UK Patent Application .,GB ,2606523 .,A

(43)Date of A Publication 16.11.2022
(21) Application No: 2106624.6 (51) INT CL:
GO6F 9/455 (2018.01) GOGF 12/1081 (2016.01)
(22) Date of Filing: 10.05.2021 GOG6F 12/109 (2016.01)
(56) Documents Cited:
- . CN 110928646 A US 20210004334 A1

(71) Applicant(s): IEEE INTERNATIONAL CONFERENCE ON

ARM Limited _ INDUSTRIAL TECHNOLOGY (ICIT), 2018, MODICA

(Incorporated in the United Kingdom) PAOLO ET AL, "Supporting temporal and spatial

110 Fulbourn Road, Cambridge, Cambridgeshire,

CB1 9NJ, United Kingdom isolation in a hypervisor for ARM multicore

platforms”, pages 1651-1657

(72) Inventor(s):) (58) Field of Search:
Matthew Lucien Evans INT CL GO6F

Robert Gwilym Dimond

(74) Agent and/or Address for Service:

D Young & Co LLP
120 Holborn, LONDON, EC1N 2DY, United Kingdom

(54) Title of the Invention: Technique for handling request transfers from a peripheral device in a communication
network
Abstract Title: Technique for handling request transfers from a peripheral device in a communication
network

(57) Apparatus and method for handling request transfers from a peripheral device. A host device of the apparatus
provides a plurality of virtual machines that each execute processes. The peripheral device performs tasks for the
processes and is coupled to the host device via a communication network. The peripheral device provides virtual
peripheral devices, each allocated to one of the virtual machines. Address translation circuitry associated with the
host device performs a two stage address translation process to translate a virtual address into a corresponding
physical address. When seeking to access memory via the host device, the peripheral device issues a request
transfer with a specified address and metadata providing a source identifier field, a first address translation control
field and a second address translation control field. The source identifier field controls routing of an associated
response transfer over the communication network. The first address translation control field controls any first stage
address translation required for the specified address when it is a virtual address, the translation being dependent
on the process associated with the specified address. The second address translation control field controls any
second stage address translation required, in dependence on the virtual machine associated with the specified

address.
HOST 80 PERIPHERAL
] DEVICE {E.GSRI0\
PROCESSING ELEVENT BRIDGE o Y fo] SEVCEEGSRIOY
(£ G,CPU) 50 HETWORK e
52 54 VIRTUAL
- 1 T %o 381 | PERIPHERAL
AR E -
i ADDRESS ; 34 ;
55 TRANSLATION |75 ; :
CIRCUITRY ! 30 VIRTUAL
(1ONMU) A0 | PERIPHERAL
S , 36
66 70 ; 1 CRCUTRY
z. : 32—
INTERCONNECT Z e
E
i \ FURTHER ;
| A PERIPHERAL ,
; DEVICE ;
MEMORY -85 19 P N s
CONTROLLER
MEMORY SYSTEM 40

FIG. 1

V €¢9909¢ €9

L Ol

op NTLSAS AHOWIA
co] PI0EINOD
;;;;;;;;;;;; 2 06 AJOWIN
3030 M
WHIHdIEdd b - - - - : w
Y3H LN m |
gggggggggggg) | LOINNOOYIINI
i
) AeE m 7
RLNOYO | ! 0L 99 79 29 09
TV3Hd3d |4~ 9¢ 0L (NANOY) g W e
790 LA 0e AALINDHI0 oy B wen M e B
, | G .| NOLLYISNvXL mm TN 7
m vel o, SSAMAAY 2 md m
WIHdAd || ge N T S
vorsoa o L 0% T a ININFTI ONISSIO0Nd
TYIHdIN I A 180t

217

d¢ Old

08 w/m,m@%m %ﬁmwcm,@

)

9¢ 1~|[(sa102)) uogeinbyuos
AN 7 uoneisues 7 ebels | aa 104t
fuopeuiop Lo Vdewdl L,

{ uonainBiuos | ; -~} LojeinByuoo
. 80iA8p-Iag - Toow

o) sy

]

L Sil

Zel 591

{NIWNCH NINIAS 190H

Alouwiap

Ve Old

&

Xid3dd

Kld38d NG9l
daHlEnd oy Gl

10BUU0IBI| FC IS

&

V/f wJ Momﬁméﬁm W Ll
T (00:10%0 Jwodpu)

m — HAMLSY -l mmﬁﬁms

‘ ! IYHZHaldEd
A0

e
OrlL

ol HOLIMS =

-~

-

§ 1S0H mm% Q
(N .
'1au) 34

L

o

EFID

iy

R\
GiL

_ /" (kioweuw) 150y 0} o3 wioy YA
Ol 9l 7

001

-
7]
&
] 0

>
el 04

3/7

S&3uady
VOIS AHd

{INFONIIT WA
Q3 TIOHINGD
HOSIAMIAH

h

J¢ Oid

NOIYISNYYLZ 3OV1S

4
OLe

SSFATY
TYOISAHd
FUVITIAYILIN]

{(LNFONI43C
NOILYDITddY/SS300)
GaTIOHINDD WASO

w

 NOILYISNYYL | 39VLS

\\.
G0¢

SS3HAaY
WRLHIA

7
00<

4/7

ot Olid

Ghz 062 697 08z 08z Gzz
- N N N \
(QISvd) 41314 {143 1314 " N
T04INOD ot | oMo | 9 e 93)
04N el NOILYWHOANI
NOILYISNYSL ya [NOLISNwYL | 0B Tssawaay | Tk TIEOSR
SSRHAaY S SSRAAY | 3avinos DI
15 INODIS | 43A0
X|43d (§/7) NOILMOd ¥IaYIH
NOLLYWHOANI NOLLYISNYY L SSTRaQY ,
2 39VLS ANV | 39VIS 804 STT3I4 LONISIA d¢ 9lid
9% . 09 GET 0¢z 6T
) . Y7 » ey Ny \, . Ny
Qémﬁ%&zoo m,_m_,m%wzoo () 41314 3N | zmﬁmﬁmmzm
NOILYISNYAL NOILYISNYA L FUNOSONCNIONY | SSHOAY | gy ixainaas.
SSIMAOY LSHI4 | | §830a0Y ONOD3S 0 _ 130V
(667) Xi43d TIONIS e
YE 9id
mwfw ove Wmm 0e2 522
N 7
(isvd) {Ci43) s oo (M 99
a) (UG EEREETLEN PN
$S300aY 1SHH | | SS30a0Y aNODaS NOILEOd &30v3H e
YI434d HIHIMNA X434 N

5/7

RID 15:8)

,,_n__m_,
<
o
i
&2
T
=
)
i
=

305

7 USE COMBINATION
([mNiowmuTo)
\._DETERMINE VM _/

320

VM DEPENDENT
STAGE 2
| TRANSLATION

FIG. 4

6/7

PROVIDE MULTIPLE
VIRTUAL MACHINES
IN HOST DEVICE ~350
(EACH VM EXECUTING ONE
OR MORE PROCESSES)

¥

EMPLOY PERIPHERAL DEVICE
TO PERFORM TASKS ON BEHALF
OF PROCESSES EXECUTED ON
HOST DEVICE PERIPHERAL | 355
DEVICE PROVIDES MULTIPLE
VIRTUAL PERIPHERAL DEVICES,
EACH VIRTUAL PERIPHERAL DEVICE
ALLOCATED TOA VIRTUAL MACHINE

¥

COUPLE PERIPHERALDEVICE TO 360
HOST DEVICE VIA PACKET 4
NETWORK

&

WHEN PERIPHERAL REQUESTS ACCESS
TO MEMORY [T ISSUES A
REQUEST PACKET SPECIFYING AVIRTUAL | -365
ADDRESS, THE REQUEST PACKET HAVING
ASSOCIATED METADATA PROVIDING
SEPARATE RID, PASID AND EFID FIELDS

¥

IOMMU USES PASID TO
CONTROL STAGE 1 TRANSLATION
(PASID INTERPRETED WITH REFERENCE 1 -370
TORID), AND USES EFID TO
CONTROL STAGE 2 TRANSLATION
(SEE FIGURE 6 FOR MORE DETAILS)

FIG. 5

OPERATION OF
[OMMU

777

" REQUEST ™_

_ PACKET RECEVED ™\,

\\FROM PERIPHERAL
N\ DEVICE

SOURCE ENDiCATED

4 INRID FIELD ALLOWED

N\ JOUSEEFD ~

TO DETERMINE STAGE
1 TRANSLATION

[

ASSERT ERROR

IFEFIDIS
SPECIFIED

USERIDANDPASID | 415

USE EFID TO DETERMINE
STAGE 2 TRANSLATION
(RID MAY OR MAY NOT

ALSO BE REFERRED T0,

DEPENDING ON

420

IMPLEMENTATION)

FIG. 6

™~
410

10

15

20

25

30

TECHNIOQUE FOR HANDLING REQUEST TRANSFERS FROM A
PERIPHERAL DEVICE IN A COMMUNICATION NETWORK

BACKGROUND

Described herein is a technique for handling request transfers from a peripheral
device in a communication network.

