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EXTERNAL MEMORY BASED TRANSLATION LOOKASIDE BUFFER

CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Non-Provisional Patent
Application No. 16/141,603 filed September 25, 2018, the contents of which are

hereby incorporated by reference herein.

BACKGROUND

[0002] Modern microprocessors typically abstract physical addresses in
main memory to virtual memory addresses that are used by programs.
Translation between virtual memory addresses and physical memory addresses
is performed by hardware on the processor, typically referred to as a memory
management unit (MMU). Correspondence between virtual memory addresses
and physical memory addresses is maintained in page tables. The MMU can
retrieve a translation between a virtual memory address and a physical memory
address by performing a lookup in the page tables. A lookup in a page table is
typically referred to as a page table walk, and is performed by hardware of the
MMU, typically referred to as a page table walker (PTW).

[0003] Resolving a physical memory address using a page table walk can
be time intensive. In order to speed up memory access by reducing translation
times, recent translations between virtual memory addresses and physical
memory addresses are typically cached in a memory of the MMU, referred to as a

translation lookaside buffer (TLB). The TLB is typically a part of the MMU.

BRIEF DESCRIPTION OF THE DRAWINGS
[0004] A more detailed understanding can be had from the following
description, given by way of example in conjunction with the accompanying
drawings wherein:
[0005] Figure 1 is a block diagram of an example device in which one or
more features of the disclosure can be implemented;
[0006] Figure 2 is a block diagram of the device of Figure 1, illustrating
additional detail;
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[0007] Figure 3 is a block diagram illustrating an example system
including an external memory translation lookaside buffer (EMTLB), usable
with the device of Figures 1 and 2, according to an example;

[0008] Figure 4 is a flow diagram illustrating an example procedure for
performing a virtual-to-physical address translation;

[0009] Figure 5 is a flow diagram illustrating another example procedure
for performing a virtual-to-physical address translation; and

[0010] Figure 6 is a flow diagram illustrating another example procedure

for performing a virtual-to-physical address translation.

DETAILED DESCRIPTION

[0011] Some implementations include a method for virtual address
translation which includes a memory management unit (MMU) receiving a
request to translate a virtual memory address to a physical memory address; and
searching a translation lookaside buffer (TLB), for a translation to the physical
memory address based on the virtual memory address. If the translation is not
found in the TLB, an external memory translation lookaside buffer (EMTLB) is
searched for the translation and a page table walker (PTW) performs a page
table walk to retrieve the translation from a page table. If the translation is
found in the EMTLB, the page table walk is aborted and the physical memory
address is returned. If the translation is not found in the EMTLB, the physical
memory address is returned based on the page table walk.

[0012] Some implementations provide a MMU for virtual address
translation. The MMU includes circuitry to receive a request to translate a
virtual memory address to a physical memory address; circuitry to search, based
on the virtual memory address, a TLB, for a translation to the physical memory
address; circuitry to search an EMTLB for the translation and to perform a page
table walk using a PTW to retrieve the translation, if the translation is not found
in the TLB; circuitry to abort the page table walk and return the physical
memory address if the physical memory address is found in the EMTLB; and
circuitry to return the physical memory address based on the page table walk if
the translation is not found in the EMTLB.

9.
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[0013] Some implementations provide a computing device that includes a
processor and a memory in communication with the processor. The processor
includes a MMU for virtual address translation. The MMU includes a TLB and
a PTW and the memory includes an EMTLB. The MMU also includes circuitry
to receive a request to translate a virtual memory address to a physical memory
address. The MMU also includes circuitry to search the TLB based on the
virtual memory address for a translation to the physical memory address. The
MMU also includes circuitry to search the EMTLB for the translation and to
perform a page table walk using the PTW to retrieve the translation, if the
translation is not found in the TLB. The MMU also includes circuitry to abort
the page table walk and return the physical memory address if the translation is
found in the EMTLB. The MMU also includes circuitry to return the physical
memory address based on the page table walk if the translation is not found in
the TLB and not found in the EMTLB.

[0014] Figure 1 is a block diagram of an example device 100 in which one
or more features of the disclosure can be implemented. The device 100 can
include, for example, a computer, a gaming device, a handheld device, a set-top
box, a television, a mobile phone, or a tablet computer. The device 100 includes a
processor 102, a memory 104, a storage 106, one or more input devices 108, and
one or more output devices 110. The device 100 can also optionally include an
input driver 112 and an output driver 114. It is understood that the device 100
can include additional components not shown in Figure 1.

[0015] In wvarious alternatives, the processor 102 includes a central
processing unit (CPU), a graphics processing unit (GPU), a CPU and GPU
located on the same die, or one or more processor cores, wherein each processor
core can be a CPU or a GPU. In various alternatives, the memory 104 is be
located on the same die as the processor 102, or is located separately from the
processor 102. The memory 104 includes a volatile or non-volatile memory, for
example, random access memory (RAM), dynamic RAM, or a cache.

[0016] The storage 106 includes a fixed or removable storage, for example,
a hard disk drive, a solid state drive, an optical disk, or a flash drive. The input
devices 108 include, without limitation, a keyboard, a keypad, a touch screen, a
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touch pad, a detector, a microphone, an accelerometer, a gyroscope, a biometric
scanner, or a network connection (e.g., a wireless local area network card for
transmission and/or reception of wireless IEEE 802 signals). The output devices
110 include, without limitation, a display, a speaker, a printer, a haptic feedback
device, one or more lights, an antenna, or a network connection (e.g., a wireless
local area network card for transmission and/or reception of wireless IEEE 802
signals).

[0017] The input driver 112 communicates with the processor 102 and the
input devices 108, and permits the processor 102 to receive input from the input
devices 108. The output driver 114 communicates with the processor 102 and the
output devices 110, and permits the processor 102 to send output to the output
devices 110. It is noted that the input driver 112 and the output driver 114 are
optional components, and that the device 100 will operate in the same manner if
the input driver 112 and the output driver 114 are not present. The output driver
116 includes an accelerated processing device (“APD”) 116 which is coupled to a
display device 118. The APD accepts compute commands and graphics rendering
commands from processor 102, processes those compute and graphics rendering
commands, and provides pixel output to display device 118 for display. As
described in further detail below, the APD 116 includes one or more parallel
processing units that perform computations in accordance with a single-
instruction-multiple-data  (“SIMD”) paradigm. Thus, although various
functionality is described herein as being performed by or in conjunction with the
APD 116, in various alternatives, the functionality described as being performed
by the APD 116 is additionally or alternatively performed by other computing
devices having similar capabilities that are not driven by a host processor (e.g.,
processor 102) and provide graphical output to a display device 118. For
example, it is contemplated that any processing system that performs processing
tasks in accordance with a SIMD paradigm may perform the functionality
described herein. Alternatively, it is contemplated that computing systems that
do not perform processing tasks in accordance with a SIMD paradigm perform

the functionality described herein.
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[0018] Figure 2 is a block diagram of the device 100, illustrating additional
details related to execution of processing tasks on the APD 116. The processor
102 maintains, in system memory 104, one or more control logic modules for
execution by the processor 102. The control logic modules include an operating
system 120, a kernel mode driver 122, and applications 126. These control logic
modules control various features of the operation of the processor 102 and the
APD 116. For example, the operating system 120 directly communicates with
hardware and provides an interface to the hardware for other software executing
on the processor 102. The kernel mode driver 122 controls operation of the APD
116 by, for example, providing an application programming interface (“API”) to
software (e.g., applications 126) executing on the processor 102 to access various
functionality of the APD 116. The kernel mode driver 122 also includes a just-in-
time compiler that compiles programs for execution by processing components
(such as the SIMD units 138 discussed in further detail below) of the APD 116.
[0019] The APD 116 executes commands and programs for selected
functions, such as graphics operations and non-graphics operations that may be
suited for parallel processing. The APD 116 can be used for executing graphics
pipeline operations such as pixel operations, geometric computations, and
rendering an image to display device 118 based on commands received from the
processor 102. The APD 116 also executes compute processing operations that
are not directly related to graphics operations, such as operations related to
video, physics simulations, computational fluid dynamics, or other tasks, based
on commands received from the processor 102.

