
US 20210263910A1
MIN INI

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0263910 A1

XIAO (43) Pub . Date : Aug. 26 , 2021

(54) DATA STORAGE METHOD AND
APPARATUS FOR BLOCKCHAIN , DEVICE ,
AND MEDIUM

(52) U.S. CI .
CPC G06F 16/2379 (2019.01) ; G06F 16/2246

(2019.01)

(71) Applicant : Baidu Online Network Technology
(Beijing) Co. , Ltd. , Beijing (CN)

(57) ABSTRACT

(72) Inventor : Wei XIAO , Beijing (CN)
(21) Appl . No .: 17 / 021,133

(22) Filed : Sep. 15 , 2020

(30) Foreign Application Priority Data

A data storage method and apparatus for a blockchain , where
the method can include : in a process of executing transaction
requests of a current block , updating a world tree of local
data according to write data in an execution result of a
transaction request to generate a new data point and a new
world tree root , the new data point being an entity data point
or a patch data point of an existing entity data point ; storing
the new world tree root to correspond to the current block ;
and in response to determining that an existing block
becomes a current snapshot block satisfying a snapshot
condition , updating a world tree of the current snapshot
block to a snapshot world tree according to transaction
requests between a previous snapshot block and the current
snapshot block , where a data point of the snapshot world tree
is an entity data point .

Feb. 20 , 2020 (CN) 202010106770.X

Publication Classification
(51) Int . Ci .

G06F 16/23 (2006.01)
G06F 16/22 (2006.01)

110
In a process of executing transaction requests of a current block ,
updating a world tree of local data according to write data in an

execution result of a transaction request to generate a new data point
and a new world tree root

Storing the new world tree root to correspond to the current block 120

130

In response to determining that an existing block becomes a current
snapshot block satisfying a snapshot condition , updating a world tree
of the current snapshot block to a snapshot world tree according to
transaction requests between a previous snapshot block and the

current snapshot block

Patent Application Publication Aug. 26 , 2021 Sheet 1 of 7 US 2021/0263910 A1

an 110
In a process of executing transaction requests of a current block ,
updating a world tree of local data according to write data

execution result of a transaction request to generate a new data point
and a new world tree root

Storing the new world tree root to correspond to the current block 120

130

In response to determining that an existing block becomes a current
snapshot block satisfying a snapshot condition , updating a world tree
of the current snapshot block to a snapshot world tree according to
transaction requests between a previous snapshot block and the

current snapshot block

Fig . 1A

r [i] r [i + 1] r [i + 2]

a [i] a [i] a [i + 1] a [i + 1] a [i + 2)

C ch

f f e

Fig . 1B

Patent Application Publication Aug. 26 , 2021 Sheet 2 of 7 US 2021/0263910 A1

r [i] r [i + 1] r [i + 2]

TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX

Fig . 1C

210
In a process of executing transaction requests of a current block ,
updating a world tree of local data according to write data in an

execution result of a transaction request to generate a new data point
and a new world tree root

220 Storing the new world tree root to correspond to the current block

230

In response to determining that an existing block becomes a current
snapshot block satisfying a snapshot condition , updating a world tree
of the current snapshot block to a snapshot world tree according to
transaction requests between a previous snapshot block and the

current snapshot block

240
Acquiring , from the other node , at least one synchronization block ,
the synchronization block being connected to an existing block in a

locally stored block chain

250
In response to that a data access operation for the synchronization
block occurs , updating a world tree of local data according to the

synchronization block to generate a new data point and a new world
tree root

Fig . 2A

Patent Application Publication Aug. 26 , 2021 Sheet 3 of 7 US 2021/0263910 A1

Existing block branch

r [i + 2] r [i + 3] Snapshot
block

Previous
block

r [i] r [i + 1] Synchronization block branch

r [i + 2] ' r [i + 3] ' r [i + 4] '

Fig . 2B

Snapshot block Existing block branch

r [i] r [i + 1] r [i + 2]
Previous block

r [-2] r [i - 1] Synchronization block branch

r [i] ' r [i + 1] ' r [i + 2] ' r [i + 3] '

Fig . 2C

Patent Application Publication Aug. 26 , 2021 Sheet 4 of 7 US 2021/0263910 A1

310 In a process of executing transaction requests of a current block ,
updating a world tree of local data according to write data in an

execution result of a transaction request to generate a new data point
and a new world tree root

Storing the new world tree root to correspond to the current block 320

330

In response to determining that an existing block becomes a current
snapshot block satisfying a snapshot condition , updating a world tree
of the current snapshot block to a snapshot world tree according to
transaction requests between a previous snapshot block and the

current snapshot block
340 350

If a fork rollback occurs , and a height
of a block having a fork point is greater
than or equal to a height of a newest
snapshot block , switching the world
tree root of the local data to a world
tree root of a correct block branch

If the fork rollback occurs , and the
height of the block having the fork point

is less than the height of the newest
snapshot block , executing transaction

requests of a wrong fork block between
the newest snapshot block and the fork

point one by one from back to front , and
performing an undo update on a

snapshot world tree corresponding to the
newest snapshot block according to write

data in an execution result of a
transaction request

360

Executing , starting from the fork point ,
transaction requests of a correct fork
block one by one , and updating the
snapshot world tree after the undo
update according to write data in an
execution result of a transaction

request

Fig . 3A

Patent Application Publication Aug. 26 , 2021 Sheet 5 of 7 US 2021/0263910 A1

Wrong branch

r [i] r [i + 1] r [i + 2]
Fork block

r [i - 2] r [i - 1]
Correct branch

r [i] ' r [i + 1] ' r [i + 2] r [i + 3]

Fig . 3B

Wrong branch

r [i + 2] r [i + 3]
Fork block

r [i] r [i + 1]
Correct branch

r [i + 2] ' r [i + 3] ' r [i + 4] '

Fig . 3C

Patent Application Publication Aug. 26 , 2021 Sheet 6 of 7 US 2021/0263910 A1

In a process of executing transaction requests of a current block ,
updating a world tree of local data according to write data in an

execution result of a transaction request to generate a new data point
and a new world tree root

410

420 Storing the new world tree root to correspond to the current block .

430
In response to determining that an existing block becomes a current

snapshot block satisfying a snapshot condition , executing
sequentially transaction requests from a previous snapshot block to

the current snapshot block one by one

In the process of executing the transaction requests one by one ,
according to write data in an execution result of a transaction

request , updating a data value corresponding to an entity data point
and deleting a corresponding patch data point based on a snapshot
world tree corresponding to the previous snapshot block , until a
snapshot world tree of the current snapshot block is generated

440

450
Updating a patch data point of a world tree of a block after the

current snapshot block , to point to an entity data point of the current
snapshot world tree

Fig . 4A

r [i] r [i + 1] r [i + 2]

a [i] a [i] a [i] a [i + 2]

b C b C

f d e d d

Fig . 4B

Patent Application Publication Aug. 26 , 2021 Sheet 7 of 7 US 2021/0263910 A1

1500

-510

World tree updating
module

520

Root storing module

-530

Snapshot updating
module

Fig . 5

602
Memory 603 Input

apparatus Bus

604

-601
Output

apparatus
Processor

Fig . 6

US 2021/0263910 Al Aug. 26 , 2021
1

DATA STORAGE METHOD AND
APPARATUS FOR BLOCKCHAIN , DEVICE ,

AND MEDIUM

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority to Chinese Patent
Application No. 202010106770.X , filed on Feb. 20 , 2020 ,
titled “ Data storage method and apparatus for blockchain ,
device and medium , ” which is hereby incorporated by
reference in its entirety .

TECHNICAL FIELD

[0002] Embodiments of the present disclosure relate to the
field of computer technology , and specifically to the block
chain technology

BACKGROUND

[0003] A blockchain system is a decentralized storage
system . Each distributed node needs to process a transaction
request and store data . In order to query the data more
conveniently , the node would locally store the data affected
by the transaction request processed on a blockchain . As a
new transaction request occurs in the blockchain , the local
data is continually updated .
[0004] A fork phenomenon may also occurs in the block
chain . That is , for different nodes , the blocks subsequently
generated starting from a certain block are inconsistent , that
is , a fork is formed . The fork may continue to several blocks .
The blockchain system has a corresponding mechanism to
solve the fork problem , that is , periodically check whether
there is a fork . If there is a fork , according to a rule , it is
determined that one branch is correct and the other branch
is wrong . The node would delete the wrong branch and
synchronously acquires the blocks of the correct branch
from other nodes , thereby solving the fork problem .
[0005] However , for the local data of the node , the roll
back of the transaction requests of the wrong branch sig
nificantly affects the local data . Existing local data storage
techniques do not perform well when dealing with the fork .