In modern data processing systems, it is now possible for a peripheral device to
be configured so as to present multiple virtual peripheral devices that can be used by a
host device coupled to that peripheral device via a communication network. Such an
approach can be useful, for example, where the host device provides a plurality of virtual
machines, where each virtual machine is arranged to execute one or more processes. In
such a situation, the peripheral device can be used to perform tasks on behalf of the
processes executed on the host device, and each virtual peripheral device made available
by that peripheral device may then be allocated to one of the virtual machines.

Within a host device that employs virtual machines, then virtual addresses are
often used when accessing memory, and address translation circuitry is used to translate
the virtual addresses into corresponding physical addresses within the memory system.
The peripheral device may need to access memory in order to perform tasks on behalf
of the host device and it is hence important when issuing requests from the peripheral
device to provide information that will enable an appropriate address translation to be
performed taking into account the virtual machine associated with the virtual peripheral
device making that request. It is also necessary for the request to include sufficient
information to enable any response to that request to be routed back to the correct
peripheral device.

As the number of virtual peripheral devices that may be provided by a peripheral
device increase, then these issues can give rise to scalability problems.

SUMMARY

In one example arrangement, there is provided an apparatus comprising: a host
device coupled to a memory system and arranged to provide a plurality of virtual machines,
where each virtual machine is arranged to execute one or more processes;, a peripheral
device arranged to perform tasks on behalf of the processes executed on the host device,

and coupled to the host device via a communication network, wherein the peripheral device

10

15

20

25

30

is configurable as a plurality of virtual peripheral devices, where each virtual peripheral
device is allocated to one of the virtual machines, and address translation circuitry
associated with the host device and arranged to perform an address translation to translate
a given address into a corresponding physical address within the memory system, when the
given address is a virtual address the address translation comprising a first stage address
translation that is dependent on the process associated with the given address, and the
address translation further comprising a second stage address translation that is dependent
on the virtual machine associated with the given address; wherein: the peripheral device is
arranged, when seeking to access the memory system, to issue a request transfer with a
specified address, the request transfer having associated metadata that provides as separate
fields a source identifier field, a first address translation control field and a second address
translation control field, wherein the source identifier field provides a source indication
used to control routing of an associated response transfer over the communication network
to the peripheral device, the first address translation control field provides a process
indication used by the address translation circuitry to control any first stage address
translation required for the specified address, and the second address translation control
field provides a virtual machine indication used by the address translation circuitry to
control any second stage address translation required for the specified address.

In another example arrangement, there is provided a method of handling request
transfers in a communication network, comprising: providing a plurality of virtual
machines within a host device coupled to a memory system, where each virtual machine is
arranged to execute one or more processes; employing a peripheral device to perform tasks
on behalf of the processes executed on the host device, wherein the peripheral device is
configurable as a plurality of virtual peripheral devices, where each virtual peripheral
device is allocated to one of the virtual machines; coupling the peripheral device to the host
device via the communication network; employing address translation circuitry associated
with the host device to perform an address translation to translate a given address into a
corresponding physical address within the memory system, when the given address is a
virtual address the address translation comprising a first stage address translation that is
dependent on the process associated with the given address, and the address translation
further comprising a second stage address translation that is dependent on the virtual

machine associated with the given address; and causing the peripheral device, when

10

15

20

25

30

seeking to access the memory system, to issue a request transfer with a specified address,
the request transfer having associated metadata that provides as separate fields a source
identifier field, a first address translation control field and a second address translation
control field, wherein the source identifier field provides a source indication used to control
routing of an associated response transfer over the communication network to the
peripheral device, the first address translation control field provides a process indication
used by the address translation circuitry to control any first stage address translation
required for the specified address, and the second address translation control field provides
a virtual machine indication used by the address translation circuitry to control any second
stage address translation required for the specified address.

In a still further example arrangement, there is provided a host device comprising:
a processing element arranged to provide a plurality of virtual machines, where each virtual
machine is arranged to execute one or more processes; a bridging component to
communicate, via a communication network, with a peripheral device arranged to perform
tasks on behalf of the processes executed on the host device, wherein the peripheral device
is configurable as a plurality of virtual peripheral devices, where each virtual peripheral
device is allocated to one of the virtual machines; and address translation circuitry arranged
to perform an address translation to translate a given address into a corresponding physical
address within a memory system accessible via the host device, when the given address is
a virtual address the address translation comprising a first stage address translation that is
dependent on the process associated with the given address, and the address translation
further comprising a second stage address translation that is dependent on the virtual
machine associated with the given address, wherein: the address translation circuitry is
arranged to receive a request transfer via the bridging component from the peripheral
device when the peripheral device is seeking to access the memory system, the request
transfer having a specified address and having associated metadata that provides as separate
fields a source identifier field, a first address translation control field and a second address
translation control field, wherein the source identifier field provides a source indication
used to control routing of an associated response transfer over the communication network
to the peripheral device, the first address translation control field provides a process
indication used by the address translation circuitry to control any first stage address

translation required for the specified address, and the second address translation control

10

15

20

25

30

field provides a virtual machine indication used by the address translation circuitry to
control any second stage address translation required for the specified address.

In a yet further example arrangement, there is provided a peripheral device
comprising: an interface to a communication network via which the peripheral device is
arranged to communicate with a host device that is coupled to a memory system, the host
device providing a plurality of virtual machines, where each virtual machine is arranged to
execute one or more processes; and circuitry to perform tasks on behalf of the processes
executed on the host device, wherein the circuitry of the peripheral device is configurable
to provide a plurality of virtual peripheral devices, where each virtual peripheral device is
allocated to one of the virtual machines; wherein: the peripheral device is arranged, when
seeking to access the memory system, to issue a request transfer with a specified address,
the request transfer having associated metadata that provides as separate fields a source
identifier field, a first address translation control field and a second address translation
control field, wherein the source identifier field provides a source indication used to control
routing of an associated response transfer over the communication network to the
peripheral device, the first address translation control field provides a process indication
used by address translation circuitry of the host device to control any first stage address
translation required for the specified address when the specified address is a virtual address,
the first stage address translation being dependent on the process associated with the
specified address, and the second address translation control field provides a virtual
machine indication used by the address translation circuitry to control any second stage
address translation required for the specified address, the second stage address translation
being dependent on the virtual machine associated with the specified address.

BRIEF DESCRIPTION OF THE DRAWINGS

The present technique will be described further, by way of illustration only, with
reference to examples thereof as illustrated in the accompanying drawings, in which:

Figure 1 is a block diagram of a system in which the techniques described herein
may be utilised,

Figure 2A schematically illustrates a system in which the present technique may
be utilised, and provides more detail of the structure of packets and associated metadata
that may be transferred between a peripheral device and a host device in accordance

with one example implementation;

10

15

20

25

30

Figure 2B schematically illustrates how the information provided within a packet
and associated metadata may be used by address translation circuitry to control the
performance of an address translation process, in accordance with one example
implementation,;

Figure 2C schematically illustrates a two stage address translation process;

Figures 3A to 3C illustrate different example formats of packet and associated
metadata that may be used in accordance with the techniques described herein;

Figure 4 illustrates an example implementation where a subset of bits within a
requester ID field are combined with the bits of an Extended Function ID field in order
to determine an associated virtual machine for the request, with that information then
being used to control a second stage address translation performed by the address
translation circuitry;

Figure 5 is a flow diagram illustrating steps performed in order to implement the
techniques described herein, in accordance with one example implementation; and

Figure 6 is a flow diagram illustrating in more detail the performance of step 370
of Figure 5 by address translation circuitry, in accordance with one example
implementation.

