US 20240265358A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2024/0265358 A1

Moir et al. 43) Pub. Date: Aug. 8, 2024
(54) SHARDED PERMISSIONED DISTRIBUTED G060 20/38 (2006.01)
LEDGERS HO4L 9/00 (2006.01)
HO4L 9/32 (2006.01)
(71) Applicant: Oracle Inte.rnational Corporation, (52) U.S. CL
Redwood City, CA (US) CPC ... GO6Q 20/0655 (2013.01); GO6F 16/27
. . (2019.01); GO6Q 20/3825 (2013.01); GO6Q
(72) Inventors: ?{’Iarklds-c Molrss";’egﬂié%tocn, (N%)T N 20/3827 (2013.01); HO4L 9/3239 (2013.01);
aro’d Lart, a.t axe ;:l}'l’ US); HO4L 9/3247 (2013.01); GO6Q 2220/00
1\{1%“?11“ P Islﬁr};hﬁ BrOONgles I\S/IA (2013.01); HO4L 9/50 (2022.05); HOAL
(US); Isaac Sheff, Ithaca, NY (US) 2209/56 (2013.01)
(22) Filed: Apr. 17, 2024 A sharded, permissioned, distributed ledger may reduce the
amount of work and communication required by each par-
Related U.S. Application Data ticipant, thus possibly avoiding scalability bottlenecks that
. . .. may be inherent in previous distributed ledger implementa-
(63) Iiomlggag%g 20 f apph}satlclj\rrl N?i 1988/ gi%fl@h?lﬁq on tions and possibly enabling the use of additional resources to
coonz.inue;tion o’flellowlic:gonONO ’1 py 9,8 g 0’33’ ﬁie dlsora1 translate to increased throughput. A sharded, permissioned,
PP : ’ ’h b distributed ledger may be made up of multiple shards, each
Aug: 7 2,020’ anW lPat',NoNll’fg/Ségg% SVQV %Cl dls a of which may also be a distributed ledger and which may
continuation of apphcation No. -067, hiled on operate in parallel. Participation within a sharded, permis-
May 25, 2017, now Pat. No. 10,740,733. sioned, distributed ledger may be allowed only with per-
A . . mission of an authority. A sharded, permissioned, distributed
Publication Classification ledger may include a plurality of nodes, each including a
(51) Int. CL dispatcher configured to receive transaction requests from
G06Q 20/06 (2006.01) clients and to forward received requests to verifiers config-
GO6F 1627 (2006.01) ured to append transactions to individual ones of the shards.
node 120A node 1208 node 120N
dispatcher dispatcher dispatcher
130A 1308 130F
membership membership membership
representative representative . m o representative
1404 1408 140N
verifier(s) verifier(s) verifier(s)
150A 1508 150N
network
. 110 e —
|
membership storage
service service
170 190
client client client
180A 1808 LA 180M

Patent Application Publication

Aug. 8,2024 Sheet 1 of 7

node 120A

dispatcher
130A

membership
representative
140A

verifier(s)
150A

node 120B

dispatcher
1308

membership
representative
1408

verifier(s)
1508

US 2024/0265358 Al

node 120N

dispatcher
130F

membership
representative
140N

verifier(s)
150N

170

membership
service

client
180A

network

110

storage
service
190

client
1808

client
180M

FIG. 1

Aug. 8,2024 Sheet 2 of 7 US 2024/0265358 Al

Patent Application Publication

S
R @ @ @ @
Py Py Py Py
N D Mnu D _mn'w D m.uu QD ENu
(4] 2o 2o =N 2o
= 5 N g N g N S N
m 2 2 2 2
P
1
ey m
[H '
¥ [H
— P : i
g m P "
ll '
< H 1 I HE '
.] — — — — —— sl — — — — — — — — — — —
H H | ' H ' '
: : I : P :
S
N @ @ @ @ [S
™~ < = m = Q == B T Q@ T YW S
D D L0 D D) D 1S5 | T 9 T O | I N | T O S
@ = LN LN = < © < © < 9 d
w SN SN SN SN _ » N » N » N ~
= = = =
= _
_ : "
e e
H .
' 1
N []
cececcescccesscscsscsaascccascacacsossasosnasocsansesassonaananes H
.]
[[]
H S |
[[
. .
. .
1) 1)
. .
[[
1] 1]
. .
[[
[] []
. .
0 _— _— _— _—
~ 2qll T a 20 2 =
D D O EYs D O
ks SN SN SN g N
m 2 2 2 2

FIG. 2

Patent Application Publication

performed
by each
active
verifier that <
receives
proposed
transaction

Aug. 8,2024 Sheet 3 of 7

Leader verifier determines proposed transaction to
be add%d éo shard
300

l

leader sends proposed fransaction and supporting
information fto other active verifiers
310

v

active verifier validates supporting information
320

supp. info
validated?

US 2024/0265358 Al

330 no

active verifier published confirmation of transaction
340

quorum of active
verifiers publish
confirmations?
350

no

fransaction commited
360

end

FIG.

Patent Application Publication Aug. 8,2024 Sheet 4 of 7 US 2024/0265358 A1

dispatcher receives message from client indicating targeted shard
400

dispatcher’s node
active on target shard?
410

yes

dispatcher forwards message to dispatcher forwards message to

active verifier on dispatcher node. active verifier on another node.
420 430

end

FIG. 4

Patent Application Publication Aug. 8,2024 Sheet 5 of 7 US 2024/0265358 A1

verifier becomesoaoctive on a shard
200

verifier
up-to-date
on shard?
510

snapshot
available for
shard?
520

no

verifier obtains and authenticates
sn apshotsfgr shard.
530

!

verifier applies transactions from
snapshot
540

additional
transactions not in
snapshot?
550

no

yes >
4

verifier replays transaction for the
shard ledger.
560

FIG. 5

end

Patent Application Publication Aug. 8,2024 Sheet 6 of 7 US 2024/0265358 A1

node 12 < membership directives 620
dispatcher membership / shard information 630
130 —>
—
membership p
representative "aNsacy;
140 7on 84
L
verifier >
120 transaction 640 coordination shard
610
membership service
170

FIG. 6

Patent Application Publication Aug. 8,2024 Sheet 7 of 7 US 2024/0265358 A1
computer system 1000
processor processor processor
1010a 1010b 1010n

;

]

v

1/O interface 1030

:

I

i

memory 1020 network input/output device(s)
interface 1050
program data 1040
instructions storage A A A A
1025 1035
\ y
eursor 9ontrol keyboard display(s)
device 1070 1080
1060 — "—‘
\/

wired and/or
wireless network
connection

FIG. 7

US 2024/0265358 Al

SHARDED PERMISSIONED DISTRIBUTED
LEDGERS

[0001] This application is a continuation of U.S. patent
application Ser. No. 18/058,616, filed Nov. 23, 2022, which
is a continuation of U.S. patent application Ser. No. 16/988,
039, filed Aug. 7, 2020, now U.S. Pat. No. 11,538,003,
which is a continuation of U.S. patent application Ser. No.
15/605,689, filed May 25, 2017, now U.S. Pat. No. 10,740,
733, which are hereby incorporated by reference herein in
their entirety.

BACKGROUND

Field of the Disclosure

[0002] This disclosure relates generally to distributed led-
gers, and more particularly to sharded permissioned distrib-
uted ledgers.

Description of the Related Art

[0003] Traditionally, distributed ledgers (including block-
chains) typically do not scale: throughput is fundamentally
limited by the need for all participants to communicate,
process and store all transactions. As a result, additional
resources often do not translate to improved throughput. A
ledger may be considered an append-only data structure that
records a sequence of transactions. A distributed ledger may
be a ledger that is maintained by a collection of nodes
following a common protocol to agree on successive trans-
actions. Clients may submit transactions to one or more of
the nodes. Some distributed ledgers may aggregate transac-
tions into blocks, referred to as blockchains. Fach transac-
tion, or block of transactions, may include a hash (e.g., a
cryptographic hash) of the previous transaction in the ledger,
thereby minimizing the risk of the ledger being tampered
with. In other words, no one (or no node) may surreptitiously
add, remove or alter transactions because this would also
alter all subsequent hashes. Bitcoin™ is one well-known
example of a distributed ledger.

[0004] Traditionally, many blockchain and distributed led-
ger systems do not scale well. The term “blockchain” is used
herein to refer to distributed ledgers generally, even if they
are not literally represented as chains of blocks. Their
throughput may be limited by a requirement that a large
fraction of participants (i.e., weighted by resources in some
cases) must receive, validate and store all transactions. As a
result, additional resources often do not translate to
improved throughput.

[0005] Permissionless blockchains may typically be delib-
erately inefficient, such as by ensuring that participants must
expend energy in order to contribute to maintaining the
ledger. Permissionless ledgers, such as Bitcoin™, generally
allow any node willing to follow the protocol to participate.
Anybody can propose transactions and anyone can partici-
pate in the protocols that decide which transactions are
entered into the ledger. By contrast, in permissioned imple-
mentations, only certain nodes may participate. For instance,
an authority may control which nodes can participate in a
permissioned ledger. This authority could take various
forms, such as a single organization, a consortium, etc.
Permissioned ledgers may be considered to facilitate gov-
ernance, such as by providing an orderly procedure for
updating the ledger protocol, or for compliance with “know
your customer” financial regulations.

Aug. 8,2024

[0006] An honest node may be considered a node that
faithfully follows the system’s protocols, while nodes that
are dishonest, that is, those that are under the control of an
adversary, may deviate from the protocol in order to seck
some advantage.

[0007] Permissioning often enables behavior by dishonest
nodes to be associated with the identities that own or are
responsible for them, and thus opens the possibility to hold
them accountable. This may be achieved by technical and/or
nontechnical means. For example, if a node provably mis-
behaves, the protocol may enable penalties to be applied
automatically, such as by confiscating an escrowed security
deposit, or excluding the dishonest node from further par-
ticipation. Alternatively, or additionally, evidence of misbe-
havior may inform a legal, regulatory or business process,
enabling judgments of guilt and determination of penalties
to be made outside the system.

[0008] Of course, multiple completely independent block-
chains may be used. In the case of permissionless block-
chains, this approach may be problematic because, except
for a small number of the most popular blockchains, most
will have few resources dedicated to maintaining them, and
in which case it may be easy to overwhelm them with
modest resources, undermining their integrity.

[0009] Two ways of reducing pressure on a blockchain are
lightning networks and side chains. In both cases, partici-
pants interact “off chain” and execute transactions on the
blockchain only occasionally. While these approaches may
help mitigate the load on a blockchain, they do not change
the fact that the primary chain does not scale.

