»UK Patent .,GB

(11)2586382

(13)B

(45)Date of B Publication 09.02.2022

(54) Title of the Invention: Fast recovery from failures in a chronologically ordered log-

structured key-value storage system

(51) INT CL: GO6F 11/14 (2006.01)

(21) Application No: 2014957 1
(22) Date of Filing: 19.02.2019
Date Lodged: 22.09.2020
(30) Priority Data:
(31) 15904185 (32) 23.02.2018 (33) US
(86) International Application Data:
PCT/IB2019/051324 En 19.02.2019
(87) International Publication Data:
W02019/162829 En 29.08.2019
(43) Date of Reproduction by UK Office 17.02.2021

(56) Documents Cited:
US 7200623 B2
US 20100332240 A1

US 20170068599 A1

(58) Field of Search:
As for published application 2586382 A viz:
INT CL GO6F
Other: DWPI, CPRSABS, USTXT, SIPOABS, CNABS,
CNKI, IEEE
updated as appropriate

Additional Fields
Other: WPI, EPODOC

(72) Inventor(s):
Aayush Gupta
Sangeetha Seshadri

(73) Proprietor(s):
International Business Machines Corporation
(Incorporated in USA - New York)
New Orchard Road, Armonk, New York 10504,
United States of America

(74) Agent and/or Address for Service:
IBM United Kingdom Limited
Intellectual Property Department, Hursley Park,
Winchester, Hampshire, S021 2JN, United Kingdom

g ¢898G¢ 99

17

\\\\;\ﬂ\o

\ 6

JITTTT T

37

¢ 'old

w vm.hﬁv}ﬁwz
.
Aemeres) V
/ 5
o LOG \
08T} OHOMEN
) L] G
AN
TR

00g

4/7

435 7
420 3 {
{ NETWORK
4103 418~ 414 448 “ 434+
/ ? ; 4 /
o COMMUNICATION
CPU ROM RAM ADAPTER ADAPTER
:12—\3
427 -
{
424“} ? |
nmmtn:ﬂni::ﬂm e USER ~...438
.............. Tnﬁ'f INTERFACE DISPLAY
ADAPTER ADAPTER

J\]
4309

A

7

Laop 428

FIG. 4

o7

500
/910 530
Processor Checkpoint
Interface
Ve 520
Memory

FIG. 5

6/7

904

T

UORBIC| INC Pa0IsZ
& o} Buguiod Anus Josucou 7013 o
/ 7708 | P
g~ £ | o
0LG—i 2018 5
Aisnooay
DASEG ooy Bl Xapuj
RICOEM
Juodiosyd
099 ,,/ 7
E@\
Wi 1ebiey
g iy 9S 7 £ 2 i € €
68 EANANANAD , 6 KBS, <8 N 8RS
4 AOIPARY " 3 3 3k AN , AR
/ 7
\ PGS L1018 \ LG I0IS \\\ LI0IS
g 0ya 0¢9 ¢ R "
YSEIQ) JO BUlLL BUL Y

17

70

Recording, by a Processor, a System State
Prior to an Aborted Garbage Collection
Operation

— 710

¥

Writing, by the Processor, Tombstone Entries in
a Log Structure for Dirty Checkpoint Records {o
Point to Data Records in an Aborted Target Slot

——— 720

¥

Inserting New Checkpoint Records for the
Dirty Checkpoint Records in the Log
Structure

}

FIG. 7

------ -730

1

FAST RECOVERY FROM FAILURES IN A CHRONOLOGICALLY ORDERED LOG-STRUCTURED KEY-VALUE
STORAGE SYSTEM

Technical Field

[0001] The invention is generally directed to managing log-structured storage systems. In particular it

provides for recovery after failure using a checkpoint in a chronological log-structured key-value store in a system.

