
US 20200342316A1
IN

((19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0342316 A1

Shazeer et al . (43) Pub . Date : Oct. 29 , 2020

Publication Classification (54) ATTENTION - BASED DECODER - ONLY
SEQUENCE TRANSDUCTION NEURAL
NETWORKS (51)

(71) Applicant : GOOGLE LLC , Mountain View , CA

Int . Cl .
GOON 3/08
GO6N 3/04
U.S. Cl .
CPC

(2006.01)
(2006.01)

(US) (52)
G06N 3/08 (2013.01) ; G06N 3/0454

(2013.01)

(57) ABSTRACT

(72) Inventors : Noam M. Shazeer , Palo Alto , CA
(US) ; Lukasz Mieczyslaw Kaiser ,
Mountain View , CA (US) ; Etienne Pot ,
Palo Alto , CA (US) ; Mohammad
Saleh , Santa Clara , CA (US) ; Ben
David Goodrich , San Francisco , CA
(US) ; Peter J. Liu , Santa Clara , CA
(US) ; Ryan Sepassi , Palo Alto , CA
(US)

(21) Appl . No .: 16 / 759,690
(22) PCT Filed : Oct. 29 , 2018
(86) PCT No .: PCT / US2018 / 058025

$ 371 (c) (1) ,
(2) Date : Apr. 27 , 2020

Related U.S. Application Data
(60) Provisional application No. 62 / 578,358 , filed on Oct.

27 , 2017 .

Methods , systems , and apparatus , including computer pro
grams encoded on a computer storage medium , for gener
ating an output sequence from an input sequence . One of the
methods includes , at each of a plurality of generation time
steps : generating a combined sequence for the generation
time step that includes the input sequence followed by the
output tokens that have already been generated as of the
generation time step ; processing the combined sequence
using a self - attention decoder neural network to generate a
time step output that defines a score distribution over a set
of possible output tokens ; and selecting , using the time step
output , an output token from the set of possible output
tokens as the next output token in the output sequence .

Neural Network System
100

Self - Attention Decoder
Neural
Network Output

Probabilities 150

190 Softmax

180 Linear

Add & Norm

134 Feed
Forward Output

Sequence
152

130

Nx
Add & Norm

Multi - Head
Attention 132

Positional
Encoding +

120
Input

Embedding

Combined Sequence
108

Input Sequence
102

Patent Application Publication Oct. 29 , 2020 Sheet 1 of 4 US 2020/0342316 A1

Neural Network System
100

Self - Attention Decoder
Neural
Network Output

Probabilities 150

190 Softmax

-180 Linear

Add & Norm

134 Feed
Forward 130

Output
Sequence
152

Nx
Add & Norm

Multi - Head
Attention 132

Positional
Encoding +

Input
Embedding 120

Combined Sequence
108

Input Sequence
102

FIG . 1

Patent Application Publication Oct. 29 , 2020 Sheet 2 of 4 US 2020/0342316 A1

Linear

MatMul
Concat

Soft Max

230
Mask (opt .)

Scaled Dot - Product
Attention h

Scale 230
Linear Linear Linear

MatMul

Q K V
V ?

200 FIG . 2A

Decoder Self - Attention

Memory - compressed Attention

Local Attention

Patent Application Publication

Merge

Masked Multi - Head Attention

Masked Multi - Head Attention

Mask Multi - Head

Mask Multi - Head Att .

Mask Multi - Head Att .

Conv

Att .

Oct. 29 , 2020 Sheet 3 of 4

V

?

V

K

Q

Split

250

270

290

US 2020/0342316 A1

FIG . 2B

Patent Application Publication Oct. 29 , 2020 Sheet 4 of 4 US 2020/0342316 A1

Generate combined
sequence

302

Process combined
sequence using

decoder

304

300
Select output token

306

FIG . 3

US 2020/0342316 A1 Oct. 29 , 2020
1

ATTENTION - BASED DECODER - ONLY
SEQUENCE TRANSDUCTION NEURAL

NETWORKS

specification , the described systems are able to efficiently
perform sequence transduction on very long sequences
without consuming an excessive amount of computational
resources .

CROSS - REFERENCE TO RELATED
APPLICATION

[0001] This application claims priority to U.S. Patent
Application Ser . No. 62 / 578,358 , filed on Oct. 27 , 2017 , the
entire contents of which are hereby incorporated by refer
ence .

BACKGROUND

[0002] This specification relates to transducing sequences
using neural networks . Neural networks are machine learn
ing models that employ one or more layers of nonlinear units
to predict an output for a received input . Some neural
networks include one or more hidden layers in addition to an
output layer . The output of each hidden layer is used as input
to the next layer in the network , i.e. , the next hidden layer
or the output layer . Each layer of the network generates an
output from a received input in accordance with current
values of a respective set of parameters .

SUMMARY

[0003] This specification describes a system implemented
as computer programs on one or more computers in one or
more locations that generates an output sequence that
includes a respective output at each of multiple positions in
an output order from an input sequence that includes a
respective input at each of multiple positions in an input
order , i.e. , transduces the input sequence into the output
sequence . In particular , the system generates the output
sequence using a decoder neural network that is self - atten
tion - based .
[0004] Particular embodiments of the subject matter
described in this specification can be implemented so as to
realize one or more of the following advantages .
[0005] The decoder - only architecture of the system
described in this specification can effectively and scalably
attend to very long sequences , much longer than conven
tional sequence transduction systems . Thus , the system can
more effectively perform sequence transduction tasks that
require processing long input sequences , generating long
output sequences , or both . For example , the system may
outperform conventional systems on an expressive summa
rization task that requires generating a long summary of
multiple documents . Such tasks and other long sequence
transduction tasks may require processing and extracting
information from an input sequence that includes 10,000 or
more tokens to effective generate an output sequence . How
ever , because the system is entirely or mostly attention
based , the system is nonetheless as computationally - efficient
or , in many cases , more computationally - efficient than exist
ing techniques .
[0006] Additionally , because the described system uses
only a decoder neural network and does not require a
separate encoder network , the number of parameters and ,
therefore , the memory consumed by storing and running
inference using the neural network are greatly reduced
relative to other networks that are capable of performing
well on sequence transduction tasks .
[0007] Moreover , by making use of local attention ,
memory - compressed attention , or both as described in this