[0020] The APD 116 includes compute units 132 that include one or more
SIMD units 138 that perform operations at the request of the processor 102 in a
parallel manner according to a SIMD paradigm. The SIMD paradigm is one in
which multiple processing elements share a single program control flow unit and
program counter and thus execute the same program but are able to execute that
program with different data. In one example, each SIMD unit 138 includes
sixteen lanes, where each lane executes the same instruction at the same time as
the other lanes in the SIMD unit 138 but can execute that instruction with
different data. Lanes can be switched off with predication if not all lanes need to
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execute a given instruction. Predication can also be used to execute programs
with divergent control flow. More specifically, for programs with conditional
branches or other instructions where control flow is based on calculations
performed by an individual lane, predication of lanes corresponding to control
flow paths not currently being executed, and serial execution of different control
flow paths allows for arbitrary control flow.

[0021] The basic unit of execution in compute units 132 is a work-item.
Each work-item represents a single instantiation of a program that is to be
executed in parallel in a particular lane. Work-items can be executed
simultaneously as a “wavefront” on a single SIMD processing unit 138. One or
more wavefronts are included in a “work group,” which includes a collection of
work-items designated to execute the same program. A work group can be
executed by executing each of the wavefronts that make up the work group. In
alternatives, the wavefronts are executed sequentially on a single SIMD unit 138
or partially or fully in parallel on different SIMD units 138. Wavefronts can be
thought of as the largest collection of work-items that can be executed
simultaneously on a single SIMD unit 138. Thus, if commands received from the
processor 102 indicate that a particular program is to be parallelized to such a
degree that the program cannot execute on a single SIMD unit 138
simultaneously, then that program is broken up into wavefronts which are
parallelized on two or more SIMD units 138 or serialized on the same SIMD unit
138 (or both parallelized and serialized as needed). A scheduler 136 performs
operations related to scheduling various wavefronts on different compute units
132 and SIMD units 138.

[0022] The parallelism afforded by the compute units 132 is suitable for
graphics related operations such as pixel value calculations, vertex
transformations, and other graphics operations. Thus in some instances, a
graphics pipeline 134, which accepts graphics processing commands from the
processor 102, provides computation tasks to the compute units 132 for execution
in parallel.

[0023] The compute units 132 are also used to perform computation tasks
not related to graphics or not performed as part of the “normal” operation of a
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graphics pipeline 134 (e.g., custom operations performed to supplement
processing performed for operation of the graphics pipeline 134). An application
126 or other software executing on the processor 102 transmits programs that
define such computation tasks to the APD 116 for execution.

[0024] Processor 102 includes a MMU and TLB to translate between
virtual memory addresses and physical memory addresses (e.g., in memory 104).
It is noted that in some implementations, multiple components within processor
102 each contain an MMU and TLB. In some example implementations of device
100, processor 102 contains an MMU within each of several x86 CPU cores, an
MMU within APD 116 (e.g., a GPU), and an 1/0 MMU to support I/0 devices
such as a network controller.

[0025] As computer systems have evolved they have typically included
larger and larger physical memory stores, and programs for these systems
typically leverage larger and larger amounts of this memory, often with lower
reference locality. Lower reference locality refers to access of a particular
memory location at a more distant time (temporal) or accessing different memory
locations at more distant locations in storage (e.g., on a physical medium, or
based on the organizational structure of the storage). Large memory spaces and
lower reference locality can contribute to high or otherwise undesirable TLB
miss rates, and consequently, higher virtual-to-physical address translation
overhead. Typically this is because increased TLB miss rates require an
increased number of page table walks to retrieve virtual-to-physical translations
that are not cached in the TLLB. Resolving a translation using page table walks
yields significantly lower performance (i.e., takes significantly longer) than
retrieving a cached translation from the TLB.

[0026] From a conceptual point of view, increasing the size of the TLB
could result in improved address translation overhead. However, the required
increase in on-chip hardware of a typical TLB implemented in an MMU of a
processor would be impractical in terms of die area and/or expense. Changing
the page size, and thus the unit of translation, could also result in improved
address translation overhead without increasing the size of the TLB in some
implementations. For example, x86 processors support pages of 4KB, 2MB and

-7-



WO 2020/065418 PCT/IB2019/056498

1GB. Software controls the page sizes however, and by default often uses the
smallest size. Accordingly, operating system (OS) enhancements or application
recompilation are required to access new OS interfaces for requesting larger
pages in some implementations. Use of larger pages also impacts memory
efficiency, as large regions of memory are moved, for example, when paging
memory out to disk. Use of larger pages also reduces memory efficiency in some
cases where not all of the memory within the larger sized page is used within the
active working set of the application. Further, a larger page size creates a
minimum granularity for allocating memory, which causes small applications to
use memory inefficiently in some cases. Further, software compatibility can
constrain the use of larger pages in some implementations. For example, if the
page table is interpreted by an x86 processor, the format is fixed in order to
maintain compatibility with existing operating system software. This also fixes
the pages sizes supported in some implementations. As a result, it is not
possible to change the radix of the page table tree and/or change the basic page
sizes without breaking general compatibility in some cases.

[0027] It is desired to provide improved address translation when the
working set exceeds on-chip TLB capacity without requiring changes to the page
table structure in memory and such that operating systems are able to continue
to utilize existing page table formats and memory allocation algorithms.
Accordingly, an external memory translation lookaside buffer (EMTLB) is
described herein which caches virtual-to-physical address translations that have
been evicted from an on-chip TLB to an external memory.

[0028] Figure 3 is a block diagram illustrating an example system 300
including an example EMTLB 360. System 300 includes a processor 302 and
memory 304. Processor 302 is in communication with memory 304 over a
communications medium 350. EMTLB 360 includes an EMTLB memory 367
stored within memory 304, and EMTLB control logic 365 implemented on MMU
310.  Communications medium 350 can include any suitable computer
interconnect or combination of computer interconnects, such as a memory bus.
[0029] In some examples, system 300 is implemented using device 100 as
shown and described with respect to Figures 1 and 2. For example, in such
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implementations, processor 302 is implemented as processor 102, and memory
304 is implemented as memory 104. In other examples, other suitable processor,
memory, and other components are used.