BACKGROUND

[0002] Typical log-structured storage systems store record data in temporal order in a “log.” These typical
systems allow basic primitive operations, such as insert, update, delete, read. Each update of data results in a new
record being inserted at the tail of the “log.” Each delete results in a tombstone object being inserted at the tail of
the log. Additionally, background garbage collection process compacts the data reclaiming space that does not
contain valid data. However, recovery from checkpoints are problematic as checkpoints may occur concurrently

with garbage collection

[0003] Therefore, there is a need in the art to address the aforementioned problem.
SUMMARY
[0004] According to the present invention there are provided a method, a computer program product, a

computer program, and an apparatus according to the independent claims.

2

[0007] Viewed from a further aspect, the present invention provides a computer program stored on a
computer readable medium and loadable into the internal memory of a digital computer, comprising software code

portions, when said program is run on a computer, for performing the steps of the invention.

[0008] Embodiments relate to fast recovery from failures in a chronologically ordered log-structured key-
value store. Cne embodiment provides a method for recovery after failure using a checkpoint in a chronological
log-structured key-value store in a system including recording, by a processor, a system state prior to an aborted
garbage collection operation. The processor writes tombstone entries in a log structure for dirty checkpoint records
to point to data records in an aborted target slot. New checkpoint records are inserted in the log structure for the

dirty checkpoint records.

[0009] These and other features, agpects and advantages of the present invention will become understood

with reference to the following description, appended claims and accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] Embodiments of the present invention will now be described, by way of example only, with reference
to the accompanying drawings in which:

FIG. 1 depicts a cloud computing environment, according to an embodiment;

FIG. 2 depicts a set of abstraction model layers, according to an embodiment;

FIG. 3is a network architecture for retrospective shapshots in log-structured storage systems, according
to an embodiment;

FIG. 4 shows a representative hardware environment that may be associated with the servers and/or
clients of FIG. 1, according to an embodiment;

FIG. 5is a block diagram illustrating a processor for fast recovery from failures in a chronologically
ordered log-structured key-value store in log-structured storage systems, according to an embodiment;

FIG. 6 illustrates an example checkpoint record pointing to a garbage collection slot, according to an
embodiment; and

FIG. 7 illustrates a block diagram for a process for recovery from failures in a chronologically ordered

log-structured key-value store, according to one embodiment.

DETAILED DESCRIPTION

[0011] The descriptions of the various embodiments have been presented for purposes of illustration, but are
not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing from the scope of the described embodiments. The

terminology used herein was chosen to best explain the principles of the embodiments, the practical application or

3

technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to

understand the embodiments disclosed hersin.

[0012] It is understood in advance that although this disclosure includes a detailed description of cloud
computing, implementation of the teachings recited herein are not limited to a cloud computing environment.
Rather, embodiments of the present invention are capable of being implemented in conjunction with any other type

of computing environment now known or later developed.

[0013] One or more embodiments relate to fast recovery from failures in a chronologically ordered log-
structured key-value store. One embodiment provides a method for recovery after failure using a checkpointin a
chronological log-structured key-value store in a system including recording, by a processor, a system state prior to
an aborted garbage collection operation. The processor writes tombstone entries in a log structure for dirty
checkpoint records to point to data records in an aborted target slot. New checkpoint records are inserted in the log

structure for the dirty checkpoint records.

[0014] Cloud computing is a model of service delivery for enabling convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks, network bandwidth, servers, processing,
memory, storage, applications, virtual machines (VMs), and services) that can be rapidly provisioned and released
with minimal management effort or interaction with a provider of the service. This cloud model may include at least

five characteristics, at least three service models, and at least four deployment models.

[0015] Characteristics are as follows:

[0016] On-demand self-service: a cloud consumer can unilaterally provision computing capabilities, such as
server time and network storage, as needed and automatically, without requiring human interaction with the

service's provider.

[0017] Broad network access: capabilities are available over a network and accessed through standard
mechanisms that promote use by heterogeneous, thin or thick client platforms (e.g., mobile phones, laptops, and
PDAs).

