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(57) Abstract: An exemplary device and method that provides sub-10-um fine pitch interconnection between (i) a protruding pillar
structure with Cu (e.g., nano-twinned Cu) on one surface having a B-stageable/Photo imageable polymer and (ii) a corresponding
concave landing pad with Cu (e.g., nano-twinned Cu) on the other surface also having a same B-stageable/Photo imageable polymer,
to provide for insertions for Cu-Cu bonding and B-stageable/Photo imageable polymers bonding. The Cu-Cu bonding and polymer
bonding can facilitate a seamless bond interface at a low bonding temperature of 150°C or even at room temperature (RT) with cleaned
and improved surfaces.
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Advanced Processes for Cu/Polymer Hybrid Bonding for Fine-pitch

Interconnection at Panel Level

Cross-reference to Related Application

[0001] This international PCT application claims priority to, and the benefit of, U.S.
Provisional Patent Application No. 63/376,562, filed December 21, 2022, entitled “Advanced
Processes for Cu/Polymer Hybrid Bonding for Fine-pitch Interconnection at Panel Level,”

which is incorporated by reference herein in its entirety.

Background

[0002] Hybrid bonding is a permanent bond that combines an inorganic or polymer dielectric
with embedded metal (Cu) to form interconnections, e.g., for advanced 3D device stacking,
high-density IO, increased bandwidth, and reduced packaging volume. Hybrid bonding can

provide signal delay and loss that are negligible among many benefits.

Summary
[0003] An exemplary device and method are disclosed that provides sub-10-pum fine pitch

interconnection between (i) a protruding pillar structure with Cu (e.g., nano-twinned Cu) on
one surface having a B-stageable/Photo imageable polymer and (ii) a corresponding concave
landing pad with Cu (e.g., nano-twinned Cu) on the other surface also having a same B-
stageable/Photo imageable polymer, to provide for insertions for Cu-Cu bonding and B-
stageable/Photo imageable polymers bonding. The Cu-Cu bonding and polymer bonding can
facilitate a seamless bond interface at a low bonding temperature of 150°C or even at room
temperature (RT) with cleaned and improved surfaces.

[0004] The low-temperature Cu-Cu bonding with pillar and concave on silicon substrate with
and without polymer was demonstrated. The initiation of high shear stresses at the metal-
metal contact interface can provide for high plastic deformation and strong bond formation.
[0005] The exemplary system and method provide for the fabrication of insertion Cu-Cu
bonding in combination with low-temperature cure dielectric polymer/non-polymer dielectric
and less oxidation-prone nt-Cu intersurface material for high plastic deformation and strong
bond formation. In addition, both the pillar and the concave structures may include nt-Cu to
facilitate improved and fast diffusion.

[0006] Fine pitch may be achieved by using photolithography using a maskless aligner tool
and photosensitive polymers or by a laser drilling operation of non-photosensitive polvmers

to achieve concave structures or plasma dry etching of non-photosensitive polymers to
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accomplish concave structures with ultrafine pitches in the order of <5 um. Furthermore,
polymer hybrid bonding may include die/chip to substrate polymer-polymer to inorganic to
polymer and hybrid inorganic-to-polymer bonding at low temperatures without using the
typically required chemical and mechanical polishing (CMP). With glass substrates, the
exemplary system and method can employ bonding by UV curing followed by annealing.
[0007] The exemplary method and system may be employed for panel-level fine pitch
interconnection for advanced semiconductor packaging in heterogeneous integration.

[0008] The exemplary method and system may be employed for semiconductor bonding
technology for easy scaling, low temperature, fast bonding, and high throughput.

[0009] The exemplary method and system may be employed to achieve panel-level bonding
(larger than 300mm).

[0010] In an aspect, a semiconductor device is disclosed comprising: a plurality of hybrid-
bonding interconnection structures, each formed by placing (i) a nano-copper concave
structure embedded in a first bonding polymer layer onto (ii) a non-planar protruding Cu
structure embedded in a second polymer bonding layer, wherein a pitch distance between
each of the plurality of hybrid-bonding interconnection structure is less than 5 pm.

[0011] In some embodiments, the nano-copper concave structure and the non-planar Cu
structure form a Cu-Cu bonding at a low bonding temperature of less than 150°C.

[0012] In some embodiments, the non-planar protruding Cu structure forms a pillar {or
insertion into the nano-copper concave structure.

[0013] In some embodiments, the bonding polymer layer comprises a low-temperature cure
dielectric polymer.

[0014] In some embodiments, the bonding polymer layer comprises a non-polymer dielectric.
[0015] In some embodiments, the nano-copper concave structure embedded in the dielectric
1s fabricated at least in part using photolithography and a maskless aligner tool in
combination with a photosensitive polymer.

[0016] In some embodiments, the nano-copper concave structure embedded in the dielectric
is fabricated at least in part using laser drilling of a non-photosensitive polymer.

[0017] In some embodiments, the first bonding layer is made of a first material, wherein the
second bonding layer is made of a second material, wherein the first material and the second
material are the same.

[0018] In some embodiments, the first material and the second material comprise a B-

stageable/Photo imageable polymer or a photo imageable dielectric (PID).
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[0019] In some embodiments, the first material and the second material comprise at least one
of polyimide (PI), polybenzoxazole (PBO), and benzocy clobutene (BCB) (e.g.. Cyclotene™).
Other examples of PIDs include Benzocyclobutene-modified silsesquioxane (BCB-POSS),
polyimide silsesquioxane (PI-POSS), epoxy. acrylated polymers, or any class of hybrid sol-
gels.

