
US 20180322383A1

(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0322383 A1

Feng et al . (43) Pub . Date : Nov . 8 , 2018

(52) (54) STORAGE CONTROLLER ACCELARATION
FOR NEURAL NETWORK TRAINING AND
INFERENCE

U . S . CI .
CPC GO6N 3 / 08 (2013 . 01) ; GO6N 37063

(2013 . 01) ; GO6N 3 / 04 (2013 . 01)

(71) Applicant : International Business Machines
Corporation , Armonk , NY (US) (57) ABSTRACT

(72) Inventors : Minwei Feng , Yorktown Heights , NY
(US) ; Yufei Ren , Somers , NY (US) ;
Yandong Wang , Chicago , IL (US) ; Li
Zhang , Yorktown Heights , NY (US) ;
Wei Zhang , Elmford , NY (US)

(73) Assignee : International Business Machines
Corporation , Armonk , NY (US)

(21) Appl . No . : 15 / 584 , 136
(22) Filed : May 2 , 2017

Publication Classification
(51) Int . Ci .

G06N 3 / 08 (2006 . 01)
GO6N 3 / 04 (2006 . 01)
GOON 3 / 063 (2006 . 01)

A storage controller of a machine receives training data
associated with a neural network model . The neural network
model includes a plurality of layers , and the machine further
including at least one graphics processing unit . The storage
controller trains at least one layer of the plurality of layers
of the neural network model using the training data to
generate processed training data . A size of the processed data
is less than a size of the training data . Training of the at least
one layer includes adjusting one or more weights of the at
least one layer using the training data . The storage controller
sends the processed training data to at least one graphics
processing unit of the machine . The at least one graphics
processing unit is configured to store the processed training
data and train one or more remaining layers of the plurality
of layers using the processed training data .

MACHINE A
300A CPU

302A
MEMORY

304A
+

+

+ INTERCONNECT
+

+

+

DISK
CONTROLLER

306A

GPU
310A

GPU
312A

NIC
314A

+

+

+

+

+

+
_

+
_

+
_

+

+

_

+
_

_

+
_

+
_

+
_

+
_

+
_

+
_

+
_

_

_

STORAGE
DEVICE
308A NETWORK

102

MACHINE B
300B CPU

302B
MEMORY

304B

INTERCONNECT
1 - - -

DISK
CONTROLLER

306B

GPU
310B

GPU
312B

NIC
1314B

STORAGE
DEVICE
308B

FIGURE 1

100

NEUTRAL NETWORK APPLICATION 105A
PARAMETER SERVER

Patent Application Publication

NEW

CLIENT 114

118

MULTIPLE GPUS 107A

ART

SERVER 104

NETWORK 102

OLO

STORAGE 108

Waco

Nov . 8 , 2018 Sheet 1 of 6

CLIENT 110

TRAINING DATA 109

NEUTRAL NETWORK APPLICATION 105B

CLIENT 112

DEVICE 132

MULTIPLE GPUS 107B

SERVER 106

US 2018 / 0322383 A1

FIGURE 2

200

PROCESSING UNIT 206

Patent Application Publication

GRAPHICS PROCESSOR 210
NB / MCH 202

MAIN MEMORY 208

SIO

AUDIO ADAPTER 216

236

BUS 240

SB / ICH 204

BUS 238

Nov . 8 , 2018 Sheet 2 of 6

DISK 226

CD - ROM 230

USB AND OTHER PORTS 232

PCI / PCle DEVICES 234
KEYBOARD AND MOUSE ADAPTER 220

MODEM 222

ROM 224

CODE 226A

NETWORK ADAPTER 212

REMOTE SYSTEM 2013

NETWORK 201A

.

STORAGE 2010 CODE 201C

US 2018 / 0322383 A1

FIGURE 3

CPU 302A

MEMORY 304A

MACHINE A 300A

INTERCONNECT

Patent Application Publication

DISK CONTROLLER 306A
GPU 310A

GPU 312A

NIC 314A

*

-

-

-

-

-

-

-

-

-

-

STORAGE DEVICE 308A

NETWORK 102

CPU 302B

MEMORY 304B

MACHINEB 300B

Nov . 8 , 2018 Sheet 3 of 6

INTERCONNECT
*

*

* *

*

* * *

wwwwwwwwwwwwwwww

DISK CONTROLLER 306B
GPU 310B

GPU 312B

NIC 314B

STORAGE DEVICE 308B

US 2018 / 0322383 A1

FIGURE 4

Patent Application Publication

400

CONVOLUTION OPERATION : receptive field size = 3
stride size = 2 zero padding = 1

FORWARD PASS

404

306A Disk controller

410

406

The training of the rest of layers

408

GPU 312A

Nov . 8 , 2018 Sheet 4 of 6

gradient to refine the
1 st convolution layer

4X4 Convolution Output

MEMORY 304A

7X 7 image

414)

308A

402

F - - - - - - - - - - - - - - - BACKWARD PASS -

.

.

www

US 2018 / 0322383 A1

FIGURE 5

500

START

Patent Application Publication

ISSUE TRAINING / INFERENCE REQUESTS TO STORAGE SYSTEM BY DISK CONTROLLER
502 LOAD RAW DATA FROM STORAGE MEDIA 504 TRANSFORM RAW DATA

BY DISK CONTROLLER
506

Nov . 8 , 2018 Sheet 5 of 6

CONDUCT CONVOLUTION / POOLING OPERATION (S) BY DISK CONTROLLER 508 SEND MODEL PARAMETERS TO PROCESSOR 510

US 2018 / 0322383 A1

END

FIGURE 6

600

START

Patent Application Publication

ISSUE WEIGHT UPDATE REQUESTS TO STORAGE SYSTEM BY DISK CONTROLLER 602
- NO

ENTIRE BATCH HAS BEEN PROCESSED ? 604

YES .

Nov . 8 , 2018 Sheet 6 of 6

ACCUMULATE GRADIENTS BY DISK CONTROLLER
606

CLIP / NORMALIZE GRADIENTS AND UPDATE LOCAL WEIGHTS BY CONTROLLER 608 END

US 2018 / 0322383 A1

US 2018 / 0322383 A1 Nov . 8 , 2018

STORAGE CONTROLLER ACCELARATION
FOR NEURAL NETWORK TRAINING AND

INFERENCE

TECHNICAL FIELD
[0001] The present invention relates generally to a
method , system , and computer program product for accel
eration of training and inference in neural networks . More
particularly , the present invention relates to a method , sys
tem , and computer program product for storage controller
acceleration for neural network training and inference .

particular embodiment , the storage controller comprises a
field - programmable gate array (FPGA) .
[0006] An embodiment includes a computer usable pro
gram product . The computer usable program product
includes one or more computer - readable storage devices ,
and program instructions stored on at least one of the one or
more storage devices .
10007] An embodiment includes a computer system . The
computer system includes one or more processors , one or
more computer - readable memories , and one or more com
puter - readable storage devices , and program instructions
stored on at least one of the one or more storage devices for
execution by at least one of the one or more processors via
at least one of the one or more memories . BACKGROUND

[0002] Neural networks , especially deep learning neural
networks continue to be used in more and more artificial
intelligence applications such as image processing , video
processing , voice recognition , questioning and answering ,
and machine translation . Many of these application areas
have common characteristics of requiring a large amount of
data to be processed for training of the neural network ,
employing complex neural network models having many
layers , and requiring a large amount of processing power to
train the model . Often , graphics processing units (GPUs) are
used to train neural networks . However , moving large
amounts of data into GPU memory can be very time
intensive .

