
US 20190116023A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0116023 A1

Kumar et al . (43) Pub . Date : Apr . 18 , 2019

(54) POWER SIDE - CHANNEL ATTACK
RESISTANT ADVANCED ENCRYPTION
STANDARD ACCELERATOR PROCESSOR

(71) Applicant : Intel Corporation , Santa Clara , CA
(US)

(72) Inventors : Raghavan Kumar , Hillsboro , OR (US) ;
Sanu K . Mathew , Hillsboro , OR (US) ;
Sudhir K . Satpathy , Hillsboro , OR
(US) ; Vikram B . Suresh , Hillsboro ,
OR (US)

Publication Classification
(51) Int . CI .

H04L 9 / 00 (2006 . 01)
H04L 9 / 06 (2006 . 01)

(52) U . S . CI .
CPC H04L 9 / 003 (2013 . 01) ; HU H04L 9 / 003 (2013 . 01) ; H04L 9 / 0637

(2013 . 01) ; H04L 9 / 0662 (2013 . 01) ; H04L
2209 / 046 (2013 . 01) ; H04L 2209 / 125

(2013 . 01) ; H04L 2209 / 24 (2013 . 01) ; H04L
9 / 0631 (2013 . 01)

ABSTRACT
A processing system includes a processing core and a
hardware accelerator communicatively coupled to the pro
cessing core . The hardware accelerator includes a random
number generator to generate a byte order indicator . The
hardware accelerator also includes a first switching module
communicatively coupled to the random value indicator
generator . The switching module receives an byte sequence
in an encryption round of the cryptographic operation and
feeds a portion of the input byte sequence to one of a first
substitute box (S - box) module or a second S - box module in
view of a byte order indicator value generated by the random
number generator .

(57)

(21) Appl . No . : 16 / 158 , 659

(22) Filed : Oct . 12 , 2018

(63)
Related U . S . Application Data

Continuation of application No . 15 / 088 , 823 , filed on
Apr . 1 , 2016 , now Pat . No . 10 , 103 , 873 .

First 10 Rounds

START

Receive a byte sequence including a data sequence and a key
sequence

502

Map the key sequence to the composite field of the data sequence
504

Add the mapped key sequence with the data sequence to generate an input sequence
506

Generate trace - select signal using the random number generator
508

trace select signal is o trace select signal is 1 Check whether
the trace - select signal is

O or 1
510

Feed a first portion of the
input sequence to a first S
box operation and feed the
second portion to a mapping
operation prior to feeding to

a second S - box operation
512

Feed a second portion of the
input sequence to a first S
box operation and feed the
first portion to a mapping

operation prior to feeding to
a second S - box operation

514

Receive the output data sequence from the first and second S - box operations
516

Restore the original order of the output data sequence to match the order of the
input data sequence using the value of the trace - select signal

518

Send the restored order output data sequence for further
processing prior to storage

520

END

500

L

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- - - - - - - - - - - - - - - -

-

-

- - - -

. . . www . com www .

-

Patent Application Publication

w . - - . - o una cosa mw . w . . . -

TRACE - BASED DATA FLOW SWITCHING MODULE 114

DATA INDEPENDENT S - BOX AND MIX COLUMNS COMPUTATION MODULE 116
VARIABLE COMPOSITE FIELD MAPPING MODULE 118

MEMORY 104
. . wewe una cosa mu na wao wao wowowowocowe una cosa mw . - - e uma co

CORES 110

Apr . 18 , 2019 Sheet 1 of 16

112

www . com www

PROCESSOR 102

100

- - - - -

BUS 108

US 2019 / 0116023 A1

- - -

Figure 1

ww

214a

222

First XOR

data _ add _ key 214b

First MUX

Patent Application Publication

224

First Mapping

16

Random data

Second XOR

Second MUX

Key register

226 228

Data register

First Switching

-

Trace se

-

-

- -

-

-

Second Mapping

234

T

L

264

Random number generator

First S - Box

216

236

118

Second S - Box

232a
1
L -

-

- -

-

-

-

-

-

- Second Switching

232b

Key generate

230

Third Mapping

Fourth Mapping

Apr . 18 , 2019 Sheet 2 of 16

262

260a

Third MUX

240

242

238

First Inverse Mapk Second Inverse Map

Random data

Fourth MUX

data _ add _ key

2605

Plaintext in shift row byte order

Mix Columns

244

Fifth MUX

252

\ 246

Shift Rows

254

1 248

Sixth MUX

US 2019 / 0116023 A1

212

250

Figure 2

214a
First XOR

222

data add key

224

First MUX

Patent Application Publication

2146

À

16

First Ma First Mapping
ng

Random data

Second XOR

Second MUX

Key register

226

Data register

First Switching

KARAR

mamanununun 228

Trace select ' O

264

Second Mapping

- 234

216

Random number generator

236

First S - Box

Second S - Box

232a

230

-

Second Switching

232b

Active data flow path

Key generate

Third Mapping

Fourth Mapping

Apr . 18 , 2019 Sheet 3 of 16

262

260a

240

Third MUX

" 242

Inactive data flow path

238

First Inverso

Random data

| Second Inverse Map

Fourth MUX

data _ add _ key

260b

Plaintext in shift row byte order

Mix Columns

244

Fifth MUX

246

252

254

Shift Rows

248

Sixth MUX

Figure 3a
314

US 2019 / 0116023 A1

250

, 214a First XOR

222

data add key

First MUX

Patent Application Publication

224

2146

First Mapping

264

Secon Second XOR

Random data

Second MUX

Key register

was recen 226

wwwwwwwwwwwwwwwwwwwwwwww

Data register

First Switching

228

Tráce select ' 1 '

Second Mapping

- 234

216

Random number generator

First S - Box

236

Second S - Box

262

232a

230

Active data flow path

Second Switching

232b

Key generate

Apr . 18 , 2019 Sheet 4 of 16

Third Mapping

Fourth Mapping

260a

Inactive

Third MUX

240

242

. -

data

First Inverse

238

Random data

flow path

Second Inverse Map
data add key

Fourth MUX

' 260b

Plaintext in shift row byte order

Mix Columns

244

Fifth MUX

252

246

Shift Rows

754

248

US 2019 / 0116023 A1

Sixth MUX

Figure 3b

314

250

214a First XOR

222 -

data add key

First MUX

Patent Application Publication

224

214b

16 16

First Mapping

Random data

Second XOR

Second MUX

Key register

226
we 228

Data register

First Switching

Trace select

Second Mapping

264

234

216

Random number generator

First S - Box

Second S - Box

232a

Active data flow path

2325

Second Switching

Key generate

230

Third Mapping

Fourth Mapping

Inactive data flow path

Apr . 18 , 2019 Sheet 5 of 16

262

260a

240

Third MUX

242

mm 238

First Inverse 1

Random data

Second Inverse

Fourth MUX

data add _ key

260b

Plaintext in shift row byte order

Mix Columns

244

Fifth MUX

252

246

Shift Rows

254

Sixth MUX

248

Figure 4

US 2019 / 0116023 A1

416

250

Patent Application Publication Apr . 18 , 2019 Sheet 6 of 16 US 2019 / 0116023 A1

First 10 Rounds

START

Receive a byte sequence including a data sequence and a key
sequence

502

Map the key sequence to the composite field of the data sequence
504

Add the mapped key sequence with the data sequence to generate an input sequence
506

Generate trace - select signal using the random number generator
508

trace select signal is o trace select signal is 1 Check whether
the trace - select signal is

O or 1
510

Feed a first portion of the
input sequence to a first S
box operation and feed the
second portion to a mapping
operation prior to feeding to

a second S - box operation
512

Feed a second portion of the
input sequence to a first S
box operation and feed the

first portion to a mapping
operation prior to feeding to

a second S - box operation
514

Receive the output data sequence from the first and second S - box operations
516

Restore the original order of the output data sequence to match the order of the
input data sequence using the value of the trace - select signal

518

Send the restored order output data sequence for further
processing prior to storage

520

END

500 Figure 5a

Patent Application Publication Apr . 18 , 2019 Sheet 7 of 16 US 2019 / 0116023 A1

Last Round

START

Receive a byte sequence including a data sequence and a key
sequence

532

Add the key sequence with the data sequence to generate an input
sequence

534

Generate random data from the random number generator
536

Feed the random data into the multiple composite - field Sbox units and mix columns operations to
perform data - independent s - Box computation

538

Send the input sequence for further processing and storage
540
- - - -

END

Figure 5b

Patent Application Publication

Length
Fetch

Pipeline 600

Commit

wwww .

602 Decoding

Decode Alloc . ! Renan
| 606 608 610

Schedule 612

Register Read !
|

Memory Read 614

Execute Stage 616

Write Back ! Exception Memory Write Handling i
620

604

618

622

FIG . 6A

Apr . 18 , 2019 Sheet 8 of 16 US 2019 / 0116023 A1

Core 690

Branch Prediction Unit

Instruction Cache Unit 634 Instruction TLB Unit 636

632

Patent Application Publication

Instruction Fetch 638

Front End Unit 630

Decode Unit 640 Rename / Allocator Unit

Execution Engine Unit 650 Retirement Uni

Scheduler Unit (s) 656 - 7

654

Physical Register Files Unit (s)

FSMS hardware 7 accelerator unit i
| _ _ _ 603 _ _ .
L - - - - - - - - -

658

Apr . 18 , 2019 Sheet 9 of 16

1 - way Hash Function 690

662

Execution Unit (s) Memory Access

Unit (s) 664

Execution Cluster (s) 660 Memory Unit 670

Data TLB Unit 672 Data Cache Unit 674

L2 Cache Unit 676

US 2019 / 0116023 A1

FIG . 6B

Instruction Prefetcher

Front End

726

701

Patent Application Publication

Instruction Decoder 728

Microcode ROM 730 UOP Queue

Trace Cache 730

www .