[0020] In some embodiments, the plurality of hybrid-bonding interconnection structures are
employed for chip-on-chip interconnect.

[0021] In some embodiments, the plurality of hybrid-bonding interconnection structures are
employed for chip-on-wafer interconnect.

[0022] In some embodiments, the plurality of hybrid-bonding interconnection structures are
emploved for chip-on-glass panels interconnect.

[0023] In some embodiments, the plurality of hybrid-bonding interconnection structures are
employed for chip-on-organic substrate interconnect.

[0024] In some embodiments, the plurality of hybrid-bonding interconnection structures are
employed for wafer-on-wafer interconnect.

[0025] In some embodiments. the plurality of hybrid-bonding interconnection structures are
employed for wafer-on-glass interconnect.

[0026] In some embodiments, the plurality of hybrid-bonding interconnection structures are
employed for glass-on-glass interconnect.

[0027] In some embodiments, the nano-copper concave structure and the non-planar
protruding Cu structure each includes (111) nano-twinned Cu surfaces having high surface
diffusivity and low oxidation rate.

[0028] In another aspect, a method is disclosed to fabricate a first portion of an
interconnection structure, the method comprising: coating a dielectric layer on a substrate;
forming (e.g., via laser drilling or lithography) pattemed portions of the dielectric layer;
coating a patterned sacrificial layer over at least a portion of non-patterned portions;
depositing a copper-based layer by glance angle deposition or electrodeposition to form a
nano-copper concave structure embedded in a first bonding polymer layer; and removing the
patterned sacrificial laver, wherein the nano-copper concave structure is contacted with a
non-planar protruding Cu structure embedded in a second polymer bonding layer to form a
hybrid-bonding interconnection structure.

[0029] In another aspect, a method is disclosed to fabricate a first portion of an
interconnection structure, the method comprising: coating a dielectric layer on a substrate;

removing, via a laser machining operation, portions of the dielectric layer to form a nano-
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copper concave structure embedded in a first bonding polymer layer; wherein the nano-
copper concave structure is contacted with a non-planar protruding Cu structure embedded in
a second polymer bonding layer to form a hybrid-bonding interconnection structure.

[0030] In some embodiments, the first portion of an interconnection structure is bonded to a
second portion of the interconnection structure, the second portion having a nano-copper
structure embedded in a bonding layer.

[0031] In some embodiments. the nano-copper concave structure has a pitch of 5 pm or less
to another nano-copper concave structure.

[0032] In some embodiments, the first bonding layer is made of a first material, wherein the
second bonding layer is made of a second material, wherein the first material and the second
material are the same.

[0033] In some embodiments, the first material and the second material comprise a B-
stageable/Photo imageable polymer or a photo imageable dielectric (PID), preferably, at least
one of: polyimide (PI), polybenzoxazole (PBO), benzocyclobutene (BCB). Other examples of
PIDs include , Benzocyclobutene-modified silsesquioxane (BCB-POSS). polyimide
silsesquioxane (PI-POSS), epoxy, acrylated polymers, or any class of hybrid sol-gels.

[0034] In some embodiments, the plurality of hybrid-bonding interconnection structures are
employed for chip-on-chip interconnect, chip-on-wafer interconnect, chip-on-glass panel
interconnect, chip-on-organic substrate interconnect, waler-on-wafer, wafer-on-glass, or
glass-on-glass interconnect.

[0035] In some embodiments, the nano-copper concave structure and the non-planar
protruding Cu structure each includes (111) nano-twinned Cu surfaces having high surface
diffusivity and low oxidation rate.

[0036] In another aspect, an interconnection structure is disclosed having been formed by
placing (i) a nano-copper structure embedded in a bonding layer onto (i1) a non-planar Cu
structure.

[0037] In some embodiments, the nano-copper concave structure and the non-planar Cu pillar
structure form a Cu-Cu bonding at a low bonding temperature (e.g., room temperature to
200°C, e.g., 150°C), each having a pitch less than 5 pm.

[0038] In some embodiments, the bonding layer comprises a low-temperature cure dielectric
polymer.

[0039] In some embodiments, the dielectric comprises a non-polymer dielectric.
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[0040] In some embodiments, the nano-copper concave structure embedded in the dielectric
is fabricated at least in part using photolithography and a maskless aligner tool in
combination with a photosensitive polymer.

[0041] In some embodiments, the nano-copper concave structure is fabricated at least in part
using laser drilling of a non-photosensitive polymer.

[0042] In some embodiments, the nano-copper concave structure is fabricated by a dry
plasma etch process using gas phase etchants.

[0043] In some embodiments, the first portion of an interconnection structure is bonded to a
second portion of the interconnection structure, the second portion having a nano-copper

structure embedded in a bonding layer.

Brief Description of the Drawings

[0001] The skilled person in the art will understand that the drawings described below are for
illustration purposes only.

[0002] Fig. 1 shows an example Cu-Cu Polymer-Polymer interconnect with Cu-Cu and B-
stageable/photo imageable polymer hybrid bond in accordance with an illustrative
embodiment.

[0003] Fig. 2A shows the exemplary Cu-Cu Polymer-Polymer interconnect in relation to a
solder attachment in accordance with an illustrative embodiment.

[0004] Fig. 2B shows a plot of the signal delay/loss characteristics of the Cu-Cu Polymer-
Polymer interconnect over micro-bump and solder bump technologies.

[0005] Fig. 3A shows an example method of fabrication of the example Cu-Cu Polymer-
Polymer interconnect.

[0006] Fig. 3B shows the operation employing gray-scale mask equipment, maskless
equipment, and laser machining equipment.

