
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0244972 A1

US 20140244972A1

ARMON et al. (43) Pub. Date: Aug. 28, 2014

(54) METHOD AND APPARATUS FOR GAME (60) Provisional application No. 60/555,975, filed on Mar.
PHYSICS CONCURRENT COMPUTATIONS 25, 2004.

(71) Applicant: AiSeek Ltd., Ramat-Gan (IL) Publication Classification

(72) Inventors: Roy ARMONI, Givat Ada (IL); Ramon (51) Int. Cl.
AXELROD, Holon (IL) A63F I3/30 (2006.01)

G06F 17/50 (2006.01)
(73) Assignee: AiSeek Ltd., Ramat-Gan (IL) (52) U.S. Cl.

CPC A63F 13/12 (2013.01); G06F 17/5009
(21) Appl. No.: 14/070,968 (2013.01)

USPC .. T12/17

(22) Filed: Nov. 4, 2013 (57) ABSTRACT

Related U.S. Application Data An apparatus for physical properties computation compr1S1ng
an array processor. The array processor comprises of a plu

(60) Continuation of application No. 12/785,837, filed on rality of processing elements, said processing elements
May 24, 2010, now abandoned, which is a continu
ation-in-part of application No. 12/207,680, filed on
Sep. 10, 2008, now Pat. No. 8,005,066, which is a
division of application No. 11/089,029, filed on Mar.
25, 2005, now Pat. No. 7,440,447.

arranged in a grid. A processing unit (PU) is coupled to the
array processor. A local memory is coupled to the PU. The PU
broadcasts data to rows of said processing elements in said
grid, and performs physical computations in an order of com
plexity of O((VN) log N).

1OO
N

Al
Dedicated GRAPH-PROCESSING
Logic UNIT

is1 N 120

local bus

17O 110-1

110-2

1 Processor
110-N

Data Program
BUS IF Men Mem

\ 7 160 140 130

Patent Application Publication

100

Aug. 28, 2014 Sheet 1 of 6 US 2014/0244972 A1

1
150

Al
Dedicated
Logic

GRAPH-PROCESSING
UNIT

1.

17O

local bus

110-N

Processor

Processor

BUS IF

160

Data Program
Mem Mem

140

FIGURE 1

130

Patent Application Publication Aug. 28, 2014 Sheet 2 of 6 US 2014/0244972 A1

O

Propagation
Unit

220

S.
Test Control

N210

s
FIGURE 2

220

N propagation unit 5 is . . i
S S 2 5
3 g " 25 is

query
Y execution

315 control

result
retrieval

unit
read results

320

local buS
170-1

FIGURE 3

Patent Application Publication Aug. 28, 2014 Sheet 3 of 6 US 2014/0244972 A1

broadcast to all nodes

Node access control
350 330

FIGURE 4

5

Patent Application Publication Aug. 28, 2014 Sheet 4 of 6 US 2014/0244972 A1

() 7-10

ARRAY OF
PROCESSOR ELEMENTS

perimeter
registers EXECUTION CONTROL

EXECUTION
PARAMETERS
MEMORY

INSTRUCTION
MEMORY

Y

HOST INTERFACE

6 7

FIGURE 5

Patent Application Publication

-ea

Aug. 28, 2014 Sheet 5 of 6

upper (...) configuration
bus

periheter valus registers

-
perheter valu

FIGURE 6

US 2014/0244972 A1

Patent Application Publication Aug. 28, 2014 Sheet 6 of 6

re START

S710
Load into array processor
description of each body

20

For each axis perform broad phase
collision detection

30

For each axis sort bodies
respective of starting point

For every pair of collision
candidate bodies perform narrow

phase collision detection

Determine for each colliding pair
of bodies the forces each pair is

subjected to

Compute next
State?