[0030] Processor 302 includes MMU 320. MMU 3820 includes TLB 330 and
PTW 340. MMU 320 may be implemented fully in hardware on processor 302,
may be implemented in firmware running on an embedded processor internal to
processor 302, or in any other suitable way. MMU 320 includes control logic for
managing TLB 330 and EMTLB control logic 365 for managing EMTLB memory
367. EMTLB memory 367 is a raw memory storage within DRAM 304. A
limited set of operations (e.g., read and write) are implemented between EMTLB
control logic 365 and EMTLB memory 367. In some implementations however,
EMTLB 360 supports more complex operations (e.g., atomic operations).
Memory 304 is the main memory, or a portion of the main memory, of system
300, and includes any suitable non-transitory computer readable medium, such
as a dynamic random access memory (DRAM).

[0031] MMU 320 receives translation requests that include, or refer to, a
virtual address. In some examples, MMU 320 receives the translation requests
from a client. The client can include any suitable entity within processor 302,
such as a compute unit (CU), display engine, video decoder, GPU command
processor, or the like. In some examples, MMU 320 receives the translation
requests from an integrated or external input/output (I0) device, such as an
integrated universal serial bus (USB) controller, external PCle attached network
controller, or the like. In response, MMU 320 returns a physical address
corresponding to the virtual address to the entity having made the request. The
physical address refers to a physical memory address within memory 304, and is
obtained using one of various procedures such as those described herein. In this
example, if MMU 320 receives a translation request indicating a virtual memory
address, it checks TLB 330 to see if a translation has been cached therein @.e., a
TLB hit). If not (i.e., a TLB miss), the MMU 320 checks EMTLB 360 to see if a
translation has been cached therein, and/or performs a page table walk using

PTW 340, as further described herein.



WO 2020/065418 PCT/IB2019/056498

[0032] In some examples, prior to performing a page table walk, TLB 330
is accessed to try to obtain a partial translation. In this context, a partial
translation provides information enabling a page table walk to be started from
an intermediate level of the page table radix tree rather than the root.
Obtaining a partial translation in this way can have the advantage of reducing
the number of memory accesses required by the page table walk. In some
implementations, the reduction in memory accesses is enabled by using the
partial translation to begin the page table walk part way down the radix tree of
the page table. If the partial translation also misses, the page table walk is
performed as a full page table walk from the root of the page table.

[0033] In some implementations, if the page table walk completes prior to
completion of a concurrent EMTLB lookup (e.g., by using a partial translation to
reduce the time needed to perform the page table walk), the EMTLB lookup is
aborted. In some cases, the EMTLB lookup is aborted after the TLB lookup
completes. In some cases, the EMTLB lookup is aborted preemptively based on a
prediction of the number of memory accesses required to perform the page table
walk based on a partial translation result from the TLB lookup. In some such
cases, the number of future memory requests to be performed by the page table
walk is not precisely known. A partial translation result obtained from the TLB
does not directly indicate the number of additional memory accesses required to
complete the page table walk; e.g., due to different page sizes (and thus levels in
the page table), potential other TLB structures, and so forth. Accordingly, in
order to predictively abort a concurrent EMTLB lookup based on a partial
translation, a heuristic or prediction scheme is implemented in some cases where
the number of memory accesses required for the page table walk is unknown.
[0034] TLB 330 is a specialized cache memory that caches recent virtual to
physical (or vice versa) memory address translations made by the MMU. TLB
330 includes an on-chip memory to store TLB entries, and is implemented on
processor 302 as a part of MMU 320. In some implementations, TLB 330 is a
multi-level cache. In some examples, TLB 330 includes an .1 TLLB and an 1.2
TLB, where the L.1 TLB is faster, but smaller than the L2 TLB. Because the L1
TLB is faster, translations that are used frequently are performed more quickly
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on a L1 TLB hit. However because the L.L1 TLB is smaller, translations that are
not used as frequently are evicted from the L.1 TLB and stored in the 1.2 TLB.
Because the 1.2 TLB is larger than the 1.1 TLB, a greater number of translations
are stored therein to provide a greater chance for a 1.2 TLB hit (avoiding resort
to the EMTLB 360 or PTW 340). However because the L2 TLB is slower than
the L1 TLB, translation latency and accordingly overall memory access
performance is somewhat lower than in cases of an LL1 TLB hit. If both L.1 TLB
and L2 TLB miss, MMU 320 performs a page table walk using PTW 340 and/or
performs an EMTLB lookup in EMTLB 360.

[0035] PTW 340 is specialized hardware that performs a page table walk
in order to translate virtual addresses to physical addresses; e.g., in cases where
such translation is not cached in TLLB 330 or EMTLB 360. PTW 340 is
implemented on processor 302 as a part of MMU 320. Page table walks are
relatively time intensive and result in higher translation latency than either
TLB or EMTLB hits. In some examples, this is because the page table walk
requires multiple dependent and/or serial accesses to memory for a single
translation.

[0036] There are several ways of constructing a page table. An example
page table for use in x86, ARM, and other systems is constructed using a radix
tree. A radix tree is an N-level tree structure where nodes at each level contain a
number of pointers to nodes in the next level. In an example x86 page table with
48-bit virtual addresses, each node contains 512 pointers to nodes at the next
level.

[0037] Another example page table uses a form of hash table. Using a hash
table in this manner provides faster best-case lookups (e.g., requiring 1 memory
access) in some implementations, but in some cases requires special handling of
potential hash collisions, including fallback to software.

[0038] The hash table of EMTLB 360 is simpler than the full page table;
e.g., in cases where special case handling for hash collisions is simplified or
eliminated for the EMTLB 360. In such cases, for example, EMTLB 360 falls
back to its full radix tree to obtain translations rather than relying on secondary
searches or falling back to software to resolve a hash collision.
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[0039] EMTLB 360 includes a region of memory 304 (EMTLB memory 367
in the figure) set aside to cache virtual-physical address translations that have
been evicted from TLB 330, and functions as a lower level of the cache hierarchy
that includes TLB 330. Because EMTLB memory 367 is located in memory 304
and is not a part of the on-chip TLB 330, an EMTLB hit in response to a lookup
request will have higher translation latency than a TLB hit. The memory of
EMTLB 360 is significantly larger than in TLB 330 however. Accordingly, a
significantly greater number of translations are stored in EMTLB 360 as
compared with TLB 330 — in some cases, on the order of 1000 times greater.
This is advantageous in that if TLB 330 misses in response to a translation
request, an EMTLB hit will have lower translation latency than a page table
walk, even if the translation latency is higher than a TLB hit.

[0040] In some implementations, EMTLB memory 367 is allocated in, or
“‘carved out” of, memory 304 when system 300 is initialized or “booted”. Memory
is allocated for EMTLB 360 in any suitable way. For example, in some
implementations, memory is reserved by a basic input/output system (BIOS)
prior to loading a hypervisor and/or operating system (OS). In some
implementations, the memory of EMTLB 360 is allocated by the hypervisor or
OS. All entries of EMTLB 360 are initialized such that they do not contain valid
translations. In some cases, EMTLB 360 supports multiple page sizes (e.g., 1
gigabyte, 2 megabyte, and 4 kilobyte sizes). In some cases, entries in KMTLB
360 include a tag and data portion. The tag portion includes a virtual address
and can include a domain ID, page size, and/or process address space identifier
(PASID) in some examples. The data portion includes a physical address and
can include read/write/execute permissions, and/or a dirty bit in some examples.
[0041] EMTLB 360 can have any suitable structure. In some examples
EMTLB 360 is set/way associative. In some examples, entries in EMTLB 360
are of arbitrary size; i.e., are not limited by the storage size of entries in the page
table (e.g., 8 bytes in x86). In some examples, EMTLB 360 includes more entries
than an on-chip TLB (e.g.,, TLB 330). In some examples, EMTLB 360
implements a replacement policy and maintains a replacement history; e.g., to
allow eviction of the least recently used (LRU) entry. In some examples, EMTLB
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360 maintains state for the replacement policy in off-chip memory (e.g., in DRAM
304).