[0007] Fig. 3C shows an example method (or polymer hybrid bond process flow in
accordance with an illustrative embodiment.

[0008] Fig. 3D show example chemical structures for the polymer coating of the Cu-Cu
Polymer-Polymer interconnect in accordance with an illustrative embodiment.

[0009] Figs. 4A, 4B, and 4C each shows measurements via an optical microscope of a
fabrication of a concave structure in two different photo-imageable dielectrics (PIDs) using a
maskless aligner.

[0010] Figs. SA and 5B each shows measurements via optical microscope of the fabricated

concave structure in two different non-PIDs using a femtosecond laser.
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Detailed Specification

[0044] To facilitate an understanding of the principles and features of various embodiments
of the present invention, they are explained hereinafter with reference to their implementation
in illustrative embodiments.

[0045] Hybrid bonding is a permanent bond that combines an inorganic or polymer dielectric
with embedded metal (Cu) to form interconnections that can enable advanced 3D device
stacking, provide high density I/O and Increased Bandwidth, enable sub-10 pum pitch, reduce
packaging volume, increase functionality, employ lower power consumption, and provide a
smaller footprint. The method can be implemented in an efficient fabrication process for
industrial production.

[0046] Example Cu-Cu and B-stageable/Photo Imageable Polvmer Hybrid Bonding

[0047] Fig. 1 shows an example Cu-Cu Polymer-Polymer interconnect 100 (for a device 102)
with Cu-Cu and B-stageable/photo imageable polymer hybrid bond 104, facilitated by creep
on (111) surfaces, in accordance with an illustrative embodiment. The Cu-Cu Polymer-
Polymer interconnect 100 is fabricated through a laser machining operation to provide higher
throughput and finer structures.

[0048] In the example shown in Fig. 1, the Cu-Cu Polymer-Polymer interconnect 100 is
provided between (i) a first substate 106 having a non-planar nano Cu structures 108 shown
as protruding pillar structures 108a, 108b, 108¢ formed over a bonding substrate 110, e.g., B-
stageable/Photo imageable polymer (shown as “Polymer for bonding™ 110) and (ii) a second
substrate 112 having corresponding concave landing pads 114 (shown as 114a, 114b, 114c¢)
formed over another bonding polymer substrate 116, e.g., B-stageable/Photo imageable
polymer (shown as “Polymer Bonding™ 116).

[0049] The protruding pillar structures 108a, 108b, 108¢ align to the corresponding concave
landing pads 112a, 112b, 112¢ to provide for insertions for Cu-Cu bonding and B-
stageable/Photo imageable polymers low-temperature bonding. The non-planar Cu structures
(108, 114) can be formed with nano-twinned Cu (nt-Cu) 109, 115 for insertion bonding. The
low bonding temperature can occur at 150°C (with slight heating) or even at room
temperature (RT) (without heating). Room temperature refers to the environmental
temperature for a clean room where the device would be fabricated, e.g., 21 degrees Celsius
or 69.8 degrees Fahrenheit. The bonding polymer substrates 110, 116 serve like a glue for
polymer-polymer bonding along with the protruding pillar structures 108a, 108b, 108¢ and
concave landing pads 112a, 112b, 112¢ with the Cu-Cu bonding. The polymer material can

provide high adhesive strength to adhere to different substrates, such as printed circuit
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boards. The nano-twinned Cu can be formed via electroplating or sputtering to provide (111)
nano-twinned Cu surfaces with high surface diffusivity and low oxidation rate for that plane
(111).

[0050] The first bonding substrate 110 and the second bonding polymer substrate 116 are
formed over the structures of the devices. In the example shown in Fig. 1, the first bonding
substrate is formed over silicon or glass substrate 118, and the second bonding substrate is
formed over a glass substrate 120 through a polymer dielectric 121. Other materials can be
used to which the B-stageable/Photo imageable polymer bonding substrate 110, 116 can be
formed.

[0051] The polymer dielectric 112 is formed to provide an interface layer with low Young’s
Modulus, low CTE, low solubility in H20, and low moisture absorption. The bonding energy
can be greater than 2.5 J/m? and the die shear strength can be greater than or equal to 50
MPa, in some embodiments.

[0052] The polymer bonding substrate 110, 116 can be formed in a planar manner without
chemical-mechanical planarization (CMP).

[0053] Fig. 2A shows the exemplary Cu-Cu Polymer-Polymer interconnect 100 (shown as
1007) in relation to solder attachments (202, 204, 206). As compared to ball grid arrays 202,
micro-bumps 204, and bump-less Cu-Cu bonds 206, the Cu-Cu Polymer-Polymer
interconnect 100° provides [iner pitch via hybrid bonding 104. A ball grid array 202, e.g., for
package-on-package interconnect, can have a size of around 450 um and a pitch of around
1000 um. A micro-bump 204, e.g., for chip-on-chip, chip-on-wafer, chip-on-glass panel, or
chip-on-organic substrate interconnect, can have a size between 60 pm and 120 um and a
pitch between 120 um and 240 um. A bump-less Cu-Cu interconnect 206, e.g., for chip-on-
wafer, chip-on-glass panel, chip-on-organic substrate, wafer-on-wafer, wafer-on-glass, or
glass-on-glass interconnect, as a 2.5D integration can have a size of less than 10 um and a
pitch of less than 20 um. In contrast, the exemplary Cu-Cu Polymer-Polymer interconnect
(e.g., 100, 1007) can provide a sub-10-um pitch that would allow for higher bump density;
Fig. 1 shows an example pitch being, e.g., around 5 pm.