734

* 754

I Retirement Unit ! SMS hardware accelerator !

unit 505

www

Processor 700

Allocator / Register Renamer

Memory UOP Queue
OP

Integer / Floating Point UOP Queue

Out Of Order Engine
703

Memory Scheduler

Fast Scheduler 702

Slow / General FP Scheduler 704

| Simple FP Scheduler 706

Apr . 18 , 2019 Sheet 10 of 16

Exe Block 711

Integer Register File / Bypass Network

FP Register File / Bypass Network 710

708

AGU

AGU 712

Fast ALU) 716

Fast ALU /

Slow ALU 720

\ FP Move

714

1718

724

To Level 1 Cache

To Level 1 Cache

US 2019 / 0116023 A1

FIG . 7

800

Processor 870

Processor 880

Patent Application Publication

IMC

Memory 832

IMC 872

Memory

882

834

P - P

P - P 878

P - P 888

876

P - P 886

852

- 854

P - P 894

Chipset 890

P - P 898

High - Perf Graphics 838

| 839

V / F 896

892

Apr . 18 , 2019 Sheet 11 of 16

7816

BUS Bridge 818

1 / 0 Devices
814

Audio 1 / 0 824
(820

Keyboard / Mouse

Comm Devices

822

827

Data Storage 828 Code And Data 830

US 2019 / 0116023 A1

FIG . 8

006

L

- 915

11

Patent Application Publication

Pri

Pri

Processor 910

wwww

w wwwwwwww

L

995

Display

GMCH

Memory

945

920

940

995

Apr . 18 , 2019 Sheet 12 of 16

ICH 950

External Graphics Device 960

Peripheral 970

US 2019 / 0116023 A1

FIG . 9

1000

I / O Devices
1014

Patent Application Publication

*

Processor 1070

Processor 1080

Memory 1032

CL 1072

CL 1082

Memory 1034

850

P - P 1076

P - P 1078

P - P 1088

P - P 1086

Apr . 18 , 2019 Sheet 13 of 16

1054

11052
P - P 1094

M
P - P

Chipset 1090

1098

VE 1096
Legacy 1 / 0

1015

US 2019 / 0116023 A1

FIG . 10

System On A Chip

1100

Application Processor 1110
Core 1102A

Core 1102N

Patent Application Publication

Cache Unit (s) 1104A

Cache Unit (s) 1104N

System Agent Unit 1110

Media Processor (s)
1120

Shared Cache Unit (s)
1106

Integrated Graphics 1108 Image Processor 1124

Interconnect Unit (s) 1102

BUS Controller Unit (s)
1116

Apr . 18 , 2019 Sheet 14 of 16

Audio Processor 1126

Integrated Memory Controller Unit (s)
1114

Video Processor 1128

SRAM Unit 1130

DMA Unit 1132

Display Unit 1140

US 2019 / 0116023 A1

FIG . 11

1200

LCD

1205

Bluetooth 1270

MIPI HDMI

Patent Application Publication

Core 1206

Core 1207

www
.

GPU 1215

Video Codec 1220

LCD Video I / F
1225

3G Modem 1275

L2 Cache Control 1208 BUS Interface Unit L2 Cache
1209

1210
Interconnect 1211

GPS 1280

Apr . 18 , 2019 Sheet 15 of 16

SIM 1230

Boot ROM 1235

PC

SDRAM Controller 1240

Flash Controller 1245

1250

802 . 11 WiFi 1285

DRAM 1260

Flash 1265

Power Control 1255

US 2019 / 0116023 A1

FIG . 12

- 1300

PROCESSOR 1302 PROCESSING LOGIC 1326

STATIC MEMORY 1306

Patent Application Publication

VIDEO DISPLAY 1310

BUS 1330

MAIN MEMORY 1304 INSTRUCTIONS 1326

ALPHA - NUMERIC INPUT DEVICE 1312

GRAPHICS PROCESSING UNIT 1322

CURSOR CONTROL DEVICE 1314

VIDEO PROCESSING UNIT

SIGNAL GENERATION DEVICE 1316

Apr . 18 , 2019 Sheet 16 of 16

1328 AUDIO PROCESSING UNIT 1332

DATA STORAGE DEVICE 1318 MACHINE - READABLE MEDIUM 1324

NETWORK INTERFACE DEVICE 1308

SOFTWARE 1326

NETWORK 1320

US 2019 / 0116023 A1

FIG . 13

US 2019 / 0116023 A1 Apr . 18 , 2019

POWER SIDE - CHANNEL ATTACK
RESISTANT ADVANCED ENCRYPTION

STANDARD ACCELERATOR PROCESSOR

RELATED APPLICATIONS
[0001] This application is a continuation of U . S . patent
application Ser . No . 15 / 088 , 823 , filed Apr . 1 , 2016 , now U . S .
Pat . No . 10 , 103 , 873 , issued Oct . 16 , 2018 , which is hereby
incorporated in its entirety herein by reference .

TECHNICAL FIELD
[0002] The embodiments of the disclosure relate generally
to a computing device , and , more specifically , power side
channel attack resistant advanced encryption standard
(AES) accelerator processor for performing cryptography in
processors with tolerance to power side - channel attacks .

BACKGROUND
[0003] Cryptographic methods may be used to protect
confidential information in computer systems and other
electronic devices . For example , an encryption operation
may be performed , in which a series of transformations as
specified by a chosen cryptographic algorithm are performed
on a plaintext input data (e . g . , a sequence of bits represent
ing text , numbers , intelligible characters , etc .) using an
encryption key (e . g . , a sequence of bits) to produce
encrypted data (cipher text) . It is generally practically infea
sible to determine the unencrypted plaintext data from the
encrypted data , without knowing the cryptographic key . If
the cryptographic key is known , a decryption (sometimes
referred to as inverse cipher) operation may be performed on
the encrypted data to reproduce the corresponding plaintext
(unencrypted data) . Side - channel attacks (SCA) on crypto
graphic hardware have gained significant attention , exposing
a potential weak - link in platform security . Such attacks
allow malicious users to steal embedded secrets by observ
ing leaky physical information such as current signature ,
electromagnetic (EM) radiation and timing data while the
device is under regular operation .

advanced encryption standard hardware accelerator in the
processing system of FIG . 1 according to an embodiment of
the present disclosure .
[0009 . FIG . 4 illustrates a block diagram of a data inde
pendent S - box and mix column computation module of the
SCA power resistant advanced encryption standard hard
ware accelerator in the processing system of FIG . 1 accord
ing to an embodiment of the present disclosure .
[0010] FIG . 5A illustrates a flow diagram for performing
cryptography in processors with tolerance to power side
channel attacks during first ten rounds of advanced encryp
tion standard computation according to an embodiment of
the present disclosure .
[0011] FIG . 5B illustrates a flow diagram for performing
cryptography in processors with tolerance to power side
channel attacks during the last round of advanced encryption
standard computation according to an embodiment of the
present disclosure .
[0012] FIG . 6A is a block diagram illustrating a micro
architecture for a processor in which one embodiment of the
disclosure may be used .
[0013] FIG . 6B is a block diagram illustrating an in - order
pipeline and a register renaming stage , out - of - order issue /
execution pipeline implemented according to at least one
embodiment of the disclosure .
[0014] FIG . 7 illustrates a block diagram of the micro
architecture for a processor in accordance with one embodi
ment of the disclosure .
[0015] FIG . 8 is a block diagram illustrating a system in
which an embodiment of the disclosure may be used .
[0016] FIG . 9 is a block diagram of a system in which an
embodiment of the disclosure may operate .
[0017] FIG . 10 is a block diagram of a system in which an
embodiment of the disclosure may operate .
[0018] FIG . 11 is a block diagram of a System - on - a - Chip
(SOC) in accordance with an embodiment of the present
disclosure
[0019] FIG . 12 is a block diagram of an embodiment of a
SoC design in accordance with the present disclosure .
[0020] FIG . 13 illustrates a block diagram of one embodi
ment of a computer system .

BRIEF DESCRIPTION OF THE DRAWINGS
[0004] The disclosure will be understood more fully from
the detailed description given below and from the accom
panying drawings of various embodiments of the disclosure .
The drawings , however , should not be taken to limit the
disclosure to the specific embodiments , but are for expla
nation and understanding only .
[0005] FIG . 1 illustrates a system - on - a - chip (SOC) includ
ing a processing system to perform cryptography with
tolerance to power SCAs according to an embodiment of the
present disclosure .
[0006] FIG . 2 illustrates a circuit diagram of the power
SCA resistant advanced encryption standard hardware accel
erator in the processing system of FIG . 1 according to an
embodiment of the present disclosure .
[0007] FIG . 3a illustrates a circuit diagram of a trace
based dataflow switching module of the power SCA resistant
advanced encryption standard hardware accelerator in the
processing system of FIG . 1 according to an embodiment of
the present disclosure .
10008] FIG . 3b illustrates a block diagram of a trace - based
dataflow switching module of the power SCA resistant

DETAILED DESCRIPTION
[0021] Disclosed herein are embodiments for providing an
instruction set architecture environment for performing
cryptography in processors with tolerance to power side
channel attacks .
[0022] Conventional techniques to mitigate data - depen
dent power consumption leakage include random masking
and dual - rail logic . Random masking includes mixing ran
dom mask with data such that the correlations between the
data and the power consumption are randomized . At the end
of the computation cycle , the random mask is extracted out
to obtain the original ciphertext (plaintext) during encryp
tion (decryption) . Dual - rail logic involves both true and
complementary versions of every signal to be computed in
the hardware . Accordingly , such conventional techniques
consume a significant amount of energy and require a large
amount of area on the hardware .
10023) Embodiments of the present disclosure overcome
the above problems by implementing a mechanism for
performing cryptography in processors with tolerance to
power SCAs by employing multiple heterogeneous Galois
field arithmetic based S - box operations in the advanced

US 2019 / 0116023 A1 Apr . 18 , 2019

encryption standard (AES) hardware accelerator . Each of the
multiple heterogeneous Galois - field S - Box operations is
designed to use distinct Galois - field arithmetic to disrupt
correlation between data switching activity and correspond
ing current signature , which results in multiple power con
sumption profiles for identical input data . Correlation
between input data and supply current signatures is dis
rupted by randomizing byte dataflow within the AES accel
erator in every cycle , which results in reduction in correla
tion between the data and the current drawn from power
supply . Further , an on - chip random number generator is used
to permute the order in which data bytes are processed by the
multiple S - box operations and is periodically reseeded with
bytes from an intermediate cipher text to reduce the pre
dictability of the random order . This eliminates the need for
on - chip storage , thus reducing the amount of area required
in the hardware . The accelerator utilizes the unused S - box
and mix columns module to perform data - independent com
putations during the last round of AES computation , which
involves only the key addition operation in order to mask the
correlation between data and current signatures . Thus , the
power SCA resistant AES accelerator of the present disclo
sure provides a reduction in correlation between data and
current signatures and the area required for hardware result
ing in a minimized performance overhead .
10024] A cryptographic method , such as the Advanced
Encryption Standard (AES) or SMS4 , may perform several
iterations (also referred to as “ rounds ”) to transform , using
an encryption key , a plaintext data into an encrypted cipher
text . Each round may comprise a sequence of arithmetic ,
logical , or byte permutations operations performed on an
input state using a round key , which is derived from the
encryption key . The resulting state of each but the last round
may then be utilized as the input state of the subsequent
round .
[0025] . At each round of a cryptographic operation , certain
or all bits of the round key may be mixed / added with a
subset or all of the round state bits , and the result may be fed
into a substitution module commonly referred to as an S
- box . A substitution box (S - box) substitutes a small block of
input bits with another block of output bits . At each round ,
the round key (obtained from the key with some simple
operations , for instance , using S - boxes) is mixed with the
round state using some group operation , typically XOR . The
output of the S - box may go through several operations to
create an intermediate output that would repeatedly go
through round iterations . Following the final round , the
resulting round state bytes may be used to generate the final
cipher output . Decryption is done by simply reversing the
process (using the inverse of the S - boxes) and applying the
round keys in reverse order .
[0026] FIG . 1 illustrates a system - on - a - chip (SOC) 100
including a processing system according to an embodiment
of the present disclosure . The SoC 100 may include a
processor (such as a central processing unit (CPU)) 102 and
a memory that are connected to each other via a bus system
108 . The processor 102 may execute tasks such as system
applications and user applications using the memory 104 to
store the instructions of the programs and data associated
with the programs .
0027] In one embodiment , the processor 102 may also
include one or more processing cores 110 and a power
SCA - resistant AES hardware accelerator unit 112 commu -
nicatively coupled to the processing core 110 . The power

