
simulator includes a reader 1006 that reads in the input file
1004, a parser 1008 that determines the netlist elements by
extracting them from the file and converting them into tokens,
and a simulation engine 1010 that simulates the circuit based
on extracted network elements or their equivalent tokens.
Additionally the system 1000 includes a master controller
process 1012 that includes a language analyzer/controller
1014 and a checker 1016. The language analyzer/controller
analyzes the input file 1004 to identify the embedded code
segments and their corresponding programming languages,
which preferably have been specified or registered in the
system 1000 for this purpose.
As embedded code segments are identified by the language

analyzer/controller, the master controller process 1012 con
figures a preprocessor chain 1018, also described as a pipeline
preprocessor, that includes a language preprocessor 1020 for
each identified programming language. That is, each prepro
cessor reads from its standard input (stdin) and writes to its
standard output (stdout), and the preprocessors are arranged
in a sequence so that the standard output of one preprocessor
is the standard input of the next processor in the sequence.
Each preprocessor operates on embedded code segments
Written in its corresponding programming language to gen
erate corresponding preprocessed code segments that are
written to its standard output. Additionally, each preprocessor
writes other portions of the netlist description directly (e.g.,
Verbatim) to its standard output including netlist code as well
as embedded code segments that are not written in its corre
sponding programming language.
As a result, the netlist description corresponding to the

input file 1004 can be sequentially processed by the compo
nents of the preprocessor chain 1018 to replace the embedded
code segments with preprocessed segments. These prepro
cessed segments may be entirely executable netlist code or
may include further embedded code segments.

10

15

25

30

35

40

45

50

55

60

65

8
The checker 1016 then evaluates the output from the pre

processor chain 1018 to determine if additional embedded
code segments are present (e.g. as a result of executing an
embedded code segment). If additional embedded code seg
ments are detected by the checker 1016, then the operations of
the language analyzer/controller 1014 and the preprocessor
chain can be repeated until the checker 1016 detects execut
able netlist code with no embedded code segments. That is,
when the checker 1016 detects at least one embedded code
segment in the output buffer of the preprocessor chain 1018,
the output buffer of the checker 1016 is directed to the lan
guage analyzer/controller 1014 for further processing
through the preprocessor chain 1018. Finally, when the
checker 1016 detects no more embedded code segments 1016
in the output buffer of the preprocessor chain 1018, the output
buffer of the checker 1016 is directed to the parser 1008 and
the engine 1010.

FIG. 11 is a diagram that shows an amplifier-circuit test
bench 1100 for another example embodiment. As shown in
FIG. 11, the amplifier-circuit testbench 1100 includes an
amplifier 1102 with input elements 1104, an output elements
1106 and a power supply 1108.

FIG. 12 is a listing of a code segment that shows a netlist
description for the amplifier 1102 in the amplifier-circuit
testbench 1100 of FIG. 11. The code segment of FIG. 12
includes related definitions for the amplifier (lines 14-26) and
the power supply (lines 4-8).

In this example embodiment, a sinusoidal Voltage wave
form is captured from an oscilloscope image. Similarly as in
FIG. 7, FIG. 13 is a process diagram 1300 that shows image
transformations from a display image 1302 to a grayscale
image 1304 after edge detection and a black-and-white image
1306. Similarly as in FIG. 8, FIG. 14 is a diagram that shows
a waveform display 1400 related to the amplifier-circuit test
bench 1100 of FIG. 11 including an input waveform 1402 and
an amplified output waveform 1404. The input waveform
1402 is a piece-wise linear (slightly noisy) waveform that
interpolates the sequence of time values and stimulus values
(e.g., Voltages in this case) that have been extracted from the
black-and-white image 1306.

Similarly as in FIG.9, FIG. 15 is a listing of a correspond
ing code segment that shows example Voltage inputs for the
amplifier-circuit testbench 1100 of FIG. 11 including another
instantiation of the Python class PWLGen that captures a
graphical image for a waveform input. Here, the instance is
configured to convert the 'sinelkh test.jpg image to a piece
wise linear Voltage source representation, in which the
(slightly noisy) impure sine-wave (e.g., image 1302 of FIG.
13) is processed and used as an input to the amplifier circuit
1102. In particular, the processing is instructed to Scale image
1302 of FIG. 13 to take on X-axis (time) range of 2 millisec
onds (e.g., time-scale value), with a peak-to-peak voltage or
Y-axis scale of 2 millivolts (e.g., stimulus-scale value), as
given by the final two parameters to the PWLGen instance.