[0054] Diagram 208 shows a device 210 having advanced solder interconnects 212 at 10 and
20 um pitch to provide more than 10,000 connections/mm? using 2.5 integration technology.
reproduced from Elsherbini, Adel. "Advancing 3D Packaging for Heterogenous Systems
Integration." Electrochemical Society Meeting Abstracts 242. No. 17. The Electrochemical
Society, Inc., 2022, as a comparison to the exemplary Cu-Cu Polvmer-Polymer interconnect

100°. Similar coarse structures are described in Yang, Yu-Tao, et al. "Low-temperature Cu—
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Cu direct bonding using pillar—concave structure in advanced 3-D heterogeneous
integration." IEEE Transactions on Components, Packaging and Manufacturing Technology
7.9 (2017): 1560-1566.,

[0055] In contrast, diagram 208 shows a device 214 formed having the exemplary Cu-Cu
Polymer-Polymer interconnect 100” having finer sub-10-um pitch. The exemplary Cu-Cu
Polymer-Polymer interconnect 100" thus increases the bump density by at least three orders
of magnitude over the 2.5 integration technology shown in device 210 and 3D integration
technology noted above. Indeed, the signal delay/loss using the Cu-Cu Polymer-Polymer
interconnect 100, from the increased bump density, can be made almost negligible as the
increase in the bump density can allow for 1:1 routing 216 between substrates 106, 112
(shown as 106” and 112°) while allowing for a more straightforward design and design
layout.

[0056] Fig. 2B shows a plot 218 of the signal delay/loss characteristics 220 of the Cu-Cu
Polymer-Polymer interconnect 100” (shown as “Hybrid bonding™ 220) over micro-bump and
solder bump technologies.

[0057] The exemplary Cu-Cu Polymer-Polymer interconnect (e.g.. 100, 100”) can provide
efficient hybrid bonding conditions with a clean surface with no impurities and particles. The
Cu surfaces (pillar and concaves) can be formed without Cu oxides to provide alignment.

The interconnect can be formed void-{ree in the Cu-Cu and polymer-polymer bonding
surfaces to provide flat surfaces with minimum height variation and surface roughness.
Passivation of the Cu and polymer surfaces can be employed as needed.

[0058] The protruding pillar structures 108 can be formed with geometries, such as circular
pillars, trapezoids, or row structures, to be optimally shaped with the landing pads to facilitate
guided insertions with proper alignment. Examples of such geometries are described in T. -
C. Chou et al., "Investigation of Pillar-Concave Structure for Low-Temperature Cu-Cu Direct
Bonding in 3-D/2.5-D Heterogeneous Integration," in [EEE Transactions on Components,
Packaging and Manufacturing Technology, vol. 10, no. 8, pp. 1296-1303, Aug. 2020, doi:
10.1109/TCPMT. 2020.3004969, which is incorporated by reference herein. Additional
examples of the process of fabricating the pillar structure 108 may be found in Yang, Yu-
Tao, et al. "Low-temperature Cu—Cu direct bonding using pillar—concave structure in
advanced 3-D heterogeneous integration." IEEE Transactions on Components, Packaging and
Manufacturing Technology 7.9 (2017): 1560-1566, which is incorporated by reference

herein.

[0059] Example Method of Fabrication
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[0060] Fig. 3A shows an example method 300 of fabrication of the example Cu-Cu Polymer-
Polymer interconnect 100. The method 300 includes fabricate an interconnection structure
by coating a dielectric layer on a substrate; forming (e.g., via laser drilling or lithography)
patterned portions of the dielectric layer; coating a patterned sacrificial layer over at least a
portion of non-patterned portions; depositing a copper-based layer by glance angle deposition
or electrodeposition to form a nano-copper concave structure embedded in a first bonding
polymer layer; and removing the patterned sacrificial layer, wherein the nano-copper concave
structure is contacted with a non-planar protruding Cu structure embedded in a second
polymer bonding layer to form a hybrid-bonding interconnection structure.

[0061] Alternatively, the interconnection structure can be fabricated by laser machining by
coating a dielectric layer on a substrate; and removing, via a laser machining operation,
portions of the dielectric layer to form a nano-copper concave structure embedded in a first
bonding polymer layer; wherein the nano-copper concave structure is contacted with a non-
planar protruding Cu structure embedded in a second polymer bonding layer to form a
hybrid-bonding interconnection structure.

[0062] In the example shown in Fig. 3A, method 300 includes forming (302) a dielectric
coating 121 and polymer coating 303 on a substrate 120.

[0063] The polymer coating 303 may be a B-stageable/Photo imageable polymer or a photo
imageable dielectric (PID) such as polyamide (PI), polybenzoxazole (PBO),

Benzocyclobutene (BCB) or other Cyclotene™

. Other examples of PIDs include ,
Benzocyclobutene-modified silsesquioxane (BCB-POSS), polyimide silsesquioxane (PI-
POSS), epoxy, acrylated polymers, and hybrid sol-gels. Other build-up materials can be
used, e.g., that have physical properties compatible with concave structure fabrication and
bonding process (e.g., patternable, photoreactive, or drillable). The material should be
tunable for dimension, thickness (spin-on or dry film), shrinkage, and
planarization/roughness. The material should be compatible with bonding process
polymerization chemistry at interfaces/bulk and have suitable material properties for
adhesion, barrier property, low outgassing, thermomechanical properties for low stress (CTE,
modulus, elongation), distribution of breakdown voltage (BDV), and electromagnetic (EM).
Fig. 3D shows example chemical structures for the polymer coating 303.

