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57 ABSTRACT 

A method for constructing a data Structure for a data String 
of characters includes producing a matrix of Sorted rotations 
of the data String. This matrix defines an A array which is a 
Sorted list of the characters in the data String, a Barray which 
is a permutation of the data String, and a correspondence 
array C which contains correspondence entries linking the 
characters in the A array to the same characters in the B 
array. A reduced A array is computed to identify each unique 
character in the A array and a reduced Carray is computed 
to contain every s” entry of the C array. The Barray is 
Segmented into blocks of size S. During a Search, the A and 
C" arrays are used to indeX the B array to reconstruct any 
desired row from the matrix of rotations. Through this 
representation, the matrix of rotations can thus be used as a 
conventional Sorted list for pattern matching or information 
retrieval applications. A data Structure containing only the 
A, B, and C has very little memory overhead. The Barray 
contains the same number of characters as the original data 
String, and can be compressed in a block wise manner to 
reduce its size. The A array is a fixed size equal to the size 
of the alphabet used to construct the data String, and the C 
array is variable size according to the relationship n/S, where 
n is the number of characters in the data String and S is the 
Size of the blocks of the B array. Accordingly, the data 
Structure enables a tradeoff between access Speed and 
memory overhead, the product of which is constant with 
respect to block size S. 

35 Claims, 5 Drawing Sheets 
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COMPUTER IMPLEMENTED METHODS 
FOR CONSTRUCTING A COMPRESSED 

DATASTRUCTURE FROMA DATA STRING 
AND FOR USING THE DATASTRUCTURE 
TO FIND DATA PATTERNS IN THE DATA 

STRING 

TECHNICAL FIELD 

This invention relates to methods for indexing Sequences 
of data, Such as textual materials or DNA. More particularly, 
this invention relates to methods for constructing a highly 
compressed data Structure which enables efficient Searches 
for particular patterns in the data, without having to examine 
the entire Structure. 

BACKGROUND OF THE INVENTION SECTION 

An indeX is a list of key elements and associated infor 
mation that points to a location containing more compre 
hensive data. A book index, for example, contains word 
entries and associated page numbers pointing to the detailed 
information in the book. In the electronic realm, indexes are 
used to locate particular files of data entries in a data Storage 
System. The amount of indexing memory above and beyond 
that required to Store the original text or data will be referred 
to as “memory overhead.” The amount of time required to 
find a particular Sequence in the data or text will be referred 
to as the “time overhead.” 

Various techniques exist to reduce the memory overhead. 
An obvious approach is to Store no indeX at all. The text is 
Simply Scanned Serially for any pattern desired. This tech 
nique and related methods require access time which grows 
linearly with the size of the text. As the text size doubles, the 
typical time required to find a pattern likewise grows two 
fold. Indexing Schemes, Such as a conventional book indeX 
provide much faster acceSS but with memory overhead 
which grows linearly or faster with the size of the text. If the 
size of the text doubles then the index likewise grows 
twofold. 

Accordingly, there is a need for an indexing Scheme 
which provides both smaller than linear time overhead and 
Smaller than linear memory overhead. 
One well known and useful data Structure is a Sorted list 

of all data records. This kind of data Structure has applica 
tions ranging from data Storage Systems to pattern matching 
algorithms. For unstructured text, this can correspond to 
representing a Sorted list of all Suffixes of the text stream or 
all rotations of the text. A "rotation' of a Sequence of 
characters is a new Sequence created by repeatedly taking 
the first character and placing it at the end of the previous 
Sequence. 

For example, consider the ten character Sequence 
“test textif.” Rotating the original Sequence all possible 
times yields the following ten rotations: 

Possible Rotations 

test textif 
est textift 
st textiite 
t textiites 

textiftest 
textiftest 
extiftest t 
Xtiftest te 
tiftest tex 
#test text 
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2 
Alphabetically Sorting these ten rotations of the ten char 

acter Sequence produces the following organization of the 
data: 

Alphabetically Sorted Rotations 
est textift 
extiftest t 
st textiite 
test textif 
textiftest 
t textiites 
titest tex 
Xtiftest te 

textiftest 
#test text 
The data structure formed from this sorted list of rotations 

can be used to quickly answer questions, Such as "How 
many times did a three character String tex occur?,” and "If 
that pattern did occur, what characters followed and pre 
ceded it?” One prior art technique for Storing a representa 
tion for all the rotations of the text is to store a list of pointers 
to the original text Such that the ordered pointers refer to the 
first character of each rotation of the text in Sorted order. 

In general, there exists a tradeoff between memory capac 
ity requirements and access performance. It is desirable to 
minimize the amount of memory required to represent the 
list of Sorted rotations given a limited amount of time 
allowed to read characters from the representation. 
One prior art Scheme that uses a list of Sorted rotations is 

known as the “Burrows-Wheeler Compression Algorithm.” 
The Burrows-Wheeler (BW) Compression Algorithm is 
described in an article entitled, "A Block-Sorting LOSSleSS 
Data Compression Algorithm' by M. Burrows and D. J. 
Wheeler, Digital Systems Research Center Research Report 
124, May 10, 1994. The BW Compression Algorithm is 
based upon the following insight: for an alphabetically 
sorted list of all possible rotations of a block of text, the 
Sequence of last characters for each alphabetized rotation 
fully describes a rotation of the original text. 