FIG. 16 is a listing of a corresponding code segment that
shows example Voltage inputs for the amplifier-circuit test
bench 1100 of FIG. 11 after pre-processing the code segment
of FIG. 15 (e.g., by the system 1000 of FIG. 10). As shown in
FIG. 16, the original Python code segment of FIG. 15 has
been replaced with a netlist code segment that includes a
sequence of time values and stimulus values as an input to a
circuit simulator (e.g., lines 5-18, FIG. 16), where these val
ues have been correspondingly scaled by the time-scale value
and the stimulus-scale value. In this way, the Python code
segment of FIG. 15 effectively consumes the image data
('sinelkh test.jpg) to generate a piecewise linear listing that
is then consumed by the circuit simulator.

US 9,020,277 B1
9

FIG. 17 is a process diagram 1700 that shows image trans
formations from a display image 1702 to a voltage waveform
1704 for the amplifier-circuit testbench 100 of FIG. 1 in
accordance with another example embodiment. In this case
the image 1702 represents a noise signal that has been cap
tured from a noise simulator in a drawing tool (e.g., Windows
Paint). This noise signal is then added to the nominal V2
voltage from the power supply 108 of FIG. 1 to give a noisy
voltage waveform 1704 (e.g., added to the constant 5V volt
age waveform 402 of FIG. 4). Similarly as in FIG.4, FIG. 18
is a diagram that shows a corresponding waveform display
1800 including a noisy voltage waveform 1802 (e.g., as in
waveform 1704), an input pulse waveform 1404 (e.g., as in
waveform 404 of FIG. 4) and an output waveform 1106 that
reflects the noisy power supply 108. The circuit simulations
shown in FIGS. 17 and 18 can be implemented by a Python
based code segment as illustrated in FIGS. 15 and 16.

FIG. 19 is a diagram that shows a display image 1900 for a
voltage profile related to the inverter-circuit testbench 100 of
FIG. 1 in accordance with another embodiment. In this case
the image 1900 (e.g., created by a drawing tool) represents a
voltage (IR) drop in the V2 voltage from the power supply 108
of FIG. 1 to model the behavior of the circuit when there is a
Voltage drop due to large power rail parasitic resistance and so
the effective "Vdd is reduced. As discussed above, the image
1900 is processed to determine a voltage waveform for the
simulator (e.g., as in FIG. 13). FIG.20 is a diagram that shows
a corresponding waveform display 2000 including a decreas
ing Voltage waveform 2002 (e.g., from processing the image
1900), an input waveform 2004 (e.g., as in input waveform
404), an output waveform 2006 (e.g., as in output waveform
406), a first transistor power-dissipation waveform 2010
(e.g., corresponding to transistor PMO from lines 5-6, FIG. 2),
and a second transistor power-dissipation waveform 2008
(e.g., corresponding to transistor NMO from lines 7-8, FIG.
2).

Additional embodiments correspond to systems and
related computer programs that carry out the above-described
methods.

FIG. 21 shows a schematic representation of an apparatus
2100, in accordance with an example embodiment for using
an image as an input for simulating a circuit. In this case, the
apparatus 2100 includes at least one computer system (e.g., as
in FIG.22) to perform software and hardware operations for
modules that carry out aspects of the method 500 of FIG. 5.

In accordance with an example embodiment, the apparatus
2100 includes an image-access module 2102, a sequence
extraction module 2104, and an input-waveform module
2106. The image-access module 2106 accesses image values
for the image, the image characterizing a stimulus profile for
the circuit over time, and the image values including to a
two-dimensional array of pixel values for the image. The
sequence-extraction module 2104 extracts a sequence of time
values and stimulus values for the stimulus profile from the
image values, the time values being scaled by a time-scale
value for a first dimension of the image, the stimulus values
being scaled by a stimulus-scale value for a second dimension
of the image, and the stimulus values corresponding to Volt
ages or currents for the stimulus profile. The input-waveform
module 2106 provides the sequence of time values and stimu
lus values as an input waveform for simulating the circuit.
Additional operations related to the method 500 may be per
formed by additional corresponding modules or through
modifications of the above-described modules.

