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Methods , systems , and apparatus , including computer pro 
grams encoded on a computer storage medium , for gener 
ating an output sequence from an input sequence . One of the 
methods includes , at each of a plurality of generation time 
steps : generating a combined sequence for the generation 
time step that includes the input sequence followed by the 
output tokens that have already been generated as of the 
generation time step ; processing the combined sequence 
using a self - attention decoder neural network to generate a 
time step output that defines a score distribution over a set 
of possible output tokens ; and selecting , using the time step 
output , an output token from the set of possible output 
tokens as the next output token in the output sequence . 
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ATTENTION - BASED DECODER - ONLY 
SEQUENCE TRANSDUCTION NEURAL 

NETWORKS 

specification , the described systems are able to efficiently 
perform sequence transduction on very long sequences 
without consuming an excessive amount of computational 
resources . 

CROSS - REFERENCE TO RELATED 
APPLICATION 

[ 0001 ] This application claims priority to U.S. Patent 
Application Ser . No. 62 / 578,358 , filed on Oct. 27 , 2017 , the 
entire contents of which are hereby incorporated by refer 
ence . 

BACKGROUND 

[ 0002 ] This specification relates to transducing sequences 
using neural networks . Neural networks are machine learn 
ing models that employ one or more layers of nonlinear units 
to predict an output for a received input . Some neural 
networks include one or more hidden layers in addition to an 
output layer . The output of each hidden layer is used as input 
to the next layer in the network , i.e. , the next hidden layer 
or the output layer . Each layer of the network generates an 
output from a received input in accordance with current 
values of a respective set of parameters . 

SUMMARY 

[ 0003 ] This specification describes a system implemented 
as computer programs on one or more computers in one or 
more locations that generates an output sequence that 
includes a respective output at each of multiple positions in 
an output order from an input sequence that includes a 
respective input at each of multiple positions in an input 
order , i.e. , transduces the input sequence into the output 
sequence . In particular , the system generates the output 
sequence using a decoder neural network that is self - atten 
tion - based . 
[ 0004 ] Particular embodiments of the subject matter 
described in this specification can be implemented so as to 
realize one or more of the following advantages . 
[ 0005 ] The decoder - only architecture of the system 
described in this specification can effectively and scalably 
attend to very long sequences , much longer than conven 
tional sequence transduction systems . Thus , the system can 
more effectively perform sequence transduction tasks that 
require processing long input sequences , generating long 
output sequences , or both . For example , the system may 
outperform conventional systems on an expressive summa 
rization task that requires generating a long summary of 
multiple documents . Such tasks and other long sequence 
transduction tasks may require processing and extracting 
information from an input sequence that includes 10,000 or 
more tokens to effective generate an output sequence . How 
ever , because the system is entirely or mostly attention 
based , the system is nonetheless as computationally - efficient 
or , in many cases , more computationally - efficient than exist 
ing techniques . 
[ 0006 ] Additionally , because the described system uses 
only a decoder neural network and does not require a 
separate encoder network , the number of parameters and , 
therefore , the memory consumed by storing and running 
inference using the neural network are greatly reduced 
relative to other networks that are capable of performing 
well on sequence transduction tasks . 
[ 0007 ] Moreover , by making use of local attention , 
memory - compressed attention , or both as described in this 

[ 0008 ] More generally , the described system is also advan 
tageous over many existing systems because of the use of 
self - attention . Many existing approaches to sequence trans 
duction using neural networks use recurrent neural networks 
in both the encoder and the decoder . While these kinds of 
networks can achieve good performance on sequence trans 
duction tasks , their computation is sequential in nature , i.e. , 
a recurrent neural network generates an output at a current 
time step conditioned on the hidden state of the recurrent 
neural network at the preceding time step . This sequential 
nature precludes parallelization , resulting in long training 
and inference times and , accordingly , workloads that utilize 
a large amount of computational resources . 
[ 0009 ] On the other hand , because decoder of the 
described system is attention - based , the system can trans 
duce sequences quicker , be trained faster , or both , because 
the operation of the network can be more easily parallelized . 
That is , because the described neural network relies entirely 
on an attention mechanism to draw global dependencies 
between input and output and does not employ any recurrent 
neural network layers , the problems with long training and 
inference times and high resource usage caused by the 
sequential nature of recurrent neural network layers are 
mitigated . 
[ 0010 ] Moreover , the described neural network can trans 
duce sequences more accurately than existing networks that 
are based on convolutional layers or recurrent layers , even 
though training and inference times are shorter . In particular , 
in conventional models , the number of operations required 
to relate signals from two arbitrary input or output positions 
grows with the distance between positions , e.g. , either 
linearly or logarithmically depending on the model archi 
tecture . This makes it more difficult to learn dependencies 
between distant positions during training . In the presently 
described neural network , this number of operations is 
reduced to a constant number of operations because of the 
use of attention ( and , in particular , self - attention ) while not 
relying on recurrence or convolutions . Self - attention , some 
times called intra - attention , is an attention mechanism relat 
ing different positions of a single sequence in order to 
compute a representation of the sequence . The use of 
attention mechanisms allows the neural network to effec 
tively learn dependencies between distant positions during 
training , improving the accuracy of the neural network on 
various transduction tasks , e.g. , machine translation . The 
described neural network can also exhibit improved perfor 
mance over conventional sequence transduction neural net 
works without task - specific tuning through the use of the 
attention mechanism . 

[ 0011 ] The details of one or more embodiments of the 
subject matter of this specification are set forth in the 
accompanying drawings and the description below . Other 
features , aspects , and advantages of the subject matter will 
become apparent from the description , the drawings , and the 
claims . 
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BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0012 ] FIG . 1 shows an example neural network system . 
[ 0013 ] FIG . 2A is a diagram showing attention mecha 
nisms that are applied by the attention sub - layers in the 
subnetworks of the decoder neural network . 
[ 0014 ] FIG . 2B is a diagram showing attention mecha 
nisms that reduce the computational cost for processing of 
long sequences . 
[ 0015 ] FIG . 3 is a flow diagram of an example process for 
generating an output sequence from an input sequence . 
[ 0016 ] Like reference numbers and designations in the 
various drawings indicate like elements . 

