
USOO611912OA

United States Patent (19) 11 Patent Number: 6,119,120
Miller (45) Date of Patent: Sep. 12, 2000

54) COMPUTER IMPLEMENTED METHODS “Synthesis and Recognition of Sequences”, by S.C. Chan
FOR CONSTRUCTING A COMPRESSED
DATASTRUCTURE FROMA DATA STRING
AND FOR USING THE DATASTRUCTURE
TO FIND DATA PATTERNS IN THE DATA
STRING

75 Inventor: John W. Miller, Kirkland, Wash.

73 Assignee: Microsoft Corporation, Redmond,
Wash.

21 Appl. No.: 08/673,427

22 Filed: Jun. 28, 1996

(51) Int. Cl. .. G06F 17/30
52 U.S. Cl. 707/101; 707/6; 707/7;

707/3
58 Field of Search 382/229, 230,

382/231; 707/6, 3, 7, 101, 2

56) References Cited

U.S. PATENT DOCUMENTS

5,459.739 10/1995 Handley et al. 371/136
OTHER PUBLICATIONS

"Dynamic Programming Alignment of Sequences Repre
senting Cyclic Patterns”, by Jens Gregor and Michael G.
Thomason, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 15, No. 2, pp. 129-135, Feb.
1993.
“Searching Genetic Databases on Splash 2', by Dzung T.
Hoang, Proceedings IEEE Workshop on FPGAs for Custom
Computing Machines (Cat. No. 93THO535-5), pp. 185-191,
Apr. 5, 1993.
“Rapid-2, An Objecti-Oriented Association Memory Appli
cable to Genome Data Processing”, by Denis Archambaud,
Pascal Faudemay, and Alain Greiner Proceedings of the
Twenty-Seventh Annual Hawaii International Conference
on System Sciences, pp. 150–159, Jan. 1994.
“A Faster Algorithm Computing String Edit Distances”,
William J. Masek and Michael S. Paterson, Journal of
Computer and System Sciences, 20, pp. 18–31, Aug. 6,
1979.

and A.K.C. Wong, IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 13, No. 12, pp. 1245-1255,
Dec. 1991.

“Efficient Systolic String Matching”, by G.M. Megson,
Electronic Letters, vol. 26, No. 24, pp. 2040-2042, Nov.
1990.

Primary Examiner Amelia Au
ASSistant Examiner-Gilberto Frederick, II
Attorney, Agent, or Firm-Lee & Hayes, PLLC

57 ABSTRACT

A method for constructing a data Structure for a data String
of characters includes producing a matrix of Sorted rotations
of the data String. This matrix defines an A array which is a
Sorted list of the characters in the data String, a Barray which
is a permutation of the data String, and a correspondence
array C which contains correspondence entries linking the
characters in the A array to the same characters in the B
array. A reduced A array is computed to identify each unique
character in the A array and a reduced Carray is computed
to contain every s” entry of the C array. The Barray is
Segmented into blocks of size S. During a Search, the A and
C" arrays are used to indeX the B array to reconstruct any
desired row from the matrix of rotations. Through this
representation, the matrix of rotations can thus be used as a
conventional Sorted list for pattern matching or information
retrieval applications. A data Structure containing only the
A, B, and C has very little memory overhead. The Barray
contains the same number of characters as the original data
String, and can be compressed in a block wise manner to
reduce its size. The A array is a fixed size equal to the size
of the alphabet used to construct the data String, and the C
array is variable size according to the relationship n/S, where
n is the number of characters in the data String and S is the
Size of the blocks of the B array. Accordingly, the data
Structure enables a tradeoff between access Speed and
memory overhead, the product of which is constant with
respect to block size S.

35 Claims, 5 Drawing Sheets

ProducesorTED ROTATIONS OF
TEXT

compute a
ARRAY OF SCRTED -42

ROTATIONS

coMPUTEREDUCED 44
COORESPONDENCE

ARRAY (c)

PLACE JUMP
BARRAY

CONSTRUCTDATA - 52
STRUCTURE

SEGMENTBARRAY INTo A 46
BLOCKS WHICH CAN BE
INDEXED jSINGAAND C

PLACETYPE HEADERS IN-48
ARRAY BLOCKS

COMPRESS DATA |-51
STRUCTURE

-

6,119,120 Sheet 1 of 5 Sep. 12, 2000 U.S. Patent

2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 1 O 1

C1) (1) (/)

2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1

it. e X t t

t 6 X t

t e X t

e X t t

t

t

6 S t

t

t

t

t e X

t

e X t

e X e S if e S 10

U.S. Patent

26

28

22

PROCESSOR

Sep. 12, 2000

30

INPUT DEVICE

DISPLAY

Sheet 2 of 5 6,119,120

20

24
/ N

MEMORY

PATTERN |-32
MATCHING

APPLICATION

DATA 34
STRUCTURE

Y

U.S. Patent Sep. 12, 2000 Sheet 3 of 5

PRODUCE SORTED
ROTATIONS OF

TEXT

COMPUTE A
ARRAY OF SORTED

ROTATIONS

COMPUTE REDUCED
COORESPONDENCE

ARRAY (C)

SEGMENT BARRAY INTO
BLOCKS WHICH CAN BE
INDEXED USINGA AND C'

PLACE TYPE HEADERS IN
BARRAY BLOCKS

PLACE JUMP HEADERS IN
BARRAY BLOCKS

CONSTRUCT DATA
STRUCTURE

COMPRESS DATA
STRUCTURE

22, 4

6,119,120

6,119,120 Sheet 4 of 5 Sep. 12, 2000 U.S. Patent

2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1

H t

t t e X

t

t

e

e X

t

t

e X t

6 S t

t

t e X t t 8 X t

t e X 1O

MATRIX M MATRIXM

È
CD

©

©

©

MATRIX M MATRIX M

U.S. Patent

N

7

Sep. 12, 2000

-60

Sheet 5 of 5 6,119,120

BOCk 1 Block 2 BOCK 3 Block 4 BOCK 5

-62

. .