[0008] More generally , the described system is also advan
tageous over many existing systems because of the use of
self - attention . Many existing approaches to sequence trans
duction using neural networks use recurrent neural networks
in both the encoder and the decoder . While these kinds of
networks can achieve good performance on sequence trans
duction tasks , their computation is sequential in nature , i.e. ,
a recurrent neural network generates an output at a current
time step conditioned on the hidden state of the recurrent
neural network at the preceding time step . This sequential
nature precludes parallelization , resulting in long training
and inference times and , accordingly , workloads that utilize
a large amount of computational resources .
[0009] On the other hand , because decoder of the
described system is attention - based , the system can trans
duce sequences quicker , be trained faster , or both , because
the operation of the network can be more easily parallelized .
That is , because the described neural network relies entirely
on an attention mechanism to draw global dependencies
between input and output and does not employ any recurrent
neural network layers , the problems with long training and
inference times and high resource usage caused by the
sequential nature of recurrent neural network layers are
mitigated .
[0010] Moreover , the described neural network can trans
duce sequences more accurately than existing networks that
are based on convolutional layers or recurrent layers , even
though training and inference times are shorter . In particular ,
in conventional models , the number of operations required
to relate signals from two arbitrary input or output positions
grows with the distance between positions , e.g. , either
linearly or logarithmically depending on the model archi
tecture . This makes it more difficult to learn dependencies
between distant positions during training . In the presently
described neural network , this number of operations is
reduced to a constant number of operations because of the
use of attention (and , in particular , self - attention) while not
relying on recurrence or convolutions . Self - attention , some
times called intra - attention , is an attention mechanism relat
ing different positions of a single sequence in order to
compute a representation of the sequence . The use of
attention mechanisms allows the neural network to effec
tively learn dependencies between distant positions during
training , improving the accuracy of the neural network on
various transduction tasks , e.g. , machine translation . The
described neural network can also exhibit improved perfor
mance over conventional sequence transduction neural net
works without task - specific tuning through the use of the
attention mechanism .

[0011] The details of one or more embodiments of the
subject matter of this specification are set forth in the
accompanying drawings and the description below . Other
features , aspects , and advantages of the subject matter will
become apparent from the description , the drawings , and the
claims .

US 2020/0342316 A1 Oct. 29 , 2020
2

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG . 1 shows an example neural network system .
[0013] FIG . 2A is a diagram showing attention mecha
nisms that are applied by the attention sub - layers in the
subnetworks of the decoder neural network .
[0014] FIG . 2B is a diagram showing attention mecha
nisms that reduce the computational cost for processing of
long sequences .
[0015] FIG . 3 is a flow diagram of an example process for
generating an output sequence from an input sequence .
[0016] Like reference numbers and designations in the
various drawings indicate like elements .

DETAILED DESCRIPTION

[0017] This specification describes a system implemented
as computer programs on one or more computers in one or
more locations that generates a target sequence that includes
a respective output at each of multiple positions in an output
order from an input sequence that includes a respective input
at each of multiple positions in an input order , i.e. , trans
duces the input sequence into the target sequence .
[0018] For example , the system may be a neural machine
translation system . That is , if the input sequence is a
sequence of words in an original language , e.g. , a sentence
or phrase , the target sequence may be a translation of the
input sequence into a target language , i.e. , a sequence of
words in the target language that represents the sequence of
words in the original language .
[0019] As another example , the system may be a speech
recognition system . That is , if the input sequence is a
sequence of audio data representing a spoken utterance , the
target sequence may be a sequence of graphemes , charac
ters , or words that represents the utterance , i.e. , is a tran
scription of the input sequence .
[0020] As another example , the system may be a natural
language processing system . For example , if the input
sequence is a sequence of words in an original language ,
e.g. , a sentence or phrase , the target sequence may be a
summary of the input sequence in the original language , i.e. ,
a sequence that has fewer words than the input sequence but
that retains the essential meaning of the input sequence . As
another example , if the input sequence is a sequence of
words that form a question , the target sequence can be a
sequence of words that form an answer to the question .
[0021] As another example , the system may be part of a
computer - assisted medical diagnosis system . For example ,
the input sequence can be a sequence of data from an
electronic medical record and the target sequence can be a
sequence of predicted treatments .
[0022] As another example , the system may be part of an
image processing system . For example , the input sequence
can be an image , i.e. , a sequence of color values from the
image , and the output can be a sequence of text that
describes the image . As another example , the input sequence
can be a sequence of text or a different context and the output
sequence can be an image that describes the context .
[0023] As another example , the system may be part of an
extractive summarization system . In particular , the input
sequence can be text from multiple input documents and ,
optionally , a topic of the documents , and the output
sequence can be a text summary of the input documents .

[0024] In particular , the neural network is a self - attention
based decoder neural network . In some cases , the decoder
does not include any convolutional layers or any recurrent
layers .
[0025] FIG . 1 shows an example neural network system
100. The neural network system 100 is an example of a
system implemented as computer programs on one or more
computers in one or more locations , in which the systems ,
components , and techniques described below can be imple
mented .
(0026] The neural network system 100 receives an input
sequence 102 and processes the input sequence 102 to
transduce the input sequence 102 into an output sequence
152 .
[0027] The input sequence 102 has a respective input
token at each of multiple input positions in an input order
and the output sequence 152 has a respective output token at
each of multiple output positions in an output order . That is ,
the input sequence 102 has multiple inputs arranged accord
ing to an input order and the output sequence 152 has
multiple outputs arranged according to an output order .
[0028] As described above , the neural network system 100
can perform any of a variety of tasks that require processing
sequential inputs to generate sequential outputs . In the
particular example where the neural network system 100
performs expressive summarization , the input sequence can
include text from a plurality of documents , and the output
sequence can be text that summarizes the plurality of
documents . Optionally , the input sequence can also include ,
e.g. , at the beginning of the input sequence , a desired topic
for the summary text , i.e. , text specifying a topic to which
the plurality of documents relate .
[0029] The neural network system 100 includes a self
attention decoder neural network 150. As will be described
in more detail below , the self - attention decoder neural
network 150 includes a plurality of neural network layers
that include a plurality of masked self - attention neural
network layers .
[0030] The decoder neural network 150 is configured to
generate the output sequence in an auto - regressive manner .
[0031] That is , the decoder neural network 150 generates
the output sequence output by output by generating an
output token at a respective output position at each of a
plurality of generation time steps . That is , at each generation
time step , the decoder neural network 150 generates a new
output token at the next output position in the output order
conditioned on the input sequence and the output tokens at
output positions preceding the next output position in the
output order .
[0032] In particular , for a given output position , the
decoder neural network 150 generates a time step output that
defines a probability distribution over possible output tokens
at the given output position .
[0033] The system 100 can then select a network output
for the output position by sampling from the probability
distribution or by selecting the output token with the highest
probability .
[0034] More specifically , at each generation time step , the
system 100 generates a combined sequence 108 for the
generation time step .
[0035] The combined sequence 108 includes the input
sequence followed by the output tokens that have already
been generated as of the generation time step , i.e. , the output
tokens at preceding positions in the output order . In some