FIG. 22 shows a machine in the example form of a com
puter system 2200 within which instructions for causing the
machine to perform any one or more of the methodologies

10

15

25

30

35

40

45

50

55

60

65

10
discussed here may be executed. In alternative embodiments,
the machine operates as a standalone device or may be con
nected (e.g., networked) to other machines. In a networked
deployment, the machine may operate in the capacity of a
server or a client machine in server-client network environ
ment, or as a peer machine in a peer-to-peer (or distributed)
network environment. The machine may be a personal com
puter (PC), a tablet PC, a set-top box (STB), a personal digital
assistant (PDA), a cellular telephone, a web appliance, a
network router, Switch or bridge, or any machine capable of
executing instructions (sequential or otherwise) that specify
actions to be taken by that machine. Further, while only a
single machine is illustrated, the term “machine' shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein.
The example computer system 2200 includes a processor

2202 (e.g., a central processing unit (CPU), a graphics pro
cessing unit (GPU) or both), a main memory 2204, and a
static memory 2206, which communicate with each other via
a bus 2208. The computer system 2200 may further include a
video display unit 2210 (e.g., a liquid crystal display (LCD)
or a cathode ray tube (CRT)). The computer system 2200 also
includes an alphanumeric input device 2212 (e.g., a key
board), a user interface (UI) cursor control device 2214 (e.g.,
a mouse), a disk drive unit 2216, a signal generation device
2218 (e.g., a speaker), and a network interface device 2220.

In some contexts, a computer-readable medium may be
described as a machine-readable medium. The disk drive unit
2216 includes a machine-readable medium 2222 on which is
stored one or more sets of data structures and instructions
2224 (e.g., Software) embodying or utilizing any one or more
of the methodologies or functions described herein. The
instructions 2224 may also reside, completely or at least
partially, within the static memory 2206, within the main
memory 2204, or within the processor 2202 during execution
thereof by the computer system 2200, with the static memory
2206, the main memory 2204, and the processor 2202 also
constituting machine-readable media.

While the machine-readable medium 2222 is shown in an
example embodiment to be a single medium, the terms
“machine-readable medium' and “computer-readable
medium may each refer to a single medium or multiple
media (e.g., a centralized or distributed database, and/or asso
ciated caches and servers) that store the one or more sets of
data structures and instructions 2224. These terms shall also
be taken to include any tangible or non-transitory medium
that is capable of storing, encoding or carrying instructions
for execution by the machine and that cause the machine to
perform any one or more of the methodologies disclosed
herein, or that is capable of storing, encoding or carrying data
structures utilized by or associated with Such instructions.
These terms shall accordingly be taken to include, but not be
limited to, Solid-state memories, optical media, and magnetic
media. Specific examples of machine-readable or computer
readable media include non-volatile memory, including by
way of example semiconductor memory devices, e.g., eras
able programmable read-only memory (EPROM), electri
cally erasable programmable read-only memory (EEPROM),
and flash memory devices; magnetic disks such as internal
hard disks and removable disks; magneto-optical disks; com
pact disc read-only memory (CD-ROM) and digital versatile
disc read-only memory (DVD-ROM).
The instructions 2224 may further be transmitted or

received over a communications network 2226 using a trans
mission medium. The instructions 2224 may be transmitted

US 9,020,277 B1
11

using the network interface device 2220 and any one of a
number of well-known transfer protocols (e.g., hypertext
transfer protocol (HTTP)). Examples of communication net
works include a local area network (LAN), a wide area net
work (WAN), the Internet, mobile telephone networks, plain
old telephone (POTS) networks, and wireless data networks
(e.g., WiFi and WiMax networks). The term “transmission
medium’ shall be taken to include any intangible medium that
is capable of storing, encoding or carrying instructions for
execution by the machine, and includes digital or analog
communications signals or other intangible media to facili
tate communication of Such software.