STOP

FIGURE 7

US 2014/0244972 A1

US 2014/0244972 A1

METHOD AND APPARATUS FOR GAME
PHYSICS CONCURRENT COMPUTATIONS

0001. This application is a Continuation of U.S. patent
application Ser. No. 12/785,837, filed on May 24, 2010,
which is a Continuation-in-part of U.S. patent application Ser.
No. 12/207,680, filed on Sep. 10, 2008, which is a divisional
patent application of now U.S. Pat. No. 7,440,447, and that
further claims priority from U.S. provisional patent applica
tion 60/555.975 filed on 25 Mar. 2004, all of which Applica
tions are incorporated herein by reference.

TECHNICAL FIELD

0002 This disclosure generally relates to performing
physical computations, and more specifically with simula
tions of rigid and flexible bodies using an array processor.

BACKGROUND

0003. Physics computations are broadly used in games
and may be based on the rules of classical mechanics to
compute the state of bodies at each point in time. As long as
bodies do not collide, inertia, gravitation and acceleration
may be used to compute the next state of bodies. Such com
putations may be performed in parallel by means of dedicated
parallel hardware. An example of such computation is shown
in U.S. patent application Ser. No. 10/715,440, publication
number 20050075849, entitled “Physics Processing Unit' by
Maher et al., and which is hereby incorporated by reference
for all of the useful information it may contain.
0004 Real world simulation, however, do involve colli
sions between pairs of bodies. For a colliding pair of bodies,
contact resolution involves finding the contact point and com
puting the forces acting at on that point on each body in the
pairs of bodies. These additional forces are integrated with the
rest of each body parameters for each body in the pairs of
bodies, and are used to compute its next state.
0005. Currently available methods, based on parallel hard
ware, cannot efficiently detect collisions in parallel because
of the huge number of pairs of bodies typical in many sce
narios in general, and in games in particular. Conventionally,
this complex problem is solved as a sequential process by
sorting the bodies in the scene three times, according to their
projection on the three axes in the three dimensional space,
and detecting collisions in each axis separately. This complex
problem may be accomplished in the order of O(N log N)
times.

0006 Alternatively, dedicated data structures are built to
maintain pairs of colliding candidates, with an amortized
update time of O(log N). If there is a separation between two
bodies in their respective projection on at least one of the axes,
according to this method these two bodies cannot collide.
Such a broad phase collision detection process, for culling
away objects that cannot possibly collide, rules out the vast
majority of body pairs, leaving a narrow phase collision
detection process, for accurate collision detection, to be per
formed only on a fraction of the body pairs. This process may
be parallelized easily by existing hardware.
0007. However, either the dependency on a sequential pro
cess for the broad phase collision detection, or the application
of narrow phase collision detection on every possible pair of
bodies in the scene, create a severe bottleneck to the accel
eration of physics computations in general and real world
simulation for games in particular.

Aug. 28, 2014

0008. It would be advantageous to provide a solution that
overcomes the deficiencies in conventional approaches to the
above described problem. It would be further advantageous
that such a solution would perform in an order that is lower
than the best order provided by conventional technologies.

SUMMARY

0009. To realize some of the advantages described above,
there is provided an apparatus for physical properties com
putation comprising an array processor. The array processor
comprises of a plurality of processing elements, said process
ing elements arranged in a grid. A processing unit (PU) is
coupled to the array processor. A local memory is coupled to
the PU. The PU broadcasts data to rows of said processing
elements in said grid, and performs physical computations in
an order of complexity of O((VN) log N).
0010 More specifically, the grid is a n-by-n 1-grid.
0011 More specifically, at least a processing element of
said plurality of processing elements further comprises a
local register file.
0012 More specifically, the physical computations com
prise real-world simulations.
0013 Still more specifically, the real-world simulations
are simulations for games.
0014 Still more specifically, the real-world simulations
further comprise concurrent processing of broad phase colli
sion detection.
0015 Still more specifically, the real-world simulation
further comprise sorting in concurrent the results of said
broad phase collision detection for each axis from a starting
point.
0016 Still more specifically, sorting the results further
comprises a concurrent two-dimensional array sorting.
0017 Still more specifically, said array sorting is a Shear
Sorting.
0018 Still more specifically, the real-world simulation
further comprise parallel processing of narrow phase colli
sion detection.
0019. Still more specifically, the narrow phase collision
detections comprises triangle-triangle intersection.
0020. Another aspect of the disclosed teachings is a com
puterized method for performing physical properties compu
tation comprising loading processing elements of an array
processor with a description of bodies. A broad phase colli
sion detection for each axes by using concurrent processing
on the array processor. The results of the broad phase collision
detection are stored for each axis from a starting point by
using concurrent processing on said array processor. A nar
row phase collision detection is performed on the sorted
results by using parallel processing on said array processor.
The array processors are coupled to a processing unit (PU)
which is further coupled to a local memory and the array
processors performs the physical properties computation in
an order of complexity of O((VN) log N).
0021 More specifically, the technique further comprises
determining for each colliding pair from said bodies forces
Subjected on each Such body by using parallel processing on
said array processor. The steps of the method are repeated if
additional states are to be determined.