FIG. 1 shows two identical copies of the ten rotations of 
the sequence “test textif’ identified by rows and columns in 
a matrix. The rows are Sorted alphabetically. According to 
the finding from the Burrows-Wheeler article, the last col 
umn of the matrix (column 10) fully defines a rotation of the 
original text of characters. The entire matrix can be recreated 
from the tenth column. To show why this is true, notice that 
all rows and columns of the 10-by-10 matrix are permuta 
tions of the original text Sequence. Since the rows are 
alphabetized, column 1 must be alphabetized and can be 
created Simply by alphabetizing column 10. Each character 
in column 10 can be interpreted as the character which 
cyclically precedes the character in the same row of column 
1. In this example, the two letters “t” in column 10 (rows 1 
and 2) precede the letters “e” in column 1 (rows 1 and 2). 
Similarly, the single letter “e” in column 10 (row 3) precedes 
the letter “s” in column 1 (row 3). 
The original text “test textif can be recovered if there 

exists a correspondence indicating not just that the letter's 
is preceded by a letter “e,” but that a particular “s” is 
preceded by a particular “e.” In FIG. 1, four lines are drawn 
to show a correspondence between identical letters “t” in 
columns 1 and 10. For example, the line from column 1, row 
4 to column 10, row 1 indicates the particular letter “t” that 
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is preceded by the symbol "#" (i.e., the first “t” in column 
1) is also the same letter “t” which precedes the letter “e” 
(i.e., the first “t” in column 10). As a result, the three letter 
string “ifte” is definitely a substring of one of the rotations 
of the original text. 

The entire matrix of Sorted rotations can be created if the 
correct lines of correspondence can be determined. This 
exercise turns out to be simple. When all rotations of text are 
unique, there is only one correspondence between the char 
acters in columns 1 and 10 which is self-consistent. This 
unique correspondence can be described by the Visual prop 
erty that all the lines of correspondence for a particular letter 
cannot croSS each other when replicated matrixes are 
arranged side-by-side as in FIG. 1. For example, the four 
lines connecting the letters “t” connect column 10, rows1, 
2, 9, and 10 to column 1, rows 4, 5, 6, and 7, respectively, 
without any of these four lines interSecting. These lines 
cannot interSect because given a Set of alphabetized word 
Sequences (e.g., rows 1, 2, 9, 10) which are prepended each 
with the same character (e.g., “t”), the new Sequences 
created (effectively rows 4, 5, 6, 7) will be in alphabetical 
order. From the non-interSecting rule, it is clear that there is 
only one consistent Set of correspondences when all rota 
tions are unique. 

FIG. 2 shows the same Side-by-Side matrix configuration 
with all ten correspondence lines. Beginning with the 
sample substring of “ite,” these lines can be followed until 
a complete rotation #test text” is decoded. Burrows and 
Wheeler also noted that the last column is, in Some Sense, 
more easily compressed than the original text. The BW 
Compression Algorithm thus provides a useful tool for the 
compression and decompression of textual material by com 
puting the matrix of Sorted rotations and compressing the 
last column. 

The BW Compression Algorithm is limited, however, to 
a compression/decompression process. It is not very useful 
as a pattern Search tool. To directly access a Specific pattern 
using the BW algorithm, the text essentially must be decom 
pressed and then Scanned directly until the pattern is found. 
The time required to do this grows proportionally to the size 
of the compressed text. 

SUMMARY OF THE INVENTION 

The invention concerns a technique which employs a 
matrix of rotations, Such as the Sorted list of rotations created 
by the BW Compression Algorithm, for use in finding 
patterns that occur in data. This invention offers a tradeoff 
between access Speed and Storage efficiency. An increase in 
access Speed comes at a proportional cost of additional 
Storage Space demands. As a result, a designer is allowed the 
flexibility to configure the data Structure according to a 
desired set of performance and Storage requirements. 

According to one aspect, a method for constructing a data 
Structure for a data String of characters is described. The 
method includes producing a matrix of Sorted rotations of 
the data String. This matrix defines an A array which is a 
Sorted list of the characters in the data String and a Barray 
which is a permutation of the data String. A correspondence 
array C is then computed to contain correspondence entries 
linking the characters in the A array to the same characters 
in the B array. A reduced A array is computed to identify 
each unique character in the A array and a reduced Carray 
is computed to contain every s” entry of the Carray. The A 
and Carrays are used to find particular characters within the 
blocks of the B array to thereby reconstruct patterns of 
characters within the original data String. 
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4 
A data Structure containing only the A, B, and C arrayS 

can be used to recreate any term from the full A,B, or C 
arrayS. The full A and C arrays can be used, using Burrows 
and Wheelers result, to recreate the original text or more 
generally any row of the matrix of Sorted rotations. The 
Sorted rows of text can then be used as a conventional Sorted 
index to find desired patterns in the text. The A, B and C 
data Structures represent the original text and the indeX with 
very little memory overhead. The Barray contains the same 
number of characters as the original text. The A array is a 
fixed size equal to the size of the alphabet used to construct 
the data String. The C array is of size n/S, where n is the 
number of characters in the data String and S is the chosen 
size of the blocks of the Barray. 

Because the A array is fixed-size and the Carray Scales 
according to 1/s, the data structure enables a tradeoff (which 
varies with block sizes) between access speed and memory 
overhead. If a designer is more concerned with access Speed, 
the designer uses a Small block size S, which improves 
performance because the indexing array C" is larger and 
contains more information to help facilitate a more rapid 
Search. This improved performance comes at a direct cost of 
additional Storage requirements to Store the large C" array. 
On the other hand, if the designer is more interested in 
conserving Storage space, the designer uses a larger block 
Size S. The Carray is Smaller, thereby requiring leSS Storage 
Space, but at a cost of Slower access time. 

