
US 20220075660A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0075660 A1

Beare (43) Pub . Date : Mar. 10 , 2022

(54) COMPUTING RESOURCE ALLOCATION
WITH SUBGRAPH ISOMORPHISM

(71) Applicant : Megh Computing , Inc. , Hillsboro , OR
(US)

(72) Inventor : Jonathan Beare , Hillsboro , OR (US)

(21) Appl . No .: 17 / 014,925

(52) U.S. Cl .
CPC G06F 9/5044 (2013.01) ; G06F 9/30079

(2013.01) ; G06N 7/005 (2013.01) ; G06F
9/3877 (2013.01)

(57) ABSTRACT
A computing system is provided , including a processor
configured to generate a directed weighted graph indicating
a plurality of functions configured to be executed on a
plurality of communicatively connected processing devices .
For each of a plurality of pairs of the functions , the processor
may determine a shortest path between the pair of functions .
The processor may generate a second graph indicating the
plurality of pairs of functions connected by the shortest
paths . The processor may receive a pipeline directed acyclic
graph (DAG) specifying a data pipeline of a plurality of
processing stages . The processor may determine a subgraph
isomorphism between the pipeline DAG and the second
graph . The processor may convey , to one or more processing
devices of the plurality of processing devices , instructions to
execute the plurality of processing stages as specified by the
subgraph isomorphism .

a

(22) Filed : Sep. 8 , 2020

Publication Classification

(51) Int . Ci .
G06F 9/50 (2006.01)
G06F 9/38 (2006.01)
GOON 7700 (2006.01)
G06F 9/30 (2006.01)

100
102 GENERATING A FIRST COMPUTING RESOURCE GRAPH , WHEREIN THE FIRST

COMPUTING RESOURCE GRAPH IS A DIRECTED WEIGHTED GRAPH
INDICATING A PLURALITY OF FUNCTIONS CONFIGURED TO BE EXECUTED ON
A PLURALITY OF COMMUNICATIVELY CONNECTED PROCESSING DEVICES

104
FOR A PLURALITY OF PAIRS OF THE FUNCTIONS INDICATED IN THE FIRST
COMPUTING RESOURCE GRAPH , WHEREIN EACH PAIR INCLUDES A FIRST
FUNCTION WITH A FIRST OUTPUT TYPE AND A SECOND FUNCTION WITH A

SECOND INPUT TYPE THAT MATCHES THE FIRST OUTPUT TYPE ,
DETERMINING A SHORTEST PATH INCLUDING ONE OR MORE FIRST - GRAPH
EDGES ON THE FIRST COMPUTING RESOURCE GRAPH BETWEEN THE FIRST

FUNCTION AND THE SECOND FUNCTION
102A

TRANSMITTING A RESPECTIVE PLURALITY OF DEVICE ENUMERATION
REQUEST PACKETS TO THE PLURALITY OF PROCESSING DEVICES

106 GENERATING A SECOND COMPUTING RESOURCE GRAPH INDICATING THE
PLURALITY OF PAIRS OF FUNCTIONS CONNECTED BY A PLURALITY OF
SECOND - GRAPH EDGES , WHEREIN EACH SECOND - GRAPH EDGE IS THE
SHORTEST PATH FOR THE PAIR OF FUNCTIONS CONNECTED BY THAT

SECOND - GRAPH EDGE
102B RECEIVING A RESPECTIVE PLURALITY OF DEVICE ENUMERATION RESPONSE

PACKETS FROM THE PLURALITY OF PROCESSING DEVICES , WHEREIN THE
PLURALITY OF ENUMERATION RESPONSE PACKETS INDICATE THE PLURALITY

OF FUNCTIONS CONFIGURED TO BE EXECUTED AT THE PLURALITY OF
PROCESSING DEVICES 108 RECEIVING A PIPELINE DIRECTED ACYCLIC GRAPH (DAG) SPECIFYING A DATA

PIPELINE OF A PLURALITY OF PROCESSING STAGES CONFIGURED TO BE
EXECUTED WITH CORRESPONDING FUNCTIONS OF THE PLURALITY OF

FUNCTIONS

110

DETERMINING A SUBGRAPH ISOMORPHISM BETWEEN THE PIPELINE DAG AND
THE SECOND COMPUTING RESOURCE GRAPH

112 CONVEYING , TO ONE OR MORE PROCESSING DEVICES OF THE PLURALITY OF
PROCESSING DEVICES , INSTRUCTIONS TO EXECUTE THE PLURALITY OF

PROCESSING STAGES WITH THE PLURALITY OF FUNCTIONS AS SPECIFIED BY
THE SUBGRAPH ISOMORPHISM

Patent Application Publication Mar. 10 , 2022 Sheet 1 of 10 US 2022/0075660 A1

COMPUTING SYSTEM 10 MEMORY 14

PAIR 40 FIRST COMPUTING RESOURCE
GRAPH 30

FIRST FUNCTION 32A
FUNCTION 32

FIRST INPUT TYPE 42A
FIRST OUTPUT TYPE 44A AVAILABLE CAPACITY

INDICATOR 38
SECOND FUNCTION 32B

FIRST - GRAPH EDGE 34

FIRST - GRAPH EDGE
WEIGHT 36

SECOND INPUT TYPE 42B
SECOND OUTPUT TYPE 44B

PROCESSING DEVICE 22
HOST COMPUTING DEVICE 20

NETWORK 80
SECOND COMPUTING RESOURCE

GRAPH 50

FUNCTION 32

SHORTEST PATH 86 SECOND - GRAPH EDGE 54

PIPELINE DAG 60
SECOND - GRAPH EDGE

WEIGHT 56

PROCESSING STAGE 62

PROCESSING STAGE
INPUT TYPE 64 SUBGRAPH ISOMORPHISM 70

FUNCTION 32 PROCESSING STAGE
OUTPUT TYPE 66

THIRD - GRAPH EDGE 74

QOS CRITERION 68 THIRD - GRAPH EDGE
WEIGHT 76

PROCESSOR 12

HOST COMPUTING DEVICE 20
INSTRUCTION 88 NETWORK 80 PROCESSING DEVICE 22

HOST PROCESSOR 24
HOST MEMORY 26 RESULT 99

FIG . 1

Patent Application Publication Mar. 10 , 2022 Sheet 2 of 10 US 2022/0075660 A1

COMPUTING SYSTEM 10 MEMORY 14

FIRST COMPUTING RESOURCE
GRAPH 30

FUNCTION 32

AVAILABLE CAPACITY
INDICATOR 38

FIRST - GRAPH EDGE 34

FIRST - GRAPH EDGE
WEIGHT 36

PROCESSING DEVICE 22

HOST COMPUTING DEVICE 20
... ...

NETWORK 80

PROCESSOR 12

DEVICE ENUMERATION
REQUEST PACKET 82

DEVICE ENUMERATION
RESPONSE PACKET 84

FUNCTION 32

NETWORK 80

HOST COMPUTING DEVICE 20

FIG . 2 PROCESSING DEVICE 22
HOST PROCESSOR 24
HOST MEMORY 26

30

F5

= Weight = 2

Patent Application Publication

Weight = 1

H3

A4

Weight = 0

F6

H1

||

N1

|

H2

34

Mar. 10 , 2022 Sheet 3 of 10

A1

N2

A2 -

? A

F1

F2 .

FIG . 3A

US 2022/0075660 A1

Patent Application Publication

50

54

F1

Weight = 6 Weight = 2 Weight = 0

?