[0010] Both permissionless and permissioned decentral-
ized ledgers may be susceptible to manipulation by partici-
pants who favor some transactions over others. Central to
most ledger protocols may be a consensus algorithm used to
establish a universally agreed-upon sequence of transac-
tions. While many distributed ledgers do not actually solve
the traditional consensus problem, they are still generally
referred to as implementing a consensus algorithm. Some
prior consensus algorithms are based on a proof-of-work
(PoW) system, in which participants expend resources to
solve cryptographic puzzles. However, PoW has two well-
known drawbacks. Traditionally, PoW may be wasteful and
slow, deliberately designed to consume non-negligible
amounts of energy, and to limit the rate at which transactions
can be appended to the ledger. This approach aims to limit
the influence of unknown entities, and its costs may be
avoided in permissioned ledgers. PoW consensus provides
only probabilistic guarantees. Generally, the ledger of a
PoW consensus protocol may fork if two or more partici-
pants simultaneously append distinct transactions to the
chain. Eventually, all but one of these incompatible chains
may be abandoned, but there may be a period in which it is
uncertain which will survive. As a result, a transaction may
be considered trustworthy only after a sufficient number of
later transactions have been appended after it (e.g., ensuring
that the ledger has either not forked or that this transaction
survived the fork and was not abandoned).

[0011] The risk and delay associated with PoW consensus
can be avoided in permissioned ledgers, because participants
are explicitly authorized, so there is no need to limit par-
ticipation by unknown entities. This opens possibilities for a
variety of consensus mechanisms that are not applicable in
permissionless ledgers.

US 2024/0265358 Al

[0012] For instance, a consensus mechanism for permis-
sioned distributed ledgers is Practical Byzantine Fault Tol-
erance (PBFT), in which participants propose and vote on
transactions (or blocks thereof) to be appended to the ledger.
PBFT may ensure that honest participants agree on valid
additions to the ledger provided that a certain percentage
(e.g., more than 24) of the participants are honest. Put
differently, PBFT may ensure correctness provided fewer
than a certain percentage (i.e., “4) of participants are dis-
honest, referred to as being Byzantine, e.g., they depart from
the protocol and behave arbitrarily. However, PBFT gener-
ally requires O(n®) messages for n nodes to reach agreement,
which may be considered to prevent scalability to large
numbers of nodes, even if transactions are batched into
blocks.

[0013] Another consensus algorithm involves a leader
appending transactions to its ledger and broadcasting these
to other participants, which add them to their ledgers and
send confirmation to the leader. One example of such a
consensus algorithm is Raft. Once the leader has confirma-
tions from a majority of participants, the transactions are
considered committed. In case the leader becomes unrespon-
sive, other participants can initiate an election to choose a
new leader. In the common case, Raft requires only O(n)
messages to reach agreement, so it is more scalable to large
numbers of nodes than PBFT. However, Raft does not
tolerate Byzantine failures. For example, it allows partici-
pants to impersonate each other, allows a corrupt leader to
deceive others, etc. Thus, it may not be directly suitable for
use in distributed ledger implementations.

SUMMARY

[0014] Methods, techniques, apparatus and systems for
implementing sharded, permissioned, distributed ledgers are
described. A sharded, permissioned, distributed ledger, as
described herein, may reduce the amount of work and
communication required by each participant, thus possibly
avoiding scalability bottlenecks that may be inherent in
previous distributed ledger implementations and possibly
enabling the use of additional resources to translate to
increased throughput. The methods, techniques and/or
mechanisms described herein may provide an approach to
implementing scalable infrastructure for supporting ledgers
made up of multiple “shards”, each of which may be
considered, and may be implemented as, a distributed ledger
in its own right. In some embodiments, multiple shards may
operate in parallel.

[0015] Participation within a sharded, permissioned, dis-
tributed ledger may be allowed only with permission of an
authority, such as a consortium, in some embodiments.
Permission by an authority may allow the trust implied by
such permissioning decisions to be exploited, while never
trusting anyone or anything completely. Such permissioning
may also be exploited to possibly ensure that participants
who misbehave can be detected and held accountable via
any of various mechanisms, both technical and nontechnical,
according to various embodiments.

[0016] The methods, techniques and/or mechanisms
described herein may provide an opportunity for a system
implementing a sharded, permissioned, distributed ledger to
dictate desired behavior (e.g., to determine which partici-
pants actively maintain a given shard at any point in time),
and/or to hold accountable those that fail to comply (e.g., fail
to comply with the ledger protocol and/or consensus algo-

Aug. 8,2024

rithm). A sharded, permissioned, distributed ledger, as
described herein, may utilize (and/or include) a scalable
infrastructure that virtualizes provision of services by decou-
pling shards from the participants that manage them, thereby
possibly allowing for capacity and workloads to grow inde-
pendently of each other, according to some embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] FIG. 1 is a logical block diagram illustrating a
system implementing a sharded, permissioned, distributed
ledger, according to one embodiment.

[0018] FIG. 2 is a logical block diagram illustrating veri-
fiers on several nodes responsible for maintaining shards of
a sharded, permissioned, distributed ledger, according to one
embodiment.

[0019] FIG. 3 is a flowchart illustrating one embodiment
of'a method for adding a transaction to a shard in a sharded,
permissioned, distributed ledger.

[0020] FIG. 4 is a flowchart illustrating one embodiment
of a method for dispatching received messages.

[0021] FIG. 5 is a flowchart illustrating one embodiment
of a method for utilizing shard snapshots when verifiers
become active.

[0022] FIG. 6 is a logical diagram illustrating a member-
ship service with a coordination shard, according to one
embodiment.

[0023] FIG. 7 is a block diagram of a computing device
configured to implement a sharded, permissioned, distrib-
uted ledger system, according to some embodiments.
[0024] While the disclosure is described herein by way of
example for several embodiments and illustrative drawings,
those skilled in the art will recognize that the disclosure is
not limited to embodiments or drawings described. It should
be understood that the drawings and detailed description
hereto are not intended to limit the disclosure to the par-
ticular form disclosed, but on the contrary, the disclosure is
to cover all modifications, equivalents and alternatives fall-
ing within the spirit and scope as defined by the appended
claims. Any headings used herein are for organizational
purposes only and are not meant to limit the scope of the
description or the claims. As used herein, the word “may” is
used in a permissive sense (i.e., meaning having the poten-
tial to) rather than the mandatory sense (i.e. meaning must).
Similarly, the words “include”, “including”, and “includes”
mean including, but not limited to.

DETAILED DESCRIPTION OF EMBODIMENTS

[0025] Methods, techniques, apparatus and systems for
implementing sharded, permissioned, distributed ledger sys-
tems are described. In some embodiments, sharded, permis-
sioned, distributed ledgers may reduce the amount of work
and communication required by each participant, thus pos-
sibly avoiding scalability bottlenecks inherent in previous
distributed ledger implementations and enabling the use of
additional resources thereby possibly increasing throughput.
[0026] In monolithic ledgers (e.g., Bitcoin™ as one
example), transactions in the ledger are arranged in a single
linear sequence. As a result, monolithic ledgers are generally
inherently sequential: every node proposing to add a new
transaction to the ledger must compete with every other such
node by participating in a common consensus protocol, and
the overall system throughput and latency tends to suffer as
the number of participants increases.

US 2024/0265358 Al

[0027] By contrast, in a sharded ledger, the single ledger
may be split into a collection of shards, and each shard may
be a linear ledger in its own right. Related transactions may
be appended to the same shard, while unrelated transactions
may be appended, in parallel, to distinct shards. The ability
to append unrelated transactions in parallel allows sharded
ledgers to be considered inherently more scalable. Further-
more, each shard may be maintained by a subset of the
available resources. Because consensus mechanisms used to
maintain a single ledger (or an individual shard in the case
of sharded ledgers) often scale poorly with the number of
participants, such partitioning of resources between shards
may also increase the throughput of each individual shard.
Combining the advantages of appending transactions to
multiple shards in parallel and increasing the throughput of
individual shards may result in substantial throughput
improvement compared to a monolithic ledger maintained
by the same set of resources.

[0028] Simply creating a set of ledgers that are entirely
independent of each other, and assigning resources to main-
tain each of them has several disadvantages that are not
shared by a sharded, permissioned, distributed ledgers as
described herein. For example, a fixed mapping between
ledgers and resources that maintain sets of entirely indepen-
dent ledgers is inflexible, generally precluding automatic
load balancing between ledgers. Furthermore, if the set of
resources maintaining each independent ledger remains
static, it may be possible for a coalition to form between a
sufficient number of these resources that they can corrupt the
ledger, for example by agreeing to alter the history of the
ledger.

[0029] In some embodiments, sharded, permissioned, dis-
tributed ledgers may dynamically change the mapping
between shards and the resources that maintain them. This
may, in some embodiments, enable general policies that
perform load balancing, for example, and may also enable
the system to regularly reassign resources, thereby poten-
tially confounding efforts to form coalitions between the
resources maintaining any given shard. In addition, infor-
mation about the state of one shard may be included in the
ledger of one or more other shards. Including information
about the state of one shard in the ledger of another shard
may be considered one example of an “entanglement”
technique that potentially increases the difficulty of corrupt-
ing any given shard, as described in more detail below.
[0030] In some embodiments, a sharded, permissioned,
distributed ledger may also provide opportunities for sup-
porting cross-shard transactions (i.e., transactions that affect
or depend on the state of multiple shards).

[0031] Additionally, the methods, techniques and/or
mechanisms described herein may be applicable to a variety
of blockchain and distributed ledger systems, according to
various embodiments.

Implementing a Sharded, Permissioned, Distributed Ledger

[0032] As noted above, the methods, techniques and/or
mechanisms described herein may, according to some
embodiments, split a ledger into multiple shards and arrange
for a subset of nodes to maintain each shard, rather than
having all nodes communicate with each other to maintain
a single ledger. FIG. 1 is a logical block diagram illustrating
a system configured to implement a sharded, permissioned
distributed ledger, according to one embodiment.

Aug. 8,2024

[0033] In some embodiments, a sharded, permissioned,
distributed ledger may include a plurality of shards, which
collectively may represent a complete sharded, permis-
sioned, distributed ledger. Additionally, a shard may be a
ledger in its own right. In other words, while including a
subset of the information in the overall ledger, a shard may
function, and be interacted with, in the same manner as a full
ledger.