According to another aspect, the data Structure is com 
pressed in a block wise manner. The blocks of the Barray 
are compressed individually using a combination of move 
to-front encoding, run-length encoding, and a variable 
length coding (e.g., Huffman coding) algorithm. This 
enables the data structure to be stored in less memory, while 
Still permitting decompression of individual blocks for 
access to characters without having to decompress the entire 
data Structure. 
According to another aspect, the data structure is 

enhanced to include additional block indexing information 
that can be used to facilitate Searching at the macro block 
level, as opposed to the micro character level, to improve 
Search efficiency. This enhanced data Structure contains type 
information for each block that identifies which types of 
characters and how many characters of particular types are 
contained within the associated block. The type information 
permits a Search of the data Structure to examine at the block 
level whether a particular block contains a target character. 
The enhanced data Structure further includes character jump 
information for each block that references where a next 
character of a particular type occurs in the blockS. The jump 
information permits a Search of the data structure to skip 
over large numbers of blocks that do not contain the target 
character. The type and jump information can be Stored as 
Separate arrays, or as headers for the blocks of the Barray. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 illustrates a conventional matrix of Sorted rota 
tions. 

FIG. 2 illustrates lines of correspondence interconnecting 
two identical matrices of Sorted rotations, according to a 
prior art technique. 

FIG. 3 is a block diagram of a computer programmed to 
perform methods according to aspects of this invention. 

FIG. 4 is a flow diagram listing Steps in a method for 
creating a data Structure used to find Small data patterns 
within a large body of data. 

FIG. 5 is a reproduction of the matrix of sorted rotations 
shown in FIG. 2, and includes additional labels to facilitate 
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discussion of construction of the A, B, and C arrays of a list 
of Sorted rotations. 

FIG. 6 illustrates a matrix of sorted rotations for a binary 
alphabet and is used for discussion of an aspect of this 
invention concerning derivation of a C array from the C 
array. 

FIG. 7 shows a data Structure according to a first imple 
mentation of this invention. 

FIG. 8 shows a specific example of the FIG. 7 data 
Structure. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

This invention pertains to techniques for finding 
Sequences or patterns of data within a larger body of data. 
For purposes of continuing discussion, the techniques are 
described below within the context of a search and retrieval 
tool configured for detecting Strings of characters Stored in 
memory. However, the techniques may be applied to other 
pattern matching problems. For instance, another possible 
application is to use the techniques described herein for 
DNA matching in molecular biology. 

FIG. 3 shows a computer system 20 having a processor 
22, a memory 24, an input device 26 (e.g., keyboard, mouse, 
etc.), and a display 28. These components are interconnected 
via a bus 30. A pattern matching application 32 is Stored in 
memory 24 and executed on the processor 22. The pattern 
matching application 32 performs a Series of operations on 
a large body of data to create a data Structure 34 that can be 
used to indeX or find Specific patterns within the data, 
regardless of where they occur or whether they occur acroSS 
boundaries Separating one data item from the next. 

The resultant data Structure 34 includes a representation 
of the entire body of data as well as a highly compressed 
index to the data. When ready for use, the data structure 34 
(data and index) is loaded in its entirety into a data memory 
(e.g., RAM) for convenient access by the processor 22. The 
pattern matching application 32 is then able to perform 
Searches for particular character Sequences in the data by 
using the data Structure. 

FIG. 4 shows a computer-implemented method performed 
by the computer during execution of the pattern matching 
application 32 to create the data structure 34. This method 
will be described with reference to FIGS. 3 and 5-8. 

Produce Sorted Rotations (Step 40) 
The initial step 40 is to produce sorted rotations of a data 

String of characters. AS used herein, the term character is 
meant to be an item or term of the data String. The term 
character is not to be limited to any particular type or kind 
of notation. Examples of possible characters include 
numbers, letters, punctuation, Symbols, DNA amino acids, 
and the like. 

Step 40 can be performed a number of ways. One way is 
to first produce all of the rotations from the data String, and 
then Sort the rotations using an iterative comparison opera 
tion. During a first pass, the comparison operation examines 
only the first character (i.e., letter, punctuation, number, etc.) 
of each rotation to perform an initial Sort. Each group of 
rotations which begin with the same character is then Sorted 
using a comparison operation which examines only the 
Second character of the rotation. This is repeated recursively 
until the entire Sequence is Sorted (i.e., alphabetically, 
numerically ordered, etc.). 

Other algorithms can be used to establish a sorted list of 
rotations, including the Burrows-Wheeler (BW) Compres 
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Sion Algorithm discussed in the Background of the Invention 
Section and an algorithm described by E. McCreight, “A 
Space-Economical Suffix Tree Construction Algorithm,” 
Journal of the ACM, Vol. 23, #2, 1976, pp. 262. 

For purposes of continuing discussion, Suppose that the 
data string consists of the text “test textif” which was 
introduced in the Background of the Invention section. All 
rotations of this data String are computed and then Sorted 
alphabetically. FIG. 5 shows the matrix of sorted rotations, 
which is essentially a reproduction of FIG. 2. One idea 
suggested by Burrows-Wheeler article is that the entire 
matrix of rotations can be recovered from the first and last 
columns (i.e., columns 1 and 10) and the lines of correspon 
dence. 

