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1. 

IMAGE-BASED STMULUS FOR CIRCUIT 
SIMULATION 

FIELD 

The present disclosure relates generally to computing and 
more particularly to computer simulations of circuits. 

BACKGROUND 

Circuit simulators typically operate on netlist code that 
describes the circuit model and specifies the simulation con 
ditions. For example, the circuit model typically includes 
model elements (e.g., transistors), parameters (e.g., process/ 
device), and connectivity (e.g., topology), and the simulation 
conditions typically include model inputs for the simulation 
interval including waveform profiles for inputs and power 
Supplies. However, related Software for simulating circuits 
has typically not enabled direct imaged-based inputs (e.g., 
bitmap images) even though image-based representations 
may be available or easily generated to capture relevant 
behavioral characteristics of circuit stimulus. Thus, there is a 
need for improved methods and related systems for enabling 
circuit simulations with image-based stimulus. 

SUMMARY 

Certain embodiments enable image-based stimulus for cir 
cuit simulations by extracting a waveform from an image and 
using that waveform to simulate a circuit. 
One embodiment relates a method of using an image as an 

input for simulating a circuit. A first operation includes 
accessing image values for the image, the image characteriz 
ing a stimulus profile for the circuit over time, and the image 
values including to a two-dimensional array of pixel values 
for the image. A second operation includes extracting a 
sequence of time values and stimulus values for the stimulus 
profile from the image values, the time values being scaled by 
a time-scale value for a first dimension of the image, the 
stimulus values being scaled by a stimulus-scale value for a 
second dimension of the image, and the stimulus values cor 
responding to Voltages or currents for the stimulus profile. A 
third operation includes providing the sequence of time val 
ues and stimulus values as an input waveform for simulating 
the circuit. 

Another embodiment relates to an apparatus for carrying 
out any one of the above-described methods, where the appa 
ratus includes a computer for executing instructions related to 
the method. For example, the computer may include a pro 
cessor for executing at least Some of the instructions. Addi 
tionally or alternatively the computer may include circuitry or 
other specialized hardware for executing at least some of the 
instructions. In some operational settings, the apparatus may 
be configured as a system that includes one or more units, 
each of which is configured to carry out some aspects of the 
method either in Software, in hardware or in Some combina 
tion thereof. At least some values for the results of the method 
can be saved for later use in a computer-readable medium, 
including memory units and storage devices. Another 
embodiment relates to a computer-readable medium that 
stores (e.g., tangibly embodies) a computer program for car 
rying out the any one of the above-described methods with a 
computer. In these ways aspects of the disclosed embodi 
ments enable circuit simulations with image-based stimulus. 

BRIEF DESCRIPTION OF DRAWINGS 

Some embodiments are illustrated by way of example and 
not limitation in the figures of the accompanying drawings. 
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2 
FIG. 1 is a diagram that shows an inverter-circuit testbench 

for an example embodiment. 
FIG. 2 is a listing of a code segment that shows a netlist 

description for the inverter in the inverter-circuit testbench of 
FIG 1. 

FIG. 3 is a listing of a code segment that shows example 
voltage inputs for the inverter-circuit testbench of FIG. 1. 

FIG. 4 is a diagram that shows a waveform display related 
to the inverter-circuit testbench of FIG. 1 including a voltage 
waveform, an input waveform, and an output waveform. 

FIG.5 is a flowchart that shows a method ofusing an image 
as an input for simulating a circuit according to an example 
embodiment. 

FIG. 6 is a flowchart that shows a method of extracting a 
sequence of time values and stimulus values for the embodi 
ment of FIG. 5. 

FIG. 7 is a process diagram that shows image transforma 
tions from a display image to a grayscale image after edge 
detection and to a black-and-white image. 

FIG. 8 is a diagram that shows a waveform display related 
to the inverter-circuit testbench of FIG. 1 including an input 
waveform and an output waveform. 

FIG. 9 is a listing of a code segment that shows example 
voltage inputs for the inverter-circuit testbench of FIG. 1 in 
accordance with an example embodiment. 

FIG. 10 is a diagram that shows a circuit simulation system 
in accordance with an example embodiment. 

FIG. 11 is a diagram that shows an amplifier-circuit test 
bench for an example embodiment. 

FIG. 12 is a listing of a code segment that shows a netlist 
description for the amplifier in the amplifier-circuit testbench 
of FIG. 11. 

FIG. 13 is a process diagram that shows image transforma 
tions from a display image to a grayscale image after edge 
detection and to a black-and-white image. 

FIG.14 is a diagram that shows a waveform display related 
to the amplifier-circuit testbench of FIG. 11 including an 
input waveform and an output waveform. 

FIG. 15 is a listing of a code segment that shows example 
voltage inputs for the amplifier-circuit testbench of FIG.11 in 
accordance with an example embodiment. 

FIG. 16 is a listing of a code segment that shows example 
voltage inputs for the amplifier-circuit testbench of FIG. 11 
after pre-processing the code segment of FIG. 15 in accor 
dance with an example embodiment. 

FIG. 17 is a process diagram that shows image transforma 
tions from a display image to a Voltage waveform for the 
amplifier-circuit testbench of FIG. 11 in accordance with an 
example embodiment. 

FIG. 18 is a diagram that shows a waveform display related 
to the amplifier-circuit testbench of FIG. 11 including a volt 
age waveform, an input waveform and an output waveform. 

FIG. 19 is a diagram that shows a display image for a 
voltage profile related to the inverter-circuit testbench of FIG. 
1. 
FIG.20 is a diagram that shows a waveform display related 

to the inverter-circuit testbench of FIG. 1 including a voltage 
waveform, an input waveform, an output waveform, a first 
transistor waveform, and a second transistor waveform 2010. 

FIG. 21 is a block diagram that shows a schematic repre 
sentation of an apparatus for an example embodiment. 
FIG.22 is a block diagram that shows a computer process 

ing system within which a set of instructions for causing the 
computer to performany one of the methodologies discussed 
herein may be executed. 