DETAILED DESCRIPTION 

[ 0017 ] This specification describes a system implemented 
as computer programs on one or more computers in one or 
more locations that generates a target sequence that includes 
a respective output at each of multiple positions in an output 
order from an input sequence that includes a respective input 
at each of multiple positions in an input order , i.e. , trans 
duces the input sequence into the target sequence . 
[ 0018 ] For example , the system may be a neural machine 
translation system . That is , if the input sequence is a 
sequence of words in an original language , e.g. , a sentence 
or phrase , the target sequence may be a translation of the 
input sequence into a target language , i.e. , a sequence of 
words in the target language that represents the sequence of 
words in the original language . 
[ 0019 ] As another example , the system may be a speech 
recognition system . That is , if the input sequence is a 
sequence of audio data representing a spoken utterance , the 
target sequence may be a sequence of graphemes , charac 
ters , or words that represents the utterance , i.e. , is a tran 
scription of the input sequence . 
[ 0020 ] As another example , the system may be a natural 
language processing system . For example , if the input 
sequence is a sequence of words in an original language , 
e.g. , a sentence or phrase , the target sequence may be a 
summary of the input sequence in the original language , i.e. , 
a sequence that has fewer words than the input sequence but 
that retains the essential meaning of the input sequence . As 
another example , if the input sequence is a sequence of 
words that form a question , the target sequence can be a 
sequence of words that form an answer to the question . 
[ 0021 ] As another example , the system may be part of a 
computer - assisted medical diagnosis system . For example , 
the input sequence can be a sequence of data from an 
electronic medical record and the target sequence can be a 
sequence of predicted treatments . 
[ 0022 ] As another example , the system may be part of an 
image processing system . For example , the input sequence 
can be an image , i.e. , a sequence of color values from the 
image , and the output can be a sequence of text that 
describes the image . As another example , the input sequence 
can be a sequence of text or a different context and the output 
sequence can be an image that describes the context . 
[ 0023 ] As another example , the system may be part of an 
extractive summarization system . In particular , the input 
sequence can be text from multiple input documents and , 
optionally , a topic of the documents , and the output 
sequence can be a text summary of the input documents . 

[ 0024 ] In particular , the neural network is a self - attention 
based decoder neural network . In some cases , the decoder 
does not include any convolutional layers or any recurrent 
layers . 
[ 0025 ] FIG . 1 shows an example neural network system 
100. The neural network system 100 is an example of a 
system implemented as computer programs on one or more 
computers in one or more locations , in which the systems , 
components , and techniques described below can be imple 
mented . 
( 0026 ] The neural network system 100 receives an input 
sequence 102 and processes the input sequence 102 to 
transduce the input sequence 102 into an output sequence 
152 . 
[ 0027 ] The input sequence 102 has a respective input 
token at each of multiple input positions in an input order 
and the output sequence 152 has a respective output token at 
each of multiple output positions in an output order . That is , 
the input sequence 102 has multiple inputs arranged accord 
ing to an input order and the output sequence 152 has 
multiple outputs arranged according to an output order . 
[ 0028 ] As described above , the neural network system 100 
can perform any of a variety of tasks that require processing 
sequential inputs to generate sequential outputs . In the 
particular example where the neural network system 100 
performs expressive summarization , the input sequence can 
include text from a plurality of documents , and the output 
sequence can be text that summarizes the plurality of 
documents . Optionally , the input sequence can also include , 
e.g. , at the beginning of the input sequence , a desired topic 
for the summary text , i.e. , text specifying a topic to which 
the plurality of documents relate . 
[ 0029 ] The neural network system 100 includes a self 
attention decoder neural network 150. As will be described 
in more detail below , the self - attention decoder neural 
network 150 includes a plurality of neural network layers 
that include a plurality of masked self - attention neural 
network layers . 
[ 0030 ] The decoder neural network 150 is configured to 
generate the output sequence in an auto - regressive manner . 
[ 0031 ] That is , the decoder neural network 150 generates 
the output sequence output by output by generating an 
output token at a respective output position at each of a 
plurality of generation time steps . That is , at each generation 
time step , the decoder neural network 150 generates a new 
output token at the next output position in the output order 
conditioned on the input sequence and the output tokens at 
output positions preceding the next output position in the 
output order . 
[ 0032 ] In particular , for a given output position , the 
decoder neural network 150 generates a time step output that 
defines a probability distribution over possible output tokens 
at the given output position . 
[ 0033 ] The system 100 can then select a network output 
for the output position by sampling from the probability 
distribution or by selecting the output token with the highest 
probability . 
[ 0034 ] More specifically , at each generation time step , the 
system 100 generates a combined sequence 108 for the 
generation time step . 
[ 0035 ] The combined sequence 108 includes the input 
sequence followed by the output tokens that have already 
been generated as of the generation time step , i.e. , the output 
tokens at preceding positions in the output order . In some 
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[ 0042 ] In some cases , the positional embeddings are 
learned . As used in this specification , the term “ learned ” 
means that an operation or a value has been adjusted during 
the training of the decoder neural network 150. Training the 
decoder neural network 150 is described below with refer 
ence to FIG . 3 . 
[ 0043 ] In some other cases , the positional embeddings are 
fixed and are different for each position . For example , the 
embeddings can be made up of sine and cosine functions of 
different frequencies and can satisfy : 

PE ( pos , 21 ) = sin ( pos / 100002ildmodel ) 

implementations , the already generated output tokens imme 
diately follow the input sequence tokens in the combined 
sequence 108. In some other implementations , the input 
sequence and the output tokens that have already been 
generated as of the generation time step are separated by a 
predetermined special separator token in the combined 
sequence 108 . 
[ 0036 ] In other words , the system 100 represents the input 
sequence and the already generated output jointly as a single 
combined sequence , removing the need to employ an 
encoder neural network during transduction of the input 
sequence . 