To briefly describe how this occurs, it is helpful to first 
calculate an array which represents the lines of correspon 
dence shown in FIG. 5. To do this, it is useful to define a few 
terms. Let M be the matrix of sorted rotations, Abe an array 
containing the characters in the first column (i.e., the alpha 
betized Sequence of the matrix M), and B be an array 
containing the characters in the last column of the matrix M. 
Also, let C be a correspondence array showing the corre 
spondence of the characters in Ato the same characters in B, 
So that, 

BCi EAi 

In other words, the correspondence array C contains the 
row numbers for characters in array B which correlate 
through the lines of correspondence to the same letters in 
array A. The first letter “e” in array A is the same letter “e” 
in row 3 of array B, and hence, the first entry in the 
correspondence array C is the number 3. Completing the 
arrays for the example of FIG. 5 yields the following: 

Now, let Mijl indicate the character in the i' row and 
j" column of matrix M. Similarly, the notation Ai), B(i), 
Ci), and so forth is used to indicate the i' value in the 
respective array. Now, any row “i” of M can be calculated 
from A, B, and C by the following recursive definition: 

Mij=API: 

where P.1=i and Pi-CP-j-1 for j>1 

For i=1 (i.e., the first row), the entire first row rotation can 
be reconstructed. Table 1 shows the reconstruction of the 
first three characters “est” of the first rotation (i.e., row 1). 

TABLE 1. 

P Computation for eachi M Computation, Given P 

P1 = 1 (defined) M11 = AP1 = A1 = e 
i = 2; P2 = CIP1 = C1 = 3 M12 = AP2 = A3 = s 
i = 3; PI3 = CIP2 = CICI1 = 6 MI13 = AP,3) = A6 = t 

Accordingly, from this set of rotations, the matrix M can 
be recovered from the A, B, and C arrays. For a text having 
in characters, a memory of Size 2n characters is needed to 
Store the A and B arrays plus n pointers (requiring log2(n) 
bits) to store the Carray. 
The remaining steps of the method illustrated in FIG. 4 

describe construction of a data structure which consumes 
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less Space as compared to the memory required to Store a full 
list of sorted rotations or the full A, B, and C arrays, while 
Still permitting complete recovery of the rotations. 
Additionally, the data structure can be compressed, yet Still 
allow direct access to SubStrings of the data String without 
decompressing the entire text. 

Compute Reduced Sorted Array A (Step 42) 
At Step 42 in FIG. 4, the pattern matching application 32 

in FIG. 3 directs the computer to create a reduced sorted 
array A, which contains information for each unique char 
acter in the alphabetically Sorted array A. The reduced array 
A contains the row numbers or locations which are the Start 
of each unique character in the array A. AS shown in FIG. 5, 
the first occurrence of letter “e” in array A is at row 1. Array 
A reflects this with an entry of position 1. Likewise, the first 
occurrences of letters “s” and “t” in array Aare at rows 3 and 
4, respectively, resulting in an entry of positions 3 and 4 in 
array A. Continuing through the entire A array produces an 
array A as follows: 

A'-1,3,4,8,9,10. 

The array A is defined mathematically as follows. For 
each character c which occurs in array A, the reduced array 
A is defined Such that: 

AAc=c and Azc for all j<Ac 

For the first occurrence of character “e” in array A of FIG. 
5, the relationship yields a corresponding result for array A 
of Ae=1, because AAe=A1=e. For all unique char 
acters in array A, the relationship yields: 

Ae=1, As-3, At=4, Ax=8, A =9, A#=10 or A'-1,3,4, 
8,9,10. 

Another way to derive array A is to first count each type 
of character in the original data String. Since the A array 
contains Sorted characters (i.e., alphabetized letters, numeri 
cally ordered numbers, etc.), the counts represent how many 
characters of one type are listed before moving to the next 
ordered character. These counts thereby provide spacing 
between the values loaded into the A' array. 

The size of array A is bound by the size of the alphabet 
used in constructing the text. This is advantageous because 
the array A is independent of the number of characters (i.e., 
n) in the original text sequence. In the example text 
“test texti, the alphabet size consists of six characters: e, 
S, t, X, , and it. The array A has Six entries corresponding 
to the Six characters, which is reduced from the ten charac 
ters that make up the full A array. AS other examples, a fall 
alphabet consists of 26 characters, A-Z, and a binary alpha 
bet has two characters, 0 and 1. 

The full array A, which varies in size according to the Size 
of the text, can be entirely recovered from the fixed-size 
array A (i.e., fixed to the size of the alphabet). The alphabet 
is known and provides an ordered Sequence of characters. 
The A array provides the information to expand the char 
acters to the full array. For instance, using the ordered Six 
character alphabete, S, t, X, , if, the array A indicates that 
the letter “e” appears in the first position, the letter “s” 
appears in the third position, and So on. The positions not 
designated by array A are then filled with the same letter 
cited above it. The Second position of array A, which is not 
designated in the array A, is filled with the letter “e” because 
it follows the letter “e” in the first position and we know the 
letter “s” does not begin until the third position. In this 
manner, the fall array A is recoverable entirely from the 
reduced array A. 
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For a given fixed alphabet size, the time required to 

calculate an entry in the full array A from the reduced array 
A is bound to a constant. The recalculation time is inde 
pendent of the number of characters in the text. As a result, 
as the number of characters increases, the time cost for 
recovering an entry from the array A becomes an increas 
ingly Smaller percentage of the entire processing cost. This 
is advantageous as text sizes increase. 
The original text and all rows in the rotation matrix M can 

be entirely calculated from the correspondence array C and 
the fixed-size array A. That is, the array A is used to recover 
the array A, the arraySA and C are used to recover the array 
B (which is a permutation of the entire text); and the arrays 
A, B, and C are used to recover the matrix M. 
Compute Reduced Correspondence Array C (Step 44) 
At Step 44 in FIG. 4, the pattern matching application 

directs the computer to Sample the correspondence array C 
to form a reduced array C". For a particular parameter S, 
which defines the block size and hence represents a Speed 
factor for access time, the array C" is created by taking every 
s' term of the correspondence array C: 

The size of the reduced array C" is the number of characters 
n in the text divided by block sizes (i.e., n/s). 