BRIEF DESCRIPTION OF THE DRAWINGS
[0008] Certain novel features believed characteristic of the
invention are set forth in the appended claims . The invention
itself , however , as well as a preferred mode of use , further
objectives and advantages thereof , will best be understood
by reference to the following detailed description of the
illustrative embodiments when read in conjunction with the
accompanying drawings , wherein :
0009] . FIG . 1 depicts a block diagram of a network of data
processing systems in which illustrative embodiments may
be implemented ;
[0010] . FIG . 2 depicts a block diagram of a data processing
system in which illustrative embodiments may be imple
mented ;
[0011] FIG . 3 depicts a simplified block diagram of a
multi - machine multi - GPU architecture in which illustrative
embodiments may be implemented ;
[0012] . FIG . 4 depicts a simplified example of a disk
controller - based convolution operation according to an illus
trative embodiment ;
[0013] FIG . 5 depicts a flowchart of an example process
for training a neural network by a disk controller , and
[0014] . FIG . 6 depicts a flowchart of another example
process for training a neural network by a disk controller .

SUMMARY
[0003] The illustrative embodiments provide a method ,
system , and computer program product . An embodiment of
a method includes receiving , by a storage controller of a
machine , training data associated with a neural network
model . In the embodiment , the neural network model
includes a plurality of layers , and the machine further
including at least one graphics processing unit . In the
embodiment , the method further includes training , by the
storage controller , at least one layer of the plurality of layers
of the neural network model using the training data to
generate processed training data . In the embodiment , a size
of the processed data is less than a size of the training data ,
and training of the at least one layer includes adjusting one
or more weights of the at least one layer using the training
data . In the embodiment , the method further includes send
ing , by the storage controller , the processed training data to
at least one graphics processing unit of the machine . In the
embodiment , the at least one graphics processing unit is
configured to store the processed training data and train one
or more remaining layers of the plurality of layers using the
processed training data .
[0004] In an embodiment , the training comprises perform
ing a convolution operation on the training data , wherein the
convolution operation comprises convolving the training
data with the one or more weights of the at least one layer .
In an embodiment , the method further includes receiving at
least one gradient computed by the at least one graphics
processing unit resulting from the training of the remaining
layers . In another embodiment , the method further includes
refining training of the at least one layer using the at least
one gradient .
[0005] In a particular embodiment , the training data com
prises image data . In another particular embodiment , the
storage controller comprises a disk controller . In still another

DETAILED DESCRIPTION
[0015] The illustrative embodiments described herein gen
erally relate to storage controller acceleration of training and
inference for neural networks . In accordance with one or
more embodiments , a machine , such as a server data pro
cessing system , includes a host CPU , host memory , a disk
controller or other storage controller , a network interface
controller (NIC) , and multiple GPUs . In particular embodi
ments , a GPU card includes multiple GPUs upon the same
card , and the GPU card is configured to be inserted into a
node of the machine . In one or more embodiments , multiple
machines , each having multiple nodes and GPUs , are in
communication with each other to implement a neural
network . In one or more embodiments , the disk controller
includes circuitry and / or logic that allows communication
between system components , such as the CPU , and a storage
device . In a particular embodiment , the disk controller is a
field - programmable gate array (FPGA) based disk control
ler .
[0016] In particular embodiments , a Peripheral Compo
nent Interconnect (PCI) root complex device connects the
CPU and memory subsystem to each of the disk controller ,
GPUs and the NIC . In addition , multiple machines , each

US 2018 / 0322383 A1 Nov . 8 , 2018

having multiple GPUs , are often networked together to
implement a deep learning neural network . During training
of the neural network , input data and workloads are distrib
uted over GPUs on a cluster of machines such that each GPU
computes parameters for the neural network that must be
aggregated and synchronized between the GPUs . Often a
parameter server is used to receive parameters from each
GPU , aggregate the parameters , and provide updated param
eters to each of the GPUs . In other implementations , the
GPUs may use peer - to - peer communication to aggregate
parameters . Iterative training algorithms such as a stochastic
gradient descent algorithm often require the training status
or parameters (e . g . , a gradient) received from different GPUs
to be aggregated and synchronized every few iterations .
[0017] In machine learning , a convolutional neural net
work (CNN) is a type of feed - forward artificial neural
network in which the connectivity pattern between its nodes
(neurons) is inspired by the organization of the animal visual
cortex , whose individual neurons are arranged to respond to
overlapping regions tiling a visual field . Convolutional
networks mimic biological processes and are configured as
variations of multilayer perceptrons designed to use minimal
amounts of preprocessing while processing data , such as
digital images .
[0018] Convolutional neural networks (CNN) are net
works with overlapping “ reception fields ” performing con
volution tasks . A CNN is particularly efficient in recognizing
image features , such as by differentiating pixels or pixel
regions in a digital image from other pixels or pixel regions
in the digital image . Generally , a CNN is designed to
recognize images or parts of an image , such as detecting the
edges of an object recognized on the image . Computer
vision is a field of endeavor where CNNs are commonly
used .
[0019] A deep neural network (DNN) is an artificial neural
network (ANN) with multiple hidden layers of units
between the input and output layers . Similar to shallow
ANNs , DNNs can model complex non - linear relationships .
DNN architectures , e . g . , for object detection and parsing ,
generate compositional models where the object is
expressed as a layered composition of image primitives . The
extra layers enable composition of features from lower
layers , giving the potential of modeling complex data with
fewer units than a similarly performing shallow network .
DNNs are typically designed as feedforward networks .
[0020] Many large - scale data - intensive applications rely
on both input data and a large number of model parameters
to conduct computations . Deep learning algorithms are
typical examples of this category . Machine learning algo
rithms generate models to fit training data and then use the
generated models to generate predictions for input data .
Models are generally mathematical equations and / or logic
having model parameters . Model training is used to find
appropriate values of the model parameters , e . g . , weights of
neural nodes in a neural network , so that the models can
provide accurate predictions . In a typical example of training
of a model , a batch of image data is input to a model and
computations are performed on the image data using the
model to provide an output used to train the model .
[0021] As the network is trained , the neurons in the
intermediate layers organize themselves in such a way that
the different neurons learn to recognize different character
istics of a total input space . After training , when an arbitrary
input is input to the neural network , neurons in the hidden