Certain embodiments are described herein as including
logic or a number of components, modules, or mechanisms.
Modules may constitute either software modules or hard
ware-implemented modules. A hardware-implemented mod
ule is a tangible unit capable of performing certain operations
and may be configured or arranged in a certain manner. In
example embodiments, one or more computer systems (e.g.,
a standalone, client or server computer system) or one or more
processors may be configured by Software (e.g., an applica
tion or application portion) as a hardware-implemented mod
ule that operates to perform certain operations as described
herein.

In various embodiments, a hardware-implemented module
(e.g., a computer-implemented module) may be implemented
mechanically or electronically. For example, a hardware
implemented module may comprise dedicated circuitry or
logic that is permanently configured (e.g., as a special-pur
pose processor, such as a field programmable gate array
(FPGA) or an application-specific integrated circuit (ASIC))
to perform certain operations. A hardware-implemented
module may also comprise programmable logic or circuitry
(e.g., as encompassed within a general-purpose processor or
other programmable processor) that is temporarily config
ured by software to perform certain operations. It will be
appreciated that the decision to implementa hardware-imple
mented module mechanically, in dedicated and permanently
configured circuitry, or in temporarily configured circuitry
(e.g., configured by Software) may be driven by cost and time
considerations.

Accordingly, the term “hardware-implemented module'
(e.g., a "computer-implemented module') should be under
stood to encompass a tangible entity, be that an entity that is
physically constructed, permanently configured (e.g., hard
wired), or temporarily or transitorily configured (e.g., pro
grammed) to operate in a certain manner and/or to perform
certain operations described herein. Considering embodi
ments in which hardware-implemented modules are tempo
rarily configured (e.g., programmed), each of the hardware
implemented modules need not be configured or instantiated
at any one instance in time. For example, where the hardware
implemented modules comprise a general-purpose processor
configured using Software, the general-purpose processor
may be configured as respective different hardware-imple
mented modules at different times. Software may accordingly
configure a processor, for example, to constitute a particular
hardware-implemented module at one instance of time and to
constitute a different hardware-implemented module at a dif
ferent instance of time.

Hardware-implemented modules can provide information
to, and receive information from, other hardware-imple
mented modules. Accordingly, the described hardware
implemented modules may be regarded as being communi
catively coupled. Where multiple of such hardware
implemented modules exist contemporaneously,
communications may be achieved through signal transmis

10

15

25

30

35

40

45

50

55

60

65

12
sion (e.g., over appropriate circuits and buses) that connect
the hardware-implemented modules. In embodiments in
which multiple hardware-implemented modules are config
ured or instantiated at different times, communications
between such hardware-implemented modules may be
achieved, for example, through the storage and retrieval of
information in memory structures to which the multiple hard
ware-implemented modules have access. For example, one
hardware-implemented module may perform an operation
and store the output of that operation in a memory device to
which it is communicatively coupled. A further hardware
implemented module may then, at a later time, access the
memory device to retrieve and process the stored output.
Hardware-implemented modules may also initiate communi
cations with input or output devices and may operate on a
resource (e.g., a collection of information).
The various operations of example methods described

herein may be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by Software)
or permanently configured to perform the relevant operations.
Whether temporarily or permanently configured, such pro
cessors may constitute processor-implemented modules that
operate to perform one or more operations or functions. The
modules referred to herein may, in some example embodi
ments, comprise processor-implemented modules.

Similarly, the methods described herein may be at least
partially processor-implemented. For example, at least some
of the operations of a method may be performed by one or
more processors or processor-implemented modules. The
performance of certain of the operations may be distributed
among the one or more processors, not only residing within a
single machine, but deployed across a number of machines. In
Some example embodiments, the processor or processors may
be located in a single location (e.g., within a home environ
ment, an office environment or as a server farm), while in
other embodiments the processors may be distributed across
a number of locations.
The one or more processors may also operate to Support

performance of the relevant operations in a "cloud comput
ing environment or as a “software as a service' (SaaS). For
example, at least Some of the operations may be performed by
a group of computers (as examples of machines including
processors), these operations being accessible via a network
(e.g., the Internet) and via one or more appropriate interfaces
(e.g., application program interfaces (APIs)).