FIG. 6 shows an example derivation of a compressed 
correspondence array C" from a nine-by-nine matrix M of 
Sorted rotations of a binary String. The binary String is 
constructed from a two character alphabet: 0 and 1. The 
alphabetized array A representing the first column, the array 
B representing the last column, and the correspondence 
array C derived from the lines of correspondence are as 
follows: 

A=0,0,0,0,1,1,1,1,1) 

B=1,1,0,1,0,1,0,1,0) 

C=3,5,7,9,1,2,4,6,8) 

For this example, Suppose the block size S is set to two. 
For S=2, a reduced array C" is formed of the row numbers in 
array B which correlate to every other term (i.e., S=2) in 
array A, as indicated by the Solid lines. This reduction 
produces an array C" as follows: 

Segment B Array Into Blocks (Step 46) 
At step 46 in FIG. 4, the Barray is segmented into blocks 

containing SubStrings of S characters. FIG. 7 shows a 
sequence 60 of five blocks 62. Each block 62 contains a 
Substring portion 64 which consists of the S characters 
associated with the block. The reduced array C" defines 
starting locations within the Barray for every s' term in A 
or equivalently every term in A. Additional header infor 
mation 66 is stored with each block of sizes in the Barray 
indicating for each character in the alphabet, how many 
times it occurred in the block. If any character did not occur 
at all in the block, then an additional value can be Stored 
indicating the block number for the next occurrence of the 
character. 

For a target data pattern, the resultant data Structure can be 
examined quickly at the block level and then in more detail 
within the block. FIG. 8 shows a data structure constructed 
for the nine character binary text of FIG. 6. For a block size 
S of 2, each block contains a two-character SubString derived 
from the Barray, as represented by the substring 74 con 
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taining characters “11.” Suppose a Search called for locating 
the fourth “0” in the Barray without using the Carray. From 
a conceptual Standpoint, the Search skips the first block, 
which has two ones. The Second block is examined and 
found to contain one Zero, So the Search proceeds to the third 
block. This process continues until the fifth block is reached. 
Within the fifth block, the substring is scanned to locate the 
Zero, which is the fourth Zero in Barray. The Carray can be 
used to begin the Search at various points in the B array 
which correspond to one of the characters in the A array. 

This Same Search using the Carray is represented Visually 
in FIG. 6 by locating the third Zero at the seventh row of 
array B (which is identified by the C array) and scan 
downward until the next Zero (i.e., fourth Zero) is reached in 
the ninth row. This example shows how using the C" array 
Speeds the Search by making it unnecessary to Start Scanning 
at the very beginning of the B array. Each character in a 
desired pattern is found using this locate-and-Scan technique 
facilitated by the Carray. The Carray can therefore be used 
as a shortcut to the full Carray to recover any entire row of 
the matrix M of Sorted rotations. The Sorted rows of text can 
then be used as a conventional Sorted indeX to find desired 
patterns in the text. 

Using the reduced array C", the target block of the 
Segmented Barray can be located to within S occurrences of 
the character being Searched. The particular block which 
includes the correct one of the S occurrences can then be 
located by examining at most S block headers. Finally, the 
particular occurrence is found by examining the characters 
within the correct block. The entire search requires Order(s) 
memory references to find a character which corresponds to 
a given character in the original A array. 
A more detailed discussion of how a particular entry in the 

C array, and hence Barray, is located using the blocks will 
now be described. Define an array tas follows: 

ti-i-AAi. 

Recall, the array A defines the Start locations of each 
unique character String in the ordered array A. For the FIG. 
6 String of binary characters, the array A is the locations of 
the first “0” and “1” characters in array A, or A'=15). For 
any row i of the matrix M starting with character Ai), the 
value til indicates how many identical characters there are 
above the indexed i" character in array A. In other words, 
the value til indicates how the process knows which Zero is 
the fourth Zero, because the fourth Zero has three Zeros 
above it in array A. 
Now, the array element Ci can be interpreted as the 

location of the (1+ti)" character identical to Ai) in array 
B. Thus, if element Ci is known, a Subsequent element 
Ci+k) can be calculated by Searching in array B beginning 
at element Ci-1 for the k" occurrence of character Ai). In 
other words, once the character at Ci is found within a 
particular block, the desired character located at Ci--1, 
Ci+2). . . . CLi+k) can be found by scanning to the k" 
occurrence of character Ai. 
AS a result, if typical performance is all that matters, the 

reduced correspondence array C together with array B 
(which consists of the whole text) and the reduced array A' 
is all that is needed to represent the matrix of rotations. A 
data Structure containing the Barray and the reduced arrayS 
A and C requires leSS Storage Space as compared to Storing 
the full size arrays A, B, and C. For large texts, the reduced 
arrayS A and C are Significantly Smaller in comparison to 
their full size arrays A and C. The array A is a fixed size 
dependent on the alphabet size, and by Setting a large S 
value, the correspondence array C can be compressed to a 
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Size much Smaller than that of the original text. Moreover, 
the Structure now permits entry into individual portion of the 
text, by indexing the SubStrings in a block wise manner. 
Type Headers (Step 48) 
To facilitate an ability to Scan for certain characters at a 

block level, the pattern matching application directs the 
computer to create a type header for each block (step 48 in 
FIG. 4). The type header contains a listing of all character 
types within the block, and the number of characters for each 
type in the block. The type header is stored at the start of the 
corresponding block, as indicated by the reference number 
66 in FIG. 7. In FIG. 8, the type header 76 for the first block 
contains the information 0, 2, which means that the Sub 
string 64 in the block has no “0's and two “1's. 