[0064] Method 300 then includes forming (304) vias 306 (arrows shown for two examples)
in the polymer coating 303; the vias are formed having a pitch (308) of less than 10-um, e.g.,

less than 5-um. The vias 306 may be formed (i) using soft lithography operation followed by
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plasma etching or (i) using laser machining/drilling. Fig. 3B shows the operation employing
gray-scale mask equipment, maskless equipment, and laser machining equipment.

[0065] In some embodiments, the pitch is around 1 ym, 2 pm, 3 um, 4 um, or 5 um. In some
embodiments, the pitch is less than 1 pm.

[0066] Depositing the copper-based layer can comprise any suitable method, such as, for
example, thermal oxidation, electroplating by selected additive materials, lithographic
deposition, electron beam deposition, thermal deposition, spin coating. drop-casting. zone
casting, dip coating, blade coating, spraying, vacuum filtration, chemical vapor deposition
(CVD). atomic layer deposition (ALD), physical vapor deposition (PVD), sputtering, pulsed
layer deposition, molecular beam epitaxy (MBE), evaporation, or combinations thereof.
[0067] Referring still to Fig. 3A, Method 300 then includes forming (310) a pattern for the
concave structure growth. In the example, a seed layer 312 and photoresist lamination 314
are deposited. The formed layers are then cured and exposed to UV exposure to form the
pattern for the concave structures.

[0068] Removing the patterned sacrificial layer can comprise any suitable method, such as,
for example, thermal etching, plasma etching, chemical etching, wet etching, solvent
removal, or a combination thereof.

[0069] Method 300 then includes forming (316) a nanotwinned Cu deposited structure, e.g.,
by Glance Angle deposition (GLAD) or electrodeposition, in the exposed, etched, or laser
machined regions of the polymer coating 303, to form the nano-twinned concave structure
318, thus forming the bonding polymer substrate 116. GLAD sputtering/PED of nt-Cu can
be employed to provide interfacial material for copper pillars and concave structures. The
GLAD process can provide Cu-Cu bonding by creep on (111) surfaces of nt-Cu. nt-Cu
fabrication by electroplating is described in Hasegawa, Madoka, et al. "Orientation-controlled
nanotwinned copper prepared by electrodeposition.” Electrochimica Acta 178 (2015): 458-
467, which is incorporated by reference herein. Alternatively, nt-Cu fabrication by sputtering
using GLAD is described in Yang, Zi-Hong, Po-Ching Wu, and Tung-Han Chuang. "Effects
of substrate bias on the sputtering of high density (111)-nanotwinned Cu films on SiC chips."
Scientific Reports 12.1 (2022): 15408. which is incorporated by reference herein.

[0070] Once formed, the substrate 112 (shown as 112°) with the bonding polymer substrate
116 and concave structures can be placed in aligned contact with the corresponding substrate
having the pillars or nano-twinned Cu pillars. In some embodiments, the hybrid bond can be

formed at low temperatures (e.g., less than 200°C) and quickly (e.g., less than 10 minutes).

10
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[0071] Polymers for the process would have physical properties compatible with concave
structure fabrication and bonding process. metallization, stiffness, etc. The polymer should
have fast polymerization properties at interfaces/bulk and have suitable barrier properties,
low outgassing, and low stress (CTE, modulus, elongation).

[0072] Fig. 3C shows an example method 350 for polymer hybrid bond process flow. In Fig.
3C. adiced Cu pillar chip 356 with passivation has been fabricated 352 and a glass substrate
358 having a concave Cu pattern on polymer is fabricated 354. Method 350 then includes
contacting (360) the pillar chip 356 with the concave Cu pattern on polymer 354 via a pick-
placement alignment process. Method 350 then includes performing insertion bonding (362)
the pillar chip 356 and concave Cu pattern on polvmer 354 via application of pressure and
heat (e.g., around 150°C). Other temperatures can be emploved as described herein. Method
350 then includes performing polymer bonding and polymerization via a second heating
operation (e.g., around 200°C or greater).

[0073] Experimental Results and Additional Examples

[0074] Several experiments have been conducted to fabricate and characterize a Cu-Cu
Polymer-Polymer interconnect. The rapid development of packaging technology, decreasing
size fine pitch interconnects and increasing Joule heat make a great challenge on the
mechanical properties and thermal stability of copper interconnected materials. Nanotwinned
copper with desirable characteristic features was evaluated and determined to be suitable (or
the next generation interconnected materials. Cu-Cu bonding enabled by creep on (111)
surfaces of nanotwinned Cu (nt-Cu) can provide high surface diffusivity, low oxidation rate
of that particular plane(111), can provide high electroconductivity, high electromigration
resistance, and enhanced strain rate sensitivity of nanotwinned Cu with temperature, which
was higher than that found in coarse-grained Cu, high mechanical strength, and resistance of
the growth of interfacial intermetallic compounds (IMCs).

[0075] The experiments formed several concave structures by two approaches: maskless
aligner and laser machining

[0076] Maskless Aligner. In a first set of experiments, a maskless aligner tool was used to
form the concave structure through direct writing/exposure (no need to use a physical mask)
of the photosensitive polymer by adjusting the defocus conditions during the laser exposure
of a photo-imageable dielectric material. Laser based methods to formation of concave
structure was achieved with any photo-imageable dielectric (PID) material by adjusting the
defocus conditions maskless aligner technique. The PID material was laminated on a

glass/silicon wafer/organic substrates that are in a wafer or a square panel form. The laser
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exposed region of the polymer was cross-linked, and the unexposed polymer region was
removed by developing the polymer material in a solvent, i.e., propylene glycol methyl ether
acetate (PGMEA), for 45-60 seconds. The resultant film was dried by blowing air, though
nitrogen could also be used.