BRIEF DESCRIPTION OF THE DRAWINGS

0022. Forbetter understanding of the disclosed teachings
and to show how the same may be carried into effect, refer

US 2014/0244972 A1

ence will now be made, purely by way of example, to the
accompanying drawings. The particulars shown in the figures
are by way of example and for purposes of illustrative discus
sion of the teachings, and are presented in the cause of pro
viding what is believed to be most useful and readily under
stood description of the principles and conceptual aspects of
the teachings. In this regard, no attempt is made to show
structural details in more detail than is necessary for a funda
mental understanding of the teaching, the description taken
with the drawings making apparent to those skilled in the art
how the teaching maybe embodied in practice. In the accom
panying drawings:
0023 FIG. 1 is a high-level block diagram an aspect of
the disclosed teachings;
0024 FIG. 2 is a top-level architecture of an exemplary
graph-processing unit;
0025 FIG. 3 is an architecture of an exemplary control

unit;
0026 FIG. 4 is an architecture of propagation unit;
0027 FIG. 5 is a high-level block diagram of the dis
closed teachings;
0028 FIG. 6 is a top-level architecture of the array of
processor elements;
0029 FIG. 7 is a flowchart describing the method for
performing physical computations in accordance with the
disclosed teachings.

DETAILED DESCRIPTION

0030. An apparatus and a top-to-bottom concurrent
method for classical mechanics computations on a concurrent
processor is shown. In one embodiment it is used on rigid
bodies that are approximated by decomposition into geo
metrical bodies for which intersection computation is easy.
Decomposition may be into triangles in a two dimensional
space, while in another embodiment the decomposition may
be into triangular pyramids. One aspect of the invention is a
concurrent method and apparatus for physics computations,
performed in an order of complexity of O((VN) log N).
0031. An exemplary system dedicated for such artificial
intelligence (AI) tasks is described herein. This system could
be embodied in a semiconductor chip. The system contains
Some or all of the followings: processors, configurable pro
gram memory, data memory, bus interface, dedicated logic
for processing AI techniques, and a graph-processing unit.
0032. The graph-processing unit holds a network of inter
connected node, each of which comprises at least one digi
tally programmable delay. The network represents the
weighted graph, where the delays act as the edges.
0033. The delay is formed by a single counter in each
node, a dedicated memory, also referred to as edges memory,
and a comparator element on each edge between nodes. The
edge is triggered once the memory is equal to the counter.
This physical realization of a weighted graph is then used for
searching minimal paths in a reduced time by injecting an
electromagnetic pulse at the start node and letting it propagate
through the entire network in parallel in accordance with the
predetermined delays. Resetting all these counters allows the
performing of a new test without the need to reload the graph
representation.
0034. The disclosed teaching is further aimed at allowing
access to the system in one or more of the following manners:
configuring the graph processing unit with one or more ter
rain representations (raster maps, navmesh, etc.), search-path
queries, and terrain analysis queries, and other appropriate

Aug. 28, 2014

applications. The results are stored and accessible to the com
puter program. The graph-processing unit is Supplemented
with an embedded processor and dedicated logic for perform
ing post-processing of the path-searching and terrain analysis
queries. Accordingly the graph processing unit may be used
iteratively to process the results with the aid of additional data
memory.

