a2 United States Patent

US012067015B2

ao) Patent No.: US 12,067,015 B2

von und zu Liechtenstein et al. 45) Date of Patent: *Aug. 20, 2024
(54) TECHNIQUE FOR ACCESSING ARCHIVE (52) US.CL
DATA STORED IN RELATIONAL CPC ... GOG6F 16/24561 (2019.01); GO6F 16/22

DATABASES THROUGH THE SAP ARCHIVE
INFORMATION SYSTEM

(71) Applicant: Business Mobile AG, Kreuzlingen
(CH)

(72) Inventors: Maximilian Ralph Peter von und zu
Liechtenstein, Douglas (IM); Peter
Rudolf Schoenenberger, Kreuzlingen
(CH)

(73) Assignee: Business Mobile AG, Kreuzlingen
(CH)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 17/572,515
(22) Filed: Jan. 10, 2022

(65) Prior Publication Data
US 2022/0318251 Al Oct. 6, 2022

Related U.S. Application Data

(63) Continuation of application No. 17/063,134, filed on
Oct. 5, 2020, now Pat. No. 11,222,021.

(2019.01); GO6F 16/2433 (2019.01); GO6F
16/24552 (2019.01); GO6F 16/284 (2019.01)
(58) Field of Classification Search
CPC .. GO6F 16/22; GO6F 16/2433; GO6F 16/2456;
GOG6F 16/24552; GO6F 16/24561; GO6F
16/284
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,236,997 Bl 5/2001 Bodamer et al.
6,678,700 B1* 1/2004 Moore GOG6F 16/188
7,113,964 Bl 9/2006 Bequet et al.

(Continued)

OTHER PUBLICATIONS

European Search Report dated Jun. 22, 2021 for Application No.
21150230.7-1213.

(Continued)

Primary Examiner — Merilyn P Nguyen
(74) Attorney, Agent, or Firm — Quisenberry Law PLLC

(57) ABSTRACT

An non-transitory computer readable medium is described
herein related to enhancing an SAP Archive Information
System running on a SAP NetWeaver Application Server.
The enhancements enable the SAP Archive Information
System to query a remote relational database for archived
business data. The enhancements offers multiple alternative
ways of interfacing with such a database and of merging the
query results obtained from such database into the SAP-
standard output structures of the SAP Archive Information
System.

6 Claims, 4 Drawing Sheets

Search for
archlved data

300

(51) Int.CL
GO6F 16/24 (2019.01)
GO6F 16/22 (2019.01)
GO6F 16/242 (2019.01)
GO6F 16/2455 (2019.01)
GO6F 16/28 (2019.01)
nueqT::I:ndex f305
I

l

Read a Singla 315
Archive Object f
Record From
‘ADK Flle

|

Unpack Record 320
into coniituent |/
tables and rows

3 20\ Qureeflya;:r:lnll

ohive databa

I}

Pack query
325 |reauttainto local
™\ memory buttar
tables

!

Iterate Through

330 \ Query Results

|

Read archive

335 vecard from In-

memory table
butfer

340 ~

Disgplay list of
archive records

US 12,067,015 B2

Page 2
(56) References Cited 2016/0191509 Al* 6/2016 Bestler HO4L 63/0876
713/193
U.S. PATENT DOCUMENTS 2016/0253404 Al* 9/2016 Fabijancic GO6F 16/21
707/625
7,210,097 B1* 4/2007 Clarkec.ccoecenee. GOGF 16/88 2017/0109406 Al* 4/2017 Chavan GOG6F 16/24561
715/227 2020/0401430 Al* 12/2020 Berg ..o GOGF 9/45512
9,824,128 B1 11/2017 Maluf 2021/0158268 Al* 5/2021 GO6F 16/2465
10,853,350 B1* 12/2020 Sharifi Mehr GOGF 16/2365 2021/0209058 Al* 7/2021 GO6F 16/1827
11,200,196 Bl1* 12/2021 McCormick GO6F 16/162 2022/0327095 Al* 10/2022 N oo, GO6F 16/27
2005/0149584 Al 7/2005 Bourbonnais et al.
2007/0050333 Al* 3/2007 Voglerccccooeeen. GO6F 16/22
2009/0100089 Al* 4/2009 Eadon GOGF 16/24554 OTHER PUBLICATIONS
707/E17.054
2010/0082672 Al* 4/2010 Kottomtharayil ... GO6F 11/1451 SAP Enhancement Package 2 for SAP NetWeaver 7.0 (further
N 711/E12.001 details listed on above-referenced European Search Report).
2010/0333116 AL* 12/2010 Prahladooococee GOGF3/067 Wwhars New in ABAP with SAP NetWeaver 7.0 EhP2 (further
. 713/153 details listed on above-referenced Euro Search Report
2011/0088043 A1* 4/2011 Lind .ooovvvvvvvvverrrennnns GOSF 9/485 _ _ pean Search Report).
719/316 Karl Kessler, Introducing the switch and enhancement framework—
2011/0137953 Al* 6/2011 Bobick oo GO6F 8/65 consolidating industry solutions with the mySAP ERP core (further
707/E17.011 details on above European Search Report).
2011/0320417 A1* 12/2011 Luo ..ooovvveviveriennnn, GO6F 16/22
707/693 * cited by examiner

US 12,067,015 B2

Sheet 1 of 4

Aug. 20, 2024

U.S. Patent

T 94n3814

q91 |

091

=148

ovi

v

S

2 10040 anyauy

0s1 s

AI — DOBLIBIU| UL
3ild Mav SMYAY dVS
«g|pr «dleHalul>

s

v

1 193[40 aAYDIY

golqel /
(sigeL
\\~ Japeay)
1a10BL
galqel \
Gq1
- (a1921
corge 19pesH)
19eL 01081
\mmﬁ
zolgeL

011

0tT 7

138440 3714
NN HaY

AN
«UWIN|Oo»

{2IN1ONNS O] DALY JO SJGR L) X3PU} 3AIYIY SY

(1l

7 \m/

Xapuj WIn4) SIS0 D4 PUBR SOIWRY 3|1}

YENOYL 21EP SAIYOIE BAINAY 12 43S

Sy prepuRls
Blep
paanbai jo e300 9))