[0034] A system configured to implement a sharded, per-
missioned, distributed ledger, such as the system illustrated
in FIG. 1, may include multiple nodes, such as nodes
120A-N, which may be considered participants in the over-
all ledger system. Nodes 120A-N may be configured to
participate in the ledger system via one or more applications,
modules, processes, threads, etc., such as via dispatchers
130A-N, membership representatives 140A-N and verifier
(s) 150A-N, according to various embodiments. Addition-
ally, in some embodiments, nodes 120A-N may be config-
ured to collectively maintain a sharded, permissioned,
distributed ledger, which may be split into multiple shards.
[0035] Clients, such as clients 180A-M may communicate
over network 110 to interact with the sharded, permissioned,
distributed ledger system, such as to submit transactions to
be added to the ledger. Network 110 may represent virtually
any type of wired or wireless network operating over
virtually any type of communication media and according to
virtually any communication protocol, according to various
embodiments. Additionally, each node 120, may have one or
more special “dispatcher” processes, such as dispatchers
130A-N, which may be responsible for directing messages
from clients to verifiers in some embodiments. While only a
single dispatcher 130 is illustrated per node, in some
embodiments, each node may include multiple dispatchers.
[0036] The system may, in some embodiments, include a
membership and configuration service 170 configured to
determine, and/or distribute information regarding, various
decisions utilized during execution of the ledger system,
such as which nodes may be active on which shards at any
given point in time, how many copies of each shard’s data
should be stored by a storage service, how much advance
notice a participant (e.g., a node) should have to prepare
before becoming active on a shard, etc. as will be discussed
in more detail below. While illustrated as one entity, mem-
bership service 170 may, in some embodiments, represent
multiple services, such as one for membership, one for node
assignment (e.g., to shards) one for system configuration,
etc.

[0037] Insomeembodiments, the system may also include
a storage service 190 configured to maintain some of all of
the data (e.g., transactions) in (and/or associated with) a
ledger. Rather than having nodes 120 solely responsible for
the data of the shards, a separate storage service 190 may be
utilized, as will be described in more detail subsequently.
While in some embodiments, shards may be stored on nodes
120A-N;, in other embodiments, the shards (and therefore the
ledger) of the system may be stored separately from, and on
storage devices distinct from, nodes 120A-N, such as within
storage service 190. In other embodiments, data for the
shards may be stored both on nodes 120A-N and on separate
storage devices, such as within storage service 190.

[0038] Multiple clients, such as clients 180A-M may
interact with a sharded, permissioned, distributed ledger
system, such as to submit transactions to be added to the
ledger. When a client 180 presents a transaction to the ledger

US 2024/0265358 Al

system, the client may specify a shard (i.e., one of the shards
making up the ledger) to which that transaction should be
directed. A client 180 may indicate a target shard (i.e., the
shard to which the transaction should be directed) in any of
various manners. For instance, in one embodiment, the
communication protocol via which the client 180 commu-
nications with the ledger system may provide a mechanism
(e.g., a message type, a field, etc.) via which the client 180
indicates a target shard. Additionally, transactions may be
assigned to shards in any of various manners, including but
not limited to assignments that balance loads across servers,
assignments that favor geographically nearby servers, and/or
assignments that aggregate related transactions on a single
shard. In general, the specific manner and/or mechanism
used to assign transactions to shards may vary from embodi-
ment to embodiment.

System Organization and Trust Model

[0039] As noted above, each shard may be organized as a
ledger that may be maintained similarly to a single-ledger
system. For instance, in one embodiment, any node 120 may
be assigned to maintain any shard. However, in other
embodiments, only a subset of nodes 120A-N may be
allowed to maintain any given shard at any given time (e.g.,
such as for scalability). Described herein are various tech-
niques for determining which nodes participate in maintain-
ing which shards at which times within a system implement-
ing a sharded, permissioned, distributed ledger.

[0040] A system implementing a sharded, permissioned,
distributed ledger may protect against an adversary trying to
disrupt or corrupt the ledger. For ease of discussion, each
node may be considered to be under the control of one entity,
and it may further be assumed that the adversary can corrupt
at the granularity of individual nodes. For instance, if one
process of a node is corrupted, then all processes at that node
may misbehave. Conversely, processes on a single node may
be considered to trust one another, while processes on
different, distinct nodes may not.

[0041] While described herein in terms of a system in
which each node has a single verifier process for each shard,
in some embodiments a sharded, permissioned, distributed
ledger system may be implemented such that each node may
have a thread for each shard. In yet other embodiments,
processes and/or threads may maintain different shards at
different times. Thus, in some embodiments, a sharded,
permissioned, distributed ledger system may include mul-
tiple nodes, such as nodes 120A-N, each of which may
include a process, such as verifier(s) 150A-N, for each shard.
Additionally, each verifier 150 may participate in maintain-
ing only the shard on which it is active.

[0042] FIG. 2 is a logical diagram illustrating verifiers
participating in maintaining the shards to a sharded, permis-
sioned, distributed ledger, according to one embodiment.
Iustrated in FIG. 2 are nodes 210, 220 and 230, which may
in some embodiments, be the same as (or represent) indi-
vidual ones of nodes 120A-N. Please note while only three
nodes are illustrated for ease of discussion, in some embodi-
ments, many more nodes may be included, and may par-
ticipate within, a shared, permissioned, distributed ledger
system as described herein. Additionally, while not illus-
trated, nodes 210, 220 and 230 may include other applica-
tions, modules, processes and/or thread, such as dispatchers,
membership representatives, etc.

Aug. 8,2024

[0043] At any given time, a node may be active or inactive
for a given shard. If a node is active for a given shard, as
indicated by a dotted line from a verifier to a shard, that
node’s verifier process for that shard participates in consen-
sus to append new transactions to the shard’s ledger. For
example, verifier 215A of node 210 may be active for shard
265A, as indicated by the dotted line from verifier 215A to
shard 265A. Similarly, verifier 215N may be active for shard
265S as indicated by the dotted line from verifier 215N to
shard 265S. Additionally, various ones of verifiers 225A-N
of'node 220 and verifiers 235A-N of node 230 may be active
on individual ones of shards 265A-S, as indicated by the
dotted lines from verifiers to shards. Please note that the
logical arrangement of verifiers and shards as illustrated is
for ease of discussion and may not represent any actual
physical arrangement of nodes, verifiers and/or shards.
[0044] When maintaining a shard, the active verifiers for
the given shard may follow any of various approaches
and/or consensus protocols. For example, in one embodi-
ment, the verifiers of nodes 210, 220 and 230 (and/or of
nodes 120A-N) may follow a consensus algorithm based on
a version of Raft that may be “hardened” to tolerate Byz-
antine behavior (which may be referred to herein as BFT
Raft). Thus, in some embodiments, verifiers may follow a
consensus protocol (or algorithm) including various mea-
sures, such as one or more of the following:

[0045] requiring all messages to be signed by the
sender, enabling authentication;

[0046] including incremental hashes of the sequence of
transactions, enabling verification that nodes agree on
the entire sequence of transactions, and making it
virtually impossible to revise the history of the ledger
without this being apparent to others;

[0047] broadcasting confirmations to all participants,
not just the leader.

[0048] While these measures may result in O(n”) message
complexity, such a consensus protocol may scale to larger
numbers of nodes and achieve higher transaction throughput
(e.g., because they enable different nodes to progress at
different rates).

[0049] Additionally, in some embodiments, a sharded,
permissioned, distributed ledger system may include a
leader verifier, such as leader 240. For example, in one
embodiment, one active verifier may be designated as a
leader verifier. The leader 240 may propose new transactions
to be appended to the ledger.

[0050] FIG. 3 is a flowchart illustrating one embodiment
of'a method for adding a transaction to a shard in a sharded,
permissioned, distributed ledger. As illustrated in block 300,
a leader 240 may determine a proposed transaction to be
added to a shard of the ledger. A leader 240 may determine
a proposed transaction in any of various ways, such as by
receiving a transaction submitted by a client, according to
various embodiments. The leader 240 may propose new
transactions to be appended to the ledger by sending the
proposed transaction, as well as supporting information
(e.g., such as to validate the leader’s authority and/or authen-
ticity) to other active verifiers, as in block 310. For instance,
in some embodiments, a leader may utilize supporting
information including information indicating (or represent-
ing) the votes showing its legitimacy as leader, the ledger
index after which the new transactions should be appended,
etc. The verifiers receiving the proposed transactions may
check that the transactions and supporting information are

US 2024/0265358 Al

valid as in block 320. If the supporting information (and/or
other aspects of the proposed transaction) are valid, as
indicated by the positive output of decision block 330, the
verifier may publish a confirmation of that fact, as illustrated
in block 340. Each verifier (e.g., that is active on the target
shard for the transaction and/or that receives the proposed
transaction) may independently validate the proposed trans-
action and/or supporting information from the leader 240
and publish a confirmation. In some embodiments, leader
240 may also publish a confirmation (e.g., to be consistent
with other verifiers), but in other embodiments, the sending
of a proposed transaction may represent a confirmation by
the leader 240.

[0051] In some embodiments, a node may consider a
proposed transaction committed once it has received con-
firmation from a certain number of active verifiers, as
indicated by the positive output of decision block 350 and
block 360. Thus, a node may also consider transactions in
the ledger up to a given index to be committed when it has
received such confirmations for a transaction at that index
from a quorum of active verifiers. Additionally, in some
embodiments, all transactions at lower indexes may also be
considered committed.

[0052] A quorum may be considered any majority of the
active nodes on the shard, according to some embodiments.
While FIG. 2 shows only two active verifiers per shard (i.e.,
for ease of illustration and discussion), in other embodi-
ments an odd number of verifiers per shard may be used so
that a clear majority may be achieved. Thus, once a quorum
of active nodes confirms a proposed transaction as the next
transaction in the ledger, it may not be possible for another
quorum to confirm a different transaction at that index
(unless at least one active verifier signs conflicting confir-
mations, which provides undeniable proof that it is cheat-
ing).

[0053] A quorum of active verifiers may in some embodi-
ments depose a leader and elect a new one in case the current
leader misbehaves or becomes unresponsive. When deposed
by a quorum of verifiers, the original leader’s term is
considered complete and another term begun with a new
leader.

[0054] The message complexity associated with adding
transactions to the shard may be considered to depend on the
number of active nodes for that shard rather than on the
overall number of nodes in the system. This may enable
multiple shards to operate in parallel, and may further allow
each shard to achieve higher throughput than a single shard
maintained by all nodes, according to some embodiments.

Dispatchers

[0055] As noted above, each node may have one or more
dispatcher processes, such as dispatchers 130A-N, which
may be responsible for directing messages from clients to
active verifiers. FIG. 4 is a flowchart illustrating one
embodiment of a method for dispatching received messages.
A dispatcher 130 may receive a message from a client
indicating a target shard, as in block 400. In some embodi-
ments, dispatchers 130A-N may receive transaction requests
from clients 180A-M. A request from a client may specify a
target shard as well as a command and/or transaction (e.g.,
a proposed transaction to be added/applied to the target
shard). A dispatcher may be responsible for forwarding a
received request to a process, such as a verifier 150, that is
active on the target shard. If a verifier on the same node as

Aug. 8,2024

the dispatcher (e.g., the node on which the dispatcher is
executing) is active on the target shard (e.g., is responsible
for maintaining the target shard), as indicated by the positive
output of decision block 410, the dispatcher may forward the
request to a process (e.g., a verifier) on the dispatcher’s own
node, as in block 420.