FZ

F2

Mar. 10 , 2022 Sheet 4 of 10

F6

F3

FIG . 3B

F5

F4

US 2022/0075660 A1

PIPELINE DAG 60

Patent Application Publication

PROCESSING STAGE 62B

1

INPUT SOURCE 61
PROCESSING STAGE 62A

QUALITY - OF

I

SERVICE
I

i CRITERION 68B

PROCESSING STAGE 62D

PROCESSING STAGE 62N

OUTPUT RECIPIENT 63

QUALITY - OF SERVICE CRITERION 68A

PROCESSING STAGE 62C

QUALITY - OF SERVICE CRITERION 68D

QUALITY - OF
1 SERVICE 1 CRITERION 68N

1

1

Mar. 10 , 2022 Sheet 5 of 10

I |

QUALITY - OF SERVICE CRITERION 68C
1

FIG . 4

US 2022/0075660 A1

Patent Application Publication Mar. 10 , 2022 Sheet 6 of 10 US 2022/0075660 A1

COMPUTING SYSTEM 10 ... MEMORY 14

PROGRAM 90 DAG INPUT TOOL 90A

DAG API 92

RESOURCE MANAGER 94A

PIPELINE DAG 60

FIRST COMPUTING
RESOURCE GRAPH 30

SECOND COMPUTING
RESOURCE GRAPH 50

SUBGRAPH
ISOMORPHISM 70

INSTRUCTION 88

ROUTER 94B

DAG RUNTIME ENVIRONMENT 94

HARDWARE ABSTRACTION LAYER 96

PROCESSOR 12 RESULT 99

NETWORK 80

HOST COMPUTING DEVICE 20

FIG . 5 PROCESSING DEVICE 22
HOST PROCESSOR 24
HOST MEMORY 26

Patent Application Publication Mar. 10 , 2022 Sheet 7 of 10 US 2022/0075660 A1

91

s o -] X
FILE EDIT INSERT TESTS VIEW HELP

PIPELINE ELEMENTS
INPUT SOURCE INPUT SOURCE

INPUT SOURCE
CPU STAGE

OUTPUT RECIPIENT

GPU STAGE GPU STAGE
CPU STAGE

GPU STAGE FPGA STAGE

ASIC STAGE
OUTPUT RECIPIENT

FPGA STAGE

TEST RESULTS
IMPORT 75

50 100 200

EXPORT

25 100 125
TEST

0 716
FPS

150 13 ms
0

PERFORMANCE END - TO - END LATENCY

FIG . 6

Patent Application Publication Mar. 10 , 2022 Sheet 8 of 10 US 2022/0075660 A1

100
102 GENERATING A FIRST COMPUTING RESOURCE GRAPH , WHEREIN THE FIRST

COMPUTING RESOURCE GRAPH IS A DIRECTED WEIGHTED GRAPH
INDICATING A PLURALITY OF FUNCTIONS CONFIGURED TO BE EXECUTED ON
A PLURALITY OF COMMUNICATIVELY CONNECTED PROCESSING DEVICES

104
FOR A PLURALITY OF PAIRS OF THE FUNCTIONS INDICATED IN THE FIRST
COMPUTING RESOURCE GRAPH , WHEREIN EACH PAIR INCLUDES A FIRST
FUNCTION WITH A FIRST OUTPUT TYPE AND A SECOND FUNCTION WITH A

SECOND INPUT TYPE THAT MATCHES THE FIRST OUTPUT TYPE ,
DETERMINING A SHORTEST PATH INCLUDING ONE OR MORE FIRST - GRAPH
EDGES ON THE FIRST COMPUTING RESOURCE GRAPH BETWEEN THE FIRST

FUNCTION AND THE SECOND FUNCTION

106 GENERATING A SECOND COMPUTING RESOURCE GRAPH INDICATING THE
PLURALITY OF PAIRS OF FUNCTIONS CONNECTED BY A PLURALITY OF
SECOND - GRAPH EDGES , WHEREIN EACH SECOND - GRAPH EDGE IS THE
SHORTEST PATH FOR THE PAIR OF FUNCTIONS CONNECTED BY THAT

SECOND - GRAPH EDGE

108 RECEIVING A PIPELINE DIRECTED ACYCLIC GRAPH (DAG) SPECIFYING A DATA
PIPELINE OF A PLURALITY OF PROCESSING STAGES CONFIGURED TO BE
EXECUTED WITH CORRESPONDING FUNCTIONS OF THE PLURALITY OF

FUNCTIONS

110

DETERMINING A SUBGRAPH ISOMORPHISM BETWEEN THE PIPELINE DAG AND
THE SECOND COMPUTING RESOURCE GRAPH

112 CONVEYING , TO ONE OR MORE PROCESSING DEVICES OF THE PLURALITY OF
PROCESSING DEVICES , INSTRUCTIONS TO EXECUTE THE PLURALITY OF

PROCESSING STAGES WITH THE PLURALITY OF FUNCTIONS AS SPECIFIED BY
THE SUBGRAPH ISOMORPHISM

FIG . 7A

Patent Application Publication Mar. 10 , 2022 Sheet 9 of 10 US 2022/0075660 A1

102A

TRANSMITTING A RESPECTIVE PLURALITY OF DEVICE ENUMERATION
REQUEST PACKETS TO THE PLURALITY OF PROCESSING DEVICES

RECEIVING A RESPECTIVE PLURALITY OF DEVICE ENUMERATION RESPONSE 102B
PACKETS FROM THE PLURALITY OF PROCESSING DEVICES , WHEREIN THE

PLURALITY OF ENUMERATION RESPONSE PACKETS INDICATE THE PLURALITY
OF FUNCTIONS CONFIGURED TO BE EXECUTED AT THE PLURALITY OF

PROCESSING DEVICES

FIG . 7B

FOR EACH PAIR OF THE PLURALITY OF PAIRS OF FUNCTIONS , DETERMINING
THAT RESPECTIVE AVAILABLE CAPACITY INDICATORS FOR THE FIRST
FUNCTION AND THE SECOND FUNCTION INDICATE THAT THE FIRST

FUNCTION AND THE SECOND FUNCTION BOTH HAVE AVAILABLE PROCESSING
CAPACITY

114

FOR EACH FUNCTION INCLUDED IN THE PLURALITY OF PAIRS OF
FUNCTIONS , DETERMINING THAT THAT FUNCTION HAS AVAILABLE

PROCESSING CAPACITY WHEN THE PROCESSING CAPACITY INDICATOR
FOR THAT FUNCTION SATISFIES A QUALITY - OF - SERVICE CRITERION FOR
THE PROCESSING STAGE CONFIGURED TO BE EXECUTED WITH THAT

FUNCTION
116

118
UPDATING THE RESPECTIVE AVAILABLE CAPACITY INDICATORS OF THE
PLURALITY OF FUNCTIONS SPECIFIED BY THE SUBGRAPH ISOMORPHISM

FIG . 7C

Patent Application Publication Mar. 10 , 2022 Sheet 10 of 10 US 2022/0075660 A1

COMPUTING SYSTEM 200

LOGIC PROCESSOR 202

VOLATILE MEMORY 204

NON - VOLATILE STORAGE DEVICE 206

DISPLAY SUBSYSTEM 208

INPUT SUBSYSTEM 210

COMMUNICATION SUBSYSTEM 212

FIG . 8

US 2022/0075660 A1 Mar. 10 , 2022
1

COMPUTING RESOURCE ALLOCATION
WITH SUBGRAPH ISOMORPHISM

BACKGROUND
[0001] In applications such as machine learning and video
processing , hardware accelerators designed to perform spe
cialized computing tasks are frequently used . These hard
ware accelerators are often distributed between multiple
physical computing devices . When users run code that uses
hardware accelerators , data may be transmitted between the
computing devices through an inefficient path . Thus , pro
cessing the code may be more time - consuming and expen
sive than would be desirable .

[0006] FIG . 3A shows an example of a first computing
resource graph , according to the embodiment of FIG . 1 .
[0007] FIG . 3B shows an example of a second computing
resource graph generated from the first computing resource
graph of FIG . 3A .
[0008] FIG . 4 shows an example pipeline directed acyclic
graph (DAG) , according to the embodiment of FIG . 1 .
[0009] FIG . 5 shows the computing system and the host
computing device when the processor of the computing
system executes a DAG runtime environment , according to
the embodiment of FIG . 1 .
[0010] FIG . 6 shows an example graphical user interface
(GUI) of a DAG input tool , according to the embodiment of
FIG . 1 .
[0011] FIG . 7A shows a flowchart of an example method
for use with a computing system , according to the embodi
ment of FIG . 1 .
[0012] FIG . 7B shows additional steps of the method of
FIG . 7A that may be performed when generating the first
computing resource graph .
[0013] FIG . 7C shows additional steps of the method of
FIG . 7A that may be performed when the plurality of
functions included in the first computing resource graph
have respective available capacity indicators .
[0014] FIG . 8 shows a schematic view of an example
computing environment in which the computing system of
FIG . 1 may be enacted .