[0042] In some examples, read-modify-write memory operations are
executed by MMU 320 in order to perform the EMTLB lookup or to update the
EMTLB 360, e.g., following an eviction from TLB 330.

[0043] In the examples herein, EMTLB lookups are controlled by EMTLB
control logic 365, which is part of the MMU 320 in this example. It is noted
however that in various implementations, the EMTLB memory 360 is
maintained using control logic which can be implemented using special purpose
hardware, using an embedded processor running dedicated firmware, using
software running on a main processor (e.g., processor 302 or a core of processor
302), and/or in any other suitable way. In some such implementations, the
EMTLB control logic 365 determines whether or not to cache the EMTLB
memory 367.

[0044] In some implementations, more than one EMTLB control logic
shares a common pool of EMTLB memory (e.g., EMTLB memory 367). In some
such implementations, a scenario arises in some cases where a read and/or write
access to a portion of the shared EMTLB memory 367 by one EMTLB control
logic conflicts with a read and/or write access of another EMTLB control logic. In
such cases, if EMTLB caching is not used, atomic operations are used to
coordinate among multiple EMTLB controllers sharing a common pool of
EMTLB memory in some examples. In some implementations, one KMTLB
control logic (e.g., EMTLB control logic 365) reads, and then performs a compare-
and-swap atomic operation to update the entry. Through these operations, it can
be ascertained that either no other EMTLB control logic wrote to the entry after
it was read (i.e., the compare against the previous value passes) or the compare-
and-swap atomic operation failed and the EMTLB control logic 365 takes a
corrective action (e.g., attempts to read-compare-and-swap again, or drops the
entry). If EMTLB caching is used in these cases, such caching is coherent across
all EMTLB controllers sharing the same EMTLB memory in some examples.
[0045] In some examples, software or firmware and the processor or
controller executing the software or firmware uses specific operations to perform
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atomic read/modify/write operations, such as an x86 lock prefix instruction. In
such cases, the EMTLB is modifiable using cache coherent operations from a
processor rather than memory operations from non-coherent hardware. In some
implementations, more than one EMTLB control logic each accesses separate
EMTLB memory. In some implementations, no coordination is required in such
cases.

[0046] In some examples, EMTLB 360 selects a way to which a new entry
should be written, randomly (or pseudo-randomly), avoiding the need to
maintain a replacement history for this purpose. In some examples, this random
or pseudo-random selection is performed using a linear-feedback shift register
(LFSR) to select the way. In some examples, writing entries to the EMTLB
randomly, or pseudo-randomly makes maintaining a replacement history or
state unnecessary.

[0047] In some examples, EMTLB 360 is direct mapped. In some such
examples, the tag of the entry to be stored in EMTLB memory 367 is used to
decide which entry of EMTLB 360 should be written. In some cases this yields a
contention issue where similar tags hash to the same location, resulting in
thrashing of EMTLB 360 to some extent. It is noted that in some cases
thrashing also occurs in set-associative implementations of EMTLB 360; for
example, if there are repeated requests to store N+1 translations that all map to
the same index of an N-way associative cache/TLB structure.

[0048] Figure 4 is a flow diagram illustrating an example procedure 400
for performing a virtual-to-physical address translation. In some
implementations, procedure 400 is usable with system 300 as shown and
described with respect to Figure 3.

[0049] In step 410, an MMU (e.g., MMU 320 as shown and described with
respect to FIG. 3) receives a request to translate a virtual address from a client.
The request includes (or indicates) a virtual address for translation to a physical
address in memory.

[0050] The MMU performs a lookup in its TLB (e.g., TLB memory 330 as
shown and described with respect to FIG. 3) in step 420. In some examples, the
TLB memory is part of the MMU, or is in the same core or on the same chip as
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the MMU, etc. This is referred to as “on-chip TLB” or OCTLB in Figure 4. In
various implementations, this TLB includes one cache level, or more than one
cache level.

[0051] On a condition 430 that the TLB lookup hits (i.e., a translation for
the virtual address included in or indicated by the request is found in the MMU
TLB), the corresponding physical address stored in the TLB is returned to the
client in step 440. In some implementations, a replacement algorithm for the
TLB is executed at this time to update the cache (e.g., in cases where the
translation was found in a lower level of the MMU TLB). In some examples, the
algorithm updates the replacement state of the TLB but does not alter the
translation information.

[0052] On the condition 430 that the TLB lookup misses (i.e., a translation
for the virtual address included in or indicated by the request is not found in the
MMU TLB), the MMU performs a lookup in an EMTLB (e.g., EMTLB 360 as
shown and described with respect to FIG. 3.) in step 450.

[0053] On a condition 460 that the EMTLB lookup hits, the corresponding
physical address stored in the EMTLB is returned to the client in step 440. In
some implementations, the replacement state of the EMTLB is updated to reflect
the EMTLB lookup hit (i.e., to note that the physical address translation was the
most recently used in the EMTLB).

[0054] In some implementations, the physical address translation is stored
in the TLB at this stage. In some implementations, the replacement state of the
TLB is updated to reflect the replacement state of the TLLB based on having
written the entry from the EMTLB memory to the TLB memory (e.g., to note
that the physical address translation was the most recently used in the TLLB). In
some implementations, if the TLB is full before the physical address translation
is stored, a replacement algorithm is also executed to identify an entry for
eviction to make room for the physical address translation. In some
implementations, if an entry is evicted from the TLB to make room for the
physical address translation, the evicted entry is written to the EMTLB, and a

corresponding replacement algorithm is run on the EMTLB if necessary (e.g., to
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determine which entry to evict from the EMTLB, if necessary, and to update the
recency of the entry evicted from the TLB and written to the EMTLB).

[0055] In some implementations, physical address translations are written
to the EMTLB at the same time they are written to the TLB following a page
table walk and TLB evictions are not written to the EMTLB (e.g., on the
assumption that the physical address translation was already written to the
EMTLB when it was written to the TLB). In an example of one such
replacement algorithm, the current translation is stored in the TLB, and if the
TLB is full, an entry is evicted from the TLB to make space for the new
translation. The entry chosen for eviction depends upon the replacement
algorithm. The chosen entry is evicted from the TLB, and the evicted entry is
written to the EMTLB. If the EMTLB is full, an entry is evicted from the
EMTLB to make room for the entry evicted from the TLB. Because the EMTLB
is the lowest level of the TLB structure, any translation evicted from the EMTLB
will no longer be cached. In some implementations a least recently used (I.LRU)
entry is chosen for eviction from the EMTLB. In some implementations this
differs from the replacement algorithm for the TLB, where on-chip memory is not
large enough to implement hardware to track an LRU entry. Various kinds of
replacement algorithms are possible for TLB and EMTLB replacement, and any
suitable replacement algorithm can be used.