[0056] If no verifier on the same node as the dispatcher is
active on the target shard, as indicated by the negative output
of decision block 410, the dispatcher may send the request
to a process (e.g., a verifier) on another node (i.e., remote
from the dispatcher’s own node) that is active on the target
shard, as in block 430. In some embodiments, it may not be
required that dispatchers be perfectly accurate in forwarding
every request to an active verifier. Nonetheless, unnecessary
forwarding may be avoided by doing so as often as possible.
[0057] In some embodiments, dispatchers may maintain
state information to support identification of processes that
are active for a target shard. In some embodiments, this state
information maintained by dispatchers may comprise at
least: a set of processes, such as verifiers, that maintain the
given shard; a subset of those processes that are currently
active for the shard; and/or the identity of the process on the
dispatcher’s own node that maintains the shard. A system
configured to implement a sharded, permissioned, distrib-
uted ledger may identify processes, verifiers and/or shards in
any of various ways, according to various embodiments. For
example, in one embodiment, unique identifiers may be
associated with each process, verifier, shard, etc. and these
identifiers (names, numeric IDs, alpha-numeric IDs, etc.)
may be utilized within state information. In other embodi-
ments, pointers (e.g., programmatic memory pointers) may
be used to identify, locate and/or communicate with pro-
cesses, verifiers, shards, etc.

[0058] A dispatcher may utilize state information to for-
ward a request locally if there is a local process that is active
on the target shard. If there is no local process that is active
on the target shard, the dispatcher may use the state infor-
mation to identify a remote process that is active on the
target shard. In some embodiments, state information may
be maintained locally on the dispatcher’s own node, while in
other embodiments, dispatcher may rely on state informa-
tion stored remotely (but accessible). State information
regarding active verifiers and shards may be updated in
response to directives from a membership service, according
to various embodiments.

Shard Assignment

[0059] In some embodiments, active processes for each
shard may be determined at initialization time and may
remain static throughout the lifetime of the system. How-
ever, in some embodiments, using static process assign-
ments may have several shortcomings, such as:

[0060] Not allowing shards to be added.
[0061] Not allowing nodes to be added.
[0062] Not allowing replacement of active participants

on a shard (e.g., such as if they become unresponsive
or are observed misbehaving).

[0063] The same set of nodes remain active on any
given shard all the time, allowing for the possibility of
establishing coalitions between dishonest nodes main-
taining a given shard.

[0064] Inother embodiments, nodes (and/or verifiers) may
be assigned to shards dynamically.

US 2024/0265358 Al

[0065] In various embodiments, various schemes may be
used to determine when processes become active on their
shards. For example, in some embodiments, processes, such
as verifiers, may follow a fixed schedule of activation on
shards. For example, a verifier that is active on a given shard
may become inactive on that shard if/when the shard’s
ledger reaches a certain length. Note, however, that in some
embodiments, an inactive process/verifier may not be able to
immediately become active when conditions (such as the
ledger reaching a certain length) require it to do so, because
it may be unaware of these conditions. Instead, in some
embodiments, a process/verifier may be “woken up” and
informed that it is now active on a given shard. In some
embodiments, waking up process may be performed by
another active process, such as one that is about to become
inactive on the shard. In other embodiments, dispatchers
may be informed of relevant events (such as a shard reaching
a threshold length), which may cause them to update their
state information accordingly, and to awaken and/or inform
a process that it is now active. A newly-active process may
also be woken by receiving a message from another process
that is active on the shard that knows the shard has reached
the threshold length (e.g., a threshold that triggers the
process to become active). In yet other embodiments, a
process may be informed that it has become active on a
shard by a participant in membership service 170.
[0066] Instead of activating processes/verifiers on fixed
schedule (e.g., when a ledger reaches a certain number of
transaction), in some embodiments, processes/verifiers may
become active/inactive based on regular reassignments that
may be influenced by combinations of various information,
including any or all of:
[0067] information about the load on the shard;
[0068] information about the availability and respon-
siveness of processes that are active on that shard;
[0069] information about (suspected) misbehavior of
processes that are active on that shard; and
[0070] information about policy inputs, such as service
level requirements, constraints, etc.
[0071] In some embodiments, it may be important that
participants (e.g., nodes, processes, verifiers, etc.) not be
able to control shard assignments. Otherwise, a group of
nodes might be able to conspire to achieve sufficient active
participation in a shard that they can outvote all other active
participants in the shard, thus effectively gaining the ability
to control that shard (e.g., for self-serving and/or illegal
purposes). For this reason, in some embodiments, shard
assignment decisions may be driven by policies that are
implemented as deterministic functions of random (e.g.,
pseudo-random) sequences that cannot be controlled by
participants, possibly along with additional information.
[0072] The use of random information for shard assign-
ment decisions may prevent an adversary (e.g., a misbehav-
ing node) from consistently making choices that may enable
it to gain control of one or more shards, and may also
provide accountability. For example, any attempt to diverge
from the choices dictated by the deterministic policy and
randomness source may be detected (i.e., either immediately
or after-the-fact) and the dishonest node may be held
accountable.
[0073] In general, a source of randomness, such as a
source of cryptographic randomness, may be utilized in any
of various ways for deterministic shard assignment policies.
Some examples include, according to various embodiments:

Aug. 8,2024

[0074] a policy that periodically chooses a shard at
random, chooses one process that is active on the shard,
and makes it inactive, and then randomly chooses a
shard for which the same node’s process is inactive,
and makes it active;

[0075] a policy that repeatedly selects two shards at
random, then selects a pair of nodes that are active on
different shards and exchanges these roles; and/or

[0076] a policy that periodically generates a new sys-
tem-wide assignment satisfying whatever policy is
desired (for example, ensuring that each shard has
sufficient active processes, and that load is balanced
evenly across nodes).

[0077] The first example policy above may keep the
number of shards on which a given node is active constant,
while creating some turn-over (or “churn™) in active shard
assignments. However, in some embodiments, it may not
guarantee that each shard will always have sufficient active
nodes to make progress and tolerate a specified number of
Byzantine nodes on each shard. The second example policy
above may preserve the load on each node as well as the
number of active processes per shard.

[0078] In general, there may be trade-offs, challenges
and/or constraints that may affect the choice of policy that is
most effective for a particular purpose and according to
various embodiments. For example, if reassignment is not
frequent enough, nodes participating on a given shard may
have an opportunity to form a coalition, and may attempt to
take control of the shard. On the other hand, in some
embodiments reassigning processes to shards may entail
various overheads. For example, if a process has been
inactive on a shard, it will not have up-to-date information
about the recent transactions, and may need to communicate
to get this information before it can begin participating in
appending new transactions, in some embodiments. There-
fore, it may be undesirable to reassign processes too fre-
quently.

[0079] Parameters, such as the number and frequency of
shard reassignments, may vary from embodiment to
embodiment. For instance, in one embodiment, such param-
eters may be determined by initialization time parameters,
while in other embodiments, such parameters may vary
based on various inputs, such as observed load (e.g., number
of transactions) on a shard, and/or accountability informa-
tion, such as when a threshold number of active participants
on a shard report that another active participant is unrespon-
sive or has misbehaved.

Preparing Soon-to-be-Active Processes

[0080] To participate in consensus to add more transac-
tions to a shard, an active process on a node may need to be
up-to-date with the previous transactions for that shard. This
may be necessary so that the node can validate transactions
in context of all previous transactions. Additionally, in some
embodiments, an active process may need to be up-to-date
so that it can use the cryptographic hash of the most recent
transaction in constructing the new transaction (e.g., such as
to help ensure that the ledger is tamperproof). If the process
was previously inactive, it may lack some or all transactions
for the shard (for which it is now active).

[0081] A participant (e.g., a verifier) may become up-to-
date according to any of several approaches, in various
embodiments. For example, in some embodiments the con-
sensus algorithm (e.g., such as the BFT Raft consensus

US 2024/0265358 Al

algorithm) may have provisions for a participant that is
behind to “catch up” to other participants that are further
ahead. However, a significant delay may be incurred while
a participant is acquiring all necessary transactions (e.g.,
while catching up), especially if a node has been inactive on
a shard for a long time.

[0082] Alternatively, in other embodiments, verifiable
shard “snapshots” may summarize the state of shards at
various points, thereby possibly enabling a newly-active
verifier to adopt the snapshot without having to replay all
transactions for the shard since it was last active on the shard
(or all transactions for the shard if the verifier has never
previously been active on this shard). In one embodiment,
participants may validate and sign a snapshot and if a
sufficient number of participants validate and sign a snap-
shot it may be guaranteed that at least one of them is honest.

[0083] FIG. 5 is a flowchart illustrating one embodiment
of a method for utilizing shard snapshots when verifiers
become active. When a verifier becomes active on a given
shard, as in block 500, if the verifier is not up-to-date on the
shard (which may usually be the case) as indicated by the
negative output of decision block 510, the verifier may
determine whether a snapshot is available for the given
shard. For example, the verifier may have become active
before a snapshot has been generated for the given shard and
therefore no snapshot may be available. If a snapshot is not
available for the shard, as indicated by the negative output
of decision block 520, the verifier may replay the previous
transactions for the shard ledger, as in block 560. When
replaying transactions for a shard ledger, a verifier may
obtain the transaction in any of various ways, such as by
requesting the additional transaction data it needs from
recently-active verifiers or from a storage service 190,
according to various embodiments. In other embodiments,
transaction or snapshot data might be sent proactively by
other verifiers and/or participants (such as participants in the
storage service) in response to observing that a verifier has
(or will) become active.

[0084] Alternatively, if there is a snapshot available, as
indicated by the positive output of decision block 520, the
verifier may obtain and authenticate the snapshot for the
shard, as in block 530. A verifier may obtain, or access, a
snapshot in any of various manners, according to various
embodiments. In one embodiment, the snapshot (or a copy
of the snapshot) may be stored on the verifier’s own node.
In other embodiments, the verifier may be configured to
request, and/or access, the snapshot from a remote node, or
from a storage service 190.

[0085] Additionally, the verifier may authenticate the
snapshot, such as by checking that at least a certain number
of other participants have validated and signed the snapshot,
according to some embodiments. In some embodiments,
“evidence” may be stored with transaction or snapshot data
to enable recipients to verify its accuracy. Such evidence
may include signatures of verifiers that have voted for
transactions or snapshot, cryptographic hashes and/or
Merkle proofs that enable the receiving verifier to check that
the transactions or snapshots are valid. The verifier may then
apply the transactions from the snapshot as in block 540.