US 2020/0342316 A1 Oct. 29 , 2020
3

[0042] In some cases , the positional embeddings are
learned . As used in this specification , the term “ learned ”
means that an operation or a value has been adjusted during
the training of the decoder neural network 150. Training the
decoder neural network 150 is described below with refer
ence to FIG . 3 .
[0043] In some other cases , the positional embeddings are
fixed and are different for each position . For example , the
embeddings can be made up of sine and cosine functions of
different frequencies and can satisfy :

PE (pos , 21) = sin (pos / 100002ildmodel)

implementations , the already generated output tokens imme
diately follow the input sequence tokens in the combined
sequence 108. In some other implementations , the input
sequence and the output tokens that have already been
generated as of the generation time step are separated by a
predetermined special separator token in the combined
sequence 108 .
[0036] In other words , the system 100 represents the input
sequence and the already generated output jointly as a single
combined sequence , removing the need to employ an
encoder neural network during transduction of the input
sequence .

[0037] The decoder neural network 150 then processes the
combined sequence 108 to generate the output that defines
the probability distribution over possible output tokens at the
output position .
[0038] Because the decoder neural network 150 is auto
regressive , at each generation time step , the decoder 150
operates on the output tokens that have already been gen
erated before generation time step , i.e. , the outputs at
output positions preceding the corresponding output posi
tion in the output order . In some implementations , to ensure
this is the case during both inference and training , at each
generation time step the decoder neural network 150 shifts
the already generated outputs right by one output order
position (i.e. , introduces a one position offset into the
already generated network output sequence) and (as will be
described in more detail below) masks certain operations so
that positions can only attend to positions up to and includ
ing that position in the output sequence (and not subsequent
positions) . While the remainder of the description below
describes that , when generating a given output at a given
output position , various components of the decoder 150
operate on data at output positions preceding the given
output positions (and not on data at any other output
positions) , it will be understood that this type of condition
ing can be effectively implemented using the shifting
described above .
[0039] The decoder neural network 150 includes an
embedding layer 120 , a sequence of one or more decoder
subnetworks 130 , a linear layer 180 , and a softmax layer
190. In particular , as shown in FIG . 1 , the decoder neural
network includes N decoder subnetworks 130 .
[0040] The embedding layer 120 is configured to , for each
token in the combined sequence , map the token to a numeric
representation of the token in an embedding space , e.g. , into
a vector in the embedding space . The embedding layer 120
then provides the numeric representations of the tokens to
the first subnetwork in the sequence of decoder subnetworks
130 , i.e. , to the first decoder subnetwork 130 of the N
decoder subnetworks 130 .
[0041] In particular , in some implementations , the embed
ding layer 120 is configured to map each token to an
embedded representation of the network input and then
combine , e.g. , sum or average or concatenate , the embedded
representation of the token with a positional embedding of
the position of the token in the combined sequence to
generate a combined embedded representation of the token .
That is , each position in the combined sequence has a
corresponding embedding and for each token the embedding
layer 120 combines the embedded representation of the
token with the embedding of the token's position in the
combined sequence .

PExpos , 2i + 1) = cos (pos / 100002ildmodel)
where pos is the position , i is the dimension within the
positional embedding , and dmode is the dimensionality of the
positional embedding (and of the other vectors processed by
the neural network 150) .
[0044] The combined embedded representation is then
used as the numeric representation of the token .
[0045] Each of the decoder subnetworks 130 is configured
to receive a respective decoder subnetwork input for each of
the plurality of combined sequence positions and to generate
a respective subnetwork output for each of the plurality of
combined sequence positions .
[0046] The decoder subnetwork outputs generated by the
last decoder subnetwork in the sequence are then provided
as input to the linear layer 180 .
[0047] For the first decoder subnetwork in the sequence ,
the decoder subnetwork input is the numeric representations
generated by the embedding layer 120 , and , for each decoder
subnetwork other than the first decoder subnetwork in the
sequence , the decoder subnetwork input is the decoder
subnetwork output of the preceding decoder subnetwork in
the sequence .
[0048] Each decoder subnetwork 130 includes a decoder
masked self - attention sub - layer 132. The decoder self - atten
tion sub - layer 132 is configured to , at each generation time
step , receive an input for each combined sequence position
preceding the corresponding output position , i.e. , preceding
the output position for which the output token is currently
being generated and , for each of the particular combined
sequence positions , apply an attention mechanism over the
inputs at the combined sequence positions preceding the
corresponding position using one or more queries derived
from the input at the particular output position to generate a
updated representation for the particular output position .
[0049] That is , the decoder self - attention sub - layer 172
applies an attention mechanism that is masked so that it does
not attend over or otherwise process any data that is not at
a position preceding the current output position in the
combined sequence .
[0050] The masked attention mechanism and how the
attention mechanism is applied by the decoder self - attention
sub - layer 132 will be described in more detail below with
reference to FIG . 2 .
[0051] In some examples , different decoder self - attention
sub - layers 132 in different decoder subnetworks 130 employ
different attention mechanisms . For example , as will be
described below with reference to FIG . 2A and 2B , some
self - attention sub - layers can employ local attention while
others employ memory - compressed attention . In particular ,
in some implementations , the type of attention alternates
between sub - networks , i.e. , with every second subnetwork