[0008] In the technical solution of the embodiment of the
present disclosure , a snapshot storage approach and a world
tree storage approach are combined . In design for a block
chain , a fork can be quickly recovered . It is impossible that
a block that cannot be determined for a long time exists . That
is , from the point of view of business , it is not allowed to
fork a block long time ago , because it would cause the
business to be in an uncertain state . Therefore , according to
the technical solution of the embodiment of the present
disclosure , a storage architecture in which two advantages
are mixed is designed . In the architecture , the snapshot
storage approach is used for historical data and the world
tree storage approach is used for the newest data , and thus ,
the advantages of the two approaches can be combined .
Therefore , the storage space is saved , and the data can be
quickly adjusted when an unstable block needs a rollback .
[0009] Alternatively , he updating the world tree of local
data according to write data in the execution result of the
transaction request to generate the new data point and the
new world tree root includes : in response to the write data
in the execution result of the transaction request referring to
a new addition for a data object , adding newly an entity data
point based on a world tree of a previous block , and storing
correspondingly a data value of the newly added data object ;
in response to the write data in the execution result of the
transaction request referring to an update for a data value of
an existing data object , adding a patch data point to a data
point of the existing data object based on the world tree of
the previous block , and recording the updated data value ; in
response to the write data in the transaction request execu
tion result referring to a deletion for the data value of the
existing data object , adding a patch data point to the data
point of the existing data object based on the world tree of
the previous block , and recording the deletion for the data
value ; and performing an update to generate a corresponding
upper - level data point and a corresponding world tree root ,
according to the newly added entity data point or the patch
data point .
[0010] Alternatively , the updating the world tree of the
current snapshot block to the snapshot world tree according
to transaction requests between the previous snapshot block
and the current snapshot block includes : executing sequen
tially transaction requests from the previous snapshot block
to the current snapshot block one by one ; and in the process
of executing the transaction requests one by one , according
to write data in the execution result of the transaction
request , updating a data value corresponding to an entity
data point and deleting a corresponding patch data point
based on a snapshot world tree corresponding to the previ
ous snapshot block , until the snapshot world tree of the
current snapshot block is generated .
[0011] Alternatively , after updating the world tree of the
current snapshot block to the snapshot world tree , the
method further includes : updating a patch data point of a
world tree of a block after the current snapshot block , to
point to an entity data point of the current snapshot world
tree .
[0012] Alternatively , determining the existing block
becoming the current snapshot block satisfying the snapshot
condition includes : determining a block having a block
interval from the previous snapshot block as the current
snapshot block according to a set snapshot block interval ,
the block interval from the previous snapshot block reaching
the snapshot block interval .

SUMMARY

[0006] Embodiments of the present disclosure discloses a
data storage method and apparatus for a blockchain , a device
and a medium , to improve the performance of local data
storage in response to a fork processing mechanism .
[0007] In a firs aspect , an embodiment of the present
disclosure provides a data storage method for a blockchain ,
performed by a blockchain node , the method including : in a
process of executing transaction requests of a current block ,
updating a world tree of local data according to write data in
an execution result of a transaction request to generate a new
data point and a new world tree root , the new data point
being an entity data point or a patch data point of an existing
entity data point ; storing the new world tree root to corre
spond to the current block ; and in response to determining
that an existing block becomes a current snapshot block
satisfying a snapshot condition , updating a world tree of the
current snapshot block to a snapshot world tree according to
transaction requests between a previous snapshot block and
the current snapshot block , where a data point of the
snapshot world tree is an entity data point .

US 2021/0263910 A1 Aug. 26 , 2021
2

[0013] Alternatively , the method further includes : acquir
ing , from another node , at least one synchronization block ,
the synchronization block being connected to an existing
block in a locally stored blockchain , the existing block being
used as a previous block of the synchronization block .
[0014] Alternatively , the method further includes : in
response to a data access operation for the synchronization
block occurring , updating a world tree of local data accord
ing to the synchronization block to generate a new data point
and a new world tree root .
[0015] Alternatively , the updating the world tree of local
data according to the synchronization block includes : in
response to the previous block being located after a newest
snapshot block , constructing , according to a data point of a
world tree recorded in the synchronization block , the world
tree of the synchronization block based on an existing world
tree of the local data ; and in response to the previous block
being located before the newest snapshot block , executing
transaction requests from back to front one by one from the
newest snapshot block to the previous block , performing an
undo update on a snapshot world tree corresponding to the
newest snapshot block according to write data in an execu
tion result of a transaction request , and constructing , accord
ing to the data point of the world tree recorded in the
synchronization block , the world tree of the synchronization
block based on the snapshot world tree after the undo
update .
[0016] An embodiment of the present disclosure has the
following advantages or beneficial effects : the local data can
be updated according to the access for the synchronization
block while the synchronization block is acquired , which
takes account of the synchronization speed and the access
response of the local data .
[0017] Alternatively , the method further includes : in
response to that a fork rollback occurs , and a height of a
block having a fork point is greater than or equal to a height
of the newest snapshot block , switching the world tree root
of the local data to a world tree root of a correct block
branch ; and in response to that the fork rollback occurs , and
the height of the block having the fork point is less than the
height of the newest snapshot block , executing transaction
requests of a wrong fork block between the newest snapshot
block and the fork point one by one from back to front ,
performing an undo update on the snapshot world tree
corresponding to the newest snapshot block according to
write data in an execution result of a transaction request ;
executing , starting from the fork point , transaction requests
of a correct fork block one by one , and updating the snapshot
world tree after the undo update according to write data in
an execution result of a transaction request .
[0018] Alternatively , the updating the snapshot world tree
after the undo update according to write data in the execu
tion result of the transaction request includes : updating ,
according to the write data in the execution result of the
transaction request , the snapshot world tree after the undo
update until to a location of the newest snapshot block or a
newest block , and reserving the snapshot world tree .
[0019] An embodiment of the present disclosure has the
following advantages or beneficial effects : according to the
technology in the embodiment of the present disclosure , a
part of world trees are reserved based on the snapshot world
tree , the part of world trees are world trees having a high
probability that the fork rollback occurs , and the world tree
roots can be quickly switched when the fork occurs in the

part of world trees , thus completing the processing for the
local data . If the fork point is before the snapshot world tree ,
it is only required to repeat a small number of rollbacks to
complete the update for the local data .
[0020] Alternatively , the method further includes : in the
process of executing the transaction requests of the current
block , storing sequentially data of the transaction requests
into the local data in units of blocks .
[0021] An embodiment of the present disclosure has the
following advantages or beneficial effects : the hybrid stor
age mode is implemented in the local data . For stable
previous blocks having a low fork probability , the data is
stored using a consecutive block storage approach of the
transaction requests , and for subsequent blocks having a
high fork probability , the data is stored using a local storage
approach of the world trees . Such a hybrid storage approach
can reduce the storage space occupied by the local data , and
can also quickly update the data when a rollback occurs .
(0022] Alternatively , after updating the world tree of the
current snapshot block to the snapshot world tree , the
method further includes : deleting a world tree corresponding
to a block before the current snapshot block .
[0023] In a second aspect , an embodiment of the present
disclosure provides a data storage apparatus for a block
chain , configured in a blockchain node , the apparatus includ
ing : a world tree updating module , configured to , in a
process of executing transaction requests of a current block ,
update a world tree of local data according to write data in
an execution result of a transaction request to generate a new
data point and a new world tree root , the new data point
being an entity data point or a patch data point of an existing
entity data point ; a root storing module , configured to store
the new world tree root to correspond to the current block ;
and a snapshot updating module , configured to , in response
to determining that an existing block becomes a current
snapshot block satisfying a snapshot condition , update a
world tree of the current snapshot block to a snapshot world
tree according to transaction requests between a previous
snapshot block and the current snapshot block , wherein a
data point of the snapshot world tree is an entity data point .
[0024] In a third aspect , an embodiment of the present
disclosure provides an electronic device , including : at least
one processor ; and a memory , communicatively connected
with the at least one processor , where the memory stores an
instruction executable by the at least one processor , and the
instruction when executed by the at least one processor ,
causes the at least one processor to perform the data storage
method according to the first aspect of the present disclo
sure .