layer of the network respond with an active output if the new
input contains a pattern that resembles a feature that the
individual neurons have learned to recognize during their
training .
[0022] Gradients generated for different items within the
same batch are accumulated during batch processing , and
normalized at the end of the batch resulting in an iteration
for each batch processing . Current deep learning frame
works utilize multiple local graphics processing units
(GPUs) to accelerate training . Local GPUs are GPUs that are
located within a single node of a machine . Distributed GPUs
are GPUs that are located in different machines in commu
nication with one another over a network .
[0023] . In conventional implementations of employing
GPUs for training of neural networks , a large amount of data
must typically be moved from storage into GPU memory to
allow the GPUs to perform training operations of the neural
network . For example , for climate / weather related data , each
input record is composed of images of a location including
temperature , humidity , wind speed , cloud cover , and other
weather data . In a typical example , the climate / weather
related data can consume as much as 40 megabytes (MB) of
data per image . In a typical situation , moving this amount of
data into GPU memory in order to train the neural network
can consume a large amount of time and network bandwidth .
Accordingly , there is a need to accelerate the process of
moving data into GPU memory in order to speed up the
overall training and inference operations of neural networks .
Inference refers to utilizing the trained neural network to
produce a result in response to a new input to the neural
network .
[0024] Preprocessing of training data within neural net
works is often performed to improve the neural network
training process such as to improve the accuracy of the
training of the neural network or reduce the computational
complexity of the training process . For example , data com
pression may be performed on the training data to reduce the
dimensionality of the training data to reduce the computa
tional complexity of the training process . In another
example , data sampling may be performed to , for example ,
downsample the training data to reduce the size of the
training data prior to training . In still another example , data
aggregation may be performed on the training data to
aggregate the training data prior to training the neural
network model .
0025] In accordance with one or more embodiments ,
instead of moving the original training data from storage
into GPU memory for processing , a disk controller of a
machine retrieves the original training data from a storage
device , performs preprocessing of the original training data
to reduce the size of the original training data , and transfers
the reduced training data into GPU memory of one or more
GPUs for further processing of the training data by the
GPU (s) to complete the training of the neural network . In
particular embodiments , the disk controller of a machine
performs preprocessing of the training data by performing
one or more of data compression , data sampling , and data
aggregation upon the training data .
[0026] In one or more embodiments , training of a neural
network model includes forward pass training operations
and backward pass training operations . During a forward
pass , training data is input through the neural network model
in order to train and / or adjust weights within the neural
network and generate output values . During a backward

US 2018 / 0322383 A1 Nov . 8 , 2018

pass , gradients of an error of the output values and target
values are calculated and passed back to the neural network
input in order to refine training of the neural network by
modifying the weights of the neural network using the
calculated gradients . In other embodiments , the disk con
troller performs preprocessing of the training data by pro
cessing one or more initial layers of the neural network .
100271 . In one or more embodiments , a neural network
model includes a chain of processing layers in which each
layer performs a particular operation upon input data . In
particular embodiments , an initial layer of the neural net
work model includes a convolution layer in which a con
volution operation is performed on training data and the
output of the convolution operation passed on to further
layers of the neural network mode . In a particular embodi -
ment , the disk controller computes model parameters of an
initial convolution layer of a neural network model and
passes the model parameter to one or more GPUs to compute
the remaining layers of the neural network model . In one or
more embodiments , the convolution operation includes con
volving the training data with one or more weights of the
convolution layer . In a particular embodiment , the disk
controller may be a field - programmable gate array (FGPA)
configured as a disk controller .
[0028] In one or more embodiments , the disk controller of
a machine retrieves the training data from a storage device ,
processes one or more initial layers of the neural network
model within the disk controller to produce one or more
model parameters , and stores the model parameters associ
ated with the one or more layers within memory associated
with (e . g . , inside) the disk controller . In one or more
embodiments , the disk controller transfers the model param
eters from the disk controller to GPU memory of one or
more GPUs within the machine . In one embodiment , during
a forward pass of the training procedure , the disk controller
transfers the model parameters to the host CPU of the
machine , the host CPU stores the model parameters within
host memory associated with the host CPU , and the host
CPU transfers the model parameters from the host memory
to GPU memory associated within one or more of the GPUS
of the machine . In another particular embodiment , the disk
controller transfers the model parameters directly to the
GPU memory without requiring use of the host CPU or host
memory . In one or more embodiments , the model param
eters are transferred directly to the GPU memory using a
remote direct memory access (RDMA) procedure such as a
GPUDirect RDMA procedure .
10029] In one or more embodiments , during a backward
pass of the training procedure , the GPU uses the model
parameters computed with respect to the initial layers to
complete training of the remaining layers of the neural
network model . In particular embodiments , during a back
ward pass of the training procedure , the GPU computes
gradients to refine the one or more initial layers , and
transfers the gradients to the host CPU . In the embodiment ,
the host CPU stores the gradients within the host memory ,
and transfers the gradients to the disk controller . In the
particular embodiment , the disk controller utilizes the gra
dients to refine the training processing of the one or more
initial layers of the neural network model by modifying the
weights of the initial layers using the gradients .
[0030] In one or more embodiments , after training of the
neural network , the storage controller is configured to accel
erate inference operations of the neural network . As previ -