[0018] Resource pooling: the provider's computing resources are pooled to serve multiple consumers using a
multi-tenant model, with different physical and virtual resources dynamically assigned and reassigned according to
demand. There is a sense of location independence in that the consumer generally has no control or knowledge
over the exact location of the provided resources but may be able to specify location at a higher level of abstraction

(e.g., country, state, or data center).

4

[0019] Rapid elasticity: capabilities can be rapidly and elastically provisioned and, in some cases,
automatically, to quickly scale out and rapidly released to quickly scale in. To the consumer, the capabilities

available for provisioning often appear to be unlimited and can be purchased in any quantity at any time.

[0020] Measured service: cloud systems automatically control and optimize resource use by leveraging a
metering capability at some level of abstraction appropriate to the type of service (e.g., storage, processing,
bandwidth, and active consumer accounts). Resource usage can be monitored, controlled, and reported, thereby

providing transparency for both the provider and consumer of the utilized service.

[0021] Service Models are as follows:

[0022] Software as a Service (SaaS): the capability provided to the consumer is the ability to use the
provider's applications running on a cloud infrastructure. The applications are accessible from various client devices
through a thin client interface, such as a web browser (e.g., web-based email). The consumer does not manage or
control the underlying cloud infrastructure including network, servers, operating systems, storage, or even individual

application capabilities, with the possible exception of limited consumer-specific application configuration settings.

[0023] Platform as a Service (PaaS): the capability provided to the consumer is the ability to deploy onto the
cloud infrastructure consumer-created or acquired applications created using programming languages and tools
supported by the provider. The consumer does not manage or control the underlying cloud infrastructure including
networks, servers, operating systems, or storage, but has control over the deployed applications and possibly

application-hosting environment configurations.

[0024] Infrastructure as a Service (laaS). the capability provided to the consumer is the ability to provision
processing, storage, networks, and other fundamental computing resources where the consumer is able to deploy
and run arbitrary software, which can include operating systems and applications. The consumer does not manage
or control the underlying cloud infrastructure but has control over operating systems, storage, deployed

applications, and possibly limited control of select networking components (e.g., host firewalls).

[0025] Deployment Models are as follows:

[0026] Private cloud: the cloud infrastructure is operated solely for an organization. It may be managed by

the organization or a third party and may exist on-premises or off-premises.

[0027] Community cloud: the cloud infrastructure is shared by several organizations and supports a specific
community that has shared concerns (e.g., mission, security requirements, policy, and compliance considerations).

It may be managed by the organizations or a third party and may exist on-premises or off-premises.

5

[0028] Public cloud: the cloud infrastructure is made available to the general public or a large industry group

and is owned by an organization selling cloud services.

[0029] Hybrid cloud: the cloud infrastructure is a composition of two or more clouds (private, community, or
public) that remain unique entities but are bound together by standardized or proprietary technology that enables

data and application portability (e.g., cloud bursting for load balancing between clouds).

[0030] A cloud computing environment is a service oriented with a focus on statelessness, low coupling,
modularity, and semantic interoperability. At the heart of cloud computing is an infrastructure comprising a hetwork

of interconnected nodes.

[0031] Referring now to FIG. 1, an illustrative cloud computing environment 50 is depicted. As shown, cloud
computing environment 50 comprises one or more cloud computing nodes 10 with which local computing devices
used by cloud consumers, such as, for example, personal digital assistant (PDA) or cellular telephone 54A, desktop
computer 54B, laptop computer 54C, and/or automobile computer system 54N may communicate. Nodes 10 may
communicate with one another. They may be grouped (not shown) physically or virtually, in one or more networks,
such as private, community, public, or hybrid clouds as described hereinabove, or a combination thereof. This
allows the cloud computing environment 50 to offer infrastructure, platforms, and/or software as services for which a
cloud consumer does not need to maintain resources on a local computing device. It is understood that the types of
computing devices 54A-N shown in FIG. 2 are intended to be illustrative only and that computing hodes 10 and
cloud computing environment 50 can communicate with any type of computerized device over any type of network

and/or network addressable connection (e.g., using a web browser).