[0025] In a fourth aspect , an embodiment of the present
disclosure provides a non - transitory computer readable stor
age medium , storing a computer instruction , where the
computer instruction is used to cause a computer to perform
the data storage method according to the first aspect of the
present disclosure .
[0026] Other effects of the above alternative implementa
tions will be described hereinafter in combination with
specific embodiments .

BRIEF DESCRIPTION OF THE DRAWINGS

[0027] Accompanying drawings are used for a better
understanding of the solution , and do not constitute a
limitation to the present disclosure .

US 2021/0263910 A1 Aug. 26 , 2021
3

[0028] FIG . 1A is a flowchart of a data storage method for
a blockchain provided in a first embodiment of the present
disclosure ;
[0029] FIG . 1B is a first schematic diagram of a world tree
of a blockchain to which embodiments of the present
disclosure are applicable ;
[0030] FIG . 1C is a first schematic diagram of storage of
transaction requests of the blockchain to which embodi
ments of the present disclosure are applicable ;
[0031] FIG . 2A is a flowchart of a data storage method for
a blockchain provided in a second embodiment of the
present disclosure ;
[0032] FIG . 2B is a first schematic diagram of a synchro
nization blockchain to which embodiments of the present
disclosure are applicable ;
[0033] FIG . 2C is a second schematic diagram of the
synchronization blockchain to which embodiments of the
present disclosure are applicable ;
[0034] FIG . 3A is a flowchart of a data storage method for
a blockchain provided in a third embodiment of the present
disclosure ;
[0035] FIG . 3B is a first schematic diagram of a fork of the
blockchain to which embodiments of the present disclosure
are applicable ;
[0036] FIG . 3C is a second schematic diagram of the fork
of the blockchain to which embodiments of the present
disclosure are applicable ;
[0037] FIG . 4A is a flowchart of a data storage method for
a blockchain provided in a fourth embodiment of the present
disclosure ;
[0038] FIG . 4B is a second schematic diagram of the
world tree of the blockchain to which embodiments of the
present disclosure is applicable ;
[0039] FIG . 5 is a block diagram of an data storage
apparatus for a blockchain provided in a fifth embodiment of
the present disclosure ; and
[0040] FIG . 6 is a block diagram of an electronic device
adapted to implement the data storage method for a block
chain according to embodiments of the present disclosure .

are sequentially connected , thereby forming the blockchain .
The blocks are recorded by all nodes in a blockchain
network , and thus , tampering can be prevented .
[0043] In addition to storing the transaction data in the
blockchain , generally the transaction data may also be stored
locally by the nodes . For example , more abundant and
flexible data query services may be provided for the user .
Local data is data generated according to a transaction
request in a block and an execution result thereof .
[0044] The local data storage approach used by nodes may
be different based on an actually different data access need .
Although the storage of the local data of the node is
convenient for local use , a large amount of adjustment may
be caused when a rollback is required due to a fork of a
blockchain . The scheme proposes a solution to this technical
problem , and provides a hybrid storage scheme in which a
world tree storage approach and a snapshot storage approach
are combined .
[0045] The method in this embodiment may be performed
by an apparatus for storing data , configured in the block
chain node . The apparatus may be implemented by means of
software and / or hardware .
[0046] Specifically , referring to FIG . 1A , the method in
this embodiment includes the following steps .
[0047] S110 , in a process of executing transaction requests
of a current block , updating a world tree of local data
according to write data in an execution result of a transaction
request to generate a new data point and a new world tree
root , the new data point being an entity data point or a patch
data point of an existing entity data point .
[0048] In the above operation , in the process of executing
a plurality of transaction requests of the current block by the
node , an execution result of each transaction request may be
determined , and the execution result generally includes read
data and / or write data . The so - called read data refers to a
read operation of the transaction request , which is an opera
tion of reading a data value in an existing data object . The
write data refers to a change or delete operation of the
transaction request , which is an operation of changing or
deleting the data value of the existing data object , and may
also include an operation of newly adding a data object .
[0049] The world tree of the local data needs to be
updated , according to the write data in the execution result .
The so - called world tree refers to that a data object is stored
through a tree structure . A data point in the tree corresponds
to a data object , and may store the data object directly , or
point to the storage location of the data object . In the tree ,
an upper - level data point points to a lower - level data point ,
which indicates that the upper - level data point stores a
pointer pointing to the lower - level data point . A tree index
algorithm may be used to realize in what order all data
objects construct the tree structure , which is not limited in
embodiments of the present disclosure .
[0050] As shown in FIG . 1B , FIG . 1B exemplarily shows
world trees of blocks r [i] , r [i + 1] and r [i + 2] , where i is an
integer greater than or equal to 0. In the example of this
blockchain , the block r [i] is the newest snapshot block ,
which corresponds to the snapshot world tree having the root
a [i] . The block r [i + 2] is the block currently being executed ,
and the blocks r [i + 1] and r [i + 2] are respectively updated
based on the world tree of the previous block , to obtain the
ordinary world tree having the root a [i + 1] and the ordinary
world tree having the root a [i + 2] .

DETAILED DESCRIPTION OF EMBODIMENTS

[0041] Example embodiments of the present disclosure
are described below in combination with the accompanying
drawings , and various details of embodiments of the present
disclosure are included in the description to facilitate under
standing , and should be considered as merely as examples .
Accordingly , it should be recognized by one of ordinary skill
in the art that various changes and modifications may be
made to the embodiments described herein without depart
ing from the scope and spirit of the present disclosure . Also ,
for clarity and conciseness , descriptions for well - known
functions and structures are omitted in the following
description .

First Embodiment

[0042] FIG . 1A is a flowchart of a data storage method for
a blockchain provided in the first embodiment of the present
disclosure . The method in this embodiment is applicable to
a situation where a blockchain node stores data locally . In
the process of running a blockchain , many transaction
requests performing various functions are initiated . The
transaction requests are executed by the node to form
transaction data to be packaged into blocks , and the blocks

US 2021/0263910 A1 Aug. 26 , 2021
4

[0051] The data point in the snapshot world tree of the root
a [i] is an entity data point , i.e. , directly pointing to the actual
value of a data object . The data point in the ordinary world
tree may be an entity data point , and typically also includes
a patch data point . The patch data point records an update
operation based on an existing entity data point , and does not
point to the actual value of a data object . For example , the
patch data point records that an existing data object is
deleted or a certain value thereof is replaced . The pointer of
the updated existing entity data point is recorded in the patch
data point . Thus , the patch data point can point to the actual
value of the data object only when in combination with the
entity data point .
[0052] The updating operation of S110 is described using
the example of FIG . 1B , and may be specifically as follows .
[0053] If the write data in the execution result of the
transaction request refers to a new addition for a data object ,
an entity data point is newly added based on the world tree
of the previous block , and the data value of the newly added
data object is correspondingly stored . As shown in FIG . 1B ,
in the execution result of the block r [i + 1] , a value change is
performed on the data object to which the data point c points ,
and thus , the patch data point c ' is generated to point to the
entity data point c . Similarly , when the transaction request of
the block r [i + 2] is executed and the data objects to which the
data points c and c ' point are updated , the patch data point
c " is generated
[0054] If the write data in the execution result of the
transaction request refers to an update for a data value of an
existing data object , a patch data point is added to a data
point of the existing data object based on the world tree of
the previous block , and the updated data value is recorded .
For example , the entity data point f of the data object is
newly added in the execution result of the block r [i + 1] .
[0055] If the write data in the transaction request execu
tion result refers to a deletion for the data value of the
existing data object , a patch data point is added to the data
point of the existing data object based on the world tree of
the previous block , and the deletion for the data value is
recorded . For example , if an operation on the data object to
which the data point c points in the block r [i + 2] is a delete
operation , a delete identifier or a null data value is recorded
in the patch data point c " .
[0056] According to the newly added entity data point or
the patch data point , an update is performed to generate a
corresponding upper - level data point and a corresponding
world tree root . For example , since the patch data point c ' is
added , in the root a [i] , the pointer pointing to the data point
c needs to be changed to point to the data point c ' . Thus , the
world tree root a [i] is updated to the world tree root a [i + 1] .
Similarly , after the block r [i + 2] is executed , the world tree
root is updated to the root a [i + 2] . If there are other upper
level data points between the updated data point and the
root , the pointer also needs to be correspondingly updated .
[0057] The update for the world tree caused by the update
operation on the data object is not limited to the above
approach , and the update approach may be determined
according to the construction approach of the world tree .
The function of the world tree is to record the historical
change states of all data objects . Moreover , the data values
of all data objects in a certain state can be indexed through
different world tree roots .
[0058] S120 , storing the new world tree root to correspond
to the current block .