SCA resistant AES hardware accelerator unit 112 functions
to provide tolerance to power side - channel attacks . More
specifically , the power SCA resistant AES hardware accel
erator unit 112 functions to disrupt correlation between data
switching / processing within itself and corresponding current
signature .
[0028] In one embodiment , the power SCA resistant AES
hardware accelerator unit 112 includes a trace - based data
flow switching module 114 . The trace - based dataflow
switching module 114 masks data power dependency by
switching S - box processing order of sequential data bytes
randomly during every cycle in the first ten rounds of AES
cryptographic computation .
10029] In one embodiment , the power SCA resistant AES
hardware accelerator unit 112 includes data - independent
substitute - box (S - box) and mix columns computation mod
ule 116 . The substitution box (S - box) computation module
116 substitutes a block of input bits with another block of
output bits . The last round of AES computation involves
mixing of round key bits with the round state bits , which
produces the cipher text . The data - independent S - box and
mix columns computation module 116 masks data power
dependency by utilizing the unused S - box and Mix Column
blocks to perform completely uncorrelated operations to
mask power consumption signatures of round key addition
during the last round of AES cryptographic computation .
[0030] In one embodiment , the power SCA resistant AES
hardware accelerator unit 112 includes a variable composite
field mapping module 118 . The variable composite - field
mapping module 118 masks data power dependency by
inserting multiple heterogeneous Galois - field arithmetic
based S - box modules and suitable cross - field mapping into
trace - based switching data path to further minimize corre
lation between data and power leakage in a cryptographic
computation .
10031] FIG . 2 illustrates a detailed circuit diagram of a
power SCA resistant AES hardware accelerator unit 212 in
accordance with an embodiment of the present disclosure .
The power SCA resistant AES hardware accelerator unit 212
is same as the power SCA resistant AES hardware accel
erator unit 112 of FIG . 1 . As discussed above , the power
SCA resistant AES hardware accelerator unit 212 functions
to allow tolerance to power side - channel attacks . More
specifically , the power SCA resistant AES hardware accel
erator unit 212 functions to disrupt correlation between data
switching processing within itself and corresponding current
signature . Also , as described above , the power SCA resistant
AES hardware accelerator unit 212 functions to perform
trace - based data flow switching which masks data power
dependency by randomly switching the order of data bytes
processed by the S - box during every cycle in the first ten
rounds of cryptographic computation . Also , as noted above ,
the power SCA resistant AES hardware accelerator unit 212
functions to perform data - independent S - box and mix col
umns computation , which masks data power dependency by
utilizing S - box operation and MixColumn operations to
perform completely uncorrelated operations to mask power
consumption of round key addition during the last (eleventh)
round of cryptographic computation , as described in more
details herein above . Also , as illustrated above , the power
SCA resistant AES hardware accelerator unit 212 incorpo
rates multiple heterogeneous Galois - field arithmetic based
S - box modules and corresponding composite - field mapping
modules in the variable composite - field mapping module

US 2019 / 0116023 A1 Apr . 18 , 2019

118 , which results in multiple power consumption signatures
for identical data for further minimizing the data power
correlation . Although , FIG . 2 illustrates cryptographic com
putation in the encryption mode , similar circuitry can be
utilized in the decryption mode by simply reversing the
process (using the inverse of the S - boxes) and applying the
round keys in inverse order .
[0032] The power SCA resistant AES hardware accelera
tor unit 212 includes a data register 216 including 128 bits
of data and a key register 264 including 128 bits of key . In
one embodiment , in every cycle , 2 bytes , i . e . 16 bits , of data
is retrieved from the data register 216 and 2 bytes , i . e . 16
bits , of key is retrieved from the key register 264 . In one
embodiment , in all eleven rounds , both the 2 bytes of data
from the data register 216 and the 2 bytes of key from the
key register 264 are added by a first XOR operation 214a ,
the output of which is sent to the first multiplexer 222 . The
output of first XOR 214a is used during the first and last
rounds of AES computation . Also , in the all eleven rounds ,
another input to the first multiplexer 222 is the 2 byte key
from the key register 264 . The output of the first multiplexer
222 is mapped using a first mapping operation 224 . In one
embodiment , a mapping operation is performed using a
mapping matrix for transforming the standard AES field
GF (28) to a composite - field GF (24) ? , and vice versa . The
power SCA resistant AES hardware accelerator unit 212
maps the output of first XOR operation 214a during the first
round of AES computation to a composite - field GF (24) 2
using the first mapping operation 224 so that the remaining
operations occur in the composite - field . During the other
rounds of AES computation , the first mapping operation 224
is used to map the 2 bytes of key from key register unit 264
to the composite - field GF (24) 2 . In one embodiment , in all
eleven rounds , the 2 bytes of data from the data register 216
is an input to a second XOR operation 214b . Also , in all
eleven rounds , another input to the second XOR operation
214b is the output of first mapping operation 224 . The output
of second XOR operation 214b is the 2 bytes of data from
data register unit 216 added with the 2 bytes of key in
composite - field GF (24) 2 .
[0033] In one embodiment , the output of the first mapping
operation 224 is fed to a second multiplexer 226 . Also , in
one embodiment , the output of the second XOR operation
214b is fed to the second multiplexer 226 . Also , in one
embodiment , the output of random number generator unit
230 is fed to the second multiplexer 226 . At the beginning
of every computation round , the random number generator
unit 230 is reseeded with intermediate round output bytes
stored in data register 216 . Accordingly , in the first ten
rounds of AES operation , the output of the second multi
plexer 226 is the output of second XOR unit 214b . In the last
round of AES operation , the output of the second multi
plexer 226 is the output of the random number generator unit
230 . During the key generation rounds , the output of the
second multiplexer 226 is the output of the first mapping
operation 224 , which corresponds to the 2 bytes of key
mapped into composite - field GF (24) 2 used for generating
round key bits for the subsequent round of AES computa
tion . The 2 bytes of output data from second multiplexer
operation 226 are fed as inputs to the first switching opera
tion 228 . In one embodiment , the random number generator
230 generates a binary trace select signal , such as a byte
order indicator value , which may have values of 0 or 1 , and
is fed as the control input to the first switching operation

228 . In one example , the random number generator 230 is a
linear feedback shift register (LFSR) .
[0034] As shown in FIG . 2 , the power SCA resistant AES
hardware accelerator unit 212 also includes at least two
S - box operations , a first S - box operation 232a and a second
S - box operation 232b . The input and output of a S - box
operation are elements in a composite - field GF (24) - , which
may be viewed as a set of 256 8 - bit integers with certain
operations defined on those integers . The composite - field
GF (24) 2 may be defined by one or more irreducible field
polynomials . In common implementations , the S - box may
be implemented by performing certain multiplication , addi
tion , and inversion operations on the S - box inputs . The
power consumption signatures for data in an S - box depend
on the polynomials that define the Galois - field of the S - box
unit , including a ground - field polynomial and a composite
field polynomial .
[0035] In conventional AES hardware accelerators , all the
data bytes are processed by identically designed S - box
operations , which create a strong correlation between data
switching activity and the corresponding current signature
resulting in a fixed relationship between data bytes and
power signatures . The power SCA resistant AES hardware
accelerator unit 212 employs multiple heterogeneous com
posite Galois - field S - box operations , each designed using a
distinct composite - field arithmetic resulting in multiple
power consumption profiles for the same input data . The
arithmetic in a composite - field such as the GF (24) is gov
erned by the choice of these pair of polynomials . The
extension / composite - field is an irreducible polynomial of
the form x + ax + ß with a , B = 0x { 0 . . . F } and impacts the
mapping matrices and the structure of the S - box operation .
The ground - field polynomial is an irreducible polynomial of
the form x + + azxº + a2x² + ajx + a , with { az az a , a , } = 0x { 0 . . .
F } and impacts all the GF (24) operations within the S - box .
[0036] Such multiple composite - field based S - box opera
tions may have significantly different power profiles for the
same input data of 256 8 - bit integers . The composite - field
polynomial is an irreducible polynomial of degree 2 that
impacts the mapping - matrices and the structure of the S - box
operation . The ground field polynomial is an irreducible
polynomial of degree 4 that impacts all of the GF (24)
operations within the S - box operation . In one embodiment ,
the polynomial pairs are selected such that a subset of the
composite - field S - boxes exhibits significantly lower power
consumption profiles when compared to other S - boxes in the
multiple composite - field S - boxes module .
[0037] In one embodiment , the first S - box operation 232a
is performed in the first GF (24) 2 field defined by the first
ground and composite - field polynomials , which may be
selected among a plurality of field polynomial pairs . In one
embodiment , the second S - box operation 232b is performed
in a second GF (24) 2 by the second ground and composite
field polynomials , which may be selected among a plurality
of field polynomial pairs . Each of the plurality of field
polynomial pairs defines a corresponding power consump
tion profile of the data in the S - box operation . Accordingly ,
each of the first and the second S - box operations 232a and
232b respectively is designed to use a distinct ground and
composite - field polynomial pairs resulting in multiple
S - boxes yielding combined power consumption profiles ,
which could not be easily correlated to the input and / or the
output data .