DESCRIPTION OF EXAMPLES

In accordance with the techniques described herein, an apparatus is provided that
has a host device coupled to a memory system, with the host device being arranged to
provide a plurality of virtual machines, where each virtual machine is arranged to
execute one or more processes. The apparatus also provides a peripheral device that is
arranged to perform tasks on behalf of the processes executed on the host device, and
which is coupled to the host device via a communication network. The peripheral device
is configurable as a plurality of virtual peripheral devices, where each virtual peripheral
device is allocated to one of the virtual machines. Such an approach can improve
performance, since it allows the virtual peripheral device to be directly accessed by a
virtual machine running on the host device.

The apparatus further provides address translation circuitry that is associated
with the host device and which is arranged to perform an address translation to translate
a given address into a corresponding physical address within the memory system. The

address translation circuitry can take a variety of forms, and hence for example may be

10

15

20

25

30

a separate component to the host device, or in some implementations may be an
integrated component within the host device. The address translation performed by the
address translation circuitry depends on the form of the given address, for example
whether that address is a virtual address or an intermediate physical address. However,
when the given address is a virtual address, the address translation comprises a first stage
address translation that is dependent on the process associated with the given address.
The address translation further comprises a second stage address translation that is
dependent on the virtual machine associated with the given address, the second stage
address translation being used both when the given address is a virtual address and when
the given address is an intermediate physical address.

Since the peripheral device is performing tasks on behalf of the processes
executed on the host device, then the peripheral device may need to issue request
transfers seeking to access the memory system. In such a situation, the request transfer
issued by the peripheral device will have a specified address and some associated
metadata. As noted earlier, as the number of virtual peripheral devices supported by any
one actual peripheral device increase, then scalability issues can arise. In particular it is
important to provide a mechanism that will enable both efficient routing of a request
transfer and any associated response transfer(s) through the communication network
interconnecting the peripheral device with the host device, whilst also efficiently
allowing the address translation circuitry to determine how to translate the specified
address of that request transfer into a corresponding physical address, taking into
account the virtual machine that the virtual peripheral device issuing the request transfer
is allocated to.

In accordance with the techniques described herein, the associated metadata
provided with a request transfer provides as separate fields a source identifier field, a
first address translation control field and a second address translation control field. The
source identifier field provides a source indication used to control routing of an
associated response transfer over the communication network to the peripheral device.
The first address translation control field provides a process indication used by the
address translation circuitry to control any first stage address translation required for the
specified address. Further, the second address translation control field provides a virtual

machine indication (which may also be referred to as a virtual machine-selecting

10

15

20

25

30

identifier) used by the address translation circuitry to control any second stage address
translation required for the specified address.

Such an approach alleviates the earlier-mentioned scalability issue by
decoupling the information used to control routing of an associated response transfer
over the communication network from the information that is used to control the second
stage address translation. In particular, this information may previously have been
provided by a single source identifier field, with that single field in effect seeking to
identify the virtual peripheral device issuing the request. Such information can be used
to control the routing of the response transfer, and to provide information about the
second stage address translation, since by identifying the virtual peripheral device it can
then be determined which virtual machine has been allocated to it, and accordingly
control the second stage address translation. However, the system allocation of the
source identifier field may often mean that the number of possible values specifiable in
the field is constrained, and that the field is inextensible. Hence as the number of virtual
peripheral devices increases this can become problematic, and limit scalability.

However, by ensuring that separate fields are provided, it is possible to use the
source identifier field to provide sufficient information to ensure correct routing of any
associated response transfer for the request transfer, so that that response transfer is
routed to the correct peripheral device, whilst using a separate field, namely the second
address translation control field, to provide sufficient information to allow the address
translation circuitry to perform the appropriate second stage address translation.

Furthermore, by providing a first address translation control field separate from
the second address translation control field, the information to control any first stage
address translation required can be kept entirely separate from the information used to
control the second stage address translation, thus maintaining an effective partition
between the information used to control the two stages of address translation and thereby
improving security.

Hence, in summary, through use of the techniques described herein, a routing
related identifier used to control the correct routing of any response transfer associated
with a request transfer is kept separate from a virtual machine indication used to identify
the virtual machine to which the virtual peripheral device issuing the request transfer

has been allocated, with this latter information then being used by the address translation

10

15

20

25

30

circuitry to control the second stage address translation. Further, the information
controlling the first stage address translation is kept clear and distinct from the
information controlling the second stage address translation, so as to maintain separation
between that information, and thereby improve security.

It should be noted that because the second address translation control field is kept
entirely separate to the source identifier field used to control routing, the second address
translation control field can be ignored by those components within the communication
network that do not need to reference that information. In one particular example
implementation, the information within the second address translation control field may
only be meaningful to the address translation circuitry, and to the peripheral device
providing that information within its request transfer, and the information within the second
address translation control field can be ignored by other intermediate components within
the communication network. This has the benefit that no changes need to be made to those
intermediate components.

The communication network can take a variety of forms, and hence for example
could be an on-chip communication network such as an interconnect, or could be an off-
chip communication network. In one example implementation the communication
network is a packet network. In such an implementation, the request transfer then takes
the form of a request packet, and the response transfer takes the form of a response
packet. The metadata associated with the request packet may be provided within the
request packet, or can be provided as separate information external to the request packet
but associated therewith. Further, some parts of the metadata may be provided within the
request packet whilst other parts of the metadata are provided externally to the request
packet and associated therewith.

In such packet-based networks, adjustments to the format of the packets may be
very restricted, and a particular field within a packet may have a restricted size in terms
of the number of bits that can be used to specify that field. Hence, the above-mentioned
scalability issues can be particularly problematic in such packet-based networks, in
situations where more and more virtual peripheral devices are desired to be supported
by a single physical peripheral device connected to the packet network.

There are a number of ways in which the second address translation control field

may be provided in association with such a request packet. However, in one example

10

15

20

25

30

the second address translation control field is provided as an external item of metadata
that is provided separately to the request packet but associated with the request packet.
This provides flexibility, as the second address translation control field is not provided
as an internal field within the packet itself, but instead is provided via an external item
of metadata that is associated with the packet. This hence avoids the difficulties that
could be associated with trying to incorporate such information within a fundamental
field of the existing packet structure supported by the packet network. The way in which
this item of metadata is provided external to the packet, but associated therewith, could
vary dependent on implementation, but could for example be provided as a prefix for
the packet, or a suffix for the packet.

In one example implementation, the first address translation control field is
provided as a further external item of metadata provided separately to the request packet
but associated with the request packet, the further external item of metadata being distinct
from the external item of metadata providing the second address translation control field.
By providing such distinct items of metadata (for example as separate prefixes or suffixes)
to provide the first address translation control field and the second address translation
control field, this can provide a great deal of flexibility and the two fields can be managed
independently. However, if desired, in an alternative implementation the first and second
address translation control fields could be provided as distinct fields within a single external
item of metadata. In this latter form of implementation, it should be noted that since the
two address translation control fields are still provided as distinct fields, the earlier-
mentioned isolation and security benefits associated with keeping the first stage and second
stage address translation control information independent can still be achieved.

Whilst in the above example implementations the second address translation
control field is provided as an external item of metadata associated with the request packet,
rather than being contained within the request packet itself, in an alternative
implementation the second address translation control field could be provided within a
header portion of the request packet if desired.

The source identifier field can be provided in a variety of ways, but in one example
implementation is provided within a header portion of the request packet. In one particular
implementation, the source identifier field is a pre-existing field provided by the packet

format of the packet network, and forms one of the fundamental fields provided within the

10

15

20

25

30

packet. However, in accordance with the techniques described herein, the source identifier
field is used for providing routing control information required to route an associated
response transfer over the packet network to the peripheral device, and its function is not
complicated by seeking to also provide information sufficient to control the second stage
address translation. Instead, in accordance with the techniques described herein, a separate
second address translation control field is used for that purpose.

The virtual machine indication can take a variety of forms. It could for example be
used to identify directly the virtual machine to which the virtual peripheral device issuing
the request transfer has been allocated. However, in one example implementation the
virtual machine indication takes the form of a virtual peripheral device indication indicating
the virtual peripheral device issuing the request transfer, and the address translation
circuitry is arranged to determine, with reference to the virtual peripheral device indication,
the virtual machine to which the virtual peripheral device issuing the request transfer is
allocated.