[0032] Referring now to FIG. 2, a set of functional abstraction layers provided by the cloud computing
environment 50 (FIG. 1) is shown. It should be understood in advance that the components, layers, and functions
shown in FIG. 2 are intended to be illustrative only and embodiments of the invention are not limited thereto. As

depicted, the following layers and corresponding functions are provided:

[0033] Hardware and software layer 60 include hardware and software components. Examples of hardware
components include: mainframes 61; RISC (Reduced Instruction Set Computer) architecture based servers 62;
servers 63; blade servers 64; storage devices 65; and networks and networking components 66. In some

embodiments, software components include network application server software 67 and database software 68.

[0034] Virtualization layer 70 provides an abstraction layer from which the following examples of virtual
entities may be provided: virtual servers 71; virtual storage 72; virtual networks 73, including virtual private

networks; virtual applications and operating systems 74; and virtual clients 75.

6

[0035] In one example, a management layer 80 may provide the functions described below. Resource
provisioning 81 provides dynamic procurement of computing resources and other resources that are utilized to
perform tasks within the cloud computing environment. Metering and pricing 82 provide cost tracking as resources
are utilized within the cloud computing environment and billing or invoicing for consumption of these resources. In
one example, these resources may comprise application software licenses. Security provides identity verification
for cloud consumers and tasks as well as protection for data and other resources. User portal 83 provides access
to the cloud computing environment for consumers and system administrators. Service level management 84
provides cloud computing resource allocation and management such that required service levels are met. Service
Level Agreement (SLA) planning and fulfilment 85 provide pre-arrangement for, and procurement of, cloud

computing resources for which a future requirement is anticipated in accordance with an SLA.

[0036] Workloads layer 90 provides examples of functionality for which the cloud computing environment
may be utilized. Examples of workloads and functions which may be provided from this layer include; mapping and
navigation 91; software development and lifecycle management 92; virtual classroom education delivery 93; data
analytics processing 94; transaction processing 95; and fast recovery from failures in a chronologically ordered log-
structured key-value store processing 96. As mentioned above, all of the foregoing examples described with

respect to FIG. 2 are illustrative only, and the invention is not limited to these examples.

[0037] It is understood all functions of one or more embodiments as described herein may be typically
performed by the processing system 300 (FIG. 3) or the autonomous cloud environment 410 (FIG. 4), which can be
tangibly embodied as hardware processors and with modules of program code. However, this need not be the case
for non-real-time processing. Rather, for non-real-time processing the functionality recited herein could be carried

outimplemented and/or enabled by any of the layers 60, 70, 80 and 90 shown in FIG. 2.

[0038] Itis reiterated that although this disclosure includes a detailed description on cloud computing,
implementation of the teachings recited herein are not limited to a cloud computing environment. Rather, the
embodiments of the present invention may be implemented with any type of clustered computing environment now

known or later developed.

[0039] FIG. 3illustrates a network architecture 300, in accordance with one embodiment. As shown in FIG.
3, aplurality of remote networks 302 are provided, including a first remote network 304 and a second remote
network 306. A gateway 301 may be coupled between the remote networks 302 and a proximate network 308. In
the context of the present network architecture 300, the networks 304, 306 may each take any form including, but
not limited to, a LAN, a WAN, such as the Internet, public switched telephone network (PSTN), internal telephone

network, etc.

7

[0040] In use, the gateway 301 serves as an entrance point from the remote networks 302 to the proximate
network 308. As such, the gateway 301 may function as a router, which is capable of directing a given packet of
data that arrives at the gateway 301, and a switch, which furnishes the actual path in and out of the gateway 301 for

a given packet.

[0041] Further included is at least one data server 314 coupled to the proximate network 308, which is
accessible from the remote networks 302 via the gateway 301. It should be noted that the data server(s) 314 may
include any type of computing device/groupware. Coupled to each data server 314 is a plurality of user devices
316. Such user devices 316 may include a desktop computer, laptop computer, handheld computer, printer, and/or
any other type of logic-containing device. It should be noted that a user device 311 may also be directly coupled to

any of the networks in some embodiments.