US 2019 / 0116023 A1 Apr . 18 , 2019

[0038] The power SCA resistant AES hardware accelera
tor unit 212 also includes a second switching operation 236 ,
a third mapping operation 240 and a fourth mapping opera
tion 242 , details of which will be described below with
respect to FIG . 3a .
[0039] In one example , the random number generator 230
generates a trace select signal such as a byte order indicator
value , which has a value of 0 , which is sent as the control
input to the first switching operation 228 and is also the
control input to the second switching operation 236 . If the
trace select signal has the value of “ O ” , the byte order of the
inputs to the first and second S - box operations 232a and
232b respectively is maintained identical with respect to the
byte order of the output from second multiplexer operation
226 . The second switching operation 236 also receives the
trace select signal as the control input and does not change
the byte order of the outputs from the first and the second
S - box operations 232a and 232b respectively . The third
mapping operation 240 and the fourth mapping operation
242 are bypassed , the outputs of the second switching
operation 236 are sent directly to a third multiplexer 238 ,
details of which will be described below .
[0040] In another example , the random number generator
230 generates a trace select signal such as a byte order
indicator value , which has a value of 1 , which is sent as the
control input to the first switching operation 228 . If the trace
select signal has the value of “ 1 ” , the byte order of the inputs
to the first and second S - box operations 232a and 232b
respectively is switched by the first switching operation 228
with respect to the byte order of the output from second
multiplexer operation 226 and the second switching opera
tion 236 restores the original byte order in the outputs from
the first and second S - box operations 232a and 232b respec
tively such that the byte order is identical to the byte order
of the output from second multiplexer operation 226 . Also ,
in this embodiment , the output data bytes from the second
switching block 236 are mapped using the third and the
fourth mapping operations 240 and 242 respectively , outputs
of which are sent to the third multiplexer 238 details of
which will be described below .
[0041] The output of third multiplexer operation 238 is the
output from the first and the second S - box operations 232a
and 232b respectively when trace select signal is “ O ” . If the
trace select signal has a value “ 1 ” , the output of third
multiplexer operation 238 is the mapped output of the first
and the second S - box operations 232a and 232b respectively
using the third mapping 240 and fourth mapping 242 opera
tions respectively . The third mapping 240 and fourth map
ping 242 blocks are chosen to map the byte sequence
received from second switching operation 236 to the com
posite - field representation of the MixColumns operation and
in turn the common composite - field representation of the
intermediate data generated in every encryption / decryption
round and stored in data register 216 . The composite - field
underlying the MixColumns operation can be one of the two
composite - fields defining the S - box operations or a com
pletely different composite - field . The output of third multi
plexer operation 238 is fed as an input to fourth multiplexer
operation 244 . Also , the output bytes of the third multiplexer
238 are sent to a first inverse map 260a and a second inverse
map 260b . The inverse computation may then be performed
in the composite GF (24) 2 field such that the resulting data is
in standard AES Galois - field GF (28) by applying an inverse
mapping transform (Mº) using the first and the second

inverse maps 260a and 260b respectively . In one embodi
ment , the output data bytes from third multiplexer 238 are
mapped to native AES Galois - field GF (28) during the tenth
round of AES computation using the first and second inverse
map operations 260a and 260b . During the round key
generation operations , the outputs from first and second
inverse map operations 260a and 260b are fed to the key
generate block 262 , whose output is stored in the key
register 264 . In one embodiment , the output of the first and
the second inverse maps 260a and 260b are also sent as an
input to a fifth multiplexer 254 . In all eleven rounds , another
input to the fifth multiplexer 254 is the output of the first
XOR operation 214a . The fifth multiplexer passes the output
of inverse map operations 260a and 260b to a sixth multi
plexer operation 250 during the tenth round of AES com
putation and the output of first XOR operation 214a during
the last (eleventh) round of AES computation to the sixth
multiplexer operation 250 .
[0042] The output of the third multiplexer 238 is fed as an
input to a fourth multiplexer 244 . Another input to the fourth
multiplexer 244 is the random data generated by the random
number generator 230 . During the first nine rounds of AES
computation , the output of fourth multiplexer 244 is the
output of the third multiplexer operation 238 . During the
tenth and eleventh rounds of AES computation , the output of
fourth multiplexer is the random data generated by the
random number generator 230 . The output of the fourth
multiplexer 244 is sent to a mix columns operation 246 . The
mix columns operation 246 operates on four adjacent output
bytes from fourth multiplexer operation 244 and generates a
new sequence of four bytes , where each byte is a function of
all the four bytes in the input sequence . It is designed as a
matrix multiplication and accumulation unit where each byte
is treated as a polynomial in GF (24) 2 . The output of the mix
columns operation 246 is a sequence of 4 bytes , which is
further sent to a shift row operation 248 and to a sixth
multiplexer 250 . The shift row operation 248 permutes the
byte order of the input bytes such that the output has a new
byte order . The first sequence of four bytes is unchanged and
the subsequent four bytes are cyclically shifted with a
certain offset . The second sequence of four bytes is shifted
with an offset of one to the left and the third and fourth
sequence of four bytes are shifted by offsets of two and three
respectively . In one embodiment , the outputs of the mixed
column operation 246 and the shift row operation 248 are
sent to a sixth multiplexer 250 . In one embodiment , a
plaintext in shift row byte order 252 is an input to the sixth
multiplexer 250 . In one embodiment , the output of the fifth
multiplexer 254 is sent to a sixth multiplexer 250 . The output
of the sixth multiplexer 250 is sent to the data register 216
for storage . At the beginning of the AES computation
operation , the plain text is loaded in shift row byte order into
data register block 216 through the sixth multiplexer 250 .
During the first nine rounds of AES computation , the output
of shift rows 248 is passed to the output of sixth multiplexer
250 and is sent to data register 216 for storage . During the
tenth round of computation , the output of fifth multiplexer
254 , which corresponds to the output of inverse map opera
tions 260a and 260b , is passed to the output of sixth
multiplexer 250 and loaded in the data register 216 . During
the last (eleventh) round of AES computation , the output of
fifth multiplexer 254 , which corresponds to the output of
first XOR operation 214a (also the ciphertext) , is directly
loaded into data register 216 .

m

US 2019 / 0116023 A1 Apr . 18 , 2019

[0043] FIG . 3a illustrates a detailed circuit diagram of a
trace - based data flow switching module 314 when the ran
dom number generator 230 generates a trace select signal
such as a byte order indicator value , which has a value of 0
in accordance with an embodiment of the present disclosure .
The trace - based data flow switching module 314 is same as
the trace - based data flow switching module 114 of FIG . 1 .
As discussed above , although FIG . 3a illustrates crypto
graphic computation in the encryption mode , similar cir
cuitry can be utilized for the decryption mode .
[0044] In one embodiment , the trace - based data flow
switching module 314 of FIG . 3a includes same components
as illustrated in FIG . 2 exclusive of the third mapping
operation 240 and the fourth mapping operation 242 .
[0045] In one embodiment , the random number generator
230 generates a trace select signal such as a byte order
indicator value , which has a value of 0 , which is sent as the
control input to the first switching operation 228 and is also
the control input to the second switching operation 236 . In
this embodiment , the output bytes of the second multiplexer
operation 226 are directly passed to the outputs of the first
switching operation 228 without changing the byte order .
The first byte out of the two output bytes from the first
switching block 228 is fed to the first S - box operation 232a
directly as the data is already in the composite - field that
defines the first S - box operation 232a and the second byte
from the first switching block 228 is fed to a second mapping
operation 234 before feeding it to a second S - box operation
232b . The second mapping operation 234 maps the incom
ing data byte to the composite - field GF (24) 2 defining the
second S - box operation 232b . The outputs from the first and
second S - box operations 232a and 232b respectively are
directly passed to the outputs of the second switching
operation 236 without changing the byte order and then to
the third multiplexer operation 238 . Accordingly , in this
embodiment , the third and fourth mapping operations 240
and 242 respectively are bypassed .
[0046] FIG . 3b illustrates a detailed circuit diagram of a
trace - based data flow switching module 314 when the ran
dom number generator 230 generates a trace select signal
such as a byte order indicator value , which has a value of 1
in accordance with an embodiment of the present disclosure .
The trace - based data flow switching module 314 is same as
the trace - based data flow switching module 114 of FIG . 1 .
As discussed above , although , FIG . 3b illustrates crypto
graphic computation in the encryption mode , similar cir
cuitry can be applied for the decryption mode .
10047] In one embodiment , the trace - based data flow
switching module 314 of FIG . 3a includes same components
as illustrated in FIG . 2 .
[0048] In one embodiment , the random number generator
230 generates a trace select signal such as a byte order
indicator value , which has a value of 1 , which is sent as the
control input to the first switching operation 228 and also as
the control input to the second switching operation 236 . The
first switching operation 228 changes the byte order of its
input data bytes . The second byte out of the two input bytes
is sent to the first S - box operation 232a directly , as the data
is already in the composite - field that defines the first S - box
operation 232a . The first byte out of the two input bytes is
sent to the second mapping operation 234 for mapping it in
the composite - field GF (24) 2 defining the second S - box
operation 232b . The mapped data byte from the second
mapping operation 234 is sent to the second S - box operation

232b . The computations of the first and the second S - box
operations 232a and 232b respectively are sent to a second
switching operation 236 . The second switching operation
236 restores the original (i . e . , before the first switching
operation) order of the 2 byte data using the trace select
signal generated by the random number generator 230 as its
control input .

[0049] In one embodiment , when the random number
generator 230 generates a trace select signal such as value of
1 , the output computation of the second S - box operation
232b is sent to a third mapping operation 240 to map it to a
composite - field GF (24) 2 suitable for further processing in
mix columns 246 prior to sending it to the third multiplexer
238 . Also , the output computation of the first S - box opera
tion 232a is sent to a fourth mapping operation 242 to map
it to a composite - field GF (24) 2 suitable for further process
ing in mix columns 246 prior to sending it to the third
multiplexer 238 . The output of third multiplexer 238 is sent
to further processing prior to storage in data register 216 ,
details of which can be found above with respect to FIG . 2 .
[0050] FIG . 4 illustrates a detailed circuit diagram of a
data - independent S - box and mix columns computation mod
ule 416 in accordance with an embodiment of the present
disclosure . The data - independent S - box and mix columns
computation module 416 is same as the data - independent
S - box and mix columns computation module 116 of FIG . 1 .
As discussed above , the data - independent S - box and mix
columns computation module 416 functions to mask data
power dependency by utilizing S - box operation and Mix
Column operations to perform completely uncorrelated
operations to mask power consumption of round key addi
tion during a last (eleventh) round of AES cryptographic
computation . Although , FIG . 4 illustrates cryptographic
computation in an encryption mode , similar computation
can be applied in a decryption mode .
10051] In one embodiment , the data - independent S - box
and mix columns computation module 416 of FIG . 4
includes same components as illustrated in FIG . 2 without
utilization of the first multiplexer 222 , first mapping opera
tion 224 , second XOR operation 214b and key generate
operation 262 and shift rows operation 248 .
[0052] In one embodiment , the data - independent S - box
and mix columns computation module 416 of FIG . 4 func
tions similar to the FIGS . 3a and 36 but since the first and
the second S - box operations 232a and 232b respectively and
the mix columns operation 246 do not contribute to cipher
text generation in the last round , the power SCA resistant
AES hardware accelerator unit 212 utilizes them to perform
uncorrelated operations to mask the current signature from
key addition . The uncorrelated data for the first and the
second S - box operations 232a and 232b respectively and the
mix columns operation 246 are generated by the random
number generator 230 . Since , it is known that the S - box
operations contribute for majority of power consumption in
the AES hardware accelerator , the higher power consump
tion profiles from the first and the second S - box operations
232a and 232b respectively and the mix columns operation
246 mask the power consumption information of round key
addition , which is typically multiple orders of magnitude
lower than the first and the second S - box operations 232a
and 232b respectively and the mix columns operation 246 .
Once , the key addition is completed , the computed data
(ciphertext) is loaded into the data register 216 .

