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A storage controller of a machine receives training data 
associated with a neural network model . The neural network 
model includes a plurality of layers , and the machine further 
including at least one graphics processing unit . The storage 
controller trains at least one layer of the plurality of layers 
of the neural network model using the training data to 
generate processed training data . A size of the processed data 
is less than a size of the training data . Training of the at least 
one layer includes adjusting one or more weights of the at 
least one layer using the training data . The storage controller 
sends the processed training data to at least one graphics 
processing unit of the machine . The at least one graphics 
processing unit is configured to store the processed training 
data and train one or more remaining layers of the plurality 
of layers using the processed training data . 
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STORAGE CONTROLLER ACCELARATION 
FOR NEURAL NETWORK TRAINING AND 

INFERENCE 

TECHNICAL FIELD 
[ 0001 ] The present invention relates generally to a 
method , system , and computer program product for accel 
eration of training and inference in neural networks . More 
particularly , the present invention relates to a method , sys 
tem , and computer program product for storage controller 
acceleration for neural network training and inference . 

particular embodiment , the storage controller comprises a 
field - programmable gate array ( FPGA ) . 
[ 0006 ] An embodiment includes a computer usable pro 
gram product . The computer usable program product 
includes one or more computer - readable storage devices , 
and program instructions stored on at least one of the one or 
more storage devices . 
10007 ] An embodiment includes a computer system . The 
computer system includes one or more processors , one or 
more computer - readable memories , and one or more com 
puter - readable storage devices , and program instructions 
stored on at least one of the one or more storage devices for 
execution by at least one of the one or more processors via 
at least one of the one or more memories . BACKGROUND 

[ 0002 ] Neural networks , especially deep learning neural 
networks continue to be used in more and more artificial 
intelligence applications such as image processing , video 
processing , voice recognition , questioning and answering , 
and machine translation . Many of these application areas 
have common characteristics of requiring a large amount of 
data to be processed for training of the neural network , 
employing complex neural network models having many 
layers , and requiring a large amount of processing power to 
train the model . Often , graphics processing units ( GPUs ) are 
used to train neural networks . However , moving large 
amounts of data into GPU memory can be very time 
intensive . 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0008 ] Certain novel features believed characteristic of the 
invention are set forth in the appended claims . The invention 
itself , however , as well as a preferred mode of use , further 
objectives and advantages thereof , will best be understood 
by reference to the following detailed description of the 
illustrative embodiments when read in conjunction with the 
accompanying drawings , wherein : 
0009 ] . FIG . 1 depicts a block diagram of a network of data 
processing systems in which illustrative embodiments may 
be implemented ; 
[ 0010 ] . FIG . 2 depicts a block diagram of a data processing 
system in which illustrative embodiments may be imple 
mented ; 
[ 0011 ] FIG . 3 depicts a simplified block diagram of a 
multi - machine multi - GPU architecture in which illustrative 
embodiments may be implemented ; 
[ 0012 ] . FIG . 4 depicts a simplified example of a disk 
controller - based convolution operation according to an illus 
trative embodiment ; 
[ 0013 ] FIG . 5 depicts a flowchart of an example process 
for training a neural network by a disk controller , and 
[ 0014 ] . FIG . 6 depicts a flowchart of another example 
process for training a neural network by a disk controller . 

SUMMARY 
[ 0003 ] The illustrative embodiments provide a method , 
system , and computer program product . An embodiment of 
a method includes receiving , by a storage controller of a 
machine , training data associated with a neural network 
model . In the embodiment , the neural network model 
includes a plurality of layers , and the machine further 
including at least one graphics processing unit . In the 
embodiment , the method further includes training , by the 
storage controller , at least one layer of the plurality of layers 
of the neural network model using the training data to 
generate processed training data . In the embodiment , a size 
of the processed data is less than a size of the training data , 
and training of the at least one layer includes adjusting one 
or more weights of the at least one layer using the training 
data . In the embodiment , the method further includes send 
ing , by the storage controller , the processed training data to 
at least one graphics processing unit of the machine . In the 
embodiment , the at least one graphics processing unit is 
configured to store the processed training data and train one 
or more remaining layers of the plurality of layers using the 
processed training data . 
[ 0004 ] In an embodiment , the training comprises perform 
ing a convolution operation on the training data , wherein the 
convolution operation comprises convolving the training 
data with the one or more weights of the at least one layer . 
In an embodiment , the method further includes receiving at 
least one gradient computed by the at least one graphics 
processing unit resulting from the training of the remaining 
layers . In another embodiment , the method further includes 
refining training of the at least one layer using the at least 
one gradient . 
[ 0005 ] In a particular embodiment , the training data com 
prises image data . In another particular embodiment , the 
storage controller comprises a disk controller . In still another 