[0059] The world tree root corresponding to the current
block is correspondingly stored , such that when it is required
to learn the data value of a data object in a certain block ,
indexing is only required to be performed according to the
corresponding world tree root . In the block , the newly added
data point of the world tree of the current block , including
the patch data point and the newly added entity data point ,
may be stored based on the world tree of the previous block ,
so as to store the root of the current world tree .
[0060] S130 , in response to determining that an existing
block becomes a current snapshot block satisfying a snap
shot condition , updating a world tree of the current snapshot
block to a snapshot world tree according to transaction
requests between a previous snapshot block and the current
snapshot block , where a data point of the snapshot world tree
is an entity data point .
[0061] In this embodiment , a certain block is formed with
a snapshot world tree , and the snapshot world tree corre
sponds to an entity data point . That is , data objects of the
snapshot block and all blocks before the snapshot block are
finally updated , and made to correspond to the snapshot
world tree , and thus , there is only one world tree root . The
blocks after the snapshot block are updated one by one to
generate new patch data points , and thus , there are a plurality
of world tree roots . If all the blocks are stored in the form
of updating the world trees , although the data states of all the
blocks may be recorded , a large amount of storage space
would be occupied , and the amount of calculation for the
storage and the update each time is large . With the increasing
number of blocks , the storage performance is poor . Accord
ing to the technical solution of this embodiment , the newest
snapshot world tree is continuously adjusted to clean the
memory .
[0062] In this embodiment , determining whether a certain
existing block is stored and becomes the current snapshot
block satisfying the snapshot condition . If yes , the world tree
of the current snapshot block is updated to the snapshot
world tree according to the transaction request between the
previous snapshot block and the current snapshot block .
That is , the snapshot world tree is continuously pushed
backwards , and the world tree corresponding to the block
before the current snapshot block may be reserved or
deleted . Preferably , the deletion is performed , and thus , a
large amount of storage space may be released . If the
reservation is only performed , the amount of calculation for
the subsequent update of the world tree is reduced due to the
optimization of the snapshot world tree .
[0063] The generation of the snapshot world tree may be
implemented in a plurality of ways as long as the data values
that can reflect all the data jects at the snapshot block can
be stored , which will be described in detail through the
following embodiments .
[0064] The local data before the snapshot block is stored
in the form of snapshot world tree . Preferably , during the
execution for the transaction requests of the current block ,
the transaction requests are further sequentially stored into
the local data in units of blocks . As shown in FIG . 1C , the
data (TX) of the transaction requests corresponding to the
blocks r [i] , r [i + 1] and r [i + 2] is stored in units of blocks . The
data of the transaction request of a block before the block r [i]
may be stored locally .
[0065] According to the technical solution of this embodi
ment , the world tree storage scheme is partially used to
constitute the hybrid storage approach . Thus , all the world

US 2021/0263910 A1 Aug. 26 , 2021
5

tree states of a part of blocks are reserved , which facilitates
querying the states at any time . In addition , previous blocks
are adjusted to the snapshot state , thereby reducing the
amount of data storage . The above storage solution is
particularly advantageous when the fork occurs . When the
fork occurs , the world tree of a certain block can be quickly
rolled back to . There is also no need to reserve a large
number of world trees in the previous blocks in which the
fork does not occur .

Second Embodiment

[0066] FIG . 2A is a flowchart of a data storage method for
a blockchain provided in the second embodiment of the
present disclosure . In this embodiment , a processing
approach when synchronization occurs in a blockchain is
specifically introduced based on the aforementioned storage
scheme .
[0067] In a blockchain network , a synchronization block
synchronized to a native node by other nodes is obtained for
various reasons . The synchronization block is a block exist
ing or not existing in the native node , and may be one block
or a plurality of blocks of one branch .
[0068] As shown in FIG . 2A , the method in this embodi
ment includes the following steps .
[0069] S210 , in a process of executing transaction requests
of a current block , updating a world tree of local data
according to write data in an execution result of a transaction
request to generate a new data point and a new world tree
root , the new data point being an entity data point or a patch
data point of an existing entity data point .
[0070] S220 , storing the new world tree root to correspond
to the current block ;
[0071] S230 , in response to determining that an existing
block becomes a current snapshot block satisfying a snap
shot condition , updating a world tree of the current snapshot
block to a snapshot world tree according to transaction
requests between a previous snapshot block and the current
snapshot block , a data point of the snapshot world tree being
an entity data point ; and
[0072] S240 , acquiring , from the other node , at least one
synchronization block , the synchronization block being con
nected to an existing block in a locally stored blockchain , the
existing block being used as a previous block of the syn
chronization block .
[0073] It may be appreciated by those skilled in the art that
the timing of acquiring the synchronization block may be
achieved during , before or after any of the above steps , and
that the timing of acquiring the synchronization block is not
strictly limited .
[0074] The synchronization block is generally associated
with the existing blockchain of a local node . If the synchro
nization block is completely irrelevant to the existing block
chain , the synchronization block belongs to a completely
different blockchain from the existing blockchain . The syn
chronization block is generally generated by branching from
a certain block in the existing blockchain , and the branched
block is the previous block of the synchronization block .
[0075] S250 , in response to that a data access operation for
the synchronization block occurs , updating a world tree of
local data according to the synchronization block to generate
a new data point and a new world tree root .
[0076] After the synchronization block is acquired , if the
data in the synchronization block needs to be accessed , it is
usually required to read the data into the memory and then

process the data , that is , it is required to first construct local
data for the accessed block , and then respond to the access
operation .
[0077] When the synchronization block is first created by
the other node , a world tree has been constructed , a trans
action request and an execution result are recorded in the
block , and the data point of the constructed world tree is
recorded in the block . The data point stored in the block
refers to a patch data point or a newly added data point
updated based on the world tree of the previous block , and
the world tree root of the world tree corresponding to the
synchronization block . Therefore , the data point may be
updated to the local data based on the data point recorded in
the synchronization block and the world tree root .
[0078] Specifically , the updating a world tree of local data
according to the synchronization block specifically includes :
if the previous block is located after a newest snapshot
block , according to a data point of a world tree recorded in
the synchronization block , constructing the world tree of the
synchronization block based on an existing world tree of the
local data . As shown in FIG . 2B , the previous block r [i + 1]
is located after the newest snapshot block r [i] . Assuming that
the synchronization block r [i + 3] ' needs to be accessed , then
according to the patch data points and the newly added
points between the world trees of the synchronization block
r [i + 3] ' and the block r [i + 1] , which are recorded in the
synchronization block r [i + 3] ' , the synchronization block
r [i + 3] ' is updated to the local data for access .
[0079] If the previous block is located before the newest
snapshot block , transaction requests are executed from back
to front one by one from the newest snapshot block to the
previous block . An undo update is performed on a snapshot
world tree corresponding to the newest snapshot block
according to write data in an execution result of a transaction
request . The world tree of the synchronization block is
constructed based on the snapshot world tree after the undo
update , according to the data point of the world tree recorded
in the synchronization block . As shown in FIG . 2C , the
previous block r [i - 1] is located before the newest snapshot
block r [i] . Assuming that the synchronization block r [i + 3] '
needs to be accessed . The synchronization block r [i + 3] '
needs to be updated to the local data memory . At this time ,
since the local data on which the synchronization block
r [i + 3] ' is based is not entirely local , and the data of the block
r [i - 1] before the newest snapshot block does not exist
locally , it is required to execute , starting from the newest
snapshot block , the transaction requests of the newest snap
shot block r [i] and the previous block r [i - 1] , and perform the
undo update on the newest snapshot world tree according to
the execution results of the transaction requests . It is further
required to obtain the local data of the synchronization block
r [i + 3] ' according to the relationship between the newest
snapshot world tree of the previous block r [i - 1] and the
world tree of the synchronization block r [i + 3] ' .
[0080] According to the technical solution of this embodi
ment , the processing process after the synchronization block
is acquired , and thus , the local access for the synchroniza
tion block can be quickly performed .