0035. In an embodiment of the disclosed teaching the
embedded processor/s are used to manage and run the queries
in batch mode. Each query in the batch is decoded, executed
and answers stored in memory, the answers can be retrieved
together or separately, as may be necessary. The processor
can also change the order of queries in the batch for optimi
Zation. For example, it is possible to gather all queries for the
same map, and units of the same size, into a single query.
0036. The disclosed teaching further allows for the finding
of the T-connected region connectivity in a highly efficient
manner, by allowing the embedded processor to halt the
propagation in the propagation unit inside the graph-process
ing unit after time T, and retrieve the nodes that the signal
arrived at.

0037. An exemplary implementation of a system with an
architecture embodying the disclosed teaching is presented
herein. Such a system contains processor/s, graph-processing
unit, AI dedicated logic and peripherals (memory, interfaces,
etc.). It is to be understood that the invention is not limited in
its application to the details of construction and the arrange
ment of the components set forth in the following description
or illustrations in the drawings.
0038 Reference is now made to FIG. 1 that is an exem
plary and non-limiting description of a preferred high-level
block diagram of such a system 100. In this implementation,
access to system 100 is performed via bus interface unit 160.
Graph-processing unit 120 may be accessed directly, for
example, by a computer program via the bus interface. Alter
natively program memory 130 is uploaded with a batch of AI
queries and other directives that are processed by one or more
of plurality of processors 110 using embedded processing
programs. Data memory 140 is used for aiding processors 110
while executing the program and for storing results of differ
ent queries. Graph-processing unit 120 is connected via local
bus 170 to bus interface unit 160 and processors 110. Graph
processing unit 120 accepts requests for loading a map.
searching a path, retrieving a node status and more. These are
further explained in conjunction with FIG. 2 below.
0039. The AI dedicated logic 150 is similarly connected to
local bus 170 and performs preprocessing and post-process
ing of the AI queries, for example path-Smoothing or string
pooling queries. The specific protocol used to connect bus
interface unit 160 with its respective user may vary and
should not be considered as limiting the scope of the disclosed
teaching.
0040. In referring to FIG. 2, there is described an exem
plary and non-limiting top-level architecture of the graph
processing unit 120. Graph-processing unit 120 comprises of
at least two building blocks: control unit 210 and propagation
unit 220. Control unit 210 is responsible for accepting
requests, for example from processors 110, AI dedicated
logic 150, or through bus interface unit 160, driving propa
gation unit 22, and extracting the results. Control unit 210 is
explained in further detail in conjunction with FIG. 3 below.
Propagation unit 220 is a grid of nodes that are preferably

US 2014/0244972 A1

connected as further described in FIG. 4, or in any other
architecture, and further capable of storing a graph represen
tation.
0041. With reference to FIG.3 there is described an exem
plary and non-limiting architecture of control unit 210 of
graph-processing unit 12. Query execution control 310
receives commands from local bus 170 to run a single query.
Query execution control 310 then generates reset, through
reset signal 330, in order to clear the state of propagation unit
220, drives propagation unit 220 with the node numbers 340
from which the signal should start propagating, resets and
starts test-counter 315, and enables the signal propagation in
propagation unit 220 by asserting propagation enable signal
350.