10y xepu yosees | 318

007 4

US 12,067,015 B2

Sheet 2 of 4

Aug. 20, 2024

U.S. Patent

Z 94n38i4

speal enusnbas Buissasold
uaym ajqe) [RUOIIEIR)
B $2 Jayng [0 Alenp

09¢

S

1
1
I
1
1
|
|
1
1
I

v

ajqe) aamdnsop|

wrAxg
cslge)l
§9¢
10813
gsiqe)
00<¢
o

(a1qe). Jspeay]) |ojge)

0tc 7

zolgeL
aseqereq

0] 44 7

Joeixy
(31qe.. 19pEal) La1qeL

Ja)ng
Alowsapy 200

T—

1144 s

0¢¢

£8|qel
aseqgeleq

«A10WBI»

S

s|qe.L AINFONIISOU)

0g¢ 7

0T¢

5¢C¢ S

1ejng Aowsly 20071
«hIOWBL

44

S

{eamjoniisapu)
BAIGOIY 10} Bje L
J9pBAH) 131GRL aSEgRIEq

Ko =

Aowsw
[E00] Uj SPEAJ [BUONE}S) O} SISanba)
peas jerpuanbas 102.IPaY ¢ d1LS

Jayng Alowaw
|B00] J0 Sa|qE) AJOWBW-ul 0} Ejep
QAAIYOIR PAAILIAL SMIM I d3LS

0S¢

MOJ 3|qE) INONISON|
YOB YIIM POBIIOSSE
€)Ep 9|qel 1 10 A0S

2)ep apous) Asng ¢ 4318

SV padsueyuy

— S

Jayng Aowsw
12990] Ul SMOJ | J|GBL PUB SMOJ
B} BINRINASORU] |11 1g dALS

shay samoniiso

o} Buijeja) sayojew
10} 3101 BJEp 9)0WS)

[euone|D) Aand 11 d3IS

US 12,067,015 B2

Sheet 3 of 4

Aug. 20, 2024

U.S. Patent

€ a4n38i4

$PI093I BAIYOIR
10 18| Aeydsig

- 4743

e

yng
sjqel Alowaul
U] WOk} Pl
SAlYydJe peay

/mmm

synsay A1enp

ybnoay) ey

/omm

1

$9)qe}
Jayng Mowsaw

Axanb yoeqd

{200 OJu] S}NSI /

ST43

[euonero!
jpuIsixe Alanp

aseqeiep sAlyaLe]

00¢

oz |

$MO1 pue sajge)l
WSNHISUOD O
pioosy yoedun

8lid Mav
woig pioosdy
1800 sayosy
sjbuig e pesy

s}nsay
Ang xapuy
ybnosyl stesay

soe’ | o

xapuj sy Alend

elep paAlydse

\ 10} Yoleag

US 12,067,015 B2

Sheet 4 of 4

Aug. 20, 2024

U.S. Patent

f 3Jn314

Alowsain [e20]

ul13yng e 0} synsaJ Asanb sium o)
puE BIED BAIUD/R SLOWSI [BUON2|3]
Assnb o) GIONVH LISV 101
SSRI9 [200] 0 IOIINASUOY

310 pUS 3y} e BLIPOD §O UoHIISU!

oy

|
| -
i

(uonasung +
OLXaN-HOLVHILTSY 41 +

8

TONYH LISY 107 5520 (2907

iely 7

TNHAING LY 40 <

)

aAlydIe gy

on car

ssiaweed indino ug o

PBAGL 8 O] TIEP SAIYIIL PBIINY
Aj{e00] SSNEYPOIGHI IVD

Ut Agaisym parnexs ag 0143014
HOLYD € S9SNED LDRIPUOS JoLa
UE [R1f} 052019, HOLY /AU L, B
U1 POYIRUIXINVHOLYHIALI SV 41
10 Apoq prepueis-dys (o Buisesus

Jolng e wost ejep
3|qe] PAAIYILR DES) OF SUGHIENJISY
Buisudwiog arnpow usiaun;
LIT18YL 139 IAHONY. 8ul

1O HEIS 2UL e HUIP09 10 UOIIESU

qSy S
Shy

010371357 43SN 1dV Sy +

(103738 WAISAS 14V 8V + @5

P e

14" Sy dnosg uogouny

xaput &>

s S
L~ 09 /

Jgjswered Jndino ue o} erep

4ons BulAOI JO} PUE BjEp SAIUDIE
PRLBUNG JO ITUSISIXI S} J0) 591 0}
IIANYH AS LOArEQ0 QVIYH FAHOUY
|InpouoiIUNg

10 LS sy e Buipod Jo uoiasyy

S

(31GNYH ™A (D380 aVAY JAHOHY +
«BNPaL Lo NouUnRp:

TAATTHOIH HOHY dnoig uogouny

(17 7

(5Y) WoISAS UDIHEULIOJ BARISIY dYS

oty

(TEVLTLID IAHOY +
«@NPOLL YogoUN)»

HOHY dnoig uogoung

mmv\

M o o o e e e e e e o]

uogIesuRl |
paepURIS

pejqeus-gy

<UOIOBSUEL

e

Otv

Jamigsuoeaddy JaBapEaN dvS

oty cep- OIF

N\

BIED SSBUISI] PIAIYIIE M0 910)S
EI2P [BUOHEISA S101R) B 0] SOELRIVI IDIASSHIM

«agRpA

\ HUBARIDNY dYS

m N .v «QOB LB

FET]

S04 MUY Risp0Y
1eULDENOY aiqnedwos
«a|lp SUFTRA YO

14%

A

N9 dv's [-===-
«BOBLBIU) JASIH

B12(] SMUDIY Yim aseqeie] feuonesy

1017

S

US 12,067,015 B2

1

TECHNIQUE FOR ACCESSING ARCHIVE
DATA STORED IN RELATIONAL
DATABASES THROUGH THE SAP ARCHIVE
INFORMATION SYSTEM

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of pending U.S. patent
application Ser. No. 17/063,134, filed Oct. 5, 2020, which is
hereby incorporated herein by reference in its entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not applicable to this application.