The way in which the source indication is used can vary dependent on
implementation. However, in one example implementation, for each request transfer
issued by the peripheral device, the peripheral device is arranged to use the same source
indication value to form the source indication used to control routing of the associated
response transfer over the communication network to the peripheral device. Hence, in this
example implementation, a single source indication value can be associated with the
peripheral device, and used to control routing of the associated response transfer over the
communication network to the peripheral device.

However, in some example implementations it may be beneficial to allow request
transfers from the same peripheral device to have different source indication values.
Hence, in one example implementation the peripheral device may have a range of source
indication values, any one of which is useable to control routing of response transfers over
the communication network to the peripheral device, and for each request transfer issued
by the peripheral device, the peripheral device is arranged to select a source indication
value from the range to be used as the source indication for that request transfer.

This may be useful in a variety of situations. For example, by allowing more than
one source indication value to be used, this may allow the tracking of multiple outstanding

requests by the peripheral device, which can give rise to performance benefits. Hence, in

10

10

15

20

25

30

one example implementation the peripheral device may be arranged to track
correspondence between outstanding request transfers and their associated response
transfers though use of different source indication values for different request transfers.

In one example implementation, the source indication value used has no bearing on
how the address translation circuitry determines the virtual machine associated with the
virtual peripheral device issuing the request transfer. Instead, in such implementations the
address translation circuitry may be arranged to determine the virtual machine associated
with the virtual peripheral device issuing the request transfer directly from the virtual
machine indication provided by the second address translation control field. Within such
an implementation the virtual machine indication can take a variety of forms, but in one
example implementation specifies a virtual machine number that is used to identify the
virtual machine to the address translation circuitry.

However, if desired the address translation circuitry can be arranged to take into
account other factors when determining the virtual machine based on the provided value
of the virtual machine indication. For example, in one implementation the address
translation circuitry may be arranged to determine the virtual machine associated with the
virtual peripheral device issuing the request transfer with reference to both the virtual
machine indication provided by the second address translation control field and the source
indication value.

The manner in which the source indication value is used can vary dependent on
implementation. For instance the way in which any particular value of virtual machine
indication is interpreted may be dependent on the source indication value. By way of
illustrative example, if the source indication value can be either 1 or 2, and there are four
virtual machines A to D, the way in which the value of the virtual machine indication is
mapped to a particular virtual machine may be dependent on the source indication value.
For example, virtual machine indication values of O or 1 may be determined to correspond
to virtual machines A and B, respectively, when the source indication value is 1, but those
same values of virtual machine indication may instead be mapped to virtual machines B
and C, respectively, if the source indication value is 2.

As another example of how the source indication value can be used to influence the
determination of the virtual machine from the virtual machine indication, the address

translation circuitry may be arranged to employ a subset of values of the source indication

11

10

15

20

25

30

value, in combination with virtual machine indication, to determine the virtual machine
associated with the virtual peripheral device issuing the request transfer. Hence, in this
example, whilst the virtual machine indication provides part of the information required to
identify the virtual machine, another part of the information required can be determined
from the source indication value. Such an approach could, for example, allow the size of
the second address translation control field to be reduced relative to an implementation
where all of the required information to identify the virtual machine is instead provided
within the second address translation control field. However, such an approach may
constrain the flexibility in the way in which the bits of the source indication value could
otherwise be used by the peripheral device.

The source indication information can also be used for other purposes, in addition
to its primary purpose to control routing of an associated response transfer back to the
peripheral device and/or the optional usage discussed earlier where the value of the source
indication can be used to influence how the virtual machine is determined from the virtual
machine indication. For example, the address translation circuitry may be arranged to
reference the source indication to perform a permission check to determine whether the
peripheral device is allowed to issue request transfers with the second address translation
control field associated therewith. By such an approach, the use of the second address
translation control field can be limited to use with certain peripheral devices.

As discussed earlier, the techniques described herein can be used in association
with a wide variety of different communication networks, but one example use case is in
association with a packet network. Such a packet network can take a variety of forms, but
in one example implementation the packet network is a Peripheral Component Interconnect
Express (PCle) network, and the peripheral device is an endpoint device within the PCle
network.

Within such a PCle network, the peripheral device could take a variety of forms.
However, in one particular example implementation the peripheral device is a Single Root
I/O Virtualisation (SR-IOV) device. An SR-IOV device is a particular form of device
supported by an extension to the PCle specification, that allows one physical device to
present itself as multiple virtual peripheral devices for use by a host device. In PCle

terminology, the virtual peripheral devices may be referred to as virtual functions.

12

10

15

20

25

30

When considering a PCle network, and implementations where the second
address translation control field is provided as a prefix associated with the request packet,
then that prefix may in one example implementation take the form of a transaction layer
packet (TLP) prefix.

Furthermore, within such a PCle network implementation, the source identifier
field may be provided as a Requester ID field, also referred to herein as a RID field.
Whereas previously the RID field may have been employed to provide a value that can be
used for routing responses back to the relevant peripheral device, and also for controlling
the second stage address translation by seeking to differentiate between traffic originating
from each virtual function, in accordance with the techniques described herein the routing
identifying information can be kept entirely separate from the information used to control
the second stage address translation, with the RID field being used to capture the routing
information. This can avoid the scalability issues discussed earlier when employing such
SR-IOV devices within a PCle network.

The peripheral devices can take a variety of forms. For example, they may take the
form of an accelerator device that is used to perform a particular function on behalf of the
host device. This form of peripheral device can be tailored to handle a specific task very
efficiently, for example in a way that would be more efficient than using a general purpose
CPU within the host device to perform such a task. Such accelerator devices can take a
wide variety of different forms, for example a direct memory access (DMA) engine, an
encryption device, etc. As another example form of peripheral device, the peripheral
device may be an input/output (I/O) device, for example a network interface component
used to transfer information into and out of the system.

Particular examples will now be described with reference to the figures.

Figure 1 is ablock diagram of an example system in which the techniques described
herein may be employed. As discussed earlier, the presently described technique can be
used in association with a variety of different communication networks, but for the
purposes of illustrative example the technique will be described with reference to the
figures in the context of a packet network. More particularly, in the figures described
herein, the packet network will be assumed to be a Peripheral Component Interconnect
Express (PCle) network where packets are transported over the packet network in

accordance with the PCle protocol.

13

10

15

20

25

30

As shown in Figure 1, a host device 10 is connected to one or more peripheral
devices 30, 90 via a packet network 20. In the simplest case, where the host device is
connected to a single peripheral device, the packet network 20 may be implemented by a
simple wire connection between the two devices, but in a more general case a more
complex packet network may be provided including one or more layers of switches to route
each packet from the transmitting entity of the packet to the intended recipient element for
the packet.

The host device 10 includes a processing element 50, which may for example take
the form of a central processing unit (CPU). The CPU is arranged to communicate with
other components via an interconnect 70, and hence for example can access the memory
system 40 via the interconnect 70, typically via a memory controller component 85
provided by the host device 10 to couple the host device to the memory system 40. A
number of other elements may also be connected to the interconnect, with the processing
element 50 being able to communicate with those elements via the interconnect. For the
purposes of the present discussion, the example of Figure 1 omits the detail of such other
elements, other than a system memory management unit (SMMU) 75 and a bridge
component 80. The SMMU 75, which may also be referred to as an input/output MMU
(IOMMU) can be used by one or more of the components within the host device to perform
address translations on behalf of that device. One such device that may use such an
IOMMU is the bridge component 80 used to connect the host device 10 to the packet
network 20. In the example use case of a PCle network, such a bridge component is
referred to as a root complex.

The processing element 50 is arranged to provide a plurality of virtual machines
(VMs) 52, 54, and each VM may be arranged to execute one or more processes (Ps) 60,
62, 64, 66. Typically the processing element 50 will include its own address translation
circuitry to perform translation of virtual or intermediate physical addresses generated by
the processing element into corresponding physical addresses within the memory system
40. Hence, as shown in Figure 1, the processing element 50 may be provided with a
memory management unit (MMU) 55 for that purpose.