US 2020/0342316 A1 Oct. 29 , 2020
4

employing memory - compressed attention and the remainder
of the subnetworks employing local attention .
[0052] In some implementations , each of the decoder
subnetworks 130 also includes a residual connection layer
that combines the outputs of the decoder self - attention
sub - layer with the inputs to the decoder self - attention sub
layer to generate a decoder self - attention residual output and
a layer normalization layer that applies layer normalization
to the decoder self - attention residual output . These two
layers are collectively referred to as an “ Add & Norm ”
operation in FIG . 1 .
[0053] Some or all of the decoder subnetworks can also
include a position - wise feed - forward layer 134 that is con
figured to operate on each position in the combined
sequence separately . In particular , for each combined
sequence position , the feed - forward layer 134 is configured
receive an input at the combined sequence position and
apply a sequence of transformations to the input at the
combined sequence position to generate an output for the
combined sequence position . For example , the sequence of
transformations can include two or more learned linear
transformations each separated by an activation function ,
e.g. , a non - linear elementwise activation function , e.g. , a
ReLU activation function . The inputs received by the posi
tion - wise feed - forward layer 134 can be the outputs of the
layer normalization layer when the residual and layer nor
malization layers are included or the outputs of the decoder
self - attention sub - layer 132 when the residual and layer
normalization layers are not included . The transformations
applied by the layer 134 will generally be the same for each
input position (but different feed - forward layers in different
subnetworks will apply different transformations) .
[0054] In cases where a decoder subnetwork 130 includes
a position - wise feed - forward layer 134 , the decoder subnet
work can also include a residual connection layer that
combines the outputs of the position - wise feed - forward
layer with the inputs to the position - wise feed - forward layer
to generate a decoder position - wise residual output and a
layer normalization layer that applies layer normalization to
the decoder position - wise residual output . These two layers
are also collectively referred to as an “ Add & Norm ”
operation in FIG . 1. The outputs of this layer normalization
layer can then be used as the outputs of the decoder
subnetwork 130 .
[0055] At each generation time step , the linear layer 180
applies a learned linear transformation to the output of the
last decoder subnetwork 130 in order to project the output of
the last decoder subnetwork 130 into the appropriate space
for processing by the softmax layer 190. The softmax layer
190 then applies a softmax function over the outputs of the
linear layer 180 to generate the probability distribution over
the possible network outputs at the generation time step .
[0056] If the selected output token at a given generation
time step is a pre - determined end - of - sequence token , the
system 100 can determine that the output sequence 152 is
complete and provide the output tokens that have already
been generated as of the generation time step as the final
output sequence 152 for the input sequence 102 .
[0057] Thus , as can be seen from FIG . 1 , rather than
relying on an encoder neural network to first encode the
input sequence and then generating the output sequence
conditioned on the encoding of the input sequence as occurs
in some conventional systems , the system 100 operates on
the input sequence at each generation time step by way of

the combined sequence . This use of the combined sequence
allows the system 100 to effectively process long input
sequences , i.e. , because information from the entire input
sequence is directly available at each generation time step ,
while still having fewer parameters than conventional sys
tems , i.e. , because the system 100 does not have an encoder
neural network .

[0058] While not shown in FIG . 1 , in some cases , to
increase the computational capacity of the decoder neural
network 150 without excessive increases in processing time
or computational cost , the decoder neural network 150 can
include one or more mixture of experts layers . At each time
step , mixture of expert layers select a small subset of a large
number of experts and combine outputs from the small
subset of experts to generate the layer output for the time
step . Mixture of experts layers are described in more detail
in Noam Shazeer , Azalia Mirhoseini , Krzysztof Maziarz ,
Andy Davis , Quoc Le , Geoffrey Hinton , and Jeff Dean .
Outrageously large neural networks : The sparsely - gated
mixture - of - experts layer . arXiv preprint arXiv : 1701.06538 ,
2017 .
[0059] FIG . 2A is a diagram 200 showing attention
mechanisms that are applied by the attention sub - layers in
the subnetworks of the decoder neural network 150 .
[0060] Generally , an attention mechanism maps a query
and a set of key - value pairs to an output , where the query ,
keys , and values are all vectors . The output is computed as
a weighted sum of the values , where the weight assigned to
each value is computed by a compatibility function of the
query with the corresponding key .
[0061] More specifically , each attention sub - layer applies
a scaled dot - product attention mechanism . In scaled dot
product attention , for a given query , the attention sub - layer
computes the dot products of the query with all of the keys ,
divides each of the dot products by a scaling factor , e.g. , by
the square root of the dimensions of the queries and keys ,
and then applies a softmax function over the scaled dot
products to obtain the weights on the values . The attention
sub - layer then computes a weighted sum of the values in
accordance with these weights . Thus , for scaled dot - product
attention the compatibility function is the dot product and
the output of the compatibility function is further scaled by
the scaling factor .
[0062] In operation and as shown in the left hand side of
FIG . 2 , the attention sub - layer computes the attention over
a set of queries simultaneously . In particular , the attention
sub - layer packs the queries into a matrix Q , packs the keys
into a matrix K , and packs the values into a matrix V. To
pack a set of vectors into a matrix , the attention sub - layer
can generate a matrix that includes the vectors as the rows
of the matrix .
[0063] The attention sub - layer then performs a matrix
multiply between the matrix Q and the transpose of the
matrix K to generate a matrix of compatibility function
outputs .
[0064] The attention sub - layer then scales the compatibil
ity function output matrix , i.e. , by dividing each element of
the matrix by the scaling factor .
[0065] The attention sub - layer then applies a softmax over
the scaled output matrix to generate a matrix of weights and
performs a matrix multiply between the weight matrix and
the matrix V to generate an output matrix that includes the
output of the attention mechanism for each of the values .