DETAILED DESCRIPTION 

Example methods and systems are directed to circuit simu 
lation. The disclosed examples merely typify possible varia 
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tions. Unless explicitly stated otherwise, components and 
functions are optional and may be combined or Subdivided, 
and operations may vary in sequence or be combined or 
subdivided. In the following description, for purposes of 
explanation, numerous specific details are set forth to provide 
a thorough understanding of example embodiments. It will be 
evident to one skilled in the art, however, that the present 
Subject matter may be practiced without these specific details. 

FIG. 1 is a diagram that shows an inverter-circuit testbench 
100 for an example embodiment. As shown in FIG. 1, the 
inverter-circuit testbench 100 includes an inverter 102 with 
input elements 104, output elements 106 and a power supply 
108. Circuit simulators (e.g., e.g., SPECTRE or SPICE lan 
guage-based simulators) typically employ software descrip 
tions of the testbench 100 in order to simulate the behavior of 
the inverter 104 under a variety of conditions. The relevant 
input deck for the circuit simulator typically includes: process 
and device parameters and models representing the manufac 
turing process, the topology of the circuit to be simulated/ 
Verified, the types of analyses that are of interest (transient, ac, 
dc etc), a list of Voltage/current node probing points under 
analyses for waveform generation/measurements, and appro 
priate stimuli which can test the functionality of the circuit 

For example, FIG. 2 is a listing of a code segment that 
shows a corresponding netlist description for the inverter 102 
including a first transistor PMO (lines 5-6) and a second 
transistor NM0 (lines 7-8). (Note that words such as first and 
second are used here and elsewhere for labeling purposes 
only and are not intended to denote any specific spatial or 
temporal ordering. Furthermore, the labeling of a first ele 
ment does not imply the presence a second element.) 

FIG. 3 is a listing of a code segment that shows example 
voltage inputs for the inverter-circuit testbench 100 including 
constant voltages V1 (line 4) and V2 (line 1), which corre 
spond to the power supply 108, and a voltage input V0 that is 
defined as an ideal pulse waveform that switches between OV 
and 5V with additional arguments including period, rise time, 
fall time, and width. FIG. 4 is a diagram that shows a corre 
sponding waveform display 400 for the inverter-circuit test 
bench 100 of FIG. 1 including a voltage waveform 402 for the 
power-supply Voltage V1 (e.g., FIG. 3, line 4), an input wave 
form 404 for the voltage inputVO (e.g., FIG.3, lines 2-3), and 
a corresponding output waveform 406. For example, with 
reference to FIG. 1, the input waveform 404 may correspond 
to values at node A of the inverter 102 and the output wave 
form 406 may correspond to values at node Y of the inverter 
102. 
The simulation shown in FIG. 4 characterizes behavior of 

the inverter 102 the absence of non-idealistic effects includ 
ing noise in the input waveform 404 and the Voltage wave 
form 404. Although an idealistic simulation can verify fun 
damental properties of a circuit, the introduction of noise and 
other non-idealistic effects is becoming increasingly impor 
tant as performance requirements have become increasingly 
stringent. For example, with greater process variations in 
Small-geometry processes coupled with related issues such as 
power-grid Voltage drops that affect local power Voltages, 
circuit reliability for critical circuits is now being verified 
under a variety of adverse conditions where the inputs to the 
circuit deviate substantially from the ideal conditions. 

Responding to these enhanced requirements, designers 
have tried to model various effects and encapsulate them to 
modify otherwise ideal stimuli that drive circuit inputs or 
power Supplies. Typical approaches have included parasitics 
based Resistance-Capacitance (RC) modeling, transmission 
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4 
line modeling, input and output Voltage source noise model 
ing, Substrate noise modeling, IR (voltage) drop modeling, 
and so forth. 

In the context of behavioral modeling, the designer can 
approximately model the behavior of complex stimuli (e.g., 
using Verilog-A, or other similar behavioral description lan 
guages) in order to analyze the circuit response. However, the 
behavior of complex stimuli is often difficult to model accu 
rately. Although N-degree polynomial approximations have 
been used successfully in some applications, the modeling 
requirements impose a substantial burden on the designer. 
More accurate models have also been derived through real 

time probing of a fabricated circuit under test combined with 
Subsequent data-characterization. For example, Some design 
ers extensively use high-end oscilloscopes to probe the test 
chip in order to model difficult characteristics such as sub 
strate noise behavior (e.g., in a high speed mixed signal chip) 
by using the current data as an input for the next chip. While 
this gives designers a more intuitive visualization of the actual 
input vector shape, this approach incurs both cost and diffi 
culty in transferring the scoped characteristics to the simula 
tion testbench. 
As discussed below, example embodiments enable a 

designer to use image data as an input for simulating a circuit, 
where this image may correspond to measured circuit data 
(e.g., oscilloscope data) or more general user input such as an 
image drawing tool (e.g., MS Paint, GIMP, etc.). 

FIG. 5 is a flowchart that shows a method 500 of using an 
image as an input for simulating a circuit according to an 
example embodiment. A first operation 502 includes access 
ing image values for the image, where the image character 
izes a stimulus profile for the circuit over time, and the image 
values include a two-dimensional array of pixel values for the 
image. A second operation 504 includes extracting a 
sequence of time values and stimulus values for the stimulus 
profile from the image values, where the time values are 
scaled by a time-scale value for a first dimension of the image, 
the stimulus values are scaled by a stimulus-scale value for 
the second dimension of the image, and the stimulus values 
correspond to Voltages or currents for the stimulus profile. A 
third operation 506 includes providing the sequence of time 
values and stimulus values as an input waveform for simulat 
ing the circuit. 