ously discussed , inference refers to utilizing the trained
neural network to generate an output from a given input
using a set of predefined parameters . In a particular embodi
ment , new input data is retrieved by the storage controller
from a storage device , and the storage controller computes
one or more initial layers of the previously trained neural
network using the new input data . In the particular embodi
ment , the storage controller sends the results of the compu
tation to one or more GPUs , or other processors , to compute
the remaining layers of the neural network model upon the
new input data .
[0031] In accordance with one or more embodiments ,
processing of one or more layers of a neural network model
by a storage controller reduces the volume of data that must
be transferred to the GPUs of a machine . In a particular
example in which a neural network model is used for
forecasting solar energy efficiency using weather related
data , input data may include a four - dimensional weather
data tensor of a size 30x6x256x256 . The input tensor may
be preprocessed by a storage controller to reduce the size of
the input data to an output tensor of 160x4x31x31 resulting
in a significant reduction in size and bandwidth usage during
training of the neural network . In another particular
example , a deep learning system utilizing health care data to
support smart diagnosis , e . g . , functional magnetic resonance
imaging (fMRI) may have an four - dimensional fMRI input
tensor of 50x20x256x256 . The input tensor may be pro
cessed by a storage controller to reduce the size of the input
data to an output tensor of 160x18x31x31 again resulting in
a significant reduction in size and bandwidth usage during
training of the neural network ,
(0032] The illustrative embodiments are described with
respect to certain types of disk controller , storage control
lers , GPUs , machines , deep learning systems , neural net
works , neural network models , neural network model
parameters , procedures , transmissions , responses , devices ,
data processing systems , environments , components , and
applications only as examples . Any specific manifestations
of these and other similar artifacts are not intended to be
limiting to the invention . Any suitable manifestation of these
and other similar artifacts can be selected within the scope
of the illustrative embodiments .
[0033] . Furthermore , the illustrative embodiments may be
implemented with respect to any type of data , data source ,
or access to a data source over a data network . Any type of
data storage device may provide the data to an embodiment
of the invention , either locally at a data processing system or
over a data network , within the scope of the invention .
Where an embodiment is described using a mobile device ,
any type of data storage device suitable for use with the
mobile device may provide the data to such embodiment ,
either locally at the mobile device or over a data network ,
within the scope of the illustrative embodiments .
[0034] The illustrative embodiments are described using
specific code , designs , architectures , protocols , layouts ,
schematics , and tools only as examples and are not limiting
to the illustrative embodiments . Furthermore , the illustrative
embodiments are described in some instances using particu
lar software , tools , and data processing environments only as
an example for the clarity of the description . The illustrative
embodiments may be used in conjunction with other com
parable or similarly purposed structures , systems , applica
tions , or architectures . For example , other comparable
mobile devices , structures , systems , applications , or archi

US 2018 / 0322383 A1 Nov . 8 , 2018

tectures therefor , may be used in conjunction with such
embodiment of the invention within the scope of the inven
tion . An illustrative embodiment may be implemented in
hardware , software , or a combination thereof .
[0035] The examples in this disclosure are used only for
the clarity of the description and are not limiting to the
illustrative embodiments . Additional data , operations ,
actions , tasks , activities , and manipulations will be conceiv
able from this disclosure and the same are contemplated
within the scope of the illustrative embodiments .
10036] Any advantages listed herein are only examples
and are not intended to be limiting to the illustrative embodi
ments . Additional or different advantages may be realized by
specific illustrative embodiments . Furthermore , a particular
illustrative embodiment may have some , all , or none of the
advantages listed above .
[0037] With reference to the figures and in particular with
reference to FIGS . 1 and 2 , these figures are example
diagrams of data processing environments in which illus
trative embodiments may be implemented . FIGS . 1 and 2 are
only examples and are not intended to assert or imply any
limitation with regard to the environments in which different
embodiments may be implemented . A particular implemen
tation may make many modifications to the depicted envi
ronments based on the following description .
[0038] FIG . 1 depicts a block diagram of a network of data
processing systems in which illustrative embodiments may
be implemented . Data processing environment 100 is a
network of computers in which the illustrative embodiments
may be implemented . Data processing environment 100
includes network 102 . Network 102 is the medium used to
provide communications links between various devices and
computers connected together within data processing envi
ronment 100 . Network 102 may include connections , such
as wire , wireless communication links , or fiber optic cables .
10039] Clients or servers are only example roles of certain
data processing systems connected to network 102 and are
not intended to exclude other configurations or roles for
these data processing systems . Server 104 and server 106
couple to network 102 along with storage unit 108 . In one
or more embodiments , storage 108 may be configured to
store training data 109 , such as image data , for training a
neural network . Software applications may execute on any
computer in data processing environment 100 . Clients 110 ,
112 , and 114 are also coupled to network 102 . A data
processing system , such as server 104 or 106 , or client 110 ,
112 , or 114 may contain data and may have software
applications or software tools executing thereon .
[0040] Only as an example , and without implying any
limitation to such architecture , FIG . 1 depicts certain com
ponents that are usable in an example implementation of an
embodiment . For example , servers 104 and 106 , and clients
110 , 112 , 114 , are depicted as servers and clients only as
example and not to imply a limitation to a client - server
architecture . As another example , an embodiment can be
distributed across several data processing systems and a data
network as shown , whereas another embodiment can be
implemented on a single data processing system within the
scope of the illustrative embodiments . Data processing
systems 104 , 106 , 110 , 112 , and 114 also represent example
nodes in a cluster , partitions , and other configurations suit
able for implementing an embodiment .
[0041] In an embodiment , one or more of neural network
application 105A of server 104 and neural network appli

cation 105B of server 106 implements an embodiment of a
neural network , such as a deep learning neural network , as
described herein . In a particular embodiment , the neural
network is implemented using one of network application
105A and network application 105B within a single server .
In another particular embodiment , the neural network is
implemented using both neural network application 105A
and neural network application 105B within a single server .
Server 104 includes multiple GPUs 107A including multiple
nodes in which each node may include one or more GPUs
as described herein . Similarly , server 106 includes multiple
GPUs 107B including multiple nodes in which each node
may include one or more GPUs as described herein .
10042] Parameter server 118 is an example of a parameter
server as described herein . In one or more embodiments ,
parameter server 118 is configured to receive neural network
model parameters from each GPU , aggregate the param
eters , and provide updated parameters to each of the GPUs .
[0043) Device 132 is an example of a device described
herein . For example , device 132 may send a request to server
104 to perform one or more data processing tasks by neural
network applications 105A , 105B such as initiating training
of the neural network . Any software application described as
executing in another data processing system in FIG . 1 can be
configured to execute in device 132 in a similar manner . Any
data or information stored or produced in another data
processing system in FIG . 1 can be configured to be stored
or produced in device 132 in a similar manner .
[0044] Servers 104 and 106 , storage unit 108 , and clients
110 , 112 , and 114 , and device 132 may couple to network
102 using wired connections , wireless communication pro
tocols , or other suitable data connectivity . Clients 110 , 112 ,
and 114 may be , for example , personal computers or net
work computers .
10045] In the depicted example , server 104 may provide
data , such as boot files , operating system images , and
applications to clients 110 , 112 , and 114 . Clients 110 , 112 ,
and 114 may be clients to server 104 in this example . Clients
110 , 112 , 114 , or some combination thereof , may include
their own data , boot files , operating system images , and
applications . Data processing environment 100 may include
additional servers , clients , and other devices that are not
shown .
[0046] In the depicted example , data processing environ
ment 100 may be the Internet . Network 102 may represent
a collection of networks and gateways that use the Trans
mission Control Protocol / Internet Protocol (TCP / IP) and
other protocols to communicate with one another . At the
heart of the Internet is a backbone of data communication
links between major nodes or host computers , including
thousands of commercial , governmental , educational , and
other computer systems that route data and messages . Of
course , data processing environment 100 also may be imple
mented as a number of different types of networks , such as
for example , an intranet , a local area network (LAN) , or a
wide area network (WAN) . FIG . 1 is intended as an example ,
and not as an architectural limitation for the different illus
trative embodiments .
[0047] Among other uses , data processing environment
100 may be used for implementing a client - server environ
ment in which the illustrative embodiments may be imple
mented . A client - server environment enables software appli
cations and data to be distributed across a network such that
an application functions by using the interactivity between a