a SUMMARY

a a

DETAILED DESCRIPTION

[0002] According to one aspect of the present disclosure ,
a computing system is provided , including a processor
configured to generate a first computing resource graph . The
first computing resource graph may be a directed weighted
graph indicating a plurality of functions configured to be
executed on a plurality of communicatively connected pro
cessing devices . For a plurality of pairs of the functions
indicated in the first computing resource graph , wherein
each pair includes a first function with a first output type and
a second function with a second input type that matches the
first output type , the processor may be further configured to
determine a shortest path including one or more first - graph
edges on the first computing resource graph between the first
function and the second function . The processor may be
further configured to generate a second computing resource
graph indicating the plurality of pairs of functions connected
by a plurality of second - graph edges . Each second - graph
edge may be the shortest path for the pair of functions
connected by that second - graph edge . The processor may be
further configured to receive a pipeline directed acyclic
graph (DAG) specifying a data pipeline of a plurality of
processing stages configured to be executed with corre
sponding functions of the plurality of functions . The pro
cessor may be further configured to determine a subgraph
isomorphism between the pipeline DAG and the second
computing resource graph . The processor may be further
configured to convey , to one or more processing devices of
the plurality of processing devices , instructions to execute
the plurality of processing stages with the plurality of
functions as specified by the subgraph isomorphism .
[0003] This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description . This Summary is not
intended to identify key features or essential features of the
claimed subject matter , nor is it intended to be used to limit
the scope of the claimed subject matter . Furthermore , the
claimed subject matter is not limited to implementations that
solve any or all disadvantages noted in any part of this
disclosure .

a

[0015] In order to address the issues discussed above , a
computing system 10 is provided , as schematically shown in
the example of FIG . 1. The computing system 10 may
include a processor 12 and memory 14 , each of which may
take the form of one or more physical components of the
computing system 10. The functionality of the processor 12
and the memory 14 may , in some examples , be divided
between a plurality of physical computing devices that are
configured to communicate with each other to form the
computing system 10. In addition , the computing system 10
may be configured communicate with one or more host
computing devices 20 , which may , for example , include one
or more server computing devices located in a data center .
The computing system 10 may communicate with the one or
more host computing devices 20 over a network 80 , which
may be a local- or wide - area network . For example , the
computing system 10 may be physically connected to a host
computing device 20 by an Ethernet connection .
[0016] Each host computing device 20 may include a host
processor 24 and host memory 26. In addition , the host
computing device 20 may include one or more processing
devices 22. The one or more processing devices 22 may
include one or more specialized hardware accelerators such
as a graphical processing unit (GPU) , an application - specific
integrated circuit (ASIC) , or a field - programmable gate
array (FPGA) . Additionally or alternatively , the one or more
processing devices 22 may include at least one general
purpose central processing unit (CPU) . The plurality of
processing devices 22 may be used to instantiate a data
pipeline that includes a plurality of processing stages , as
discussed in further detail below .
[0017] The processor 12 of the computing system 10 may
be configured to generate a first computing resource graph
30. The first computing resource graph 30 may indicate a
plurality of functions 32 configured to be executed on the

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG . 1 schematically shows a computing system
and a host computing device , according to one example
embodiment .
[0005] FIG . 2 schematically shows the computing system
and the host computing system when the processor of the
computing system generates a first computing resource
graph , according to the embodiment of FIG . 1 .

US 2022/0075660 A1 Mar. 10 , 2022
2

a

plurality of communicatively connected processing devices
22. The first computing resource graph 30 may be a directed
weighted graph including a plurality of first - graph edges 34
that have respective first - graph edge weights 36. In addition
to the plurality of functions 32 , the first computing resource
graph 30 may further indicate one or more physical devices
that are directly or indirectly connected to the plurality of
functions 32 by the plurality of first - graph edges 34. Each
physical device of the one or more physical devices may be
a network 80 , a host computing device 20 , or a processing
device 22 of the one or more processing devices 22. Thus ,
the first computing resource graph 30 may include both the
plurality of functions 32 and the physical devices on which
the functions 32 may be executed .
[0018] The processor 12 may be configured to generate the
first computing resource graph 30 at least in part by trans
mitting a respective plurality of device enumeration request
packets 82 to the plurality of processing devices 22 , as
shown in the example of FIG . 2. Subsequently to transmit
ting the device enumeration request packets 82 , generating
the first computing resource graph 30 may further include
receiving a respective plurality of device enumeration
response packets 84 from the plurality of processing devices
22. The plurality of enumeration response packets 84 may
indicate the plurality of functions 32 configured to be
executed at the plurality of processing devices 22. The
plurality of device enumeration response packets 84 may
further indicate the plurality of physical devices connected
to the plurality of functions 32. The plurality of device
enumeration response packets 84 may additionally or alter
natively indicate , for one or more of the processing devices
22 , a topology of the one or more functions 32 configured to
be executed on that processing device 22. Thus , the proces
sor 12 of the computing system 10 may be configured to
receive information about the layout of the functions 32 and
the physical devices from which the processor 12 may be
further configured to generate the first computing resource
graph 30 .
[0019] When the processor 12 generates the first comput
ing resource graph 30 , the processor 12 may be further
configured to assign the first - graph edge weights 36 to the
first - graph edges 34 based at least in part on , for each
endpoint of each first - graph edge 34 , whether that endpoint
is a function 32 , a processing device 22 , a host computing
device 20 , or a network 80. The first - graph edge weights 36
may , for example , be assigned to the first - graph edges 34
according to a predetermined mapping of a first endpoint
type and a second endpoint type to a first - graph edge weight
36. Each first - graph edge weight 36 may be an estimate of
a latency associated with traversing the connection that edge
represents when instantiating a data pipeline .
[0020] FIG . 3A shows an example first computing
resource graph 30. The first computing resource graph 30 of
FIG . 3A includes two networks N1 and N2 ; three host
computing devices H1 , H2 , and H3 ; five hardware accel
erators A1 , A2 , A3 , A4 , and A5 ; and seven functions F1 , F2 ,
F3 , F4 , F5 , F6 , and F7 . In the example of FIG . 3A , the
computing system 10 may be one of the host computing
devices H1 , H2 , or H3 . The hardware accelerators A1 , A2 ,
A3 , A4 , and A5 may be the plurality of processing devices
22. In the example of FIG . 3A , the first computing resource
graph 30 is weighted such that first - graph edges 34 between
host computing devices and hardware accelerators have
weights of 2 , first - graph edges 34 between host computing

devices and networks have weights of 1 , and other first
graph edges 34 have weights of 0 .
[0021] Returning to FIG . 1 , the processor 12 may be
further configured to determine a plurality of shortest paths
86 between a respective plurality of pairs 40 of the functions
32 indicated in the first computing resource graph 30. As
shown in FIG . 1 , each pair 40 may include a first function
32A and a second function 32B . The first function 32A may
have a first input type 42A and a first output type 44A , and
the second function 32B may have a second input type 42B
and a second output type 44B . The processor 12 may be
configured to determine the shortest path between the first
function 32A and the second function 32B when the second
input type 42B of the second function 32B matches the first
output type 44A of the first function 32A . Thus , an output of
the first function 32A may be usable as an input for the
second function 32B . The shortest path 86 may be a
weighted shortest path that has a lowest total edge weight
among paths on the first computing resource graph 30 from
the first function 32A to the second function 32B . When the
processor 12 determines the shortest path 86 between the
first function 32A and the second function 32B , the proces
sor 12 may use a shortest - path algorithm such as Dijkstra's
algorithm , the Bellman - Ford algorithm , topological sorting ,
the Floyd - Warshall algorithm , Johnson’s algorithm , or some
other shortest path algorithm .
[0022] The first computing resource graph 30 may include
a respective plurality of available capacity indicators 38 for
the plurality of functions 32. Each available capacity indi
cator 38 may , for example , be an indicator of whether that
function 32 is currently in use as part of another data
pipeline . In some examples , the available capacity indicator
38 for a function 32 may indicate a level of throughput
available for that function 32. The processor 12 may be
configured to use the available capacity indicators 38 of the
plurality of functions 32 when determining the shortest paths
86. For each pair 40 of the plurality of pairs 40 of functions
32 , the processor 12 may be configured to determine the
shortest path 86 between the first function 32A and the
second function 32B of the pair 40 subsequently to deter
mining that respective available capacity indicators 38 for
the first function 32A and the second function 32B indicate
that the first function 32A and the second function 32B both
have available processing capacity . The processor 12 may be
further configured to select the shortest path 86 between the
first function 32A and the second function 32B such that the
shortest path 86 does not pass through any function 32 with
an available capacity indicator 38 that marks that function
32 as unavailable . For example , the processor 12 may be
onfigured to assign an infinite first - graph edge weight 36 to