Jump B Array Substring

Y \
N-68 a

BIOCK 1 Block 2 BOCK 3 Block 4 BOCK 5

1 1 O 1 O 1 O 1 O

\
A

\
\
\
\ -78

(0,2) 2 1 1
t am-- \ \ BOCk 1

76 74

6,119,120
1

COMPUTER IMPLEMENTED METHODS
FOR CONSTRUCTING A COMPRESSED

DATASTRUCTURE FROMA DATA STRING
AND FOR USING THE DATASTRUCTURE
TO FIND DATA PATTERNS IN THE DATA

STRING

TECHNICAL FIELD

This invention relates to methods for indexing Sequences
of data, Such as textual materials or DNA. More particularly,
this invention relates to methods for constructing a highly
compressed data Structure which enables efficient Searches
for particular patterns in the data, without having to examine
the entire Structure.

BACKGROUND OF THE INVENTION SECTION

An indeX is a list of key elements and associated infor
mation that points to a location containing more compre
hensive data. A book index, for example, contains word
entries and associated page numbers pointing to the detailed
information in the book. In the electronic realm, indexes are
used to locate particular files of data entries in a data Storage
System. The amount of indexing memory above and beyond
that required to Store the original text or data will be referred
to as “memory overhead.” The amount of time required to
find a particular Sequence in the data or text will be referred
to as the “time overhead.”

Various techniques exist to reduce the memory overhead.
An obvious approach is to Store no indeX at all. The text is
Simply Scanned Serially for any pattern desired. This tech
nique and related methods require access time which grows
linearly with the size of the text. As the text size doubles, the
typical time required to find a pattern likewise grows two
fold. Indexing Schemes, Such as a conventional book indeX
provide much faster acceSS but with memory overhead
which grows linearly or faster with the size of the text. If the
size of the text doubles then the index likewise grows
twofold.

Accordingly, there is a need for an indexing Scheme
which provides both smaller than linear time overhead and
Smaller than linear memory overhead.
One well known and useful data Structure is a Sorted list

of all data records. This kind of data Structure has applica
tions ranging from data Storage Systems to pattern matching
algorithms. For unstructured text, this can correspond to
representing a Sorted list of all Suffixes of the text stream or
all rotations of the text. A "rotation' of a Sequence of
characters is a new Sequence created by repeatedly taking
the first character and placing it at the end of the previous
Sequence.

For example, consider the ten character Sequence
“test textif.” Rotating the original Sequence all possible
times yields the following ten rotations:

Possible Rotations

test textif
est textift
st textiite
t textiites

textiftest
textiftest
extiftest t
Xtiftest te
tiftest tex
#test text

15

25

35

40

45

50

55

60

65

2
Alphabetically Sorting these ten rotations of the ten char

acter Sequence produces the following organization of the
data:

Alphabetically Sorted Rotations
est textift
extiftest t
st textiite
test textif
textiftest
t textiites
titest tex
Xtiftest te

textiftest
#test text
The data structure formed from this sorted list of rotations

can be used to quickly answer questions, Such as "How
many times did a three character String tex occur?,” and "If
that pattern did occur, what characters followed and pre
ceded it?” One prior art technique for Storing a representa
tion for all the rotations of the text is to store a list of pointers
to the original text Such that the ordered pointers refer to the
first character of each rotation of the text in Sorted order.

In general, there exists a tradeoff between memory capac
ity requirements and access performance. It is desirable to
minimize the amount of memory required to represent the
list of Sorted rotations given a limited amount of time
allowed to read characters from the representation.
One prior art Scheme that uses a list of Sorted rotations is

known as the “Burrows-Wheeler Compression Algorithm.”
The Burrows-Wheeler (BW) Compression Algorithm is
described in an article entitled, "A Block-Sorting LOSSleSS
Data Compression Algorithm' by M. Burrows and D. J.
Wheeler, Digital Systems Research Center Research Report
124, May 10, 1994. The BW Compression Algorithm is
based upon the following insight: for an alphabetically
sorted list of all possible rotations of a block of text, the
Sequence of last characters for each alphabetized rotation
fully describes a rotation of the original text.

FIG. 1 shows two identical copies of the ten rotations of
the sequence “test textif’ identified by rows and columns in
a matrix. The rows are Sorted alphabetically. According to
the finding from the Burrows-Wheeler article, the last col
umn of the matrix (column 10) fully defines a rotation of the
original text of characters. The entire matrix can be recreated
from the tenth column. To show why this is true, notice that
all rows and columns of the 10-by-10 matrix are permuta
tions of the original text Sequence. Since the rows are
alphabetized, column 1 must be alphabetized and can be
created Simply by alphabetizing column 10. Each character
in column 10 can be interpreted as the character which
cyclically precedes the character in the same row of column
1. In this example, the two letters “t” in column 10 (rows 1
and 2) precede the letters “e” in column 1 (rows 1 and 2).
Similarly, the single letter “e” in column 10 (row 3) precedes
the letter “s” in column 1 (row 3).
The original text “test textif can be recovered if there

exists a correspondence indicating not just that the letter's
is preceded by a letter “e,” but that a particular “s” is
preceded by a particular “e.” In FIG. 1, four lines are drawn
to show a correspondence between identical letters “t” in
columns 1 and 10. For example, the line from column 1, row
4 to column 10, row 1 indicates the particular letter “t” that

6,119,120
3

is preceded by the symbol "#" (i.e., the first “t” in column
1) is also the same letter “t” which precedes the letter “e”
(i.e., the first “t” in column 10). As a result, the three letter
string “ifte” is definitely a substring of one of the rotations
of the original text.