During a Search for a particular pattern, the Search tool 
can examine the type header to determine if the correspond 
ing block contains any characters of interest, and if So, the 
number of Such characters. Suppose, for example, a Search 
is conducted for the fourth “0” in the Barray. When the first 
block is examined, the type header 76 indicates that there are 
no ZeroS in block 1. The Search is immediately continued to 
block 2, without accessing and Scanning the character Sub 
String of block 1. At block 2, the type header indicates that 
the block contains one Zero. The pattern matching applica 
tion Sets a Zero count to one. At block 3, the type header 
indicates that the block contains one Zero, causing the Zero 
count to increment to two. This proceSS is continued until the 
fifth block is reached. The type header indicates that block 
5 contains one Zero, which constitutes the fourth Zero 
counted. At the fifth block, the pattern matching application 
Scans the SubString to locate the Specific fourth Zero. 

For this simple example using a Small text String, the 
Savings in Search time due to the type headers may Seen 
trivial. For a large String of text having many characters 
(e.g., 256) within each block, the type headers are very 
useful. Suppose the search request is to locate the 10,000" 
Zero. The type headerS facilitate a very useful and efficient 
examine-and-skip protocol which rapidly bypasses blockS 
that have no potential of containing the requested Zero. 
When the block containing the 10,000” zero is located, the 
Substring is Scanned until the exact Zero is found (which will 
take no more that S Steps). 

Block Headers (Step 50) 
One difficulty that may arise for large texts is that the 

target character may be very remote within the data Struc 
ture. For instance, Suppose that a particular character does 
not occur for 1000 blocks of the Barray. In this case, even 
if s=2, we might know from the C array that the 10" 
occurrence is in a particular block, but we would have to 
scan 1000 blocks looking for the 11" occurrence. Examin 
ing each block, one type header at a time, and counting the 
occurrences may take a long time. 
To alleviate this problem and further improve search 

efficiency, the pattern matching application also directs the 
computer to create a jump header for each block (step 50 in 
FIG. 4). The jump header contains information of where the 
next character of a particular type might be found. AS shown 
in FIG. 7, the jump header 68 is attached to the front of the 
block 62. The jump header 68 accounts for all character 
types that are not contained in the Substring 62 and provides 
an indication in the form of a pointer or block address of 
where the next character of the absent type might be located. 
As shown in the example of FIG. 8, a “0” character type 

is absent from the substring of block 1. The next “0” 
character is located in block 2. A jump header 78 contains a 
reference “2 indicating that the next character of type “0” 
is located in block 2. 
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The data structure shown in FIGS. 7 and 8 represent one 
possible implementation in which the type and jump headers 
are attached to the front of the blocks and stored in this 
manner. To find the j" character of a particular type, the 
search using the data structure of FIGS. 7 and 8 essentially 
entails examining the type headers of each block and adding 
the counts for the type of character. The jump headers are 
used to Skip large groups of blocks that do not contain the 
character type. When the sum of the counts for the type of 
character is greater than j, the last block is Scanned to find 
the exact location of the j" character. Since blocks without 
the character type can be skipped, the Search requires at most 
j examinations of the Starts of each block and S Steps to Scan 
through the last block. Thus the element Cican be evalu 
ated in Order(s) steps as desired. 

Compress Data Structure (Step 54) 
At step 54 of FIG. 4, the pattern matching application 

directs the computer to compress the data Structure. In 
particular, the SubStrings within each of the Barray blockS 
is compressed independently of the other blockS. By com 
pressing the blocks individually and independently, indi 
vidual blocks identified in a Search can be decompressed 
without decompression of all blockS. Additionally, com 
pressing the Barray Speeds up access to the Sorted rotations 
because leSS data needs to be Scanned to find particular 
entries in the array. 

In one implementation, the B array SubString in each 
block is compressed using a combination of two well known 
compression techniques: move-to-front (MTF) encoding 
and run length encoding (RLE). For MTF encoding, a code 
book lists each character once and assigns a rank to each 
character. Every time a character is used, that character is 
moved to the front of the code book, and given the Smallest 
rank. Frequently used characters tend to have Smaller rankS. 
For RLE encoding, the number of repeated occurrences of 
the same character are Stored So that long runs of the same 
character are highly compressed. 

The compressed SubString is then encoded using a vari 
able length encoding, Such as a code created by the Huffman 
algorithm, which his also well known. Variable length 
encoding uses fewer bits to encode the most frequently used 
indices and run-length. 