[ 0037 ] The decoder neural network 150 then processes the 
combined sequence 108 to generate the output that defines 
the probability distribution over possible output tokens at the 
output position . 
[ 0038 ] Because the decoder neural network 150 is auto 
regressive , at each generation time step , the decoder 150 
operates on the output tokens that have already been gen 
erated before generation time step , i.e. , the outputs at 
output positions preceding the corresponding output posi 
tion in the output order . In some implementations , to ensure 
this is the case during both inference and training , at each 
generation time step the decoder neural network 150 shifts 
the already generated outputs right by one output order 
position ( i.e. , introduces a one position offset into the 
already generated network output sequence ) and ( as will be 
described in more detail below ) masks certain operations so 
that positions can only attend to positions up to and includ 
ing that position in the output sequence ( and not subsequent 
positions ) . While the remainder of the description below 
describes that , when generating a given output at a given 
output position , various components of the decoder 150 
operate on data at output positions preceding the given 
output positions ( and not on data at any other output 
positions ) , it will be understood that this type of condition 
ing can be effectively implemented using the shifting 
described above . 
[ 0039 ] The decoder neural network 150 includes an 
embedding layer 120 , a sequence of one or more decoder 
subnetworks 130 , a linear layer 180 , and a softmax layer 
190. In particular , as shown in FIG . 1 , the decoder neural 
network includes N decoder subnetworks 130 . 
[ 0040 ] The embedding layer 120 is configured to , for each 
token in the combined sequence , map the token to a numeric 
representation of the token in an embedding space , e.g. , into 
a vector in the embedding space . The embedding layer 120 
then provides the numeric representations of the tokens to 
the first subnetwork in the sequence of decoder subnetworks 
130 , i.e. , to the first decoder subnetwork 130 of the N 
decoder subnetworks 130 . 
[ 0041 ] In particular , in some implementations , the embed 
ding layer 120 is configured to map each token to an 
embedded representation of the network input and then 
combine , e.g. , sum or average or concatenate , the embedded 
representation of the token with a positional embedding of 
the position of the token in the combined sequence to 
generate a combined embedded representation of the token . 
That is , each position in the combined sequence has a 
corresponding embedding and for each token the embedding 
layer 120 combines the embedded representation of the 
token with the embedding of the token's position in the 
combined sequence . 

PExpos , 2i + 1 ) = cos ( pos / 100002ildmodel ) 
where pos is the position , i is the dimension within the 
positional embedding , and dmode is the dimensionality of the 
positional embedding ( and of the other vectors processed by 
the neural network 150 ) . 
[ 0044 ] The combined embedded representation is then 
used as the numeric representation of the token . 
[ 0045 ] Each of the decoder subnetworks 130 is configured 
to receive a respective decoder subnetwork input for each of 
the plurality of combined sequence positions and to generate 
a respective subnetwork output for each of the plurality of 
combined sequence positions . 
[ 0046 ] The decoder subnetwork outputs generated by the 
last decoder subnetwork in the sequence are then provided 
as input to the linear layer 180 . 
[ 0047 ] For the first decoder subnetwork in the sequence , 
the decoder subnetwork input is the numeric representations 
generated by the embedding layer 120 , and , for each decoder 
subnetwork other than the first decoder subnetwork in the 
sequence , the decoder subnetwork input is the decoder 
subnetwork output of the preceding decoder subnetwork in 
the sequence . 
[ 0048 ] Each decoder subnetwork 130 includes a decoder 
masked self - attention sub - layer 132. The decoder self - atten 
tion sub - layer 132 is configured to , at each generation time 
step , receive an input for each combined sequence position 
preceding the corresponding output position , i.e. , preceding 
the output position for which the output token is currently 
being generated and , for each of the particular combined 
sequence positions , apply an attention mechanism over the 
inputs at the combined sequence positions preceding the 
corresponding position using one or more queries derived 
from the input at the particular output position to generate a 
updated representation for the particular output position . 
[ 0049 ] That is , the decoder self - attention sub - layer 172 
applies an attention mechanism that is masked so that it does 
not attend over or otherwise process any data that is not at 
a position preceding the current output position in the 
combined sequence . 
[ 0050 ] The masked attention mechanism and how the 
attention mechanism is applied by the decoder self - attention 
sub - layer 132 will be described in more detail below with 
reference to FIG . 2 . 
[ 0051 ] In some examples , different decoder self - attention 
sub - layers 132 in different decoder subnetworks 130 employ 
different attention mechanisms . For example , as will be 
described below with reference to FIG . 2A and 2B , some 
self - attention sub - layers can employ local attention while 
others employ memory - compressed attention . In particular , 
in some implementations , the type of attention alternates 
between sub - networks , i.e. , with every second subnetwork 
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employing memory - compressed attention and the remainder 
of the subnetworks employing local attention . 
[ 0052 ] In some implementations , each of the decoder 
subnetworks 130 also includes a residual connection layer 
that combines the outputs of the decoder self - attention 
sub - layer with the inputs to the decoder self - attention sub 
layer to generate a decoder self - attention residual output and 
a layer normalization layer that applies layer normalization 
to the decoder self - attention residual output . These two 
layers are collectively referred to as an “ Add & Norm ” 
operation in FIG . 1 . 
[ 0053 ] Some or all of the decoder subnetworks can also 
include a position - wise feed - forward layer 134 that is con 
figured to operate on each position in the combined 
sequence separately . In particular , for each combined 
sequence position , the feed - forward layer 134 is configured 
receive an input at the combined sequence position and 
apply a sequence of transformations to the input at the 
combined sequence position to generate an output for the 
combined sequence position . For example , the sequence of 
transformations can include two or more learned linear 
transformations each separated by an activation function , 
e.g. , a non - linear elementwise activation function , e.g. , a 
ReLU activation function . The inputs received by the posi 
tion - wise feed - forward layer 134 can be the outputs of the 
layer normalization layer when the residual and layer nor 
malization layers are included or the outputs of the decoder 
self - attention sub - layer 132 when the residual and layer 
normalization layers are not included . The transformations 
applied by the layer 134 will generally be the same for each 
input position ( but different feed - forward layers in different 
subnetworks will apply different transformations ) . 
[ 0054 ] In cases where a decoder subnetwork 130 includes 
a position - wise feed - forward layer 134 , the decoder subnet 
work can also include a residual connection layer that 
combines the outputs of the position - wise feed - forward 
layer with the inputs to the position - wise feed - forward layer 
to generate a decoder position - wise residual output and a 
layer normalization layer that applies layer normalization to 
the decoder position - wise residual output . These two layers 
are also collectively referred to as an “ Add & Norm ” 
operation in FIG . 1. The outputs of this layer normalization 
layer can then be used as the outputs of the decoder 
subnetwork 130 . 
[ 0055 ] At each generation time step , the linear layer 180 
applies a learned linear transformation to the output of the 
last decoder subnetwork 130 in order to project the output of 
the last decoder subnetwork 130 into the appropriate space 
for processing by the softmax layer 190. The softmax layer 
190 then applies a softmax function over the outputs of the 
linear layer 180 to generate the probability distribution over 
the possible network outputs at the generation time step . 
[ 0056 ] If the selected output token at a given generation 
time step is a pre - determined end - of - sequence token , the 
system 100 can determine that the output sequence 152 is 
complete and provide the output tokens that have already 
been generated as of the generation time step as the final 
output sequence 152 for the input sequence 102 . 
[ 0057 ] Thus , as can be seen from FIG . 1 , rather than 
relying on an encoder neural network to first encode the 
input sequence and then generating the output sequence 
conditioned on the encoding of the input sequence as occurs 
in some conventional systems , the system 100 operates on 
the input sequence at each generation time step by way of 