FIELD OF THE INVENTION

The document relates to systems, devices, methods, and
related computer program products for accessing archive
data through the SAP Archive Information System. More
particularly, this patent specification relates to enhancements
and modifications in relation to the SAP standard, that are
useful in accessing archived data stored on relational data-
bases.

BACKGROUND OF THE INVENTION
Prior Art

Any discussion of the related art throughout the specifi-
cation should in no way be considered as an admission that
such related art is widely known or forms part of common
general knowledge in the field. Unless otherwise indicated
herein, the materials described in this section are not prior
art to the claims in this application and are not admitted to
be prior art by inclusion in this section.

The Archive Information System (AS) is a generic tool for
indexing data archives that is fully integrated into the SAP
data archiving environment. Data Archiving is a service
provided by the SAP NetWeaver Application Server, which
is part of the SAP NetWeaver platform for building business
applications. Data Archiving removes mass data that the
system no longer needs online, but which must still be
accessible at a later date if required, from the database. The
process uses archiving objects to write business documents
to archive files that can be stored on other media. as the
language for programming the SAP NetWeaver Application
Server, which is part of the SAP NetWeaver platform for
building business applications.

Standard SAP-delivered functionality can be adapted to
customers’ needs through SAP’s enhancement framework.
There are certain ways to achieve the enhancements: Core
Modification, User Exits, Customer Exits, BADI (Business
Add Ins), Explicit Enhancements and Implicit Enhance-
ments.

Third party providers have developed a business models
around innovating around the SAP Standard in order to find
new and useful ways of adapting the SAP-delivered product
to customers’ needs. Those third-party providers tend to
market and sell their innovations as packages of Enhance-
ments.

The Archive Information System (AS) allows a user to
search for archived data through an index. The index is a
table of an Archive Infostructure. An Archive Infostructure
is a structure comprising key fields, whereby the key fields

15

20

30

35

40

45

50

55

60

65

2

relate to business data, e.g. the document number of a
document in financial accounting. Every ADK-format file
accessed using AS is accessed through Archive Infostruc-
ture. Every Archive Infostructure belongs to a unique
Archiving Object and also refers to a Field Catalog. A Field
Catalog is the collection of fields suitable for indexing the
ADK-format archive files of the Archiving Object con-
cerned. Every key in the index maps to an archive object on
a one to one basis. An archive object comprises table rows
from multiple tables of business data, where there are
normally foreign key relationships between such tables of
business data. The index itself does not contain all of the
data of the archive object. An archive object is normally
inserted into an ADK-format file stored on an external
content server. The primary purpose of the index is to link
a key of the index to the ADK-format file which contains the
archive object and also to link to the offset in the file which
marks the start location of the archive object. Without the
index it would require a sequential search through the entire
repository of ADK-format files in order to find an archive
object. Therefore, the index allows faster access to archive
data which is stored in data-compressed files, such as the
described ADK-format files.

SUMMARY

The current state of the art in SAP Netweaver related
archiving revolves around moving old data into compressed
files which are then stored in a file storage system. The main
reason for moving data out the productive database and into
a file-based system is that such database space is expensive
and having too much old data in such a database inevitably
slows down the performance of queries in the day to day
operational side of the business. At the time the AS was
conceived file-based storage of data was still many orders of
magnitude cheaper than storing the same amount of data in
a relational database.

The present inventor has realized that the price of rela-
tional database storage can be projected to come down very
significantly in future years. Hence it is desirable, in prin-
ciple, to store archived data not in a file, but in a database
table. On of the advantages of storing SAP business data in
a relational archive database is that it is possible to use the
same database schema as the productive database. The data
can therefore be stored in tables and rows, capable of being
indexed and queried, much like the productive database. An
added advantage is that database archives are transparent, in
the sense that the data is obscured by encryption or com-
pression. File-based storage on an SAP system commonly
involves files of ADK-format. ADK is a proprietary format
of SAP SE. Data which is stored in ADK-files can only be
read by SAP SE proprietary software because it is com-
pressed with a proprietary and unpublished algorithm. This
is a disadvantage for a customer, because if SAP SE should
ever go out of business, it is not guaranteed that archived
data can still be read, taking into account that the only
available ADK-format file readers require a full-licensed
operative SAP system such as SAP ERP or SAP S/4HANA.

There are third-party service providers who offer to
offload aged business data from a productive SAP system to
an archive database. However, these providers generally
face the problem that no SAP Standard tools exist to
integrate with such databases. An example is the standard
SAP-Transaction FBL3N in the module FI. FBL3N is a
standard program with which a user can search for financial
accounting documents. FBL3N also has an interface to the
AS, thereby permitting a user to extend the search to

US 12,067,015 B2

3

archived documents. Crucially the user is presented with the
same familiar user interface, as when for searching for
documents in the live productive database. Also, many other
standard SAP-Transactions interface with the AS in the same
way and thus allow searching for archived business data.
Hence a significant disadvantage that is facing third-party
providers of relational database-based approaches is that
they have to provide a separate and proprietary user inter-
face to view and retrieve such archived data.

The present inventor has realized that it would be desir-
able to allow an SAP user to view data which is archived on
a relational database through the AL interface. Therefore, a
user would be unable to tell the difference between docu-
ments retrieved from ADK files through AL and documents
loaded from a relational archive database.

The present inventor has also realized that such an
approach would have the added benefit that the AS would no
longer have to maintain an index table. It is desirable that
when archiving aged data that 100 percent of that data is
moved to external storage. The SAP-standard AS, however,
still keeps a significant portion of that data in the index table.
Itis possible to exclude the index table, but then access times
for archived data would be unacceptably slow. In order to
search for a single document, potentially all ADK-files have
to be searched for that record sequentially. This is a task that
could take hundreds of days on a typical archive for a large
corporation. The present invention includes an approach to
the problem which allows to make fast, indexed queries an
external relational database for archived data, whilst at the
same time leaving the way application programs use the AS
entirely unchanged. The new approach eliminates the need
for an archive index on the productive system.