Third Embodiment

[0081] FIG . 3A is a flowchart of a data storage method for
a blockchain provided in the third embodiment of the
present disclosure . In this embodiment , a processing

US 2021/0263910 A1 Aug. 26 , 2021
6

approach when a fork occurs in a blockchain is specifically
introduced based on the aforementioned storage scheme .
[0082] The so - called blockchain forking refers to that , for
some reasons such as a network communication failure , a
node failure , etc. , when some node or nodes process a block ,
the data generated by the node or nodes is different from that
of other nodes . However , such inconsistence would not be
discovered immediately , and thus , a new block is generated
based on the inconsistent blocks . As shown in FIG . 3B ,
starting from the block r [i - 1] , the blockchains generated by
different nodes are different , i.e. , a fork is generated . Until
the forking phenomenon is found based on the forking
mechanism in the blockchain , a correct branch and a wrong
branch would be determined at this point , for example , the
long chain is the correct fork . Then , the node having the
wrong branch removes the block of the wrong branch ,
synchronously acquires the block of the correct branch from
the other nodes , and stores the block locally . The above is the
fork processing in the blockchain . In the fork processing
process , in addition to obtaining the block of the correct
branch , the node needs to update the local data accordingly .
[0083] Based on the storage approach of the local data
provided in the embodiments of the present disclosure , a
specific implementation when the fork is processed is as
follows .
[0084] S310 , in a process of executing transaction requests
of a current block , updating a world tree of local data
according to write data in an execution result of a transaction
request to generate a new data point and a new world tree
root , the new data point being an entity data point or a patch
data point of an existing entity data point .
[0085] S320 , storing the new world tree root to correspond
to the current block .
[0086] S330 , in response to determined that an existing
block becomes a current snapshot block satisfying a snap
shot condition , updating a world tree of the current snapshot
block to a snapshot world tree according to transaction
requests between a previous snapshot block and the current
snapshot block , where a data point of the snapshot world tree
is an entity data point .
[0087] S340 , in response to that fork rollback occurs ,
and a height of a block having a fork point is greater than or
equal to a height of a newest snapshot block , switching the
world tree root of the local data to a world tree root of a
correct block branch .
[0088] According to the blocks r [i + 2] ' , r [i + 3] ' and r [i + 4) *
synchronously acquired from the other nodes , it is deter
mined that the fork occurs based on a set rule , and the
synchronously acquired blocks are the correct block branch .
Taking FIG . 3C as an xample , the block having the fork
point is referred to as a fork block , and is the block r [i + 1] .
As shown in the above example , the newest snapshot block
from back to front in the blockchain is r [i] . Therefore , the
height of the block r [i + 1] having the fork point is greater
than or equal to the height of the newest snapshot block r [i] .
[0089] When the fork is processed , it is required to switch
the world tree root of the current newest block to the newest
block of the correct branch . That is , the world tree root of the
current newest block may be directly switched to the world
tree root of the block r [i + 4] ' . Thus , the fork processing may
be completed .
[0090] When the world tree roots of the wrong blocks
r [i + 2] and r [i + 3] are not accessed during the query , the data
points of the world trees would not be accessed by the index ,

which is equivalent to invalid . Obviously , the invalid data
points may also be deleted , to release the storage space .
[0091] The above operation solves the processing for a
fork situation , that is , the situation where the fork point is
located in a subsequent block of the snapshot block . Since ,
starting from the newest snapshot block , the subsequent
wrong blocks and the subsequent correct blocks have cor
responding world trees , no matter what block is to be rolled
back to the local data only needs to be directly mounted to
the world tree root of the block where the fork point is
located , that is , the data state of the block is rolled back , and
the world trees of the subsequent wrong blocks are directly
invalid .
[0092] If the fork point is located in the previous block of
the snapshot block , the following processing approach may
be used .
[0093] S350 , in response to that the fork rollback occurs ,
and the height of the block having the fork point is less than
the height of the newest snapshot block , executing transac
tion requests of a wrong fork block between the newest
snapshot block and the fork point one by one from back to
front , and performing an undo update on a snapshot world
tree corresponding to the newest snapshot block according
to write data in an execution result of a transaction request .
[0094] Taking FIG . 3B as an example , the fork block is the
block r [i - 1] , the height of which is less than that of the
newest snapshot block r [i] . At this time , the processing is
performed using the following approach .
[0095] Since the blocks before the newest snapshot block
do not have a corresponding world tree , it is not known what
changes the data objects perform in these blocks not having
the world trees , and thus , the operation of undoing the
transaction requests one by one is required .
[0096] The operation is divided into two stages . First , the
snapshot world tree of the newest snapshot block is directly
rolled back to , and the world tree of a subsequent wrong
block is invalid . Then , the transaction requests of the wrong
block are undone one by one based on the snapshot world
tree (undo operation) .
[0097] In combination with the examples of FIGS . 1B and
3B , the newest snapshot block is r [i] , but is a wrong block
that needs a rollback . At this time , based on the snapshot
world tree of the block r [i] , the transaction requests of the
block r [i] are executed one by one from back to front . The
transaction requests of the block r [i] may be read directly
from the local data . If the execution result of the transaction
request is the operation of newly adding the data object of
the data point e , the undo update is to delete the data point
e in the snapshot world tree , and the pointers in the corre
sponding upper - level data point b and the corresponding
root node a [i] also need to be updated . If the execution result
of the transaction request is to update the data value of the
data object of the data point c , the change for the data value
of the data object may be directly undone . If the execution
result of the transaction request is to delete the data object ,
a data point is newly added to the snapshot world tree to
correspond to the deleted data object . As such , the undo
operation is performed on the transaction requests of the
wrong block , and the snapshot world tree is updated accord
ingly .
[0098] S360 , executing , starting from the fork point , trans
action requests of a correct fork block one by one , and

US 2021/0263910 A1 Aug. 26 , 2021
7

updating the snapshot world tree after the undo update
according to write data in an execution result of a transaction
request .
[0099] When the undo update performed on the snapshot
world tree is to the block where the fork point is located , the
transaction requests of the correct fork block are executed
one by one , starting from the fork point , and the snapshot
world tree is updated according to the execution result .
[0100] There may be many approaches to updating the
snapshot world tree after the undo update according to the
write data in the execution result of the transaction request .
For example , an approach may be : updating , according to
the write data in the execution result of the transaction
request , the snapshot world tree after the undo update until
to a location of the newest snapshot block or a newest block ,
and reserving the snapshot world tree .
[0101] That is , when the correct blocks are executed one
by one , a correct block is used as a new snapshot world tree .
After the update is completed , the newest block r [i + 3] ' is the
newest snapshot block and has the corresponding snapshot
world tree , and the preceding block does not reserve a world
tree .
[0102] Alternatively , when the update is to the previous
newest snapshot block r [i] , the generation of the snapshot
world tree is stopped , but the generation of the ordinary
world tree is continued .
[0103] The different approaches may be applicable to
different situations . In the first situation , since one fork has
been solved , the possibility that a fork occurs again in the
correct branch is low . Therefore , the ordinary world tree may
not need to be reserved , and thus , the world tree is directly
changed to the snapshot world tree , such that the storage
needs can be reduced . In the second situation , the original
location of the newest snapshot tree is reserved , such that the
pushing mechanism of the snapshot tree is implemented
according to the original plan .
[0104] According to the technical solution of this embodi
ment , the method of effectively solving the fork is provided
based on the hybrid storage approach . Since the ordinary
world trees of a plurality of consecutive blocks are stored ,
the rollback may be quickly performed when the fork
occurs , and thus , it is not required to perform the undo
operation on the transaction requests of each wrong block
one by one . If the world tree does not exist , it is required to
first undo the transaction requests of the wrong block one by
one , and then execute the transaction requests of the correct
block one by one , when the rollback is performed . Thus , the
storage the local data during the processing for the fork can
be completed . Obviously , it is required to occupy more
computational resources , and the processing for the fork
takes a longer time .