Accessing the image values (e.g., operation 502) may 
include scanning a display of the image to determine the 
image values. For example, a conventional image scanning 
device operating on the display (e.g., a bitmap image) may 
return a two-dimensional array of pixel values for the image 
in a variety of formats (e.g., multi-colored, grayscale, black 
and white). The image may be a single Snapshot or a series of 
Snapshots (e.g., Stitched together). As discussed above, the 
image may be measurement-based (e.g., a Snapshot of an 
oscilloscope) or more generally based on user input (e.g., a 
drawing tool). Expert designers often intuitively know the 
general shape of the relevant input waveforms and can con 
Veniently draw the waveform profile with a drawing program 
and then connect the drawing to the circuit by providing 
appropriate scale factors (e.g., the time-scale factor and the 
stimulus-scale factor). 
As discussed below in greater detail, extracting the 

sequence of time values and stimulus values may include a 
combination of image processing methods. FIG. 6 is a flow 
chart that shows a method 600 of extracting a sequence of 
time values and stimulus values for an example embodiment 
of operation 504 in FIG. 5. A first operation 602 includes 
applying a grayscale filter to the image values to determine 
first grayscale image values for the image by comparing one 
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or more grayscale threshold values to the image values, where 
the first grayscale image values include a two-dimensional 
array of first grayscale pixel values. A second operation 604 
includes applying an edge-detection filter to the first gray 
scale image values to determine second grayscale image val 
ues for the image by calculating transitions between the first 
grayscale image values, where the second grayscale image 
values include a two-dimensional array of second grayscale 
pixel values. A third operation 606 includes applying a black 
and-white filter to the second grayscale image values to deter 
mine black-and-white image values for the image by compar 
ing one or more black-and-white threshold values to the 
second grayscale image values, where the black-and-white 
image values include a two-dimensional array of black-and 
white pixel values that each correspond to black or white. A 
fourth operation 608 includes applying a profiling filter to the 
black-and-white image values to extract the sequence of time 
values and stimulus values by identifying black-and-white 
pixel values that correspond to the stimulus profile in the 
black and white. The time-scale value and the stimulus-scale 
value then provide the Scaling connection to circuit. 

Although FIG. 6 shows four filter stages, the number and 
arrangement of filters may vary according to the nature of the 
image data. FIG. 7 is a process diagram 700 that shows image 
transformations for an example embodiment from a display 
image 702 to a grayscale image 704 after edge detection and 
a black-and-white image 706. In this example embodiment, 
the display image 702 corresponds to an oscilloscope Voltage 
display, which is typically multi-colored. The grayscale 
image 704 may then be the result of a using a grayscale filter 
(e.g., operation 602) to replace multiple colors with grayscale 
colors plus an edge-detection filter (e.g., operation 604) to 
emphasize the likely boundary of the waveform in the display 
image 702. For example, the edge-detection filter may oper 
ate to identify pixel-value transitions that correspond to a 
boundary of the stimulus profile, and Subsequently these 
pixel-value transitions may be used to identify the time values 
and stimulus values corresponding to the stimulus profile. For 
example, the edge-detection filter may use a difference opera 
tor (e.g., a Prewitt operator) to estimate the gradient of the 
image intensity function in order to identify maximal pixel 
value transitions. Note that this example assumes a Zero 
crossing line in the display image 702 So that there is an 
approximately even split above and below a central horizontal 
line that corresponds to a Zero value in the display image 702. 
However, depending on the operational setting, the user may 
employ a user interface to set a Zero or non-zero reference 
value on the vertical scale of the display image 702, and 
similarly the user may set a reference value on the horizontal 
scale of the display image 702 (e.g., for a reference time 
value). 
When an edge-detection filter is applied after a grayscale 

filter or combined with a grayscale filter, the grayscale filter 
may determine grayscale image values for the image by com 
paring one or more grayscale threshold values to the image 
values, where the grayscale image values include a two-di 
mensional array of grayscale pixel values. Then, the edge 
detection filter operates to identify transitions in the grayscale 
pixel values to identify the boundary of the stimulus profile. 
The black-and-white image 706 may then result from using a 
black-and-white filter (e.g., operation 606) that applies 
threshold values to restrict each pixel value to black or white. 

Finally the sequence of time values and stimulus values can 
be extracted from the black-and-white image 706 by using a 
profiling filter (e.g., operation 608) that identities the under 
ling profile (e.g., as a black pixel). Two points should be 
emphasized. First, black-and-white image 706 may include 
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6 
multiple stimulus values for a given time value because the 
edge-detection filter has identified both an upper boundary 
and a lower boundary for the underlying profile (e.g., as in 
grayscale mage 704). Therefore, the profiling filter may 
include a monotonicity filter that that restricts the sequence to 
be monotonic in the time values. For example in the case of 
two stimulus values for a given time, the lower stimulus value 
corresponding to the lower boundary may be selected. Alter 
natively, the higher stimulus value may be chosen oran aver 
age value may be chosen. 

Second, the resulting sequence may be missing a stimulus 
value for a given time value because of the threshold values 
used or other filtering details. For example, the black-and 
white image 706 appears to be ragged, especially at transi 
tions between high Voltage values and low Voltage values. 
Additional resolution can be added adaptively by changing 
filter values to identify missing points (e.g., adjusting thresh 
old values until a stimulus value is identified). However, it is 
generally sufficient to rely on a linear interpolation between 
the identified points. FIG. 8 is a diagram that shows a wave 
form display 800 related to the inverter-circuit testbench 100 
of FIG. 1 including an input waveform 802 that corresponds 
to a piece-wise linear interpolation of the profile extracted 
from the black-and-white image 706. The corresponding out 
put waveform 804 is also shown. 

Providing the sequence of time values and stimulus values 
as an input waveform (e.g., operation 506) may include add 
ing the sequence to a netlist description for simulating the 
circuit as a piecewise-linear waveform that interpolates the 
time values and the stimulus values. As illustrated in FIG.9, 
conventional simulators (e.g., SPECTRE or SPICE language 
based simulators) enable the piecewise-linear interpolation of 
waveform data as an input to a circuit simulation, and the 
extracted sequence data can be provided to the simulator 
through operations of conventional scripting languages (e.g., 
Python and PHP). 