US 2020/0342316 A1 Oct. 29 , 2020
5

[0066] Because the decoder attention sub - layers use mask
ing , the attention sub - layer masks the scaled output matrix
before applying the softmax . That is , the attention sub - layer
masks out (sets to negative infinity) , all values in the scaled
output matrix that correspond to positions after the current
output position .
[0067] In some implementations , to allow the attention
sub - layers to jointly attend to information from different
representation subspaces at different positions , the attention
sub - layers employ multi - head attention , as illustrated on the
right hand side of FIG . 2 .
[0068] In particular , to implement multi - ahead attention ,
the attention sub - layer applies h different attention mecha
nisms in parallel . In other words , the attention sub - layer
includes h different attention layers , with each attention
layer within the same attention sub - layer receiving the same
original queries , original keys K , and original values V.
[0069] Each attention layer is configured to transform the
original queries , and keys , and values using learned linear
transformations and then apply the attention mechanism to
the transformed queries , keys , and values . Each attention
layer will generally learn different transformations from
each other attention layer in the same attention sub - layer .
[0070] In particular , each attention layer is configured to
apply a learned query linear transformation to each original
query to generate a layer - specific query for each original
query , apply a learned key linear transformation to each
original key to generate a layer - specific key for each original
key , and apply a learned value linear transformation to each
original value to generate a layer - specific values for each
original value . The attention layer then applies the attention
mechanism described above using these layer - specific que
ries , keys , and values to generate initial outputs for the
attention layer .
[0071] The attention sub - layer then combines the initial
outputs of the attention layers to generate the final output of
the attention sub - layer . As shown in FIG . 2 , the attention
sub - layer concatenates the outputs of the attention layers and
applies a learned linear transformation to the concatenated
output to generate the output of the attention sub - layer .
[0072] In some cases , the learned transformations applied
by the attention sub - layer reduce the dimensionality of the
original keys and values and , optionally , the queries . For
example , when the dimensionality of the original keys ,
values , and queries is d and there are h attention layers in the
sub - layer , the sub - layer may reduce the dimensionality of
the original keys , values , and queries to d / h . This keeps the
computation cost of the multi - head attention mechanism
similar to what the cost would have been to perform the
attention mechanism once with full dimensionality while at
the same time increasing the representative capacity of the
attention sub - layer .
[0073] For each decoder self - attention sub - layer , each
position in the decoder attends to all positions in the decoder
preceding that position . Thus , all of the keys , values , and
queries come from the same place , in this case , the output of
the previous subnetwork in the decoder , or , for the decoder
self - attention sub - layer in the first decoder subnetwork , the
embeddings of the combined sequence tokens already gen
erated . Thus , there is a respective key , value , and query for
each position in the output order before the current position .
[0074] When the decoder self - attention sub - layer imple
ments multi - head attention , each attention layer in the
decoder self - attention sub - layer is configured to , at each

generation time step , apply a learned query linear transfor
mation to the input at each combined sequence position
preceding the corresponding output position to generate a
respective query for each combined sequence position ,
apply a learned key linear transformation to each input at
each combined sequence position preceding the correspond
ing output position to generate a respective key for each
output position , apply a learned value linear transformation
to each input at each combined sequence position preceding
the corresponding output position to generate a respective
key for each output position , and then apply the attention
mechanism (i.e. , the scaled dot - product attention mechanism
described above) using the queries , keys , and values to
determine an initial decoder self - attention output for each of
the output positions . The sub - layer then combines the initial
outputs of the attention layers as described above .
[0075] In some implementations , to allow the decoder
neural network to more effectively process long combined
sequences , the attention mechanism is modified by limiting
the dot products between Q and K in order to reduce the
computational cost of the attention mechanism while main
taining high quality output generation .
[0076] FIG . 2B is an example diagram showing attention
mechanisms that reduce the computational cost for process
ing of long sequences .
[0077] In particular , FIG . 2B shows three different types of
attention mechanisms : the masked multi - head attention
mechanism 250 described above , memory compressed
attention 270 , and local attention 290 .
[0078] As described above , for masked multi - head atten
tion 250 , the matrices V , K , and Q are determined and then
masked multi - head attention is applied .
[0079] In memory compressed attention 270 , on the other
hand , after the matrices V , K , and Q are determined as
described above , the number of keys and values are reduced
by applying a strided convolution (“ Cony ”) to the V and K
matrices . The number of queries in the Q matrix remains
unchanged . This modification divides the number of activa
tions by a compression factor that is based on the size of the
kernels and the stride factor of the strided convolution . For
example , the convolution kernels may be of size 3 and the
stride for the factor for the strided convolution may be 3 .
Masked multi - head attention is then applied to the reduced
V and K matrices as described above .
[0080] The memory - compressed attention mechanism 270
is therefore able to exchange information globally on the
entire sequence with reduced computational cost relative to
the standard multi - head attention mechanism 250 because of
the application the strided convolution .
[0081] Unlike memory - compressed attention 270 and
multi - head attention 250 , local attention 290 performs atten
tion independently within each of multiple blocks of the
combined sequence . In particular , for local attention , com
bined sequence tokens are divided into blocks (or “ sub
sequences ”) of similar length and attention is performed in
each block independently . As the attention memory cost per
block is constant in this scheme , this modification keeps the
number of activations linear with respect to the sequence
length but does not allow each position to attend to the entire
sequence . In more detail , for local attention , the input
sequence to the attention mechanism is split into blocks
(" split ") and multi - head attention is applied independently
within each block as described above . The attention outputs