US 2018 / 0322383 A1 Nov . 8 , 2018

client data processing system and a server data processing
system . Data processing environment 100 may also employ
a service oriented architecture where interoperable software
components distributed across a network may be packaged
together as coherent business applications . Data processing
environment 100 may also take the form of a cloud , and
employ a cloud computing model of service delivery for
enabling convenient , on - demand network access to a shared
pool of configurable computing resources (e . g . networks ,
network bandwidth , servers , processing , memory , storage ,
applications , virtual machines , and services) that can be
rapidly provisioned and released with minimal management
effort or interaction with a provider of the service .

[0048] With reference to FIG . 2 , this figure depicts a block
diagram of a data processing system in which illustrative
embodiments may be implemented . Data processing system
200 is an example of a computer , such as servers 104 and
106 , or clients 110 , 112 , and 114 in FIG . 1 , or another type
of device in which computer usable program code or instruc
tions implementing the processes may be located for the
illustrative embodiments .
[0049] Data processing system 200 is also representative
of a data processing system or a configuration therein , such
as data processing system 132 in FIG . 1 in which computer
usable program code or instructions implementing the pro
cesses of the illustrative embodiments may be located . Data
processing system 200 is described as a computer only as an
example , without being limited thereto . Implementations in
the form of other devices , such as device 132 in FIG . 1 , may
modify data processing system 200 , such as by adding a
touch interface , and even eliminate certain depicted com
ponents from data processing system 200 without departing
from the general description of the operations and functions
of data processing system 200 described herein .
[0050] In the depicted example , data processing system
200 employs a hub architecture including North Bridge and
memory controller hub (NB / MCH) 202 and South Bridge
and input / output (I / O) controller hub (SB / ICH) 204 . Pro
cessing unit 206 , main memory 208 , and graphics processor
210 are coupled to North Bridge and memory controller hub
(NB / MCH) 202 . Processing unit 206 may contain one or
more processors and may be implemented using one or more
heterogeneous processor systems . Processing unit 206 may
be a multi - core processor . Graphics processor 210 may be
coupled to NB / MCH 202 through an accelerated graphics
port (AGP) in certain implementations .
[0051] In the depicted example , local area network (LAN)
adapter 212 is coupled to South Bridge and I / O controller
hub (SB / ICH) 204 . Audio adapter 216 , keyboard and mouse
adapter 220 , modem 222 , read only memory (ROM) 224 ,
universal serial bus (USB) and other ports 232 , and PCI /
PCIe devices 234 are coupled to South Bridge and I / O
controller hub 204 through bus 238 . Hard disk drive (HDD)
or solid - state drive (SSD) 226 and CD - ROM 230 are
coupled to South Bridge and I / O controller hub 204 through
bus 240 . PCI / PCIe devices 234 may include , for example ,
Ethernet adapters , add - in cards , and PC cards for notebook
computers . PCI uses a card bus controller , while PCIe does
not . ROM 224 may be , for example , a flash binary input /
output system (BIOS) . Hard disk drive 226 and CD - ROM
230 may use , for example , an integrated drive electronics
(IDE) , serial advanced technology attachment (SATA) inter -
face , or variants such as external - SATA (ESATA) and micro -

SATA (mSATA) . A super I / O (SIO) device 236 may be
coupled to South Bridge and I / O controller hub (SB / ICH)
204 through bus 238 .
[0052] Memories , such as main memory 208 , ROM 224 ,
or flash memory (not shown) , are some examples of com
puter usable storage devices . Hard disk drive or solid state
drive 226 , CD - ROM 230 , and other similarly usable devices
are some examples of computer usable storage devices
including a computer usable storage medium .
[0053] An operating system runs on processing unit 206 .
The operating system coordinates and provides control of
various components within data processing system 200 in
FIG . 2 . The operating system may be a commercially
available operating system for any type of computing plat
form , including but not limited to server systems , personal
computers , and mobile devices . An object oriented or other
type of programming system may operate in conjunction
with the operating system and provide calls to the operating
system from programs or applications executing on data
processing system 200 .
[0054] Instructions for the operating system , the object
oriented programming system , and applications or pro
grams , such as applications 105A and 105B in FIG . 1 , are
located on storage devices , such as in the form of code 226A
on hard disk drive 226 , and may be loaded into at least one
of one or more memories , such as main memory 208 , for
execution by processing unit 206 . The processes of the
illustrative embodiments may be performed by processing
unit 206 using computer implemented instructions , which
may be located in a memory , such as , for example , main
memory 208 , read only memory 224 , or in one or more
peripheral devices .
[0055] Furthermore , in one case , code 226A may be
downloaded over network 201A from remote system 201B ,
where similar code 201C is stored on a storage device 2011 .
In another case , code 226A may be downloaded over net
work 201A to remote system 201B , where downloaded code
201C is stored on a storage device 2010 .
100561 The hardware in FIGS . 1 - 2 may vary depending on
the implementation . Other internal hardware or peripheral
devices , such as flash memory , equivalent non - volatile
memory , or optical disk drives and the like , may be used in
addition to or in place of the hardware depicted in FIGS . 1 - 2 .
In addition , the processes of the illustrative embodiments
may be applied to a multiprocessor data processing system .
[0057] In some illustrative examples , data processing sys
tem 200 may be a personal digital assistant (PDA) , which is
generally configured with flash memory to provide non
volatile memory for storing operating system files and / or
user - generated data . A bus system may comprise one or
more buses , such as a system bus , an I / O bus , and a PCI bus .
Of course , the bus system may be implemented using any
type of communications fabric or architecture that provides
for a transfer of data between different components or
devices attached to the fabric or architecture .
[0058) . A communications unit may include one or more
devices used to transmit and receive data , such as a modem
or a network adapter . A memory may be , for example , main
memory 208 or a cache , such as the cache found in North
Bridge and memory controller hub 202 . A processing unit
may include one or more processors or CPUs .
[0059] The depicted examples in FIGS . 1 - 2 and above
described examples are not meant to imply architectural
limitations . For example , data processing system 200 also