FIG. 9 is a listing of a Python-based code segment that 
shows example Voltage inputs for the inverter-circuit test 
bench 100 of FIG. 1 in accordance with an example embodi 
ment. Comparing FIG. 9 with FIG. 3, one can see that the 
original pulse waveform (lines 2-3, FIG. 3) has been replaced 
with a Python script (lines 6-13, FIG.9). In particular line 10 
of FIG. 9 indicates to apply the image captured in the file 
"scope.gif as an input stimulus V0 that is characterized as a 
piece-wise linear source with a peak-to-peak Voltage of 200 
mv 200e-03(e.g., a stimulus-scale value) over a transient 
time of 2 ms 2e-03(e.g., a time-scale value). Here, “PWL 
Gen' represents a Python class that wraps the function called 
“Image2XY,” which implements an image processing algo 
rithm in order to convert the graphical image stored in file 
"scope.gif into a XY Voltage-time pair piecewise-linear 
(PWL) source suitable for use in the circuit simulator. Related 
intermediate values are also shown including grayscale image 
values (“gs3.png), black-and-white image values 
(“bw3.png'), and a record of the time values and stimulus 
values for debugging purposes ("vector.txt.). Python-lan 
guage operations on lines 11-12 of FIG. 9 then generate a 
sequence of time values and stimulus values for circuit simu 
lation. 

Programming languages can be used to generate netlist 
code for circuit simulation by using language preprocessors 
that implement embedded code segments (e.g., FIG. 9) as 
described in U.S. application Ser. No. 13/270,052, filed Oct. 
10, 2011, entitled “Chained Programming Language Prepro 
cessors for Circuit Simulation, and which is incorporated 
herein by reference in its entirety. 
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FIG. 10 is a diagram that shows a circuit simulation system 
1000 that incorporates programming language functionality 
including scripting operations that enable the generation of 
executable netlist code in accordance with an example 
embodiment. These scripting operations may include internal 
variables (e.g., to be evaluated for different circuit options), 
control structures (e.g., if-then-else statements, execution 
loops), external access (e.g., to a repository site via the Inter 
net). Programming structures may also incorporate advanced 
features from Object Oriented Programming such as data 
abstraction, encapsulation, messaging, modularity, polymor 
phism, and inheritance. 

For example, referencing an external site through a Uni 
form Resource Identifier (URI) can enable access to circuit 
models in specific netlist languages (e.g., SPICE). Similarly, 
referencing an external site can enable the creation of a stimu 
lus whose voltage or current waveform tracks the results of a 
previous simulation of the same or a different circuit. Control 
structures can be used to create parameterized topology gen 
erators for model elements (e.g., a parameterized cell 
(PCell)). Control structures can also be used to create an 
analysis generator (or option generator) that is capable of 
performing analysis loops, a desirable feature that is gener 
ally unavailable in netlist languages, in order to obtain a range 
of node Voltages or to run an arbitrary loop-based analysis 
Sequence. 
The system includes a simulator 1002 that receives an input 

file 1004 that includes a netlist description that can be more 
general than executable netlist code. That is, the input file 
1004 may include embedded code segments written in pro 
gramming languages that include Scripting operations for 
generating executable netlist code (e.g., as in FIG. 9). The 
simulator includes a reader 1006 that reads in the input file 
1004, a parser 1008 that determines the netlist elements by 
extracting them from the file and converting them into tokens, 
and a simulation engine 1010 that simulates the circuit based 
on extracted network elements or their equivalent tokens. 
Additionally the system 1000 includes a master controller 
process 1012 that includes a language analyzer/controller 
1014 and a checker 1016. The language analyzer/controller 
analyzes the input file 1004 to identify the embedded code 
segments and their corresponding programming languages, 
which preferably have been specified or registered in the 
system 1000 for this purpose. 
As embedded code segments are identified by the language 

analyzer/controller, the master controller process 1012 con 
figures a preprocessor chain 1018, also described as a pipeline 
preprocessor, that includes a language preprocessor 1020 for 
each identified programming language. That is, each prepro 
cessor reads from its standard input (stdin) and writes to its 
standard output (stdout), and the preprocessors are arranged 
in a sequence so that the standard output of one preprocessor 
is the standard input of the next processor in the sequence. 
Each preprocessor operates on embedded code segments 
Written in its corresponding programming language to gen 
erate corresponding preprocessed code segments that are 
written to its standard output. Additionally, each preprocessor 
writes other portions of the netlist description directly (e.g., 
Verbatim) to its standard output including netlist code as well 
as embedded code segments that are not written in its corre 
sponding programming language. 
As a result, the netlist description corresponding to the 

input file 1004 can be sequentially processed by the compo 
nents of the preprocessor chain 1018 to replace the embedded 
code segments with preprocessed segments. These prepro 
cessed segments may be entirely executable netlist code or 
may include further embedded code segments. 
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8 
The checker 1016 then evaluates the output from the pre 

processor chain 1018 to determine if additional embedded 
code segments are present (e.g. as a result of executing an 
embedded code segment). If additional embedded code seg 
ments are detected by the checker 1016, then the operations of 
the language analyzer/controller 1014 and the preprocessor 
chain can be repeated until the checker 1016 detects execut 
able netlist code with no embedded code segments. That is, 
when the checker 1016 detects at least one embedded code 
segment in the output buffer of the preprocessor chain 1018, 
the output buffer of the checker 1016 is directed to the lan 
guage analyzer/controller 1014 for further processing 
through the preprocessor chain 1018. Finally, when the 
checker 1016 detects no more embedded code segments 1016 
in the output buffer of the preprocessor chain 1018, the output 
buffer of the checker 1016 is directed to the parser 1008 and 
the engine 1010. 

FIG. 11 is a diagram that shows an amplifier-circuit test 
bench 1100 for another example embodiment. As shown in 
FIG. 11, the amplifier-circuit testbench 1100 includes an 
amplifier 1102 with input elements 1104, an output elements 
1106 and a power supply 1108. 