any first - graph edge 34 that points to an unavailable function
32. Thus , the processor 12 may be configured to exclude
unavailable functions 32 from shortest path computations .
[0023] The processor 12 may be further configured to
generate a second computing resource graph 50 indicating
the plurality of pairs 40 of functions 32 connected by a
plurality of second - graph edges 54. Each second - graph edge
54 may be the shortest path 86 for the pair 40 of functions
32A and 32B connected by that second - graph edge 54. Thus ,
the second computing resource graph 50 may be a graph of
the shortest paths 86 between all the pairs 40 of functions
32A and 32B that have compatible input types and output
types . For each pair 40 of functions 32A and 32B connected
by a respective second - graph edge 54 as indicated in the

a

US 2022/0075660 A1 Mar. 10 , 2022
3

2

second computing resource graph 50 , the second - graph edge
54 may have a second - graph edge weight 56 equal to a total
first - graph edge weight of the shortest path 86 for the pair 40
as indicated in the first computing resource graph 30. The
processor 12 may be configured to sum the one or more
first - graph edge weights 36 included in the shortest path 86
between the first function 32A and the second function 32B
to obtain the second - graph edge weight 56 for the second
graph edge 54 between the first function 32A and the second
function 32B .
[0024] FIG . 3B shows an example second computing
resource graph 50 generated from the first computing
resource graph 30 of FIG . 3A . In the example of FIG . 3B ,
each of the functions F1 , F2 , F3 , F4 , F5 , and F6 has a
respective output type that matches the input type of each of
the functions F1 , F2 , F3 , F4 , F5 , F6 , and F7 . In contrast , F7
has a different output type that does not match the respective
input types of F1 , F2 , F3 , F4 , F5 , and F6 . Each second - graph
edge 54 shown in FIG . 3B has a second - graph edge weight
56 equal to the total first - graph edge weight of the shortest
path 86 between the functions connected by that second
graph edge 54. In the example of FIG . 3B , each second
graph edge weight 56 is equal to 0 , 2 , or 6 .
[0025] Returning to FIG . 1 , the processor 12 may be
further configured to receive a pipeline directed acyclic
graph (DAG) 60 specifying a data pipeline of a plurality of
processing stages 62 configured to be executed with corre
sponding functions 32 of the plurality of functions 32. The
processing stages 62 may each include one or more code
instructions . Each processing stage 62 of the plurality of
processing stages 62 may have a respective processing stage
input type 64 and a respective processing stage output type
66 , which may be specified in the pipeline DAG 60. An
example pipeline DAG 60 is shown in FIG . 4. The example
pipeline DAG 60 of FIG . 4 specifies an input source 61 and
an output recipient 63 of the data pipeline , each of which
may be the computing system 10 or some other computing
device . The pipeline DAG 60 further includes a plurality of
processing stages 62A , 62B , 62C , 62D , . 62N between
the input source 61 and the output recipient 63. As shown in
FIG . 4 , the pipeline DAG 60 may include one or more
branches . In some examples , the pipeline DAG 60 may
specify a plurality of input sources 61 and / or a plurality of
output recipients 63 .
[0026] The pipeline DAG 60 may further specify a qual
ity - of - service (QoS) criterion 68 for each processing stage
62 of the plurality of processing stages 62. In the example
of FIG . 4 , the processing stages 62A , 62B , 620 , 62D , .
62N have respective QoS criteria 68A , 68B , 68C , 68D , .
68N . The QoS criterion 68 for a processing stage 62 may ,
for example , indicate a minimum throughput or a maximum
latency for that processing stage 62. The processor 12 may
be further configured to use the QoS criteria 68 of the
processing stages 62 when determining whether the func
tions 32 included in the first computing resource graph 30
have available processing capacity . For each function 32
included in the plurality of pairs 40 of functions 32 , the
processor 12 may be further configured to determine that
that function 32 has available processing capacity when the
processing capacity indication 38 for that function 32 sat
isfies the quality - of - service criterion 68 for the processing
stage 62 configured to be executed with that function 32 .
[0027] As shown in FIG . 1 , the processor 12 may be
further configured to determine a subgraph isomorphism 70

between the pipeline DAG 60 and the second computing
resource graph 50. The subgraph isomorphism 70 may be a
portion of the second computing resource graph 50 that is
topologically isomorphic to the pipeline DAG 60. Accord
ingly , the subgraph isomorphism 70 may include a plurality
of third - graph edges 74 with a respective plurality of third
graph edge weights 76 that are equal to the second - graph
edge weights 56 of the corresponding second - graph edges
54 of the second computing resource graph 50. The sub
graph isomorphism 70 may be determined using a subgraph
isomorphism algorithm such as Ullman's algorithm , VF2 ,
QuickS1 , GraphQL , GADDI , SPath , or some other subgraph
isomorphism algorithm .
[0028] In some examples , the subgraph isomorphism 70
may be one of a plurality of subgraph isomorphisms 70
between the pipeline DAG 60 and the second computing
resource graph 50. In such examples , the subgraph isomor
phism 70 selected by the processor 12 may be a subgraph
isomorphism 70 with a lowest total second - graph edge
weight among the plurality of subgraph isomorphisms 70 .
The total second - graph edge weight for a subgraph isomor
phism 70 may be a sum of the second - graph edge weights 56
of the plurality of second - graph edges 54 included in the
second computing resource graph 50. Thus , in examples in
which the second - graph edge weights 56 are latency esti
mates , the subgraph isomorphism 70 with the lowest total
second - graph edge weight may be the subgraph isomor
phism 70 with the lowest estimated latency among the
plurality of subgraph isomorphisms 70 .
[0029] The processor 12 may be further configured to
convey , to one or more processing devices 22 of the plurality
of processing devices 22 , instructions 88 to execute the
plurality of processing stages 62 with the plurality of func
tions 32 as specified by the subgraph isomorphism 70. These
instructions 88 may be conveyed to the one or more host
computing devices 20 over the network 80. The instructions
88 may , for example , take the form of a plurality of input
packets that include routing information and payload infor
mation . In this example , when the one or more processing
devices 22 receive the plurality of input packets , the one or
more processing devices 22 may be configured to implement
the plurality of functions 32 specified in the processing
stages 62 of the pipeline DAG 60. It will be appreciated that
following completion of the host computing device 20
processing of the instruction 88 , the host computing device
20 may be configured to transmit a result 99 to the com
puting system 10 , which may be an acknowledgment of
completion of processing , analytic data associated with the
processing , or a substantive result of the processing such as
a processed image , etc.
[0030] In examples in which each processing stage 62 has
a respective processing stage input type 64 and a respective
processing stage output type 66 specified in the pipeline
DAG 60 , the processor 12 may be configured to output the
instructions 88 such that , for each processing stage 62 , the
instructions 88 to execute that processing stage 62 are
conveyed to a processing device 22 of the plurality of
processing devices 22 that is configured to execute a corre
sponding function 32 with the processing stage input type 64
and the processing stage output type 66 of the processing
stage 62. Accordingly , each instruction 88 to execute a
processing stage 62 may be transmitted to a processing
device 22 that is compatible with the function 32 indicated
by that processing stage 62 .