US 2020/0342316 A1 Oct. 29 , 2020
6

for each block are then concatenated (“ merge ”) to generate
the output of the local attention mechanism .
[0082] As described above , in some implementations ,
different decoder self - attention sub - layers 132 in different
decoder subnetworks 130 employ different attention mecha
nisms . For example , some self - attention sub - layers can
employ local attention while others employ memory - com
pressed attention . In particular , in some implementations ,
the type of attention alternates between sub - networks , i.e. ,
with every second , i.e. , every other , subnetwork employing
memory - compressed attention and the remainder of the
subnetworks employing local attention . Having some layers
apply memory - compressed attention while others employ
local attention allows the decoder neural network to attend
over the entire combined sequence even when the combined
sequence is very long without consuming an excessive
amount of computational resources .
[0083] FIG . 3 is a flow diagram of an example process for
generating an output sequence from an input sequence . For
convenience , the process 300 will be described as being
performed by a system of one or more computers located in
one or more locations . For example , a neural network
system , e.g. , neural network system 100 of FIG . 1 , appro
priately programmed in accordance with this specification ,
can perform the process 300 .
[0084] The system can perform the process 300 at each of
multiple generation time steps to generate the output
sequence using a self - attention decoder neural network . The
decoder neural network is configured to generate the output
sequence from the input sequence in an auto - regressive
manner . That is , the decoder neural network generates one
output from the output sequence at each generation time
step . Thus , by performing the process 300 at each of the
multiple generation time steps , the system generates all of
the output tokens in the output sequence .
[0085] The system generates a combined sequence for the
generation time step that includes the input sequence fol
lowed by the output tokens that have already been generated
as of the generation time step (step 310) .
[0086] The system processes the combined sequence
using the self - attention decoder neural network to generate
a time step output that defines a score distribution over a set
of possible output tokens (step 320) .
[0087] The system selects , using the time step output , an
output token from the set of possible output tokens as the
next output token in the output sequence (step 330) .
[0088] The system can perform the process 300 for an
input sequence for which the desired output , i.e. , the output
sequence that should be generated by the system for the
input sequence , is not known . When this is the case , the
system performs the process 300 sequentially for all of the
generation time steps .
[0089] The system can also perform the process 300 on
input sequences in a set of training data , i.e. , a set of inputs
for which the output sequence that should be generated by
the system is known , in order to train the decoder to
determine trained values for the parameters of the decoder .
The process 300 can be performed repeatedly on inputs
selected from a set of training data as part of a conventional
machine learning training technique to train the initial neural
network layers , e.g. , a gradient descent with backpropaga
tion training technique that uses a conventional optimizer ,
e.g. , the Adam optimizer . During training , the system can
incorporate any number of techniques to improve the speed ,

the effectiveness , or both of the training process . For
example , the system can use dropout , label smoothing , or
both to reduce overfitting . As another example , the system
can perform the training using a distributed architecture that
trains multiple instances of the sequence transduction neural
network in parallel .
[0090] However , during training , because the entire
ground truth output sequence is available at the beginning of
the training process , the system can generate the time step
output for each of the generation time steps in parallel , i.e. ,
the system does not need to perform the process 300
sequentially for each generation time step . In other words ,
the system can provide as input to the decoder neural
network a combined sequence that includes the input
sequence followed by the entire known output sequence and
can generate the time step outputs for all of the generation
time steps in parallel . The system can then update , using the
machine learning training technique , the decoder parameters
to optimize a maximum - likelihood objective that depends on
the scores assigned to the correct output tokens at each time
step .
[0091] Additionally , in some implementations , during
training , the system also includes a prediction of the next
tokens in the input sequence in the maximum - likelihood
objective . In other words , during training , the decoder also
generates , for each input position , a score distribution over
possible input tokens conditioned on the input tokens at
preceding positions in the input sequence . The system then
includes the scores assigned to the correct input token at
each input position in the maximum - likelihood objective . In
so doing , the model is forced to accurately predict the next
token in the input as well as the next token in the output and
error signals are propagated from both input and output
positions during training , improving the performance of the
model after it is trained .
[0092] This specification uses the term " configured ” in
connection with systems and computer program compo
nents . For a system of one or more computers to be
configured to perform particular operations or actions means
that the system has installed on it software , firmware ,
hardware , or a combination of them that in operation cause
the system to perform the operations or actions . For one or
more computer programs to be configured to perform par
ticular operations or actions means that the one or more
programs include instructions that , when executed by data
processing apparatus , cause the apparatus to perform the
operations or actions .
[0093] Embodiments of the subject matter and the func
tional operations described in this specification can be
implemented in digital electronic circuitry , in tangibly
embodied computer software or firmware , in computer hard
ware , including the structures disclosed in this specification
and their structural equivalents , or in combinations of one or
more of them . Embodiments of the subject matter described
in this specification can be implemented as one or more
computer programs , i.e. , one or more modules of computer
program instructions encoded on a tangible non transitory
storage medium for execution by , or to control the operation
of , data processing apparatus . The computer storage medium
can be a machine - readable storage device , a machine - read
able storage substrate , a random or serial access memory
device , or a combination of one or more of them . Alterna
tively or in addition , the program instructions can be
encoded on an artificially generated propagated signal , e.g. ,

US 2020/0342316 A1 Oct. 29 , 2020
7

a machine - generated electrical , optical , or electromagnetic
signal , that is generated to encode information for transmis
sion to suitable receiver apparatus for execution by a data
processing apparatus .
[0094] The term “ data processing apparatus ” refers to data
processing hardware and encompasses all kinds of appara
tus , devices , and machines for processing data , including by
way of example a programmable processor , a computer , or
multiple processors or computers .
[0095] The apparatus can also be , or further include ,
special purpose logic circuitry , e.g. , an FPGA (field pro
grammable gate array) or an ASIC (application specific
integrated circuit) . The apparatus can optionally include , in
addition to hardware , code that creates an execution envi
ronment for computer programs , e.g. , code that constitutes
processor firmware , a protocol stack , a database manage
ment system , an operating system , or a combination of one
or more of them .
[0096] A computer program , which may also be referred
to or described as a program , software , a software applica
tion , an app , a module , a software module , a script , or code ,
can be written in any form of programming language ,
including compiled or interpreted languages , or declarative
or procedural languages ; and it can be deployed in any form ,
including as a stand alone program or as a module , compo
nent , subroutine , or other unit suitable for use in a computing
environment . A program may , but need not , correspond to a
file in a file system . A program can be stored in a portion of
a file that holds other programs or data , e.g. , one or more
scripts stored in a markup language document , in a single
file dedicated to the program in question , or in multiple
coordinated files , e.g. , files that store one or more modules ,
sub programs , or portions of code . A computer program can
be deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a data communication
network .
[0097] In this specification , the term " database ” is used
broadly to refer to any collection of data : the data does not
need to be structured in any particular way , or structured at
all , and it can be stored on storage devices in one or more
locations . Thus , for example , the index database can include
multiple collections of data , each of which may be organized
and accessed differently .
[0098] Similarly , in this specification the term " engine " is
used broadly to refer to a software - based system , subsystem ,
or process that is programmed to perform one or more
specific functions . Generally , an engine will be implemented
as one or more software modules or components , installed
on one or more computers in one or more locations . In some
cases , one or more computers will be dedicated to a par
ticular engine ; in other cases , multiple engines can be
installed and running on the same computer or computers .
[0099] The processes and logic flows described in this
specification can be performed by one or more program
mable computers executing one or more computer programs
to perform functions by operating on input data and gener
ating output . The processes and logic flows can also be
performed by special purpose logic circuitry , e.g. , an FPGA
or an ASIC , or by a combination of special purpose logic
circuitry and one or more programmed computers .
[0100] Computers suitable for the execution of a computer
program can be based on general or special purpose micro
processors or both , or any other kind of central processing