0.042 Execution ends when either test-counter 315
reaches a predefined time T in time limited queries, or, when
the propagating signal in propagation unit 22 reaches a des
tination node indicated by destination arrival signal 360. At
that point, query execution control 310 disables signal propa
gation of propagation unit 220 by stopping to assert propaga
tion enable signal 350. Query execution control 310 then
activates read result signal 370 to result retrieve unit 320,
thereby indicating the ability to start reading the results from
the propagation unit 220.
0.043 Reference is now made to FIG. 4 where an exem
plary and non-limiting diagram of an architecture of the
propagation unit 220 of graph-processing unit 120 is shown.
Propagation unit 220 comprises of a plurality of nodes 410
forming an array of rows and columns of nodes 410. Adjacent
nodes are connected via regular edges 420, and some of the
nodes are connected via leaping edges 430. Each edge is
attributed with a programmable private cost that determines
the time it will take a signal to propagate throw it during a test.
An exemplary architecture enables the processing of standard
Real-Time-Strategy (RTS) maps. The presence of leaping
edges 430 is essential for embedding general 3D scenes
which use navmesh or waypoint graph. Before running a
batch of queries, propagation unit 220 is configured with the
representation of a map, i.e., edge costs, which are stored
inside the plurality of nodes 410.
0044. Each path-finding query begins by first resetting the
state of all the nodes 410 by asserting signal 330, followed by
selecting the nodes from which the signal will start to propa
gate. Thereafter propagation is enabled by asserting propaga
tion enable signal 350. Each node 410 contains a counter that
represents the time passed since the node was first reached,
and holds information about the neighbor node from which
the signal first arrived. This allows, once test execution is
complete, the back tracing of the shortest-path to every node
from the origins of propagation. Multiple tests of the same
terrain representation can be achieved consuming minimal
time by simply repeating the test flow once for each new test.
0045. In order to better understand the description of the
inventions disclosed herein a brief description of an array
processor as described in FIGS. 5 and 6. In FIG. 5 an exem
plary and non-limiting high-level block diagram 100, is
shown. It comprises of several elements. An array of inter
connected processor elements (PE) (1-1), described in further
details in FIG. 6. Execution control module (1-2), is a logical
state machine responsible of managing the input and output
from the array. On the way into the array it is in charge of
receiving requests from the host via the host interface (1-3)
and execution parameters memory (1-5), and activating the
array of processor elements (1-1) by driving the instruction

Aug. 28, 2014

buses (1-8) into the array from the instruction memory (1-4).
It is also in charge of receiving indications, e.g., interrupts,
through interrupts bus (1-9), terminating execution accord
ingly, and extracting results from the array back to the host via
the host interface (1-3). Host interface (1-3), enables the host
to communicate with the device, to pre-configure the instruc
tion memory (1-4), program memory (1-5), and array caches
(1-6), and to activate the execution control module (1-2). The
instruction memory (1-4) is a memory that is pre-loaded with
the instructions for the PE array that is driven via the instruc
tion buses (1-8). The execution parameters memory (1-5)
holds parameters governing the way the execution module
(1-2) runs, that is a “block state' module. The host can request
the device to perform a task described by the parameters in a
block of the execution parameters memory. When such a
request occur, the execution control module (1-2) reads the
parameters of the routine from the execution parameters
memory (1-5) and drives certain instructions from the instruc
tion memory (1-5) to the array through the instruction buses
(1-8). In preferred embodiment the execution parameters
memory contains at least the addresses of the starting instruc
tion ending instruction, and how many repetitions of the sets
should be made. The execution parameters memory (1-5) is
an addition to the hierarchy of execution, which enables
easier operation of the system, and isn't limited to this spe
cific way of execution. The cache memories (1-6) are dedi
cated to increase the bandwidth to the array. The array can be
loaded with data from the cache memories (1-6), at idle state
when no instructions are driven through the instruction buses
(1-8), or at run time. The perimeter registers (1-7) holds the
values which are driven to the perimeter processing elements
of the array at certain occasion (described in the array descrip
tion), in order to make the entire array homogeneous and
eliminate the need to drive specific instruction set to these
perimeter processors.
0046 FIG. 6 shows an exemplary and non-limiting top
level architecture 200 of the array of processor elements. It
includes the array of processor elements with emphasis on
connectivity, both between processor elements and between
the array and the logic around it. The Processor elements (PE)
(2-1) are organized in a grid. A processor element is described
in FIG. 4. Each processor element is connected to its adjacent
processor elements with an exclusive bus for each of them
(2-2). The array contains one or more buses carrying proces
sor instructions to groups of processor elements. The proces
Sor elements receiving the same instructions per clock form
execution groups. In one embodiment the entire array
receives the same instruction bus. In another embodiment
there are two execution groups interleaved (2-3.2–4), so that
floating point operations can be performed efficiently by hav
ing execution group 1 (2-4) deal with the mantissa and execu
tion group 2 (2-3) with the exponent. In order to be able to run
the same set of instructions for internal and perimeter proces
sor elements, perimeter values registers (2-5x) drive the
perimeter processor elements inputs, resembling processor
element outputs. Configuration of the array is done by writing
into the processor elements’ memory. In one embodiment the
configuration is done by configuration buses driven through
the entire array, and writing is done in a way that resembles
writing a standard memory array. In one embodiment there
are two configuration buses, upper configuration bus (2-6)
and lower configuration bus (2-7), where the upper configu
ration bus (2-6) drives, for example, the upper half of the
array, and the lower configuration bus (2-7) drives the lower