US 2019 / 0116023 A1 Apr . 18 , 2019

[0053] FIG . 5A illustrates a flow diagram of a method for
performing cryptography in processors with tolerance to
power side - channel attacks during first ten rounds of AES
computation according to an embodiment of the present
disclosure . Method 500 may be performed by processing
logic that may include hardware (e . g . , circuitry , dedicated
logic , programmable logic , microcode , etc .) , software (such
as instructions run on a processing system , a general purpose
computer system , or a dedicated machine) , firmware , or a
combination thereof . In one embodiment , method 500 may
be performed , in part , by processing logics of any one of
processing cores 110 executing an operating system with
respect to FIG . 1 .
[0054] For simplicity of explanation , the method 500 is
depicted and described as a series of acts . However , acts in
accordance with this disclosure can occur in various orders
and / or concurrently and with other acts not presented and
described herein . Furthermore , not all illustrated acts may be
performed to implement the method 500 in accordance with
the disclosed subject matter . In addition , those skilled in the
art will understand and appreciate that the method 500 could
alternatively be represented as a series of interrelated states
via a state diagram or events .
[0055] Referring to FIG . 5A , at block 502 , the processing
logic receives a byte sequence including a data sequence and
a key sequence . In one embodiment , the data sequence
includes a plurality of data bits and the input key sequence
includes a plurality of key bits . At block 504 , map the input
key sequence to a composite field of the data sequence . At
block 506 add the mapped key sequence with the data
sequence to generate an input sequence . At block 508
generate trace - select signal (such as a byte order indicator
value) using a random number generator . At block 510 , it is
determined whether a value of the trace - select signal is oor
1 . At block 512 , feed a first portion of the input sequence to
a first S - box operation and feed a second portion of the input
sequence to a mapping operation prior to feeding to a second
S - box operation when it is determined that the value of the
trace - select signal is 0 . At block 514 , feed a second portion
of the input sequence to the first S - box operation and feed
the first portion of the input sequence to a mapping operation
prior to sending to a second S - box operation when it is
determined that the value of the trace - select signal is 1 . At
block 516 , receive output data sequence computed by the
first and the second S - box operations . At block 518 , restore
the original order of the output data sequence to match with
the order of the input data sequence using the value of the
trace - select signal . At block 520 , send the restored order
output data sequence for further processing prior to storage .
[0056] FIG . 5B illustrates a flow diagram of a method for
performing cryptography in processors with tolerance to
power side - channel attacks during the eleventh (last) round
of AES computation according to an embodiment of the
present disclosure . Method 530 may be performed by pro
cessing logic that may include hardware (e . g . , circuitry ,
dedicated logic , programmable logic , microcode , etc .) , soft
ware (such as instructions run on a processing system , a
general purpose computer system , or a dedicated machine) ,
firmware , or a combination thereof . In one embodiment ,
method 530 may be performed , in part , by processing logics
of any one of processing cores 110 executing an operating
system with respect to FIG . 1 .
10057] For simplicity of explanation , the method 530 is
depicted and described as a series of acts . However , acts in

accordance with this disclosure can occur in various orders
and / or concurrently and with other acts not presented and
described herein . Furthermore , not all illustrated acts may be
performed to implement the method 530 in accordance with
the disclosed subject matter . In addition , those skilled in the
art will understand and appreciate that the method 530 could
alternatively be represented as a series of interrelated states
via a state diagram or events .
[0058] Referring to FIG . 5B , at block 532 , the processing
logic to receive a byte sequence including a data sequence
and a key sequence . In one embodiment , the data sequence
includes a plurality of data bits and the key sequence
includes a plurality of key bits . At block 534 , add the data
sequence with key sequence to generate an input sequence .
At block 536 , generate a random data from the random
number generator . At block 538 , feed the random data into
the multiple composite - field heterogeneous S - box units and
mix columns operation to perform data - independent S - box
and mix columns computation . At block 540 , send the input
sequence for further processing and storage .
[0059] FIG . 6A is a block diagram illustrating an in - order
pipeline and a register re - naming stage , out - of - order issuel
execution pipeline of a processor monitoring performance of
a processing device to manage non - precise events according
to at least one embodiment of the invention . FIG . 6B is a
block diagram illustrating an in - order architecture core and
a register renaming logic , out - of - order issuelexecution logic
to be included in a processor according to at least one
embodiment of the invention . The solid lined boxes in FIG .
6A illustrate the in - order pipeline , while the dashed lined
boxes illustrates the register renaming , out - of - order issue /
execution pipeline . Similarly , the solid lined boxes in FIG .
6B illustrate the in - order architecture logic , while the dashed
lined boxes illustrates the register renaming logic and out
of - order issue / execution logic .
[0060] In FIG . 6A , a processor pipeline 600 includes a
fetch stage 602 , a length decode stage 604 , a decode stage
606 , an allocation stage 608 , a renaming stage 610 , a
scheduling (also known as a dispatch or issue) stage 612 , a
register read / memory read stage 614 , an execute stage 616 ,
a write back / memory write stage 618 , an exception handling
stage 622 , and a commit stage 624 . In some embodiments ,
the stages are provided in a different order and different
stages may be considered in order and out - of - order .
[0061] In FIG . 6B , arrows denote a coupling between two
or more units and the direction of the arrow indicates a
direction of data flow between those units . FIG . 6B shows
processor core 690 including a front end unit 630 coupled to
an execution engine unit 650 , and both are coupled to a
memory unit 70 .
10062] . The core 690 may be a reduced instruction set
computing (RISC) core , a complex instruction set comput
ing (CISC) core , a very long instruction word (VLIW) core ,
or a hybrid or alternative core type . As yet another option ,
the core 690 may be a special - purpose core , such as , for
example , a network or communication core , compression
engine , graphics core , or the like .
[0063] The front end unit 630 includes a branch prediction
unit 632 coupled to an instruction cache unit 634 , which is
coupled to an instruction translation lookaside buffer (TLB)
636 , which is coupled to an instruction fetch unit 638 , which
is coupled to a decode unit 640 . The decode unit or decoder
may decode instructions , and generate as an output one or
more micro - operations , micro - code entry points , microin

US 2019 / 0116023 A1 Apr . 18 , 2019

sto

structions , other instructions , or other control signals , which
are decoded from , or which otherwise reflect , or are derived
from , the original instructions . The decoder may be imple
mented using various different mechanisms . Examples of
suitable mechanisms include , but are not limited to , look - up
tables , hardware implementations , programmable logic
arrays (PLAS) , microcode read only memories (ROMs) , etc .
The instruction cache unit 634 is further coupled to a level
2 (L2) cache unit 676 in the memory unit 670 . The decode
unit 640 is coupled to a rename / allocator unit 652 in the
execution engine unit 650 .
10064) The execution engine unit 650 includes the rename !
allocator unit 652 coupled to a retirement unit 654 and a set
of one or more scheduler unit (s) 656 . The retirement unit
654 may include a power SCA resistant AES hardware
accelerator unit 603 for performing cryptography in proces
sors with tolerance to power side - channel attacks according
to embodiments of the invention . The scheduler unit (s) 656
represents any number of different schedulers , including
reservations stations , central instruction window , etc . The
scheduler unit (s) 656 is coupled to the physical register
file (s) unit (s) 658 . Each of the physical register file (s) units
658 represents one or more physical register files , different
ones of which store one or more different data types , such as
scalar integer , scalar floating point , packed integer , packed
floating point , vector integer , vector floating point , etc . ,
status (e . g . , an instruction pointer that is the address of the
next instruction to be executed) , etc . The physical register
file (s) unit (s) 658 is overlapped by the retirement unit 654 to
illustrate various ways in which register renaming and
out - of - order execution may be implemented (e . g . , using a
reorder buffer (s) and a retirement register file (s) , using a
future file (s) , a history buffer (s) , and a retirement register
file (s) ; using a register maps and a pool of registers ; etc .) .
[0065] Generally , the architectural registers are visible
from the outside of the processor or from a programmer ' s
perspective . The registers are not limited to any known
particular type of circuit . Various different types of registers
are suitable as long as they are capable of storing and
providing data as described herein . Examples of suitable
registers include , but are not limited to , dedicated physical
registers , dynamically allocated physical registers using
register renaming , combinations of dedicated and dynami
cally allocated physical registers , etc . The retirement unit
654 and the physical register file (s) unit (s) 658 are coupled
to the execution cluster (s) 660 . The execution cluster (s) 660
includes a set of one or more execution units 662 and a set
of one or more memory access units 664 . The execution
units 662 may perform various operations (e . g . , shifts ,
addition , subtraction , multiplication) and on various types of
data (e . g . , scalar floating point , packed integer , packed
floating point , vector integer , vector floating point) .
[0066] While some embodiments may include a number of
execution units dedicated to specific functions or sets of
functions , other embodiments may include one execution
unit or multiple execution units that all perform all func
tions . The scheduler unit (s) 656 , physical register file (s)
unit (s) 658 , and execution cluster (s) 660 are shown as being
possibly plural because certain embodiments create separate
pipelines for certain types of data / operations (e . g . , a scalar
integer pipeline , a scalar floating point / packed integer /
packed floating point / vector integer / vector floating point
pipeline , and / or a memory access pipeline that each have
their own scheduler unit , physical register file (s) unit , and / or