In order to implement a solution to the problem, the
present inventor had to overcome the conceptual problem of
how an interface solely designed to retrieve data from
file-based media can be used to return the requested data
from a relational database instead.

The solution found by the present inventor involved
enhancing the SAP-standard, with a series of code inser-
tions, in such a way that data from relational archive
databases is returned in addition to the data normally
returned by AS. The desired outcome therefore was to keep
the SAP-standard methods of data retrieval entirely intact
and that query results from relational archive databases are
merely added.

In particular embodiments local class LCL_ASI-
T_RANGES is enhanced in such a way that the constructor
conducts a query on a remote data store of archive data in
relational format. The query results are then stored in a local
buffer and become appended to any results that the SAP-
standard implementation may find. An innovative enhance-
ment of the [F_AS_ITERATOR~NEXT method comprises
encapsulating the standard code with a TRY/CATCH error
handler in such a way that when an error is raised because
no more data is available using the standard implementation,
then in the CATCH handler more data may be retrieved from
the local buffer that has been populated with the enhance-
ment of the constructor method. Such implicit enhancements
of'local class LCL_ASIT_RANGES may thus be considered
a best mode to practice the instant invention. However, those
skilled in the art will realize that other variations of enhanc-
ing the SAP-standard are also possible in order to reach the
same result.

There has thus been outlined, rather broadly, some of the
features of the disclosed technique for accessing archive
data through the SAP Archive Information System in order
that the detailed description thereof may be better under-

10

15

20

25

30

35

40

45

50

55

60

65

4

stood, and in order that the present contribution to the art
may be better appreciated. There are additional features of
the technique that will be described hereinafter and that will
form the subject matter of the claims appended hereto. In
this respect, before explaining at least one embodiment of
the technique in detail, it is to be understood that the
technique is not limited in its application to the details of
construction or to the arrangements of the components set
forth in the following description or illustrated in the draw-
ings. The technique is capable of other embodiments and of
being practiced and carried out in various ways. Also, it is
to be understood that the phraseology and terminology
employed herein are for the purpose of the description and
should not be regarded as limiting.

BRIEF DESCRIPTION OF THE DRAWINGS

Example embodiments will become more fully under-
stood from the detailed description given herein below and
the accompanying drawings, wherein like elements are
represented by like reference characters, which are given by
way of illustration only and thus are not limitative of the
example embodiments herein.

FIG. 1 illustrates the architecture of standard AS func-
tionality.

FIG. 2 illustrates the architecture of enhanced AS func-
tionality, according to an example embodiment.

FIG. 3 illustrates the control flow of both standard AS
searches and enhanced AS searches, according to an
example embodiment.

FIG. 4 is a system diagram depicting the main compo-
nents of the enhanced AS, according to an example embodi-
ment.

DETAILED DESCRIPTION

The current state of the art in SAP Netweaver related
archiving revolves around moving old data into compressed
files which are then stored in a file storage system. The main
reason for moving data out the productive database and into
a file-based system is that such database space is expensive
and having too much old data in such a database inevitably
slows down the performance of queries in the day to day
operational side of the business. At the time at which the
SAP Archive Information System (AS) was first conceived,
file-based storage of data was still many orders of magnitude
cheaper than storing the same amount of data in a relational
database. Hence the majority of archiving frameworks in the
prior art, AS amongst them, provides a solution for trans-
posing relational tables into sequential files and then provide
a series of tool in order to be able to search and retrieve data
contained therein.

FIG. 1 depicts the core functionality of the prior-art
standard implementation of AS 150. The scenario could be
that a standard SAP Transaction is used to search for a
document in financial accounting, for example. An SAP
Transaction is known to be an application program in a SAP
system with a user interface that is, most commonly,
executed through a client, such as SAP GUI or a web client,
such SAP Fiori Launchpad. A typical SAP Transaction for
such a scenario would be FBL3N, which is an application
that allows searching for financial documents both in the
production database and the ADK file-based archive data
repository. The AS provides a standard interface for all such
archive data and as such AS is used by many SAP Trans-
actions for providing a unified and shared gateway to
archive repositories. Whenever AS 150 receives a request

US 12,067,015 B2

5

for archive data, the first step 105 is to query an index 110.
The index 110 is a table of an Archive Infostructure. An
Archive Infostructure is a structure comprising key fields,
ADK filenames and file offsets. The key field relates to
business data, e.g. the document number of a document in
financial accounting or the name of a customer. The key
comprises the fields that are useful for searching for an
archive object. In the second step 115 archive data is
retrieved through file names and file offsets from the index
110. So, whereas step 1 is essentially a data search operation,
step 2 is the data retrieval operation. Step 2 relies on the
precondition that the files names and sequential offsets
inside the ADK-format files are known in order to effect
direct access on the corresponding archive objects. Nor-
mally such ADK-formats files are stored an external system
with an SAP ArchivelLink-certified content server, which in
turn is accessed through the SAP Archivel.ink interface 120.
Once a requested ADK-format file 125 is being processed,
it becomes possible to extract the selected archive objects
contained therein by direct access. So, if for example the
index query of step 1 has identified two archive objects 130
and 150 as query results, then the system first finds ADK-
format file 125, which contains Archive Object 1 130 and
archive object 150, wherein Archive Object 1 contains a
single header row of table 1 135, and potentially several
rows each of dependent tables 2 140 and 3 145. Similarly, in
the depicted example, Archive Object 2 150 contains one
row of header table 1 155 and potentially several rows each
of tables 2 160 and 165.