FIG. 12 is a listing of a code segment that shows a netlist 
description for the amplifier 1102 in the amplifier-circuit 
testbench 1100 of FIG. 11. The code segment of FIG. 12 
includes related definitions for the amplifier (lines 14-26) and 
the power supply (lines 4-8). 

In this example embodiment, a sinusoidal Voltage wave 
form is captured from an oscilloscope image. Similarly as in 
FIG. 7, FIG. 13 is a process diagram 1300 that shows image 
transformations from a display image 1302 to a grayscale 
image 1304 after edge detection and a black-and-white image 
1306. Similarly as in FIG. 8, FIG. 14 is a diagram that shows 
a waveform display 1400 related to the amplifier-circuit test 
bench 1100 of FIG. 11 including an input waveform 1402 and 
an amplified output waveform 1404. The input waveform 
1402 is a piece-wise linear (slightly noisy) waveform that 
interpolates the sequence of time values and stimulus values 
(e.g., Voltages in this case) that have been extracted from the 
black-and-white image 1306. 

Similarly as in FIG.9, FIG. 15 is a listing of a correspond 
ing code segment that shows example Voltage inputs for the 
amplifier-circuit testbench 1100 of FIG. 11 including another 
instantiation of the Python class PWLGen that captures a 
graphical image for a waveform input. Here, the instance is 
configured to convert the 'sinelkh test.jpg image to a piece 
wise linear Voltage source representation, in which the 
(slightly noisy) impure sine-wave (e.g., image 1302 of FIG. 
13) is processed and used as an input to the amplifier circuit 
1102. In particular, the processing is instructed to Scale image 
1302 of FIG. 13 to take on X-axis (time) range of 2 millisec 
onds (e.g., time-scale value), with a peak-to-peak voltage or 
Y-axis scale of 2 millivolts (e.g., stimulus-scale value), as 
given by the final two parameters to the PWLGen instance. 

FIG. 16 is a listing of a corresponding code segment that 
shows example Voltage inputs for the amplifier-circuit test 
bench 1100 of FIG. 11 after pre-processing the code segment 
of FIG. 15 (e.g., by the system 1000 of FIG. 10). As shown in 
FIG. 16, the original Python code segment of FIG. 15 has 
been replaced with a netlist code segment that includes a 
sequence of time values and stimulus values as an input to a 
circuit simulator (e.g., lines 5-18, FIG. 16), where these val 
ues have been correspondingly scaled by the time-scale value 
and the stimulus-scale value. In this way, the Python code 
segment of FIG. 15 effectively consumes the image data 
('sinelkh test.jpg) to generate a piecewise linear listing that 
is then consumed by the circuit simulator. 
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FIG. 17 is a process diagram 1700 that shows image trans 
formations from a display image 1702 to a voltage waveform 
1704 for the amplifier-circuit testbench 100 of FIG. 1 in 
accordance with another example embodiment. In this case 
the image 1702 represents a noise signal that has been cap 
tured from a noise simulator in a drawing tool (e.g., Windows 
Paint). This noise signal is then added to the nominal V2 
voltage from the power supply 108 of FIG. 1 to give a noisy 
voltage waveform 1704 (e.g., added to the constant 5V volt 
age waveform 402 of FIG. 4). Similarly as in FIG.4, FIG. 18 
is a diagram that shows a corresponding waveform display 
1800 including a noisy voltage waveform 1802 (e.g., as in 
waveform 1704), an input pulse waveform 1404 (e.g., as in 
waveform 404 of FIG. 4) and an output waveform 1106 that 
reflects the noisy power supply 108. The circuit simulations 
shown in FIGS. 17 and 18 can be implemented by a Python 
based code segment as illustrated in FIGS. 15 and 16. 

FIG. 19 is a diagram that shows a display image 1900 for a 
voltage profile related to the inverter-circuit testbench 100 of 
FIG. 1 in accordance with another embodiment. In this case 
the image 1900 (e.g., created by a drawing tool) represents a 
voltage (IR) drop in the V2 voltage from the power supply 108 
of FIG. 1 to model the behavior of the circuit when there is a 
Voltage drop due to large power rail parasitic resistance and so 
the effective "Vdd is reduced. As discussed above, the image 
1900 is processed to determine a voltage waveform for the 
simulator (e.g., as in FIG. 13). FIG.20 is a diagram that shows 
a corresponding waveform display 2000 including a decreas 
ing Voltage waveform 2002 (e.g., from processing the image 
1900), an input waveform 2004 (e.g., as in input waveform 
404), an output waveform 2006 (e.g., as in output waveform 
406), a first transistor power-dissipation waveform 2010 
(e.g., corresponding to transistor PMO from lines 5-6, FIG. 2), 
and a second transistor power-dissipation waveform 2008 
(e.g., corresponding to transistor NMO from lines 7-8, FIG. 
2). 

Additional embodiments correspond to systems and 
related computer programs that carry out the above-described 
methods. 

FIG. 21 shows a schematic representation of an apparatus 
2100, in accordance with an example embodiment for using 
an image as an input for simulating a circuit. In this case, the 
apparatus 2100 includes at least one computer system (e.g., as 
in FIG.22) to perform software and hardware operations for 
modules that carry out aspects of the method 500 of FIG. 5. 

In accordance with an example embodiment, the apparatus 
2100 includes an image-access module 2102, a sequence 
extraction module 2104, and an input-waveform module 
2106. The image-access module 2106 accesses image values 
for the image, the image characterizing a stimulus profile for 
the circuit over time, and the image values including to a 
two-dimensional array of pixel values for the image. The 
sequence-extraction module 2104 extracts a sequence of time 
values and stimulus values for the stimulus profile from the 
image values, the time values being scaled by a time-scale 
value for a first dimension of the image, the stimulus values 
being scaled by a stimulus-scale value for a second dimension 
of the image, and the stimulus values corresponding to Volt 
ages or currents for the stimulus profile. The input-waveform 
module 2106 provides the sequence of time values and stimu 
lus values as an input waveform for simulating the circuit. 
Additional operations related to the method 500 may be per 
formed by additional corresponding modules or through 
modifications of the above-described modules. 