the combined sequence . This use of the combined sequence 
allows the system 100 to effectively process long input 
sequences , i.e. , because information from the entire input 
sequence is directly available at each generation time step , 
while still having fewer parameters than conventional sys 
tems , i.e. , because the system 100 does not have an encoder 
neural network . 

[ 0058 ] While not shown in FIG . 1 , in some cases , to 
increase the computational capacity of the decoder neural 
network 150 without excessive increases in processing time 
or computational cost , the decoder neural network 150 can 
include one or more mixture of experts layers . At each time 
step , mixture of expert layers select a small subset of a large 
number of experts and combine outputs from the small 
subset of experts to generate the layer output for the time 
step . Mixture of experts layers are described in more detail 
in Noam Shazeer , Azalia Mirhoseini , Krzysztof Maziarz , 
Andy Davis , Quoc Le , Geoffrey Hinton , and Jeff Dean . 
Outrageously large neural networks : The sparsely - gated 
mixture - of - experts layer . arXiv preprint arXiv : 1701.06538 , 
2017 . 
[ 0059 ] FIG . 2A is a diagram 200 showing attention 
mechanisms that are applied by the attention sub - layers in 
the subnetworks of the decoder neural network 150 . 
[ 0060 ] Generally , an attention mechanism maps a query 
and a set of key - value pairs to an output , where the query , 
keys , and values are all vectors . The output is computed as 
a weighted sum of the values , where the weight assigned to 
each value is computed by a compatibility function of the 
query with the corresponding key . 
[ 0061 ] More specifically , each attention sub - layer applies 
a scaled dot - product attention mechanism . In scaled dot 
product attention , for a given query , the attention sub - layer 
computes the dot products of the query with all of the keys , 
divides each of the dot products by a scaling factor , e.g. , by 
the square root of the dimensions of the queries and keys , 
and then applies a softmax function over the scaled dot 
products to obtain the weights on the values . The attention 
sub - layer then computes a weighted sum of the values in 
accordance with these weights . Thus , for scaled dot - product 
attention the compatibility function is the dot product and 
the output of the compatibility function is further scaled by 
the scaling factor . 
[ 0062 ] In operation and as shown in the left hand side of 
FIG . 2 , the attention sub - layer computes the attention over 
a set of queries simultaneously . In particular , the attention 
sub - layer packs the queries into a matrix Q , packs the keys 
into a matrix K , and packs the values into a matrix V. To 
pack a set of vectors into a matrix , the attention sub - layer 
can generate a matrix that includes the vectors as the rows 
of the matrix . 
[ 0063 ] The attention sub - layer then performs a matrix 
multiply between the matrix Q and the transpose of the 
matrix K to generate a matrix of compatibility function 
outputs . 
[ 0064 ] The attention sub - layer then scales the compatibil 
ity function output matrix , i.e. , by dividing each element of 
the matrix by the scaling factor . 
[ 0065 ] The attention sub - layer then applies a softmax over 
the scaled output matrix to generate a matrix of weights and 
performs a matrix multiply between the weight matrix and 
the matrix V to generate an output matrix that includes the 
output of the attention mechanism for each of the values . 
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[ 0066 ] Because the decoder attention sub - layers use mask 
ing , the attention sub - layer masks the scaled output matrix 
before applying the softmax . That is , the attention sub - layer 
masks out ( sets to negative infinity ) , all values in the scaled 
output matrix that correspond to positions after the current 
output position . 
[ 0067 ] In some implementations , to allow the attention 
sub - layers to jointly attend to information from different 
representation subspaces at different positions , the attention 
sub - layers employ multi - head attention , as illustrated on the 
right hand side of FIG . 2 . 
[ 0068 ] In particular , to implement multi - ahead attention , 
the attention sub - layer applies h different attention mecha 
nisms in parallel . In other words , the attention sub - layer 
includes h different attention layers , with each attention 
layer within the same attention sub - layer receiving the same 
original queries , original keys K , and original values V. 
[ 0069 ] Each attention layer is configured to transform the 
original queries , and keys , and values using learned linear 
transformations and then apply the attention mechanism to 
the transformed queries , keys , and values . Each attention 
layer will generally learn different transformations from 
each other attention layer in the same attention sub - layer . 
[ 0070 ] In particular , each attention layer is configured to 
apply a learned query linear transformation to each original 
query to generate a layer - specific query for each original 
query , apply a learned key linear transformation to each 
original key to generate a layer - specific key for each original 
key , and apply a learned value linear transformation to each 
original value to generate a layer - specific values for each 
original value . The attention layer then applies the attention 
mechanism described above using these layer - specific que 
ries , keys , and values to generate initial outputs for the 
attention layer . 
[ 0071 ] The attention sub - layer then combines the initial 
outputs of the attention layers to generate the final output of 
the attention sub - layer . As shown in FIG . 2 , the attention 
sub - layer concatenates the outputs of the attention layers and 
applies a learned linear transformation to the concatenated 
output to generate the output of the attention sub - layer . 
[ 0072 ] In some cases , the learned transformations applied 
by the attention sub - layer reduce the dimensionality of the 
original keys and values and , optionally , the queries . For 
example , when the dimensionality of the original keys , 
values , and queries is d and there are h attention layers in the 
sub - layer , the sub - layer may reduce the dimensionality of 
the original keys , values , and queries to d / h . This keeps the 
computation cost of the multi - head attention mechanism 
similar to what the cost would have been to perform the 
attention mechanism once with full dimensionality while at 
the same time increasing the representative capacity of the 
attention sub - layer . 
[ 0073 ] For each decoder self - attention sub - layer , each 
position in the decoder attends to all positions in the decoder 
preceding that position . Thus , all of the keys , values , and 
queries come from the same place , in this case , the output of 
the previous subnetwork in the decoder , or , for the decoder 
self - attention sub - layer in the first decoder subnetwork , the 
embeddings of the combined sequence tokens already gen 
erated . Thus , there is a respective key , value , and query for 
each position in the output order before the current position . 
[ 0074 ] When the decoder self - attention sub - layer imple 
ments multi - head attention , each attention layer in the 
decoder self - attention sub - layer is configured to , at each 