[0042] A peripheral 320 or series of peripherals 320, e.g., facsimile machines, printers, scanners, hard disk
drives, networked and/or local storage units or systems, etc., may be coupled to one or more of the networks 304,
306, 308. It should be noted that databases and/or additional components may be utilized with, or integrated into,
any type of network element coupled to the networks 304, 306, 308. In the context of the present description, a

network element may refer to any component of a network.

[0043] According to some approaches, methods and systems described herein may be implemented with
and/or on virtual systems and/or systems, which emulate one or more other systems, such as a UNIX system that
emulates an IBM z/OS environment, a UNIX system that virtually hosts a MICROSOFT WINDOWS environment, a
MICROSOFT WINDOWS system that emulates an IBM z/OS environment, etc. This virtualization and/or emulation

may be implemented through the use of VMWARE software in some embodiments.

[0044] FIG. 4 shows a representative hardware system 400 environment associated with a user device 416
and/or server 314 of FIG. 3, in accordance with one embodiment. In one example, a hardware configuration
includes a workstation having a central processing unit 410, such as a microprocessor, and a number of other units
interconnected via a system bus 412. The workstation shown in FIG. 4 may include a Random Access Memory
(RAM) 414, Read Only Memory (ROM) 416, an |/O adapter 418 for connecting peripheral devices, such as digk
storage units 420 to the bus 412, a user interface adapter 422 for connecting a keyboard 424, a mouse 426, a
speaker 428, a microphone 432, and/or other user interface devices, such as a touch screen, a digital camera (not
shown), etc., to the bus 412, communication adapter 434 for connecting the workstation to a communication
network 435 (e.g., a data processing network) and a display adapter 436 for connecting the bus 412 to a display
device 438.

[0045] In one example, the workstation may have resident thereon an operating system, such as the
MICROSOFT WINDOWS Operating System (OS), a MAC OS, a UNIX OS, etc. In one embodiment, the system

8

400 employs a POSIX® based file system. It will be appreciated that other examples may also be implemented on
platforms and operating systems other than those mentioned. Such other examples may include operating systems
written using JAVA, XML, C, and/or C++language, or other programming languages, along with an object oriented
programming methodology. Object oriented programming (OOP), which has become increasingly used to develop
complex applications, may also be used. Microsoft, and Windows, are trademarks of Microsoft Corporation in the
United States, other countries, or both. IBM, and z/OS are trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. UNIX is a registered trademark of The Open Group in the
United States and other countries. Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Oracle and/or its affiliates.

[0046] FIG. 5is a block diagram illustrating a processing node 500 for fast recovery from failures in a
chronologically ordered log-structured key-value store in log-structured storage systems, according to an
embodiment. The term garbage collection (GC) refers to reclaiming “disk space” occupied by stale entries in the
log. For example, when a record is inserted, an entry is added to the tail of the log. When the same record is
deleted, a tombstone entry is added to the tail of the log. The tombstone entry refers to the original location of the
data on disk as created by the insert. The disk space occupied by the original inserted record may be garbage
collected (provided the system is not maintaining older versions). Stale data may be the result of records that have
been deleted or updated. Updates result in stale data because older versions of the data that are maintained in the
log are no longer needed. Note that in a log-structured store, every insert, update or delete operation results in a

record being inserted at the tail of the log.

[0047] In one embodiment, the processing hode 500 includes one or more processors 510, a checkpoint
interface 530 and a memory 520. In one embodiment, sach processor(s) 510 performs processing for fast recovery
from failures in a chronologically ordered log-structured key-value store in log-structured storage systems. Log
structured storage system: complete in-memory index to quickly access record given the key, where index entry is
represented by <key, log address>. In alog-structured storage system, there is a need to quickly reconstruct an
index during restart after failure or after shutdown. A naive option may include replay of the log from the beginning.
This option, however, is time-consuming and resource intensive. |n one embodiment, the checkpoint interface 530
provides for processing including a checkpoint of the index. For recovery from checkpoints, the checkpoint
interface 530 may perform processing where checkpoints may occur concurrently with garbage collection. As a
result, a checkpoint operation may record the position of a key on the “garbage collection target slot.” “Rollback” of
a GC operation will void the contents on the GC target slot. Reads will fail, which results in data loss. Subsequent

recovery points to an invalid location resulting in data loss.