The peripheral devices 30, 90 may be used by the host device 10 to perform tasks
on behalf of the processes executed on the host device 10. When performing such tasks,

those peripheral devices may need to access the memory system 40, and hence may issue

14

10

15

20

25

30

request packets via the packet network 20 for routing to the bridge component 80, and from
there via the interconnect 70 to the memory system 40. Such request packets might include
virtual addresses, and the IOMMU 75 will be used to perform the required address
translation for the memory access requests specified by those request packets.

In systems employing virtual machines, it is often the case that a two stage address
translation process is performed. In particular each VM 52, 54 may have its own operating
system (OS) that can be used to control a first stage address translation process, in order to
translate a specified virtual address into an intermediate physical address. By such an
approach, the operating system can control the first stage translation in dependence on the
particular process being executed. However, to ensure separation between the different
virtual machines, a second stage address translation process can be used to convert the
intermediate physical address produced by the first stage translation into an actual physical
address within the memory system 40. Typically, the second stage translation is controlled
by a hypervisor component (not shown in Figure 1), the hypervisor being arranged to
control the operation of the various virtual machines 52, 54. As will be understood by
those skilled in the art, page tables within the memory system 40 may be accessed when
performing such address translation in order to retrieve descriptors providing the necessary
information to convert virtual addresses into intermediate physical addresses, and
intermediate physical addresses into final physical addresses in memory, and descriptors
retrieved from those page tables for that purpose may be locally cached within the address
translation components, such as the MMU 55 or the IOMMU 75.

For access requests issued by the processing element 50, the associated MMU 55
may be used to perform the required two stage address translation process. Similarly, for
requests initiated via the peripheral devices and routed via the bridge component 80, the
IOMMU 75 may perform the required two stage address translation process.

As shown in Figure 1, the peripheral device 30 has an interface 38 to the packet
network 20 via which the peripheral device can communicate with the host device 10, and
circuitry 32 for performing tasks on behalf of the processes executed on the host device 10.
The circuitry 32 may be configurable to provide multiple virtual peripheral devices 34, 36,
where each virtual peripheral device can be allocated to one of the virtual machines 52, 54.
In the example implementation of a PCle network, such a peripheral device that can

provide multiple virtual peripheral devices may be referred to as a Single Root /O

15

10

15

20

25

30

Virtualisation (SR-IOV) device, and the virtual peripheral devices may be referred to as
virtual functions.

In a typical PCle network, a Requester ID (RID) is provided within each packet
issued by a peripheral device, with that information being used to identify the peripheral
device, and hence enable the packet network 20 to route any associated response packet
back to the correct peripheral device once the request packet has been processed by the
intended destination element. In the context of a peripheral device 30 providing multiple
virtual peripheral devices, that RID has typically sought to further identify the particular
virtual peripheral device 34, 36, or more particularly information enabling the virtual
machine allocated to that particular virtual peripheral device to be determined by the
IOMMU 75, so as to ensure the correct second stage address translation takes place, in
dependence on the associated virtual machine. However, as systems become more
complex, and hence for example the number of virtual machines and associated virtual
peripheral devices increases, there is a scalability issue in seeking to provide this
information within the existing RID field.

For example, a typical RID comprises bus and function portions. The RID is a
fixed size value, 16 bits, of which 8 bits may be associated with the bus and 8 bits may be
associated with the function. A physical peripheral device (also referred to as a physical
endpoint) will be associated with a bus, and then the remaining function bits of the RID
can be used to define virtual peripheral devices in accordance with the existing PCle
approach. Assuming an implementation where 8 bits are allocated to the bus and 8 bits are
allocated to the function, this means that up to 256 functions can be identified by the RID
for a particular bus. As the number of virtual peripheral devices seeking to be supported
by a single SR-IOV endpoint increases, the use of a single bus may be insufficient, and
hence for example a really large SR-IOV endpoint might occupy multiple bus numbers.
For example, with 8192 virtual peripheral devices to be supported by such an endpoint
device, 32 bus numbers may be used.

It should also be noted that any physical endpoint device will use at least one bus.
This means for example that if a peripheral device just provides one virtual function, then
the other 255 possible function values for the particular RID specifying that bus will be

unused.

16

10

15

20

25

30

Against this background, it can be seen that a significant scaling challenge occurs
as the number of virtual machines, and associated virtual peripheral devices, increases. In
particular, in PCle, the RID is a finite 16-bit namespace, and the 64,000 possible
combinations of RID can become used quite quickly in such situations. For example, an
SR-IOV endpoint with 10,000 to 20,000 virtual functions would consume a large portion
of the namespace. If there are a few such endpoints in the system (for example providing
different types of I/O or accelerator service) then it is clear that the 64,000 possible
combinations in the RID namespace get divided down very quickly.

One change that might be considered would be to make the RID field larger.
However, in PCle this is a fundamental field to most packets, and such a change would be
very disruptive. In particular, hosts, endpoints and intermediate components (for example
switches) would all have to change to accommodate such an increased size in the RID field.
As will be discussed herein, a technique has been developed that can address this scalability
issue without needing to increase the size of the RID field.

Figure 2A illustrates a PCle network including two peripheral devices 100, 105
coupled viaa switch 110to ahost device 120. The host device 120 takes the form discussed
earlier with reference to Figure 1, and hence has a processing element 135 that may include
its own MMU, coupled via an interconnect 140 to memory 145 (for simplicity of
illustration the memory controller component is omitted in Figure 2A). A PCle host bridge
component 125 is used to couple the host device 20 to the PCle network, and an SMMU
component 130 (also referred to herein as an IOMMU) is used to perform address
translation in respect of requests to access memory 145 received from the PCle network,
for example from one of the peripheral devices 100, 105.

In this example, it is assumed that the peripheral device 100 is an SR-IOV
peripheral device that can support the provision of multiple virtual peripheral devices (as
mentioned earlier these also being referred to as virtual functions in PCle terminology).
The peripheral devices are also referred to as endpoint devices, and their requester ID (RID)
value is shown by way of illustration in hexadecimal format in association with the devices
100, 105. In this example, the endpoint device 100 has a RID value whose bus portion
identifies bus number 1, whilst the endpoint 105 has a RID value whose bus portion
identifies the bus 3. In this example, the function portions of the RID are not used, and

accordingly are set to “00”.

17

10

15

20

25

30

In Figure 2A, it is assumed that the peripheral device 100 performs direct memory
access (DMA) tasks on behalf of the host, and this results in the generation of DMA traffic
passing over the physical connection from the peripheral device 100 to the switch 110, and
from there to the host 120 in order to access memory 145. For purposes of illustration in
Figure 2A, the DMA traffic 115 is shown superimposed on the physical connection
between the peripheral device 100 and the switch 110, and in particular the information
provided by a single request packet 150 issued by the peripheral device 100 in order to seek
to access memory is shown, along with associated metadata. The packet 150 includes
control information in a field 155, in this example identifying that the request packet is
seeking to perform a memory write operation. A virtual address 165 is also provided within
the packet, and in addition the RID value is also provided within the packet within field
160 in this example.

Further, in this example a prefix 170 is associated with the packet 150, that provides
an Extended Function ID (EFID). In particular, rather than seeking to capture the function
related information within the RID 160, in this example the separate prefix 170 is used for
this purpose, and is referred to by the SMMU 130 in order to identify the virtual machine
that has been allocated to the virtual function issuing the request packet, hence enabling the
appropriate second stage address translation to be performed. It should be noted that this
EFID prefix 170 is only meaningful to the peripheral device 100 and to the host SMMU
130, meaning that intermediate components such as the switch 110 do not need to be altered
in order to accommodate the transfer of packets that include this additional EFID prefix
170.

As also shown in Figure 2A, a further prefix 175 is provided to identify a Process
Address Space ID (PASID), which is a PCle-defined value that is allocated and managed
by the operating system of the relevant virtual machine. This information can be used by
the SMMU 130 to control the first stage address translation, and in particular to perform a
first stage address translation that is controlled by the particular virtual machine allocated
to the virtual function that has issued the request packet 150, with the address translation
being dependent on the process to which the request packet relates.