DETAILED DESCRIPTION 
[ 0015 ] The illustrative embodiments described herein gen 
erally relate to storage controller acceleration of training and 
inference for neural networks . In accordance with one or 
more embodiments , a machine , such as a server data pro 
cessing system , includes a host CPU , host memory , a disk 
controller or other storage controller , a network interface 
controller ( NIC ) , and multiple GPUs . In particular embodi 
ments , a GPU card includes multiple GPUs upon the same 
card , and the GPU card is configured to be inserted into a 
node of the machine . In one or more embodiments , multiple 
machines , each having multiple nodes and GPUs , are in 
communication with each other to implement a neural 
network . In one or more embodiments , the disk controller 
includes circuitry and / or logic that allows communication 
between system components , such as the CPU , and a storage 
device . In a particular embodiment , the disk controller is a 
field - programmable gate array ( FPGA ) based disk control 
ler . 
[ 0016 ] In particular embodiments , a Peripheral Compo 
nent Interconnect ( PCI ) root complex device connects the 
CPU and memory subsystem to each of the disk controller , 
GPUs and the NIC . In addition , multiple machines , each 
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having multiple GPUs , are often networked together to 
implement a deep learning neural network . During training 
of the neural network , input data and workloads are distrib 
uted over GPUs on a cluster of machines such that each GPU 
computes parameters for the neural network that must be 
aggregated and synchronized between the GPUs . Often a 
parameter server is used to receive parameters from each 
GPU , aggregate the parameters , and provide updated param 
eters to each of the GPUs . In other implementations , the 
GPUs may use peer - to - peer communication to aggregate 
parameters . Iterative training algorithms such as a stochastic 
gradient descent algorithm often require the training status 
or parameters ( e . g . , a gradient ) received from different GPUs 
to be aggregated and synchronized every few iterations . 
[ 0017 ] In machine learning , a convolutional neural net 
work ( CNN ) is a type of feed - forward artificial neural 
network in which the connectivity pattern between its nodes 
( neurons ) is inspired by the organization of the animal visual 
cortex , whose individual neurons are arranged to respond to 
overlapping regions tiling a visual field . Convolutional 
networks mimic biological processes and are configured as 
variations of multilayer perceptrons designed to use minimal 
amounts of preprocessing while processing data , such as 
digital images . 
[ 0018 ] Convolutional neural networks ( CNN ) are net 
works with overlapping “ reception fields ” performing con 
volution tasks . A CNN is particularly efficient in recognizing 
image features , such as by differentiating pixels or pixel 
regions in a digital image from other pixels or pixel regions 
in the digital image . Generally , a CNN is designed to 
recognize images or parts of an image , such as detecting the 
edges of an object recognized on the image . Computer 
vision is a field of endeavor where CNNs are commonly 
used . 
[ 0019 ] A deep neural network ( DNN ) is an artificial neural 
network ( ANN ) with multiple hidden layers of units 
between the input and output layers . Similar to shallow 
ANNs , DNNs can model complex non - linear relationships . 
DNN architectures , e . g . , for object detection and parsing , 
generate compositional models where the object is 
expressed as a layered composition of image primitives . The 
extra layers enable composition of features from lower 
layers , giving the potential of modeling complex data with 
fewer units than a similarly performing shallow network . 
DNNs are typically designed as feedforward networks . 
[ 0020 ] Many large - scale data - intensive applications rely 
on both input data and a large number of model parameters 
to conduct computations . Deep learning algorithms are 
typical examples of this category . Machine learning algo 
rithms generate models to fit training data and then use the 
generated models to generate predictions for input data . 
Models are generally mathematical equations and / or logic 
having model parameters . Model training is used to find 
appropriate values of the model parameters , e . g . , weights of 
neural nodes in a neural network , so that the models can 
provide accurate predictions . In a typical example of training 
of a model , a batch of image data is input to a model and 
computations are performed on the image data using the 
model to provide an output used to train the model . 
[ 0021 ] As the network is trained , the neurons in the 
intermediate layers organize themselves in such a way that 
the different neurons learn to recognize different character 
istics of a total input space . After training , when an arbitrary 
input is input to the neural network , neurons in the hidden 

layer of the network respond with an active output if the new 
input contains a pattern that resembles a feature that the 
individual neurons have learned to recognize during their 
training . 
[ 0022 ] Gradients generated for different items within the 
same batch are accumulated during batch processing , and 
normalized at the end of the batch resulting in an iteration 
for each batch processing . Current deep learning frame 
works utilize multiple local graphics processing units 
( GPUs ) to accelerate training . Local GPUs are GPUs that are 
located within a single node of a machine . Distributed GPUs 
are GPUs that are located in different machines in commu 
nication with one another over a network . 
[ 0023 ] . In conventional implementations of employing 
GPUs for training of neural networks , a large amount of data 
must typically be moved from storage into GPU memory to 
allow the GPUs to perform training operations of the neural 
network . For example , for climate / weather related data , each 
input record is composed of images of a location including 
temperature , humidity , wind speed , cloud cover , and other 
weather data . In a typical example , the climate / weather 
related data can consume as much as 40 megabytes ( MB ) of 
data per image . In a typical situation , moving this amount of 
data into GPU memory in order to train the neural network 
can consume a large amount of time and network bandwidth . 
Accordingly , there is a need to accelerate the process of 
moving data into GPU memory in order to speed up the 
overall training and inference operations of neural networks . 
Inference refers to utilizing the trained neural network to 
produce a result in response to a new input to the neural 
network . 
[ 0024 ] Preprocessing of training data within neural net 
works is often performed to improve the neural network 
training process such as to improve the accuracy of the 
training of the neural network or reduce the computational 
complexity of the training process . For example , data com 
pression may be performed on the training data to reduce the 
dimensionality of the training data to reduce the computa 
tional complexity of the training process . In another 
example , data sampling may be performed to , for example , 
downsample the training data to reduce the size of the 
training data prior to training . In still another example , data 
aggregation may be performed on the training data to 
aggregate the training data prior to training the neural 
network model . 
0025 ] In accordance with one or more embodiments , 
instead of moving the original training data from storage 
into GPU memory for processing , a disk controller of a 
machine retrieves the original training data from a storage 
device , performs preprocessing of the original training data 
to reduce the size of the original training data , and transfers 
the reduced training data into GPU memory of one or more 
GPUs for further processing of the training data by the 
GPU ( s ) to complete the training of the neural network . In 
particular embodiments , the disk controller of a machine 
performs preprocessing of the training data by performing 
one or more of data compression , data sampling , and data 
aggregation upon the training data . 
[ 0026 ] In one or more embodiments , training of a neural 
network model includes forward pass training operations 
and backward pass training operations . During a forward 
pass , training data is input through the neural network model 
in order to train and / or adjust weights within the neural 
network and generate output values . During a backward 
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pass , gradients of an error of the output values and target 
values are calculated and passed back to the neural network 
input in order to refine training of the neural network by 
modifying the weights of the neural network using the 
calculated gradients . In other embodiments , the disk con 
troller performs preprocessing of the training data by pro 
cessing one or more initial layers of the neural network . 
100271 . In one or more embodiments , a neural network 
model includes a chain of processing layers in which each 
layer performs a particular operation upon input data . In 
particular embodiments , an initial layer of the neural net 
work model includes a convolution layer in which a con 
volution operation is performed on training data and the 
output of the convolution operation passed on to further 
layers of the neural network mode . In a particular embodi - 
ment , the disk controller computes model parameters of an 
initial convolution layer of a neural network model and 
passes the model parameter to one or more GPUs to compute 
the remaining layers of the neural network model . In one or 
more embodiments , the convolution operation includes con 
volving the training data with one or more weights of the 
convolution layer . In a particular embodiment , the disk 
controller may be a field - programmable gate array ( FGPA ) 
configured as a disk controller . 
[ 0028 ] In one or more embodiments , the disk controller of 
a machine retrieves the training data from a storage device , 
processes one or more initial layers of the neural network 
model within the disk controller to produce one or more 
model parameters , and stores the model parameters associ 
ated with the one or more layers within memory associated 
with ( e . g . , inside ) the disk controller . In one or more 
embodiments , the disk controller transfers the model param 
eters from the disk controller to GPU memory of one or 
more GPUs within the machine . In one embodiment , during 
a forward pass of the training procedure , the disk controller 
transfers the model parameters to the host CPU of the 
machine , the host CPU stores the model parameters within 
host memory associated with the host CPU , and the host 
CPU transfers the model parameters from the host memory 
to GPU memory associated within one or more of the GPUS 
of the machine . In another particular embodiment , the disk 
controller transfers the model parameters directly to the 
GPU memory without requiring use of the host CPU or host 
memory . In one or more embodiments , the model param 
eters are transferred directly to the GPU memory using a 
remote direct memory access ( RDMA ) procedure such as a 
GPUDirect RDMA procedure . 
10029 ] In one or more embodiments , during a backward 
pass of the training procedure , the GPU uses the model 
parameters computed with respect to the initial layers to 
complete training of the remaining layers of the neural 
network model . In particular embodiments , during a back 
ward pass of the training procedure , the GPU computes 
gradients to refine the one or more initial layers , and 
transfers the gradients to the host CPU . In the embodiment , 
the host CPU stores the gradients within the host memory , 
and transfers the gradients to the disk controller . In the 
particular embodiment , the disk controller utilizes the gra 
dients to refine the training processing of the one or more 
initial layers of the neural network model by modifying the 
weights of the initial layers using the gradients . 
[ 0030 ] In one or more embodiments , after training of the 
neural network , the storage controller is configured to accel 
erate inference operations of the neural network . As previ - 