root , the new data point being an entity data point or a patch
data point of an existing entity data point .
[0107] S420 , storing the new world tree root to correspond
to the current block .
[0108] S430 , in response to determined that an existing
block becomes a current snapshot block satisfying a snap
shot condition , executing sequentially transaction requests
from a previous snapshot block to the current snapshot block
one by one .
[0109] S440 , in the process of executing the transaction
requests one by one , according to write data in an execution
result of a transaction request , updating a data value corre
sponding to an entity data point and deleting a correspond
ing patch data point based on a snapshot world tree corre
sponding to the previous snapshot block , until a snapshot
world tree of the current snapshot block is generated .
[0110] In combination with the examples given with ref
erence to FIGS . 1B and 4B , if it is determined that the block
r [i + 1] needs to become the current snapshot block according
to the pushing rule of the snapshot block , the previous
snapshot block is the block r [i] . A transaction request of the
block r [i + 1] is executed to update the snapshot world tree of
the previous snapshot block r [i] . If the execution result of the
transaction request is to update the data object of the data
point c , a change operation may be directly performed on the
value of the data object of the data point c , and the changed
data object is stored to still correspond to the data point c ,
and thus , the patch data point c ' is deleted . Alternatively , the
changed data object may also be stored to correspond to the
data point c ' , and thus , the data point c is deleted . Both the
data points c and c ' are data points , and thus may be
arbitrarily selected to store the data object . The root node
and the data point f that is pointed to are updated accord
ingly . As a result , the snapshot world tree is continuously
updated , the entity data points are reserved , and a large
number of patch data points are deleted , thereby saving
storage space . When the update is completed , the snapshot
world tree of the block r [i] no longer exists , and the block
r [i] is not a snapshot world tree .
[0111] S450 , updating a patch data point of a world tree of
a block after the current snapshot block , to point to an entity
data point of the current snapshot world tree .
[0112] After the world tree of the current snapshot block
is updated to the snapshot world tree , for the block r [i + 2]
after the current snapshot block r [i + 1] , the data point to
which the block r [i + 2] originally points may have been
invalidated . For example , if the data point c ' no longer exists ,
the patch data point (e.g. , the patch data point c ") of the
world tree of the block r [i + 2] needs to be updated to point
to the entity data point c . The pointer associated with the
data point c ' may be updated when the data points c and c '
are combined , that is , the patch data point c " is updated .
[0113] On the basis of the above technical solution , it is
possible to determine when to perform the update operation
on the snapshot world tree as needed . The block in which the
fork is not easily formed is generally used as the newest
snapshot block , according to the probability of the fork .
[0114] That is , determining the existing block becoming
the current snapshot block satisfying the snapshot condition
may include : determining a block having a block interval
from the previous snapshot block as the current snapshot
block according to a set snapshot block interval , the block
interval from the previous snapshot block reaching the
snapshot block interval .

Fourth Embodiment

[0105] FIG . 4A is a flowchart of a data storage method for
a blockchain provided in the fourth embodiment of the
present disclosure . The technical solution of this embodi
ment provides an approach to pushing the location of a
snapshot block backwards in a blockchain to update a
snapshot world tree . The approach specifically includes the
following steps .
[0106] S410 , in a process of executing transaction requests
of a current block , updating a world tree of local data
according to write data in an execution result of a transaction
request to generate a new data point and a new world tree

US 2021/0263910 A1 Aug. 26 , 2021
8

[0115] The snapshot block interval may be a longest fork
interval allowed by a consensus algorithm of the blockchain .
Alternatively , according to the storage capacity , it is also
possible to set that the block reserved for a period of time or
reserved with a height has an ordinary world tree , for
example , the world tree of a block saved within one hour or
one day .

Fifth Embodiment

[0116] FIG . 5 is a schematic structural diagram of a data
storage apparatus 500 for a blockchain provided in the fifth
embodiment of the present disclosure . This embodiment
may be implemented by means of software and / or hardware .
Specifically , the apparatus is configured in a blockchain
node , and includes a world tree updating module 510 , a root
storing module 520 and a snapshot updating module 530 .
[0117] Here , the world tree updating module 510 is con
figured to , in a process of executing transaction requests of
a current block , update a world tree of local data according
to write data in an execution result of a transaction request
to generate a new data point and a new world tree root , the
new data point being an entity data point or a patch data
point of an existing entity data point .
[0118] The root storing module 520 is configured to store
the new world tree root to correspond to the current block .
[0119] The snapshot updating module 530 is configured
to , in response to determining that an existing block
becomes a current snapshot block satisfying a snapshot
condition , update a world tree of the current snapshot block
to a snapshot world tree according to transaction requests
between a previous snapshot block and the current snapshot
block , where a data point of the snapshot world tree is an
entity data point .
[0120) According to the technical solution of this embodi
ment , the world tree storage scheme is partially used to
constitute the hybrid storage approach . Thus , all the world
tree states of a part of blocks are rese served , which facilitates
querying the states at any time . In addition , previous blocks
are adjusted to the snapshot state , thereby reducing the
amount of data storage . The above storage scheme is par
ticularly advantageous when a fork occurs . When the fork
occurs , the world tree of a certain block can be quickly rolled
back to . There is also no need to reserve a large number of
world trees in the previous blocks in which the fork does not

level data point and a corresponding world tree root , accord
ing to the newly added entity data point or the patch data
point .
[0122] Alternatively , the snapshot updating module 530 is
specifically configured to : execute sequentially transaction
requests from the previous snapshot block to the current
snapshot block one by one ; and in the process of executing
the transaction requests one by one , according to write data
in the execution result of the transaction request , update a
data value corresponding to an entity data point and delete
a corresponding patch data point based on a snapshot world
tree corresponding to the previous snapshot block , until the
snapshot world tree of the current snapshot block is gener
ated .
[0123] Alternatively , the apparatus further includes a
pointing updating module , configured to , after the world tree
of the current snapshot block is updated to the snapshot
world tree , update a patch data point of a world tree of a
block after the current snapshot block , to point to an entity
data point of the current snapshot world tree .
[0124] Alternatively , the snapshot updating module 530 is
specifically configured to : determine a block having a block
interval from the previous snapshot block as the current
snapshot block according to a set snapshot block interval ,
the block interval from the previous snapshot block reaching
the snapshot block interval .
[0125] Alternatively , the apparatus further includes a
block synchronizing module , configured to acquire , from
another node , at least one synchronization block , the syn
chronization block being connected to an existing block in
a locally stored blockchain , the existing block being used as
a previous block of the synchronization block .
[0126] Alternatively , the apparatus further includes an
access updating module , configured to , in response to a data
access operation for the synchronization block occurring ,
update a world tree of local data according to the synchro
nization block to generate a new data point and a new world
tree root .
[0127] Here , the access updating module is specifically
configured to : in response to the previous block being
located after a newest snapshot block , construct , according
to a data point of a world tree recorded in the synchroniza
tion block , the world tree of the synchronization block based
on an existing world tree of the local data ; and in response
to the previous block being located before the newest
snapshot block , execute transaction requests from back to
front one by one from the newest snapshot block to the
previous block , perform an undo update on a snapshot world
tree corresponding to the newest snapshot block according
to write data in an execution result of a transaction request ,
and construct , according to the data point of the world tree
recorded in the synchronization block , the world tree of the
synchronization block based on the snapshot world tree after
the undo update .
[0128] Alternatively , the apparatus further includes a fork
rollback module , configured to : in response to that a fork
rollback occurs , and a height of a block having a fork point
is greater than or equal to a height of the newest snapshot
block , switch the world tree root of the local data to a world
tree root of a correct block branch ; and in response to that
the fork rollback occurs , and the height of the block having
the fork point is less than the height of the newest snapshot
block , execute transaction requests of a wrong fork block
between the newest snapshot block and the fork point one by

occur .