[0056] On the condition 460 that the EMTLB lookup misses, the MMU
performs a page table walk (e.g., using PTW 320 as shown and described with
respect to FIG. 3) in step 470. The corresponding physical address retrieved by
the page table walk is returned to the client in step 440.

[0057] In some implementations, the physical address translation is stored
in the TLB at this stage. In some implementations, the replacement state of the
TLB is updated to reflect the lookup hit (i.e., to note that the physical address
translation was the most recently used in the TLB). In some implementations, if
the TLB is full before the physical address translation is stored, a replacement
algorithm is also executed to identify an entry for eviction to make room for the
physical address translation. In some implementations, if an entry is evicted
from the TLB to make room for the physical address translation, the evicted
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entry is written to the EMTLB, and a corresponding replacement algorithm is
run on the EMTLB if necessary (i.e., to determine which entry to evict from the
EMTLB, if necessary, and to update the recency of the entry evicted from the
TLB and written to the EMTLB). In some implementations, physical address
translations are written to the EMTLB at the same time they are written to the
TLB following a page table walk and TLB evictions are not written to the
EMTLB, e.g., on the assumption that the physical address translation was
already written to the EMTLB when it was written to the TLB.

[0058] Procedure 400 illustrates a scenario where a page table walk, and
its potentially expensive overhead, are avoided in cases where a translation can
be found in an EMTLB. However, in scenarios where both the TLB and EMTLB
lookups miss, the overhead of the page table walk is still incurred, and is added
to the overhead of the EMTLB lookup. This can occur in various scenarios, such
as early in execution, or following a TLB/EMTLB flush, where few translations
have been cached. In some cases, implementation of an EMTLB yields reduced
performance during such scenarios.

[0059] Figure 5 is a flow diagram illustrating an example procedure 500
for performing a virtual-to-physical address translation. In some
implementations, procedure 500 is usable with system 300 as shown and
described with respect to Figure 3.

[0060] In step 510, an MMU (e.g., MMU 320 as shown and described with
respect to FIG. 3) receives a request to translate a virtual address from a client.
The request includes (or indicates) a virtual address for translation to a physical
address in memory. If the MMU receives such a request, it performs a lookup in
its TLLB (e.g., TLB 330 as shown and described with respect to F1G. 3, a TLB that
is part of the MMU 320, or which is in the same core or on the same chip as the
MMU, etc.) in step 420. In various implementations, this TLB (“T'LB” “MMU
TLB” or “on-chip TLB”) includes one cache level, or more than one cache level.
[0061] On a condition 530 that the TLB lookup hits — in other words, a
translation for the virtual address included in or indicated by the request is
found in the MMU TLB, the corresponding physical address stored in the TLB is
returned to the client in step 540. In some implementations, a replacement

-17-



WO 2020/065418 PCT/IB2019/056498

algorithm for the TLB is executed at this time to update the cache; for example,
in cases where the translation was found in a lower level of the MMU TLB. In
some examples, the algorithm updates the replacement state of the TLB but does
not alter the translation information.

[0062] On the condition 530 that the TLB lookup misses — in other words,
a translation for the virtual address included in or indicated by the request is not
found in the MMU TLB, the MMU performs a lookup in an EMTLB (e.g.,
EMTLB 360 as shown and described with respect to FIG. 3) in step 550. In
addition to beginning the EMTLB lookup in step 550, the MMU also begins a
page table walk in step 570 (e.g., using PTW 320 as shown and described with
respect to FIG. 3)

[0063] While the page table walk progresses during step 570, it is
determined whether the EMTLB lookup of step 550 results in a hit. On a
condition 560 that the EMTLB lookup hits, the page table walk is aborted in step
580 and the corresponding physical address translation stored in the KMTLB is
returned to the client in step 540. In some implementations, the replacement
state of the EMTLB is updated to reflect the lookup hit (i.e., to note that the
physical address translation was the most recently used in the EMTLB).

[0064] On the condition 560 that the EMTLB lookup misses, the EMTLB
lookup ends in step 590, and the page table walk continues in step 570. The
corresponding physical address retrieved by the page table walk is returned to
the client in step 540.

[0065] In some implementations, the physical address translation is stored
in the TLB at step 540. In some implementations, the replacement state of the
TLB is updated to reflect the lookup hit (i.e., to note that the physical address
translation was the most recently used in the TLB). In some implementations, if
the TLB is full before the physical address translation is stored, a replacement
algorithm is also executed to identify an entry for eviction to make room for the
physical address translation. In some implementations, if an entry is evicted
from the TLB to make room for the physical address translation, the evicted
entry is written to the EMTLB, and a corresponding replacement algorithm is
run on the EMTLB if necessary. (i.e., to determine which entry to evict from the
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EMTLB, if necessary, and to update the recency of the entry evicted from the
TLB and written to the EMTLB). In some implementations, physical address
translations are written to the EMTLB at the same time they are written to the
TLB following a page table walk and TLB evictions are not written to the
EMTLB, e.g., on the assumption that the physical address translation was
already written to the EMTLB when it was written to the TLB.

[0066] Procedure 500 illustrates a scenario where, as in procedure 400, a
page table walk, and its potentially expensive overhead, are avoided in cases
where a translation can be found in an EMTLB. In cases where both the TLB
and EMTLB lookups miss, the overhead of the page table walk is still incurred,
but this overhead is not added to the overhead of the EMTLB lookup because the
EMTLB lookup executes in parallel with the page table walk. In some cases,
implementation of an EMTLB which operates in parallel (e.g., simultaneously or
concurrently) with a page table walk does not reduce performance significantly
during such scenarios. For example, in some implementations, page table walk
latency is impacted only by a single EMTLB memory access due to the parallel
EMTLB lookup.

[0067] Figure 6 is a flow diagram illustrating an example procedure 600
for performing a virtual-to-physical address translation. In some
implementations, procedure 600 is usable with system 300 as shown and
described with respect to Figure 3.

[0068] Procedure 600 includes details relating to multi-layer translation of
virtual addresses in a virtualized system. In the virtualized system, a virtual
machine (VM) is allocated a particular virtual address space corresponding to
physical memory. In this example, the virtual address space addresses allocated
to the VM are referred to as guest physical addresses (GPA), and the physical
memory addresses are referred to as system physical addresses (SPA). The
address space for the VM is also assigned a domain identity (Domain ID).
Translation of a GPA to retrieve an SPA is referred to as a host layer translation.
[0069] Each application executing within the VM is allocated a virtual
address space corresponding to the GPAs. In this example, the virtual address
space addresses allocated to the application are referred to as guest virtual
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addresses (GVA). Each application is also assigned a process identity (PASID).
Translation of a GVA to retrieve a corresponding GPA is referred to as a guest
layer translation. Accordingly, a complete GVA to SPA translation can be
described as being made up of two translations; i.e., GVA to GPA (guest layer),
and GPA to SPA (host layer). This is an example of a nested page table walk. In
this example, the translation from the GVA to GPA may be referred to as an
intermediate translation. It is noted that in some implementations, more than
two levels of nesting may be used, where complete translations may be made up
of three or more translations, including two or more intermediate translations.
[0070] In procedure 600, the MMU TLB stores device table entries, partial
GVA to SPA translations, and final GPA to SPA translations. A Domain ID is
stored in the MMU TLB for each entry type. The EMTLB is tagged by GVA or
GPA, Domain 1D, and PASID.