[0077] Figs. 4A and 4B each shows measurements via optical microscopy of fabricated
concave structure in a photo-imageable dielectric (PID) using a maskless aligner. In the
optical image 402, a fabricated concave structure is shown to have a pitch of about 0.248 um
x 2. Image 404 shows the fabricated concave structure having a depth of about 4.4 um (per
measure of -4.0303 um and 0.4615 pm for the top and bottom surface of the concave
structure). The PID is an HR100 (dry film for 5 um). The PID had an exposure dose of 140
mJ/cm?. Fig. 4A shows the mechanical characterization properties of the PID.

[0078] Fig. 4C shows another example of a fabricated concave structure. The film thickness
of the PID material used was 5-80 micron. The device in Fig. 4C included a 5-micron PID
material that was spin-coated on a Ti/Cu seed layer deposited glass substrate. The film was
then exposed to a laser at 375 nm wavelength in a maskless aligner tool to form the concave
structure. The sample was then developed in PGMEA for 60 seconds, and then dried by
blowing with dry air (though Nitrogen could also have been used). The required angle of the
concave structure was achieved by using the right defocus and dose conditions.

[0079] Fig. 4C shows measurements via optical microscopy ol the fabricaled concave
structure in another photo-imageable dielectric (PID) using a maskless aligner. In image 406,
a fabricated concave structure is shown to have a diameter size of about 5.9 um. The PID is a
BCB (for 5 pum). The PID had an exposure dose of 200 mJ/cm?. Fig. 4C also shows the
mechanical characterization properties of the PID.

[0080] Laser Machining. In another experiment, the concave structure was formed by laser
ablation of the polymer material after the polymer is laminated on a glass substrate. In the
example, a polymer film with a thickness of 15-30 micron was laminated at 90°C and 1MPa
using a vacuum laminator. The film was cured, and the polymer was then ablated with a laser
(wavelength: 1050 nm, pulse width: 200 femtoseconds). The debris in the cavity was cleaned
by a wet process (solvent rinse). though other cleaning by means of a plasma descum process
can be used. One advantage of this method is that any polymer laminated on a glass substrate
can be ablated to form the concave cavity.

[0081] The line scan profile of Fig. SA confirms concave structure formed by laser ablation
of polymer film. Fig. 5A also shows measurements via Scanning Acoustic Microscopy of the

fabrication of a concave structure in GX92P, a non-photo-imageable dielectric (non-PID),
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using a femtosecond laser. In optical microscope image 408, a fabricated set of concave
structures is shown. The PID had an exposure dose of 200 mJ/cm?®. Fig. 5B also shows the
mechanical characterization properties of the PID.

[0082] Reactive lon Etching. Fig. SB shows measurements via optical microscopy of the
fabricated structure in CYTOP, a non-photo-imageable dielectric (non-PID), using plasma-
thermal reactive ion etching (plasma-therm RIE). The images were acquired using the
Kevence 3D optical profiler. The concave structure has a diameter profile between about 11
um and 19 pm.

[0083] Discussion

[0084] In the heterogeneous integration, different components can be stacked on top of each
other through high-density vertical interconnections to reduce the signal transmission path
and the RC delay. For example, high-bandwidth memory (HBM) realized by the
heterogeneous integration of multilayer DRAM chips and processor dies within a single
package can provide many benefits, such as high bandwidth, high capacity, low power
consumption, and small form factor [2]. To integrate multiple dies, bonding by solder
microbumps is widely used in the stacking process of heterogeneous integrated devices due
to its low thermal budget, while the interconnection density and bonding yield loss of this
method are challenging by the high required volume and the formation of intermetallic layers.
To realize 3-D interconnection with finer pitch dimension and higher volume production,
Cu—Cu direct bonding without the formation of an intermetallic compound is considered a
desirable candidate in alternative bonding technology due to the excellent electrical
conductivity, thermal conductivity, and mechanical strength of Cu [4]-[6].

[0085] Cu—Cu direct bonding is mainly achieved by the diffusion of Cu atoms during the
thermal compression process. A typical Cu—Cu direct bonding process requires a high
bonding temperature of about 350°C—400°C for a long bonding duration [3]. However, such
high temperatures would create a large thermal budget and further damage the component
characteristics. In addition, long-term bonding duration leading to high cost and low
throughput is impractical for mass production. Therefore, methods to achieve low-
temperature bonding process have been proposed and discussed in considerable detail
recently, such as Cu nanotwin structures, surface passivation bonding, and surface activated
bonding (SAB) [7]-[9]. Though these methods can effectively reduce the bonding
temperature and time of Cu—Cu direct bonding, chemical mechanical planarization (CMP)
before bonding is necessary for reducing surface roughness. However, CMP has a harsh

process tolerance and high fabrication cost. Thus, studies on low-temperature bonding
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methods with high tolerance on surface roughness are significant for the development of Cu—
Cu direct bonding. In previous studies, a design of pillar—concave structure has been
proposed to assist low-temperature bonding [10], [11]. In addition, low-temperature Cu
bonding with pillar—concave structure has also been successfully preliminarily demonstrated
without CMP treatment in previous studies [12], [13] of the inventors. However, bonding
mechanism, surface roughness, and reliability tests are still required in detail to verify its
feasibility for practical use.