US 2014/0244972 A1

half of the array. This enables configuration bandwidth to be
doubled. This also reduces minimal path and enables increase
in configuration frequency. Extraction of results from the
array is done by reading from the processor elements. In one
embodiment the configuration buses (2-6) are also used for
reading from the processor elements generating a very wide
read bus. In another embodiment the read is done constantly
from a specific group of processor elements, and concurrently
a program is executed on the entire array, utilizing the inter
connections between the processor elements in order to trans
port results to this group of processor elements. Each PE can
output a single bit that is the interrupt bit. Transportation of
interrupts from the processor elements to the execution con
trol module (2-1) is done by a hierarchical interrupt tree.
0047. It should be noted that a graph, denoted by G, is a
mathematical object defined by two sets, namely, a set of
vertices denoted by V(G) and a set of edges denoted by E(G),
where E(G) is a set of pairs (u,v) where both u and v are in
V(G). A graph H is called a subgraph of G if V(H) is a subset
of V(G). An mind-grid G is a graph of min vertices where
V(G) is the set {(i,j): 1sism, 1sj<n}, and where E(G) is the
set {(i,j), (k.l)): 1si.ksn, 1sjlsm, li-klsd, j-llsd, iiik or
j#1}. For the scope of this disclosure, any graph isomorphic to
an mind-grid is also considered an mind-grid. Concurrent
processors, such as an array processor, may be arranged as
graphs, wherein every processing element is uniquely
mapped to a vertex in the graph, and two processing elements
may access each others internal data only if there is an edge
between their corresponding vertices in the graph. In the
present invention, concurrent processors that are arranged as
grids are considered, and are referred to as array processors.
0048. The method disclosed herein is a few step long
process, the process being performed by a device that consists
of an array processor, local memory, and a central processing
unit (CPU), as shown for example in FIGS. 5 and 6, thereby
extracting the unique performance advantages of the dis
closed teachings, in particular when a large number of bodies
is concerned, and as explained in more detail herein below.
The array processor is a concurrent processor arranged as an
nn 1-grid, where each processing element in the array pro
cessor has a local register file, thereby allowing concurrency
of the disclosed method to achieve the performance advan
tages. The CPU can access the local memory of the device,
and is able to broadcast data to rows of processing elements in
parallel. For instance, the CPU may prepare a one-dimen
sional array of n words, and broadcast them to the array
processor such that the i-th word in the array arrives at the n-th
processing elements in the i-th row of the array processor.
0049. The method for physics simulation starts with N-n
bodies whose descriptions are stored in the local memory of
the device, and further described with respect to the exem
plary and non-limiting implementation shown in FIG. 7.
Applicants note that it is difficult to show in a flowchart the
concurrent nature of execution and therefore those steps that
are performed using the concurrent processing capability of
the array processor are marked by a double-line. The descrip
tion of a body comprises of a unique identification (ID),
coordinates of its vertices and of other physical data Such as
mass, Velocity and direction, and acceleration or forces
applied to the body, etc. The CPU loads the locations of then
bodies into the array processor where each body's description
is located in the register file of a single processing element
(S710). Broad phase collision detection is then performed
(S720) by projecting each element on the X axis. S720 is