[0086] If, as indicated by the positive output of decision
block 550, there are additional transactions for the shard that
are not included in the snapshot, the verifier may replay
those transactions from the shard, as in block 560. For

Aug. 8,2024

example, additional transactions may have been committed
to the shard during the time that the verifier is obtaining and
using the snapshot.

[0087] As noted above, while the snapshot approach may
reduce the time required to catch up, it may not eliminate it
entirely because obtaining and validating the snapshot may
take time, and there may be transactions to apply after the
snapshot before the verifier has caught up sufficiently to
begin participating in adding new transactions. Therefore, in
some embodiments, a system configured to implement a
sharded, permissioned, distributed ledger may be configured
to provide processes/verifiers with advance warning that
they will become active on a shard in the near future. Thus,
in some embodiments a process may be able to begin
catching up before it is required to become active on a given
shard. For example, a verifier might request the additional
transaction data it needs from recently-active verifiers or
from a storage service 190.

[0088] If future participation is known too far in advance,
it may create opportunities for malicious coalitions to form
in some embodiments. On the other hand, if insufficient
notice is given, there may be delays while newly-active
nodes/verifiers acquire the data they need in order to begin
participating (e.g., while they catch up). In general, the
amount of notice given may vary from embodiment to
embodiment. For instance, the amount of notice given may
be based on initialization-time parameters and/or may be
dynamically adapted/adjusted based on observations (e.g.,
such as how long it takes nodes to catch up before their
active participation begins), according to various embodi-
ments.

Storage

[0089] In traditional, monolithic, blockchain systems, all
participants may receive, validate, and store all transactions
and related metadata (such as blocks, block headers, snap-
shots, etc.). In some embodiments, a sharded, permissioned,
distributed ledger system, non-active verifiers may not
maintain an up-to-date record of transactions, so when they
become active again, there may be a delay while they catch
up, as described above. In other embodiments, inactive
nodes and/or verifiers may be kept up-to-date by having
active nodes broadcast transactions after consensus on them
is complete (e.g., when a transaction is committed to a
shard). In such embodiments, an active node might store
signed (e.g., authenticated) messages that are received from
other active participants as part of the consensus process.
[0090] Additionally, transactions that are broadcast to
non-active verifiers may be accompanied by proof that
consensus was reached among participants that were active
at the time, according to some embodiments. Thus, in some
embodiments all nodes may be kept (at least relatively)
up-to-date with all shards while still limiting consensus-
related communication to the group of active participants,
which may include fewer than all participants. However,
proactive broadcasts to non-active verifiers may result in
additional storage and processing overhead, such as all
nodes storing and doing at least some processing on all
transactions for all shards.

[0091] In order to reduce the amount of additional over-
head incurred by broadcasting to non-active verifiers, the set
of shards for which any given node may become active may
be limited. For example, a node may never participate in
shards outside a particular set of shards, and therefore may

US 2024/0265358 Al

never need to store and process their transactions (e.g.,
transactions for shards not in the particular set). In some
embodiments, limiting nodes to particular shards may be
desirable in large networks with many nodes and many
shards, such that there are still enough nodes available to
participate in any given shard, enabling regular reassign-
ments to foil collusion attempts.

[0092] Additionally, rather than having individual nodes
solely responsible for storing shard data and responding to
requests (e.g., for snapshots to facilitate a node catching up
with a shard), a separate storage service, such as storage
service 190, might be used in some embodiments. As with
nodes maintaining shards, participants in the storage service
might be permissioned, and may be held accountable for
being available and/or being able to provide data they have
been asked to store.

[0093] In some embodiments, a shard verifier that
becomes inactive may be required to first ensure that the data
(e.g., transaction, consensus, and/or other data) for the shard
is made sufficiently available in a storage service 109. For
example, the verifier may be configured to send the data to
one or more storage nodes of the storage service 190.
Additionally in some embodiments, the verifier may also be
configured to receive (and/or authenticate) signed confirma-
tions that the data has been stored. Decoupling of storage
from processing (e.g., using a separate storage service 190)
may, in some embodiments, enable data to be replicated
enough times to be highly likely to be available, while
possibly avoiding excessive requirements (e.g., such as
having all participants store all data).

[0094] As with other configurable aspects of a sharded,
permissioned, distributed ledger system, parameters such as
how many copies of data should be stored by the storage
service might be determined by initialization-time param-
eters, or might be dynamic, driven by deterministic policies
that are informed by inputs from participants and/or from
authorized administrators, according to various embodi-
ments. One way in which these and other inputs may be
collected and used is via a special “coordination shard”,
discussed below.

Membership and Configuration Service

[0095] As noted above, a sharded, permissioned, distrib-
uted ledger system may be configured to make various
configuration and/or operational decisions, such as regard-
ing which nodes are active on which shards at any given
point in time, regarding how many copies of each shard’s
data should be stored (such as by a storage service), and/or
regarding how much advance notice a participant should
receive before it is required to become active on a shard,
according to various embodiments. Many other possible
kinds of decisions may be relevant in various scenarios and
embodiments. In some embodiments, a sharded, permis-
sioned, distributed ledger system may include a membership
service 170 configured to make such decisions. In some
embodiments, membership service 170 may be decomposed
into multiple services, such as one a membership service, a
service for assigning active nodes to shards, and/or a con-
figuration service. Thus, while described herein as a single
service, membership service 170 may include and/or repre-
sent multiple different (yet possibly interrelated) services
according to different embodiments.

[0096] A node may interface with the membership service
170 in a variety of ways. For example, in one embodiment

Aug. 8,2024

each node may include a special “membership representa-
tive” process 140 configured to participate in the member-
ship service 170 and that may communicate with other
processes in its node, such as dispatchers and/or verifiers. In
some embodiments, membership service 170 may not rep-
resent a separate module (e.g., separate from the nodes), but
instead membership service 170 may represent a service
provided collectively by multiple membership representa-
tives 140 from multiple nodes.

[0097] In general, any of various mechanisms may be
utilized to implement, communicate with, and/or participate
in, a membership service, according to various embodi-
ments. For instance, while illustrated and described herein as
separate modules/processes, in one embodiment the roles of
dispatcher and membership representative for a node may be
combined into a single process.

[0098] The membership service 170 may be configured to
make various decisions about membership, assignment of
which nodes are active on which shards, and/or other system
configuration changes, according to various embodiments.
Membership representatives may communicate directives
based on these decisions to other participants, such as
dispatchers and/or verifiers. For instance, in some embodi-
ments membership representatives 140 may be configured to
communicate directives to dispatchers, which may be con-
figured to forward relevant directives to verifiers.

[0099] In some embodiments, a key requirement of a
membership service may be that all honest participants
observe the same sequence of decisions (and thus resulting
directives). For example, in one embodiment, a determinis-
tic schedule (e.g., fixed at initialization time) may be fol-
lowed. However, such a fixed deterministic schedule may
not be able to react to certain events, such as nodes misbe-
having or becoming unresponsive. In another embodiment,
deterministic policies may be used that make decisions
based on inputs and events, such as reports of un-respon-
siveness, misbhehavior, configuration changes, etc.

[0100] In some embodiments, membership service 170
may include a coordination shard, which may be imple-
mented using techniques similar to those for the other shards
in the system. FIG. 6 is a logical diagram illustrating a
membership service with a coordination shard, according to
one embodiment. For example, membership service 170
may include coordination shard 610, which may be config-
ured to record relevant inputs and events, such as member-
ship/shard information 630 (e.g., so that all honest partici-
pants have the same view of the inputs and events), thereby
possibly allowing participants in the coordination shard 610
to communicate membership directives 620, such as possi-
bly based on a deterministic policy that takes these inputs
and events as input.

[0101] As one example, consider a simple scheme for
determining which nodes are active on which shards by
replacing one active participant on each shard after every T
transactions on that shard. To this end, the coordination
shard 610 may be informed when a shard s, such as shard
265, completes T transactions. This may be via a transaction
640 submitted to the coordination shard 610 by a participant,
such as verifier 150, that is active on shard s. Alternatively,
verifier 150 may inform their local (and therefore trusted)
dispatcher 130 of progress on their shard 265 and the
dispatcher 130 may communicate relevant events to the
membership service 170 (which may then submit the events
to the coordination shard). Additionally, in some embodi-

US 2024/0265358 Al

ments a dispatcher 130 may submit a transaction 640 to the
communication shard 610, while in other embodiments, a
dispatcher 130 may communicate with the local membership
representative, which in turn may communicate member-
ship/shard information 630 to membership service 170 and/
or to coordination shard 610. In some embodiments, trans-
action 640 may include an indication that the shard 265 had
committed T more transactions, and may also include an
indication of one or more votes of nodes currently active on
the shard as evidence that the transactions have been com-
mitted.

[0102] In some embodiments, additional information may
be submitted to the coordination shard 610, such as via
transactions. Such additional information may include, with-
out limitation:

[0103] Observations about other nodes’ behavior,
including being unresponsive, acting in a way that
provably violates the protocol, and/or acting in a way
that may be noteworthy even though it does not directly
prove misbehavior.

[0104] Observations about the shard’s load (e.g., the
time taken for the most recent T transactions).

[0105] Summaries of state information (e.g., possibly
concise, unforgeable summaries), such as the net
effects of the transactions up to a certain index on a
shard, or similar for the stream of directives received
from the membership service or other service. These
may be considered examples of “entanglement”, which
is discussed in more detail below.

[0106] Directives from specially authorized parties to
adjust parameters. For example, a transaction signed by
three of five members of a consortium’s governance
committee, indicating that transactions on that shard
should be replicated at least 3 times by the storage
service.

[0107] Directives from specially authorized parties to
add or remove participants from the system.

[0108] Directives from specially authorized parties to
impose penalties on participants deemed to have mis-
behaved (perhaps based in part on observations previ-
ously included in the coordination shard).

[0109] In some embodiments, the system’s current con-
figuration at a given point in time, including information
such as which participants are active on which shards for
what intervals (e.g., a participant might be active on a shard
from transaction N until transaction N+T on that shard) may
be a deterministic function of, or may be based on, infor-
mation in the coordination shard’s ledger. Thus, if/when a
certain number of honest nodes agree on the state of the
coordination shard’s ledger, they may be considered to have
a common derived view of the system’s configuration.