US 2018 / 0322383 A1 Nov . 8 , 2018

may be a tablet computer , laptop computer , or telephone
device in addition to taking the form of a mobile or wearable
device .
10060] Where a computer or data processing system is
described as a virtual machine , a virtual device , or a virtual
component , the virtual machine , virtual device , or the virtual
component operates in the manner of data processing system
200 using virtualized manifestation of some or all compo
nents depicted in data processing system 200 . For example ,
in a virtual machine , virtual device , or virtual component ,
processing unit 206 is manifested as a virtualized instance of
all or some number of hardware processing units 206
available in a host data processing system , main memory
208 is manifested as a virtualized instance of all or some
portion of main memory 208 that may be available in the
host data processing system , and disk 226 is manifested as
a virtualized instance of all or some portion of disk 226 that
may be available in the host data processing system . The
host data processing system in such cases is represented by
data processing system 200 .
[0061] With respect to FIG . 3 , this figure depicts a sim
plified block diagram of a multi - machine multi - GPU neural
network architecture in which illustrative embodiments may
be implemented . In an embodiment , the neural network
architecture includes a first machine 300A and a second
machine 300B . In an embodiment , first machine 300A
includes server 104 of FIG . 1 and second machine 300B
includes server 106 of FIG . 1 . In one or more embodiments ,
first machine 300A executes neural network application
105A and second machine 300B executes neural network
application 105B to implement a deep learning neural net
work . In an embodiment , first machine 300A includes a CPU
302A , a memory 304A , a disk controller 306A , a storage
device 308A , a first GPU 310A , a second GPU 312A , and
a network interface controller (NIC) 314A . In the particular
embodiment , CPU 302A , disk controller 306A , storage
device 308A , first GPU 310A , second GPU 312A , and NIC
314A are in communication via a PCIe bus . In a particular
embodiment , disk controller 306A includes a field - program
mable gate arrays (FPGA) .
[0062] Similarly , in the embodiment , second machine
300B includes a CPU 302B , a memory 304B , a disk con
troller 306B , a storage device 308B , a first GPU 310B , a
second GPU 312B , and a network interface controller (NIC)
314B . In the particular embodiment , CPU 302B , disk con
troller 306B , storage device 308B , first GPU 310B , second
GPU 312B , and NIC 314B are in communication via a PCIe
bus . In the particular embodiment , NIC 314A of first
machine 300A and NIC 314B of second machine 300B are
in communication with one another via network 102 .
[0063] In one or more embodiments , disk controller 306A
retrieves a portion of training data associated with a neural
network model from storage device 308A and stores the
training data within memory associated (or within) disk
controller 306A . In the embodiment , disk controller 306A
processes the retrieved portion of the training data within
disk controller 306A . In a particular embodiment , disk
controller 306A includes a processor configured to process
the retrieved portion of the training data . In a particular
embodiment , disk controller 306A processes the training
data by preprocessing the training data within disk controller
306A such as performing one or more of data compression ,
data sampling , or data aggregation on the training data . In
another particular embodiment , disk controller 306A pro

cesses the retrieved training data by training one or more
layers of the neural network model using the retrieved
training data within disk controller 306A .
10064] In one or more embodiments , a neural network
model includes a convolution layer as an initial layer to
perform convolution operations on input training data . In a
particular embodiment , disk controller 306A processes the
retrieved training data by performing a convolution opera
tion on the retrieved training data to process an initial layer
of the neural network model .
[0065] After processing the retrieved portion of the train
ing data , disk controller 306A sends the processed training
data to one or more of first GPU 310A and second GPU
312A , and one or more of first GPU 310A and second GPU
312A uses the processed training data to continue training
the remaining layers of the neural network . In one or more
embodiments , the processed training data includes model
parameters (e . g . , weights) associated with the processed
layers of the neural network model . In a particular embodi
ment , disk controller 306A sends the processed training data
to CPU 302A , CPU 302A stores the processed training data
within memory 304A , and CPU 302A transfers the pro
cessed training data to one or more of first GPU 310A and
second GPU 312A . In another particular embodiment , disk
controller 306A sends the processed training data to one or
more of first GPU 310A and second GPU 312A without
utilizing CPU 302A .
[0066] In an embodiment , one or more of disk controller
306A , first GPU 310A and second GPU 312A sends model
parameters associated with one or more neural network
layers to second machine 300B either directly or via a
parameters server , such as parameter server 118 . In one or
more embodiments , second machine 300B utilizes the
received model parameters to train layers of the neural
network model . Accordingly , first machine 300A and second
machine 300B may maintain synchronization between dis
tributed processing of the neural network model .
[0067] In some embodiments , one or more of first GPU
310A and second GPU 312A computes gradients during
processing of the training data and sends the gradients to
disk controller 306A during a backward pass of the training
process . In particular embodiments , one or more of first
GPU 310A and second GPU 312A sends the computed
gradients to CPU 302A , CPU 302A stores the gradients in
memory 304A , and CPU 302A sends the gradients to disk
controller 306A . In one or more embodiments , disk control
ler 306A utilizes the computed gradients to further training
one or more layers of the neural network .
[0068] With respect to FIG . 4 , this figures depicts a
simplified example of a disk controller - based convolution
operation according to an illustrative embodiment . In the
example convolution operation , disk controller 306A
retrieves training data including a 7x7 image 402 from
storage device 308a . Disk controller 306A further performs
a convolution operation as a first layer of the neural network
model . In the particular illustrated example , the convolution
operation has a receptive filed size = 3 , a stride size = 2 , and a
zero padding = 1 upon the 7x7 image to produce a convolu
tion output 404 . The receptive field size is equivalent to the
filter size of the filter used during the convolution operation .
The stride size determines the slide of the filter during the
convolution operation . The zero padding indicates the num
ber of zero values that are inserted around the edges of the
7x7 image during the convolution operation .