execution cluster and in the case of a separate memory
access pipeline , certain embodiments are implemented in
which the execution cluster of this pipeline has the memory
access unit (s) 664) . It should also be understood that where
separate pipelines are used , one or more of these pipelines
may be out - of - order issue / execution and the rest in - order .
[0067] The set of memory access units 664 is coupled to
the memory unit 670 , which includes a data TLB unit 672
coupled to a data cache unit 674 coupled to a level 2 (L2)
cache unit 676 . In one exemplary embodiment , the memory
access units 664 may include a load unit , a store address
unit , and a store data unit , each of which is coupled to the
data TLB unit 672 in the memory unit 670 . The L2 cache
unit 676 is coupled to one or more other levels of cache and
eventually to a main memory .
[0068] By way of example , the exemplary register renam
ing , out - of - order issue / execution core architecture may
implement the pipeline 600 as follows : 1) the instruction
fetch 38 performs the fetch and length decoding stages 602
and 604 ; 2) the decode unit 640 performs the decode stage
606 ; 3) the rename / allocator unit 652 performs the allocation
stage 608 and renaming stage 610 ; 4) the scheduler unit (s)
656 performs the schedule stage 612 ; 5) the physical register
file (s) unit (s) 658 and the memory unit 670 perform the
register read / memory read stage 614 ; the execution cluster
660 perform the execute stage 616 ; 6) the memory unit 670
and the physical register file (s) unit (s) 658 perform the write
back / memory write stage 618 ; 7) various units may be
involved in the exception handling stage 622 ; and 8) the
retirement unit 654 and the physical register file (s) unit (s)
658 perform the commit stage 624 .
[0069] The core 690 may support one or more instructions
sets (e . g . , the x86 instruction set (with some extensions that
have been added with newer versions) ; the MIPS instruction
set of MIPS Technologies of Sunnyvale , Calif . ; the ARM
instruction set (with additional extensions such as NEON) of
ARM Holdings of Sunnyvale , Calif .) .
[0070] It should be understood that the core may support
multithreading (executing two or more parallel sets of
operations or threads) , and may do so in a variety of ways
including time sliced multithreading , simultaneous multi
threading (where a single physical core provides a logical
core for each of the threads that physical core is simultane
ously multithreading) , or a combination thereof (e . g . , time
sliced fetching and decoding and simultaneous multithread
ing thereafter such as in the Intel® Hyperthreading technol
ogy) .
10071] While register renaming is described in the context
of out - of - order execution , it should be understood that
register renaming may be used in - order architecture . While
the illustrated embodiment of the processor also includes a
separate instruction and data cache units 634 / 674 and a
shared L2 cache unit 676 , alternative embodiments may
have a single internal cache for both instructions and data ,
such as , for example , a Level 1 (L1) internal cache , or
multiple levels of internal cache . In some embodiments , the
system may include a combination of an internal cache and
an external cache that is external to the core and / or the
processor . Alternatively , all of the cache may be external to
the core and / or the processor .
10072] FIG . 7 is a block diagram illustrating a micro
architecture for a processor 700 that includes logic circuits
to perform instructions in accordance with one embodiment
of the invention . In one embodiment , processor 700 moni

US 2019 / 0116023 A1 Apr . 18 , 2019

tors performance of a processing device to manage non
precise events . In some embodiments , an instruction in
accordance with one embodiment can be implemented to
operate on data elements having sizes of byte , word , double
word , quadword , etc . , as well as datatypes , such as single
and double precision integer and floating point datatypes . In
one embodiment , the in - order front end 701 is the part of the
processor 700 that fetches instructions to be executed and
prepares them to be used later in the processor pipeline . The
front end 701 may include several units . In one embodiment ,
the instruction prefetcher 726 fetches instructions from
memory and feeds them to an instruction decoder 728 ,
which in turn decodes or interprets them . For example , in
one embodiment , the decoder decodes a received instruction
into one or more operations called “ micro - instructions ” or
" micro - operations ” (also called micro op or uops) that the
machine can execute .
[0073] In other embodiments , the decoder parses the
instruction into an opcode and corresponding data and
control fields that are used by the micro - architecture to
perform operations in accordance with one embodiment . In
one embodiment , the trace cache 730 takes decoded uops
and assembles them into program ordered sequences or
traces in the uop queue 734 for execution . When the trace
cache 730 encounters a complex instruction , the microcode
ROM 732 provides the uops needed to complete the opera
tion .
[0074] Some instructions are converted into a single
micro - op , whereas others use several micro - ops to complete
the full operation . In one embodiment , if more than four
micro - ops are needed to complete an instruction , the decoder
728 accesses the microcode ROM 732 to do the instruction .
For one embodiment , an instruction can be decoded into a
small number of micro ops for processing at the instruction
decoder 728 . In another embodiment , an instruction can be
stored within the microcode ROM 732 should a number of
micro - ops be needed to accomplish the operation . The trace
cache 730 refers to an entry point programmable logic array
(PLA) to determine a correct micro - instruction pointer for
reading the micro - code sequences to complete one or more
instructions in accordance with one embodiment from the
micro - code ROM 732 . After the microcode ROM 732
finishes sequencing micro - ops for an instruction , the front
end 701 of the machine resumes fetching micro - ops from the
trace cache 730 .
[0075] The out - of - order execution engine 703 is where the
instructions are prepared for execution . The out - of - order
execution logic has a number of buffers to smooth out and
re - order the flow of instructions to optimize performance as
they go down the pipeline and get scheduled for execution .
The allocator logic allocates the machine buffers and
resources that each uop needs in order to execute . The
register renaming logic renames logic registers onto entries
in a register file . The allocator also allocates an entry for
each uop in one of the two uop queues , one for memory
operations and one for non - memory operations , in front of
the instruction schedulers : memory scheduler , fast scheduler
702 , slow / general floating point scheduler 704 , and simple
floating point scheduler 706 . The uop schedulers 702 , 704 ,
706 determine when a uop is ready to execute based on the
readiness of their dependent input register operand sources
and the availability of the execution resources the uops use
to complete their operation . The fast scheduler 702 of one
embodiment can schedule on each half of the main clock

cycle while the other schedulers can schedule once per main
processor clock cycle . The schedulers arbitrate for the
dispatch ports to schedule uops for execution .
[0076] Register files 708 , 710 sit between the schedulers
702 , 704 , 706 , and the execution units 712 , 714 , 716 , 718 ,
720 , 722 , 724 in the execution block 711 . There is a separate
register file for integer and floating point operations , respec
tively . Each register file 708 , 710 , of one embodiment also
includes a bypass network that can bypass or forward just
completed results that have not yet been written into the
register file to new dependent uops . The integer register file
708 and the floating point register file 710 are also capable
of communicating data with the other . For one embodiment ,
the integer register file 708 is split into two separate register
files , one register file for the low order 32 bits of data and
a second register file for the high order 32 bits of data . The
floating point register file 710 of one embodiment has 128
bit wide entries because floating point instructions typically
have operands from 66 to 128 bits in width .
[0077] The execution block 711 contains the execution
units 712 , 714 , 716 , 718 , 720 , 722 , 724 , where the instruc
tions are actually executed . This section includes the register
files 708 , 710 , that store the integer and floating point data
operand values that the micro - instructions use to execute .
The processor 700 of one embodiment is comprised of a
number of execution units : address generation unit (AGU)
712 , AGU 714 , fast ALU 716 , fast ALU 718 , slow ALU 720 ,
floating point ALU 722 , floating point move unit 724 . For
one embodiment , the floating point execution blocks 722 ,
724 , execute floating point , MMX , SIMD , and SSE , or other
operations . The floating point ALU 722 of one embodiment
includes a 64 bit by 54 bit floating point divider to execute
divide , square root , and remainder micro - ops . For embodi
ments of the invention , instructions involving a floating
point value may be handled with the floating point hardware .
[0078] In one embodiment , the ALU operations go to the
high - speed ALU execution units 716 , 718 . The fast ALUS
716 , 718 , of one embodiment can execute fast operations
with an effective latency of half a clock cycle . For one
embodiment , most complex integer operations go to the
slow ALU 720 as the slow ALU 720 includes integer
execution hardware for long latency type of operations , such
as a multiplier , shifts , flag logic , and branch processing .
Memory load / store operations are executed by the AGUS
712 , 714 . For one embodiment , the integer ALUS 716 , 718 ,
720 are described in the context of performing integer
operations on 64 bit data operands . In alternative embodi
ments , the ALUS 716 , 718 , 720 can be implemented to
support a variety of data bits including 16 , 32 , 128 , 256 , etc .
Similarly , the floating point units 722 , 724 can be imple
mented to support a range of operands having bits of various
widths . For one embodiment , the floating point units 722 ,
724 can operate on 128 bits wide packed data operands in
conjunction with SIMD and multimedia instructions .
[0079] In one embodiment , the uops schedulers 702 , 704 ,
706 dispatch dependent operations before the parent load
has finished executing . As uops are speculatively scheduled
and executed in processor 700 , the processor 700 also
includes logic to handle memory misses . If a data load
misses in the data cache , there can be dependent operations
in flight in the pipeline that have left the scheduler with
temporarily incorrect data . A replay mechanism tracks and
re - executes instructions that use incorrect data . The depen
dent operations should be replayed and the independent ones

bin

US 2019 / 0116023 A1 Apr . 18 , 2019

are allowed to complete . The schedulers and replay mecha
nism of one embodiment of a processor are also designed to
catch instruction sequences for text string comparison opera
tions .
[0080] The processor 700 may include a retirement unit
754 coupled to the execution block 711 . The retirement unit
754 may include a power SCA resistant AES hardware
accelerator unit 705 for performing cryptography in proces
sors with tolerance to power side - channel attacks .
[0081] The term “ registers ” may refer to the on - board
processor storage locations that are used as part of instruc
tions to identify operands . In other words , registers may be
those that are usable from the outside of the processor (from
a programmer ' s perspective) . However , the registers of an
embodiment should not be limited in meaning to a particular
type of circuit . Rather , a register of an embodiment is
capable of storing and providing data , and performing the
functions described herein . The registers described herein
can be implemented by circuitry within a processor using
any number of different techniques , such as dedicated physi
cal registers , dynamically allocated physical registers using
register renaming , combinations of dedicated and dynami
cally allocated physical registers , etc . In one embodiment ,
integer registers store thirty - two bit integer data .
[0082] A register file of one embodiment also contains
eight multimedia SIMD registers for packed data . For the
discussions below , the registers are understood to be data
registers designed to hold packed data , such as 64 bits wide
MMX registers (also referred to as “ mm ' registers in some
instances) in microprocessors enabled with the MMXTM
technology from Intel Corporation of Santa Clara , Calif .
These MMX registers , available in both integer and floating
point forms , can operate with packed data elements that
accompany SIMD and SSE instructions . Similarly , 128 bits
wide XMM registers relating to SSE2 , SSE3 , SSE4 , or
beyond (referred to generically as “ SSEx ”) technology can
also be used to hold such packed data operands . In one
embodiment , in storing packed data and integer data , the
registers do not differentiate between the two data types . In
one embodiment , integer and floating point are contained in
either the same register file or different register files . Fur
thermore , in one embodiment , floating point and integer data
may be stored in different registers or the same registers .
[0083] Referring now to FIG . 8 , shown is a block diagram
of a system 800 in accordance with one embodiment of the
invention . The system 800 may include one or more pro
cessors 810 , 815 , which are coupled to graphics memory
controller hub (GMCH) 820 . The optional nature of addi
tional processors 815 is denoted in FIG . 8 with broken lines .
In one embodiment , a processor 810 , 815 monitors perfor
mance of a processing device to manage non - precise events .
[0084] Each processor 810 , 815 may be some version of
the circuit , integrated circuit , processor , and / or silicon inte
grated circuit as described above . However , it should be
noted that it is unlikely that integrated graphics logic and
integrated memory control units would exist in the proces
sors 810 , 815 . FIG . 8 illustrates that the GMCH 820 may be
coupled to a memory 840 that may be , for example , a
dynamic random access memory (DRAM) . The DRAM
may , for at least one embodiment , be associated with a
non - volatile cache .
[0085] The GMCH 820 may be a chipset , or a portion of
a chipset . The GMCH 820 may communicate with the
processor (s) 810 , 815 and control interaction between the