[0071] In step 605, an MMU (e.g., MMU 320) receives a request which
includes a virtual address for translation to a physical address. In this case, the
request includes a GVA or GPA (“virtual address”) for translation to a SPA.
[0072] On a condition 630 that the TLB lookup hits (i.e., a translation for
the virtual address is included in or indicated by the request is found in the
MMU TLB) the corresponding SPA stored in the MMU TLB is returned to the
client in step 640. In some implementations, a replacement algorithm for the
MMU TLB is executed at this time to update the cache; for example, in cases
where the translation was found in a lower level of the MMU TLB.

[0073] If the TLB lookup misses (i.e., an SPA corresponding to the virtual
address is included in or indicated by the request is not found in the MMU TLB),
it is determined whether a Domain ID of the requested virtual address is stored
in the MMU TLB. On a condition 643 that the Domain ID is not stored in the
MMU TLB, the Domain ID of the requested virtual address is fetched from
memory in step 645; otherwise it is retrieved from the MMU TLB in step 650. In
either case, both a page table walk and EMTLB lookup are executed based on the
virtual address and Domain ID in steps 655 and 660 respectively.

[0074] On a condition 665 that the EMTLB hits, the page table walk is
aborted and the corresponding SPA is returned to the client in step 640. In some
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implementations, the replacement state of the EMTLB is updated to reflect the
lookup hit (i.e., to note that the physical address translation was the most
recently used in the EMTLB).

[0075] On the condition 665 that the EMTLB lookup misses, the EMTLB
lookup simply ends, and the page table walk continues in step 655.

[0076] The page table walk of step 655 takes longer than the EMTLB
lookup of step 660 in this example, and includes fetching page directories from
memory in step 670 and using the fetched page directories to fetch the page table
entry corresponding to the virtual address in step 675. From the fetched page
table entry, the MMU returns the corresponding SPA to the client in step 640.
[0077] In some implementations, the translation is stored in the TLB at
step 640. In some implementations, the replacement state of the TLB is updated
to reflect the lookup hit (i.e., to note that the physical address translation was
the most recently used in the TLB). In some implementations, if the TLB is full
before the translation is stored, a replacement algorithm is also executed to
identify an entry for eviction to make room for the translation. In some
implementations, if an entry is evicted from the TLB to make room for the
translation, the evicted entry is written to the EMTLB, and a corresponding
replacement algorithm is run on the EMTLB if necessary (i.e., to determine
which entry to evict from the EMTLB, if necessary, and to update the recency of
the entry evicted from the TLB and written to the EMTLB). In some
implementations, translations are written to the EMTLB at the same time they
are written to the TLB following a page table walk and TLB evictions are not
written to the EMTLB, e.g., on the assumption that the translation was already
written to the EMTLB when it was written to the TLB.

[0078] Procedure 600 illustrates a scenario where, like in procedure 400, a
page table walk (and its potentially expensive overhead) is avoided in cases
where a translation can be found in an EMTLB. In scenarios where both the
TLB and EMTLB lookups miss, the overhead of the page table walk is still
incurred, but this overhead is not added to the overhead of the EMTLB lookup
because the EMTLB lookup executes in parallel with the page table walk. In
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some cases, implementation of an EMTLB which operates in parallel with a page
table walk does not reduce performance during such scenarios.

[0079] In some circumstances it is necessary to invalidate certain contents
of a TLB. Such circumstances occur, for example, where software makes changes
to the page table in memory (e.g., for a page-table entry, changing the valid bit
value, changing the address, or changing attributes, such as read-write to read-
only). Software may make changes to the page table in memory, for example,
where memory is deallocated to free it for allocation to a new client. An example
case where memory is deallocated is where an application or device driver has
finished using memory allocated for its use, and releases it.

[0080] In such cases contents of the TLB are either marked as not valid, or
cleared or “zeroed out” in different implementations. In implementations which
include an EMTLB, certain contents of the EMTLB also need to be invalidated.
However due to its large size and access latency, it may not be feasible to scan
each entry of the EMTLB to identify the invalidation targets. Accordingly,
EMTLB entries can include a Domain ID in order to facilitate domain-based
invalidations. For example, if a range of GPAs corresponding to a particular VM
are to be invalidated, only those entries in the EMTLB corresponding to the
Domain ID of that VM need to be scanned for invalidation.

[0081] Several different options are possible for invalidating EMTLB
entries. Some implementations include deferred invalidation. A deferred
invalidation can be implemented as a filter applied prior to EMTLB accesses.
The filter contains information about invalidations that have been buffered for
processing but have not completed updating the EMTLB memory itself. If
invalidations are received by the EMTLB control logic (e.g., from software via the
MMU), they are stored in the filter (if there is space) and are treated by the
MMU as “complete” even before the EMTLB memory is checked or possibly
updated In treating the invalidations as complete, the MMU signals software to
indicate that the invalidation has completed. Software may accordingly modify
the invalidated part of the page table, as prior copies of the translations have
been removed from the TLBs/EMTLBs. In an example operation, software
executing on the system sends a signal to the MMU (e.g., via other components)

99.



WO 2020/065418 PCT/IB2019/056498

invalidating a particular page translation. After the signal has been received by
the MMU (e.g., is acknowledged in a suitable way), the software treats the
invalidation as complete. This is because after this point the MMU has either
completed the invalidation or has stored the invalidation in a buffer G.e.,
deferred invalidation) such that the invalidated translation will not be accessible
even if it has not yet been marked invalid in the EMTLBs.

[0082] If a translation request to the EMTLB control logic for a translation
lookup hits in the filter, the request is treated as an EMTLB miss, even if the
translation is in fact still stored in the EMTLB memory. This is because any
related entries in the EMTLB memory were intended to be invalidated even if
they are still physically encoded within the EMTLB memory (i.e., the invalidate
buffered in the filter has not yet updated the EMTLB memory). In some
implementations, a state machine searches the EMTLB memory for entries that
match one of the buffered invalidations within the filter. In some
implementations, this occurs in parallel with waiting for and receiving
translation requests. If any of the entries buffered in the filter matches the
invalidation criteria, the corresponding entries are evicted from the EMTLB
memory. Once all entries that potentially match an invalidation have been
scanned, the processed invalidation is removed from the filter.

[0083] If the filter is full, the invalidation cannot immediately complete. In
this case, in some implementations, the invalidation either waits for space to free
up within the filter, or a separate scanning logic (e.g., within the EMTLB logic)
scans the EMTLB memory for entries that match the invalidation criteria and
evicts them. If the scanning completes, the invalidation is considered complete
from the perspective of the EMTLB.

[0084] Some implementations include a “memory-write/clear” scheme for
invalidation. In the memory-write/clear scheme, scanning logic does not read the
contents of the EMTLB memory to determine which entries to invalidate.
Rather, the scanning logic simply writes the EMTLB memory such that all
potential entries that match the invalidation criteria are made invalid. This

scheme may require one or multiple memory writes.
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[0085] Some implementations include a “read-modify-write” scheme for
invalidation. In the read-modify-write scheme, scanning logic reads potential
entries of the EMTLB to determine entries that match the invalidation criteria,
and only invalidates entries that match the criteria by overwriting them.

[0086] It should be understood that many variations are possible based on
the disclosure herein. Although features and elements are described above in
particular combinations, each feature or element can be used alone without the
other features and elements or in various combinations with or without other
features and elements.