The entire matrix of Sorted rotations can be created if the
correct lines of correspondence can be determined. This
exercise turns out to be simple. When all rotations of text are
unique, there is only one correspondence between the char
acters in columns 1 and 10 which is self-consistent. This
unique correspondence can be described by the Visual prop
erty that all the lines of correspondence for a particular letter
cannot croSS each other when replicated matrixes are
arranged side-by-side as in FIG. 1. For example, the four
lines connecting the letters “t” connect column 10, rows1,
2, 9, and 10 to column 1, rows 4, 5, 6, and 7, respectively,
without any of these four lines interSecting. These lines
cannot interSect because given a Set of alphabetized word
Sequences (e.g., rows 1, 2, 9, 10) which are prepended each
with the same character (e.g., “t”), the new Sequences
created (effectively rows 4, 5, 6, 7) will be in alphabetical
order. From the non-interSecting rule, it is clear that there is
only one consistent Set of correspondences when all rota
tions are unique.

FIG. 2 shows the same Side-by-Side matrix configuration
with all ten correspondence lines. Beginning with the
sample substring of “ite,” these lines can be followed until
a complete rotation #test text” is decoded. Burrows and
Wheeler also noted that the last column is, in Some Sense,
more easily compressed than the original text. The BW
Compression Algorithm thus provides a useful tool for the
compression and decompression of textual material by com
puting the matrix of Sorted rotations and compressing the
last column.

The BW Compression Algorithm is limited, however, to
a compression/decompression process. It is not very useful
as a pattern Search tool. To directly access a Specific pattern
using the BW algorithm, the text essentially must be decom
pressed and then Scanned directly until the pattern is found.
The time required to do this grows proportionally to the size
of the compressed text.

SUMMARY OF THE INVENTION

The invention concerns a technique which employs a
matrix of rotations, Such as the Sorted list of rotations created
by the BW Compression Algorithm, for use in finding
patterns that occur in data. This invention offers a tradeoff
between access Speed and Storage efficiency. An increase in
access Speed comes at a proportional cost of additional
Storage Space demands. As a result, a designer is allowed the
flexibility to configure the data Structure according to a
desired set of performance and Storage requirements.

According to one aspect, a method for constructing a data
Structure for a data String of characters is described. The
method includes producing a matrix of Sorted rotations of
the data String. This matrix defines an A array which is a
Sorted list of the characters in the data String and a Barray
which is a permutation of the data String. A correspondence
array C is then computed to contain correspondence entries
linking the characters in the A array to the same characters
in the B array. A reduced A array is computed to identify
each unique character in the A array and a reduced Carray
is computed to contain every s” entry of the Carray. The A
and Carrays are used to find particular characters within the
blocks of the B array to thereby reconstruct patterns of
characters within the original data String.

15

25

35

40

45

50

55

60

65

4
A data Structure containing only the A, B, and C arrayS

can be used to recreate any term from the full A,B, or C
arrayS. The full A and C arrays can be used, using Burrows
and Wheelers result, to recreate the original text or more
generally any row of the matrix of Sorted rotations. The
Sorted rows of text can then be used as a conventional Sorted
index to find desired patterns in the text. The A, B and C
data Structures represent the original text and the indeX with
very little memory overhead. The Barray contains the same
number of characters as the original text. The A array is a
fixed size equal to the size of the alphabet used to construct
the data String. The C array is of size n/S, where n is the
number of characters in the data String and S is the chosen
size of the blocks of the Barray.

Because the A array is fixed-size and the Carray Scales
according to 1/s, the data structure enables a tradeoff (which
varies with block sizes) between access speed and memory
overhead. If a designer is more concerned with access Speed,
the designer uses a Small block size S, which improves
performance because the indexing array C" is larger and
contains more information to help facilitate a more rapid
Search. This improved performance comes at a direct cost of
additional Storage requirements to Store the large C" array.
On the other hand, if the designer is more interested in
conserving Storage space, the designer uses a larger block
Size S. The Carray is Smaller, thereby requiring leSS Storage
Space, but at a cost of Slower access time.

According to another aspect, the data Structure is com
pressed in a block wise manner. The blocks of the Barray
are compressed individually using a combination of move
to-front encoding, run-length encoding, and a variable
length coding (e.g., Huffman coding) algorithm. This
enables the data structure to be stored in less memory, while
Still permitting decompression of individual blocks for
access to characters without having to decompress the entire
data Structure.
According to another aspect, the data structure is

enhanced to include additional block indexing information
that can be used to facilitate Searching at the macro block
level, as opposed to the micro character level, to improve
Search efficiency. This enhanced data Structure contains type
information for each block that identifies which types of
characters and how many characters of particular types are
contained within the associated block. The type information
permits a Search of the data Structure to examine at the block
level whether a particular block contains a target character.
The enhanced data Structure further includes character jump
information for each block that references where a next
character of a particular type occurs in the blockS. The jump
information permits a Search of the data structure to skip
over large numbers of blocks that do not contain the target
character. The type and jump information can be Stored as
Separate arrays, or as headers for the blocks of the Barray.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a conventional matrix of Sorted rota
tions.

FIG. 2 illustrates lines of correspondence interconnecting
two identical matrices of Sorted rotations, according to a
prior art technique.

FIG. 3 is a block diagram of a computer programmed to
perform methods according to aspects of this invention.

FIG. 4 is a flow diagram listing Steps in a method for
creating a data Structure used to find Small data patterns
within a large body of data.

FIG. 5 is a reproduction of the matrix of sorted rotations
shown in FIG. 2, and includes additional labels to facilitate

6,119,120
S

discussion of construction of the A, B, and C arrays of a list
of Sorted rotations.

FIG. 6 illustrates a matrix of sorted rotations for a binary
alphabet and is used for discussion of an aspect of this
invention concerning derivation of a C array from the C
array.

FIG. 7 shows a data Structure according to a first imple
mentation of this invention.

FIG. 8 shows a specific example of the FIG. 7 data
Structure.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

This invention pertains to techniques for finding
Sequences or patterns of data within a larger body of data.
For purposes of continuing discussion, the techniques are
described below within the context of a search and retrieval
tool configured for detecting Strings of characters Stored in
memory. However, the techniques may be applied to other
pattern matching problems. For instance, another possible
application is to use the techniques described herein for
DNA matching in molecular biology.