ously discussed , inference refers to utilizing the trained 
neural network to generate an output from a given input 
using a set of predefined parameters . In a particular embodi 
ment , new input data is retrieved by the storage controller 
from a storage device , and the storage controller computes 
one or more initial layers of the previously trained neural 
network using the new input data . In the particular embodi 
ment , the storage controller sends the results of the compu 
tation to one or more GPUs , or other processors , to compute 
the remaining layers of the neural network model upon the 
new input data . 
[ 0031 ] In accordance with one or more embodiments , 
processing of one or more layers of a neural network model 
by a storage controller reduces the volume of data that must 
be transferred to the GPUs of a machine . In a particular 
example in which a neural network model is used for 
forecasting solar energy efficiency using weather related 
data , input data may include a four - dimensional weather 
data tensor of a size 30x6x256x256 . The input tensor may 
be preprocessed by a storage controller to reduce the size of 
the input data to an output tensor of 160x4x31x31 resulting 
in a significant reduction in size and bandwidth usage during 
training of the neural network . In another particular 
example , a deep learning system utilizing health care data to 
support smart diagnosis , e . g . , functional magnetic resonance 
imaging ( fMRI ) may have an four - dimensional fMRI input 
tensor of 50x20x256x256 . The input tensor may be pro 
cessed by a storage controller to reduce the size of the input 
data to an output tensor of 160x18x31x31 again resulting in 
a significant reduction in size and bandwidth usage during 
training of the neural network , 
( 0032 ] The illustrative embodiments are described with 
respect to certain types of disk controller , storage control 
lers , GPUs , machines , deep learning systems , neural net 
works , neural network models , neural network model 
parameters , procedures , transmissions , responses , devices , 
data processing systems , environments , components , and 
applications only as examples . Any specific manifestations 
of these and other similar artifacts are not intended to be 
limiting to the invention . Any suitable manifestation of these 
and other similar artifacts can be selected within the scope 
of the illustrative embodiments . 
[ 0033 ] . Furthermore , the illustrative embodiments may be 
implemented with respect to any type of data , data source , 
or access to a data source over a data network . Any type of 
data storage device may provide the data to an embodiment 
of the invention , either locally at a data processing system or 
over a data network , within the scope of the invention . 
Where an embodiment is described using a mobile device , 
any type of data storage device suitable for use with the 
mobile device may provide the data to such embodiment , 
either locally at the mobile device or over a data network , 
within the scope of the illustrative embodiments . 
[ 0034 ] The illustrative embodiments are described using 
specific code , designs , architectures , protocols , layouts , 
schematics , and tools only as examples and are not limiting 
to the illustrative embodiments . Furthermore , the illustrative 
embodiments are described in some instances using particu 
lar software , tools , and data processing environments only as 
an example for the clarity of the description . The illustrative 
embodiments may be used in conjunction with other com 
parable or similarly purposed structures , systems , applica 
tions , or architectures . For example , other comparable 
mobile devices , structures , systems , applications , or archi 
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tectures therefor , may be used in conjunction with such 
embodiment of the invention within the scope of the inven 
tion . An illustrative embodiment may be implemented in 
hardware , software , or a combination thereof . 
[ 0035 ] The examples in this disclosure are used only for 
the clarity of the description and are not limiting to the 
illustrative embodiments . Additional data , operations , 
actions , tasks , activities , and manipulations will be conceiv 
able from this disclosure and the same are contemplated 
within the scope of the illustrative embodiments . 
10036 ] Any advantages listed herein are only examples 
and are not intended to be limiting to the illustrative embodi 
ments . Additional or different advantages may be realized by 
specific illustrative embodiments . Furthermore , a particular 
illustrative embodiment may have some , all , or none of the 
advantages listed above . 
[ 0037 ] With reference to the figures and in particular with 
reference to FIGS . 1 and 2 , these figures are example 
diagrams of data processing environments in which illus 
trative embodiments may be implemented . FIGS . 1 and 2 are 
only examples and are not intended to assert or imply any 
limitation with regard to the environments in which different 
embodiments may be implemented . A particular implemen 
tation may make many modifications to the depicted envi 
ronments based on the following description . 
[ 0038 ] FIG . 1 depicts a block diagram of a network of data 
processing systems in which illustrative embodiments may 
be implemented . Data processing environment 100 is a 
network of computers in which the illustrative embodiments 
may be implemented . Data processing environment 100 
includes network 102 . Network 102 is the medium used to 
provide communications links between various devices and 
computers connected together within data processing envi 
ronment 100 . Network 102 may include connections , such 
as wire , wireless communication links , or fiber optic cables . 
10039 ] Clients or servers are only example roles of certain 
data processing systems connected to network 102 and are 
not intended to exclude other configurations or roles for 
these data processing systems . Server 104 and server 106 
couple to network 102 along with storage unit 108 . In one 
or more embodiments , storage 108 may be configured to 
store training data 109 , such as image data , for training a 
neural network . Software applications may execute on any 
computer in data processing environment 100 . Clients 110 , 
112 , and 114 are also coupled to network 102 . A data 
processing system , such as server 104 or 106 , or client 110 , 
112 , or 114 may contain data and may have software 
applications or software tools executing thereon . 
[ 0040 ] Only as an example , and without implying any 
limitation to such architecture , FIG . 1 depicts certain com 
ponents that are usable in an example implementation of an 
embodiment . For example , servers 104 and 106 , and clients 
110 , 112 , 114 , are depicted as servers and clients only as 
example and not to imply a limitation to a client - server 
architecture . As another example , an embodiment can be 
distributed across several data processing systems and a data 
network as shown , whereas another embodiment can be 
implemented on a single data processing system within the 
scope of the illustrative embodiments . Data processing 
systems 104 , 106 , 110 , 112 , and 114 also represent example 
nodes in a cluster , partitions , and other configurations suit 
able for implementing an embodiment . 
[ 0041 ] In an embodiment , one or more of neural network 
application 105A of server 104 and neural network appli 