US 2018 / 0322383 A1 Nov . 8 , 2018

[0069] In the illustrated example , the convolution output
404 is a 4x4 image . Accordingly , the original training data
is reduced from a 7x7 size to a 4x4 size . In an operation 406 ,
disk controller 306A sends convolution output 404 to CPU
302A , and CPU 302A stores convolution output 404 within
memory 304A . In an operation 408 , CPU 302A retrieves
convolution output 404 from memory 304A and sends
convolution output 404 to GPU 312A . In an operation 410 ,
GPU 312A continues training the rest of the layers of the
neural network model using the convolution output 404 .
[0070] In one or more embodiments , in an operation 412 ,
GPU 312A computes gradients to refine the first convolution
layer , sends the gradients to CPU 302A , and CPU 302A
stores the gradients in memory 304A . In the embodiment ,
CPU 302A retrieves the gradients from memory 304A and
sends the gradients to disk controller 306A . In the embodi
ment , disk controller 306A utilizes the gradients to refine the
first layer convolution operation .
[0071] With reference to FIG . 5 , this figure depicts a
flowchart of an example process 500 for training a neural
network by a disk controller . In the example of FIG . 5 , disk
controller 306A performs a forward pass of a training
operation of the neural network . In block 502 , disk control
ler 306A issues one or more training / inference requests to a
storage system including storage device 308A . In block 504 ,
disk controller 306A loads raw training data , such as image
data , from the storage media (e . g . , storage device 308A) of
the storage system . In block 506 , disk controller 306A
transforms the raw training data into a format suitable for
further processing the training data using one or more layers
of the neural network model . In particular embodiments ,
disk controller 306A transforms the raw training data by
performing one or more of data compression , data sampling ,
data aggregation , image manipulation (e . g . , cropping or
transposing) upon the raw training data .
[0072] In 508 , disk controller 306A processes the training
data utilizing the one or more layers of the neural network
model by conduction one or more of convolution and / or
pooling operations on the training data to generate model
parameters . In block 510 , disk controller 306A sends the
model parameters to processor memory of the machine . In
one or more embodiments , the model parameters include
neuron values of the processed layer (s) . In particular
embodiments , disk controller 306A sends the model param
eters to host memory (e . g . , memory 304A) associated with
a host processor (e . g . CPU 302A) of the machine . In
particular embodiments , the host processor is configured to
copy the model parameters to memory associated with one
or more GPUs such as GPU 310A . In one or more embodi
ments , the one or more GPUs are configured to further
process one or more remaining layers of the neural network
utilizing the model parameters until the neural network is
trained . The process 300 then ends .
[0073] With reference to FIG . 6 , this figure depicts a
flowchart of another example process 600 for training a
neural network by a disk controller . In the example of FIG .
6 , disk controller 306A performs a backward pass of a
training operation of the neural network . In block 602 , disk
controller 306A issues a weight update request to the storage
system including storage device 308A for receiving updated
weight parameters including one or more gradients received
from one or more GPUs . In one or more embodiments , the
gradients are computed by the one or more GPUs during
training of one or more layers of the neural network . In block

604 , disk controller 306A determines whether an entire
batch of gradients has been processed by the one or more
GPUs . If the entire batch of gradients has not been pro
cessed , disk controller 306A continues to accumulated the
gradients received from the GPUs in block 606 . If the entire
batch of gradients has been processed , disk controller 306A
clips and / or normalizes the gradients and updates the local
weights on the initial neural network model layers . The
process 600 then ends .
[0074] Although in various embodiments processes are
described as being performed a disk controller , in other
embodiments the processes may be performed by other
types of storage controllers .
[0075] Although various embodiments are described with
respect to operations within a neural network , it should be
understood that the principles described herein may be
applied to any suitable data processing operations performed
by a computer system or other electronic device .
[0076] Thus , a computer implemented method , system or
apparatus , and computer program product are provided in
the illustrative embodiments for local multicast operations
with a neural network and other related features , functions ,
or operations . Where an embodiment or a portion thereof is
described with respect to a type of device , the computer
implemented method , system or apparatus , the computer
program product , or a portion thereof , are adapted or con
figured for use with a suitable and comparable manifestation
of that type of device .
[0077] Where an embodiment is described as imple
mented in an application , the delivery of the application in
a Software as a Service (SaaS) model is contemplated within
the scope of the illustrative embodiments . In a SaaS model ,
the capability of the application implementing an embodi
ment is provided to a user by executing the application in a
cloud infrastructure . The user can access the application
using a variety of client devices through a thin client
interface such as a web browser (e . g . , web - based e - mail) , or
other light - weight client - applications . The user does not
manage or control the underlying cloud infrastructure
including the network , servers , operating systems , or the
storage of the cloud infrastructure . In some cases , the user
may not even manage or control the capabilities of the SaaS
application . In some other cases , the SaaS implementation of
the application may permit a possible exception of limited
user - specific application configuration settings .
[0078] The present invention may be a system , a method ,
and / or a computer program product at any possible technical
detail level of integration . The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention .
[0079] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device . The computer readable
storage medium may be , for example , but is not limited to ,
an electronic storage device , a magnetic storage device , an
optical storage device , an electromagnetic storage device , a
semiconductor storage device , or any suitable combination
of the foregoing . A non - exhaustive list of more specific
examples of the computer readable storage medium includes
the following : a portable computer diskette , a hard disk , a
random access memory (RAM) , a read - only memory
(ROM) , an erasable programmable read - only memory

US 2018 / 0322383 A1 Nov . 8 , 2018

(EPROM or Flash memory) , a static random access memory
(SRAM) , a portable compact disc read - only memory (CD
ROM) , a digital versatile disk (DVD) , a memory stick , a
floppy disk , a mechanically encoded device such as punch
cards or raised structures in a groove having instructions
recorded thereon , and any suitable combination of the fore
going . A computer readable storage medium , as used herein ,
is not to be construed as being transitory signals per se , such
as radio waves or other freely propagating electromagnetic
waves , electromagnetic waves propagating through a wave
guide or other transmission media (e . g . , light pulses passing
through a fiber - optic cable) , or electrical signals transmitted
through a wire .
[0080] Computer readable program instructions described
herein can be downloaded to respective computing / process
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net
work , for example , the Internet , a local area network , a wide
area network and / or a wireless network . The network may
comprise copper transmission cables , optical transmission
fibers , wireless transmission , routers , firewalls , switches ,
gateway computers and / or edge servers . A network adapter
card or network interface in each computing / processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing / processing
device .
[0081] Computer readable program instructions for carry
ing out operations of the present invention may be assembler
instructions , instruction - set - architecture (ISA) instructions ,
machine instructions , machine dependent instructions ,
microcode , firmware instructions , state - setting data , con
figuration data for integrated circuitry , or either source code
or object code written in any combination of one or more
programming languages , including an object oriented pro
gramming language such as Smalltalk , C + + , or the like , and
procedural programming languages , such as the “ C ” pro
gramming language or similar programming languages . The
computer readable program instructions may execute
entirely on the user ' s computer , partly on the user ' s com
puter , as a stand - alone software package , partly on the user ' s
computer and partly on a remote computer or entirely on the
remote computer or server . In the latter scenario , the remote
computer may be connected to the user ' s computer through
any type of network , including a local area network (LAN)
or a wide area network (WAN) , or the connection may be
made to an external computer (for example , through the
Internet using an Internet Service Provider) . In some
embodiments , electronic circuitry including , for example ,
programmable logic circuitry , field - programmable gate
arrays (FPGA) , or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry , in order to
perform aspects of the present invention .
[0082] Aspects of the present invention are described
herein with reference to flowchart illustrations and / or block
diagrams of methods , apparatus (systems) , and computer
program products according to embodiments of the inven
tion . It will be understood that each block of the flowchart
illustrations and / or block diagrams , and combinations of