[0110] Which processes and/or the number of processes
that may participate in coordination shard 610 may vary
from embodiment to embodiment. In one embodiment, all
verifiers and dispatchers may participate, such as if configu-
ration changes are infrequent enough. In other embodiments,
dispatchers at each node may participate, while in other
embodiments, only an active subset of dispatchers may
participate. Active assignments, or which processes may be
active on the coordination shard, may be determined simi-
larly to the manner in which this is achieved for regular
shards, according to some embodiments. In general, the
manner in which processes are assigned (or become active)
to participate in the coordination shard may vary from

Aug. 8,2024

embodiment to embodiment and may depend on various
factors, such as frequency of changes, degree of responsive-
ness required, level of threat, etc.

[0111] In some embodiments, it may be necessary for
transactions committed on the coordination shard 610 to be
broadcast to all membership representatives (and/or dis-
patchers). For example, it may be necessary to ensure that all
honest nodes that are available have up-to-date membership
and configuration information, such as may be maintained in
the coordination shard. Additionally, it may be desirable in
some embodiments to have a larger number of active par-
ticipants in the coordination shard 610 than in ordinary
shards (e.g., shards 265), given the coordination shard’s
potential importance in controlling various aspects of the
entire system. As with other configuration parameters, trade-
offs involving the number of active participants in the
coordination shard and/or the frequency of transactions
submitted to the coordination shard may vary from embodi-
ment to embodiment. For example, configuration parameters
related to the coordination shard may be fixed at initializa-
tion-time or may be adapted/adjusted dynamically (such as
via a deterministic policy acting on inputs and events
recorded in the coordination shard).

[0112] Additionally, in some embodiments, the coordina-
tion shard’s role might be implemented by multiple special
shards. For example, one special shard might determine
which entities are authorized to participate in the system,
another might determine which nodes are active on which
shards, while another manages configuration parameters,
such as the number of transactions to be committed to a
shard before a change in active membership occurs. In
general, a coordination shard may be implemented in any of
various manners, according to various embodiments.

Entanglement

[0113] Entanglement, as described herein, may be consid-
ered a technique for making sharded, permissioned, distrib-
uted ledger systems more difficult to corrupt. For example,
entanglement may involve including concise, unforgeable
summaries of information from one location in another
location. For instance, cryptographic hashes included in
transactions (or blocks of transactions) when they are
recorded on a ledger may be considered one basic form of
entanglement. Cryptographic hashes may make it impos-
sible to change the contents of one block or transaction on
the ledger without also changing all subsequent ones (e.g.,
because each transaction may be based on the cryptographic
hash of the previous one).

[0114] Entanglement may be used in various other ways
beyond this basic form, according to various embodiments.
For example, in one embodiment a transaction submitted to
one shard may include a cryptographic hash of a current or
recent state (e.g., state information) of another shard,
thereby possibly ensuring that even if a coalition manages to
take control of the second shard sufficiently that it can revise
the history of that second shard, this may be detectable
(and/or provable) such as by demonstrating that the second
shard is no longer correctly summarized by the hash
included in the first shard. To cover its tracks, a coalition
attempting to revise one shard would also need to take
control of and revise one or more other shards that had
recorded a summary of the data to be revised. Ensuring
regular entanglement with a number of other shards may

US 2024/0265358 Al

make it exceedingly difficult to revise the contents of a shard
undetectably, even by a coalition that succeeds in taking
control of the shard.

[0115] Thus, in some embodiments, a verifier may be
configured to calculate, determine, or otherwise obtain a
cryptographic hash of a current state for a shard and may
further be configured to include that cryptographic hash
when submitting a transaction to another shard.

[0116] In another example, in one embodiment a transac-
tion submitted to a coordination shard (e.g., a shard used to
implement a membership service) may include additional
information, such as a cryptographic hash or Merkle root of
a representation of another shard’s state. Such entanglement
may be considered to have similar benefits to entangling
between multiple regular shards, and/or may be considered
to have additional benefits (e.g., such as in case the coor-
dination shard has a larger quorum size, more scrutiny, etc.
due to its important role in the system).

[0117] In yet another example, a stream of directives sent
by membership service 170 to other participants (such as
dispatchers 130 and/or verifiers 150) may include (or carry)
a cumulative hash (e.g., a hash of all the information in the
stream of directives), which may be similar to hashes
possibly included with each transaction on a regular shard.
Therefore, these hashes may be reported back to the mem-
bership service 170 and recorded (e.g., on the coordination
shard 610)—possibly as evidence that the stream of direc-
tives has been received uncorrupted. In some embodiments,
any mismatch in a reported hash may immediately raise an
issue and may identify possible misbehaving participants.
Conversely, matching hashes received from some, most, or
all, participants may be considered to increase confidence
that there is no disagreement or ambiguity about what
directives have been issued by the membership service 170,
according to some embodiments.

[0118] In some embodiments, entanglement may be
required on a regular basis and the exact nature of entangle-
ment implemented may be driven by policies implemented
by the coordination shard 610. As noted above, failure of a
participant to comply with entanglement requirements may
raise a flag, trigger an investigation, and/or prevent further
participation by suspected participants, etc. Additionally,
summaries of membership service directives may involve
multiple parties, according to some embodiments. For
example, in one embodiment directives may be sent to
dispatchers 130, and relevant directives may be forwarded
by dispatchers 130 to local verifiers 150, and these verifiers
150 may submit transactions (directly or indirectly) to the
coordination shard 610, possibly proving that the directives
have not been corrupted (such as in transit and/or or by any
of the intermediate participants). In some embodiments,
per-shard summaries may be computed by the membership
service 170 and by verifiers 150, so that verifiers’ state may
be validated, even though verifiers 150 may only receive
directives for their own shard.

Accountability and Trust

[0119] As discussed previously, participation in a sharded,
permissioned, distributed ledger may be by permission only.
Permissioning may therefore create an opportunity for par-
ticipants to be held accountable in case they misbehave. For
example, in some embodiments if a corrupt node that has not
been made active on its shard attempts to vote in the shard’s
consensus anyway, this may be detected by other nodes, who

Aug. 8,2024

may be able to prove the misbehavior (e.g., by presenting a
signed vote for a consensus round along with proof that the
sender was not active on the shard for that round). This may
result in penalties being imposed automatically by the
system and/or by existing mechanisms such as regulatory
penalties, lawsuits, etc. Thus, nodes may have a strong
incentive to follow the protocol (e.g., a consensus protocol
implemented by the system), or at least to avoid any
misbehavior that can be detected, especially if it can be
proved.

[0120] In some embodiments, an active, honest shard
participant must be able to tell which other shard partici-
pants are active, such as so the honest participant can ignore
messages from corrupt, inactive participants pretending to
be active. For instance, in some embodiments, an active
verifier of an honest node may know at least a subset of the
nodes that are active at any given transaction index. Other-
wise, a set of corrupt nodes could take over a shard by
sending enough votes to form a quorum in the shard’s
consensus protocol without being authorized to participate
in it. As discussed previously, the membership service 170
may be implemented in various ways according to various
embodiments, including but not limited to using a special
coordination shard 610, a deterministic schedule, or other
mechanisms. Furthermore, in some embodiments a mem-
bership service 170 may be configured to ensure that all
honest membership representatives communicate the same
sequence of directives to their respective dispatchers 130
and/or verifiers 150.

[0121] For example, if verifier vl receives a vote from
verifier v2 for a transaction at index 1,500, verifier vl may
count verifier v2’s vote at index 1,500 after it determines
that the membership service has issued an instruction indi-
cating that verifier v2 is active at that index. If no such
instruction is available to verifier v1, then verifier vl may be
configured to postpone counting that vote until it receives
confirmation that verifier v2 is active at that index, according
to some embodiments.

[0122] In some embodiments, verifier v2 may be required
to provide “evidence” in support of its claim to be active. For
example, membership service directives could include
“instruction sequence numbers”, and verifier v2 may include
with its vote the sequence number of a directive making it
active for an interval that includes 1,500. When verifier v1
subsequently receives a membership service instruction with
that sequence number, verifier vl may then confirm that this
directive indeed makes verifier v2 active for an interval
containing index 1,500, and if not, verifier vl may raise the
alarm that verifier v2 has misbehaved by providing invalid
evidence with its vote. The inclusion of a directive sequence
number with each vote may, in some embodiments, ensure
that it is only a matter of time before invalid evidence is
identified as such, thus discouraging such misbehavior.
[0123] More sophisticated schemes, according to other
embodiments, may include more evidence that may enable
verifier vl to confirm a claim without waiting for the
specified directive. For example, in one embodiment, the
evidence may include a Merkle proof showing that state
implied by the sequence of decisions made by the member-
ship service 170 reflects verifier v2 being active on its shard
at transaction index 1,500. This may enable verifier v1 to
check this proof and be convinced of verifier v2’s claim
without waiting for additional directives from the member-
ship service.

US 2024/0265358 Al

[0124] However, such approaches may be unnecessary in
many cases. As discussed above, it may be desirable for
participants to have at least some advance notice before they
become active. In that case, the above-described situation in
which verifier v1 is not yet aware of the decision for verifier
v2 to be active by the time verifier v2 is voting may be
relatively infrequent. The worst case may be that verifier v1
is not able to count verifier v2’s vote (at that point in time).
Depending on how many nodes are dishonest and/or how
many directives are delayed, this could potentially prevent a
node from confirming enough votes to accept a transaction
until more directives are received, according to some
embodiments.

[0125] In some embodiments, verifier vl may accept
verifier v2’s claim to be active on face value, such as
because verifier v2 knows that if it lies, it may be found out
in the future, and possibly penalized and/or otherwise held
accountable. In some embodiments, configuration param-
eters may determine how many such “speculative” votes
may be counted. However, in some embodiments counting
even one speculative vote may make it possible (even if
highly unlikely) that fraudulent votes may cause a transac-
tion to be confirmed without the votes of a quorum of the
legitimately active nodes. In some embodiments, this may
be completely unacceptable, and therefore a node may be
configured to not count a vote before verifying that its sender
is legitimately active.

[0126] Such verification could be achieved in ways other
than simply waiting for the delayed directives to arrive,
according to various embodiments. For example, in one
embodiment evidence could be stored (e.g., by a storage
service 190 and/or by participants in the membership service
170), thereby possibly enabling evidence to be requested on
demand. Therefore, following the above example, verifier
v2 could may include with its signed vote an identifier (e.g.,
hash) of evidence proving that it is active, and verifier v1
may be configured to request this evidence in order to verify
v2’s claim, in some embodiments.

Additional Details and/or Optimizations

[0127] In some embodiments, participants may be config-
ured to use any of various techniques to optimize querying
data once it has been verified and/or received from a trusted
source (e.g., such as directives a dispatcher receives from its
membership representative). For example, in one embodi-
ment, a dispatcher may receive a stream of MakeActive
directives, each specifying a node, a shard, and an interval
(e.g., begin, end). Once each directive has been verified
(e.g., minimally by verifying/authenticating the signature of
the trusted local membership representative that sent it), that
directive may be stored in a local data structure. Storing such
directives locally may improve the speed of common opera-
tions. In some embodiments, verifiers may be configured to
similarly update appropriate data structures when receiving
directives (e.g., from the local dispatcher or membership
representative) such as to facilitate their common opera-
tions.