a

US 2022/0075660 A1 Mar. 10 , 2022
4

a

a

[0031] In examples in which the first computing resource
graph 30 includes respective available capacity indicators 38
for the plurality of functions 32 , the processor 12 may be
further configured to update the respective available capac
ity indicators 38 of the one or more functions 32 specified by
the subgraph isomorphism 70. The available capacity indi
cators 38 may be updated to account for the use of process
ing capacity to instantiate the data pipeline specified in the
pipeline DAG 60. The processor 12 may , for example , be
configured to update the available capacity indicators 38
subsequently to conveying the instructions 88 to execute the
plurality of processing stages 62 to the plurality of process
ing devices 22. Alternatively , the processor 12 may be
configured to update the available capacity indicators 38
after generating the subgraph isomorphism 70 but prior to
conveying the instructions 88 .
[0032] FIG . 5 shows the computing system 10 of FIG . 1
when the processor 12 is configured to execute a DAG
runtime environment 94. The DAG runtime environment 94
may , for example , include a resource manager 94A at which
the processor 12 is configured to generate the first comput
ing resource graph 30 , the second computing resource graph
50 , and the subgraph isomorphism 70. The DAG runtime
environment 94 may further include a router 94B configured
to package the instructions 88 into packets with respective
headers indicating the physical devices and functions 32 to
which the instructions 88 are configured to be transmitted .
The router 94B may , for example , include a routing table
that indicates a respective address for each physical device
and each function 32 included in the first computing
resource graph 30 .
[0033] At a program 90 , a user such as a developer or
administrator may utilize a DAG input tool 90A to author a
DAG for consumption by a DAG application program
interface (API) 92. According to one example , the DAG
input tool 90A may include a graphical user interface (GUI)
91 at which a graphical representation of the pipeline DAG
60 may be displayed . FIG . 6 shows an example GUI 91 for
the DAG input tool 90A . At the GUI 91 , the user may add ,
remove , and edit the one or more input sources 61 , process
ing stages 62 , and output recipients 63 of the pipeline DAG
60. The GUI 91 may further include an option to import a
pipeline DAG 60 into the DAG input tool 90A . For example ,
the pipeline DAG 60 may be imported from a file system
location at which the pipeline DAG 60 is locally or remotely
stored . In addition , at the GUI 91 , the user may export the
pipeline DAG 60 to a file as a serialized data structure . This
serialized data structure may be taken as input by the DAG
API 92. The GUI 91 may further include an option to test the
performance of the pipeline DAG 60 and view test results .
In the example of FIG . 6 , the test results include a number
of frames of video processed per second . In addition , the test
results include an end - to - end latency of the DAG pipeline
60 .

[0034] At the DAG runtime environment 94 , the processor
12 may be configured to receive the pipeline DAG 60 from
the program 90 via the DAG API 92. The program 90 may ,
for example , be a software development kit (SDK) at which
a user may define the pipeline DAG 60. The DAG API 92
may be configured to convert the pipeline DAG 60 defined
at the program 90 into a form that is usable by the resource

2

88 to execute the plurality of processing stages 62 from the
DAG runtime environment 94 to the plurality of processing
devices 22 via a hardware abstraction layer 96. The hard
ware abstraction layer 96 may be executed by the processor
12 in examples in which the plurality of processing devices
22 may have a respective plurality of device libraries that
specify the functions 32 that may be executed on the
processing devices 22. The hardware abstraction layer 96
may be configured to multiplex the device libraries of the
processing devices 22 such that the DAG runtime environ
ment 94 may communicate with the processing devices 22
over a uniform interface . Following completion of process
ing , the result 99 may be communicated from the host
computing device 20 to the computing system 10 , by passing
the result 99 through the hardware abstraction layer 96 ,
router 94B , resource manager 94A , and DAG API 92 , to the
program 90. The result may take one of the forms described
above , such as an acknowledgement of completion of pro
cessing , analytic data related to the processing , or a sub
stantive result of the processing . An error code may also be
returned as a result in case processing could not be com
pleted for some reason at the host computing device 20 .
[0036] FIG . 7A shows a flowchart of an example method
100 for use with a computing system . The method 100
shown in FIG . 7A may be used with the computing system
10 of FIG . 1 or with some other computing system . At step
102 , the method 100 may include generating a first com
puting resource graph . The first computing resource graph
may be a directed weighted graph indicating a plurality of
functions configured to be executed on a plurality of com
municatively connected processing devices . For example ,
each processing device may be a central processing unit
(CPU) , a graphical processing unit (GPU) , an application
specific integrated circuit (ASIC) , or a field - programmable
gate array (FPGA) . In addition , the first computing resource
graph may further indicate one or more physical devices that
are directly or indirectly connected to the plurality of
functions by the plurality of first - graph edges . Each physical
device of the one or more physical devices may be a
network , a host computing device , or a processing device of
the one or more processing devices .
[0037] FIG . 7B shows additional steps that may be per
formed in some examples when the first computing resource
graph is generated . At step 102A , the method 100 may
further include transmitting a respective plurality of device
enumeration request packets to the plurality of processing
devices . At step 102B , the method 100 may further include
receiving a respective plurality of device enumeration
response packets from the plurality of processing devices .
The plurality of enumeration response packets may indicate
the plurality of functions configured to be executed at the
plurality of processing devices . In addition , the plurality of
enumeration response packets may indicate the plurality of
physical devices included in the first computing resource
graph . The first computing resource graph may then be
constructed based on enumeration data included in the
plurality of enumeration response packets .
[0038] Returning to FIG . 7A , the method 100 may further
include , at step 104 , determining a plurality of shortest paths
for a plurality of pairs of the functions indicated in the first
computing resource graph . Each pair may include a first
function with a first output type and a second function with
a second input type that matches the first output type . The
shortest path may include one or more first - graph edges on

a

manager 94A . a

[0035] After the instructions 88 are generated , the proces
sor 12 may be further configured to convey the instructions

US 2022/0075660 A1 Mar. 10 , 2022
5

a

the first computing resource graph between the first function
and the second function . The shortest path may be a
weighted shortest path with a total first - graph edge weight
equal to a sum of the plurality of first - graph edge weights of
the first - graph edges included in the shortest path .
[0039] At step 106 , the method 100 may further include
generating a second computing resource graph indicating the
plurality of pairs of functions connected by a plurality of
second - graph edges . Each second - graph edge may be the
shortest path for the pair of functions connected by that
second - graph edge . In addition , for each pair of functions
connected by a respective second - graph edge as indicated in
the second computing resource graph , the second - graph
edge may have a second - graph edge weight equal to a total
first - graph edge weight of the shortest path for the pair as
indicated in the first computing resource graph . When a first
function has a first output type that is incompatible with a
second input type of the second function , the second com
puting resource graph may lack a second - graph edge point
ing from the first function to the second function .
[0040] At step 108 , the method 100 may further include
receiving a pipeline DAG specifying a data pipeline of a
plurality of processing stages configured to be executed with
corresponding functions of the plurality of functions . In
some examples , the pipeline DAG may be received at a
runtime environment from a program via a DAG API . Each
processing stage of the plurality of processing stages may
have a respective processing stage input type and a respec
tive processing stage output type specified in the pipeline
DAG . The pipeline DAG may further specify one or more
input sources and one or more output recipients for the data
pipeline .
[0041] At step 110 , the method 100 may further include
determining a subgraph isomorphism between the pipeline
DAG and the second computing resource graph . The sub
graph isomorphism may include a plurality of third - graph
edges with a plurality of third - graph edge weights that match
the second - graph edge weights of the corresponding edges
included in the second computing resource graph . In some
examples , a plurality of valid subgraph isomorphisms may
be identified between the pipeline DAG and the second
computing resource graph . When the subgraph isomorphism
is one of a plurality of subgraph isomorphisms , the subgraph
isomorphism with a lowest total second - graph edge weight
among the plurality of subgraph isomorphisms may be
determined . That subgraph isomorphism may then be used
in the subsequent steps discussed below .
(0042] At step 112 , the method 100 may further include
conveying , to one or more processing devices of the plural
ity of processing devices , instructions to execute the plural
ity of processing stages with the plurality of functions as
specified by the subgraph isomorphism . The instructions
may be conveyed to the one or more processing devices in
a plurality of packets . When the pipeline DAG specifies
respective input types and output types for the processing
stages , then for each processing stage , the instructions to
execute that processing stage may be conveyed to a pro
cessing device of the plurality of processing devices that is
configured to execute a corresponding function with the
processing stage input type and the processing stage output
type of the processing stage . In some examples , the instruc
tions may be conveyed to the one or more processing
devices via a hardware abstraction layer , which may be