Although only certain embodiments have been described
in detail above, those skilled in the art will readily appreciate
that many modifications are possible without materially
departing from the novel teachings of this disclosure. For
example, aspects of embodiments disclosed above can be
combined in other combinations to form additional embodi
ments. Accordingly, all such modifications are intended to be
included within the scope of this disclosure.
What is claimed is:
1. A method of using an image as an input for simulating a

circuit, the method comprising:
accessing image values for the image, the image charac

terizing a stimulus profile for the circuit over time, and
the image values including a two-dimensional array of
pixel values for the image:

extracting a sequence of time values and stimulus values
for the stimulus profile from the image values, the time
values being scaled by a time-scale value for a first
dimension of the image, the stimulus values being scaled
by a stimulus-scale value for a second dimension of the
image, and the stimulus values corresponding to Volt
ages or currents for the stimulus profile; and

US 9,020,277 B1
13

providing the sequence of time values and stimulus values
as an input waveform for simulating the circuit.

2. The method of claim 1, wherein extracting the sequence
includes:

applying an edge-detection filter to the image values to
identify pixel-value transitions that correspond to a
boundary of the stimulus profile; and

using the pixel-value transitions to identify the time values
and the stimulus values corresponding to the stimulus
profile.

3. The method of claim 2, wherein
the edge-detection filter includes a grayscale filter that

determines grayscale image values for the image by
comparing one or more grayscale threshold values to the
image values, the grayscale image values including a
two-dimensional array of grayscale pixel values, and

the edge-detection filter operates to identify transitions in
the grayscale pixel values to identify the boundary of the
stimulus profile.

4. The method of claim 1, wherein extracting the sequence
includes applying a monotonicity filter that that restricts the
sequence to be monotonic in the time values.

5. The method of claim 1, wherein providing the sequence
of time values and stimulus values as an input waveform
includes:

adding the sequence to a netlist description for simulating
the circuit as a piecewise-linear waveform that interpo
lates the time values and the stimulus values.

6. The method of claim 1, wherein accessing the image
values includes Scanning a display of the image to determine
the image values.

7. The method of claim 1, wherein extracting the sequence
includes:

applying a grayscale filter to the image values to determine
first grayscale image values for the image by comparing
one or more grayscale threshold values to the image
values, the first grayscale image values including a two
dimensional array of first grayscale pixel values;

applying an edge-detection filter to the first grayscale
image values to determine second grayscale image val
ues for the image by calculating transitions between the
first grayscale image values, the second grayscale image
values including a two-dimensional array of second
grayscale pixel values;

applying a black-and-white filter to the second grayscale
image values to determine black-and-white image val
ues for the image by comparing one or more black-and
white threshold values to the second grayscale image
values, the black-and-white image values including a
two-dimensional array of black-and-white pixel values
that each correspond to black or white; and

applying a profiling filter to the black-and-white image
values to extract the sequence of time values and stimu
lus values by identifying black-and-white pixel values
that correspond to the stimulus profile in the black and
white image.

8. A non-transitory computer-readable medium that stores
a computer program for using an image as an input for simu
lating a circuit, the computer program including instructions
that, when executed by a computer, cause the computer to
perform operations comprising:

accessing image values for the image, the image charac
terizing a stimulus profile for the circuit over time, and
the image values including a two-dimensional array of
pixel values for the image:

extracting a sequence of time values and stimulus values
for the stimulus profile from the image values, the time

10

15

25

30

35

40

45

50

55

60

65

14
values being scaled by a time-scale value for a first
dimension of the image, the stimulus values being scaled
by a stimulus-scale value for a second dimension of the
image, and the stimulus values corresponding to Volt
ages or currents for the stimulus profile; and

providing the sequence of time values and stimulus values
as an input waveform for simulating the circuit.

9. The computer-readable medium of claim 8, wherein
extracting the sequence includes:

applying an edge-detection filter to the image values to
identify pixel-value transitions that correspond to a
boundary of the stimulus profile; and

using the pixel-value transitions to identify the time values
and the stimulus values corresponding to the stimulus
profile.

10. The computer-readable medium of claim 9, wherein
the edge-detection filter includes a grayscale filter that

determines grayscale image values for the image by
comparing one or more grayscale threshold values to the
image values, the grayscale image values including a
two-dimensional array of grayscale pixel values, and

the edge-detection filter operates to identify transitions in
the grayscale pixel values to identify the boundary of the
stimulus profile.