[0128] In some embodiments, an active verifier may be
configured to determine which other verifiers are active at
the current transaction index on its shard, and may be
configured to broadcast consensus-related messages to them.
In addition, when receiving a consensus-related message
(e.g., such as a vote for a transaction) from another verifier,
an active verifier may be configured to confirm that the

Aug. 8,2024

sender is active for a transaction index specified by the vote,
which may not be the same as the receiver’s current index.

[0129] In some embodiments, queries related to determin-
ing which verifiers are active for a current transaction and
related to confirming that a sender is active for a specific
transaction index may be supported by updating an “interval
map” data structure for each instruction received. An inter-
val map may, in some embodiments, support a key-value
map in which keys are intervals, and queries can determine
which values are associated with intervals containing a
specified point, overlapping with a specified interval, etc. In
some embodiments, interval maps may be implemented
using interval trees.

[0130] Continuing the example above, verifier vl may be
configured to maintain an interval map and may further be
configured to insert a pair (of values) into its interval map
that maps the interval [1000, 2000] to a record identifying
verifier v2. When inserting the data into the interval map,
verifier vl may also include other information that is likely
to be needed, such as verifier v2’s public key (although such
information may be available elsewhere, storing it in the
interval map may provide faster access to frequently
accessed information). Maintaining an interval map may
enable verifier v1 to query the interval map with an index for
which a vote has been received, thus potentially identifying
a set of verifiers that are active at that index, according to
some embodiments.

[0131] Additional optimizations will be apparent to per-
sons skilled in the art. For example, in some embodiments
a verifier may be configured to query the interval map for its
current transaction index only once, and cache the result for
repeated use when processing consensus-related messages
for that index, either invalidating or updating the cached
result in case a new directive affects the result. In other
embodiments, such optimizations may come “for free”, for
example due to being implemented in a functional language
that memorizes results of functions.

[0132] A dispatcher may similarly maintain data structures
to speed up its common operations, according to some
embodiments. For example, a dispatcher may be configured
to maintain a per-shard interval map similar to the one
described above for verifiers. However, as described above,
a dispatcher’s primary role may be to receive transactions
from clients and forward them to an appropriate verifier. In
some embodiments, it is not necessary for the dispatcher to
have (or obtain) precise information about which verifiers
are active on each shard. For example, if a dispatcher 130
sends/forwards a message (e.g., a client transaction) to a
verifier 150 that is not currently active, the verifier 150 may
be configured to forward the message to its local dispatcher
130.

[0133] However, for performance reasons it may be desir-
able in some embodiments, for a dispatcher to identify the
active verifiers for a shard. Furthermore, if dispatchers
repeatedly send messages to non-active verifiers, which may
then send them back to a dispatcher, overall progress in the
ledger may be slowed. Thus, in some embodiments, verifiers
may be configured to inform dispatchers (e.g. periodically)
of the highest transaction index they have seen on their
shard, thereby potentially enabling dispatchers to query their
interval maps and possibly determine which verifiers are
currently active (e.g., with reasonable accuracy).

US 2024/0265358 Al

Randomness

[0134] As discussed above, policies and/or decisions for
determining which participants are active on which shards at
which times—as well as for determining current values of
various configuration parameters—may be based, at least in
part, on random choices according to some embodiments.
Thus, to ensure that such policies are deterministic and can
be computed independently by any participant, a shared
source of randomness may be required in some embodi-
ments. To avoid manipulation of outcomes of the policy,
nobody (e.g., no node or other participant) should be able to
control the randomness source. Furthermore, to deny an
adversary the opportunity to plan ahead, any random data
used should not be known long in advance of when it is
needed. Therefore, in some embodiments, it may not be
sufficient to choose a random seed at initialization time and
use it forever. Instead, in some embodiments, a sharded,
permissioned, distributed ledger system may be configured
to regularly replace the shared randomness source.

[0135] In some embodiments, a randomness source may
be used for the duration of a leader’s term on the coordi-
nation shard, and may be replaced with a new randomness
source for the next leader’s term. For example, a new seed
for a deterministic pseudo-random number generator may be
generated for each leader’s term, according to one embodi-
ments. However, in general any of various mechanisms for
providing randomness may be utilized when implementing
a sharded, permissioned, distributed ledger, as described
herein according to various embodiments. Additionally, a
randomness source may be updated either more frequently
(providing more security) or less frequently (requiring less
work), may be driven by events other than leadership change
(e.g., such as in systems that do not use leader-based
consensus), according to various embodiments.

[0136] For example, as noted above in some embodi-
ments, randomness may be generated by generating a
“good” seed for a deterministic pseudo-random number
generator. Clearly, the choice of seed must not be control-
lable by any participant. Moreover, in some embodiments,
the seed may not be predictable too far in advance. If the
adversary can tell in advance which of a shard’s verifiers
will be made active in the distant future, then the adversary
can set to work trying to corrupt those verifiers.

[0137] Inone embodiment, when a leader’s term ends, the
leader may be configured to take the cryptographic hash of
the last transaction committed, which may not be predicted
in advance. However, this hash might be manipulated by the
leader. For example, a dishonest leader may select and order
transactions such that the generated hash has desired prop-
erties, such as assigning “friendly” participants to a shard
that they would like to corrupt. Therefore, in some embodi-
ments, the current randomness source deterministically
assigns a buddy node to each leader. At the end of its term,
a leader may then send the buddy node the incremental hash
of'the last transaction committed and the buddy node may be
configured to sign the hash with its own private key and
return the signed hash back to the leader, who may then
XOR the result with its own signature, thereby resulting in
a seed that is not under the control of either party.

[0138] Additionally, in some embodiments the leader may
be assigned multiple buddy nodes (e.g., at least as many as
corrupt nodes that may be tolerated by the system). Provided
no more than the assigned number of nodes are corrupt, this
may ensure that at least one (either the leader or one of the

Aug. 8,2024

buddies) is honest and therefore does not engage in “trial and
error” collusion. If the random seed is chosen by a function
of all signatures (e.g., the XOR of them all), then ensuring
a single participant is honest precludes anybody controlling
the randomness source, according to some embodiments.
[0139] Ifthe leader or any of its buddies fail to participate
in this protocol, in some embodiments the leader may
eventually be deposed, and a new leader elected. The new
leader may then participate in a similar protocol to generate
a new random seed in cooperation with its buddy or buddies
(which are determined by a function of the previous ran-
domness source). Eventually, in some embodiments it is
highly likely that some leader will be found whose buddies
all respond and at least one is honest, implying that a new
reliable randomness source is generated and the protocol can
proceed normally.

[0140] While the approach described above may allow a
leader to pretend to fail in case the resulting randomness is
not to its liking, it will then have no influence over the
randomness chosen by the next leader and its buddies.
Furthermore, this failure may be visible to others and
therefore may contribute to evidence that may be evaluated
in case the failure is suspected to be a deliberate attempt to
manipulate the outcome.

Example Computing System

[0141] Various components of embodiments of the tech-
niques and methods described herein for providing sharded,
permissioned, distributed ledger systems may be executed
on one or more computer systems or computing devices,
which may interact with various other devices. One such
computer system or computing device is illustrated by FIG.
7. In the illustrated embodiment, computer system 1000
includes one or more processors 1010 coupled to a system
memory 1020 via an input/output (I/O) interface 1030.
Computer system 1000 further includes a network interface
1040 coupled to I/O interface 1030, and one or more
input/output devices 1050, such as cursor control device
1060, keyboard 1070, audio device 1090, and display(s)
1080. In some embodiments, it is contemplated that embodi-
ments may be implemented using a single instance of
computer system 1000, while in other embodiments multiple
such systems, or multiple nodes making up computer system
1000, may be configured to host different portions, compo-
nents, or instances of embodiments. For example, in one
embodiment some elements may be implemented via one or
more nodes of computer system 1000 that are distinct from
those nodes implementing other elements.

[0142] In various embodiments, computer system 1000
may be a uniprocessor system including one processor 1010,
or a multiprocessor system including several processors
1010 (e.g., two, four, eight, or another suitable number).
Processors 1010 may be any suitable processor capable of
executing instructions. For example, in various embodi-
ments, processors 1010 may be general-purpose or embed-
ded processors implementing any of a variety of instruction
set architectures (ISAs), such as the x86, PowerPC, SPARC,
or MIPS ISAs, or any other suitable ISA. In multiprocessor
systems, each of processors 1010 may commonly, but not
necessarily, implement the same ISA.

[0143] In some embodiments, at least one processor 1010
may be a graphics processing unit. A graphics processing
unit or GPU may be considered a dedicated graphics-
rendering device for a personal computer, workstation, game

US 2024/0265358 Al

console or other computer system. Modern GPUs may be
very efficient at manipulating and displaying computer
graphics, and their highly parallel structure may make them
more effective than typical CPUs for a range of graphical
algorithms. For example, a graphics processor may imple-
ment a number of graphics primitive operations in a way that
makes executing them much faster than drawing directly to
the screen with a host central processing unit (CPU). The
GPU(s) may implement one or more application program-
mer interfaces (APIs) that permit programmers to invoke the
functionality of the GPU(s). Suitable GPUs may be com-
mercially available from vendors such as NVIDIA Corpo-
ration, ATT Technologies, and others.

[0144] System memory 1020 may be configured to store
program instructions and/or data accessible by processor
1010. In various embodiments, system memory 1020 may
be implemented using any suitable memory technology,
such as static random access memory (SRAM), synchronous
dynamic RAM (SDRAM), nonvolatile/Flash-type memory,
or any other type of memory. In the illustrated embodiment,
program instructions and data implementing desired func-
tions, such as those described above for various embodi-
ments of methods for providing enhanced accountability and
trust in distributed ledgers including but not limited to
methods for processing distributed ledger messages as a
sender node and/or as a receiver node as illustrated in FIGS.
2 through 6, are shown stored within system memory 1020
as program instructions 1025 and data storage 1035, respec-
tively. In other embodiments, program instructions and/or
data may be received, sent or stored upon different types of
computer-accessible media or on similar media separate
from system memory 1020 or computer system 1000. Gen-
erally speaking, a computer-accessible medium may include
storage media or memory media such as magnetic or optical
media, e.g., disk or CD/DVD-ROM coupled to computer
system 1000 via I/O interface 1030. Program instructions
and data stored via a computer-accessible medium may be
transmitted by transmission media or signals such as elec-
trical, electromagnetic, or digital signals, which may be
conveyed via a communication medium such as a network
and/or a wireless link, such as may be implemented via
network interface 1040.