FIG. 3 shows a computer system 20 having a processor
22, a memory 24, an input device 26 (e.g., keyboard, mouse,
etc.), and a display 28. These components are interconnected
via a bus 30. A pattern matching application 32 is Stored in
memory 24 and executed on the processor 22. The pattern
matching application 32 performs a Series of operations on
a large body of data to create a data Structure 34 that can be
used to indeX or find Specific patterns within the data,
regardless of where they occur or whether they occur acroSS
boundaries Separating one data item from the next.

The resultant data Structure 34 includes a representation
of the entire body of data as well as a highly compressed
index to the data. When ready for use, the data structure 34
(data and index) is loaded in its entirety into a data memory
(e.g., RAM) for convenient access by the processor 22. The
pattern matching application 32 is then able to perform
Searches for particular character Sequences in the data by
using the data Structure.

FIG. 4 shows a computer-implemented method performed
by the computer during execution of the pattern matching
application 32 to create the data structure 34. This method
will be described with reference to FIGS. 3 and 5-8.

Produce Sorted Rotations (Step 40)
The initial step 40 is to produce sorted rotations of a data

String of characters. AS used herein, the term character is
meant to be an item or term of the data String. The term
character is not to be limited to any particular type or kind
of notation. Examples of possible characters include
numbers, letters, punctuation, Symbols, DNA amino acids,
and the like.

Step 40 can be performed a number of ways. One way is
to first produce all of the rotations from the data String, and
then Sort the rotations using an iterative comparison opera
tion. During a first pass, the comparison operation examines
only the first character (i.e., letter, punctuation, number, etc.)
of each rotation to perform an initial Sort. Each group of
rotations which begin with the same character is then Sorted
using a comparison operation which examines only the
Second character of the rotation. This is repeated recursively
until the entire Sequence is Sorted (i.e., alphabetically,
numerically ordered, etc.).

Other algorithms can be used to establish a sorted list of
rotations, including the Burrows-Wheeler (BW) Compres

15

25

35

40

45

50

55

60

65

6
Sion Algorithm discussed in the Background of the Invention
Section and an algorithm described by E. McCreight, “A
Space-Economical Suffix Tree Construction Algorithm,”
Journal of the ACM, Vol. 23, #2, 1976, pp. 262.

For purposes of continuing discussion, Suppose that the
data string consists of the text “test textif” which was
introduced in the Background of the Invention section. All
rotations of this data String are computed and then Sorted
alphabetically. FIG. 5 shows the matrix of sorted rotations,
which is essentially a reproduction of FIG. 2. One idea
suggested by Burrows-Wheeler article is that the entire
matrix of rotations can be recovered from the first and last
columns (i.e., columns 1 and 10) and the lines of correspon
dence.

To briefly describe how this occurs, it is helpful to first
calculate an array which represents the lines of correspon
dence shown in FIG. 5. To do this, it is useful to define a few
terms. Let M be the matrix of sorted rotations, Abe an array
containing the characters in the first column (i.e., the alpha
betized Sequence of the matrix M), and B be an array
containing the characters in the last column of the matrix M.
Also, let C be a correspondence array showing the corre
spondence of the characters in Ato the same characters in B,
So that,

BCi EAi

In other words, the correspondence array C contains the
row numbers for characters in array B which correlate
through the lines of correspondence to the same letters in
array A. The first letter “e” in array A is the same letter “e”
in row 3 of array B, and hence, the first entry in the
correspondence array C is the number 3. Completing the
arrays for the example of FIG. 5 yields the following:

Now, let Mijl indicate the character in the i' row and
j" column of matrix M. Similarly, the notation Ai), B(i),
Ci), and so forth is used to indicate the i' value in the
respective array. Now, any row “i” of M can be calculated
from A, B, and C by the following recursive definition:

Mij=API:

where P.1=i and Pi-CP-j-1 for j>1

For i=1 (i.e., the first row), the entire first row rotation can
be reconstructed. Table 1 shows the reconstruction of the
first three characters “est” of the first rotation (i.e., row 1).

TABLE 1.

P Computation for eachi M Computation, Given P

P1 = 1 (defined) M11 = AP1 = A1 = e
i = 2; P2 = CIP1 = C1 = 3 M12 = AP2 = A3 = s
i = 3; PI3 = CIP2 = CICI1 = 6 MI13 = AP,3) = A6 = t

Accordingly, from this set of rotations, the matrix M can
be recovered from the A, B, and C arrays. For a text having
in characters, a memory of Size 2n characters is needed to
Store the A and B arrays plus n pointers (requiring log2(n)
bits) to store the Carray.
The remaining steps of the method illustrated in FIG. 4

describe construction of a data structure which consumes

6,119,120
7

less Space as compared to the memory required to Store a full
list of sorted rotations or the full A, B, and C arrays, while
Still permitting complete recovery of the rotations.
Additionally, the data structure can be compressed, yet Still
allow direct access to SubStrings of the data String without
decompressing the entire text.

Compute Reduced Sorted Array A (Step 42)
At Step 42 in FIG. 4, the pattern matching application 32

in FIG. 3 directs the computer to create a reduced sorted
array A, which contains information for each unique char
acter in the alphabetically Sorted array A. The reduced array
A contains the row numbers or locations which are the Start
of each unique character in the array A. AS shown in FIG. 5,
the first occurrence of letter “e” in array A is at row 1. Array
A reflects this with an entry of position 1. Likewise, the first
occurrences of letters “s” and “t” in array Aare at rows 3 and
4, respectively, resulting in an entry of positions 3 and 4 in
array A. Continuing through the entire A array produces an
array A as follows:

A'-1,3,4,8,9,10.