11. The computer-readable medium of claim 8, wherein
extracting the sequence includes applying a monotonicity
filter that that restricts the sequence to be monotonic in the
time values.

12. The computer-readable medium of claim 8, wherein
providing the sequence of time values and stimulus values as
an input waveform includes:

adding the sequence to a netlist description for simulating
the circuit as a piecewise-linear waveform that interpo
lates the time values and the stimulus values.

13. The computer-readable medium of claim 8, wherein
accessing the image values includes scanning a display of the
image to determine the image values.

14. The computer-readable medium of claim 8, wherein
extracting the sequence includes:

applying a grayscale filter to the image values to determine
first grayscale image values for the image by comparing
one or more grayscale threshold values to the image
values, the first grayscale image values including a two
dimensional array of first grayscale pixel values;

applying an edge-detection filter to the first grayscale
image values to determine second grayscale image val
ues for the image by calculating transitions between the
first grayscale image values, the second grayscale image
values including a two-dimensional array of second
grayscale pixel values;

applying a black-and-white filter to the second grayscale
image values to determine black-and-white image val
ues for the image by comparing one or more black-and
white threshold values to the second grayscale image
values, the black-and-white image values including a
two-dimensional array of black-and-white pixel values
that each correspond to black or white; and

applying a profiling filter to the black-and-white image
values to extract the sequence of time values and stimu
lus values by identifying black-and-white pixel values
that correspond to the stimulus profile in the black and
white image.

15. An apparatus configured to use an image as an input for
simulating a circuit, the apparatus comprising at least one
computer configured to perform operations for computer
executable modules including:

US 9,020,277 B1
15

an image-access module that accesses image values for the
image, the image characterizing a stimulus profile for
the circuit over time, and the image values including a
two-dimensional array of pixel values for the image:

a sequence-extraction module that extracts a sequence of 5
time values and stimulus values for the stimulus profile
from the image values, the time values being scaled by a
time-scale value for a first dimension of the image, the
stimulus values being scaled by a stimulus-scale value
for a second dimension of the image, and the stimulus 10
values corresponding to Voltages or currents for the
stimulus profile; and

an input-waveform module that provides the sequence of
time values and stimulus values as an input waveform
for simulating the circuit. 15

16. The apparatus of claim 15, wherein extracting the
sequence includes:

applying an edge-detection filter to the image values to
identify pixel-value transitions that correspond to a
boundary of the stimulus profile; and 2O

using the pixel-value transitions to identify the time values
and the stimulus values corresponding to the stimulus
profile.

17. The apparatus of claim 16, wherein
the edge-detection filter includes a grayscale filter that 25

determines grayscale image values for the image by
comparing one or more grayscale threshold values to the
image values, the grayscale image values including a
two-dimensional array of grayscale pixel values, and

the edge-detection filter operates to identify transitions in 30
the grayscale pixel values to identify the boundary of the
stimulus profile.

18. The apparatus of claim 15, wherein extracting the
sequence includes applying a monotonicity filter that that
restricts the sequence to be monotonic in the time values.

16
19. The apparatus of claim 15, wherein providing the

sequence of time values and stimulus values as an input
waveform includes:

adding the sequence to a netlist description for simulating
the circuit as a piecewise-linear waveform that interpo
lates the time values and the stimulus values.

20. The apparatus of claim 15, whereinaccessing the image
values includes scanning a display of the image to determine
the image values.

21. The apparatus of claim 15, wherein extracting the
sequence includes:

applying a grayscale filter to the image values to determine
first grayscale image values for the image by comparing
one or more grayscale threshold values to the image
values, the first grayscale image values including a two
dimensional array of first grayscale pixel values;

applying an edge-detection filter to the first grayscale
image values to determine second grayscale image val
ues for the image by calculating transitions between the
first grayscale image values, the second grayscale image
Values including a two-dimensional array of second
grayscale pixel values;

applying a black-and-white filter to the second grayscale
image values to determine black-and-white image val
ues for the image by comparing one or more black-and
white threshold values to the second grayscale image
values, the black-and-white image values including a
two-dimensional array of black-and-white pixel values
that each correspond to black or white; and

applying a profiling filter to the black-and-white image
Values to extract the sequence of time values and stimu
lus values by identifying black-and-white pixel values
that correspond to the stimulus profile in the black and
white image.