cation 105B of server 106 implements an embodiment of a 
neural network , such as a deep learning neural network , as 
described herein . In a particular embodiment , the neural 
network is implemented using one of network application 
105A and network application 105B within a single server . 
In another particular embodiment , the neural network is 
implemented using both neural network application 105A 
and neural network application 105B within a single server . 
Server 104 includes multiple GPUs 107A including multiple 
nodes in which each node may include one or more GPUs 
as described herein . Similarly , server 106 includes multiple 
GPUs 107B including multiple nodes in which each node 
may include one or more GPUs as described herein . 
10042 ] Parameter server 118 is an example of a parameter 
server as described herein . In one or more embodiments , 
parameter server 118 is configured to receive neural network 
model parameters from each GPU , aggregate the param 
eters , and provide updated parameters to each of the GPUs . 
[ 0043 ) Device 132 is an example of a device described 
herein . For example , device 132 may send a request to server 
104 to perform one or more data processing tasks by neural 
network applications 105A , 105B such as initiating training 
of the neural network . Any software application described as 
executing in another data processing system in FIG . 1 can be 
configured to execute in device 132 in a similar manner . Any 
data or information stored or produced in another data 
processing system in FIG . 1 can be configured to be stored 
or produced in device 132 in a similar manner . 
[ 0044 ] Servers 104 and 106 , storage unit 108 , and clients 
110 , 112 , and 114 , and device 132 may couple to network 
102 using wired connections , wireless communication pro 
tocols , or other suitable data connectivity . Clients 110 , 112 , 
and 114 may be , for example , personal computers or net 
work computers . 
10045 ] In the depicted example , server 104 may provide 
data , such as boot files , operating system images , and 
applications to clients 110 , 112 , and 114 . Clients 110 , 112 , 
and 114 may be clients to server 104 in this example . Clients 
110 , 112 , 114 , or some combination thereof , may include 
their own data , boot files , operating system images , and 
applications . Data processing environment 100 may include 
additional servers , clients , and other devices that are not 
shown . 
[ 0046 ] In the depicted example , data processing environ 
ment 100 may be the Internet . Network 102 may represent 
a collection of networks and gateways that use the Trans 
mission Control Protocol / Internet Protocol ( TCP / IP ) and 
other protocols to communicate with one another . At the 
heart of the Internet is a backbone of data communication 
links between major nodes or host computers , including 
thousands of commercial , governmental , educational , and 
other computer systems that route data and messages . Of 
course , data processing environment 100 also may be imple 
mented as a number of different types of networks , such as 
for example , an intranet , a local area network ( LAN ) , or a 
wide area network ( WAN ) . FIG . 1 is intended as an example , 
and not as an architectural limitation for the different illus 
trative embodiments . 
[ 0047 ] Among other uses , data processing environment 
100 may be used for implementing a client - server environ 
ment in which the illustrative embodiments may be imple 
mented . A client - server environment enables software appli 
cations and data to be distributed across a network such that 
an application functions by using the interactivity between a 
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client data processing system and a server data processing 
system . Data processing environment 100 may also employ 
a service oriented architecture where interoperable software 
components distributed across a network may be packaged 
together as coherent business applications . Data processing 
environment 100 may also take the form of a cloud , and 
employ a cloud computing model of service delivery for 
enabling convenient , on - demand network access to a shared 
pool of configurable computing resources ( e . g . networks , 
network bandwidth , servers , processing , memory , storage , 
applications , virtual machines , and services ) that can be 
rapidly provisioned and released with minimal management 
effort or interaction with a provider of the service . 

[ 0048 ] With reference to FIG . 2 , this figure depicts a block 
diagram of a data processing system in which illustrative 
embodiments may be implemented . Data processing system 
200 is an example of a computer , such as servers 104 and 
106 , or clients 110 , 112 , and 114 in FIG . 1 , or another type 
of device in which computer usable program code or instruc 
tions implementing the processes may be located for the 
illustrative embodiments . 
[ 0049 ] Data processing system 200 is also representative 
of a data processing system or a configuration therein , such 
as data processing system 132 in FIG . 1 in which computer 
usable program code or instructions implementing the pro 
cesses of the illustrative embodiments may be located . Data 
processing system 200 is described as a computer only as an 
example , without being limited thereto . Implementations in 
the form of other devices , such as device 132 in FIG . 1 , may 
modify data processing system 200 , such as by adding a 
touch interface , and even eliminate certain depicted com 
ponents from data processing system 200 without departing 
from the general description of the operations and functions 
of data processing system 200 described herein . 
[ 0050 ] In the depicted example , data processing system 
200 employs a hub architecture including North Bridge and 
memory controller hub ( NB / MCH ) 202 and South Bridge 
and input / output ( I / O ) controller hub ( SB / ICH ) 204 . Pro 
cessing unit 206 , main memory 208 , and graphics processor 
210 are coupled to North Bridge and memory controller hub 
( NB / MCH ) 202 . Processing unit 206 may contain one or 
more processors and may be implemented using one or more 
heterogeneous processor systems . Processing unit 206 may 
be a multi - core processor . Graphics processor 210 may be 
coupled to NB / MCH 202 through an accelerated graphics 
port ( AGP ) in certain implementations . 
[ 0051 ] In the depicted example , local area network ( LAN ) 
adapter 212 is coupled to South Bridge and I / O controller 
hub ( SB / ICH ) 204 . Audio adapter 216 , keyboard and mouse 
adapter 220 , modem 222 , read only memory ( ROM ) 224 , 
universal serial bus ( USB ) and other ports 232 , and PCI / 
PCIe devices 234 are coupled to South Bridge and I / O 
controller hub 204 through bus 238 . Hard disk drive ( HDD ) 
or solid - state drive ( SSD ) 226 and CD - ROM 230 are 
coupled to South Bridge and I / O controller hub 204 through 
bus 240 . PCI / PCIe devices 234 may include , for example , 
Ethernet adapters , add - in cards , and PC cards for notebook 
computers . PCI uses a card bus controller , while PCIe does 
not . ROM 224 may be , for example , a flash binary input / 
output system ( BIOS ) . Hard disk drive 226 and CD - ROM 
230 may use , for example , an integrated drive electronics 
( IDE ) , serial advanced technology attachment ( SATA ) inter - 
face , or variants such as external - SATA ( ESATA ) and micro - 