configured to multiplex across a plurality of function librar
ies of the one or more processing devices .
[0043] FIG . 7C shows additional steps of the method 100
that may be performed in some examples . At step 114 , the
method 100 may further include , for each pair of the
plurality of pairs of functions , determining that respective
available capacity indicators for the first function and the
second function indicate that the first function and the
second function both have available processing capacity . For
example , step 114 may be performed prior to determining
the shortest path between a pair of functions .
[0044] At step 116 , step 114 may include , for each func
tion included in the plurality of pairs of functions , deter
mining that that function has available processing capacity
when the processing capacity indicator for that function
satisfies a QoS criterion for the processing stage configured
to be executed with that function . The QoS criterion for each
processing stage may be specified in the pipeline DAG .
[0045] At step 118 , the method 100 may further include
updating the respective available capacity indicators of the
plurality of functions specified by the subgraph isomor
phism . The available capacity indicators of the plurality of
functions may be updated to account for the use of those
functions to instantiate the data pipeline . This update may be
made subsequently to transmitting the instructions to the
plurality of processing devices .
[0046] Using the systems and methods discussed above ,
an efficient routing path may be constructed for executing
the processing stages of a data pipeline on a plurality of
processing devices . Thus , the latency and cost associated
with executing the processing stages included in the data
pipeline may be reduced . With the above systems and
methods , specialized hardware accelerators may be more
easily utilized for tasks such as video analysis and machine
learning .
[0047] In some embodiments , the methods and processes
described herein may be tied to a computing system of one
or more computing devices . In particular , such methods and
processes may be implemented as a computer - application
program or service , an application - programming interface
(API) , a library , and / or other computer - program product .
[0048] FIG . 8 schematically shows a non - limiting embodi
ment of a computing system 200 that can enact one or more
of the methods and processes described above . Computing
system 200 is shown in simplified form . Computing system
200 may embody the computing system 10 described above
and illustrated in FIG . 1. Computing system 200 may take
the form of one or more personal computers , server com
puters , tablet computers , home - entertainment computers ,
network computing devices , gaming devices , mobile com
puting devices , mobile communication devices (e.g. , smart
phone) , and / or other computing devices , and wearable com
puting devices such as smart wristwatches and head
mounted augmented reality devices .
[0049] Computing system 200 includes a logic processor
202 volatile memory 204 , and a non - volatile storage device
206. Computing system 200 may optionally include a dis
play subsystem 208 , input subsystem 210 , communication
subsystem 212 , and / or other components not shown in FIG .
8 .
[0050] Logic processor 202 includes one or more physical
devices configured to execute instructions . For example , the
logic processor may be configured to execute instructions
that are part of one or more applications , programs , routines ,

9

US 2022/0075660 A1 Mar. 10 , 2022
6

libraries , objects , components , data structures , or other logi
cal constructs . Such instructions may be implemented to
perform a task , implement a data type , transform the state of
one or more components , achieve a technical effect , or
otherwise arrive at a desired result .
[0051] The logic processor may include one or more
physical processors (hardware) configured to execute soft
ware instructions . Additionally or alternatively , the logic
processor may include one or more hardware logic circuits
or firmware devices configured to execute hardware - imple
mented logic or firmware instructions . Processors of the
logic processor 202 may be single - core or multi - core , and
the instructions executed thereon may be configured for
sequential , parallel , and / or distributed processing . Indi
vidual components of the logic processor optionally may be
distributed among two or more separate devices , which may
be remotely located and / or configured for coordinated pro
cessing . Aspects of the logic processor may be virtualized
and executed by remotely accessible , networked computing
devices configured in a cloud computing configuration . In
such a case , these virtualized aspects are run on different
physical logic processors of various different machines , it
will be understood .
[0052] Non - volatile storage device 206 includes one or
more physical devices configured to hold instructions
executable by the logic processors to implement the methods
and processes described herein . When such methods and
processes are implemented , the state of non - volatile storage
device 206 may be transformed — e.g . , to hold different data .
[0053] Non - volatile storage device 206 may include
physical devices that are removable and / or built - in . Non
volatile storage device 206 may include optical memory
(e.g. , CD , DVD , HD - DVD , Blu - Ray Disc , etc.) , semicon
ductor memory (e.g. , ROM , EPROM , EEPROM , FLASH
memory , etc.) , and / or magnetic memory (e.g. , hard - disk
drive , floppy - disk drive , tape drive , MRAM , etc.) , or other
mass storage device technology . Non - volatile storage device
206 may include nonvolatile , dynamic , static , read / write ,
read - only , sequential - access , location - addressable , file - ad
dressable , and / or content - addressable devices . It will be
appreciated that non - volatile storage device 206 is config
ured to hold instructions even when power is cut to the
non - volatile storage device 206 .
[0054] Volatile memory 204 may include physical devices
that include random access memory . Volatile memory 204 is
typically utilized by logic processor 202 to temporarily store
information during processing of software instructions . It
will be appreciated that volatile memory 204 typically does
not continue to store instructions when power is cut to the
volatile memory 204 .
[0055] Aspects of logic processor 202 , volatile memory
204 , and non - volatile storage device 206 may be integrated
together into one or more hardware - logic components . Such
hardware - logic components may include field - program
mable gate arrays (FPGAs) , program- and application - spe
cific integrated circuits (PASIC / ASICs) , program- and appli
cation - specific standard products (PSSP / ASSPs) , system
on - a - chip (SOC) , and complex programmable logic devices
(CPLDs) , for example .
[0056] The terms “ module , ” “ program , ” and “ engine ”
may be used to describe an aspect of computing system 200
typically implemented in software by a processor to perform
a particular function using portions of volatile memory ,
which function involves transformative processing that spe

cially configures the processor to perform the function .
Thus , a module , program , or engine may be instantiated via
logic processor 202 executing instructions held by non
volatile storage device 206 , using portions of volatile
memory 204. It will be understood that different modules ,
programs , and / or engines may be instantiated from the same
application , service , code block , object , library , routine , API ,
function , etc. Likewise , the same module , program , and / or
engine may be instantiated by different applications , ser
vices , code blocks , objects , routines , APIs , functions , etc.
The terms “ module , ” “ program , " and " engine " may encom
pass individual or groups of executable files , data files ,
libraries , drivers , scripts , database records , etc.
[0057] When included , display subsystem 208 may be
used to present a visual representation of data held by
non - volatile storage device 206. The visual representation
may take the form of a GUI . As the herein described
methods and processes change the data held by the non
volatile storage device , and thus transform the state of the
non - volatile storage device , the state of display subsystem
208 may likewise be transformed to visually represent
changes in the underlying data . Display subsystem 208 may
include one or more display devices utilizing virtually any
type of technology . Such display devices may be combined
with logic processor 202 , volatile memory 204 , and / or
non - volatile storage device 206 in a shared enclosure , or
such display devices may be peripheral display devices .
[0058] When included , input subsystem 210 may com
prise or interface with one or more user - input devices such
as a keyboard , mouse , touch screen , or game controller . In
some embodiments , the input subsystem may comprise or
interface with selected natural user input (NUI) componen
try . Such componentry may be integrated or peripheral , and
the transduction and / or processing of input actions may be
handled on- or off - board . Example NUI componentry may
include a microphone for speech and / or voice recognition ;
an infrared , color , stereoscopic , and / or depth camera for
machine vision and / or gesture recognition ; a head tracker ,
eye tracker , accelerometer , and / or gyroscope for motion
detection and / or intent recognition , as well as electric - field
sensing componentry for assessing brain activity ; and / or any
other suitable sensor .
[0059] When included , communication subsystem 212
may be configured to communicatively couple various com
puting devices described herein with each other , and with
other devices . Communication subsystem 212 may include
wired and / or wireless communication devices compatible
with one or more different communication protocols . As
non - limiting examples , the communication subsystem may
be configured for communication via a wireless telephone
network , or a wired or wireless local- or wide - area network ,
such as a HDMI over Wi - Fi connection . In some embodi
ments , the communication subsystem may allow computing
system 200 to send and / or receive messages to and / or from
other devices via a network such as the Internet .
[0060] The following paragraphs describe several aspects
of the present disclosure . According to one aspect of the
present disclosure , a computing system is provided , includ
ing a processor configured to generate a first computing
resource graph . The first computing resource graph may be
a directed weighted graph indicating a plurality of functions
configured to be executed on a plurality of communicatively
connected processing devices . For a plurality of pairs of the
functions indicated in the first computing resource graph ,