In addition to compression, there may be Some advantage 
to reconditioning the data in a format that is helpful for 
compression. When encoding compressible English text 
using this Scheme, for example, it is possible to greatly 
reduce the memory overhead by converting each character 
in the alphabet to multiple characters in a Smaller alphabet. 
An example implementation converted the English alphabet 
to an octal-based System. Each letter is represented by two 
consecutive three bit characters, thereby providing a char 
acter Set of Size 64. Characters in the original text which are 
not one of the 63 most common characters are represented 
by a 3 bit escape character followed by three additional 3 bit 
characters. Each indeX produced by the move-to-front 
encoder is a value between 1 and 7, inclusive. (The Zero 
value is not needed because Sequences of repeated charac 
ters are represented by a run-length rather than as Zero 
indices from the move-to-front encoder). There are many 
choices for the mapping of 64 English characters (including 
the escape character) to two consecutive 3 bit Symbols. AS 
one example, a Search algorithm can be used which finds a 
mapping to minimize the number of runs in the resulting 
run-length encoding. Data format manipulation techniques, 
Such as this one, improve the compression rate. 

The data structure and methods described above are 
advantageous Over the prior art. One advantage is the 
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12 
reduction of memory overhead for Storing the indeX terms. 
The data structure contains the Barray (which is the same 
Size as the original text) and the A and Carrays, and header 
information for the B array, which are all comparatively 
Small. The Carray and header information have a size equal 
to the number of characters n divided by the block size S. 
The A array has a size equal to the alphabet. 

Another advantage is that the Carray and header infor 
mation for the blocks of the Barray all Scale according to 
1/S, and the A array is a fixed size dependent on the alphabet 
size. As a result, there is a tradeoff (which varies with the 
block size S) between access speed and memory overhead. 
This is a highly desirable attribute. If a designer is more 
concerned with acceSS Speed, the designer uses a Small block 
Size S, which improves performance because the indexing 
array C" and header information are larger and contain more 
information to help facilitate the Search. However, there is a 
cost of increased Storage requirements. 
On the other hand, if the designer is more interested in 

conserving Storage space, the designer uses a larger block 
Size S. The array C" and header information are Smaller 
which improves Storage efficiency, but at a cost of Slower 
access time. 
Another advantage is that the particular patterns or char 

acters can be accessed in the data Structure without decom 
pressing the entire Structure. By compressing the B array, 
block-by-block, a Search of the data Structure can access a 
particular block, decompress that block only without decom 
pressing the others, and find a character within the target 
pattern. This aspect further improves Search time efficiency. 

In compliance with the Statute, the invention has been 
described in language more or leSS Specific as to Structural 
and methodical features. It is to be understood, however, that 
the invention is not limited to the Specific features described, 
Since the means herein disclosed comprise preferred forms 
of putting the invention into effect. The invention is, 
therefore, claimed in any of its forms or modifications within 
the proper Scope of the appended claims appropriately 
interpreted in accordance with the doctrine of equivalents. 

I claim: 
1. A method comprising the following Steps: 
producing a matrix of Sorted rotations of a data String of 

characters, the matrix defining an A array comprising a 
Sorted listing of the characters in the data String and a 
Barray which is a permutation of the data String and a 
Carray which contains entries of correspondence infor 
mation linking the characters in the A array to the same 
characters in the Barray; 

Segmenting the Barray into blocks, 
defining indexing information used to find particular 

characters within the blocks to reconstruct patterns of 
characters within the data String; 

Storing the blocks of the Barray and the indexing infor 
mation in a data Structure; and 

finding patterns of characters within the data String using 
the data structure. 

2. A method as recited in claim 1, further comprising the 
step of compressing the blocks of the Barray individually of 
each other. 

3. A method as recited in claim 1, wherein the defining 
Step comprises the following Steps: 

examining each block of the Barray; and 
for each associated block, constructing character type 

information that identifies which types of characters 
and how many characters of particular types are con 
tained within the associated block. 
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4. A method as recited in claim 3, further comprising the 
Step of organizing the data structure to include the blocks of 
the Barray and a header associated with each block which 
contains the character type information. 

5. A method comprising the following Steps: 
producing a matrix of Sorted rotations of the data String, 

the matrix defining a Barray which is a permutation of 
the data String, 

Segmenting the Barray into blocks, 
defining indexing information used to find particular 

characters within the blocks to reconstruct patterns of 
characters within the data String, 

Storing the blocks of the Barray and the indexing infor 
mation in a data Structure; 

examining each block of the Barray; 
for each associated block, constructing character type 

information that identifies which types of characters 
and how many characters of particular types are con 
tained within the associated block, 

organizing the data Structure to include the blocks of the 
Barray and a separate array containing the character 
type information for correlated blocks, and 

finding patterns of characters within the data String using 
the data structure. 

6. A method as recited in claim 1, wherein the defining 
Step comprises the following Steps: 

examining each block of the Barray; and 
for each block, constructing character jump information 

to reference where a next character of a particular type 
occurs in the blocks of the Barray. 

7. A method as recited in claim 6, further comprising the 
Step of organizing the data structure to include the blocks of 
the Barray and a header associated with each block which 
contains the character jump information. 

8. A method comprising the following Steps: 
producing a matrix of Sorted rotations of the data String, 

the matrix defining a Barray which is a permutation of 
the data String, 

Segmenting the Barray into blocks, 
defining indexing information used to find particular 

characters within the blocks to reconstruct patterns of 
characters within the data String, 

Storing the blocks of the Barray and the indexing infor 
mation in a data Structure; 

examining each block of the Barray; 
for each block, constructing character jump information 

to reference where a next character of a particular type 
occurs in the blocks of the Barray; 

organizing the data Structure to include the blocks of the 
Barray and a separate array containing the character 
jump information for correlated blocks, and 

finding patterns of characters within the data String using 
the data structure. 