SATA ( mSATA ) . A super I / O ( SIO ) device 236 may be 
coupled to South Bridge and I / O controller hub ( SB / ICH ) 
204 through bus 238 . 
[ 0052 ] Memories , such as main memory 208 , ROM 224 , 
or flash memory ( not shown ) , are some examples of com 
puter usable storage devices . Hard disk drive or solid state 
drive 226 , CD - ROM 230 , and other similarly usable devices 
are some examples of computer usable storage devices 
including a computer usable storage medium . 
[ 0053 ] An operating system runs on processing unit 206 . 
The operating system coordinates and provides control of 
various components within data processing system 200 in 
FIG . 2 . The operating system may be a commercially 
available operating system for any type of computing plat 
form , including but not limited to server systems , personal 
computers , and mobile devices . An object oriented or other 
type of programming system may operate in conjunction 
with the operating system and provide calls to the operating 
system from programs or applications executing on data 
processing system 200 . 
[ 0054 ] Instructions for the operating system , the object 
oriented programming system , and applications or pro 
grams , such as applications 105A and 105B in FIG . 1 , are 
located on storage devices , such as in the form of code 226A 
on hard disk drive 226 , and may be loaded into at least one 
of one or more memories , such as main memory 208 , for 
execution by processing unit 206 . The processes of the 
illustrative embodiments may be performed by processing 
unit 206 using computer implemented instructions , which 
may be located in a memory , such as , for example , main 
memory 208 , read only memory 224 , or in one or more 
peripheral devices . 
[ 0055 ] Furthermore , in one case , code 226A may be 
downloaded over network 201A from remote system 201B , 
where similar code 201C is stored on a storage device 2011 . 
In another case , code 226A may be downloaded over net 
work 201A to remote system 201B , where downloaded code 
201C is stored on a storage device 2010 . 
100561 The hardware in FIGS . 1 - 2 may vary depending on 
the implementation . Other internal hardware or peripheral 
devices , such as flash memory , equivalent non - volatile 
memory , or optical disk drives and the like , may be used in 
addition to or in place of the hardware depicted in FIGS . 1 - 2 . 
In addition , the processes of the illustrative embodiments 
may be applied to a multiprocessor data processing system . 
[ 0057 ] In some illustrative examples , data processing sys 
tem 200 may be a personal digital assistant ( PDA ) , which is 
generally configured with flash memory to provide non 
volatile memory for storing operating system files and / or 
user - generated data . A bus system may comprise one or 
more buses , such as a system bus , an I / O bus , and a PCI bus . 
Of course , the bus system may be implemented using any 
type of communications fabric or architecture that provides 
for a transfer of data between different components or 
devices attached to the fabric or architecture . 
[ 0058 ) . A communications unit may include one or more 
devices used to transmit and receive data , such as a modem 
or a network adapter . A memory may be , for example , main 
memory 208 or a cache , such as the cache found in North 
Bridge and memory controller hub 202 . A processing unit 
may include one or more processors or CPUs . 
[ 0059 ] The depicted examples in FIGS . 1 - 2 and above 
described examples are not meant to imply architectural 
limitations . For example , data processing system 200 also 
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may be a tablet computer , laptop computer , or telephone 
device in addition to taking the form of a mobile or wearable 
device . 
10060 ] Where a computer or data processing system is 
described as a virtual machine , a virtual device , or a virtual 
component , the virtual machine , virtual device , or the virtual 
component operates in the manner of data processing system 
200 using virtualized manifestation of some or all compo 
nents depicted in data processing system 200 . For example , 
in a virtual machine , virtual device , or virtual component , 
processing unit 206 is manifested as a virtualized instance of 
all or some number of hardware processing units 206 
available in a host data processing system , main memory 
208 is manifested as a virtualized instance of all or some 
portion of main memory 208 that may be available in the 
host data processing system , and disk 226 is manifested as 
a virtualized instance of all or some portion of disk 226 that 
may be available in the host data processing system . The 
host data processing system in such cases is represented by 
data processing system 200 . 
[ 0061 ] With respect to FIG . 3 , this figure depicts a sim 
plified block diagram of a multi - machine multi - GPU neural 
network architecture in which illustrative embodiments may 
be implemented . In an embodiment , the neural network 
architecture includes a first machine 300A and a second 
machine 300B . In an embodiment , first machine 300A 
includes server 104 of FIG . 1 and second machine 300B 
includes server 106 of FIG . 1 . In one or more embodiments , 
first machine 300A executes neural network application 
105A and second machine 300B executes neural network 
application 105B to implement a deep learning neural net 
work . In an embodiment , first machine 300A includes a CPU 
302A , a memory 304A , a disk controller 306A , a storage 
device 308A , a first GPU 310A , a second GPU 312A , and 
a network interface controller ( NIC ) 314A . In the particular 
embodiment , CPU 302A , disk controller 306A , storage 
device 308A , first GPU 310A , second GPU 312A , and NIC 
314A are in communication via a PCIe bus . In a particular 
embodiment , disk controller 306A includes a field - program 
mable gate arrays ( FPGA ) . 
[ 0062 ] Similarly , in the embodiment , second machine 
300B includes a CPU 302B , a memory 304B , a disk con 
troller 306B , a storage device 308B , a first GPU 310B , a 
second GPU 312B , and a network interface controller ( NIC ) 
314B . In the particular embodiment , CPU 302B , disk con 
troller 306B , storage device 308B , first GPU 310B , second 
GPU 312B , and NIC 314B are in communication via a PCIe 
bus . In the particular embodiment , NIC 314A of first 
machine 300A and NIC 314B of second machine 300B are 
in communication with one another via network 102 . 
[ 0063 ] In one or more embodiments , disk controller 306A 
retrieves a portion of training data associated with a neural 
network model from storage device 308A and stores the 
training data within memory associated ( or within ) disk 
controller 306A . In the embodiment , disk controller 306A 
processes the retrieved portion of the training data within 
disk controller 306A . In a particular embodiment , disk 
controller 306A includes a processor configured to process 
the retrieved portion of the training data . In a particular 
embodiment , disk controller 306A processes the training 
data by preprocessing the training data within disk controller 
306A such as performing one or more of data compression , 
data sampling , or data aggregation on the training data . In 
another particular embodiment , disk controller 306A pro 