[0048] In one embodiment, another approach by the checkpoint interface 530 may include to disallow

checkpoint operations. Checkpoints, if available, do not proceed concurrently with GC. This approach results in

9

longer elapsed time to complete a checkpoint operation, and hence longer recovery time. This approach also

impacts availability negatively by resulting in longer restart times after a failure.

[0049] In one embodiment, GC is performed by the checkpoint interface 530 as a transaction. Transaction
processing divides information processing into individual, indivisible operations known as transactions. Each
transaction must succeed or fail as a complete unit, and can never be only partially complete. In one embodiment,
the checkpoint interface 530 performs rollback of a GC transaction in case of failure. GC transaction records
include: <target slot (TS), victim slot (VS), begin offset in target slot (BO) >. In one embodiment, the GC target
region is the <BO, end of slot> region on the GC target slot. GC transaction records begin and end on the GC

transaction.

[0050] In one embodiment, the checkpoint interface 530 performs GC rollback as follows. The checkpoint
interface 530 reads the recovery log to identify an incomplete GC target slot and victim slot. The checkpoint
interface 530 begins index reconstruction from the checkpoint such that: 1) if a slot is a GC target slot & offset >=
BO, skip until end of slot and continue to the next slot; 2) if a checkpoint record A points to a GC target region: a)
read the record in the GC target region pointed to by A (referred to as record B); b) insert a tombstone record for
the checkpoint record A recording the key, and the contents of checkpoint record A (this is to allow subsequent use
of the GC target slot region containing record B); ¢) insert a new checkpoint record using B's back-pointer pointing

to the corresponding GC victim slot record (referred to as record C).

[0051] Next, the checkpoaint interface 530 ends index reconstruction, zeros-out a target slot TS from offset
BO until the end of the slot, and inserts an “Abort record for the garbage collection transaction” into the recovery

log. Atthe end of the recovery, the system state is identical to the state of the system before GC processing.

[0052] FIG. 6 illustrates an example 600 checkpoint record pointing to a GC slot, according to an
embodiment. The index 610 of the example 600 includes keys in the left column and slot mapping in the right
column. In one example, K1 refers to slot 1 620 and offset 2; K2 refers to slot 1 620 and offset 3, etc. In the
example 600, the slots shown include slot 1620, slot 51 630, slot 3 640 and slot 4 650. The victim slot VS is shown
as slot 3640, and the target slot TS is shown as slot 51 630. In this example 600, the index 610 includes an
incorrect entry 611 that points to a zeroed-out location. The back-pointer (points to previous address) chain 660
shows the pointer from slot 4 650 (k8) to slot 51 630 and offset 6 (k8). The checkpoint record 670 refers to the

checkpoint record pointing to the GC target slot.

[0053] FIG. 7 illustrates a block diagram for a process 700 for recovery from failures in a chronologically
ordered log-structured key-value store, according to one embodiment. In one embodiment, block 710 in process
700 includes recording, by a processor (e.g., by a processor 510, FIG. 5), a system state prior to an aborted GC

operation. In block 720, process 700 performs writing, by the processor, tombstone entries in a log structure for

10

dirty checkpoint records to point to data records in an aborted target slot. In block 730, process 700 inserts new

checkpoint records for the dirty checkpoint records in the log structure.

[0054] In one embodiment, in process 700 the system may be a chronologically ordered log-structured key-
value store system. In one embodiment, for process 700 the GC operation is a GC transaction. For process 700,

the aborted target slot may be a target slot of the GC operation.