blocks in the flowchart illustrations and / or block diagrams ,
can be implemented by computer readable program instruc
tions .
[0083] These computer readable program instructions may
be provided to a processor of a general purpose computer ,
special purpose computer , or other programmable data pro
cessing apparatus to produce a machine , such that the
instructions , which execute via the processor of the com
puter or other programmable data processing apparatus ,
create means for implementing the functions / acts specified
in the flowchart and / or block diagram block or blocks . These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer , a programmable data processing apparatus , and
or other devices to function in a particular manner , such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function / act
specified in the flowchart and / or block diagram block or
blocks .
10084] The computer readable program instructions may
also be loaded onto a computer , other programmable data
processing apparatus , or other device to cause a series of
operational steps to be performed on the computer , other
programmable apparatus or other device to produce a com
puter implemented process , such that the instructions which
execute on the computer , other programmable apparatus , or
other device implement the functions / acts specified in the
flowchart and / or block diagram block or blocks .
[0085) The flowchart and block diagrams in the Figures
illustrate the architecture , functionality , and operation of
possible implementations of systems , methods , and com
puter program products according to various embodiments
of the present invention . In this regard , each block in the
flowchart or block diagrams may represent a module , seg
ment , or portion of instructions , which comprises one or
more executable instructions for implementing the specified
logical function (s) . In some alternative implementations , the
functions noted in the blocks may occur out of the order
noted in the Figures . For example , two blocks shown in
succession may , in fact , be executed substantially concur
rently , or the blocks may sometimes be executed in the
reverse order , depending upon the functionality involved . It
will also be noted that each block of the block diagrams
and / or flowchart illustration , and combinations of blocks in
the block diagrams and / or flowchart illustration , can be
implemented by special purpose hardware - based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions .
What is claimed is :
1 . A method comprising :
receiving , by a storage controller of a machine , training

data associated with a neural network model , the neural
network model including a plurality of layers , and the
machine further including at least one graphics pro
cessing unit ;

training , by the storage controller , at least one layer of the
plurality of layers of the neural network model using
the training data to generate processed training data ,
wherein a size of the processed data is less than a size
of the training data , and wherein training of the at least
one layer includes adjusting one or more weights of the
at least one layer using the training data ; and

US 2018 / 0322383 A1 Nov . 8 , 2018

sending , by the storage controller , the processed training
data to at least one graphics processing unit of the
machine , the at least one graphics processing unit
configured to store the processed training data and train
one or more remaining layers of the plurality of layers
using the processed training data .

2 . The method of claim 1 , wherein the training comprises
performing a convolution operation on the training data ,
wherein the convolution operation comprises convolving the
training data with the one or more weights of the at least one
layer .

3 . The method of claim 1 , further comprising receiving at
least one gradient computed by the at least one graphics
processing unit resulting from the training of the remaining
layers .

4 . The method of claim 4 , further comprising refining
training of the at least one layer using the at least one
gradient .

5 . The method of claim 1 , wherein the training data
comprises image data .

6 . The method of claim 1 , wherein the storage controller
comprises a disk controller .

7 . The method of claim 1 , wherein the storage controller
comprises a field - programmable gate array (FPGA) .

8 . A computer usable program product comprising one or
more computer - readable storage devices , and program
instructions stored on at least one of the one or more storage
devices , the stored program instructions comprising :

program instructions to receive , by a storage controller of
a machine , training data associated with a neural net
work model , the neural network model including a
plurality of layers , and the machine further including at
least one graphics processing unit ;

program instructions to train , by the storage controller , at
least one layer of the plurality of layers of the neural
network model using the training data to generate
processed training data , wherein a size of the processed
data is less than a size of the training data , and wherein
training of the at least one layer includes adjusting one
or more weights of the at least one layer using the
training data ; and

program instructions to send , by the storage controller , the
processed training data to at least one graphics pro
cessing unit of the machine , the at least one graphics
processing unit configured to store the processed train
ing data and train one or more remaining layers of the
plurality of layers using the processed training data .

9 . The computer usable program product of claim 8 ,
wherein the training comprises performing a convolution
operation on the training data , wherein the convolution
operation comprises convolving the training data with the
one or more weights of the at least one layer .

10 . The computer usable program product of claim 8 ,
further comprising program instructions to receive at least
one gradient computed by the at least one graphics process
ing unit resulting from the training of the remaining layers .

11 . The computer usable program product of claim 10 ,
further comprising program instructions to refine training of
the at least one layer using the at least one gradient .

12 . The computer usable program product of claim 8 ,
wherein the training data comprises image data .

13 . The computer usable program product of claim 8 ,
wherein the storage controller comprises a disk controller .

14 . The computer usable program product of claim 8 ,
wherein the storage controller comprises a field - program
mable gate array (FPGA) .

15 . The computer usable program product of claim 8 ,
wherein the computer usable code is stored in a computer
readable storage device in a data processing system , and
wherein the computer usable code is transferred over a
network from a remote data processing system .

16 . The computer usable program product of claim 8 ,
wherein the computer usable code is stored in a computer
readable storage device in a server data processing system ,
and wherein the computer usable code is downloaded over
a network to a remote data processing system for use in a
computer readable storage device associated with the remote
data processing system .

17 . A computer system comprising one or more proces
sors , one or more computer - readable memories , and one or
more computer - readable storage devices , and program
instructions stored on at least one of the one or more storage
devices for execution by at least one of the one or more
processors via at least one of the one or more memories , the
stored program instructions comprising :
program instructions to receive , by a storage controller of

a machine , training data associated with a neural net
work model , the neural network model including a
plurality of layers , and the machine further including at
least one graphics processing unit ;

program instructions to train , by the storage controller , at
least one layer of the plurality of layers of the neural
network model using the training data to generate
processed training data , wherein a size of the processed
data is less than a size of the training data , and wherein
training of the at least one layer includes adjusting one
or more weights of the at least one layer using the
training data ; and

program instructions to send , by the storage controller , the
processed training data to at least one graphics pro
cessing unit of the machine , the at least one graphics
processing unit configured to store the processed train
ing data and train one or more remaining layers of the
plurality of layers using the processed training data .

18 . The computer system of claim 17 , wherein the training
comprises performing a convolution operation on the train
ing data , wherein the convolution operation comprises con
volving the training data with the one or more weights of the
at least one layer .

19 . The computer system of claim 17 , further comprising
program instructions to receive at least one gradient com
puted by the at least one graphics processing unit resulting
from the training of the remaining layers .

20 . The computer system of claim 19 , further comprising
program instructions to refine training of the at least one
layer using the at least one gradient .