US 2022/0075660 A1 Mar. 10 , 2022
7

a

a

wherein each pair includes a first function with a first output
type and a second function with a second input type that
matches the first output type , the processor may be further
configured to determine a shortest path including one or
more first - graph edges on the first computing resource graph
between the first function and the second function . The
processor may be further configured to generate a second
computing resource graph indicating the plurality of pairs of
functions connected by a plurality of second - graph edges .
Each second - graph edge is the shortest path for the pair of
functions connected by that second - graph edge . The proces
sor may be further configured to receive a pipeline directed
acyclic graph (DAG) specifying a data pipeline of a plurality
of processing stages configured to be executed with corre
sponding functions of the plurality of functions . The pro
cessor may be further configured to determine a subgraph
isomorphism between the pipeline DAG and the second
computing resource graph . The processor may be further
configured to convey , to one or more processing devices of
the plurality of processing devices , instructions to execute
the plurality of processing stages with the plurality of
functions as specified by the subgraph isomorphism .
[0061] According to this aspect , each processing stage of
the plurality of processing stages may have a respective
processing stage input type and a respective processing stage
output type specified in the pipeline DAG . For each pro
cessing stage , the instructions to execute that processing
stage may be conveyed to a processing device of the
plurality of processing devices that is configured to execute
a corresponding function with the processing stage input
type and the processing stage output type of the processing
stage .
[0062] According to this aspect , for each pair of functions
connected by a respective second - graph edge as indicated in
the second computing resource graph , the second - graph
edge may have a second - graph edge weight equal to a total
first - graph edge weight of the shortest path for the pair as
indicated in the first computing resource graph .
[0063] According to this aspect , the subgraph isomor
phism may be one of a plurality of subgraph isomorphisms
between the pipeline DAG and the second computing
resource graph . The subgraph isomorphism may have a
lowest total second - graph edge weight among the plurality
of subgraph isomorphisms .
[0064] According to this aspect , for each pair of the
plurality of pairs of functions , the processor may be con
figured to determine the shortest path subsequently to deter
mining that respective available capacity indicators for the
first function and the second function indicate that the first
function and the second function both have available pro
cessing capacity .
[0065] According to this aspect , the processor may be
further configured to update the respective available capac
ity indicators of the plurality of functions specified by the
subgraph isomorphism .
[0066] According to this aspect , the pipeline DAG may
further specify a quality - of - service criterion for each pro
cessing stage of the plurality of processing stages . For each
function included in the plurality of pairs of functions , the
processor may be further configured to determine that that
function has available processing capacity when the pro
cessing capacity indicator for that function satisfies the
quality - of - service criterion for the processing stage config
ured to be executed with that function .

[0067] According to this aspect , the first computing
resource graph may further indicate one or more physical
devices that are directly or indirectly connected to the
plurality of functions by the plurality of first - graph edges .
Each physical device of the one or more physical devices
may be a network , a host computing device , or a processing
device of the one or more processing devices .
[0068] According to this aspect , the processor may be
further configured to generate the first computing resource
graph at least in part by transmitting a respective plurality of
device enumeration request packets to the plurality of pro
cessing devices . The processor may be further configured to
generate the first computing resource graph at least in part by
receiving a respective plurality of device enumeration
response packets from the plurality of processing devices .
The plurality of enumeration response packets may indicate
the plurality of functions configured to be executed at the
plurality of processing devices .
[0069] According to this aspect , the processor may be
further configured to generate the first computing resource
graph at least in part by assigning first - graph edge weights
to the first - graph edges based at least in part on , for each
endpoint of each first - graph edge , whether that endpoint is
a function , a processing device , a host computing device , or
a network .
[0070] According to this aspect , each processing device
may be a central processing unit (CPU) , a graphical pro
cessing unit (GPU) , an application - specific integrated circuit
(ASIC) , or a field - programmable gate array (FPGA) .
[0071] According to this aspect , at a DAG runtime envi
ronment , the processor may be configured to receive the
pipeline DAG from a program via a DAG application
program interface (API) . The processor may be configured
to convey the instructions to execute the plurality of pro
cessing stages from the DAG runtime environment to the
plurality of processing devices via a hardware abstraction
layer .
[0072] According to another aspect of the present disclo
sure , a method for use with a computing system is provided .
The method may include generating a first computing
resource graph . The first computing resource graph may be
a directed weighted graph indicating a plurality of functions
configured to be executed on a plurality of communicatively
connected processing devices . The method may further
include , for a plurality of pairs of the functions indicated in
the first computing resource graph , wherein each pair
includes a first function with a first output type and a second
function with a second input type that matches the first
output type , determining a shortest path including one or
more first - graph edges on the first computing resource graph
between the first function and the second function . The
method may further include generating a second computing
resource graph indicating the plurality of pairs of functions
connected by a plurality of second - graph edges . Each sec
ond - graph edge may be the shortest path for the pair of
functions connected by that second - graph edge . The method
may further include receiving a pipeline directed acyclic
graph (DAG) specifying a data pipeline of a plurality of
processing stages configured to be executed with corre
sponding functions of the plurality of functions . The method
may further include determining a subgraph isomorphism
between the pipeline DAG and the second computing
resource graph . The method may further include conveying ,
to one or more processing devices of the plurality of

a

a

US 2022/0075660 A1 Mar. 10 , 2022
8

a

processing devices , instructions to execute the plurality of
processing stages with the plurality of functions as specified
by the subgraph isomorphism .
[0073] According to this aspect , each processing stage of
the plurality of processing stages may have a respective
processing stage input type and a respective processing stage
output type specified in the pipeline DAG . For each pro
cessing stage , the instructions to execute that processing
stage may be conveyed to a processing device of the
plurality of processing devices that is configured to execute
a corresponding function with the processing stage input
type and the processing stage output type of the processing
stage .
[0074] According to this aspect , for each pair of functions
connected by a respective second - graph edge as indicated in
the second computing resource graph , the second - graph
edge may have a second - graph edge weight equal to a total
first - graph edge weight of the shortest path for the pair as
indicated in the first computing resource graph .
[0075] According to this aspect , the subgraph isomor
phism may be one of a plurality of subgraph isomorphisms
between the pipeline DAG and the second computing
resource graph . The subgraph isomorphism may have a
lowest total second - graph edge weight among the plurality
of subgraph isomorphisms .
[0076] According to this aspect , for each pair of the
plurality of pairs of functions , the shortest path may be
determined subsequently to determining that respective
available capacity indicators for the first function and the
second function indicate that the first function and the
second function both have available processing capacity .
[0077] According to this aspect , the method may further
include updating the respective available capacity indicators
of the plurality of functions specified by the subgraph
isomorphism .
[0078] According to this aspect , the first computing
resource graph may further indicate one or more physical
devices that are directly or indirectly connected to the
plurality of functions by the plurality of first - graph edges .
Each physical device of the one or more physical devices
may be a network , a host computing device , or a processing
device of the one or more processing devices .
[0079] According to another aspect of the present disclo
sure , a computing system is provided , including a processor
configured to generate a first computing resource graph . The
first computing resource graph may be a directed weighted
graph indicating a plurality of functions configured to be
executed on a plurality of communicatively connected pro
cessing devices . For a plurality of pairs of the functions
indicated in the first computing resource graph , wherein
each pair includes a first function and a second function that
are indicated in the first computing resource graph as having
available processing capacity , the processor may be further
configured to determine a shortest path including one or
more first - graph edges on the first computing resource graph
between the first function and the second function . The
processor may be further configured to generate a second
computing resource graph indicating the plurality of pairs of
functions connected by a plurality of second - graph edges .
Each second - graph edge may be the shortest path for the pair
of functions connected by that second - graph edge . The
processor may be further configured to receive a pipeline
directed acyclic graph (DAG) specifying a data pipeline of
a plurality of processing stages . The processor may be

further configured to determine a subgraph isomorphism
between the pipeline DAG and the second computing
resource graph configured to be executed with correspond
ing functions of the plurality of functions . The processor
may be further configured to convey , to one or more
processing devices of the plurality of processing devices ,
instructions to execute the plurality of processing stages
with the plurality of functions as specified by the sub graph
isomorphism .
[0080] It will be understood that the configurations and / or
approaches described herein are exemplary in nature , and
that these specific embodiments or examples are not to be
considered in a limiting sense , because numerous variations
are possible . The specific routines or methods described
herein may represent one or more of any number of pro
cessing strategies . As such , various acts illustrated and / or
described may be performed in the sequence illustrated
and / or described , in other sequences , in parallel , or omitted .
Likewise , the order of the above - described processes may be
changed .
[0081] The subject matter of the present disclosure
includes all novel and non - obvious combinations and sub
combinations of the various processes , systems and configu
rations , and other features , functions , acts , and / or properties
disclosed herein , as well as any and all equivalents thereof .