[0055] In one embodiment, process 700 may further include providing for checkpoint operations to proceed
concurrently with GC processing while maintaining chronological order of data using processing to restore the

system to a consistent state after failure during the GC operation (e.g., a failed transaction).

[0056] In one embodiment, process 700 may further include reading a recovery log after the aborted GC

operation, and identifying an incomplete GC target slot and an incomplete GC victim slot.

[0057] In one embodiment, process 700 may further include recording the GC transaction on a separate
recovery log. In one embodiment, process 700 may additionally include zeroing out a region of the target slot of the
log structure from a begin offset in the target slot until an end of the target slot, and inserting an abort record for the

GC transaction into the separate recovery log.

[0058] As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as
a system, method or computer program product. Accordingly, aspects of the present invention may take the form of
an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-
code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein
as a “cirouit,” “module” or “system.” Furthermore, aspects of the present invention may take the form of a computer
program product embodied in one or more computer readable medium(s) having computer readable program code

embodied thereon.

[0059] Any combination of one or more computer readable medium(s) may be utilized. The computer
readable medium may be a computer readable signal medium or a computer readable storage medium. A
computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the
foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include
the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical

storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this

11

document, a computer readable storage medium may be any tangible medium that can contain, or store a program

for use by or in connection with an instruction execution system, apparatus, or device.

[0060] A computer readable signal medium may include a propagated data signal with computer readable
program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal
may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable
combination thereof. A computer readable signal medium may be any computer readable medium that is not a
computer readable storage medium and that can communicate, propagate, or transport a program for use by or in

connection with an instruction execution system, apparatus, or device.

[0061] Program code embodied on a computer readable medium may be transmitted using any appropriate
medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of

the foregoing.

[0062] Computer program code for carrying out operations for aspects of the present invention may be
written in any combination of one or more programming languages, including an object-oriented programming
language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as
the "C" programming language or similar programming languages. The program code may execute entirely on the
user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer
and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote
computer may be connected to the user's computer through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example,

through the Internet using an Internet Service Provider).

[0063] Aspects of the present invention are described below with reference to flowchart illustrations and/or
block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the
invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and
combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer
program ingtructions. These computer program instructions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable data processing apparatus to produce a machine,
such that the instructions, which execute via the processor of the computer or other programmable data processing
apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block

or blocks.

[0064] These computer program instructions may also be stored in a computer readable medium that can
direct a computer, other programmable data processing apparatus, or other devices to function in a particular

manner, such that the instructions stored in the computer readable medium produce an article of manufacture

12

including instructions which implement the function/act specified in the flowchart and/or block diagram block or

blocks.

[0065] The computer program instructions may also be loaded onto a computer, other programmable data
processing apparatus, or other devices to cause a series of operational steps to be performed on the computer,
other programmable apparatus or other devices to produce a computer implemented process such that the
instructions which execute on the computer or other programmable apparatus provide processes for implementing

the functions/acts specified in the flowchart and/or block diagram block or blocks.

[0066] The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation
of possible implementations of systems, methods, and computer program products according to various
embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent
amodule, segment, or portion of instructions, which comprises one or more executable instructions for
implementing the specified logical function(s). In some alternative implementations, the functions noted in the block
may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be
executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending
upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the specified functions or acts or carry out combinations of

special purpose hardware and computer instructions.

[0067] References in the claims to an element in the singular is not intended to mean “one and only” unless
explicitly so stated, but rather “one or more.” All structural and functional equivalents to the elements of the above-
described exemplary embodiment that are currently known or later come to be known to those of ordinary skill in
the art are intended to be encompassed by the present claims. No claim element herein is to be construed under
the provisions of 35 U.S.C. section 112, sixth paragraph, unless the element is expressly recited using the phrase

‘means for” or “step for.”