cesses the retrieved training data by training one or more 
layers of the neural network model using the retrieved 
training data within disk controller 306A . 
10064 ] In one or more embodiments , a neural network 
model includes a convolution layer as an initial layer to 
perform convolution operations on input training data . In a 
particular embodiment , disk controller 306A processes the 
retrieved training data by performing a convolution opera 
tion on the retrieved training data to process an initial layer 
of the neural network model . 
[ 0065 ] After processing the retrieved portion of the train 
ing data , disk controller 306A sends the processed training 
data to one or more of first GPU 310A and second GPU 
312A , and one or more of first GPU 310A and second GPU 
312A uses the processed training data to continue training 
the remaining layers of the neural network . In one or more 
embodiments , the processed training data includes model 
parameters ( e . g . , weights ) associated with the processed 
layers of the neural network model . In a particular embodi 
ment , disk controller 306A sends the processed training data 
to CPU 302A , CPU 302A stores the processed training data 
within memory 304A , and CPU 302A transfers the pro 
cessed training data to one or more of first GPU 310A and 
second GPU 312A . In another particular embodiment , disk 
controller 306A sends the processed training data to one or 
more of first GPU 310A and second GPU 312A without 
utilizing CPU 302A . 
[ 0066 ] In an embodiment , one or more of disk controller 
306A , first GPU 310A and second GPU 312A sends model 
parameters associated with one or more neural network 
layers to second machine 300B either directly or via a 
parameters server , such as parameter server 118 . In one or 
more embodiments , second machine 300B utilizes the 
received model parameters to train layers of the neural 
network model . Accordingly , first machine 300A and second 
machine 300B may maintain synchronization between dis 
tributed processing of the neural network model . 
[ 0067 ] In some embodiments , one or more of first GPU 
310A and second GPU 312A computes gradients during 
processing of the training data and sends the gradients to 
disk controller 306A during a backward pass of the training 
process . In particular embodiments , one or more of first 
GPU 310A and second GPU 312A sends the computed 
gradients to CPU 302A , CPU 302A stores the gradients in 
memory 304A , and CPU 302A sends the gradients to disk 
controller 306A . In one or more embodiments , disk control 
ler 306A utilizes the computed gradients to further training 
one or more layers of the neural network . 
[ 0068 ] With respect to FIG . 4 , this figures depicts a 
simplified example of a disk controller - based convolution 
operation according to an illustrative embodiment . In the 
example convolution operation , disk controller 306A 
retrieves training data including a 7x7 image 402 from 
storage device 308a . Disk controller 306A further performs 
a convolution operation as a first layer of the neural network 
model . In the particular illustrated example , the convolution 
operation has a receptive filed size = 3 , a stride size = 2 , and a 
zero padding = 1 upon the 7x7 image to produce a convolu 
tion output 404 . The receptive field size is equivalent to the 
filter size of the filter used during the convolution operation . 
The stride size determines the slide of the filter during the 
convolution operation . The zero padding indicates the num 
ber of zero values that are inserted around the edges of the 
7x7 image during the convolution operation . 
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[ 0069 ] In the illustrated example , the convolution output 
404 is a 4x4 image . Accordingly , the original training data 
is reduced from a 7x7 size to a 4x4 size . In an operation 406 , 
disk controller 306A sends convolution output 404 to CPU 
302A , and CPU 302A stores convolution output 404 within 
memory 304A . In an operation 408 , CPU 302A retrieves 
convolution output 404 from memory 304A and sends 
convolution output 404 to GPU 312A . In an operation 410 , 
GPU 312A continues training the rest of the layers of the 
neural network model using the convolution output 404 . 
[ 0070 ] In one or more embodiments , in an operation 412 , 
GPU 312A computes gradients to refine the first convolution 
layer , sends the gradients to CPU 302A , and CPU 302A 
stores the gradients in memory 304A . In the embodiment , 
CPU 302A retrieves the gradients from memory 304A and 
sends the gradients to disk controller 306A . In the embodi 
ment , disk controller 306A utilizes the gradients to refine the 
first layer convolution operation . 
[ 0071 ] With reference to FIG . 5 , this figure depicts a 
flowchart of an example process 500 for training a neural 
network by a disk controller . In the example of FIG . 5 , disk 
controller 306A performs a forward pass of a training 
operation of the neural network . In block 502 , disk control 
ler 306A issues one or more training / inference requests to a 
storage system including storage device 308A . In block 504 , 
disk controller 306A loads raw training data , such as image 
data , from the storage media ( e . g . , storage device 308A ) of 
the storage system . In block 506 , disk controller 306A 
transforms the raw training data into a format suitable for 
further processing the training data using one or more layers 
of the neural network model . In particular embodiments , 
disk controller 306A transforms the raw training data by 
performing one or more of data compression , data sampling , 
data aggregation , image manipulation ( e . g . , cropping or 
transposing ) upon the raw training data . 
[ 0072 ] In 508 , disk controller 306A processes the training 
data utilizing the one or more layers of the neural network 
model by conduction one or more of convolution and / or 
pooling operations on the training data to generate model 
parameters . In block 510 , disk controller 306A sends the 
model parameters to processor memory of the machine . In 
one or more embodiments , the model parameters include 
neuron values of the processed layer ( s ) . In particular 
embodiments , disk controller 306A sends the model param 
eters to host memory ( e . g . , memory 304A ) associated with 
a host processor ( e . g . CPU 302A ) of the machine . In 
particular embodiments , the host processor is configured to 
copy the model parameters to memory associated with one 
or more GPUs such as GPU 310A . In one or more embodi 
ments , the one or more GPUs are configured to further 
process one or more remaining layers of the neural network 
utilizing the model parameters until the neural network is 
trained . The process 300 then ends . 
[ 0073 ] With reference to FIG . 6 , this figure depicts a 
flowchart of another example process 600 for training a 
neural network by a disk controller . In the example of FIG . 
6 , disk controller 306A performs a backward pass of a 
training operation of the neural network . In block 602 , disk 
controller 306A issues a weight update request to the storage 
system including storage device 308A for receiving updated 
weight parameters including one or more gradients received 
from one or more GPUs . In one or more embodiments , the 
gradients are computed by the one or more GPUs during 
training of one or more layers of the neural network . In block 