It should be noted that, in accordance with the techniques described herein, the RID
field 160 forms a source indication used to control routing of an associated response packet

over the packet network to the peripheral device 100, and hence is used for example in

18

10

15

20

25

30

association with any acknowledgement to be provided to the peripheral device, and in the
event of a read access, for example, in association with a packet providing the read data
back to the peripheral device. The EFID 170 and PASID 175 then form two further,
distinct, fields, separate to the RID field 160. The PASID 175 provides a process indication
used by the SMMU 130 to control the first stage address translation for the specified virtual
address 165, whilst the EFID 170 provides a virtual machine indication used by the SMMU
130 to control the second stage address translation for the specified address 165.

By providing these three pieces of information as distinct fields, this provides a
great deal of flexibility, alleviating the scalability issue discussed earlier by enabling
decoupling of the routing information within the RID 160 from the second stage address
translation control information in the EFID 170. It also provides clear separation between
the information provided for the first stage address translation and the information provided
for the second stage address translation, by providing separate prefixes for the PASID 175
and the EFID 170, hence assisting in ensuring isolation between the address spaces
allocated to the different virtual machines under hypervisor control.

Figure 2B illustrates how the host SMMU 130 uses the above mentioned
information within the packet and associated metadata to control the two stage address
translation process. However, firstly reference will be made to Figure 2C, which
schematically illustrates the two stage address translation process. The virtual address 200,
i.e. the address provided within the address field 165 of the packet 150 shown in Figure
2A, is subjected by the SMMU 130 to a first stage address translation process in order to
generate an intermediate physical address 205. The way in which the virtual address is
translated to form the intermediate physical address is controlled by the operating system
running the process for which the peripheral device is performing a task, and hence the first
stage address translation can be seen as being operating system/VM controlled. In
particular, for any VM, the way in which the virtual address is translated can be made
dependent on the process to which the request transfer relates.

As also shown in Figure 2A, the intermediate physical address 205 is then subjected
to a second stage address translation in order to form the final physical address 210 within
the memory 145. This is hypervisor controlled, and hence can be made dependent on the

VM that is executing the process associated with the request packet.

19

10

15

20

25

30

Returning to Figure 2B, it can be seen that the virtual address 165 is provided to a
first stage address translation element 134 within the host MMU 130, which can perform
the virtual address to intermediate physical address translation in dependence on a first
stage translation configuration table or tables. To determine the appropriate translation to
perform during the first stage, the PASID 175 is referred to. In particular, the job of the
SMMU 130 is to seek to map (associate) individual device context to VMs, and for each
device there is no prescribed usage or structure for this mapping, instead this mapping
depending on software choice and/or usage. Hence, what the value of the PASID actually
means may be different for different devices. For example, PASID values 0 to 3 might be
associated with different processes when used from a device having a RID value of 123,
compared to the processes associated with PASID values O to 3 from a device having a
RID value of 456. In such a scenario, the operating system may in software have
knowledge to map between a particular process and the PASID value that should be used
in communications with a given device in relation to that particular process.

Accordingly, the RID value 160 can be input to a per-device configuration block
132 in order to produce information that is also used to control the first stage address
translation, in particular to control how the PASID value is interpreted in dependence on
the specified RID value, that RID value identifying the peripheral device issuing the
request.

This can be useful for a variety of reasons. For example, it may be that different
peripheral devices use different size PASID values. Taking a specific illustrative example,
if one piece of endpoint hardware (peripheral device) supports only, say, 8 bits of PASID,
whereas another endpoint device supports 20 bits of PASID, it may be that the host device
wants to use both endpoints in association with one process, but they cannot both use a
PASID value of 0x3000. Hence, the per-device configuration block 132 can be used to
determine, on a RID-by-RID basis, how the PASID value should be interpreted when
performing the first stage address translation, in particular to determine which process the
PASID value is identifying, and hence choose the appropriate first stage address translation
to use in dependence on that identified process.

It should be noted that if hardware resources allow, for example if all of the
endpoint devices support 20 bits of PASID, it is possible for the operating system to treat
PASID as a global entity that is not dependent on the RID value, and hence for a process

20

10

15

20

25

30

to use the same PASID for any endpoint device. However, as such a possibility is not
guaranteed, the first stage address translation space as selected using a given PASID value
might need to be specific to the particular endpoint device in question, as indicated by the
RID value, and hence the IOMMU will typically have to be capable of selecting different
sets of first stage translations for each RID value (even if in some cases they might all in
practice point to a shared set of first stage translations, with each endpoint using the same
common meaning for PASID values). It is for this reason as shown in Figure 1 that the
RID value is therefore used to select a device-specific list of first stage translations indexed
by PASID in hardware, even if sometimes software might choose to point to one common
list of first stage translations indexed by PASID.

An analogous approach can also be performed in relation to the EFID value 170
used to provide a virtual machine indication for the virtual machine executing the process
associated with the request packet. Hence, again, if desired the RID value 160 can be used
to identify a device-specific list of second stage translations indexed by the EFID value, as
indicated by the dotted line from the per-device configuration block 132 to the second stage
translation block 136. The second stage address translation block can then determine the
appropriate translation to perform based on the provided EFID value 170.

Alternatively, it may be that a per-device configuration is not needed for EFID
values, and accordingly the per-device configuration block 132 does not need to be referred
to when considering the EFID values. Instead, a common set of second stage translations
indexed by EFID can be used, with that common set for example being identified in any
suitable manner, for example with reference to global configuration information 138 as
shown in Figure 2B.

As shown in Figure 2B, the intermediate physical address determined from the
virtual address using the first stage translation components 134 is forwarded to the second
stage translation components 136 which convert the intermediate physical address into a
final physical address output as the transaction address 180 to the interconnect 140 for
accessing memory 145.

Hence, it can be seen that the PASID value and EFID value provide a hierarchy.
The PASID value is used to select between first stage translations, whereas the EFID value
is used to select between second stage translations. The PASID can hence be seen as VM-

local, creating a hierarchy. In particular, the VM second stage translation is selected based

21

10

15

20

25

30

on the EFID value, and then the PASID is used to select the first stage translation within
that VM. Such a hierarchy is useful for security reasons, since if an entity can influence
the PASID value then it may have access to different address spaces within a VM, but the
effect is contained to a particular VM, and has no effect on the second stage translation.

Figures 3A to 3C illustrate different example formats of packet and associated
metadata that may be used in different example implementations. Figure 3A illustrates the
format discussed earlier with reference to Figure 2A, and hence shows a packet and
associated metadata 220, in which a first prefix 240 provides the second address translation
control field (EFID) and a separate further prefix 245 provides the first address translation
control field (PASID). As illustrated in Figure 3A, the packet itself includes packet
specifying information in field 225, for example to distinguish between read and write
operations, an address field 230 to provide the address (for example a virtual address, but
in some instances this could be an intermediate physical address, or even a physical
address), and a header field 235 that can include various information, including the source
identifier field (RID).

Figure 3B illustrates an alternative variant of packet and associated metadata 250.
In this example, the packet is the same as discussed earlier in Figure 3A, but the first and
second address translation control fields have been provided within a single prefix 255.
Hence, the second address translation control field 260 and the first address translation
control field 265 are provided as separate distinct fields within a single prefix 255. Since
the fields are kept distinct and separate, this still allows suitable separation between the first
stage address translation control information and the second stage address translation
control information, assisting in maintaining security by isolating the address spaces of
different virtual machines from each other under hypervisor control.

Figure 3C illustrates a yet further alternative variant of packet and associated
metadata 270. In this example, the packet specifying information field 225 and address
field 230 are the same as in the other examples. However, the header portion 275 is
arranged to include not only the source identifier field (RID) 280 and any other suitable
information 290 that may also normally be included within the header portion, but also
includes the second address translation control field 285 providing the EFID value. This
can be a suitable approach in situations where the header has sufficient space to

accommodate the EFID information.

22

10

15

20

25

30

As discussed earlier, the RID typically includes a bus portion and a function
portion, and in an example of a 16 bit RID field, bits 15 to 8 may identify the bus, whilst
bits 7 to 0 can be used to identify different functions. In accordance with the techniques
described herein, the function information can be decoupled from the RID, so that the RID
is effectively used solely for routing of response packets, whilst the function information
is captured within the EFID value.