[0087] The methods provided can be implemented in a general purpose
computer, a processor, or a processor core. Suitable processors include, by way of
example, a general purpose processor, a special purpose processor, a
conventional processor, a digital signal processor (DSP), a plurality of
microprocessors, one or more microprocessors in association with a DSP core, a
controller, a microcontroller, Application Specific Integrated Circuits (ASICs),
Field Programmable Gate Arrays (FPGAs) circuits, any other type of integrated
circuit (IC), and/or a state machine. Such processors can be manufactured by
configuring a manufacturing process using the results of processed hardware
description language (HDL) instructions and other intermediary data including
netlists (such instructions capable of being stored on a computer readable
media). The results of such processing can be maskworks that are then used in a
semiconductor manufacturing process to manufacture a processor which
implements features of the disclosure.

[0088] The methods or flow charts provided herein can be implemented in
a computer program, software, or firmware incorporated in a non-transitory
computer-readable storage medium for execution by a general purpose computer
or a processor. Examples of non-transitory computer-readable storage mediums
include a read only memory (ROM), a random access memory (RAM), a register,
cache memory, semiconductor memory devices, magnetic media such as internal
hard disks and removable disks, magneto-optical media, and optical media such

as CD-ROM disks, and digital versatile disks (DVDs).
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CLAIMS
What is claimed is:
1. A method for virtual address translation, the method comprising:
receiving, by a memory management unit (MMU), a request to translate a
virtual memory address to a physical memory address;
searching, by the MMU, based on the virtual memory address, a
translation lookaside buffer (TLB), for a translation to the physical memory
address;
if the translation is not found in the TLB:
searching, by the MMU, an external memory translation lookaside
buffer (EMTLB) for the translation;
performing, by a page table walker (PTW), a page table walk to
retrieve the translation from a page table;
if the translation is found in the EMTLB, aborting the page table
walk and returning the physical memory address; and
if the translation is not found in the EMTLB, returning the physical

memory address based on the page table walk.

2. The method of claim 1, wherein the EMTLB comprises a region of
memory that is external to the MMU.

3. The method of claim 1, wherein the EMTLB is searched for the

translation in parallel with the page table walk.

4. The method of claim 1, wherein a replacement state of the EMTLB
is stored in a region of memory that is separate from a processor on which the

MMU is implemented.

5. The method of claim 1, wherein entries in the EMTLB include data,

tag, and replacement information.

6. The method of claim 1, further comprising:

-25-



WO 2020/065418 PCT/IB2019/056498

transmitting, to the EMTLB, a request to invalidate an EMTLB
entry, wherein the request is buffered in an invalidation filter of the
EMTLB; and

receiving an acknowledgement that the invalidation is complete,
wherein the acknowledgement indicates that the request to invalidate is

buffered in the invalidation filter.

7. The method of claim 1, further comprising:
if the translation is not found in the TLB and if the translation is found in

the EMTLB, storing the translation in the TLB .

8. The method of claim 1, further comprising:
if the translation is not found in the TLB and if the TLB is full:
evicting a translation entry from the TLB; and

writing the evicted translation entry to the EMTLB.

9. The method of claim 1, further comprising:
if the translation is not found in the TLB and not found in the
EMTLB:
writing the translation, based on the page table walk, to both the
TLB and the EMTLB.

10.  The method of claim 1, wherein the MMU searches, based on the
virtual memory address, for the translation to the physical memory address, by:

searching for a translation from the virtual memory address to an
intermediate virtual memory address, and

searching for a translation from the intermediate virtual memory address

to the physical memory address.

11. A memory management unit (MMU) for virtual address translation,

the MMU comprising:
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circuitry configured to receive a request to translate a virtual memory
address to a physical memory address;

circuitry configured to search, based on the virtual memory address, a
translation lookaside buffer (TLB), for a translation to the physical memory
address;

circuitry configured to search an external memory translation lookaside
buffer (EMTLB) for the translation and to perform a page table walk using a
page table walker (PTW) to retrieve the translation, if the translation is not
found in the TLB;

circuitry configured to abort the page table walk and return the physical
memory address if the physical memory address is found in the EMTLB; and

circuitry configured to return the physical memory address based on the

page table walk if the translation is not found in the EMTLB.

12.  The MMU of claim 11, wherein the EMTLB comprises a region of
memory that is external to the MMU.

13.  The MMU of claim 11, wherein the EMTLB is searched for the

translation in parallel with the page table walk.

14.  The MMU of claim 11, wherein a replacement state of the EMTLB
is stored in a region of memory that is separate from a processor on which the

MMU is implemented.

15.  The MMU of claim 11, wherein translations are written to the

EMTLB in pseudo-random entry locations.

16.  The MMU of claim 11, wherein entries in the EMTLB include data,
tag, and replacement information, and the data, tag, and replacement

information can be accessed from the EMTLB by a single memory access.

17.  The MMU of claim 11, further comprising:
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circuitry configured to transmit, to the EMTLB, a request to
invalidate an EMTLB entry, wherein the request is buffered in an
invalidation filter of the EMTLB; and

circuitry configured to receive, from the EMTLB, acknowledgement
that the invalidation is complete, wherein the acknowledgement indicates

that the request to invalidate is buffered in the invalidation filter.

18.  The MMU of claim 11, further comprising:
circuitry configured to store the translation in the TLB if the translation is

not found in the TLB and if the translation is found in the EMTLB.

19.  The MMU of claim 11, further comprising:

circuitry configured to, if the translation is not found in the TLB
and if the TLB is full:

evict a translation entry from the TLB; and

write the evicted translation entry to the EMTLB.

20. The MMU of claim 11, further comprising:
circuitry configured to write the translation, based on the page table
walk, to both the TLB and the EMTLB, if the translation is not found in the TLB
and not found in the EMTLB.

21.  The MMU of claim 11, further comprising circuitry configured to
search, based on the virtual memory address, for the translation to the physical
memory address, by:

searching for a translation from the virtual memory address to an
intermediate virtual memory address, and

searching for a translation from the intermediate virtual memory address

to the physical memory address.

22. A computing device comprising:
a processor and a memory in communication with the processor;
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the processor comprising a memory management unit (MMU) for virtual
address translation, the MMU comprising a translation lookaside buffer (TLB)
and a page table walker (PTW);

the memory comprising an external memory translation lookaside buffer
(EMTLB);

the MMU further comprising circuitry configured to receive a request to
translate a virtual memory address to a physical memory address;

the MMU further comprising circuitry configured to search the TLB based
on the virtual memory address for a translation to the physical memory address;

the MMU further comprising circuitry configured to search the EMTLB
for the translation and to perform a page table walk using the PTW to retrieve
the translation, if the translation is not found in the TLB;

the MMU further comprising circuitry configured to abort the page table
walk and return the physical memory address if the translation is found in the
EMTLB; and

the MMU further comprising circuitry configured to return the physical
memory address based on the page table walk if the translation is not found in

the TLLB and not found in the EMTLB.

23.  The computing device of claim 22, wherein the EMTLB comprises a
region of memory that is external to the MMU.

24.  The computing device of claim 22, wherein the EMTLB is searched
for the translation in parallel with the page table walk.

25.  The computing device of claim 22, wherein a replacement state of
the EMTLB is stored in a region of memory that is separate from a processor on

which the MMU is implemented.