604 , disk controller 306A determines whether an entire 
batch of gradients has been processed by the one or more 
GPUs . If the entire batch of gradients has not been pro 
cessed , disk controller 306A continues to accumulated the 
gradients received from the GPUs in block 606 . If the entire 
batch of gradients has been processed , disk controller 306A 
clips and / or normalizes the gradients and updates the local 
weights on the initial neural network model layers . The 
process 600 then ends . 
[ 0074 ] Although in various embodiments processes are 
described as being performed a disk controller , in other 
embodiments the processes may be performed by other 
types of storage controllers . 
[ 0075 ] Although various embodiments are described with 
respect to operations within a neural network , it should be 
understood that the principles described herein may be 
applied to any suitable data processing operations performed 
by a computer system or other electronic device . 
[ 0076 ] Thus , a computer implemented method , system or 
apparatus , and computer program product are provided in 
the illustrative embodiments for local multicast operations 
with a neural network and other related features , functions , 
or operations . Where an embodiment or a portion thereof is 
described with respect to a type of device , the computer 
implemented method , system or apparatus , the computer 
program product , or a portion thereof , are adapted or con 
figured for use with a suitable and comparable manifestation 
of that type of device . 
[ 0077 ] Where an embodiment is described as imple 
mented in an application , the delivery of the application in 
a Software as a Service ( SaaS ) model is contemplated within 
the scope of the illustrative embodiments . In a SaaS model , 
the capability of the application implementing an embodi 
ment is provided to a user by executing the application in a 
cloud infrastructure . The user can access the application 
using a variety of client devices through a thin client 
interface such as a web browser ( e . g . , web - based e - mail ) , or 
other light - weight client - applications . The user does not 
manage or control the underlying cloud infrastructure 
including the network , servers , operating systems , or the 
storage of the cloud infrastructure . In some cases , the user 
may not even manage or control the capabilities of the SaaS 
application . In some other cases , the SaaS implementation of 
the application may permit a possible exception of limited 
user - specific application configuration settings . 
[ 0078 ] The present invention may be a system , a method , 
and / or a computer program product at any possible technical 
detail level of integration . The computer program product 
may include a computer readable storage medium ( or media ) 
having computer readable program instructions thereon for 
causing a processor to carry out aspects of the present 
invention . 
[ 0079 ] The computer readable storage medium can be a 
tangible device that can retain and store instructions for use 
by an instruction execution device . The computer readable 
storage medium may be , for example , but is not limited to , 
an electronic storage device , a magnetic storage device , an 
optical storage device , an electromagnetic storage device , a 
semiconductor storage device , or any suitable combination 
of the foregoing . A non - exhaustive list of more specific 
examples of the computer readable storage medium includes 
the following : a portable computer diskette , a hard disk , a 
random access memory ( RAM ) , a read - only memory 
( ROM ) , an erasable programmable read - only memory 



US 2018 / 0322383 A1 Nov . 8 , 2018 

( EPROM or Flash memory ) , a static random access memory 
( SRAM ) , a portable compact disc read - only memory ( CD 
ROM ) , a digital versatile disk ( DVD ) , a memory stick , a 
floppy disk , a mechanically encoded device such as punch 
cards or raised structures in a groove having instructions 
recorded thereon , and any suitable combination of the fore 
going . A computer readable storage medium , as used herein , 
is not to be construed as being transitory signals per se , such 
as radio waves or other freely propagating electromagnetic 
waves , electromagnetic waves propagating through a wave 
guide or other transmission media ( e . g . , light pulses passing 
through a fiber - optic cable ) , or electrical signals transmitted 
through a wire . 
[ 0080 ] Computer readable program instructions described 
herein can be downloaded to respective computing / process 
ing devices from a computer readable storage medium or to 
an external computer or external storage device via a net 
work , for example , the Internet , a local area network , a wide 
area network and / or a wireless network . The network may 
comprise copper transmission cables , optical transmission 
fibers , wireless transmission , routers , firewalls , switches , 
gateway computers and / or edge servers . A network adapter 
card or network interface in each computing / processing 
device receives computer readable program instructions 
from the network and forwards the computer readable 
program instructions for storage in a computer readable 
storage medium within the respective computing / processing 
device . 
[ 0081 ] Computer readable program instructions for carry 
ing out operations of the present invention may be assembler 
instructions , instruction - set - architecture ( ISA ) instructions , 
machine instructions , machine dependent instructions , 
microcode , firmware instructions , state - setting data , con 
figuration data for integrated circuitry , or either source code 
or object code written in any combination of one or more 
programming languages , including an object oriented pro 
gramming language such as Smalltalk , C + + , or the like , and 
procedural programming languages , such as the “ C ” pro 
gramming language or similar programming languages . The 
computer readable program instructions may execute 
entirely on the user ' s computer , partly on the user ' s com 
puter , as a stand - alone software package , partly on the user ' s 
computer and partly on a remote computer or entirely on the 
remote computer or server . In the latter scenario , the remote 
computer may be connected to the user ' s computer through 
any type of network , including a local area network ( LAN ) 
or a wide area network ( WAN ) , or the connection may be 
made to an external computer ( for example , through the 
Internet using an Internet Service Provider ) . In some 
embodiments , electronic circuitry including , for example , 
programmable logic circuitry , field - programmable gate 
arrays ( FPGA ) , or programmable logic arrays ( PLA ) may 
execute the computer readable program instructions by 
utilizing state information of the computer readable program 
instructions to personalize the electronic circuitry , in order to 
perform aspects of the present invention . 
[ 0082 ] Aspects of the present invention are described 
herein with reference to flowchart illustrations and / or block 
diagrams of methods , apparatus ( systems ) , and computer 
program products according to embodiments of the inven 
tion . It will be understood that each block of the flowchart 
illustrations and / or block diagrams , and combinations of 