However, Figure 4 illustrates a further variant where the separate EFID field is still
provided, but a certain subset of bits from the RID value are also used to determine the
virtual machine, and hence identify the required second stage address translation to
perform. As shown in Figure 4, the RID value 300 includes a first portion 305 and a second
portion 310, whilst the separate EFID field 315 then provides a certain number of EFID
bits. In this example, the first portion 305 of the RID value is used to control routing, by
effectively identifying the bus associated with the endpoint device. Bits 7 to 0 may then
be unused, but in the example shown in Figure 4 those bits can be repurposed to provide
additional information that can be used, in combination with the EFID value 315, to
determine the VM, as indicated by the bubble 320 in Figure 4. By using the lower order
bits of the RID, in combination with the EFID, a suitable VM dependent second stage
address translation can then be identified. Such an approach would for example allow the
size of the EFID field to potentially be reduced, since some of the bits required to specify
the virtual machine are provided in the low order, unused, bits of the RID value 300.
Alternatively, such an approach would allow the effective size of the virtual machine
identifier to be increased, for example by retaining a 16 bit EFID value and extending it by
another 8 bits by also using the low order, unused, bits of the RID value 300.

As a yet further alternative example, the approach of Figure 4 may not be used, and
instead the low order bits of the RID can be used as transaction tags to track outstanding
requests. In particular, there can be a performance benefit by allowing one endpoint device
to emit transactions with more than one different RID value, as this allows a number of
outstanding requests to be in progress, and for the responses to be tracked and matched
with the associated requests. Hence, in such an implementation the upper order bits of the
RID value can be used to identify the bus, and the lower order bits of the RID value can be
used to distinguish between different outstanding requests, by allowing different RID

values to be output in association with those requests. In that example, the approach of

23

10

15

20

25

30

Figure 4 may not be used, and instead the EFID value will be used as discussed earlier with
reference to Figure 2B in order to identify the second stage address translation to perform.

Figure 5 is a flow diagram illustrating the technique described herein. At step 350,
multiple virtual machines are provided within the host device, where each virtual machine
may execute one or more processes. At step 355, one or more peripheral devices are
employed to perform tasks on behalf of processes executed on the host device. At least
one peripheral device may provide multiple virtual peripheral devices, with each virtual
peripheral device allocated to a virtual machine.

As indicated at step 360, the peripheral device or peripheral devices are coupled to
the host device via a packet network. When a peripheral device supporting multiple virtual
peripheral devices requests access to memory, it can be arranged, as indicated at step 365,
to issue a request packet specifying an address (which in the example shown in Figure 5 is
assumed to be a virtual address), with the request packet having associated metadata
providing separate RID, PASID and EFID fields.

Asindicated by step 370, the IOMMU then uses the PASID to control the first stage
address translation, typically the PASID being interpreted with reference to the RID value.
Further, as discussed earlier, the EFID field is used to control the second stage address
translation, and may or may not also be interpreted with reference to the RID value. More
details of this final step 370 are shown in Figure 6.

In particular, as shown in Figure 6, at step 400 it is determined whether a new
request packet has been received from a peripheral device of the type that supports the
provision of multiple virtual peripheral devices. When such a request packet is received,
then it is determined at step 405 whether the source indicated in the RID field is allowed to
use the EFID field. Hence, in this example, the source indication provided in the RID field
can be used to perform a permission check to determine whether the peripheral device is
allowed to issue request packets with the EFID prefix. If it is determined that the source
endpoint device is not allowed to use the EFID field, then an error can be asserted at step
410 if the EFID prefix is specified in association with the request packet. It will be
appreciated that there are various variants that can be used instead of step 410. For
example, if the EFID is not present, the process may be arranged to fall back to existing
behaviour, for example translating at the first stage translation based on the provided

PASID value, and then using a common translation for the second stage. Alternatively, the

24

10

15

20

25

30

access could be blocked if use of EFID is mandatory, and further these choices could
potentially be set up on a per-device basis by software configuration.

Assuming the source indicated in the RID field is allowed to use the EFID prefix,
then the process proceeds to step 415 where the RID value and PASID value are used to
determine the first stage address translation, in the manner discussed earlier with reference
to Figure 2B.

Then, at step 420 the EFID value is used to determine the second stage address
translation, again in the manner as discussed earlier with reference to Figure 2B. As noted
earlier, the RID value may or may not also be referred to during this process, depending on
implementation.

Whilst in the examples described above a packet network has been considered, the
techniques described herein can be employed in any suitable communication network, and
hence for example could be used within an on-chip interconnect in some implementations.
For instance, a System-on-chip (SoC) may have an on-chip/integrated peripheral device
provided thereon, which can communicate with the host’s processing circuitry via an on-
chip interconnect. By way of specific example, considering again PCle technology, rather
than external peripheral devices 30, 90 such as shown in Figure 1, the host system may
incorporate a PCle Root Complex integrated endpoint which appears to software as being
a PCle device (it has for instance the same register programming interface as would an
external PCle device). Such an integrated endpoint device could for example issue DMA
requests without using a PCle network, and instead could for example use an on-chip
proprietary communication protocol such as Arm Limited’s AMBA CHI or AMBA AXI
protocols. The request transfers issued by such a device could still adopt the format
discussed herein, and thus have associated metadata that provides as separate fields a
source identifier field, a first address translation control field and a second address
translation control field.

In accordance with the techniques described herein, it will be appreciated that a
mechanism has been described that allows higher scalability to be achieved for techniques
such as I/O virtualisation, by extending existing request transfer formats with an additional
identifier. This would allow, for example, a larger number of virtual device contexts to be

employed in systems where a large VM host may be provided, for example in a data centre.

25

10

15

In the present application, the words “configured to...” are used to mean that an
element of an apparatus has a configuration able to carry out the defined operation. In
this context, a “configuration” means an arrangement or manner of interconnection of
hardware or software. For example, the apparatus may have dedicated hardware which
provides the defined operation, or a processor or other processing device may be
programmed to perform the function. “Configured to” does not imply that the apparatus
element needs to be changed in any way in order to provide the defined operation.

Although illustrative embodiments of the invention have been described in detail
herein with reference to the accompanying drawings, it is to be understood that the
invention is not limited to those precise embodiments, and that various changes,
additions and modifications can be effected therein by one skilled in the art without
departing from the scope and spirit of the invention as defined by the appended claims.
For example, various combinations of the features of the dependent claims could be
made with the features of the independent claims without departing from the scope of

the present invention.

26

10

15

20

25

30

CLAIMS

1. An apparatus comprising:

a host device coupled to a memory system and arranged to provide a plurality of
virtual machines, where each virtual machine is arranged to execute one or more processes;

a peripheral device arranged to perform tasks on behalf of the processes executed
on the host device, and coupled to the host device via a communication network, wherein
the peripheral device is configurable as a plurality of virtual peripheral devices, where each
virtual peripheral device is allocated to one of the virtual machines; and

address translation circuitry associated with the host device and arranged to
perform an address translation to translate a given address into a corresponding physical
address within the memory system, when the given address is a virtual address the address
translation comprising a first stage address translation that is dependent on the process
associated with the given address, and the address translation further comprising a second
stage address translation that is dependent on the virtual machine associated with the given
address;

wherein:

the peripheral device is arranged, when seeking to access the memory system, to
issue a request transfer with a specified address, the request transfer having associated
metadata that provides as separate fields a source identifier field, a first address translation
control field and a second address translation control field, wherein the source identifier
field provides a source indication used to control routing of an associated response transfer
over the communication network to the peripheral device, the first address translation
control field provides a process indication used by the address translation circuitry to
control any first stage address translation required for the specified address, and the second
address translation control field provides a virtual machine indication used by the address
translation circuitry to control any second stage address translation required for the

specified address.
2. An apparatus as claimed in Claim 1, wherein the communication network is a

packet network, the request transfer takes the form of a request packet, and the response

transfer takes the form of a response packet.

27

10

15

20

25

30

3. An apparatus as claimed in Claim 2, wherein:
the second address translation control field is provided as an external item of

metadata provided separately to the request packet but associated with the request packet.

4. An apparatus as claimed in Claim 3, wherein:

the first address translation control field is provided as a further external item of
metadata provided separately to the request packet but associated with the request packet,
the further external item of metadata being distinct from the external item of metadata

providing the second address translation control field.

5. An apparatus as claimed in Claim 3, wherein the first and second address

translation control fields are provided as distinct fields within the external item of metadata.

6. An apparatus as claimed in Claim 2, wherein the second address translation control

field is provided within a header portion of the request packet.