generation time step , apply a learned query linear transfor 
mation to the input at each combined sequence position 
preceding the corresponding output position to generate a 
respective query for each combined sequence position , 
apply a learned key linear transformation to each input at 
each combined sequence position preceding the correspond 
ing output position to generate a respective key for each 
output position , apply a learned value linear transformation 
to each input at each combined sequence position preceding 
the corresponding output position to generate a respective 
key for each output position , and then apply the attention 
mechanism ( i.e. , the scaled dot - product attention mechanism 
described above ) using the queries , keys , and values to 
determine an initial decoder self - attention output for each of 
the output positions . The sub - layer then combines the initial 
outputs of the attention layers as described above . 
[ 0075 ] In some implementations , to allow the decoder 
neural network to more effectively process long combined 
sequences , the attention mechanism is modified by limiting 
the dot products between Q and K in order to reduce the 
computational cost of the attention mechanism while main 
taining high quality output generation . 
[ 0076 ] FIG . 2B is an example diagram showing attention 
mechanisms that reduce the computational cost for process 
ing of long sequences . 
[ 0077 ] In particular , FIG . 2B shows three different types of 
attention mechanisms : the masked multi - head attention 
mechanism 250 described above , memory compressed 
attention 270 , and local attention 290 . 
[ 0078 ] As described above , for masked multi - head atten 
tion 250 , the matrices V , K , and Q are determined and then 
masked multi - head attention is applied . 
[ 0079 ] In memory compressed attention 270 , on the other 
hand , after the matrices V , K , and Q are determined as 
described above , the number of keys and values are reduced 
by applying a strided convolution ( “ Cony ” ) to the V and K 
matrices . The number of queries in the Q matrix remains 
unchanged . This modification divides the number of activa 
tions by a compression factor that is based on the size of the 
kernels and the stride factor of the strided convolution . For 
example , the convolution kernels may be of size 3 and the 
stride for the factor for the strided convolution may be 3 . 
Masked multi - head attention is then applied to the reduced 
V and K matrices as described above . 
[ 0080 ] The memory - compressed attention mechanism 270 
is therefore able to exchange information globally on the 
entire sequence with reduced computational cost relative to 
the standard multi - head attention mechanism 250 because of 
the application the strided convolution . 
[ 0081 ] Unlike memory - compressed attention 270 and 
multi - head attention 250 , local attention 290 performs atten 
tion independently within each of multiple blocks of the 
combined sequence . In particular , for local attention , com 
bined sequence tokens are divided into blocks ( or “ sub 
sequences ” ) of similar length and attention is performed in 
each block independently . As the attention memory cost per 
block is constant in this scheme , this modification keeps the 
number of activations linear with respect to the sequence 
length but does not allow each position to attend to the entire 
sequence . In more detail , for local attention , the input 
sequence to the attention mechanism is split into blocks 
( " split " ) and multi - head attention is applied independently 
within each block as described above . The attention outputs 
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for each block are then concatenated ( “ merge ” ) to generate 
the output of the local attention mechanism . 
[ 0082 ] As described above , in some implementations , 
different decoder self - attention sub - layers 132 in different 
decoder subnetworks 130 employ different attention mecha 
nisms . For example , some self - attention sub - layers can 
employ local attention while others employ memory - com 
pressed attention . In particular , in some implementations , 
the type of attention alternates between sub - networks , i.e. , 
with every second , i.e. , every other , subnetwork employing 
memory - compressed attention and the remainder of the 
subnetworks employing local attention . Having some layers 
apply memory - compressed attention while others employ 
local attention allows the decoder neural network to attend 
over the entire combined sequence even when the combined 
sequence is very long without consuming an excessive 
amount of computational resources . 
[ 0083 ] FIG . 3 is a flow diagram of an example process for 
generating an output sequence from an input sequence . For 
convenience , the process 300 will be described as being 
performed by a system of one or more computers located in 
one or more locations . For example , a neural network 
system , e.g. , neural network system 100 of FIG . 1 , appro 
priately programmed in accordance with this specification , 
can perform the process 300 . 
[ 0084 ] The system can perform the process 300 at each of 
multiple generation time steps to generate the output 
sequence using a self - attention decoder neural network . The 
decoder neural network is configured to generate the output 
sequence from the input sequence in an auto - regressive 
manner . That is , the decoder neural network generates one 
output from the output sequence at each generation time 
step . Thus , by performing the process 300 at each of the 
multiple generation time steps , the system generates all of 
the output tokens in the output sequence . 
[ 0085 ] The system generates a combined sequence for the 
generation time step that includes the input sequence fol 
lowed by the output tokens that have already been generated 
as of the generation time step ( step 310 ) . 
[ 0086 ] The system processes the combined sequence 
using the self - attention decoder neural network to generate 
a time step output that defines a score distribution over a set 
of possible output tokens ( step 320 ) . 
[ 0087 ] The system selects , using the time step output , an 
output token from the set of possible output tokens as the 
next output token in the output sequence ( step 330 ) . 
[ 0088 ] The system can perform the process 300 for an 
input sequence for which the desired output , i.e. , the output 
sequence that should be generated by the system for the 
input sequence , is not known . When this is the case , the 
system performs the process 300 sequentially for all of the 
generation time steps . 
[ 0089 ] The system can also perform the process 300 on 
input sequences in a set of training data , i.e. , a set of inputs 
for which the output sequence that should be generated by 
the system is known , in order to train the decoder to 
determine trained values for the parameters of the decoder . 
The process 300 can be performed repeatedly on inputs 
selected from a set of training data as part of a conventional 
machine learning training technique to train the initial neural 
network layers , e.g. , a gradient descent with backpropaga 
tion training technique that uses a conventional optimizer , 
e.g. , the Adam optimizer . During training , the system can 
incorporate any number of techniques to improve the speed , 