26.  The computing device of claim 22, wherein translations are written

to the EMTLB in pseudo-random entry locations.
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27.  The computing device of claim 22, wherein entries in the EMTLB
include data, tag, and replacement information, and the data, tag, and
replacement information can be accessed from the EMTLB by a single memory

access.

28.  The computing device of claim 22, further comprising:

circuitry configured to transmit, to the EMTLB, a request to
invalidate an EMTLB entry, wherein the request is buffered in an
invalidation filter of the EMTLB; and

circuitry  configured to receive, from the EMTLB, an
acknowledgement that the invalidation is complete, wherein the
acknowledgement indicates that the request to invalidate is buffered in

the invalidation filter.

29.  The computing device of claim 22, further comprising:
circuitry configured to store the translation in the TLB if the translation is

not found in the TLB and if the translation is found in the EMTLB.

30.  The computing device of claim 22, further comprising:

circuitry configured to, if the translation is not found in the TLB
and if the TLB is full:

evict a translation entry from the TLB; and

write the evicted translation entry to the EMTLB.

31.  The computing device of claim 22, further comprising:
circuitry configured to write the translation, based on the page table
walk, to both the TLB and the EMTLB, if the translation is not found in the TLB
and not found in the EMTLB.

32.  The computing device of claim 22, further comprising circuitry
configured to search, based on the virtual memory address, for the translation to
the physical memory address, by:

-30-
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searching for a translation from the virtual memory address to an
intermediate virtual memory address, and
searching for a translation from the intermediate virtual memory address

to the physical memory address.

-31-



PCT/IB2019/056498

WO 2020/065418

1/6

a1t ;\/

annaQ Asdsiq

ST\\J

sa01A8C INdING

o

AJOUID

0T

ady

DAL IdING

iy

1 M H

JOS5a3201d

]

abeinis

501 .\/\

2

801

)

Old

s301ARQ ndug




PCT/IB2019/056498

WO 2020/065418

2/8

Fy "o [y 4
nuf Han pilsy
€T QWIS BET QWIS §ET QWIS
“, . & @ “ n
Hun Bun Hun
9€T  aWIS 85T OWIS 9T QWIS
— N — wn | T N
[4 %1 anduion 4%} anduwod | [4 31 andueny
4 A ﬂ
e ® » @MM
w >
] — A3 .
» pe1  sunadig Buissannig sondessy NPIYOS
| i F 3
> oI1 ao1naq BuISsa004d paRBiBRIOY
. — JBAIG — WSIsAS
921 suopesyddy il SPOp 1LY 071 Sunesdo
POT  Adowap




PCT/IB2019/056498

WO 2020/065418

3/6

POE ~

15¢

A0}
213

WvYdd

€ 9ld

.

09¢

00¢
T
|
| |
| 0ee 1129 {
| h
w A,
| .
" g1l Mid N
“
|
|
S TN SO
216071 W 5
onu 3]
lemrual )




WO 2020/065418 PCT/IB2019/056498

4/6
400
410~y Receive Translation Request -
¥
420 QCTLB Lookup j‘g
430~ Return
Physical
Address &
Replacement
)
450~y EMTLB Lookup
460~ 7
a8z Yes .
No
470~ PTW »

FIG. 4



WO 2020/065418 PCT/IB2019/056498

516

510
500

\ Receive Translation Request e

ON-CHIP TLB Lookup

/l\ L— 520
No Yes

- e C HIE
570 '
/ 530
PTW EMTLR 550
,,,,,,,,,,,,,,,,,,,,,,,, 580
End
EMTLE
Abort  {~_.58p
PTW
""""""""""""" 540
¥ ¥ Y

Return Physical Address & Replacement b

FIG. 5



PCT/IB2019/056498

WO 2020/065418

6/6

9 'Old

U0

dnoo
g1

005 599 omo
1 howapy | g1 kioway
eweyg KT jeuseg
U puno4 ds | dwpol
s 31581 Q 059
ofieg o} iR | | )
VelS At SLI0S3Y udmiosT N m
N ANIEWOD 11 Aoy h TR
1 [BllaiXg Tiefiu] g .
0b5 wa | | Punod QT umeuoq
AdOWIN K40 AdOWIN 2
HE ] LT e e WO
a0 - AING Fiave N SIROLOIA GINIVWOS N7 G0
\ I9Yd HOL3 39d HIL3 W13 apisUy punoy
N mmm)f iy 3jge] W@EH@“@ Lo/ gt N a1 sme@ﬁ
N |
¢ 1L Ao
0£9 apisu} puno4

UCIBISUES L [euld

019

509

449 0 ¥AD
i sonbay



INTERNATIONAL SEARCH REPORT

International application No.

PCT/1B2019/056498

A CLASSIFICATION OF SUBJECT MATTER
IPC: GOGF 12/1027 (2016.01)

According to International Patent Classification (IPC) or fo both national classification and IPC

B. FIELDS SEARCHED

IPC: GOG6F 12/1027 (2016.01)

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electromc database(s) consulted during the intemational search (name of database(s) and, where practicable, search terms used)

Databases used: Canadian Patent Database; Questel Orbit; Google Patents
Search words used.: virtual, physical, memory, translation, translation lookaside buffer, page table, walker, external memory, MMU.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

See par. 29; claims 1 and 19

Whole document

Y US 2018/0246816 A1 (Smith et. al) 30 August 2018 (30-08-2018)

Y US 2006/0224815 A1 (Yamada et al.) 05 October 2006 (05-10-2006)

1t032

1to32

Fﬂ Further documents are listed in the continnation of Box C.

¥ See patent family annex.

* |Special categories of cited documents:

“A” |document defining the general state of the art which is not considered
to be of particular relevance

“D” |document cited by the applicant in the international application

“E” |earlier application or patent but published on or after the international
filing date

“L” |document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0O” |document referring to an oral disclosure, use, exhibition or other means

“P” |document published prior to the international filing date but later than
the aeineity date claimed

“T” |later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

oy

oy

g

Date of the actual completion of the international search
07 January 2020 (07-01-2020)

Date of mailing of the international search report
07 January 2020 (07-01-2020)

Name and mailing address of the ISA/CA
Canadian Intellectual Property Office

Place du Portage 1, C114 - 1st Floor, Box PCT
50 Victoria Street

Gatineau, Quebec K1A 0C9

Facsimile No.: 819-953-2476

Authorized officer

Reid Mulligan (819) 639-8236

Form PCT/ISA/210 (second sheet ) (July 2019)




INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/IB2019/056498

Patent Document Publication Patent Family Publication

Cited in Search Report Date Member(s) Date

US2018246816A1 30 August 2018 (30-08-2018) US2018246816A1 30 August 2018 (30-08-2018)
US10417140B2 17 September 2019 (17-09-2019)
CN110291510A 27 September 2019 (27-09-2019)
EP3367248A1 29 August 2018 (29-08-2018)
EP3367248B1 09 October 2019 (09-10-2019)
KR20190116294A 14 October 2019 (14-10-2019)
WO02018156391A1 30 August 2018 (30-08-2018)

US2006224815A1 05 October 2006 (05-10-2006) None

Form PCT/ISA/210 (patent family annex ) (July 2019)




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - wo-search-report
	Page 41 - wo-search-report