[0086] Additional Discussion

[0087] Direct Cu—Cu bonding method gains attention because it has a high possibility of
replacing solder ball. which is widely used at the present time in the field of heterogeneous
integration of advanced packaging and 3-D integration, such as svstem in package. package
on package [14], fan-out [15]-[17], 2.5-D IC, as well as 3-D IC. High-quality and high-
throughput Cu—Cu bonding has critical requirements such as rapid Cu diffusion rate, high
cleanliness on Cu bonding surface, and considerable Cu grain growth. Direct Cu—Cu bonding
can be achieved at room temperature under ultrahigh vacuum (UHV) at the order of 10—8 torr
[18]. In addition to the condition of UHV, the bonding interface must be cleaned using the
surface-activated method, which is a time-consuming and expensive process. Therefore, in
consideration of quality, cost, as well as yield, effective Cu—Cu bonding at a temperature of
300°C and higher can be achieved with a bonding duration of 30 min and longer [19].
However, a Cu—Cu bonding process at temperature higher than 300 °C is no longer attractive
to the current semiconductor manufacturing industry, which emphasizes low process cost. As
aresult, low-temperature Cu—Cu direct bonding methods, such as Cu-based direct bonding
interconnect (DBI) [6], have been introduced with an interconnect pitch of 25 ym at a
bonding temperature of 125 °C. In this method, Cu bonding interface must be extremely
smooth to achieve bonding at a relatively low temperature, thus demanding the use of
chemical mechanical planarization to realize the smooth bonding surface, but this, in turn,
leads to a high-cost manufacturing process. In addition to the DBI method, another low-
temperature Cu direct bonding method known as insertion bonding can achieve low-
temperature Cu bonding at 100 °C on a Si substrate with a silicon dioxide laver, which
introduces high shear stress at the Cu pillar and Cu concave contact interface. The localized
generated stress leads to the deformation of localized Cu, which provides assistance in the
bonding process [11]. However, the implementation of a concave on the dielectric layer
requires a photolithography process to define the position of the concave, while a wet

anisotropic etching process is required for concave formation. With the mentioned fabrication
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processes, the insertion bonding is also a protracted Cu—Cu bonding method. Besides that, the
insertion bonding on silicon substrate with dielectric layer is less favorable for integration
with the existing heterogeneous integration technology such as through-silicon via (TSV).
[0088] In contrast, the exemplary Cu pillar—concave structure is successfully demonstrated
on silicon with a polymer layer. The polymer material can provide high adhesive strength
that can adhere to different substrates, such as printed circuit boards. Besides that, the
polymer described herein is highly compatible to the back-end-of-line manufacturing process
in the semiconductor industry. The implementation of a pillar—concave structure on silicon
with a polymer layer can be carried out at a low temperature of 150°C for 10 min in
atmospheric pressure.

[0089] Although example embodiments of the present disclosure are explained in some
instances in detail herein, it is to be understood that other embodiments are contemplated.
Accordingly, it is not intended that the present disclosure be limited in its scope to the details
of construction and arrangement of components set forth in the following description or
illustrated in the drawings. The present disclosure is capable of other embodiments and of
being practiced or carried out in various ways.

[0090] It must also be noted that, as used in the specification and the appended claims, the
singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates
otherwise. Ranges may be expressed herein as (rom “aboutl” or “approximately” one
particular value and/or to “about™ or “approximately” another particular value. When such a
range is expressed, other exemplary embodiments include the one particular value and/or to
the other particular value.

[0091] By “comprising™ or “containing” or “including” is meant that at least the name
compound, element, particle, or method step is present in the composition or article or
method, but does not exclude the presence of other compounds, materials, particles, method
steps, even if the other such compounds, material, particles, method steps have the same
function as what is named.

[0092] In describing example embodiments, terminology will be resorted to for the sake of
clarity. It is intended that each term contemplates its broadest meaning as understood by
those skilled in the art and includes all technical equivalents that operate in a similar manner
to accomplish a similar purpose. It is also to be understood that the mention of one or more
steps of a method does not preclude the presence of additional method steps or intervening
method steps between those steps expressly identified. Steps of a method may be performed

in a different order than those described herein without departing from the scope of the
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present disclosure. Similarly, it is also to be understood that the mention of one or more
components in a device or system does not preclude the presence of additional components or
intervening components between those components expressly identified.

[0093] The term “about,” as used herein, means approximately, in the region of, roughly, or
around. When the term “about™ is used in conjunction with a numerical range, it modifies that
range by extending the boundaries above and below the numerical values set forth. In
general, the term “about™ is used herein to modifv a numerical value above and below the
stated value by a variance of 10%. In one aspect, the term “about” means plus or minus 10%
of the numerical value of the number with which it is being used. Therefore, about 50%
means in the range of 45%-55%. Numerical ranges recited herein by endpoints include all
numbers and fractions subsumed within that range (e.g., 1 to 5 includes 1, 1.5, 2. 2.75, 3,
3.90, 4, 4.24, and 5).

[0094] Similarly, numerical ranges recited herein by endpoints include subranges subsumed
within that range (e.g., 1 to 5 includes 1-1.5, 1.5-2, 2-2.75, 2.75-3, 3-3.90, 3.90-4, 4-4.24,
4.24-5,2-5, 3-5, 1-4, and 2-4). It is also to be understood that all numbers and fractions
thereof are presumed to be modified by the term “about.”

[0095] The following patents, applications and publications as listed below and throughout
this document are hereby incorporated by reference in their entirety herein.
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What is claimed is:
1. A semiconductor device comprising;

a plurality of hybrid-bonding interconnection structures each formed by placing (i) a
nano-copper concave structure embedded in a first bonding polymer layer onto (i1) a non-
planar protruding Cu structure embedded in a second polymer bonding layer, wherein a pitch
distance between each of the plurality of hybrid-bonding interconnection structure is less than

5 pm.