the effectiveness , or both of the training process . For 
example , the system can use dropout , label smoothing , or 
both to reduce overfitting . As another example , the system 
can perform the training using a distributed architecture that 
trains multiple instances of the sequence transduction neural 
network in parallel . 
[ 0090 ] However , during training , because the entire 
ground truth output sequence is available at the beginning of 
the training process , the system can generate the time step 
output for each of the generation time steps in parallel , i.e. , 
the system does not need to perform the process 300 
sequentially for each generation time step . In other words , 
the system can provide as input to the decoder neural 
network a combined sequence that includes the input 
sequence followed by the entire known output sequence and 
can generate the time step outputs for all of the generation 
time steps in parallel . The system can then update , using the 
machine learning training technique , the decoder parameters 
to optimize a maximum - likelihood objective that depends on 
the scores assigned to the correct output tokens at each time 
step . 
[ 0091 ] Additionally , in some implementations , during 
training , the system also includes a prediction of the next 
tokens in the input sequence in the maximum - likelihood 
objective . In other words , during training , the decoder also 
generates , for each input position , a score distribution over 
possible input tokens conditioned on the input tokens at 
preceding positions in the input sequence . The system then 
includes the scores assigned to the correct input token at 
each input position in the maximum - likelihood objective . In 
so doing , the model is forced to accurately predict the next 
token in the input as well as the next token in the output and 
error signals are propagated from both input and output 
positions during training , improving the performance of the 
model after it is trained . 
[ 0092 ] This specification uses the term " configured ” in 
connection with systems and computer program compo 
nents . For a system of one or more computers to be 
configured to perform particular operations or actions means 
that the system has installed on it software , firmware , 
hardware , or a combination of them that in operation cause 
the system to perform the operations or actions . For one or 
more computer programs to be configured to perform par 
ticular operations or actions means that the one or more 
programs include instructions that , when executed by data 
processing apparatus , cause the apparatus to perform the 
operations or actions . 
[ 0093 ] Embodiments of the subject matter and the func 
tional operations described in this specification can be 
implemented in digital electronic circuitry , in tangibly 
embodied computer software or firmware , in computer hard 
ware , including the structures disclosed in this specification 
and their structural equivalents , or in combinations of one or 
more of them . Embodiments of the subject matter described 
in this specification can be implemented as one or more 
computer programs , i.e. , one or more modules of computer 
program instructions encoded on a tangible non transitory 
storage medium for execution by , or to control the operation 
of , data processing apparatus . The computer storage medium 
can be a machine - readable storage device , a machine - read 
able storage substrate , a random or serial access memory 
device , or a combination of one or more of them . Alterna 
tively or in addition , the program instructions can be 
encoded on an artificially generated propagated signal , e.g. , 
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a machine - generated electrical , optical , or electromagnetic 
signal , that is generated to encode information for transmis 
sion to suitable receiver apparatus for execution by a data 
processing apparatus . 
[ 0094 ] The term “ data processing apparatus ” refers to data 
processing hardware and encompasses all kinds of appara 
tus , devices , and machines for processing data , including by 
way of example a programmable processor , a computer , or 
multiple processors or computers . 
[ 0095 ] The apparatus can also be , or further include , 
special purpose logic circuitry , e.g. , an FPGA ( field pro 
grammable gate array ) or an ASIC ( application specific 
integrated circuit ) . The apparatus can optionally include , in 
addition to hardware , code that creates an execution envi 
ronment for computer programs , e.g. , code that constitutes 
processor firmware , a protocol stack , a database manage 
ment system , an operating system , or a combination of one 
or more of them . 
[ 0096 ] A computer program , which may also be referred 
to or described as a program , software , a software applica 
tion , an app , a module , a software module , a script , or code , 
can be written in any form of programming language , 
including compiled or interpreted languages , or declarative 
or procedural languages ; and it can be deployed in any form , 
including as a stand alone program or as a module , compo 
nent , subroutine , or other unit suitable for use in a computing 
environment . A program may , but need not , correspond to a 
file in a file system . A program can be stored in a portion of 
a file that holds other programs or data , e.g. , one or more 
scripts stored in a markup language document , in a single 
file dedicated to the program in question , or in multiple 
coordinated files , e.g. , files that store one or more modules , 
sub programs , or portions of code . A computer program can 
be deployed to be executed on one computer or on multiple 
computers that are located at one site or distributed across 
multiple sites and interconnected by a data communication 
network . 
[ 0097 ] In this specification , the term " database ” is used 
broadly to refer to any collection of data : the data does not 
need to be structured in any particular way , or structured at 
all , and it can be stored on storage devices in one or more 
locations . Thus , for example , the index database can include 
multiple collections of data , each of which may be organized 
and accessed differently . 
[ 0098 ] Similarly , in this specification the term " engine " is 
used broadly to refer to a software - based system , subsystem , 
or process that is programmed to perform one or more 
specific functions . Generally , an engine will be implemented 
as one or more software modules or components , installed 
on one or more computers in one or more locations . In some 
cases , one or more computers will be dedicated to a par 
ticular engine ; in other cases , multiple engines can be 
installed and running on the same computer or computers . 
[ 0099 ] The processes and logic flows described in this 
specification can be performed by one or more program 
mable computers executing one or more computer programs 
to perform functions by operating on input data and gener 
ating output . The processes and logic flows can also be 
performed by special purpose logic circuitry , e.g. , an FPGA 
or an ASIC , or by a combination of special purpose logic 
circuitry and one or more programmed computers . 
[ 0100 ] Computers suitable for the execution of a computer 
program can be based on general or special purpose micro 
processors or both , or any other kind of central processing 