FIG. 22 shows a machine in the example form of a com 
puter system 2200 within which instructions for causing the 
machine to perform any one or more of the methodologies 
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10 
discussed here may be executed. In alternative embodiments, 
the machine operates as a standalone device or may be con 
nected (e.g., networked) to other machines. In a networked 
deployment, the machine may operate in the capacity of a 
server or a client machine in server-client network environ 
ment, or as a peer machine in a peer-to-peer (or distributed) 
network environment. The machine may be a personal com 
puter (PC), a tablet PC, a set-top box (STB), a personal digital 
assistant (PDA), a cellular telephone, a web appliance, a 
network router, Switch or bridge, or any machine capable of 
executing instructions (sequential or otherwise) that specify 
actions to be taken by that machine. Further, while only a 
single machine is illustrated, the term “machine' shall also be 
taken to include any collection of machines that individually 
or jointly execute a set (or multiple sets) of instructions to 
perform any one or more of the methodologies discussed 
herein. 
The example computer system 2200 includes a processor 

2202 (e.g., a central processing unit (CPU), a graphics pro 
cessing unit (GPU) or both), a main memory 2204, and a 
static memory 2206, which communicate with each other via 
a bus 2208. The computer system 2200 may further include a 
video display unit 2210 (e.g., a liquid crystal display (LCD) 
or a cathode ray tube (CRT)). The computer system 2200 also 
includes an alphanumeric input device 2212 (e.g., a key 
board), a user interface (UI) cursor control device 2214 (e.g., 
a mouse), a disk drive unit 2216, a signal generation device 
2218 (e.g., a speaker), and a network interface device 2220. 

In some contexts, a computer-readable medium may be 
described as a machine-readable medium. The disk drive unit 
2216 includes a machine-readable medium 2222 on which is 
stored one or more sets of data structures and instructions 
2224 (e.g., Software) embodying or utilizing any one or more 
of the methodologies or functions described herein. The 
instructions 2224 may also reside, completely or at least 
partially, within the static memory 2206, within the main 
memory 2204, or within the processor 2202 during execution 
thereof by the computer system 2200, with the static memory 
2206, the main memory 2204, and the processor 2202 also 
constituting machine-readable media. 

While the machine-readable medium 2222 is shown in an 
example embodiment to be a single medium, the terms 
“machine-readable medium' and “computer-readable 
medium may each refer to a single medium or multiple 
media (e.g., a centralized or distributed database, and/or asso 
ciated caches and servers) that store the one or more sets of 
data structures and instructions 2224. These terms shall also 
be taken to include any tangible or non-transitory medium 
that is capable of storing, encoding or carrying instructions 
for execution by the machine and that cause the machine to 
perform any one or more of the methodologies disclosed 
herein, or that is capable of storing, encoding or carrying data 
structures utilized by or associated with Such instructions. 
These terms shall accordingly be taken to include, but not be 
limited to, Solid-state memories, optical media, and magnetic 
media. Specific examples of machine-readable or computer 
readable media include non-volatile memory, including by 
way of example semiconductor memory devices, e.g., eras 
able programmable read-only memory (EPROM), electri 
cally erasable programmable read-only memory (EEPROM), 
and flash memory devices; magnetic disks such as internal 
hard disks and removable disks; magneto-optical disks; com 
pact disc read-only memory (CD-ROM) and digital versatile 
disc read-only memory (DVD-ROM). 
The instructions 2224 may further be transmitted or 

received over a communications network 2226 using a trans 
mission medium. The instructions 2224 may be transmitted 
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using the network interface device 2220 and any one of a 
number of well-known transfer protocols (e.g., hypertext 
transfer protocol (HTTP)). Examples of communication net 
works include a local area network (LAN), a wide area net 
work (WAN), the Internet, mobile telephone networks, plain 
old telephone (POTS) networks, and wireless data networks 
(e.g., WiFi and WiMax networks). The term “transmission 
medium’ shall be taken to include any intangible medium that 
is capable of storing, encoding or carrying instructions for 
execution by the machine, and includes digital or analog 
communications signals or other intangible media to facili 
tate communication of Such software. 

Certain embodiments are described herein as including 
logic or a number of components, modules, or mechanisms. 
Modules may constitute either software modules or hard 
ware-implemented modules. A hardware-implemented mod 
ule is a tangible unit capable of performing certain operations 
and may be configured or arranged in a certain manner. In 
example embodiments, one or more computer systems (e.g., 
a standalone, client or server computer system) or one or more 
processors may be configured by Software (e.g., an applica 
tion or application portion) as a hardware-implemented mod 
ule that operates to perform certain operations as described 
herein. 

In various embodiments, a hardware-implemented module 
(e.g., a computer-implemented module) may be implemented 
mechanically or electronically. For example, a hardware 
implemented module may comprise dedicated circuitry or 
logic that is permanently configured (e.g., as a special-pur 
pose processor, such as a field programmable gate array 
(FPGA) or an application-specific integrated circuit (ASIC)) 
to perform certain operations. A hardware-implemented 
module may also comprise programmable logic or circuitry 
(e.g., as encompassed within a general-purpose processor or 
other programmable processor) that is temporarily config 
ured by software to perform certain operations. It will be 
appreciated that the decision to implementa hardware-imple 
mented module mechanically, in dedicated and permanently 
configured circuitry, or in temporarily configured circuitry 
(e.g., configured by Software) may be driven by cost and time 
considerations. 