1. A computing system comprising :
a processor configured to :

generate a first computing resource graph , wherein the
first computing resource graph is a directed weighted
graph indicating a plurality of functions configured
to be executed on a plurality of communicatively
connected processing devices ;

for a plurality of pairs of the functions indicated in the
first computing resource graph , wherein each pair
includes a first function with a first output type and
a second function with a second input type that
matches the first output type , determine a shortest
path including one or more first - graph edges on the
first computing resource graph between the first
function and the second function ;

generate a second computing resource graph indicating
the plurality of pairs of functions connected by a
plurality of second - graph edges , wherein each sec
ond - graph edge is the shortest path for the pair of
functions connected by that second - graph edge ;

receive a pipeline directed acyclic graph (DAG) speci
fying a data pipeline of a plurality of processing
stages configured to be executed with corresponding
functions of the plurality of functions ;

determine a subgraph omorphism between the pipe
line DAG and the second computing resource graph ;
and

convey , to one or more processing devices of the
plurality of processing devices , instructions to
execute the plurality of processing stages with the
plurality of functions as specified by the subgraph
isomorphism .

2. The computing system of claim 1 , wherein :
each processing stage of the plurality of processing stages

has a respective processing stage input type and a
respective processing stage output type specified in the
pipeline DAG ; and

for each processing stage , the instructions to execute that
processing stage are conveyed to a processing device of

a

a

US 2022/0075660 A1 Mar. 10 , 2022
9

a

a

the plurality of processing devices that is configured to
execute a corresponding function with the processing
stage input type and the processing stage output type of
the processing stage .

3. The computing system of claim 1 , wherein , for each
pair of functions connected by a respective second - graph
edge as indicated in the second computing resource graph ,
the second - graph edge has a second - graph edge weight
equal to a total first - graph edge weight of the shortest path
for the pair as indicated in the first computing resource
graph .

4. The computing system of claim 3 , wherein :
the subgraph isomorphism is one of a plurality of sub

graph isomorphisms between the pipeline DAG and the
second computing resource graph ; and

the subgraph isomorphism has a lowest total second
graph edge weight among the plurality of subgraph
isomorphisms .

5. The computing system of claim 1 , wherein , for each
pair of the plurality of pairs of functions , the processor is
configured to determine the shortest path subsequently to
determining that respective available capacity indicators for
the first function and the second function indicate that the
first function and the second function both have available
processing capacity .

6. The computing system of claim 5 , wherein the proces
sor is further configured to update the respective available
capacity indicators of the plurality of functions specified by
the subgraph isomorphism .

7. The computing system of claim 5 , wherein :
the pipeline DAG further specifies a quality - of - service

criterion for each processing stage of the plurality of
processing stages ; and

for each function included in the plurality of pairs of
functions , the processor is further configured to deter
mine that that function has available processing capac
ity when the processing capacity indicator for that
function satisfies the quality - of - service criterion for the
processing stage configured to be executed with that
function .

8. The computing system of claim 1 , wherein :
the first computing resource graph further indicates one or
more physical devices that are directly or indirectly
connected to the plurality of functions by the plurality
of first - graph edges ; and

each physical device of the one or more physical devices
is a network , a host computing device , or a processing
device of the one or more processing devices .

9. The computing system of claim 8 , wherein the proces
sor is further configured to generate the first computing
resource graph at least in part by :

transmitting a respective plurality of device enumeration
request packets to the plurality of processing devices ;
and

receiving a respective plurality of device enumeration
response packets from the plurality of processing
devices , wherein the plurality of enumeration response
packets indicate the plurality of functions configured to
be executed at the plurality of processing devices .

10. The computing system of claim 8 , wherein the pro
cessor is further configured to generate the first computing
resource graph at least in part by assigning first - graph edge
weights to the first - graph edges based at least in part on , for

each endpoint of each first - graph edge , whether that end
point is a function , a processing device , a host computing
device , or a network .

11. The computing system of claim 1 , wherein each
processing device is a central processing unit (CPU) , a
graphical processing unit (GPU) , an application - specific
integrated circuit (ASIC) , or a field - programmable gate
array (FPGA) .

12. The computing system of claim 1 , wherein :
at a DAG runtime environment , the processor is config

ured to receive the pipeline DAG from a program via
a DAG application program interface (API) ; and

the processor is configured to convey the instructions to
execute the plurality of processing stages from the
DAG runtime environment to the plurality of process
ing devices via a hardware abstraction layer .

13. A method for use with a computing system , the
method comprising :

generating a first computing resource graph , wherein the
first computing resource graph is a directed weighted
graph indicating a plurality of functions configured to
be executed on a plurality of communicatively con
nected processing devices ;

for a plurality of pairs of the functions indicated in the first
computing resource graph , wherein each pair includes
a first function with a first output type and a second
function with a second input type that matches the first
output type , determining a shortest path including one
or more first - graph edges on the first computing
resource graph between the first function and the sec
ond function ;

generating a second computing resource graph indicating
the plurality of pairs of functions connected by a
plurality of second - graph edges , wherein each second
graph edge is the shortest path for the pair of functions
connected by that second - graph edge ;

receiving a pipeline directed acyclic graph (DAG) speci
fying a data pipeline of a plurality of processing stages
configured to be executed with corresponding functions
of the plurality of functions ;

determining a subgraph isomorphism between the pipe
line DAG and the second computing resource graph ;
and

conveying , to one or more processing devices of the
plurality of processing devices , instructions to execute
the plurality of processing stages with the plurality of
functions as specified by the subgraph isomorphism .

14. The method of claim 13 , wherein :
each processing stage of the plurality of processing stages

has a respective processing stage input type and a
respective processing stage output type specified in the
pipeline DAG ; and

for each processing stage , the instructions to execute that
processing stage are conveyed to a processing device of
the plurality of processing devices that is configured to
execute a corresponding function with the processing
stage input type and the processing stage output type of
the processing stage .

15. The method of claim 13 , wherein , for each pair of
functions connected by a respective second - graph edge as
indicated in the second computing resource graph , the
second - graph edge has a second - graph edge weight equal to
a total first - graph edge weight of the shortest path for the
pair as indicated in the first computing resource graph .

US 2022/0075660 A1 Mar. 10 , 2022
10

9

16. The method of claim 15 , wherein :
the subgraph isomorphism is one of a plurality of sub

graph isomorphisms between the pipeline DAG and the
second computing resource graph ; and

the subgraph isomorphism has a lowest total second
graph edge weight among the plurality of subgraph
isomorphisms .

17. The method of claim 13 , wherein , for each pair of the
plurality of pairs of functions , the shortest path is determined
subsequently to determining that respective available capac
ity indicators for the first function and the second function
indicate that the first function and the second function both
have available processing capacity .

18. The method of claim 17 , further comprising updating
the respective available capacity indicators of the plurality
of functions specified by the sub graph isomorphism .

19. The method of claim 13 , wherein :
the first computing resource graph further indicates one or
more physical devices that are directly or indirectly
connected to the plurality of functions by the plurality
of first - graph edges , and

each physical device of the one or more physical devices
is a network , a host computing device , or a processing
device of the one or more processing devices .

20. A computing system comprising :
a processor configured to :

generate a first computing resource graph , wherein the
first computing resource graph is a directed weighted
graph indicating a plurality of functions configured

to be executed on a plurality of communicatively
connected processing devices ;

for a plurality of pairs of the functions indicated in the
first computing resource graph , wherein each pair
includes a first function and a second function that
are indicated in the first computing resource graph as
having available processing capacity , determine a
shortest path including one or more first - graph edges
on the first computing resource graph between the
first function and the second function ;

generate a second computing resource graph indicating
the plurality of pairs of functions connected by a
plurality of second - graph edges , wherein each sec
ond - graph edge is the shortest path for the pair of
functions connected by that second - graph edge ;

receive a pipeline directed acyclic graph (DAG) speci
fying a data pipeline of a plurality of processing
stages ;

determine a subgraph isomorphism between the pipe
line DAG and the second computing resource graph
configured to be executed with corresponding func
tions of the plurality of functions ; and

convey , to one or more processing devices of the
plurality of processing devices , instructions to
execute the plurality of processing stages with the
plurality of functions as specified by the subgraph
isomorphism .