unit . Generally , a central processing unit will receive 
instructions and data from a read only memory or a random 
access memory or both . The essential elements of a com 
puter are a central processing unit for performing or execut 
ing instructions and one or more memory devices for storing 
instructions and data . The central processing unit and the 
memory can be supplemented by , or incorporated in , special 
purpose logic circuitry . Generally , a computer will also 
include , or be operatively coupled to receive data from or 
transfer data to , or both , one or more mass storage devices 
for storing data , e.g. , magnetic , magneto optical disks , or 
optical disks . However , a computer need not have such 
devices . Moreover , a computer can be embedded in another 
device , e.g. , a mobile telephone , a personal digital assistant 
( PDA ) , a mobile audio or video player , a game console , a 
Global Positioning System ( GPS ) receiver , or a portable 
storage device , e.g. , a universal serial bus ( USB ) flash drive , 
to name just a few . 
[ 0101 ] Computer readable media suitable for storing com 
puter program instructions and data include all forms of non 
volatile memory , media and memory devices , including by 
way of example semiconductor memory devices , e.g. , 
EPROM , EEPROM , and flash memory devices ; magnetic 
disks , e.g. , internal hard disks or removable disks ; magneto 
optical disks ; and CD ROM and DVD - ROM disks . 
[ 0102 ] To provide for interaction with a user , embodi 
ments of the subject matter described in this specification 
can be implemented on a computer having a display device , 
e.g. , a CRT ( cathode ray tube ) or LCD ( liquid crystal 
display ) monitor , for displaying information to the user and 
a keyboard and a pointing device , e.g. , a mouse or a 
trackball , by which the user can provide input to the com 
puter . Other kinds of devices can be used to provide for 
interaction with a user as well ; for example , feedback 
provided to the user can be any form of sensory feedback , 
e.g. , visual feedback , auditory feedback , or tactile feedback ; 
and input from the user can be received in any form , 
including acoustic , speech , or tactile input . In addition , a 
computer can interact with a user by sending documents to 
and receiving documents from a device that is used by the 
user ; for example , by sending web pages to a web browser 
on a user's device in response to requests received from the 
web browser . Also , a computer can interact with a user by 
sending text messages or other forms of message to a 
personal device , e.g. , a smartphone that is running a mes 
saging application , and receiving responsive messages from 
the user in return . 
[ 0103 ] Data processing apparatus for implementing 
machine learning models can also include , for example , 
special - purpose hardware accelerator units for processing 
common and compute - intensive parts of machine learning 
training or production , i.e. , inference , workloads . 
[ 0104 ] Machine learning models can be implemented and 
deployed using a machine learning framework , e.g. , a Ten 
sorFlow framework , a Microsoft Cognitive Toolkit frame 
work , an Apache Singa framework , or an Apache MXNet 
framework . 
[ 0105 ] Embodiments of the subject matter described in 
this specification can be implemented in a computing system 
that includes a back end component , e.g. , as a data server , or 
that includes a middleware component , e.g. , an application 
server , or that includes a front end component , e.g. , a client 
computer having a graphical user interface , a web browser , 
or an app through which a user can interact with an imple 
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mentation of the subject matter described in this specifica 
tion , or any combination of one or more such back end , 
middleware , or front end components . The components of 
the system can be interconnected by any form or medium of 
digital data communication , e.g. , a communication network . 
Examples of communication networks include a local area 
network ( LAN ) and a wide area network ( WAN ) , e.g. , the 
Internet . 
[ 0106 ] The computing system can include clients and 
servers . A client and server are generally remote from each 
other and typically interact through a communication net 
work . The relationship of client and server arises by virtue 
of computer programs running on the respective computers 
and having a client - server relationship to each other . In some 
embodiments , a server transmits data , e.g. , an HTML page , 
to a user device , e.g. , for purposes of displaying data to and 
receiving user input from a user interacting with the device , 
which acts as a client . Data generated at the user device , e.g. , 
a result of the user interaction , can be received at the server 
from the device . 
[ 0107 ] While this specification contains many specific 
implementation details , these should not be construed as 
limitations on the scope of any invention or on the scope of 
what may be claimed , but rather as descriptions of features 
that may be specific to particular embodiments of particular 
inventions . Certain features that are described in this speci 
fication in the context of separate embodiments can also be 
implemented in combination in a single embodiment . Con 
versely , various features that are described in the context of 
a single embodiment can also be implemented in multiple 
embodiments separately or in any suitable subcombination . 
Moreover , although features may be described above as 
acting in certain combinations and even initially be claimed 
as such , one or more features from a claimed combination 
can in some cases be excised from the combination , and the 
claimed combination may be directed to a subcombination 
or variation of a subcombination . 
[ 0108 ] Similarly , while operations are depicted in the 
drawings and recited in the claims in a particular order , this 
should not be understood as requiring that such operations 
be performed in the particular order shown or in sequential 
order , or that all illustrated operations be performed , to 
achieve desirable results . In certain circumstances , multi 
tasking and parallel processing may be advantageous . More 
over , the separation of various system modules and compo 
nents in the embodiments described above should not be 
understood as requiring such separation in all embodiments , 
and it should be understood that the described program 
components and systems can generally be integrated 
together in a single software product or packaged into 
multiple software products . 
[ 0109 ] Particular embodiments of the subject matter have 
been described . Other embodiments are within the scope of 
the following claims . For example , the actions recited in the 
claims can be performed in a different order and still achieve 
desirable results . As one example , the processes depicted in 
the accompanying figures do not necessarily require the 
particular order shown , or sequential order , to achieve 
desirable results . In some cases , multitasking and parallel 
processing may be advantageous . 

1. A method of generating an output sequence comprising 
a plurality of output tokens from an input sequence com 
prising a plurality of input tokens , the method comprising , at 
each of a plurality of generation time steps : 

generating a combined sequence for the generation time 
step that includes the input sequence followed by the 
output tokens that have already been generated as of the 
generation time step ; 

processing the combined sequence using a self - attention 
decoder neural network , wherein the self - attention 
decoder neural network comprises a plurality of neural 
network layers that include a plurality of masked 
self - attention neural network layers , and wherein the 
self - attention decoder neural network is configured to 
process the combined sequence through the plurality of 
neural network layers to generate a time step output 
that defines a score distribution over a set of possible 
output tokens ; and 

selecting , using the time step output , an output token from 
the set of possible output tokens as the next output 
token in the output sequence . 