unit . Generally , a central processing unit will receive
instructions and data from a read only memory or a random
access memory or both . The essential elements of a com
puter are a central processing unit for performing or execut
ing instructions and one or more memory devices for storing
instructions and data . The central processing unit and the
memory can be supplemented by , or incorporated in , special
purpose logic circuitry . Generally , a computer will also
include , or be operatively coupled to receive data from or
transfer data to , or both , one or more mass storage devices
for storing data , e.g. , magnetic , magneto optical disks , or
optical disks . However , a computer need not have such
devices . Moreover , a computer can be embedded in another
device , e.g. , a mobile telephone , a personal digital assistant
(PDA) , a mobile audio or video player , a game console , a
Global Positioning System (GPS) receiver , or a portable
storage device , e.g. , a universal serial bus (USB) flash drive ,
to name just a few .
[0101] Computer readable media suitable for storing com
puter program instructions and data include all forms of non
volatile memory , media and memory devices , including by
way of example semiconductor memory devices , e.g. ,
EPROM , EEPROM , and flash memory devices ; magnetic
disks , e.g. , internal hard disks or removable disks ; magneto
optical disks ; and CD ROM and DVD - ROM disks .
[0102] To provide for interaction with a user , embodi
ments of the subject matter described in this specification
can be implemented on a computer having a display device ,
e.g. , a CRT (cathode ray tube) or LCD (liquid crystal
display) monitor , for displaying information to the user and
a keyboard and a pointing device , e.g. , a mouse or a
trackball , by which the user can provide input to the com
puter . Other kinds of devices can be used to provide for
interaction with a user as well ; for example , feedback
provided to the user can be any form of sensory feedback ,
e.g. , visual feedback , auditory feedback , or tactile feedback ;
and input from the user can be received in any form ,
including acoustic , speech , or tactile input . In addition , a
computer can interact with a user by sending documents to
and receiving documents from a device that is used by the
user ; for example , by sending web pages to a web browser
on a user's device in response to requests received from the
web browser . Also , a computer can interact with a user by
sending text messages or other forms of message to a
personal device , e.g. , a smartphone that is running a mes
saging application , and receiving responsive messages from
the user in return .
[0103] Data processing apparatus for implementing
machine learning models can also include , for example ,
special - purpose hardware accelerator units for processing
common and compute - intensive parts of machine learning
training or production , i.e. , inference , workloads .
[0104] Machine learning models can be implemented and
deployed using a machine learning framework , e.g. , a Ten
sorFlow framework , a Microsoft Cognitive Toolkit frame
work , an Apache Singa framework , or an Apache MXNet
framework .
[0105] Embodiments of the subject matter described in
this specification can be implemented in a computing system
that includes a back end component , e.g. , as a data server , or
that includes a middleware component , e.g. , an application
server , or that includes a front end component , e.g. , a client
computer having a graphical user interface , a web browser ,
or an app through which a user can interact with an imple

US 2020/0342316 A1 Oct. 29 , 2020
8

mentation of the subject matter described in this specifica
tion , or any combination of one or more such back end ,
middleware , or front end components . The components of
the system can be interconnected by any form or medium of
digital data communication , e.g. , a communication network .
Examples of communication networks include a local area
network (LAN) and a wide area network (WAN) , e.g. , the
Internet .
[0106] The computing system can include clients and
servers . A client and server are generally remote from each
other and typically interact through a communication net
work . The relationship of client and server arises by virtue
of computer programs running on the respective computers
and having a client - server relationship to each other . In some
embodiments , a server transmits data , e.g. , an HTML page ,
to a user device , e.g. , for purposes of displaying data to and
receiving user input from a user interacting with the device ,
which acts as a client . Data generated at the user device , e.g. ,
a result of the user interaction , can be received at the server
from the device .
[0107] While this specification contains many specific
implementation details , these should not be construed as
limitations on the scope of any invention or on the scope of
what may be claimed , but rather as descriptions of features
that may be specific to particular embodiments of particular
inventions . Certain features that are described in this speci
fication in the context of separate embodiments can also be
implemented in combination in a single embodiment . Con
versely , various features that are described in the context of
a single embodiment can also be implemented in multiple
embodiments separately or in any suitable subcombination .
Moreover , although features may be described above as
acting in certain combinations and even initially be claimed
as such , one or more features from a claimed combination
can in some cases be excised from the combination , and the
claimed combination may be directed to a subcombination
or variation of a subcombination .
[0108] Similarly , while operations are depicted in the
drawings and recited in the claims in a particular order , this
should not be understood as requiring that such operations
be performed in the particular order shown or in sequential
order , or that all illustrated operations be performed , to
achieve desirable results . In certain circumstances , multi
tasking and parallel processing may be advantageous . More
over , the separation of various system modules and compo
nents in the embodiments described above should not be
understood as requiring such separation in all embodiments ,
and it should be understood that the described program
components and systems can generally be integrated
together in a single software product or packaged into
multiple software products .
[0109] Particular embodiments of the subject matter have
been described . Other embodiments are within the scope of
the following claims . For example , the actions recited in the
claims can be performed in a different order and still achieve
desirable results . As one example , the processes depicted in
the accompanying figures do not necessarily require the
particular order shown , or sequential order , to achieve
desirable results . In some cases , multitasking and parallel
processing may be advantageous .

1. A method of generating an output sequence comprising
a plurality of output tokens from an input sequence com
prising a plurality of input tokens , the method comprising , at
each of a plurality of generation time steps :

generating a combined sequence for the generation time
step that includes the input sequence followed by the
output tokens that have already been generated as of the
generation time step ;

processing the combined sequence using a self - attention
decoder neural network , wherein the self - attention
decoder neural network comprises a plurality of neural
network layers that include a plurality of masked
self - attention neural network layers , and wherein the
self - attention decoder neural network is configured to
process the combined sequence through the plurality of
neural network layers to generate a time step output
that defines a score distribution over a set of possible
output tokens ; and

selecting , using the time step output , an output token from
the set of possible output tokens as the next output
token in the output sequence .