blocks in the flowchart illustrations and / or block diagrams , 
can be implemented by computer readable program instruc 
tions . 
[ 0083 ] These computer readable program instructions may 
be provided to a processor of a general purpose computer , 
special purpose computer , or other programmable data pro 
cessing apparatus to produce a machine , such that the 
instructions , which execute via the processor of the com 
puter or other programmable data processing apparatus , 
create means for implementing the functions / acts specified 
in the flowchart and / or block diagram block or blocks . These 
computer readable program instructions may also be stored 
in a computer readable storage medium that can direct a 
computer , a programmable data processing apparatus , and 
or other devices to function in a particular manner , such that 
the computer readable storage medium having instructions 
stored therein comprises an article of manufacture including 
instructions which implement aspects of the function / act 
specified in the flowchart and / or block diagram block or 
blocks . 
10084 ] The computer readable program instructions may 
also be loaded onto a computer , other programmable data 
processing apparatus , or other device to cause a series of 
operational steps to be performed on the computer , other 
programmable apparatus or other device to produce a com 
puter implemented process , such that the instructions which 
execute on the computer , other programmable apparatus , or 
other device implement the functions / acts specified in the 
flowchart and / or block diagram block or blocks . 
[ 0085 ) The flowchart and block diagrams in the Figures 
illustrate the architecture , functionality , and operation of 
possible implementations of systems , methods , and com 
puter program products according to various embodiments 
of the present invention . In this regard , each block in the 
flowchart or block diagrams may represent a module , seg 
ment , or portion of instructions , which comprises one or 
more executable instructions for implementing the specified 
logical function ( s ) . In some alternative implementations , the 
functions noted in the blocks may occur out of the order 
noted in the Figures . For example , two blocks shown in 
succession may , in fact , be executed substantially concur 
rently , or the blocks may sometimes be executed in the 
reverse order , depending upon the functionality involved . It 
will also be noted that each block of the block diagrams 
and / or flowchart illustration , and combinations of blocks in 
the block diagrams and / or flowchart illustration , can be 
implemented by special purpose hardware - based systems 
that perform the specified functions or acts or carry out 
combinations of special purpose hardware and computer 
instructions . 
What is claimed is : 
1 . A method comprising : 
receiving , by a storage controller of a machine , training 

data associated with a neural network model , the neural 
network model including a plurality of layers , and the 
machine further including at least one graphics pro 
cessing unit ; 

training , by the storage controller , at least one layer of the 
plurality of layers of the neural network model using 
the training data to generate processed training data , 
wherein a size of the processed data is less than a size 
of the training data , and wherein training of the at least 
one layer includes adjusting one or more weights of the 
at least one layer using the training data ; and 
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sending , by the storage controller , the processed training 
data to at least one graphics processing unit of the 
machine , the at least one graphics processing unit 
configured to store the processed training data and train 
one or more remaining layers of the plurality of layers 
using the processed training data . 

2 . The method of claim 1 , wherein the training comprises 
performing a convolution operation on the training data , 
wherein the convolution operation comprises convolving the 
training data with the one or more weights of the at least one 
layer . 

3 . The method of claim 1 , further comprising receiving at 
least one gradient computed by the at least one graphics 
processing unit resulting from the training of the remaining 
layers . 

4 . The method of claim 4 , further comprising refining 
training of the at least one layer using the at least one 
gradient . 

5 . The method of claim 1 , wherein the training data 
comprises image data . 

6 . The method of claim 1 , wherein the storage controller 
comprises a disk controller . 

7 . The method of claim 1 , wherein the storage controller 
comprises a field - programmable gate array ( FPGA ) . 

8 . A computer usable program product comprising one or 
more computer - readable storage devices , and program 
instructions stored on at least one of the one or more storage 
devices , the stored program instructions comprising : 

program instructions to receive , by a storage controller of 
a machine , training data associated with a neural net 
work model , the neural network model including a 
plurality of layers , and the machine further including at 
least one graphics processing unit ; 

program instructions to train , by the storage controller , at 
least one layer of the plurality of layers of the neural 
network model using the training data to generate 
processed training data , wherein a size of the processed 
data is less than a size of the training data , and wherein 
training of the at least one layer includes adjusting one 
or more weights of the at least one layer using the 
training data ; and 

program instructions to send , by the storage controller , the 
processed training data to at least one graphics pro 
cessing unit of the machine , the at least one graphics 
processing unit configured to store the processed train 
ing data and train one or more remaining layers of the 
plurality of layers using the processed training data . 

9 . The computer usable program product of claim 8 , 
wherein the training comprises performing a convolution 
operation on the training data , wherein the convolution 
operation comprises convolving the training data with the 
one or more weights of the at least one layer . 

10 . The computer usable program product of claim 8 , 
further comprising program instructions to receive at least 
one gradient computed by the at least one graphics process 
ing unit resulting from the training of the remaining layers . 

11 . The computer usable program product of claim 10 , 
further comprising program instructions to refine training of 
the at least one layer using the at least one gradient . 

12 . The computer usable program product of claim 8 , 
wherein the training data comprises image data . 

13 . The computer usable program product of claim 8 , 
wherein the storage controller comprises a disk controller . 

14 . The computer usable program product of claim 8 , 
wherein the storage controller comprises a field - program 
mable gate array ( FPGA ) . 

15 . The computer usable program product of claim 8 , 
wherein the computer usable code is stored in a computer 
readable storage device in a data processing system , and 
wherein the computer usable code is transferred over a 
network from a remote data processing system . 

16 . The computer usable program product of claim 8 , 
wherein the computer usable code is stored in a computer 
readable storage device in a server data processing system , 
and wherein the computer usable code is downloaded over 
a network to a remote data processing system for use in a 
computer readable storage device associated with the remote 
data processing system . 

17 . A computer system comprising one or more proces 
sors , one or more computer - readable memories , and one or 
more computer - readable storage devices , and program 
instructions stored on at least one of the one or more storage 
devices for execution by at least one of the one or more 
processors via at least one of the one or more memories , the 
stored program instructions comprising : 
program instructions to receive , by a storage controller of 

a machine , training data associated with a neural net 
work model , the neural network model including a 
plurality of layers , and the machine further including at 
least one graphics processing unit ; 

program instructions to train , by the storage controller , at 
least one layer of the plurality of layers of the neural 
network model using the training data to generate 
processed training data , wherein a size of the processed 
data is less than a size of the training data , and wherein 
training of the at least one layer includes adjusting one 
or more weights of the at least one layer using the 
training data ; and 

program instructions to send , by the storage controller , the 
processed training data to at least one graphics pro 
cessing unit of the machine , the at least one graphics 
processing unit configured to store the processed train 
ing data and train one or more remaining layers of the 
plurality of layers using the processed training data . 

18 . The computer system of claim 17 , wherein the training 
comprises performing a convolution operation on the train 
ing data , wherein the convolution operation comprises con 
volving the training data with the one or more weights of the 
at least one layer . 

19 . The computer system of claim 17 , further comprising 
program instructions to receive at least one gradient com 
puted by the at least one graphics processing unit resulting 
from the training of the remaining layers . 

20 . The computer system of claim 19 , further comprising 
program instructions to refine training of the at least one 
layer using the at least one gradient . 