The array A is defined mathematically as follows. For
each character c which occurs in array A, the reduced array
A is defined Such that:

AAc=c and Azc for all j<Ac

For the first occurrence of character “e” in array A of FIG.
5, the relationship yields a corresponding result for array A
of Ae=1, because AAe=A1=e. For all unique char
acters in array A, the relationship yields:

Ae=1, As-3, At=4, Ax=8, A =9, A#=10 or A'-1,3,4,
8,9,10.

Another way to derive array A is to first count each type
of character in the original data String. Since the A array
contains Sorted characters (i.e., alphabetized letters, numeri
cally ordered numbers, etc.), the counts represent how many
characters of one type are listed before moving to the next
ordered character. These counts thereby provide spacing
between the values loaded into the A' array.

The size of array A is bound by the size of the alphabet
used in constructing the text. This is advantageous because
the array A is independent of the number of characters (i.e.,
n) in the original text sequence. In the example text
“test texti, the alphabet size consists of six characters: e,
S, t, X, , and it. The array A has Six entries corresponding
to the Six characters, which is reduced from the ten charac
ters that make up the full A array. AS other examples, a fall
alphabet consists of 26 characters, A-Z, and a binary alpha
bet has two characters, 0 and 1.

The full array A, which varies in size according to the Size
of the text, can be entirely recovered from the fixed-size
array A (i.e., fixed to the size of the alphabet). The alphabet
is known and provides an ordered Sequence of characters.
The A array provides the information to expand the char
acters to the full array. For instance, using the ordered Six
character alphabete, S, t, X, , if, the array A indicates that
the letter “e” appears in the first position, the letter “s”
appears in the third position, and So on. The positions not
designated by array A are then filled with the same letter
cited above it. The Second position of array A, which is not
designated in the array A, is filled with the letter “e” because
it follows the letter “e” in the first position and we know the
letter “s” does not begin until the third position. In this
manner, the fall array A is recoverable entirely from the
reduced array A.

15

25

35

40

45

50

55

60

65

8
For a given fixed alphabet size, the time required to

calculate an entry in the full array A from the reduced array
A is bound to a constant. The recalculation time is inde
pendent of the number of characters in the text. As a result,
as the number of characters increases, the time cost for
recovering an entry from the array A becomes an increas
ingly Smaller percentage of the entire processing cost. This
is advantageous as text sizes increase.
The original text and all rows in the rotation matrix M can

be entirely calculated from the correspondence array C and
the fixed-size array A. That is, the array A is used to recover
the array A, the arraySA and C are used to recover the array
B (which is a permutation of the entire text); and the arrays
A, B, and C are used to recover the matrix M.
Compute Reduced Correspondence Array C (Step 44)
At Step 44 in FIG. 4, the pattern matching application

directs the computer to Sample the correspondence array C
to form a reduced array C". For a particular parameter S,
which defines the block size and hence represents a Speed
factor for access time, the array C" is created by taking every
s' term of the correspondence array C:

The size of the reduced array C" is the number of characters
n in the text divided by block sizes (i.e., n/s).

FIG. 6 shows an example derivation of a compressed
correspondence array C" from a nine-by-nine matrix M of
Sorted rotations of a binary String. The binary String is
constructed from a two character alphabet: 0 and 1. The
alphabetized array A representing the first column, the array
B representing the last column, and the correspondence
array C derived from the lines of correspondence are as
follows:

A=0,0,0,0,1,1,1,1,1)

B=1,1,0,1,0,1,0,1,0)

C=3,5,7,9,1,2,4,6,8)

For this example, Suppose the block size S is set to two.
For S=2, a reduced array C" is formed of the row numbers in
array B which correlate to every other term (i.e., S=2) in
array A, as indicated by the Solid lines. This reduction
produces an array C" as follows:

Segment B Array Into Blocks (Step 46)
At step 46 in FIG. 4, the Barray is segmented into blocks

containing SubStrings of S characters. FIG. 7 shows a
sequence 60 of five blocks 62. Each block 62 contains a
Substring portion 64 which consists of the S characters
associated with the block. The reduced array C" defines
starting locations within the Barray for every s' term in A
or equivalently every term in A. Additional header infor
mation 66 is stored with each block of sizes in the Barray
indicating for each character in the alphabet, how many
times it occurred in the block. If any character did not occur
at all in the block, then an additional value can be Stored
indicating the block number for the next occurrence of the
character.

For a target data pattern, the resultant data Structure can be
examined quickly at the block level and then in more detail
within the block. FIG. 8 shows a data structure constructed
for the nine character binary text of FIG. 6. For a block size
S of 2, each block contains a two-character SubString derived
from the Barray, as represented by the substring 74 con

6,119,120
9

taining characters “11.” Suppose a Search called for locating
the fourth “0” in the Barray without using the Carray. From
a conceptual Standpoint, the Search skips the first block,
which has two ones. The Second block is examined and
found to contain one Zero, So the Search proceeds to the third
block. This process continues until the fifth block is reached.
Within the fifth block, the substring is scanned to locate the
Zero, which is the fourth Zero in Barray. The Carray can be
used to begin the Search at various points in the B array
which correspond to one of the characters in the A array.

This Same Search using the Carray is represented Visually
in FIG. 6 by locating the third Zero at the seventh row of
array B (which is identified by the C array) and scan
downward until the next Zero (i.e., fourth Zero) is reached in
the ninth row. This example shows how using the C" array
Speeds the Search by making it unnecessary to Start Scanning
at the very beginning of the B array. Each character in a
desired pattern is found using this locate-and-Scan technique
facilitated by the Carray. The Carray can therefore be used
as a shortcut to the full Carray to recover any entire row of
the matrix M of Sorted rotations. The Sorted rows of text can
then be used as a conventional Sorted indeX to find desired
patterns in the text.

Using the reduced array C", the target block of the
Segmented Barray can be located to within S occurrences of
the character being Searched. The particular block which
includes the correct one of the S occurrences can then be
located by examining at most S block headers. Finally, the
particular occurrence is found by examining the characters
within the correct block. The entire search requires Order(s)
memory references to find a character which corresponds to
a given character in the original A array.
A more detailed discussion of how a particular entry in the

C array, and hence Barray, is located using the blocks will
now be described. Define an array tas follows:

ti-i-AAi.