2. The method of claim 1 , wherein the masked self 
attention neural network layers are masked such that the 
time step output depends only on the input sequence and the 
output tokens that have already been generated as of the 
generation time step and not on any output tokens that are 
after the last token that had already been generated in the 
output sequence . 

3. The method of claim 1 , wherein the input sequence and 
the output tokens that have already been generated as of the 
generation time step are separated by a predetermined 
special separator token in the combined sequence . 

4. The method of claim 1 , wherein the plurality of masked 
self - attention neural network layers are masked multi - head 
attention layers . 

5. The method of claim 1 , wherein the plurality of masked 
self - attention neural network layers comprise at least one 
local attention layer , and wherein each local attention layer 
comprises a local attention sub - layer that is configured to : 

receive a layer input sequence comprising a plurality of 
layer inputs ; 

divide the layer input sequence into a plurality of sub 
sequences ; 

generate , for sub - sequence , a sub - sequence output by 
performing self - attention on the layer inputs in the 
sub - sequence ; and 

merge the sub - sequence outputs to generate a layer output 
sequence . 

6. The method of claim 1 , wherein the plurality of masked 
self - attention neural network layers comprise at least one 
memory - compressed attention layer , and wherein each 
memory - compressed attention layer comprises a memory 
compressed sub - layer that is configured to : 

obtain an attention input comprising a plurality of keys , 
values , and queries ; 

applying a strided convolution to the keys to generate a 
reduced set of keys ; 

applying a strided convolution to the values to generate a 
reduced set of values ; 

generate a layer output sequence by performing self 
attention using the reduced set of keys , the reduced set 
values , and the plurality of queries . 

7. The method of claim 6 , wherein obtaining the attention 
input comprises : 

receiving a layer input sequence comprising a plurality of 
layer inputs ; and 

projecting the layer input sequence into the keys , values , 
and queries using respective projection matrices . 
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8. The method of claim 1 , wherein the input sequence 
comprises text from a plurality of documents , and wherein 
the output sequence is text that summarizes the plurality of 
documents . 

9. The method of claim 8 , wherein the input sequence 
further comprises text specifying a topic to which the 
plurality of documents relate . 

10. The method of claim , further comprising : 
determining that the selected output for the time step is a 

pre - determined end - of - sequence token ; and 
in response , providing the output tokens that have already 

been generated as of the generation time step as the 
final output sequence for the input sequence . 

11. The method of claim 1 , wherein the plurality of neural 
network layers include one or more mixture - of - experts 
layers . 

12. A system comprising one or more computers and one 
or more storage devices storing instructions that when 
executed by the one or more computers cause the one or 
more computers to perform operations for generating an 
output sequence comprising a plurality of output tokens 
from an input sequence comprising a plurality of input 
tokens , the operations comprising , at each of a plurality of 
generation time steps : 

generating a combined sequence for the generation time 
step that includes the input sequence followed by the 
output tokens that have already been generated as of the 
generation time step ; 

processing the combined sequence using a self - attention 
decoder neural network , wherein the self - attention 
decoder neural network comprises a plurality of neural 
network layers that include a plurality of masked 
self - attention neural network layers , and wherein the 
self - attention decoder neural network is configured to 
process the combined sequence through the plurality of 
neural network layers to generate a time step output 
that defines a score distribution over a set of possible 
output tokens ; and 

selecting , using the time step output , an output token from 
the set of possible output tokens as the next output 
token in the output sequence . 

13. One or more computer storage media storing instruc 
tions that when executed by one or more computers cause 
the one or more computers to perform operations for gen 
erating an output sequence comprising a plurality of output 
tokens from an input sequence comprising a plurality of 
input tokens , the operations comprising , at each of a plu 
rality of generation time steps : 

generating a combined sequence for the generation time 
step that includes the input sequence followed by the 
output tokens that have already been generated as of the 
generation time step ; 

processing the combined sequence using a self - attention 
decoder neural network , wherein the self - attention 
decoder neural network comprises a plurality of neural 
network layers that include a plurality of masked 
self - attention neural network layers , and wherein the 
self - attention decoder neural network is configured to 
process the combined sequence through the plurality of 

neural network layers to generate a time step output 
that defines a score distribution over a set of possible 
output tokens ; and 

selecting , using the time step output , an output token from 
the set of possible output tokens as the next output 
token in the output sequence . 

14. The system of claim 12 , wherein the masked self 
attention neural network layers are masked such that the 
time step output depends only on the input sequence and the 
output tokens that have already been generated as of the 
generation time step and not on any output tokens that are 
after the last token that had already been generated in the 
output sequence . 

15. The system of claim 12 , wherein the input sequence 
and the output tokens that have already been generated as of 
the generation time step are separated by a predetermined 
special separator token in the combined sequence . 

16. The system of claim 12 , wherein the plurality of 
masked self - attention neural network layers are masked 
multi - head attention layers . 

17. The system of claim 12 , wherein the plurality of 
masked self - attention neural network layers comprise at 
least one local attention layer , and wherein each local 
attention layer comprises a local attention sub - layer that is 
configured to : 

receive a layer input sequence comprising a plurality of 
layer inputs ; 

divide the layer input sequence into a plurality of sub 
sequences ; 

generate , for sub - sequence , a sub - sequence output by 
performing self - attention on the layer inputs in the 
sub - sequence ; and 

merge the sub - sequence outputs to generate a layer output 
sequence . 

18. The system of claim 12 , wherein the plurality of 
masked self - attention neural network layers comprise at 
least one memory - compressed attention layer , and wherein 
each memory - compressed attention layer comprises a 
memory - compressed sub - layer that is configured to : 

obtain an attention input comprising a plurality of keys , 
values , and queries ; 

applying a strided convolution to the keys to generate a 
reduced set of keys ; 

applying a strided convolution to the values to generate a 
reduced set of values ; 

generate a layer output sequence by performing self 
attention using the reduced set of keys , the reduced set 
values , and the plurality of queries . 

19. The system of claim 18 , wherein obtaining the atten 
tion input comprises : 

receiving a layer input sequence comprising a plurality of 
layer inputs ; and 
projecting the layer input sequence into the keys , 

values , and queries using respective projection 
matrices . 

20. The system of claim 12 , wherein the input sequence 
comprises text from a plurality of documents , and wherein 
the output sequence is text that summarizes the plurality of 
documents . 