It is important to distinguish, in terms of terminology,
between an Archiving Object and an archive object.
Archiving Objects, as understood in the context of SAP
Transaction SARA, are definitions of business objects in an
archiving scenario. Archiving Objects can be linked to tables
in the productive database by SAP-Transaction SARA. An
example of a SAP-standard Archiving Object is
FI_DOCUMNT, which is useful for archiving financial
documents. Archiving Object FI_DOCUMNT is linked to
several table, including tables BKPF and BSEG. The links
can be viewed though SAP-Transaction DB15, which is
accessible through SAP-Transaction SARA. The term
archive object is defined herein as the main content of an
ADK-format archive file, wherein an ADK-format file can
store any number of archive objects. Each ADK-format file
relates to only one Archiving Object. As an example, when
archiving financial accounting documents, normally the
Archiving Object FI_DOCUMNT is selected in SAP-Trans-
action SARA. SAP-Transaction SARA then writes one or
more ADK-format archive files, each of which contain one
or more archive objects. An Archiving Object therefore is a
definition of an archive object, where an ADK-format file
may contain many archive objects, all of which associated
with a single Archiving Object. An archive object normally
contains one single row of a header table, such as one row
from table BKPF in the FI_DOCUMNT example. An
archive object furthermore normally contains one or more
rows from one or more secondary tables. Every key in the
index maps to an archive object on a one to one basis. An
archive object comprises table rows from multiple tables of
business data, where there are normally foreign key rela-
tionships between such tables of business data. The index
itself does not contain all of the data of the archive object.
An archive object is normally inserted into an ADK-format
file stored on an external content server. The primary pur-
pose of the index is to link a key of the index to the
ADK-format file which contains the archive object and also
to link to the offset in the file which marks the start location

10

15

20

25

30

35

40

45

50

55

60

65

6

of the archive object. Without the index it would require a
sequential search through the entire repository of ADK-
format files in order to find an archive object. Therefore, the
index allows faster access to archive data which is stored in
data-compressed files, such as the described ADK-format
files.

The present inventor has realized that the price of rela-
tional database storage can be projected to come down very
significantly in future years. Hence it is desirable, in prin-
ciple, to store archived data not in a file, but in a database
table. One of the advantages of storing SAP business data in
a relational archive database is that it is possible to use the
same database schema as the productive database. The data
can therefore be stored in tables and rows, capable of being
indexed and queried, much like the productive database. An
added advantage is that database archives are transparent, in
the sense that the data is obscured by encryption or com-
pression. File-based storage on an SAP system commonly
involves files of ADK-format. ADK is a proprietary format
of SAP SE corporation. Data which is stored in ADK-files
can only be read by SAP SE proprietary software because it
is compressed with a proprietary and unpublished algorithm.
This is a disadvantage for a customer, because if SAP SE
corporation should ever go out of business, it is not guar-
anteed that archived data can still be read, taking into
account that the only available ADK-format file readers
require a full-licensed operative SAP system such as SAP
ERP or SAP S/4HANA.

There are third-party service providers who offer to
offload aged business data from a productive SAP system to
an archive database. However, these providers generally
face the problem that no SAP Standard tools exist to
integrate with such databases. An example is the standard
SAP-Transaction FBL3N in the module FI. FBL3N is a
standard program with which a user can search for financial
accounting documents. FBL3N also has an interface to the
AS, thereby permitting a user to extend the search to
archived documents. Crucially the user is presented with the
same familiar user interface, as when for searching for
documents in the live productive database. Also, many other
standard SAP-Transactions interface with the AS in the same
way and thus allow searching for archived business data.
Hence a significant disadvantage that is facing third-party
providers of relational database-based approaches is that
they have to provide a separate and proprietary user inter-
face to view and retrieve such archived data.

The present inventor has realized that it would be desir-
able to allow a SAP user to view data which is archived on
a relational database through the AL interface. Therefore a
user would be unable to tell the difference between docu-
ments retrieved from ADK files through AL and documents
loaded from a relational archive database.

The present inventor has also realized that such an
approach would have the added benefit that the AS would no
longer have to maintain an index table. It is desirable that
when archiving aged data that 100 percent of that data is
moved to external storage. The SAP-standard AS, however,
still keeps a significant portion of that data in the index table.
It is possible to exclude the index table, but then access times
for archived data would be unacceptably slow. In order to
search for a single document, potentially all ADK-files have
to be searched for that record sequentially. This is a task that
could take hundreds of days on a typical archive for a large
corporation. The present invention includes an approach to
the problem which allows to make fast, indexed queries an
external relational database for archived data, whilst at the
same time leaving the way application programs use the AS

US 12,067,015 B2

7

entirely unchanged. The new approach eliminates the need
for an archive index on the productive system.

In order to implement a solution to the problem, the
present inventor had to overcome the conceptual problem of
how an interface solely designed to retrieve data from
file-based media can be used to return the requested data
from a relational database instead.

The solution found by the present inventor involved
enhancing the SAP-standard, with a series of code inser-
tions, in such a way that data from relational archive
databases is returned in addition to the data normally
returned by AS. The desired outcome therefore was to keep
the SAP-standard methods of data retrieval entirely intact
and that query results from relational archive databases are
merely added.

FIG. 2 illustrates an example of an enhanced AS 200. It
has to be emphasized that the steps described hereinafter
normally are executed in addition the standard functionality.
Hence one of the contributions to the art by the present
inventor is that existing functionality of the AS interface is
preserved whilst also permitting data retrieval from rela-
tional archive data sources. When archive data is queried
through the AS this is done on the basis of keys fields of an
Archive Infostructure, as far as the query parameters are
concerned. Step 1 205 involves that a relational remote data
store is queried for matches relating to Archive Infostructure
keys. In the prior art the query would be run on the
corresponding Archive Infostructure index table. In an
embodiment of the present invention the index table may be
empty and the query is run on an remote relational archive
database. The query on the remote database is run either
against a view whereby the view is modelled on the Archive
Infostructure, or alternatively the query may be run directly
against a table, such as Database Table 1 210, whereby the
table is the header table of a corresponding Archive Info-
structure. It is necessary to provide a mapping between the
Archive Infostructure on which the AS query is based, and
the corresponding entity on the relational database. There-
fore, an Archive Infostructure or an Archiving Object may
be mapped to either a table, a view or any other equivalent
artifact on the remote archive database. What is also possible
is to ensure by adhering to a naming convention that no
mapping is necessary. Therefore, if the Archive Infostructure
were to be name ZARIXFI1, for example, then it would
suffice if the corresponding entity on the remote database
were to a be view with the same name ZARIXFI1 and the
same key fields. However, in a preferred embodiment, a
mapping is used and the header table corresponding to an
Archiving Object is queried directly. So, if the Archive
Infostructure was ZARIXFI1 for financial accounting docu-
ments, then there is a mapping to table BKPF, for example,
whereby BKPF is the SAP-standard header table for finan-
cial accounting documents. The reason why direct table
access is preferred over a view access is increased efficiency.
In the SAP standard first the index table is queried and
secondly the underlying table data is retrieved, including the
header table. In a file-based archiving system, such a two-
pronged approach is inevitable as the process is intrinsically
inefficient. However, when being able to directly query a
relational archive database, then the steps of querying for a
record set of archive objects and reading data from said
archive objects may be advantageously combined. There-
fore, rather than first querying an Archiving Infostructure-
like view for a result set and then querying a header table for
data, it is better to just make one query and therefore query
the header table both for the result set and for the header data
simultaneously.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