Recall, the array A defines the Start locations of each
unique character String in the ordered array A. For the FIG.
6 String of binary characters, the array A is the locations of
the first “0” and “1” characters in array A, or A'=15). For
any row i of the matrix M starting with character Ai), the
value til indicates how many identical characters there are
above the indexed i" character in array A. In other words,
the value til indicates how the process knows which Zero is
the fourth Zero, because the fourth Zero has three Zeros
above it in array A.
Now, the array element Ci can be interpreted as the

location of the (1+ti)" character identical to Ai) in array
B. Thus, if element Ci is known, a Subsequent element
Ci+k) can be calculated by Searching in array B beginning
at element Ci-1 for the k" occurrence of character Ai). In
other words, once the character at Ci is found within a
particular block, the desired character located at Ci--1,
Ci+2). . . . CLi+k) can be found by scanning to the k"
occurrence of character Ai.
AS a result, if typical performance is all that matters, the

reduced correspondence array C together with array B
(which consists of the whole text) and the reduced array A'
is all that is needed to represent the matrix of rotations. A
data Structure containing the Barray and the reduced arrayS
A and C requires leSS Storage Space as compared to Storing
the full size arrays A, B, and C. For large texts, the reduced
arrayS A and C are Significantly Smaller in comparison to
their full size arrays A and C. The array A is a fixed size
dependent on the alphabet size, and by Setting a large S
value, the correspondence array C can be compressed to a

15

25

35

40

45

50

55

60

65

10
Size much Smaller than that of the original text. Moreover,
the Structure now permits entry into individual portion of the
text, by indexing the SubStrings in a block wise manner.
Type Headers (Step 48)
To facilitate an ability to Scan for certain characters at a

block level, the pattern matching application directs the
computer to create a type header for each block (step 48 in
FIG. 4). The type header contains a listing of all character
types within the block, and the number of characters for each
type in the block. The type header is stored at the start of the
corresponding block, as indicated by the reference number
66 in FIG. 7. In FIG. 8, the type header 76 for the first block
contains the information 0, 2, which means that the Sub
string 64 in the block has no “0's and two “1's.

During a Search for a particular pattern, the Search tool
can examine the type header to determine if the correspond
ing block contains any characters of interest, and if So, the
number of Such characters. Suppose, for example, a Search
is conducted for the fourth “0” in the Barray. When the first
block is examined, the type header 76 indicates that there are
no ZeroS in block 1. The Search is immediately continued to
block 2, without accessing and Scanning the character Sub
String of block 1. At block 2, the type header indicates that
the block contains one Zero. The pattern matching applica
tion Sets a Zero count to one. At block 3, the type header
indicates that the block contains one Zero, causing the Zero
count to increment to two. This proceSS is continued until the
fifth block is reached. The type header indicates that block
5 contains one Zero, which constitutes the fourth Zero
counted. At the fifth block, the pattern matching application
Scans the SubString to locate the Specific fourth Zero.

For this simple example using a Small text String, the
Savings in Search time due to the type headers may Seen
trivial. For a large String of text having many characters
(e.g., 256) within each block, the type headers are very
useful. Suppose the search request is to locate the 10,000"
Zero. The type headerS facilitate a very useful and efficient
examine-and-skip protocol which rapidly bypasses blockS
that have no potential of containing the requested Zero.
When the block containing the 10,000” zero is located, the
Substring is Scanned until the exact Zero is found (which will
take no more that S Steps).

Block Headers (Step 50)
One difficulty that may arise for large texts is that the

target character may be very remote within the data Struc
ture. For instance, Suppose that a particular character does
not occur for 1000 blocks of the Barray. In this case, even
if s=2, we might know from the C array that the 10"
occurrence is in a particular block, but we would have to
scan 1000 blocks looking for the 11" occurrence. Examin
ing each block, one type header at a time, and counting the
occurrences may take a long time.
To alleviate this problem and further improve search

efficiency, the pattern matching application also directs the
computer to create a jump header for each block (step 50 in
FIG. 4). The jump header contains information of where the
next character of a particular type might be found. AS shown
in FIG. 7, the jump header 68 is attached to the front of the
block 62. The jump header 68 accounts for all character
types that are not contained in the Substring 62 and provides
an indication in the form of a pointer or block address of
where the next character of the absent type might be located.
As shown in the example of FIG. 8, a “0” character type

is absent from the substring of block 1. The next “0”
character is located in block 2. A jump header 78 contains a
reference “2 indicating that the next character of type “0”
is located in block 2.

6,119,120
11

The data structure shown in FIGS. 7 and 8 represent one
possible implementation in which the type and jump headers
are attached to the front of the blocks and stored in this
manner. To find the j" character of a particular type, the
search using the data structure of FIGS. 7 and 8 essentially
entails examining the type headers of each block and adding
the counts for the type of character. The jump headers are
used to Skip large groups of blocks that do not contain the
character type. When the sum of the counts for the type of
character is greater than j, the last block is Scanned to find
the exact location of the j" character. Since blocks without
the character type can be skipped, the Search requires at most
j examinations of the Starts of each block and S Steps to Scan
through the last block. Thus the element Cican be evalu
ated in Order(s) steps as desired.

Compress Data Structure (Step 54)
At step 54 of FIG. 4, the pattern matching application

directs the computer to compress the data Structure. In
particular, the SubStrings within each of the Barray blockS
is compressed independently of the other blockS. By com
pressing the blocks individually and independently, indi
vidual blocks identified in a Search can be decompressed
without decompression of all blockS. Additionally, com
pressing the Barray Speeds up access to the Sorted rotations
because leSS data needs to be Scanned to find particular
entries in the array.