Aug. 28, 2014

performed using the parallel processing capabilities of the
system. Then, sorting (S730) of the bodies by their staring
point on the X axis, which takes O(n log n) time by Shear sort,
is performed. S730 is performed using the concurrent pro
cessing capabilities of the system. Then, every body keeps a
pointer to the ID of the next bodies in the order that intersect
it in the X axis, as long as there is enough memory. This is done
in a time period O(m), where m is the number of local regis
ters in a processing element that are available for keeping IDS
of possible colliding bodies. Similarly, sorting and intersec
tion detection is performed in they and Z axes, which is used
to dilute, for each body, the list of potential colliding bodies.
This is true since two bodies, whose respective projections on
one of the axes do not collide, cannot collide in the three
dimensional space.
0050. The next step of the method is a narrow phase col
lision detection (S740), that is performed using the parallel
processing capabilities of the system. It performs a more
accurate method, such as the Tropp-Tal-Shimshoni algo
rithm, for triangle-triangle intersection. This algorithm
checks every pair of collision candidates that survive the
broad phase collision detection as possible candidates. This
step is performed by loading in each processing element of
the array processor a pair of bodies, and applying the Tropp
Tal-Shimshoni algorithm in parallel. In one embodiment, the
loading of pairs may be done by moving a copy of every
body's data back in Sorted list one step, and performing
Tropp-Tal-Shimshonialgorithm for the pairs that survived the
broad phase collision detection. In another embodiment, all
bodies are uploaded from the array processor to the local
memory of the device, and then only pairs of bodies that
survived the broad phase collision detection are downloaded
back to the array processor, each pair in a different processing
element.
0051. The Tropp-Tal-Shimshoni algorithm, as well as
many other algorithms for triangle-triangle intersection, per
forms many inner products. In one embodiment of the present
invention, an inner product operation on floating point coor
dinates may be performed by first adjusting all mantissas
according to the exponent of the result. This may be done for
two three-dimensional vectors u and V, by taking the maxi
mum over i of exponent(u)+exponent(V). The mantissas are
then adjusted accordingly, for example, ifi is the coordinate
for which exponent(u,)+exponent(V) is maximal, and expo
nent(u,)+exponent(V)-exponent(u)-exponent(v) is 6, thenu,
and v, are each shifted right by 3. The inner product is then
performed on the mantissas as integers without the need to
normalize after every addition and every multiplication.
0.052 Finally, when collision detection is performed accu
rately, the method continues to compute for colliding pairs the
forces they are subject to (S370). S370 is performed using the
parallel processing capabilities of the system. Between any
pair of colliding Surfaces, forces orthogonal to the Surfaces
are applied. The computation of these forces is also done in
parallel, following the narrow phase collision detection. Once
this is done, the system is set for the computation of its next
state (S370).
0053. In one embodiment, the physics computations con
tinue by integration of all parameters applied to bodies. Next
state of every body in the system is computed using motion
formulae and constraints. These computations are applied to
each body separately, thus, are carried out completely in
parallel, where each body's next state is computed by a dif
ferent processing element in the array processor.