In step 2 215 Archive Infostructure table rows are filled in
a local memory buffer. In order to achieve this goal, the data
which has been retrieved from the remote archive database
needs to be moved into corresponding tables in local
memory buffers. In a preferred embodiment a header row is
retrieved from a header table on the remote archive database.
The data contained in this header row is then moved both to
a row of the corresponding Archive Infostructure table and
to a row in an internal table corresponding to the remote
header table. In an ABAP environment it is possible to take
the structure which corresponds to the header row of the
remote database table and then use a MOVE-CORRE-
SPONDING statement to move the relevant data to both the
Infostructure Table 255 and the Table 1 extract 230 in the
local memory buffer 220.

Step 3 235 involves querying a remote data store for all
table data associated with each Archive Infostructure table
row. This step encompasses querying one or more tables
associated with the Archiving Object. The respective key
relationships may be stored in a suitable data structure for
mapping key relationships between the header table and the
dependent tables of the same Archiving Object. In the
depicted example database table 2 240 and database table 3
245 are associated with foreign key relationships to the
header table 230.

Step 4 250 involves writing retrieved archive data to the
corresponding internal tables in local memory buffer 220.
The figure illustrates that in the local memory buffer, now
table 2 extract 260 and table 3 extract 265, both derived from
database table 2 240 and database table 3 245, have been
added. The local memory buffer 220, may be implemented
in variety of ways suitable for storing internal tables in
memory. In a preferred embodiment the local memory buffer
220 is implemented as a function group, wherein the tables
are stored as internal tables declared in the top-include. In
alternative embodiments the tables may be stored in ABAP
Memory or Shared Object Memory. Those skilled in the art
will realize that there are more ways of storing table data in
a memory buffer.

Step 5 255 involves an inventive departure over the prior
art in that sequential read requests, for reading archive
objects in an ADK-format file-based storage, are redirected
to relational reads in local memory. In this way a local
memory buffer 260 is queried as a relational table when
processing sequential reads.

FIG. 3 illustrates how a search for archived data 300 is
processed from a sequential point of view. The search 300
forks into two separate branches, of which 305 and 320 are
the respective entry points. The branch starting with 320
represents novel functionality which has been introduced
with the present invention. The branch starting with 305 on
the other hand includes elements known to the prior art.
When conducting a search 300, the branches can be
executed separately, or in combination. Therefore, it is
possible that an archive search includes just ADK-format
archive files, or just a relational archive database, or both.
Element 305 relates to the index AS table being queried. The
result of this query is a list of archive objects, each of which
with a known file location and a known start offset within
that file. In the next step 310 an iteration loop is commenced
which loops through the list obtained in the previous step
305. Step 315 involves reading a single archive object record
from the ADK-format file. The following step 320 unpacks
that record into constituent tables and rows. The table
extracts which have been derived in this way can then be
displayed on a user interface, or used in other ways, as is
depicted with step 340.

US 12,067,015 B2

9

The second branch starts with querying of an external
relational archive database 320. This querying can just be
used to populate in an in-memory index table, or it can
encompass bringing back also the underlying tables of the
Archiving Object. The query results are then packed into
internal tables stored in a local memory buffer, as is depicted
in step 325. When a list of archive records is requested 340,
for display purposes for example, a loop is started to iterate
through the query results 330. Each pass through the loop
reads an archive object record from the in-memory table, as
is depicted in step 335.

FIG. 4 is a system diagram which depicts a preferred
embodiment of the present invention. It details which
enhancement options can be used, so that the processes
illustrated in the previous sections may be implemented in
an advantageous manner. The central point of entry is the
SAP Archive Information System (AS) 485 which is hosted
by a SAP Netweaver Application Server 490. Each AS is
associated with one or more AS archive index tables 480.
The AS can used in various ways, one of the most common
ways of using AS is to query it from an AS-enabled standard
SAP-Transaction 430. That way a user 400 can use a SAP
GUI 405, or a similar client capable of interfacing with SAP
Netweaver Application Server 490, in order to execute such
an AS-enabled standard SAP-Transaction 430. The highest-
level entry point to SAP AS for such SAP-Transactions or
SAP programs or SAP reports normally is in the Function
Group AS_API 460. Function Group AS_API comprises
Function Modules AS_API_SYSTEM_SELECT and AS_A-
PI_USER_SELECT. The enhancements to the SAP-Stan-
dard codebase described hereinafter occur downstream of
these function modules. Downstream in this sense means
that the enhancements are executed at some point further
down in the call-stack. In a preferred embodiment function
module AS_API_SYSTEM_SELECT -causes, directly or
indirectly, for class CF_ASIT_INTERNAL 475 to be instan-
tiated, which in turn causes local class LCL_ASI_RANGES
465 to be instantiated. At the time of instantiation, the
constructor method is executed. In a preferred embodiment
coding is inserted at the end of the constructor method by
means of implementing an implicit enhancement 470. The
insertion of coding comprises querying remote relational
archive data and writing query results to a buffer in local
memory. In a preferred embodiment the enhancement com-
prises the following procedures: checking if the data
requested through parameter IM_RANGES has already
matching data in the local memory buffer, if so then no query
to the remote relational archive database is required and the
buffered data is used instead; checking the value of param-
eter IM_INFOSTRUC, wherein said parameter denotes the
Archive Infostructure on which basis the query is performed,
and dependent on the value of IM_INFOSTRUC conducting
a mapping operation, wherein the mapping associates one or
more table queries with an Archive Infostructure; and mov-
ing the query results from a query to a remote relational
archive database to an internal table, wherein the Infostruc-
ture table is of a type that is associated with parameter
IM_INFOSTRUC. In an inventive departure the present
inventor utilizes the standard fields ARCHIVEKEY and
ARCHIVEOFEFS in a novel and useful way. In normal usage
the field ARCHIVEKEY is associated with the file name of
an ADK-format archive file and the field ARCHIVEOFS
relates to the offset of the archive object in question within
that file. When later processing steps iterate through the
Infostructure table, these processing steps need to know
whether the current row relates to data from an ADK-type
archive file, or from relational archive data from the remote