In one implementation, the B array SubString in each
block is compressed using a combination of two well known
compression techniques: move-to-front (MTF) encoding
and run length encoding (RLE). For MTF encoding, a code
book lists each character once and assigns a rank to each
character. Every time a character is used, that character is
moved to the front of the code book, and given the Smallest
rank. Frequently used characters tend to have Smaller rankS.
For RLE encoding, the number of repeated occurrences of
the same character are Stored So that long runs of the same
character are highly compressed.

The compressed SubString is then encoded using a vari
able length encoding, Such as a code created by the Huffman
algorithm, which his also well known. Variable length
encoding uses fewer bits to encode the most frequently used
indices and run-length.

In addition to compression, there may be Some advantage
to reconditioning the data in a format that is helpful for
compression. When encoding compressible English text
using this Scheme, for example, it is possible to greatly
reduce the memory overhead by converting each character
in the alphabet to multiple characters in a Smaller alphabet.
An example implementation converted the English alphabet
to an octal-based System. Each letter is represented by two
consecutive three bit characters, thereby providing a char
acter Set of Size 64. Characters in the original text which are
not one of the 63 most common characters are represented
by a 3 bit escape character followed by three additional 3 bit
characters. Each indeX produced by the move-to-front
encoder is a value between 1 and 7, inclusive. (The Zero
value is not needed because Sequences of repeated charac
ters are represented by a run-length rather than as Zero
indices from the move-to-front encoder). There are many
choices for the mapping of 64 English characters (including
the escape character) to two consecutive 3 bit Symbols. AS
one example, a Search algorithm can be used which finds a
mapping to minimize the number of runs in the resulting
run-length encoding. Data format manipulation techniques,
Such as this one, improve the compression rate.

The data structure and methods described above are
advantageous Over the prior art. One advantage is the

15

25

35

40

45

50

55

60

65

12
reduction of memory overhead for Storing the indeX terms.
The data structure contains the Barray (which is the same
Size as the original text) and the A and Carrays, and header
information for the B array, which are all comparatively
Small. The Carray and header information have a size equal
to the number of characters n divided by the block size S.
The A array has a size equal to the alphabet.

Another advantage is that the Carray and header infor
mation for the blocks of the Barray all Scale according to
1/S, and the A array is a fixed size dependent on the alphabet
size. As a result, there is a tradeoff (which varies with the
block size S) between access speed and memory overhead.
This is a highly desirable attribute. If a designer is more
concerned with acceSS Speed, the designer uses a Small block
Size S, which improves performance because the indexing
array C" and header information are larger and contain more
information to help facilitate the Search. However, there is a
cost of increased Storage requirements.
On the other hand, if the designer is more interested in

conserving Storage space, the designer uses a larger block
Size S. The array C" and header information are Smaller
which improves Storage efficiency, but at a cost of Slower
access time.
Another advantage is that the particular patterns or char

acters can be accessed in the data Structure without decom
pressing the entire Structure. By compressing the B array,
block-by-block, a Search of the data Structure can access a
particular block, decompress that block only without decom
pressing the others, and find a character within the target
pattern. This aspect further improves Search time efficiency.

In compliance with the Statute, the invention has been
described in language more or leSS Specific as to Structural
and methodical features. It is to be understood, however, that
the invention is not limited to the Specific features described,
Since the means herein disclosed comprise preferred forms
of putting the invention into effect. The invention is,
therefore, claimed in any of its forms or modifications within
the proper Scope of the appended claims appropriately
interpreted in accordance with the doctrine of equivalents.

I claim:
1. A method comprising the following Steps:
producing a matrix of Sorted rotations of a data String of

characters, the matrix defining an A array comprising a
Sorted listing of the characters in the data String and a
Barray which is a permutation of the data String and a
Carray which contains entries of correspondence infor
mation linking the characters in the A array to the same
characters in the Barray;

Segmenting the Barray into blocks,
defining indexing information used to find particular

characters within the blocks to reconstruct patterns of
characters within the data String;

Storing the blocks of the Barray and the indexing infor
mation in a data Structure; and

finding patterns of characters within the data String using
the data structure.

2. A method as recited in claim 1, further comprising the
step of compressing the blocks of the Barray individually of
each other.

3. A method as recited in claim 1, wherein the defining
Step comprises the following Steps:

examining each block of the Barray; and
for each associated block, constructing character type

information that identifies which types of characters
and how many characters of particular types are con
tained within the associated block.

6,119,120
13

4. A method as recited in claim 3, further comprising the
Step of organizing the data structure to include the blocks of
the Barray and a header associated with each block which
contains the character type information.

5. A method comprising the following Steps:
producing a matrix of Sorted rotations of the data String,

the matrix defining a Barray which is a permutation of
the data String,

Segmenting the Barray into blocks,
defining indexing information used to find particular

characters within the blocks to reconstruct patterns of
characters within the data String,

Storing the blocks of the Barray and the indexing infor
mation in a data Structure;

examining each block of the Barray;
for each associated block, constructing character type

information that identifies which types of characters
and how many characters of particular types are con
tained within the associated block,

organizing the data Structure to include the blocks of the
Barray and a separate array containing the character
type information for correlated blocks, and

finding patterns of characters within the data String using
the data structure.

6. A method as recited in claim 1, wherein the defining
Step comprises the following Steps:

examining each block of the Barray; and
for each block, constructing character jump information

to reference where a next character of a particular type
occurs in the blocks of the Barray.

7. A method as recited in claim 6, further comprising the
Step of organizing the data structure to include the blocks of
the Barray and a header associated with each block which
contains the character jump information.

8. A method comprising the following Steps:
producing a matrix of Sorted rotations of the data String,

the matrix defining a Barray which is a permutation of
the data String,

Segmenting the Barray into blocks,
defining indexing information used to find particular

characters within the blocks to reconstruct patterns of
characters within the data String,

Storing the blocks of the Barray and the indexing infor
mation in a data Structure;

examining each block of the Barray;
for each block, constructing character jump information

to reference where a next character of a particular type
occurs in the blocks of the Barray;

organizing the data Structure to include the blocks of the
Barray and a separate array containing the character
jump information for correlated blocks, and

finding patterns of characters within the data String using
the data structure.