9. A Storage medium Storing a data Structure constructed 
according to the Steps in the method as recited in claim 1. 

10. A computer programmed to perform the Steps of the 
method as recited in claim 1. 

11. A computer-readable memory which directs a com 
puter to perform the Steps of the method as recited in claim 
1. 

12. A method comprising the following Steps: 
producing a matrix of Sorted rotations of the data String, 

the matrix defining an A array comprising a Sorted 
listing of the characters in the data String and a Barray 
which is a permutation of the data String, 
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14 
computing a correspondence array C which contains 

correspondence entries linking the characters in the A 
array to the same characters in the Barray; 

computing a reduced A array which identifies each 
unique character in the A array; 

computing a reduced Carray which contains every s” 
entry of the C array; 

Segmenting the Barray into blocks of Size S, 
storing the blocks of the Barray, the A' array, and the C 

array in a data Structure, and 
finding patterns of characters within the data String using 

the data structure. 
13. A method as recited in claim 12, further comprising 

the Step of compressing the blocks of the Barray individu 
ally of each other. 

14. A method as recited in claim 12, further comprising 
the following Steps: 

examining each block of the Barray; and 
for each associated block, constructing character type 

information that identifies which types of characters 
and how many characters of particular types are con 
tained within the associated block. 

15. A method as recited in claim 14, further comprising 
the Step of Storing in the data Structure the character type 
information as a header to the associated block of the B 
array. 

16. A method as recited in claim 14, further comprising 
the Step of Storing in the data Structure the character type 
information as a separate array. 

17. A method as recited in claim 12, wherein the defining 
Step comprises the following Steps: 

examining each block of the Barray; and 
for each associated block, constructing character jump 

information to reference where a next character of a 
particular type occurs in the blocks of the Barray. 

18. A method as recited in claim 17, further comprising 
the Step of Storing in the data Structure the character jump 
information as a header to the associated block of the B 
array. 

19. A method as recited in claim 17, further comprising 
the Step of Storing in the data Structure the character jump 
information as a separate array. 

20. A method as recited in claim 17, wherein the data 
String comprises DNA sequences. 

21. A Storage medium Storing a data Structure constructed 
according to the Steps in the method as recited in claim 12. 

22. A computer programmed to perform the Steps of the 
method as recited in claim 12. 

23. A computer-readable memory which directs a com 
puter to perform the Steps of the method as recited in claim 
12. 

24. A computer-readable memory having a data Structure, 
the data Structure being derived from a matrix of Sorted 
rotations formed from a data String of characters, the matrix 
defining an A array comprising a Sorted listing of the 
characters in the data String and a B array which is a 
permutation of the data String and a C array which contains 
entries of correspondence information linking the characters 
in the A array to the same characters in the Barray, the data 
Structure comprising: 

multiple blocks having SubStrings of characterS Seg 
mented from the Barray; and 

at least one indeX array used to indeX the blockS. 
25. A computer-readable memory as recited in claim 24, 

wherein the Substrings of each block are compressed. 
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26. A computer-readable memory as recited in claim 24, 
further comprising a type header attached to each block, the 
type header identifying which types of characters and how 
many characters of particular types are contained within the 
asSociated SubString. 

27. A computer-readable memory as recited in claim 24, 
further comprising a jump attached to each block, the jump 
header referencing where a next character of a particular 
type occurs in the blocks of characters. 

28. A computer-readable memory having a data Structure, 
the data Structure being derived from a matrix of Sorted 
rotations formed from a data String of characters, the matrix 
defining an A array comprising a Sorted listing of the 
characters in the data String and a B array which is a 
permutation of the data String and a C array which contains 
entries of correspondence information linking the characters 
in the A array to the same characters in the Barray, the data 
Structure comprising: 

multiple blocks having SubStrings of S characters Seg 
mented from the Barray; 

an A array which identifies each unique character in the 
A array, 

a C array which contains every s” entry of the Carray; 
and 

the A and C arrays being used to reconstruct the data 
String of characters from the multiple blocks when 
Searching for a particular pattern of characters within 
the data String. 

29. A computer-readable memory as recited in claim 28, 
wherein the SubStrings of each block are compressed. 

30. A computer-readable memory as recited in claim 28, 
wherein the data structure further comprises an array con 
taining character type information that identifies which types 
of characters and how many characters of particular types 
are contained within the associated block. 
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31. A computer-readable memory as recited in claim 28, 

wherein the data Structure further comprises an array con 
taining character jump information which references where 
a next character of a particular type occurs in the blockS. 

32. A computer System comprising: 
a proceSSOr, 
an application executable on the processor to produce a 

matrix of Sorted rotations of a data String of characters, 
the matrix defining an A array comprising a Sorted 
listing of the characters in the data String and a Barray 
which is a permutation of the data String and a C array 
which contains entries of correspondence information 
linking the characters in the A array to the same 
characters in the Barray, the application further direct 
ing the processor to Segment the Barray into blocks and 
to define indexing information used to find particular 
characters within the blocks to reconstruct patterns of 
characters within the data String; 

a memory to Store a data structure containing the blockS 
of the Barray and the indexing information; and 

the processor finding patterns of characters within the data 
String using the data structure. 

33. A computer system as recited in claim 32, wherein the 
application further directs the processor to compress the 
blocks of the Barray independently of each other. 

34. A computer System as recited in claim 32, wherein the 
application further directs the processor to derive character 
type information for each block that identifies which types 
of characters and how many characters of particular types 
are contained within the associated block. 

35. A computer system as recited in claim 32, wherein the 
application further directs the processor to derive character 
jump information for each block that references where a 
next character of a particular type occurs in the blockS. 
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