10

15

20

25

30

35

40

45

50

55

60

65

10

database. In order to solve this problem, the present inventor
is assigning a value of 0 to the field ARCHIVEOFS in each
row that is from the relational archive database. A value of
0 cannot occur as an ADK -file offset, because the position of
0 is always reserved for the header in the ADK-file format.
The offsets of archive objects therefore must always have a
value greater than 0. Hence an offset artificially set to 0 can
be used to indicate to later processing steps that the row in
question is related with data obtained from a remote rela-
tional archive database. Those skilled in the art will realize
that other values than 0 may be used alternatively, the only
important requirement is that the value chosen must not be
one that can occur naturally as an offset for a data object in
an ADK-format file. It is also possible to use other ways of
marking an entry in the Infostructure table as being derived
from the remote relational archive database. For example a
new field could be appended to the Infostructure table and
that field could be designated as a flag-type indicator for the
origin of the data. It would also be possible, for example, to
re-purpose a field other than ARCHIVEOFS to serve as the
required indicator of origin.

In a preferred embodiment, local class LCIL_ASI-
T_RANGES 465 is also subject to an implicit enhancement
of method IF_AS_ITERATOR~NEXT 455. This enhance-
ment involves encasing the SAP-standard body of method
IF_AS_ITERATOR~NEXT in a TRY/CATCH block in such
a way that an error condition causes the CATCH-block to be
executed, whereby the CATCH-block causes locally buft-
ered archive data to be moved into an output parameter.

Function Group ARCH_HIGHLEVEL 450 is being used
by Function Group AS_API 460 and can therefore be
considered downstream thereof. The Function Group com-
prises Function Module ARCHIVE_READ_OBJECT_BY_
HANDLE. An preferred embodiment involves inserting
coding at the start of the Function Module to test for the
existence of buffered archive data and for moving such data
to an output parameter 445. The preferred embodiment
accomplished said insertion of coding by an implicit
enhancement, and furthermore it includes instruction to
check for buffered table date and when such data exists to
then retrieve it by calling subroutine ARCHIVE_GET_
TABLE, which in turn calls Function Module
ARCHIVE_GET TABLE further downstream. Function
Module ARCHIVE_GET_TABLE is attached to Function
Group ARCH 435. A preferred embodiment involves an
insertion of coding in the form of an implicit enhancement
at the start of Function Module ARCHIVE_GET_TABLE
440. This implicit enhancement comprises instructions to
read archived table data from a local memory buffer, fill the
TABLE output parameter with the buffered table data and
exit the function module before any of the SAP-Standard
implementation of the same can be executed.

In order to facilitate the querying of a remote relational
archive database 410 it is necessary to provide an interface
to the same. In order to facilitate interfacing with such a
remote database a SOAP-based webservice 415 is used in a
preferred embodiment. Those skilled in the art will realize
that many different ways of connecting to such a remote
database, a SOAP-based webservice being just one of many
such possibilities. Possible alternatives include REST-based
service such as OData, or through RFC-type remote proce-
dure calls. The remote relational archive database 410 may
be any type of relational data store. A preferred embodiment
is implemented with a Microsoft SQL Server 2019 database,
where there are tables which essentially correspond to the
schema used on the productive SAP system from which the

US 12,067,015 B2

11

archived data originates. Furthermore, there may be views
which essentially correspond to Archive Infostructures on
the productive SAP system.

A SAP-standard deployment of AS normally also
involves an ArchivelLink-compatible content server 495
which is queried by AS through the SAP Archivelink
interface 425. The content server 495 allows to store ADK-
format archive files 420 as well as other documents and data
from a productive SAP system.

The present disclosure is not to be limited in terms of the
particular embodiments described in this application, which
are intended as illustrations of various aspects. Many modi-
fications and variations can be made without departing from
its spirit and scope, as will be apparent to those skilled in the
art. Functionally equivalent methods and apparatuses within
the scope of the disclosure, in addition to those enumerated
herein, will be apparent to those skilled in the art from the
foregoing descriptions. Such modifications and variations
are intended to fall within the scope of the appended claims.

The above detailed description describes various features
and functions of the disclosed systems, devices, and meth-
ods with reference to the accompanying figures. In the
figures, similar symbols typically identify similar compo-
nents, unless context dictates otherwise. The example
embodiments described herein and in the figures are not
meant to be limiting. Other embodiments can be utilized,
and other changes can be made, without departing from the
spirit or scope of the subject matter presented herein. It will
be readily understood that the aspects of the present disclo-
sure, as generally described herein, and illustrated in the
figures, can be arranged, substituted, combined, separated,
and designed in a wide variety of different configurations, all
of which are explicitly contemplated herein.

With respect to any or all of the diagrams, scenarios, and
flow charts in the figures and as discussed herein, each block
and/or communication can represent a processing of infor-
mation and/or a transmission of information in accordance
with example embodiments. Alternative embodiments are
included within the scope of these example embodiments. In
these alternative embodiments, for example, functions
described as blocks, transmissions, communications,
requests, responses, and/or messages can be executed out of
order from that shown or discussed, including substantially
concurrent or in reverse order, depending on the function-
ality involved. Further, more or fewer blocks and/or func-
tions can be used with any of the diagrams, scenarios, and
flow charts discussed herein, and these diagrams, scenarios,
and flow charts can be combined with one another, in part or
in whole.