[0121] Alternatively , the world tree updating module 510
is specifically configured to : in response to the write data in
the execution result of the transaction request referring to a
new addition for a data object , add newly an entity data point
based on a world tree of a previous block , and store
correspondingly a data value of the newly added data object ;
in response to the write data in the execution result of the
transaction request referring to an update for a data value of
an existing data object , add a patch data point to a data point
of the existing data object based on the world tree of the
previous block , and record the updated data value ; in
response to the write data in the transaction request execu
tion result referring to a deletion for the data value of the
existing data object , add a patch data point to the data point
of the existing data object based on the world tree of the
previous block , and record the deletion for the data value ;
and perform an update to generate a corresponding upper

US 2021/0263910 A1 Aug. 26 , 2021
9

one from back to front , perform an undo update on the
snapshot world tree corresponding to the newest snapshot
block according to write data in an execution result of a
transaction request ; execute , starting from the fork point ,
transaction requests of a correct fork block one by one , and
update the snapshot world tree after the undo update accord
ing to write data in an execution result of a transaction
request .
[0129] Here , the fork rollback module is specifically con
figured to : update , according to the write data in the execu
tion result of the transaction request , the snapshot world tree
after the undo update until to a location of the newest
snapshot block or of a newest block , and reserve the
snapshot world tree .
(0130] Alternatively , the apparatus further includes a
block storing module , configured to , in the process of
executing the transaction requests of the current block , store
sequentially data of the transaction requests into the local
data in units of blocks .
[0131] Alternatively , the apparatus further includes a
world tree deleting module , configured to : delete a world
tree corresponding to a block before the current snapshot
block , after the world tree of the current snapshot block is
updated to the snapshot world tree .

Sixth Embodiment

[0132] According to embodiments of the present disclo
sure , the present disclosure further provides an electronic
device and a readable storage medium .
[0133] As shown in FIG . 6 , FIG . 6 is a block diagram of
an electronic device of a data storage method for a block
chain according to embodiments of the present disclosure .
The electronic device is intended to represent various forms
of digital computers such as a laptop computer , a desktop
computer , a workstation , a personal digital assistant , a
server , a blade server , a mainframe computer , and other
appropriate computers . The electronic device may also rep
resent various forms of mobile apparatuses such as personal
digital processing , a cellular telephone , a smart phone , a
wearable device and other similar computing apparatuses .
The parts shown herein , their connections and relationships ,
and their functions are only as examples , and not intended
to limit implementations of the present disclosure as
described and / or claimed herein .
[0134] As shown in FIG . 6 , the electronic device includes
one or more processors 601 , a memory 602 , and an interface
for connecting parts , the interface including a high speed
interface and a low speed interface . The parts are intercon
nected using different buses , and may be mounted on a
common motherboard or in other ways as needed . The
processors may process an instruction executed within the
electronic device , the instruction including an instruction
stored in the memory or on the memory to display graphical
information of a GUI on an external input / output apparatus
such as a display device coupled to the interface . In other
implementations , a plurality of processors and / or a plurality
of buses may be used , if desired , along with a plurality of
memories . Also , a plurality of electronic devices may be
connected , and each device provides a portion of necessary
operations (e.g. , as a server array , a group of blade servers
or a multi - processor system) . In FIG . 6 , one processor 601
is taken as an example .
[0135] The memory 602 is a non - transitory computer
readable storage medium provided in the present disclosure .

Here , the memory stores an instruction executable by at least
one processor , to cause the at least one processor to perform
the data storage method for a blockchain provided in the
present disclosure . The non - transitory computer readable
storage medium in the present disclosure stores a computer
instruction , the computer instruction being used to cause a
computer to perform the data storage method for a block
chain provided in the present disclosure .
[0136] As the non - transitory computer readable storage
medium , the memory 602 may be used to store a non
transitory software program , a non - transitory computer
executable program and a module such as a program instruc
tion / module (e.g. , the world tree updating module 510 , the
root storing module 520 and the snapshot updating module
530 shown in FIG . 5) corresponding to the data storage
method for a blockchain in the embodiments of the present
disclosure . The processor 601 executes various functional
applications and data processing of the server by running the
non - transitory software program , the instruction and the
module stored in the memory 602 , i.e. , implements the data
storage method for a blockchain in the above embodiments
of the method .
[0137] The memory 602 may include a program storage
area and a data storage area . The program storage area may
store an operating system and an application required for at
least one function . The data storage area may store data and
the like created according to the usage of a terminal device .
In addition , the memory 602 may include a high - speed
random access memory , and may also include a non - volatile
memory , e.g. , at least one disk storage device , a flash
memory device or other non - volatile solid - state storage
devices . In some embodiments , the memory 602 may alter
natively include memories remotely arranged relative to the
processor 601 , where the remote memories may be con
nected to the terminal device by a network . An example of
the above network includes but not limited to , the Internet ,
an enterprise intranet , a local area network , a mobile com
munications network , a blockchain network , and a combi
nation thereof .
[0138] The electronic device of the data storage method
for a blockchain may further include : an input apparatus 603
and an output apparatus 604. The processor 601 , the memory
602 , the input apparatus 603 and the output apparatus 604
may be connected via a bus or in other ways . In FIG . 6 , the
connection via a bus is taken as an example .
[0139] The input apparatus 603 may receive an inputted
number or inputted character information , and generate a
key signal input related to the user setting and functional
control of the electronic device for storing data of a block
chain . For example , the input apparatus is a touch screen , a
keypad , a mouse , a track pad , a touch pad , a pointing stick ,
one or more mouse buttons , a track ball , a joystick , or the
like . The output apparatus 604 may include a display device ,
an auxiliary lighting apparatus (e.g. , an LED) , a tactile
feedback apparatus (e.g. , a vibration motor) , etc. The display
device may include , but not limited to , a liquid crystal
display (LCD) , a light emitting diode (LED) display , and a
plasma display . In some embodiments , the display device
may be a touch screen .
[0140] Various implementations of the systems and tech
niques described herein may be implemented in a digital
electronic circuit system , an integrated circuit system , an
application specific integrated circuit (ASIC) , computer
hardware , firmware , software , and / or combinations thereof .

US 2021/0263910 A1 Aug. 26 , 2021
10

These various implementations may include the implemen
tation in one or more computer programs . The one or more
computer programs may be executed and / or interpreted on a
programmable system including at least one programmable
processor , and the programmable processor may be a dedi
cated or general - purpose programmable processor , may
receive data and instructions from a storage system , at least
one input apparatus and at least one output apparatus , and
transmit the data and the instructions to the storage system ,
the at least one input apparatus and the at least one output
apparatus .
[0141] These computing programs , also referred to as
programs , software , software applications or codes , include
a machine instruction of the programmable processor , and
may be implemented using a high - level procedural and / or an
object - oriented programming language , and / or an assembly /
machine language . As used herein , the terms “ machine
readable medium ” and “ computer readable medium ” refer to
any computer program product , device and / or apparatus
(e.g. , a magnetic disk , an optical disk , a memory and a
programmable logic device (PLD)) used to provide a
machine instruction and / or data to the programmable pro
cessor , and include a machine readable medium that receives
the machine instruction as a machine readable signal . The
term “ machine readable signal ” refers to any signal used to
provide the machine instruction and / or data to the program
mable processor .
[0142] To provide an interaction with a user , the systems
and techniques described here may be implemented on a
computer having a display apparatus (e.g. , a cathode ray
tube (CRT)) or an LCD (liquid crystal display) monitor) for
displaying information to the user , and a keyboard and a
pointing apparatus (e.g. , a mouse or a track ball) by which
the user may provide the input to the computer . Other kinds
of apparatuses may also be used to provide the interaction
with the user . For example , a feedback provided to the user
may be any form of sensory feedback (e.g. , a visual feed
back , an auditory feedback , or a tactile feedback) ; and an
input from the user may be received in any form , including
an acoustic input , a speech input , or a tactile input .
[0143] The systems and techniques described here may be
implemented in a computing system (e.g. , as a data server)
that includes a backend part , implemented in a computing
system (e.g. , an application server) that includes a middle
ware part , implemented in a computing system (e.g. , a user
computer having a graphical user interface or a Web browser
through which the user may interact with an implementation
of the systems and techniques described here) that includes
a frontend part , or implemented in a computing system that
includes any combination of the backend part , the middle
ware part or the frontend part . The parts of the system may
be interconnected by any form or medium of digital data
communication (e.g. , a communication network) . Examples
of the communication network include a local area network
(LAN) , a wide area network (WAN) , the Internet and a
blockchain network .
[0144] The computer system may include a client and a
server . The client and the server are generally remote from
each other and typically interact through the communication
network . The relationship between the client and the server
is generated through computer programs running on the
respective computer and having a client - server relationship
to each other .