9. A Storage medium Storing a data Structure constructed
according to the Steps in the method as recited in claim 1.

10. A computer programmed to perform the Steps of the
method as recited in claim 1.

11. A computer-readable memory which directs a com
puter to perform the Steps of the method as recited in claim
1.

12. A method comprising the following Steps:
producing a matrix of Sorted rotations of the data String,

the matrix defining an A array comprising a Sorted
listing of the characters in the data String and a Barray
which is a permutation of the data String,

15

25

35

40

45

50

55

60

65

14
computing a correspondence array C which contains

correspondence entries linking the characters in the A
array to the same characters in the Barray;

computing a reduced A array which identifies each
unique character in the A array;

computing a reduced Carray which contains every s”
entry of the C array;

Segmenting the Barray into blocks of Size S,
storing the blocks of the Barray, the A' array, and the C

array in a data Structure, and
finding patterns of characters within the data String using

the data structure.
13. A method as recited in claim 12, further comprising

the Step of compressing the blocks of the Barray individu
ally of each other.

14. A method as recited in claim 12, further comprising
the following Steps:

examining each block of the Barray; and
for each associated block, constructing character type

information that identifies which types of characters
and how many characters of particular types are con
tained within the associated block.

15. A method as recited in claim 14, further comprising
the Step of Storing in the data Structure the character type
information as a header to the associated block of the B
array.

16. A method as recited in claim 14, further comprising
the Step of Storing in the data Structure the character type
information as a separate array.

17. A method as recited in claim 12, wherein the defining
Step comprises the following Steps:

examining each block of the Barray; and
for each associated block, constructing character jump

information to reference where a next character of a
particular type occurs in the blocks of the Barray.

18. A method as recited in claim 17, further comprising
the Step of Storing in the data Structure the character jump
information as a header to the associated block of the B
array.

19. A method as recited in claim 17, further comprising
the Step of Storing in the data Structure the character jump
information as a separate array.

20. A method as recited in claim 17, wherein the data
String comprises DNA sequences.

21. A Storage medium Storing a data Structure constructed
according to the Steps in the method as recited in claim 12.

22. A computer programmed to perform the Steps of the
method as recited in claim 12.

23. A computer-readable memory which directs a com
puter to perform the Steps of the method as recited in claim
12.

24. A computer-readable memory having a data Structure,
the data Structure being derived from a matrix of Sorted
rotations formed from a data String of characters, the matrix
defining an A array comprising a Sorted listing of the
characters in the data String and a B array which is a
permutation of the data String and a C array which contains
entries of correspondence information linking the characters
in the A array to the same characters in the Barray, the data
Structure comprising:

multiple blocks having SubStrings of characterS Seg
mented from the Barray; and

at least one indeX array used to indeX the blockS.
25. A computer-readable memory as recited in claim 24,

wherein the Substrings of each block are compressed.

6,119,120
15

26. A computer-readable memory as recited in claim 24,
further comprising a type header attached to each block, the
type header identifying which types of characters and how
many characters of particular types are contained within the
asSociated SubString.

27. A computer-readable memory as recited in claim 24,
further comprising a jump attached to each block, the jump
header referencing where a next character of a particular
type occurs in the blocks of characters.

28. A computer-readable memory having a data Structure,
the data Structure being derived from a matrix of Sorted
rotations formed from a data String of characters, the matrix
defining an A array comprising a Sorted listing of the
characters in the data String and a B array which is a
permutation of the data String and a C array which contains
entries of correspondence information linking the characters
in the A array to the same characters in the Barray, the data
Structure comprising:

multiple blocks having SubStrings of S characters Seg
mented from the Barray;

an A array which identifies each unique character in the
A array,

a C array which contains every s” entry of the Carray;
and

the A and C arrays being used to reconstruct the data
String of characters from the multiple blocks when
Searching for a particular pattern of characters within
the data String.

29. A computer-readable memory as recited in claim 28,
wherein the SubStrings of each block are compressed.

30. A computer-readable memory as recited in claim 28,
wherein the data structure further comprises an array con
taining character type information that identifies which types
of characters and how many characters of particular types
are contained within the associated block.

15

25

16
31. A computer-readable memory as recited in claim 28,

wherein the data Structure further comprises an array con
taining character jump information which references where
a next character of a particular type occurs in the blockS.

32. A computer System comprising:
a proceSSOr,
an application executable on the processor to produce a

matrix of Sorted rotations of a data String of characters,
the matrix defining an A array comprising a Sorted
listing of the characters in the data String and a Barray
which is a permutation of the data String and a C array
which contains entries of correspondence information
linking the characters in the A array to the same
characters in the Barray, the application further direct
ing the processor to Segment the Barray into blocks and
to define indexing information used to find particular
characters within the blocks to reconstruct patterns of
characters within the data String;

a memory to Store a data structure containing the blockS
of the Barray and the indexing information; and

the processor finding patterns of characters within the data
String using the data structure.

33. A computer system as recited in claim 32, wherein the
application further directs the processor to compress the
blocks of the Barray independently of each other.

34. A computer System as recited in claim 32, wherein the
application further directs the processor to derive character
type information for each block that identifies which types
of characters and how many characters of particular types
are contained within the associated block.

35. A computer system as recited in claim 32, wherein the
application further directs the processor to derive character
jump information for each block that references where a
next character of a particular type occurs in the blockS.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,119,120 Page 1 of 1
DATED : September 12, 2000
INVENTOR(S) : John W. Miller

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 6
Line 29, add -- the -- after “for”

Column 7
Lines 49 and 66, change “fall” to -- full --.

Signed and Sealed this

Thirtieth Day of July, 2002

Attest.

JAMES E ROGAN
Attesting Officer Director of the United States Patent and Trademark Office