Accordingly, the term “hardware-implemented module' 
(e.g., a "computer-implemented module') should be under 
stood to encompass a tangible entity, be that an entity that is 
physically constructed, permanently configured (e.g., hard 
wired), or temporarily or transitorily configured (e.g., pro 
grammed) to operate in a certain manner and/or to perform 
certain operations described herein. Considering embodi 
ments in which hardware-implemented modules are tempo 
rarily configured (e.g., programmed), each of the hardware 
implemented modules need not be configured or instantiated 
at any one instance in time. For example, where the hardware 
implemented modules comprise a general-purpose processor 
configured using Software, the general-purpose processor 
may be configured as respective different hardware-imple 
mented modules at different times. Software may accordingly 
configure a processor, for example, to constitute a particular 
hardware-implemented module at one instance of time and to 
constitute a different hardware-implemented module at a dif 
ferent instance of time. 

Hardware-implemented modules can provide information 
to, and receive information from, other hardware-imple 
mented modules. Accordingly, the described hardware 
implemented modules may be regarded as being communi 
catively coupled. Where multiple of such hardware 
implemented modules exist contemporaneously, 
communications may be achieved through signal transmis 
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12 
sion (e.g., over appropriate circuits and buses) that connect 
the hardware-implemented modules. In embodiments in 
which multiple hardware-implemented modules are config 
ured or instantiated at different times, communications 
between such hardware-implemented modules may be 
achieved, for example, through the storage and retrieval of 
information in memory structures to which the multiple hard 
ware-implemented modules have access. For example, one 
hardware-implemented module may perform an operation 
and store the output of that operation in a memory device to 
which it is communicatively coupled. A further hardware 
implemented module may then, at a later time, access the 
memory device to retrieve and process the stored output. 
Hardware-implemented modules may also initiate communi 
cations with input or output devices and may operate on a 
resource (e.g., a collection of information). 
The various operations of example methods described 

herein may be performed, at least partially, by one or more 
processors that are temporarily configured (e.g., by Software) 
or permanently configured to perform the relevant operations. 
Whether temporarily or permanently configured, such pro 
cessors may constitute processor-implemented modules that 
operate to perform one or more operations or functions. The 
modules referred to herein may, in some example embodi 
ments, comprise processor-implemented modules. 

Similarly, the methods described herein may be at least 
partially processor-implemented. For example, at least some 
of the operations of a method may be performed by one or 
more processors or processor-implemented modules. The 
performance of certain of the operations may be distributed 
among the one or more processors, not only residing within a 
single machine, but deployed across a number of machines. In 
Some example embodiments, the processor or processors may 
be located in a single location (e.g., within a home environ 
ment, an office environment or as a server farm), while in 
other embodiments the processors may be distributed across 
a number of locations. 
The one or more processors may also operate to Support 

performance of the relevant operations in a "cloud comput 
ing environment or as a “software as a service' (SaaS). For 
example, at least Some of the operations may be performed by 
a group of computers (as examples of machines including 
processors), these operations being accessible via a network 
(e.g., the Internet) and via one or more appropriate interfaces 
(e.g., application program interfaces (APIs)). 

Although only certain embodiments have been described 
in detail above, those skilled in the art will readily appreciate 
that many modifications are possible without materially 
departing from the novel teachings of this disclosure. For 
example, aspects of embodiments disclosed above can be 
combined in other combinations to form additional embodi 
ments. Accordingly, all such modifications are intended to be 
included within the scope of this disclosure. 
What is claimed is: 
1. A method of using an image as an input for simulating a 

circuit, the method comprising: 
accessing image values for the image, the image charac 

terizing a stimulus profile for the circuit over time, and 
the image values including a two-dimensional array of 
pixel values for the image: 

extracting a sequence of time values and stimulus values 
for the stimulus profile from the image values, the time 
values being scaled by a time-scale value for a first 
dimension of the image, the stimulus values being scaled 
by a stimulus-scale value for a second dimension of the 
image, and the stimulus values corresponding to Volt 
ages or currents for the stimulus profile; and 
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providing the sequence of time values and stimulus values 
as an input waveform for simulating the circuit. 

2. The method of claim 1, wherein extracting the sequence 
includes: 

applying an edge-detection filter to the image values to 
identify pixel-value transitions that correspond to a 
boundary of the stimulus profile; and 

using the pixel-value transitions to identify the time values 
and the stimulus values corresponding to the stimulus 
profile. 

3. The method of claim 2, wherein 
the edge-detection filter includes a grayscale filter that 

determines grayscale image values for the image by 
comparing one or more grayscale threshold values to the 
image values, the grayscale image values including a 
two-dimensional array of grayscale pixel values, and 

the edge-detection filter operates to identify transitions in 
the grayscale pixel values to identify the boundary of the 
stimulus profile. 

4. The method of claim 1, wherein extracting the sequence 
includes applying a monotonicity filter that that restricts the 
sequence to be monotonic in the time values. 

5. The method of claim 1, wherein providing the sequence 
of time values and stimulus values as an input waveform 
includes: 

adding the sequence to a netlist description for simulating 
the circuit as a piecewise-linear waveform that interpo 
lates the time values and the stimulus values. 

6. The method of claim 1, wherein accessing the image 
values includes Scanning a display of the image to determine 
the image values. 

7. The method of claim 1, wherein extracting the sequence 
includes: 

applying a grayscale filter to the image values to determine 
first grayscale image values for the image by comparing 
one or more grayscale threshold values to the image 
values, the first grayscale image values including a two 
dimensional array of first grayscale pixel values; 

applying an edge-detection filter to the first grayscale 
image values to determine second grayscale image val 
ues for the image by calculating transitions between the 
first grayscale image values, the second grayscale image 
values including a two-dimensional array of second 
grayscale pixel values; 

applying a black-and-white filter to the second grayscale 
image values to determine black-and-white image val 
ues for the image by comparing one or more black-and 
white threshold values to the second grayscale image 
values, the black-and-white image values including a 
two-dimensional array of black-and-white pixel values 
that each correspond to black or white; and 

applying a profiling filter to the black-and-white image 
values to extract the sequence of time values and stimu 
lus values by identifying black-and-white pixel values 
that correspond to the stimulus profile in the black and 
white image. 