A block that represents a processing of information can
correspond to circuitry that can be configured to perform the
specific logical functions of a herein-described method or
technique. Alternatively or additionally, a block that repre-
sents a processing of information can correspond to a
module, a segment, or a portion of program code (including
related data). The program code can include one or more
instructions executable by a processor for implementing
specific logical functions or actions in the method or tech-
nique. The program code and/or related data can be stored on
any type of computer readable medium such as a storage
device including a disk or hard drive or other storage
medium.

The computer readable medium can also include non-
transitory computer readable media such as computer-read-
able media that stores data for short periods of time like
register memory, processor cache, and random access
memory (RAM). The computer readable media can also

10

20

25

30

40

45

55

60

65

12

include non-transitory computer readable media that stores
program code and/or data for longer periods of time, such as
secondary or persistent long term storage, like read only
memory (ROM), optical or magnetic disks, compact-disc
read only memory (CD-ROM), for example. The computer
readable media can also be any other volatile or non-volatile
storage systems. A computer readable medium can be con-
sidered a computer readable storage medium, for example,
or a tangible storage device. Moreover, a block that repre-
sents one or more information transmissions can correspond
to information transmissions between software and/or hard-
ware modules in the same physical device. However, other
information transmissions can be between software modules
and/or hardware modules in different physical devices.

The particular arrangements shown in the figures should
not be viewed as limiting. It should be understood that other
embodiments can include more or less of each element
shown in a given figure. Further, some of the illustrated
elements can be combined or omitted. Yet further, an
example embodiment can include elements that are not
illustrated in the figures.

While various aspects and embodiments have been dis-
closed herein, other aspects and embodiments will be appar-
ent to those skilled in the art. The various aspects and
embodiments disclosed herein are for purposes of illustra-
tion and are not intended to be limiting, with the true scope
and spirit being indicated by the following claims.
Definitions and Clarifications

Herein below are a few definitions and clarifications. As
used herein:

The terms “a” and “an”, when modifying a noun, do not
imply that only one of the noun exists.

The term “comprise” (and grammatical variations
thereof) shall be construed broadly, as if followed by “With-
out limitation”. If A comprises B, then A includes B and may
include other things.

The term “e. g.” means including without limitation. The
fact that an “example” or multiple examples of something
are given does not imply that they are the only instances of
that thing. An example (or a group of examples) is merely
a non-exhaustive and non-limiting illustration.

The term “include” (and grammatical variations thereof)
shall be construed broadly, as if followed by “Without
limitation”.

The term “or” is an inclusive disjunctive. For example “A
or B” is true if A is true, or B is true, or both A or B are true.

A parenthesis is simply to make text easier to read, by
indicating a grouping of words. A parenthesis does not mean
that the parenthetical material is optional or can be ignored.

The invention claimed is:

1. A computer-implemented method for performing a
joint serial-access and relational-access archive search
through a single interface, the method comprising:

receiving a search request for archive objects, wherein

said archive objects are instances of an archiving
object, wherein an archiving object is a business object
which comprises a plurality of tables linked to a single
header table and wherein said business object is linked
to an archive infostructure, wherein an archive info-
structure is a structure which comprises a primary key,
an identifier for an archive file and an offset within said
archive file;

sending a first query to a database, wherein said first query

comprises said search request and wherein said query is
a relational query, wherein said first query comprises
one or more keys from said archive infostructure, and

US 12,067,015 B2

13

wherein said first query is targeted at a database table
and wherein said database table is a header table of said
archive infostructure;

sending a second query to an archive index, wherein said

second query comprises said search request and
wherein said archive index is a table wherein said table
comprises one or more rows of said archive infostruc-
ture; and

filling an in-memory table with results of said first query

and with results of said second query, wherein said
in-memory table is a table of said archive infostructure.

2. The computer-implemented method of claim 1, further
comprising:

enriching an offset field in said in-memory table with a

pseudo value for all rows which originate from the
results of said first query, and

invoking a plurality of database queries, wherein each

constituent table of said archiving object is queried on
said database with one or more keys from said archive
infostructure.

3. A computer-implemented method for transforming
sequential read requests to relational reads, the method
comprising:

receiving an archive query, wherein said archive query

relates to an archiving object and wherein said archive
query comprises at least one parameter with a key/
value pair;
querying a relational archive database with said parameter
and, in response, receiving a first query result;

querying an archive index with said parameter and, in
response, receiving a second query result wherein said
second query result comprises one or more locations,
wherein a location comprises a file name of an archive
file and an offset for an archive object, wherein said
archive object is comprised in said archive file;

instantiating an in-memory table wherein said in-memory
table has a same schema as an archive infostructure;

copying data from the first and second query results to the
in-memory table in such a way, that for each copied
row data is copied for fields having an identical name
in both source and target tables; and

receiving a request for an archive object wherein said

request comprises a key for a row of said in-memory
table.

5

10

20

25

30

35

40

14

4. A computer-implemented method for translating a
serial-access archive query to a relational database query, the
method comprising:

receiving a search request for an archive object, wherein

said search request comprises one or more query
parameters,

querying a relational archive database with said one or

more query parameters and receiving a first result set;
querying an archive index table with said one or more
query parameters and receiving a second result set
wherein each row of said archive index table com-
prises:
a primary key of a header table for said archive object
and
a link to an offset in an archive file;
combining the first result set and the second result set into
a joint result set, wherein the joint result set comprises
a key field, wherein said key field is designating a key
of an archive file and an offset field, wherein said offset
field relates to a start position of an archive object in
terms of serial file access within an archive file.

5. The computer-implemented method of claim 4 further
comprising:

receiving an archive object retrieval request, wherein said

request comprises a key of said archive object;

and, in response to said request:

returning a data set from said relational archive database

wherein said data set comprises data from all constitu-
ent tables of said archive object;

wherein said combining comprises:

for the first result set:
assigning a pseudo offset value to said offset field,
wherein a pseudo offset value is defined as value
which does not relate to a start position of said
archive object,
for the second result set:
assigning an identifier of an archive file to said key
field, and
assigning an offset within an archive file to said
offset field.

6. The computer-implemented method of claim 3 further
comprising:

querying each of linked tables of said archiving object on

said relational archive database with said key.

#* #* #* #* #*