US 2014/0244972 A1

0054 With respect to the disclosed invention and without
limiting the scope of the invention, the following is disclosed:
(1) a method for embedding of N-n bodies in a concurrent
processor arranged as an inn 1-grid G such that physical
computation are performed concurrently; (2) a method
according to (1), wherein physical computations are real
world simulations; (3) a method according to (2), wherein
real world simulations are real world simulations for games;
(4) a method and apparatus for concurrent physics computa
tions; (5) a method and apparatus according to (4), wherein
physical computations are real world simulations; (6) a
method and apparatus according to (5), wherein real world
simulations are real world simulations for games; (7) a
method and apparatus according to (5) wherein real world
simulations comprise broad phase collision detection; (8) a
method and apparatus according to (7) wherein broad phase
collision detection comprises sorting according to each axis
of the three-dimensional space by means of a concurrent
two-dimensional array Sorting; (9) a method and apparatus
according to (8) wherein Sorting is Shear Sorting; (10) a
method and apparatus according to (5) wherein real world
simulations comprise narrow phase collision detection; (11) a
method and apparatus according to S10 wherein narrow
phase collision comprises triangle-triangle intersection; (12)
a method and apparatus according to (5) wherein real world
simulations comprise contact resolution; (13) a method and
apparatus according to (5) wherein real world simulations
comprise classical mechanics computations; (14) a method
and apparatus according to (13) wherein classical mechanics
computations comprise motion formulae computations; and,
(15) a method and apparatus according to S13 wherein clas
sical mechanics computations comprise Newton laws con
straints.
0055. The invention disclosed hereinabove may be imple
mented in Software, firmware, hardware, or any combination
thereof. When implemented as software or certain types of
firmware, the Software contains instructions executable on a
system, for example, a computer, that is enabled to execute
the instructions so as to perform the methods and outcomes
thereof, of the disclosed inventions. Other implementations
of the principles disclosed hereinabove are also envisioned by
those ofregular skill-in-the-art, and are specifically and inten
tionally included as part of the disclosure. Therefore, the
scope of the inventions should be only limited by the scope of
the respective claims.
What is claimed is:
1. An apparatus for physical properties computation com

pr1S1ng:
an array processor, said array processor comprised of a

plurality of processing elements, said processing ele
ments arranged in a grid;

a processing unit (PU) coupled to said array processor, and
a local memory coupled to said PU:
wherein the PU broadcasts data to rows of said processing

elements in said grid, and performs physical computa
tions in an order of complexity of O((VN) log N).

2. The apparatus of claim 1, wherein said grid is a n-by-n
1-grid.

Aug. 28, 2014

3. The apparatus of claim 1, wherein at least a processing
element of said plurality of processing elements further com
prises a local register file.

4. The apparatus of claim 1, wherein said physical compu
tations comprise real-world simulations.

5. The apparatus of claim 4, wherein said real-world simu
lations are simulations for games.

6. The apparatus of claim 4, wherein said real-world simu
lations further comprise concurrent processing of broad
phase collision detection.

7. The apparatus of claim 6, wherein said real-world simu
lation further comprise sorting in concurrent the results of
said broad phase collision detection for each axis from a
starting point.

8. The apparatus of claim 7, wherein said sorting the results
further comprises a concurrent two-dimensional array sort
1ng.

9. The apparatus of claim 8, wherein said array Sorting is a
Shear sorting.

10. The apparatus of claim 7, wherein said real-world
simulation further comprise parallel processing of narrow
phase collision detection.

11. The apparatus of claim 10, wherein said narrow phase
collision detections comprises triangle-triangle intersection.

12. A computerized method for performing physical prop
erties computation comprising:

loading processing elements of an array processor with a
description of bodies:

performing for each axes a broad phase collision detection
by using concurrent processing on said array processor,

sorting results of said broad phase collision detection for
each axis from a starting point by using concurrent pro
cessing on said array processor, and

performing a narrow phase collision detection on Sorted
results by using parallel processing on said array pro
cessor,

wherein the array processors are coupled to a processing
unit (PU) which is further coupled to a local memory and
the array processors performs the physical properties
computation in an orderofcomplexity of O((VN) logN).

13. The method of claim 12, further comprising:
determining for each colliding pair from said bodies forces

Subjected on each Such body by using parallel process
ing on said array processor; and

repeating the steps of the method if additional states are to
be determined.

14. The method of claim 12, wherein said array processor
is organized as an n-by-n 1-grid.

15. The method of claim 12, wherein said physical com
putations comprise real-world simulations.

16. The method of claim 15, wherein said real-world simu
lations are simulations for games.

17. The method of claim 12, wherein said sorting results
further comprises a concurrent two-dimensional array sort
1ng.

18. The method of claim 17, wherein said sorting is a Shear
Sorting.

19. The method of claim 12, wherein said narrow phase
collision detections comprises triangle-triangle intersection.

k k k k k