7. An apparatus as claimed in any preceding claim, wherein the virtual machine
indication takes the form of a virtual peripheral device indication indicating the virtual
peripheral device issuing the request transfer, and the address translation circuitry is
arranged to determine, with reference to the virtual peripheral device indication, the virtual

machine to which the virtual peripheral device issuing the request transfer is allocated.

8. An apparatus as claimed in any preceding claim, wherein for each request transfer
issued by the peripheral device, the peripheral device 1s arranged to use a same source
indication value to form the source indication used to control routing of the associated

response transfer over the communication network to the peripheral device.

9. An apparatus as claimed in any of claims 1 to 7, wherein the peripheral device has
a range of source indication values, any one of which is useable to control routing of
response transfers over the communication network to the peripheral device, and for each

request transfer issued by the peripheral device, the peripheral device is arranged to select

28

10

15

20

25

30

a source indication value from the range to be used as the source indication for that request

transfer.

10. An apparatus as claimed in Claim 9, wherein the peripheral device is arranged to
track correspondence between outstanding request transfers and their associated response

transfers though use of different source indication values for different request transfers.

1. An apparatus as claimed in any preceding claim, wherein the address translation
circuitry 1s arranged to determine the virtual machine associated with the virtual peripheral
device issuing the request transfer directly from the virtual machine indication provided by

the second address translation control field.

12. An apparatus as claimed in Claim 11, wherein the virtual machine indication
specifies a virtual machine number that identifies the virtual machine to the address

translation circuitry.

13. An apparatus as claimed in any preceding claim, wherein the address translation
circuitry is arranged to determine the virtual machine associated with the virtual peripheral
device issuing the request transfer with reference to both the virtual machine indication
provided by the second address translation control field and a source indication value

forming the source indication.

14. An apparatus as claimed in Claim 13, wherein the address translation circuitry is
arranged to employ a subset of values of the source indication value, in combination with
virtual machine indication, to determine the virtual machine associated with the virtual

peripheral device issuing the request transfer.

15. An apparatus as claimed in any preceding claim, wherein the address translation
circuitry is arranged to reference the source indication to perform a permission check to
determine whether the peripheral device is allowed to issue request transfers with the

second address translation control field associated therewith.

29

10

15

20

25

30

16. An apparatus as claimed in any preceding claim when dependent on claim 2,
wherein the packet network is a Peripheral Component Interconnect Express (PCle)

network, and the peripheral device is an endpoint device within the PCle network.

17. An apparatus as claimed in Claim 16, wherein the peripheral device is a Single
Root I/0 Virtualisation (SR-IOV) device, and the virtual peripheral devices are virtual

functions.

18. An apparatus as claimed in Claim 16 or Claim 17 when dependent on claim 3,
wherein the external item of metadata is provided as a transaction layer packet (TLP)

prefix.

19. An apparatus as claimed in any of claims 16 to 18, wherein the source identifier

field is a Requester ID field.

20. A method of handling request transfers in a communication network, comprising:

providing a plurality of virtual machines within a host device coupled to a memory
system, where each virtual machine is arranged to execute one or more processes;

employing a peripheral device to perform tasks on behalf of the processes executed
on the host device, wherein the peripheral device is configurable as a plurality of virtual
peripheral devices, where each virtual peripheral device is allocated to one of the virtual
machines;

coupling the peripheral device to the host device via the communication network;

employing address translation circuitry associated with the host device to perform
an address translation to translate a given address into a corresponding physical address
within the memory system, when the given address is a virtual address the address
translation comprising a first stage address translation that is dependent on the process
associated with the given address, and the address translation further comprising a second
stage address translation that is dependent on the virtual machine associated with the given
address; and

causing the peripheral device, when seeking to access the memory system, to issue

a request transfer with a specified address, the request transfer having associated metadata

30

10

15

20

25

30

that provides as separate fields a source identifier field, a first address translation control
field and a second address translation control field, wherein the source identifier field
provides a source indication used to control routing of an associated response transfer over
the communication network to the peripheral device, the first address translation control
field provides a process indication used by the address translation circuitry to control any
first stage address translation required for the specified address, and the second address
translation control field provides a virtual machine indication used by the address
translation circuitry to control any second stage address translation required for the

specified address.

21. A host device comprising:

a processing element arranged to provide a plurality of virtual machines, where
each virtual machine is arranged to execute one or more processes;

a bridging component to communicate, via a communication network, with a
peripheral device arranged to perform tasks on behalf of the processes executed on the host
device, wherein the peripheral device is configurable as a plurality of virtual peripheral
devices, where each virtual peripheral device is allocated to one of the virtual machines;
and

address translation circuitry arranged to perform an address translation to translate
a given address into a corresponding physical address within a memory system accessible
via the host device, when the given address is a virtual address the address translation
comprising a first stage address translation that is dependent on the process associated with
the given address, and the address translation further comprising a second stage address
translation that is dependent on the virtual machine associated with the given address;

wherein:

the address translation circuitry is arranged to receive a request transfer via the
bridging component from the peripheral device when the peripheral device is seeking to
access the memory system, the request transfer having a specified address and having
associated metadata that provides as separate fields a source identifier field, a first address
translation control field and a second address translation control field, wherein the source
identifier field provides a source indication used to control routing of an associated

response transfer over the communication network to the peripheral device, the first

31

10

15

20

25

30

address translation control field provides a process indication used by the address
translation circuitry to control any first stage address translation required for the specified
address, and the second address translation control field provides a virtual machine
indication used by the address translation circuitry to control any second stage address

translation required for the specified address.

22. A peripheral device comprising:

an interface to a communication network via which the peripheral device is
arranged to communicate with a host device that is coupled to a memory system, the host
device providing a plurality of virtual machines, where each virtual machine is arranged to
execute one or more processes; and

circuitry to perform tasks on behalf of the processes executed on the host device,
wherein the circuitry of the peripheral device is configurable to provide a plurality of virtual
peripheral devices, where each virtual peripheral device is allocated to one of the virtual
machines;

wherein:

the peripheral device is arranged, when seeking to access the memory system, to
issue a request transfer with a specified address, the request transfer having associated
metadata that provides as separate fields a source identifier field, a first address translation
control field and a second address translation control field, wherein the source identifier
field provides a source indication used to control routing of an associated response transfer
over the communication network to the peripheral device, the first address translation
control field provides a process indication used by address translation circuitry of the host
device to control any first stage address translation required for the specified address when
the specified address is a virtual address, the first stage address translation being dependent
on the process associated with the specified address, and the second address translation
control field provides a virtual machine indication used by the address translation circuitry
to control any second stage address translation required for the specified address, the
second stage address translation being dependent on the virtual machine associated with

the specified address.

32

33

Intellectual

Property

Office
Application No: GB2106624.6 Examiner: Contract Unit Examiner
Claims searched: 1-22 Date of search: 15 February 2022

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims

A - US2021/004334 Al
(TTAN KUN ET AL) paragraphs [0017], [0020], [0035], [0036], [0043],
[0044]; figure 1

A - CN110928646 A
(HAIGUANG INF TECH CO LTD) the whole document

A - IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL
TECHNOLOGY (ICIT), 2018, MODICA PAOLO ET AL, "Supporting
temporal and spatial isolation in a hypervisor for ARM multicore
platforms", pages 1651-1657

page 1652, paragraph 11

Categories:

X Document indicating lack of novelty or inventive A Document indicating technological background and/or state
step of the art.

Y Document indicating lack of inventive step if P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category.

& Member of the same patent family E Patent document published on or after, but with priority date

carlier than, the filing date of this application.

Field of Search:
Search of GB, EP, WO & US patent documents classified in the following areas of the UKCX :

‘ Worldwide search of patent documents classified in the following areas of the IPC ‘
GO6F

The following online and other databases have been used in the preparation of this search report

International Classification:

Subclass Subgroup Valid From
GOG6F 0009/455 01/01/2018
GOG6F 0012/1081 01/01/2016
GOG6F 0012/109 01/01/2016

Intellectual Property Office is an operating name of the Patent Office www.gov.uk /ipo

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DRAWINGS
	Page 7 - DRAWINGS
	Page 8 - DRAWINGS
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - CLAIMS
	Page 36 - CLAIMS
	Page 37 - CLAIMS
	Page 38 - CLAIMS
	Page 39 - CLAIMS
	Page 40 - CLAIMS
	Page 41 - SEARCH_REPORT