2 The semiconductor device of claim 1, wherein the nano-copper concave structure and
the non-planar Cu structure form a Cu-Cu bonding at a low bonding temperature of less than

150°C.

3. The semiconductor device of claim 1 or 2, wherein the non-planar protruding Cu

structure forms a pillar for insertion into the nano-copper concave structure.

4 The semiconductor device of any one of claims 1-3, wherein the bonding polymer

layer comprises a low-temperature cure dielectric polymer.

5. The semiconductor device of any one of claims 1-4, wherein the bonding polymer

layer comprises a non-polymer dielectric.

6. The semiconductor device of any one of claims 1-5, wherein the nano-copper concave
structure embedded in the dielectric is fabricated at least in part using photolithography and a

maskless aligner tool in combination with a photosensitive polymer.

7. The semiconductor device of any one of claims 1-6, wherein the nano-copper concave
structure embedded in the dielectric is fabricated at least in part using laser drilling of a non-

photosensitive polymer.
8. The semiconductor device of any one of claims 1-7, wherein the first bonding layer is

made of a first material, wherein the second bonding layer is made of a second material,

wherein the first matenal and the second material are the same.
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9. The semiconductor device of claim 8, wherein the first material and the second
material comprise a B-stageable/Photo imageable polymer or a photo imageable dielectric
(PID).

10. The semiconductor device of claim 8, wherein the first material and the second
material comprise at least one of polyimide (PI), polybenzoxazole (PBO), benzocyclobutene
(BCB), Benzocyclobutene-modified silsesquioxane (BCB-POSS), polyimide silsesquioxane

(PI-POSS), epoxy, acrylated polymers. or hybrid sol-gels.

11. The semiconductor device of any one of claims 1-10, wherein the plurality of hybrid-

bonding interconnection structures are emploved for chip-on-chip interconnect.

12. The semiconductor device of any one of claims 1-10, wherein the plurality of hybrid-

bonding interconnection structures are employed for chip-on-wafer interconnect.

13. The semiconductor device of any one of claims 1-10, wherein the plurality of hybrid-

bonding interconnection structures are employed for chip-on-glass panels interconnect.

14. The semiconductor device of any one of claims 1-10, wherein the plurality of hybrid-

bonding interconnection structures are emploved for chip-on-organic substrate interconnect.

15. The semiconductor device of any one of claims 1-10, wherein the plurality of hybrid-

bonding interconnection structures are employed for wafer-on-wafer interconnect.

16. The semiconductor device of any one of claims 1-10, wherein the plurality of hybrid-

bonding interconnection structures are employed for wafer-on-glass interconnect.
17. The semiconductor device of any one of claims 1-10, wherein the plurality of hybrid-

bonding interconnection structures are emploved for glass-on-glass interconnect.

18. The semiconductor device of any one of claims 1-17, wherein the nano-copper
concave structure and the non-planar protruding Cu structure each includes (111) nano-

twinned Cu surfaces having high surface diffusivity and low oxidation rate.
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19. A method to fabricate a first portion of an interconnection structure, the method
comprising;

coating a dielectric layer on a substrate;

forming patterned portions of the dielectric layer;

coating a patterned sacrificial layer over at least a portion of non-patterned portions;

depositing a copper-based layer by glance angle deposition or electrodeposition to
form a nano-copper concave structure embedded in a first bonding polymer layer; and

removing the patterned sacrificial layer,

wherein the nano-copper concave structure is contacted with a non-planar protruding
Cu structure embedded in a second polymer bonding layer to form a hybrid-bonding

nterconnection structure.

20. A method to fabricate a first portion of an interconnection structure, the method
comprising:

coating a dielectric layer on a substrate;

removing, via a laser machining operation, portions of the dielectric layer to form a
nano-copper concave structure embedded in a first bonding polymer layer,

wherein the nano-copper concave structure is contacted with a non-planar protruding
Cu structure embedded in a second polymer bonding layer to form a hybrid-bonding

interconnection structure.

21. The method of claim 19 or 20, wherein the first portion of an interconnection
structure is bonded to a second portion of the interconnection structure, the second portion

having a nano-copper structure embedded in a bonding layer.

22 The method of any one of claims 19-21, wherein the nano-copper concave structure

has a pitch of 5 pm or less to another nano-copper concave structure.
23. The method any one of claims 19-22, wherein the first bonding layer is made of a first

material, wherein the second bonding layer is made of a second material, wherein the first

material and the second material are the same.
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24, The method of claim 23, wherein the first material and the second material comprise a
B-stageable/Photo imageable polymer or a photo imageable dielectric, preferably, at least one
of: polyimide, polybenzoxazole, benzocyclobutene, Benzocyclobutene-modified

silsesquioxane, polyimide silsesquioxane, epoxy, acrylated polymers. or hybrid sol-gels.

25. The method of any one of claims 19-24, wherein the plurality of hybrid-bonding
interconnection structures are employed for chip-on-chip interconnect, chip-on-wafer
interconnect, chip-on-glass panel interconnect, chip-on-organic substrate interconnect, wafer-

on-wafer interconnect, wafer-on-glass interconnect, or glass-on-glass interconnect.
26. The method of any one of claims 19-25, wherein the nano-copper concave structure

and the non-planar protruding Cu structure each includes (111) nano-twinned Cu surfaces

having high surface diffusivity and low oxidation rate.
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