8. A non-transitory computer-readable medium that stores 
a computer program for using an image as an input for simu 
lating a circuit, the computer program including instructions 
that, when executed by a computer, cause the computer to 
perform operations comprising: 

accessing image values for the image, the image charac 
terizing a stimulus profile for the circuit over time, and 
the image values including a two-dimensional array of 
pixel values for the image: 

extracting a sequence of time values and stimulus values 
for the stimulus profile from the image values, the time 
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values being scaled by a time-scale value for a first 
dimension of the image, the stimulus values being scaled 
by a stimulus-scale value for a second dimension of the 
image, and the stimulus values corresponding to Volt 
ages or currents for the stimulus profile; and 

providing the sequence of time values and stimulus values 
as an input waveform for simulating the circuit. 

9. The computer-readable medium of claim 8, wherein 
extracting the sequence includes: 

applying an edge-detection filter to the image values to 
identify pixel-value transitions that correspond to a 
boundary of the stimulus profile; and 

using the pixel-value transitions to identify the time values 
and the stimulus values corresponding to the stimulus 
profile. 

10. The computer-readable medium of claim 9, wherein 
the edge-detection filter includes a grayscale filter that 

determines grayscale image values for the image by 
comparing one or more grayscale threshold values to the 
image values, the grayscale image values including a 
two-dimensional array of grayscale pixel values, and 

the edge-detection filter operates to identify transitions in 
the grayscale pixel values to identify the boundary of the 
stimulus profile. 

11. The computer-readable medium of claim 8, wherein 
extracting the sequence includes applying a monotonicity 
filter that that restricts the sequence to be monotonic in the 
time values. 

12. The computer-readable medium of claim 8, wherein 
providing the sequence of time values and stimulus values as 
an input waveform includes: 

adding the sequence to a netlist description for simulating 
the circuit as a piecewise-linear waveform that interpo 
lates the time values and the stimulus values. 

13. The computer-readable medium of claim 8, wherein 
accessing the image values includes scanning a display of the 
image to determine the image values. 

14. The computer-readable medium of claim 8, wherein 
extracting the sequence includes: 

applying a grayscale filter to the image values to determine 
first grayscale image values for the image by comparing 
one or more grayscale threshold values to the image 
values, the first grayscale image values including a two 
dimensional array of first grayscale pixel values; 

applying an edge-detection filter to the first grayscale 
image values to determine second grayscale image val 
ues for the image by calculating transitions between the 
first grayscale image values, the second grayscale image 
values including a two-dimensional array of second 
grayscale pixel values; 

applying a black-and-white filter to the second grayscale 
image values to determine black-and-white image val 
ues for the image by comparing one or more black-and 
white threshold values to the second grayscale image 
values, the black-and-white image values including a 
two-dimensional array of black-and-white pixel values 
that each correspond to black or white; and 

applying a profiling filter to the black-and-white image 
values to extract the sequence of time values and stimu 
lus values by identifying black-and-white pixel values 
that correspond to the stimulus profile in the black and 
white image. 

15. An apparatus configured to use an image as an input for 
simulating a circuit, the apparatus comprising at least one 
computer configured to perform operations for computer 
executable modules including: 
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an image-access module that accesses image values for the 
image, the image characterizing a stimulus profile for 
the circuit over time, and the image values including a 
two-dimensional array of pixel values for the image: 

a sequence-extraction module that extracts a sequence of 5 
time values and stimulus values for the stimulus profile 
from the image values, the time values being scaled by a 
time-scale value for a first dimension of the image, the 
stimulus values being scaled by a stimulus-scale value 
for a second dimension of the image, and the stimulus 10 
values corresponding to Voltages or currents for the 
stimulus profile; and 

an input-waveform module that provides the sequence of 
time values and stimulus values as an input waveform 
for simulating the circuit. 15 

16. The apparatus of claim 15, wherein extracting the 
sequence includes: 

applying an edge-detection filter to the image values to 
identify pixel-value transitions that correspond to a 
boundary of the stimulus profile; and 2O 

using the pixel-value transitions to identify the time values 
and the stimulus values corresponding to the stimulus 
profile. 

17. The apparatus of claim 16, wherein 
the edge-detection filter includes a grayscale filter that 25 

determines grayscale image values for the image by 
comparing one or more grayscale threshold values to the 
image values, the grayscale image values including a 
two-dimensional array of grayscale pixel values, and 

the edge-detection filter operates to identify transitions in 30 
the grayscale pixel values to identify the boundary of the 
stimulus profile. 

18. The apparatus of claim 15, wherein extracting the 
sequence includes applying a monotonicity filter that that 
restricts the sequence to be monotonic in the time values. 

16 
19. The apparatus of claim 15, wherein providing the 

sequence of time values and stimulus values as an input 
waveform includes: 

adding the sequence to a netlist description for simulating 
the circuit as a piecewise-linear waveform that interpo 
lates the time values and the stimulus values. 

20. The apparatus of claim 15, whereinaccessing the image 
values includes scanning a display of the image to determine 
the image values. 

21. The apparatus of claim 15, wherein extracting the 
sequence includes: 

applying a grayscale filter to the image values to determine 
first grayscale image values for the image by comparing 
one or more grayscale threshold values to the image 
values, the first grayscale image values including a two 
dimensional array of first grayscale pixel values; 

applying an edge-detection filter to the first grayscale 
image values to determine second grayscale image val 
ues for the image by calculating transitions between the 
first grayscale image values, the second grayscale image 
Values including a two-dimensional array of second 
grayscale pixel values; 

applying a black-and-white filter to the second grayscale 
image values to determine black-and-white image val 
ues for the image by comparing one or more black-and 
white threshold values to the second grayscale image 
values, the black-and-white image values including a 
two-dimensional array of black-and-white pixel values 
that each correspond to black or white; and 

applying a profiling filter to the black-and-white image 
Values to extract the sequence of time values and stimu 
lus values by identifying black-and-white pixel values 
that correspond to the stimulus profile in the black and 
white image. 