[0068] The terminology used herein is for the purpose of describing particular embodiments only and is not

intended to be limiting of the invention. As used herein, the singular forms "a", "an" and "the" are intended to include
the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms
‘comprises" and/or "comprising," when used in this specification, specify the presence of stated features, integers,
steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other

features, integers, steps, operations, elements, components, and/or groups thereof.

[0069] The corresponding structures, materials, acts, and equivalents of all means or step plus function

elements in the claims below are intended to include any structure, material, or act for performing the function in

13

combination with other claimed elements as specifically claimed. The description of the present invention has been
presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention
in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without
departing from the scope of the invention. The embodiment was chosen and described in order to best explain the
principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand

the invention for various embodiments with various modifications as are suited to the particular use contemplated.

14

CLAIMS

1. A method for recovery after failure using a checkpoint in a chronologically ordered log-structured key-value
store in a chronologically ordered log-structured key-value store system, the method comprising:

recording, by a processor, a system state prior to an aborted garbage collection operation;

writing, by the processor, tombstone entries in a log structure for dirty checkpoint records to point to data
records in an aborted target slot; and

inserting new checkpoint records for the dirty checkpoint records in the log structure.

2. The method of claim 1, wherein the garbage collection operation comprises a garbage collection
transaction.

3. The method of claim 2, wherein the aborted target slot is a target slot of the garbage collection operation.
4, The method of either of claims 2 or 3, further comprising:

providing for checkpoint operations to proceed concurrently with garbage collection processing while
maintaining chronological order of data using processing to restore the system to a consistent state after failure

during the garbage collection operation.

5. The method of any of the preceding claims, further comprising:
reading arecovery log after the aborted garbage collection operation; and

identifying an incomplete garbage collection target slot and an incomplete garbage collection victim slot.

6. The method of any of claims 2 to 5, further comprising:

recording the garbage collection transaction on a separate recovery log.

7. The method of claim 6, further comprising:
zeroing out a region of the target slot of the log structure from a begin offset in the target slot until an end
of the target slot; and

inserting an abort record for the garbage collection transaction into the separate recovery log.

8. A computer program product for recovery after failure using a checkpoint in a chronological log-structured
key-value store in a system, the computer program product comprising:
a computer readable storage medium readable by a processing circuit and storing instructions for

execution by the processing circuit for performing a method according to any of claims 1to 7.

15

9. A computer program stored on a computer readable medium and loadable into the internal memory of a
digital computer, comprising software code portions, when said program is run on a computer, for performing the

method of any of claims 1to 7.

10. An apparaius for recovery after failure using a checkpoint in a chronologically ordered log-structured key-
value store in a chronologically ordered log-structured key-value store system, the apparatus comprising:

a memory storing instructions; and

a processor executing the instructions to;

record a system state prior to an aborted garbage collection operation;

write tombstone entries in a log structure for dirty checkpoint records to point to data records in an aborted
target slot; and

insert new checkpoint records for the dirty checkpoint records in the log structure.

1. The apparatus of claim 10, wherein the garbage collection operation comprises a garbage collection

transaction, and the aborted target slot is a target slot of the garbage collection transaction.

12, The apparatus of claim 11, wherein the processor further executes instructions comprising:

providing for checkpoint operations to proceed concurrently with garbage collection processing while
maintaining chronological order of data using processing to restore the system to a consistent state after failure
during the garbage collection transaction;

reading a recovery log after the aborted garbage collection transaction; and

identifying an incomplete garbage collection target slot and an incomplete garbage collection victim slot.

13. The apparatus of sither of claims 11 or 12, wherein the processor further executes instructions comprising:

recording the garbage collection transaction on a separate recovery log.

14, The apparatus of ¢laim 13, wherein the processor further executes instructions comprising:
zeroing out a region of the target slot of the log structure from a begin offset in the target slot until an end
of the target slot; and

inserting an abort record for the garbage collection transaction into the separate recovery log.

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DRAWINGS
	Page 7 - DRAWINGS
	Page 8 - DRAWINGS
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - CLAIMS
	Page 23 - CLAIMS