processor (s) 810 , 815 and memory 840 . The GMCH 820
may also act as an accelerated bus interface between the
processor (s) 810 , 815 and other elements of the system 800 .
For at least one embodiment , the GMCH 820 communicates
with the processor (s) 810 , 815 via a multi - drop bus , such as
a frontside bus (FSB) 895 .
[0086] Furthermore , GMCH 820 is coupled to a display
845 (such as a flat panel or touchscreen display) . GMCH 820
may include an integrated graphics accelerator . GMCH 820
is further coupled to an input / output (1 / 0) controller hub
(ICH) 850 , which may be used to couple various peripheral
devices to system 800 . Shown for example in the embodi
ment of FIG . 8 is an external graphics device 860 , which
may be a discrete graphics device coupled to ICH 850 , along
with another peripheral device 870 .
[0087] Alternatively , additional or different processors
may also be present in the system 800 . For example ,
additional processor (s) 815 may include additional proces
sors (s) that are the same as processor 810 , additional pro
cessor (s) that are heterogeneous or asymmetric to processor
810 , accelerators (such as , e . g . , graphics accelerators or
digital signal processing (DSP) units) , field programmable
gate arrays , or any other processor . There can be a variety of
differences between the processor (s) 810 , 815 in terms of a
spectrum of metrics of merit including architectural , micro
architectural thermal , power consumption characteristics ,
and the like . These differences may effectively manifest
themselves as asymmetry and heterogeneity amongst the
processors 810 , 815 . For at least one embodiment , the
various processors 810 , 815 may reside in the same die
package .
[0088] Embodiments may be implemented in many dif
ferent system types . FIG . 9 is a block diagram of a SoC 900
in accordance with an embodiment of the present disclosure .
Dashed lined boxes are optional features on more advanced
SoCs . In FIG . 9 , an interconnect unit (s) 912 is coupled to :
an application processor 920 which includes a set of one or
more cores 902A - N and shared cache unit (s) 906 ; a system
agent unit 910 ; a bus controller unit (s) 916 ; an integrated
memory controller unit (s) 914 ; a set or one or more media
processors 918 which may include integrated graphics logic
908 , an image processor 924 for providing still and / or video
camera functionality , an audio processor 926 for providing
hardware audio acceleration , and a video processor 928 for
providing video encode / decode acceleration ; an static ran
dom access memory (SRAM) unit 930 ; a direct memory
access (DMA) unit 932 ; and a display unit 940 for coupling
to one or more external displays . In one embodiment , a
memory module may be included in the integrated memory
controller unit (s) 914 . In another embodiment , the memory
module may be included in one or more other components
of the SoC 900 that may be used to access and / or control a
memory . The application processor 920 may include a
conditional branch , indirect branch and event execution
logics as described in embodiments herein .
10089] The memory hierarchy includes one or more levels
of cache within the cores , a set or one or more shared cache
units 906 , and external memory (not shown) coupled to the
set of integrated memory controller units 914 . The set of
shared cache units 906 may include one or more mid - level
caches , such as level 2 (L2) , level 3 (L3) , level 4 (L4) , or
other levels of cache , a last level cache (LLC) , and / or
combinations thereof .

US 2019 / 0116023 A1 Apr . 18 , 2019

10090] In some embodiments , one or more of the cores
902A - N are capable of multi - threading .
[0091] The system agent 910 includes those components
coordinating and operating cores 902A - N . The system agent
unit 910 may include for example a power control unit
(PCU) and a display unit . The PCU may be or include logic
and components needed for regulating the power state of the
cores 902A - N and the integrated graphics logic 908 . The
display unit is for driving one or more externally connected
displays .
[0092] The cores 902A - N may be homogenous or hetero
geneous in terms of architecture and / or instruction set . For
example , some of the cores 902A - N may be in order while
others are out - of - order . As another example , two or more of
the cores 902A - N may be capable of execution the same
instruction set , while others may be capable of executing
only a subset of that instruction set or a different instruction
set .
[0093] The application processor 920 may be a general
purpose processor , such as a CoreTM i3 , i5 , i7 , 2 Duo and
Quad , XeonTM , ItaniumTM , AtomTM , XScaleTM or Stron
GARMTM processor , which are available from IntelTM Cor
poration , of Santa Clara , Calif . Alternatively , the application
processor 920 may be from another company , such as ARM
HoldingsTM , Ltd , MIPSTM , etc . The application processor
920 may be a special - purpose processor , such as , for
example , a network or communication processor , compres
sion engine , graphics processor , co - processor , embedded
processor , or the like . The application processor 920 may be
implemented on one or more chips . The application proces
sor 920 may be a part of and / or may be implemented on one
or more substrates using any of a number of process tech
nologies , such as , for example , BiCMOS , CMOS , or
NMOS .
[0094] FIG . 10 is a block diagram of an embodiment of a
system on - chip (SoC) design in accordance with the present
disclosure . As a specific illustrative example , SoC 1000 is
included in user equipment (UE) . In one embodiment , UE
refers to any device to be used by an end - user to commu
nicate , such as a hand - held phone , smartphone , tablet ,
ultra - thin notebook , notebook with broadband adapter , or
any other similar communication device . Often a UE con
nects to a base station or node , which potentially corre
sponds in nature to a mobile station (MS) in a GSM network .
[0095] Here , SOC 1000 includes 2 cores - 1006 and 1007 .
Cores 1006 and 1007 may conform to an Instruction Set
Architecture , such as an Intel® Architecture CoreTM - based
processor , an Advanced Micro Devices , Inc . (AMD) pro
cessor , a MIPS - based processor , an ARM - based processor
design , or a customer thereof , as well as their licensees or
adopters . Cores 1006 and 1007 are coupled to cache control
1008 that is associated with bus interface unit 1008 and L2
cache 1010 to communicate with other parts of system 1000 .
Interconnect 1010 includes an on - chip interconnect , such as
an IOSF , AMBA , or other interconnect discussed above ,
which potentially implements one or more aspects of the
described disclosure . In one embodiment , a conditional
branch , indirect branch and event execution logics may be
included in cores 1006 , 1007 .
[0096] Interconnect 1010 provides communication chan
nels to the other components , such as a Subscriber Identity
Module (SIM) 1030 to interface with a SIM card , a boot
ROM 1035 to hold boot code for execution by cores 1006
and 1007 to initialize and boot SoC 1000 , a SDRAM

controller 1040 to interface with external memory (e . g .
DRAM 1060) , a flash controller 1045 to interface with
non - volatile memory (e . g . Flash 1065) , a peripheral control
1050 (e . g . Serial Peripheral Interface) to interface with
peripherals , video codecs 1020 and Video interface 1025 to
display and receive input (e . g . touch enabled input) , GPU
1015 to perform graphics related computations , etc . Any of
these interfaces may incorporate aspects of the disclosure
described herein . In addition , the system 1000 illustrates
peripherals for communication , such as a Bluetooth module
1070 , 3G modem 1075 , GPS 1080 , and Wi - Fi 1085 .
[0097] Referring now to FIG . 11 , shown is a block dia
gram of a system 1100 in accordance with an embodiment
of the invention . As shown in FIG . 11 , multiprocessor
system 1100 is a point - to - point interconnect system , and
includes a first processor 1170 and a second processor 1180
coupled via a point - to - point interconnect 1150 . Each of
processors 1170 and 1180 may be some version of the
processors of the computing systems as described herein . In
one embodiment , processors 1170 , 1180 monitoring perfor
mance of a processing device to manage non - precise events
to monitor performance of a processing device to manage
non - precise events .
[0098] While shown with two processors 1170 , 1180 , it is
to be understood that the scope of the disclosure is not so
limited . In other embodiments , one or more additional
processors may be present in a given processor .
[0099] Processors 1170 and 1180 are shown including
integrated memory controller units 1172 and 1182 , respec
tively . Processor 1170 also includes as part of its bus
controller units point - to - point (P - P) interfaces 1176 and
1178 ; similarly , second processor 1180 includes P - P inter
faces 1186 and 1188 . Processors 1170 , 1180 may exchange
information via a point - to - point (PPP) interface 1150 using
P - P interface circuits 1178 , 1188 . As shown in FIG . 11 ,
IMCs 1172 and 1182 couple the processors to respective
memories , namely a memory 1132 and a memory 1134 ,
which may be portions of main memory locally attached to
the respective processors .
[0100] Processors 1170 and 1180 may each exchange
information with a chipset 1190 via individual P - P interfaces
1152 , 1154 using point to point interface circuits 1176 , 1194 ,
1186 , 1198 . Chipset 1190 may also exchange information
with a high - performance graphics circuit 1138 via a high
performance graphics interface 1139 .
[0101] A shared cache (not shown) may be included in
either processor or outside of both processors , yet connected
with the processors via P - P interconnect , such that either or
both processors ' local cache information may be stored in
the shared cache if a processor is placed into a low power
mode .
[0102] Chipset 1190 may be coupled to a first bus 1116 via
an interface 1116 . In one embodiment , first bus 1116 may be
a Peripheral Component Interconnect (PCI) bus , or a bus
such as a PCI Express bus or another third generation I / O
interconnect bus , although the scope of the disclosure is not
so limited .
[0103] As shown in FIG . 11 , various I / O devices 1114 may
be coupled to first bus 1116 , along with a bus bridge 1118 ,
which couples first bus 1116 to a second bus 1120 . In one
embodiment , second bus 1120 may be a low pin count (LPC)
bus . Various devices may be coupled to second bus 1120
including , for example , a keyboard and / or mouse 1122 ,
communication devices 1127 and a storage unit 1128 such as