2. The method of claim 1 , wherein the masked self
attention neural network layers are masked such that the
time step output depends only on the input sequence and the
output tokens that have already been generated as of the
generation time step and not on any output tokens that are
after the last token that had already been generated in the
output sequence .

3. The method of claim 1 , wherein the input sequence and
the output tokens that have already been generated as of the
generation time step are separated by a predetermined
special separator token in the combined sequence .

4. The method of claim 1 , wherein the plurality of masked
self - attention neural network layers are masked multi - head
attention layers .

5. The method of claim 1 , wherein the plurality of masked
self - attention neural network layers comprise at least one
local attention layer , and wherein each local attention layer
comprises a local attention sub - layer that is configured to :

receive a layer input sequence comprising a plurality of
layer inputs ;

divide the layer input sequence into a plurality of sub
sequences ;

generate , for sub - sequence , a sub - sequence output by
performing self - attention on the layer inputs in the
sub - sequence ; and

merge the sub - sequence outputs to generate a layer output
sequence .

6. The method of claim 1 , wherein the plurality of masked
self - attention neural network layers comprise at least one
memory - compressed attention layer , and wherein each
memory - compressed attention layer comprises a memory
compressed sub - layer that is configured to :

obtain an attention input comprising a plurality of keys ,
values , and queries ;

applying a strided convolution to the keys to generate a
reduced set of keys ;

applying a strided convolution to the values to generate a
reduced set of values ;

generate a layer output sequence by performing self
attention using the reduced set of keys , the reduced set
values , and the plurality of queries .

7. The method of claim 6 , wherein obtaining the attention
input comprises :

receiving a layer input sequence comprising a plurality of
layer inputs ; and

projecting the layer input sequence into the keys , values ,
and queries using respective projection matrices .

US 2020/0342316 A1 Oct. 29 , 2020
9

8. The method of claim 1 , wherein the input sequence
comprises text from a plurality of documents , and wherein
the output sequence is text that summarizes the plurality of
documents .

9. The method of claim 8 , wherein the input sequence
further comprises text specifying a topic to which the
plurality of documents relate .

10. The method of claim , further comprising :
determining that the selected output for the time step is a

pre - determined end - of - sequence token ; and
in response , providing the output tokens that have already

been generated as of the generation time step as the
final output sequence for the input sequence .

11. The method of claim 1 , wherein the plurality of neural
network layers include one or more mixture - of - experts
layers .

12. A system comprising one or more computers and one
or more storage devices storing instructions that when
executed by the one or more computers cause the one or
more computers to perform operations for generating an
output sequence comprising a plurality of output tokens
from an input sequence comprising a plurality of input
tokens , the operations comprising , at each of a plurality of
generation time steps :

generating a combined sequence for the generation time
step that includes the input sequence followed by the
output tokens that have already been generated as of the
generation time step ;

processing the combined sequence using a self - attention
decoder neural network , wherein the self - attention
decoder neural network comprises a plurality of neural
network layers that include a plurality of masked
self - attention neural network layers , and wherein the
self - attention decoder neural network is configured to
process the combined sequence through the plurality of
neural network layers to generate a time step output
that defines a score distribution over a set of possible
output tokens ; and

selecting , using the time step output , an output token from
the set of possible output tokens as the next output
token in the output sequence .

13. One or more computer storage media storing instruc
tions that when executed by one or more computers cause
the one or more computers to perform operations for gen
erating an output sequence comprising a plurality of output
tokens from an input sequence comprising a plurality of
input tokens , the operations comprising , at each of a plu
rality of generation time steps :

generating a combined sequence for the generation time
step that includes the input sequence followed by the
output tokens that have already been generated as of the
generation time step ;

processing the combined sequence using a self - attention
decoder neural network , wherein the self - attention
decoder neural network comprises a plurality of neural
network layers that include a plurality of masked
self - attention neural network layers , and wherein the
self - attention decoder neural network is configured to
process the combined sequence through the plurality of

neural network layers to generate a time step output
that defines a score distribution over a set of possible
output tokens ; and

selecting , using the time step output , an output token from
the set of possible output tokens as the next output
token in the output sequence .

14. The system of claim 12 , wherein the masked self
attention neural network layers are masked such that the
time step output depends only on the input sequence and the
output tokens that have already been generated as of the
generation time step and not on any output tokens that are
after the last token that had already been generated in the
output sequence .

15. The system of claim 12 , wherein the input sequence
and the output tokens that have already been generated as of
the generation time step are separated by a predetermined
special separator token in the combined sequence .

16. The system of claim 12 , wherein the plurality of
masked self - attention neural network layers are masked
multi - head attention layers .

17. The system of claim 12 , wherein the plurality of
masked self - attention neural network layers comprise at
least one local attention layer , and wherein each local
attention layer comprises a local attention sub - layer that is
configured to :

receive a layer input sequence comprising a plurality of
layer inputs ;

divide the layer input sequence into a plurality of sub
sequences ;

generate , for sub - sequence , a sub - sequence output by
performing self - attention on the layer inputs in the
sub - sequence ; and

merge the sub - sequence outputs to generate a layer output
sequence .

18. The system of claim 12 , wherein the plurality of
masked self - attention neural network layers comprise at
least one memory - compressed attention layer , and wherein
each memory - compressed attention layer comprises a
memory - compressed sub - layer that is configured to :

obtain an attention input comprising a plurality of keys ,
values , and queries ;

applying a strided convolution to the keys to generate a
reduced set of keys ;

applying a strided convolution to the values to generate a
reduced set of values ;

generate a layer output sequence by performing self
attention using the reduced set of keys , the reduced set
values , and the plurality of queries .

19. The system of claim 18 , wherein obtaining the atten
tion input comprises :

receiving a layer input sequence comprising a plurality of
layer inputs ; and
projecting the layer input sequence into the keys ,

values , and queries using respective projection
matrices .

20. The system of claim 12 , wherein the input sequence
comprises text from a plurality of documents , and wherein
the output sequence is text that summarizes the plurality of
documents .