[0145] It should be understood that the various forms of
processes shown above may be used to resort , add or delete
steps . For example , the steps described in the present
disclosure may be performed in parallel , sequentially , or in
a different order . As long as the desired result of the technical
solution disclosed in the present disclosure can be achieved ,
no limitation is made herein .
[0146] The above embodiments do not constitute a limi
tation to the scope of protection of the present disclosure . It
should be appreciated by those skilled in the art that various
modifications , combinations , sub - combinations and substi
tutions may be made depending on design requirements and
other factors . Any modifications , equivalents and replace
ments , and improvements falling within the spirit and the
principle of the present disclosure should be included within
the scope of protection of the present disclosure .
What is claimed is :
1. A data storage method for a blockchain , performed by

a blockchain node , the method comprising :
in a process of executing transaction requests of a current

block , updating a world tree of local data according to
write data in an execution result of a transaction request
to generate a new data point and a new world tree root ,
the new data point being an entity data point or a patch
data point of an existing entity data point ;

storing the new world tree root to correspond to the
current block ; and

in response to determining that an existing block becomes
a current snapshot block satisfying a snapshot condi
tion , updating a world tree of the current snapshot block
to a snapshot world tree according to transaction
requests between a previous snapshot block and the
current snapshot block , wherein a data point of the
snapshot world tree is an entity data point .

2. The method according to claim 1 , wherein the updating
the world tree of local data according to write data in the
execution result of the transaction request to generate the
new data point and the new world tree root comprises :

in response to the write data in the execution result of the
transaction requ referring to a new addition for a
data object , adding newly an entity data point based on
a world tree of a previous block , and storing corre
spondingly a data value of the newly added data object ;

in response to the write data in the execution result of the
transaction request referring to an update for a data
value of an existing data object , adding a patch data
point to a data point of the existing data object based on
the world tree of the previous block , and recording the
updated data value ;

in response to the write data in the transaction request
execution result referring to a deletion for the data
value of the existing data object , adding a patch data
point to the data point of the existing data object based
on the world tree of the previous block , and recording
the deletion for the data value ; and

performing an update to generate a corresponding upper
level data point and a corresponding world tree root ,
according to the newly added entity data point or the
patch data point .

3. The method according to claim 1 , wherein the updating
the world tree of the current snapshot block to the snapshot
world tree according to transaction requests between the
previous snapshot block and the current snapshot block
comprises :

US 2021/0263910 A1 Aug. 26 , 2021
11

executing sequentially transaction requests from the pre
vious snapshot block to the current snapshot block one
by one ; and

in the process of executing the transaction requests one by
one , according to write data in the execution result of
the transaction request , updating a data value corre
sponding to an entity data point and deleting a corre
sponding patch data point based on a snapshot world
tree corresponding to the previous snapshot block , until
the snapshot world tree of the current snapshot block is
generated .

4. The method according to claim 3 , wherein after updat
ing the world tree of the current snapshot block to the
snapshot world tree , the method further comprises :

updating a patch data point of a world tree of a block after
the current snapshot block , to point to an entity data
point of the current snapshot world tree .

5. The method according to claim 1 , wherein determining
the existing block becoming the current snapshot block
satisfying the snapshot condition comprises :

determining a block having a block interval from the
previous snapshot block as the current snapshot block
according to a set snapshot block interval , the block
interval from the previous snapshot block reaching the
snapshot block interval .

6. The method according to claim 1 , further comprising :
acquiring , from another node , at least one synchronization

block , the synchronization block being connected to an
existing block in a locally stored blockchain , the exist
ing block being used as a previous block of the syn
chronization block .

7. The method according to claim 6 , further comprising :
in response to a data access operation for the synchroni

zation block occurring , updating a world tree of local
data according to the synchronization block to generate
a new data point and a new world tree root .

8. The method according to claim 7 , wherein the updating
the world tree of local data according to the synchronization
block comprises :

in response to the previous block being located after a
newest snapshot block , constructing , according to a
data point of a world tree recorded in the synchroni
zation block , the world tree of the synchronization
block based on an existing world tree of the local data ;
and

in response to the previous block being located before the
newest snapshot block , executing transaction requests
from back to front one by one from the newest snapshot
block to the previous block , performing an undo update
on a snapshot world tree corresponding to the newest
snapshot block according to write data in an execution
result of a transaction request , and constructing ,
according to the data point of the world tree recorded
in the synchronization block , the world tree of the
synchronization block based on the snapshot world tree
after the undo update .

9. The method according to claim 8 , further comprising :
in response to that a fork rollback occurs , and a height of

a block having a fork point is greater than or equal to
a height of the newest snapshot block , switching the
world tree root of the local data to a world tree root of
a correct block branch ; and

in response to that the fork rollback occurs , and the height
of the block having the fork point is less than the height

of the newest snapshot block , executing transaction
requests of a wrong fork block between the newest
snapshot block and the fork point one by one from back
to front , performing an undo update on the snapshot
world tree corresponding to the newest snapshot block
according to write data in an execution result of a
transaction request ; executing , starting from the fork
point , transaction requests of a correct fork block one
by one , and updating the snapshot world tree after the
undo update according to write data in an execution
result of a transaction request .

10. The method according to claim 9 , wherein the updat
ing the snapshot world tree after the undo update according
to write data in the execution result of the transaction request
comprises :

updating , according to the write data in the execution
result of the transaction request , the snapshot world tree
after the undo update until to a location of the newest
snapshot block or a newest block , and reserving the
snapshot world tree .

11. The method according to claim 1 , further comprising :
in the process of executing the transaction requests of the

current block , storing sequentially data of the transac
tion requests into the local data in units of blocks .

12. The method according to claim 1 , wherein after
updating the world tree of the current snapshot block to the
snapshot world tree , the method further comprises :

deleting a world tree corresponding to a block before the
current snapshot block .

13. An electronic device , comprising :
at least one processor ; and
a memory , communicatively connected with the at least

one processor ,
wherein the memory stores at least one instruction execut

able by the at least one processor , and the at least one
instruction , when executed by the at least one proces
sor , causes the at least one processor to perform opera
tions , the operations comprising :

in a process of executing transaction requests of a current
block , updating a world tree of local data according to
write data in an execution result of a transaction request
to generate a new data point and a new world tree root ,
the new data point being an entity data point or a patch
data point of an existing entity data point ;

storing the new world tree root to correspond to the
current block ; and

in response to determining that an existing block becomes
a current snapshot block satisfying a snapshot condi
tion , updating a world tree of the current snapshot block
to a snapshot world tree according to transaction
requests between a previous snapshot block and the
current snapshot block , wherein a data point of the
snapshot world tree is an entity data point .

14. A non - transitory computer readable storage medium ,
storing computer instructions , wherein the computer instruc
tions , when executed by a computer , cause the computer to
perform operations , the operations comprising :

in a process of executing transaction requests of a current
block , updating a world tree of local data according to
write data in an execution result of a transaction request
to generate a new data point and a new world tree root ,
the new data point being an entity data point or a patch
data point of an existing entity data point ;

US 2021/0263910 A1 Aug. 26 , 2021
12

storing the new world tree root to correspond to the
current block ; and

in response to determining that an existing block becomes
a current snapshot block satisfying a snapshot condi
tion , updating a world tree of the current snapshot block
to a snapshot world tree according to transaction
requests between a previous snapshot block and the
current snapshot block , wherein a data point of the
snapshot world tree is an entity data point .