[0145] In one embodiment, 1/O interface 1030 may be
configured to coordinate I/O traffic between processor 1010,
system memory 1020, and any peripheral devices in the
device, including network interface 1040 or other peripheral
interfaces, such as input/output devices 1050. In some
embodiments, I/O interface 1030 may perform any neces-
sary protocol, timing or other data transformations to con-
vert data signals from one component (e.g., system memory
1020) into a format suitable for use by another component
(e.g., processor 1010). In some embodiments, I/O interface
1030 may include support for devices attached through
various types of peripheral buses, such as a variant of the
Peripheral Component Interconnect (PCI) bus standard or
the Universal Serial Bus (USB) standard, for example. In
some embodiments, the function of /O interface 1030 may
be split into two or more separate components, such as a
north bridge and a south bridge, for example. In addition, in
some embodiments some or all of the functionality of 1/O
interface 1030, such as an interface to system memory 1020,
may be incorporated directly into processor 1010.

[0146] Network interface 1040 may be configured to allow
data to be exchanged between computer system 1000 and

Aug. 8,2024

other devices attached to a network, such as other computer
systems, or between nodes of computer system 1000. In
various embodiments, network interface 1040 may support
communication via wired or wireless general data networks,
such as any suitable type of Ethernet network, for example;
via telecommunications/telephony networks such as analog
voice networks or digital fiber communications networks;
via storage area networks such as Fibre Channel SANs, or
via any other suitable type of network and/or protocol.
[0147] Input/output devices 1050 may, in some embodi-
ments, include one or more display terminals, keyboards,
keypads, touchpads, scanning devices, voice or optical rec-
ognition devices, or any other devices suitable for entering
or retrieving data by one or more computer system 1000.
Multiple input/output devices 1050 may be present in com-
puter system 1000 or may be distributed on various nodes of
computer system 1000. In some embodiments, similar input/
output devices may be separate from computer system 1000
and may interact with one or more nodes of computer system
1000 through a wired or wireless connection, such as over
network interface 1040.

[0148] As shown in FIG. 7, memory 1020 may include
program instructions 1025, configured to implement
embodiments of the methods for providing enhanced
accountability and trust in distributed ledgers, and data
storage 1035, comprising various data accessible by pro-
gram instructions 1025. In one embodiment, program
instructions 1025 may include software elements of embodi-
ments of the methods for providing enhanced accountability
and trust in distributed ledgers, as illustrated in the above
Figures. Data storage 1035 may include data that may be
used in embodiments. In other embodiments, other or dif-
ferent software elements and data may be included.

[0149] Those skilled in the art will appreciate that com-
puter system 1000 is merely illustrative and is not intended
to limit the scope of the methods for providing enhanced
accountability and trust in distributed ledgers as described
herein. In particular, the computer system and devices may
include any combination of hardware or software that can
perform the indicated functions, including computers, net-
work devices, internet appliances, PDAs, wireless phones,
pagers, etc. Computer system 1000 may also be connected
to other devices that are not illustrated, or instead may
operate as a stand-alone system. In addition, the function-
ality provided by the illustrated components may in some
embodiments be combined in fewer components or distrib-
uted in additional components. Similarly, in some embodi-
ments, the functionality of some of the illustrated compo-
nents may not be provided and/or other additional
functionality may be available.

[0150] Those skilled in the art will also appreciate that,
while various items are illustrated as being stored in memory
or on storage while being used, these items or portions of
them may be transferred between memory and other storage
devices for purposes of memory management and data
integrity. Alternatively, in other embodiments some or all of
the software components may execute in memory on another
device and communicate with the illustrated computer sys-
tem via inter-computer communication. Some or all of the
system components or data structures may also be stored
(e.g., as instructions or structured data) on a computer-
accessible medium or a portable article to be read by an
appropriate drive, various examples of which are described
above. In some embodiments, instructions stored on a com-

US 2024/0265358 Al

puter-accessible medium separate from computer system
1000 may be transmitted to computer system 1000 via
transmission media or signals such as electrical, electromag-
netic, or digital signals, conveyed via a communication
medium such as a network and/or a wireless link. Various
embodiments may further include receiving, sending or
storing instructions and/or data implemented in accordance
with the foregoing description upon a computer-accessible
medium. Accordingly, the present invention may be prac-
ticed with other computer system configurations.

[0151] The various methods as illustrated in the Figures
and described herein represent examples of embodiments of
methods. The methods may be implemented in software,
hardware, or a combination thereof. The order of the meth-
ods may be changed, and various elements may be added,
reordered, combined, omitted, modified, etc.

[0152] Various modifications and changes may be made as
would be obvious to a person skilled in the art having the
benefit of this disclosure. It is intended that the invention
embrace all such modifications and changes and, accord-
ingly, the above description to be regarded in an illustrative
rather than a restrictive sense.

1.-20. (canceled)

21. A computer implemented method, comprising:

maintaining, on a plurality of computing devices com-

prising respective processors and memory and config-
ured to participate as a plurality of nodes in a distrib-
uted ledger system, a current configuration of a
distributed ledger, the distributed ledger comprising a
coordination shard and a plurality of ledger shards;
receiving, from a node of the plurality of nodes partici-
pating in a ledger shard of the plurality of ledger shards,
a transaction request directed to the coordination shard,
and responsive to the receiving the transaction request:
updating a state of the coordination shard according to
the transaction request; and
determining a new configuration of the distributed
ledger, different from the current configuration, base
at least on part on the updated state of the coordi-
nation shard.

22. The computer implemented method of claim 21,
wherein determining the new configuration of the distributed
ledger comprises periodically replacing one or more nodes
participating in the ledger shard with one or more respective
other nodes of the plurality of nodes.

23. The computer implemented method of claim 21,
wherein determining the new configuration of the distributed
ledger comprises adding or subtracting one or more nodes
participating in respective ledger shards of the plurality of
ledger shards to balance respective loads of the respective
ledger shards.

24. The computer implemented method of claim 21,
wherein determining the new configuration of the distributed
ledger comprises exchanging respective roles of a node
participating in the ledger shard with another node partici-
pating in another ledger shard of the plurality of ledger
shards.

25. The computer implemented method of claim 21,
wherein the state of the coordination shard comprises an
observation that a node participating in the ledger shard
violates a ledger protocol, and wherein determining the new
configuration of the distributed ledger comprises removing
the node from participation in the ledger shard.

Aug. 8,2024

26. The computer implemented method of claim 21,
wherein the transaction request directed to the coordination
shard comprises information of transaction completion on
the ledger shard.

27. The computer implemented method of claim 21,
wherein the transaction request directed to the coordination
shard comprises one or more directives to alter the current
configuration of the distributed ledger from one or more
authorized parties of the distributed ledger.

28. A sharded, permissioned, distributed ledger system,
comprising:

a coordination shard;

a plurality of ledger shards; and

a plurality of computing devices comprising respective

processors and memory and configured to participate as

a plurality of nodes, wherein a node of the plurality of

nodes participating in a ledger shard of the plurality of

ledger shards is configured to:

receive a transaction request directed to the coordina-
tion shard; and

responsive to the receiving the transaction request,
update a state of the coordination shard according to
the transaction request;

wherein the distributed ledger system is configured to
determine a new configuration of the distributed
ledger, different from the current configuration, base
at least on part on the updated state of the coordi-
nation shard.

29. The sharded, permissioned, distributed ledger system
of claim 28, wherein to determine the new configuration of
the distributed ledger the distributed ledger system is con-
figured to periodically replace one or more nodes partici-
pating in the ledger shard with one or more respective other
nodes of the plurality of nodes.

30. The sharded, permissioned, distributed ledger system
of claim 28, wherein to determine the new configuration of
the distributed ledger the distributed ledger system is con-
figured to add or subtract one or more nodes participating in
respective ledger shards of the plurality of ledger shards to
balance respective loads of the respective ledger shards.

31. The sharded, permissioned, distributed ledger system
of claim 28, wherein to determine the new configuration of
the distributed ledger the distributed ledger system is con-
figured to exchange respective roles of a node participating
in the ledger shard with another node participating in
another ledger shard of the plurality of ledger shards.

32. The sharded, permissioned, distributed ledger system
of claim 28, wherein the state of the coordination shard
comprises an observation that a node participating in the
ledger shard violates a ledger protocol, and wherein to
determine the new configuration of the distributed ledger the
distributed ledger system is configured to remove the node
from participation in the ledger shard.

33. The sharded, permissioned, distributed ledger system
of claim 28, wherein the transaction request directed to the
coordination shard comprises information of transaction
completion on the ledger shard.

34. The sharded, permissioned, distributed ledger system
of claim 28, wherein the transaction request directed to the
coordination shard comprises one or more directives to alter
the current configuration of the distributed ledger from one
or more authorized parties of the distributed ledger.

35. One or more non-transitory, computer-readable stor-
age media storing program instructions that when executed

US 2024/0265358 Al

on or across one or more computers cause the one or more
computers to implement a one or more nodes of a distributed
ledger system, performing:

maintaining a current configuration of a distributed led-

ger, the distributed ledger comprising a coordination
shard and a plurality of ledger shards;

receiving, from a node participating in a ledger shard of

the plurality of ledger shards, a transaction request

directed to the coordination shard, and responsive to

the receiving the transaction request:

updating a state of the coordination shard according to
the transaction request; and

determining a new configuration of the distributed
ledger, different from the current configuration, base
at least on part on the updated state of the coordi-
nation shard.

36. The one or more non-transitory, computer-readable
storage media of claim 35, wherein determining the new
configuration of the distributed ledger comprises periodi-
cally replacing one or more nodes participating in the ledger
shard with one or more respective other nodes of the
plurality of nodes.

37. The one or more non-transitory, computer-readable
storage media of claim 35, wherein determining the new

Aug. 8,2024

configuration of the distributed ledger comprises adding or
subtracting one or more nodes participating in respective
ledger shards of the plurality of ledger shards to balance
respective loads of the respective ledger shards.

38. The one or more non-transitory, computer-readable
storage media of claim 35, wherein determining the new
configuration of the distributed ledger comprises exchang-
ing respective roles of a node participating in the ledger
shard with another node participating in another ledger shard
of the plurality of ledger shards.

39. The one or more non-transitory, computer-readable
storage media of claim 35, wherein the state of the coordi-
nation shard comprises an observation that a node partici-
pating in the ledger shard violates a ledger protocol, and
wherein determining the new configuration of the distributed
ledger comprises removing the node from participation in
the ledger shard.

40. The one or more non-transitory, computer-readable
storage media of claim 35, wherein the transaction request
directed to the coordination shard comprises information of
transaction completion on the ledger shard.

#* #* #* #* #*