US 2019 / 0116023 A1 Apr . 18 , 2019

a disk drive or other mass storage device which may include
instructions / code and data 1130 , in one embodiment . Fur
ther , an audio I / 0 1124 may be coupled to second bus 1120 .
Note that other architectures are possible . For example ,
instead of the point - to - point architecture of FIG . 11 , a
system may implement a multi - drop bus or other such
architecture .
[0104] Referring now to FIG . 12 , shown is a block dia
gram of a system 1200 in accordance with an embodiment
of the invention . FIG . 12 illustrates processors 1270 , 1280 .
In one embodiment , processors 1270 , 1280 monitor perfor
mance of a processing device to manage non - precise events .
Furthermore , processors 1270 , 1280 may include integrated
memory and I / O control logic (" CL ") 1272 and 1282 ,
respectively and intercommunicate with each other via
point - to - point interconnect 1250 between point - to - point
(P - P) interfaces 1278 and 1288 respectively . Processors
1270 , 1280 each communicate with chipset 1290 via point
to - point interconnect 1252 and 1254 through the respective
P - P interfaces 1276 to 1294 and 1286 to 1298 as shown . For
at least one embodiment , the CL 1272 , 1282 may include
integrated memory controller units . CLs 1272 , 1282 may
include I / O control logic . As depicted , memories 1232 , 1234
coupled to CLs 1272 , 1282 and 1 / 0 devices 1214 are also
coupled to the control logic 1272 , 1282 . Legacy I / O devices
1215 are coupled to the chipset 1290 via interface 1296 .
[0105] FIG . 13 illustrates a block diagram 1300 of an
embodiment of tablet computing device , a smartphone , or
other mobile device in which touchscreen interface connec
tors may be used . Processor 1310 may monitor performance
of a processing device to manage non - precise events . In
addition , processor 1310 performs the primary processing
operations . Audio subsystem 1320 represents hardware
(e . g . , audio hardware and audio circuits) and software (e . g . ,
drivers , codecs) components associated with providing
audio functions to the computing device . In one embodi
ment , a user interacts with the tablet computing device or
smartphone by providing audio commands that are received
and processed by processor 1310 .
[010] Display subsystem 1332 represents hardware (e . g . ,
display devices) and software (e . g . , drivers) components that
provide a visual and / or tactile display for a user to interact
with the tablet computing device or smartphone . Display
subsystem 1330 includes display interface 1332 , which
includes the particular screen or hardware device used to
provide a display to a user . In one embodiment , display
subsystem 1330 includes a touchscreen device that provides
both output and input to a user .
[0107) 1 / 0 controller 1340 represents hardware devices
and software components related to interaction with a user .
I / O controller 1340 can operate to manage hardware that is
part of audio subsystem 1320 and / or display subsystem
1330 . Additionally , I / O controller 1340 illustrates a connec
tion point for additional devices that connect to the tablet
computing device or smartphone through which a user might
interact . In one embodiment , I / O controller 1340 manages
devices such as accelerometers , cameras , light sensors or
other environmental sensors , or other hardware that can be
included in the tablet computing device or smartphone . The
input can be part of direct user interaction , as well as
providing environmental input to the tablet computing
device or smartphone .
0108] In one embodiment , the tablet computing device or
smartphone includes power management 1350 that manages

battery power usage , charging of the battery , and features
related to power saving operation . Memory subsystem 1360
includes memory devices for storing information in the
tablet computing device or smartphone . Connectivity 1370
includes hardware devices (e . g . , wireless and / or wired con
nectors and communication hardware) and software com
ponents (e . g . , drivers , protocol stacks) to the tablet comput
ing device or smartphone to communicate with external
devices . Cellular connectivity 1372 may include , for
example , wireless carriers such as GSM (global system for
mobile communications) , CDMA (code division multiple
access) , TDM (time division multiplexing) , or other cellular
service standards) . Wireless connectivity 1374 may include ,
for example , activity that is not cellular , such as personal
area networks (e . g . , Bluetooth) , local area networks (e . g . ,
WiFi) , and / or wide area networks (e . g . , WiMax) , or other
wireless communication .
[0109] Peripheral connections 1380 include hardware
interfaces and connectors , as well as software components
(e . g . , drivers , protocol stacks) to make peripheral connec
tions as a peripheral device (“ to ” 1382) to other computing
devices , as well as have peripheral devices (" from " 1384)
connected to the tablet computing device or smartphone ,
including , for example , a " docking " connector to connect
with other computing devices . Peripheral connections 1380
include common or standards - based connectors , such as a
Universal Serial Bus (USB) connector , DisplayPort includ
ing MiniDisplayPort (MDP) , High Definition Multimedia
Interface (HDMI) , Firewire , etc .
[0110] FIG . 14 illustrates a diagrammatic representation of
a machine in the example form of a computing system 1400
within which a set of instructions , for causing the machine
to perform any one or more of the methodologies discussed
herein , may be executed . In alternative embodiments , the
machine may be connected (e . g . , networked) to other
machines in a LAN , an intranet , an extranet , or the Internet .
The machine may operate in the capacity of a server or a
client device in a client - server network environment , or as a
peer machine in a peer - to - peer (or distributed) network
environment . The machine may be a personal computer
(PC) , a tablet PC , a set - top box (STB) , a Personal Digital
Assistant (PDA) , a cellular telephone , a web appliance , a
server , a network router , switch or bridge , or any machine
capable of executing a set of instructions (sequential or
otherwise) that specify actions to be taken by that machine .
Further , while only a single machine is illustrated , the term
" machine ” shall also be taken to include any collection of
machines that individually or jointly execute a set (or
multiple sets) of instructions to perform any one or more of
the methodologies discussed herein .
[0111] The computing system 1400 includes a processing
device 1402 , a main memory 1404 (e . g . , read - only memory
(ROM) , flash memory , dynamic random access memory
(DRAM) (such as synchronous DRAM (SDRAM) or
DRAM (RDRAM) , etc .) , a static memory 1406 (e . g . , flash
memory , static random access memory (SRAM) , etc .) , and
a data storage device 1418 , which communicate with each
other via a bus 1430 .
[0112] Processing device 1402 represents one or more
general - purpose processing devices such as a microproces
sor , central processing unit , or the like . More particularly ,
the processing device may be complex instruction set com
puting (CISC) microprocessor , reduced instruction set com
puter (RISC) microprocessor , very long instruction word

US 2019 / 0116023 A1 Apr . 18 , 2019

(VLIW) microprocessor , or processor implementing other
instruction sets , or processors implementing a combination
of instruction sets . Processing device 1402 may also be one
or more special - purpose processing devices such as an
application specific integrated circuit (ASIC) , a field pro
grammable gate array (FPGA) , a digital signal processor
(DSP) , network processor , or the like . In one embodiment ,
processing device 1402 may include one or processing
cores . The processing device 1402 is configured to execute
the processing logic 1426 for performing the operations
discussed herein . In one embodiment , processing device
1402 is the same as computer systems 100 and 200 as
described with respect to FIG . 1 that implements the NPEBS
module 106 . Alternatively , the computing system 1400 can
include other components as described herein .
[0113] The computing system 1400 may further include a
network interface device 1408 communicably coupled to a
network 1420 . The computing system 1400 also may include
a video display unit 1410 (e . g . , a liquid crystal display
(LCD) or a cathode ray tube (CRT)) , an alphanumeric input
device 1412 (e . g . , a keyboard) , a cursor control device 1414
(e . g . , a mouse) , a signal generation device 1416 (e . g . , a
speaker) , or other peripheral devices . Furthermore , comput -
ing system 1400 may include a graphics processing unit
1422 , a video processing unit 1428 and an audio processing
unit 1432 . In another embodiment , the computing system
1400 may include a chipset (not illustrated) , which refers to
a group of integrated circuits , or chips , that are designed to
work with the processing device 1402 and controls commu
nications between the processing device 1402 and external
devices . For example , the chipset may be a set of chips on
a motherboard that links the processing device 1402 to very
high - speed devices , such as main memory 1404 and graphic
controllers , as well as linking the processing device 1402 to
lower - speed peripheral buses of peripherals , such as USB ,
PCI or ISA buses .
[0114] The data storage device 1418 may include a com
puter - readable storage medium 1424 on which is stored
software 1426 embodying any one or more of the method
ologies of functions described herein . The software 1426
may also reside , completely or at least partially , within the
main memory 1404 as instructions 1426 and / or within the
processing device 1402 as processing logic 1426 during
execution thereof by the computing system 1400 ; the main
memory 1404 and the processing device 1402 also consti
tuting computer - readable storage media .
[0115] The computer - readable storage medium 1424 may
also be used to store instructions 1426 utilizing the NPEBS
module 106 described with respect to FIG . 1 and / or a
software library containing methods that call the above
applications . While the computer - readable storage medium
1424 is shown in an example embodiment to be a single
medium , the term " computer - readable storage medium ”
should be taken to include a single medium or multiple
media (e . g . , a centralized or distributed database , and / or
associated caches and servers) that store the one or more sets
of instructions . The term " computer - readable storage
medium ” shall also be taken to include any medium that is
capable of storing , encoding or carrying a set of instruction
for execution by the machine and that cause the machine to
perform any one or more of the methodologies of the
embodiments . The term " computer - readable storage
medium ” shall accordingly be taken to include , but not be
limited to , solid - state memories , and optical and magnetic

media . While the invention has been described with respect
to a limited number of embodiments , those skilled in the art
will appreciate numerous modifications and variations there
from . It is intended that the appended claims cover all such
modifications and variations as fall within the true spirit and
scope of this invention .
[0116] The following examples pertain to further embodi
ments .
[0117] Example 1 is a processing system comprising a
processing core ; and a hardware accelerator for performing
AES cryptographic operation , the hardware accelerator
communicatively coupled to the processing core , the hard
ware accelerator comprising a random number generator to
generate a byte order indicator ; and a first switching module
communicatively coupled to the random number generator ,
the first switching module to receive an input byte sequence
in an encryption round of the cryptographic operation ; and
feed a portion of the input byte sequence to one of a first
substitute box (S - box) module or a second S - box module
based on a byte order indicator value generated by the
random number generator .
[0118] In Example 2 , the subject matter of Example 1 can
optionally include wherein the first switching module feeds
a remaining portion of the input byte sequence to one of the
first S - box module or the second S - box module based on the
byte order indicator generated by the random number gen
erator .
[0119] In Example 3 , the subject matter of Examples 1 - 2
can optionally include wherein the random number genera
tor is reseeded with an intermediate value from a data
register at the beginning of each one of a encryption and
decryption round of the cryptographic operation .
[0120] In Example 4 , the subject matter of Examples 1 - 3
can optionally include wherein the first S - box module is
associated with a GF (24) composite Galois - field defined by
characteristic polynomials calculated to minimize imple
mentation area of the hardware accelerator and one of
minimize or maximize a power consumption profile .
[0121] In Example 5 , the subject matter of Examples 1 - 4
can optionally include wherein the second S - box module is
associated with a GF (24) 2 composite Galois - field defined by
characteristic polynomials calculated to minimize imple
mentation area of the hardware accelerator and one of
minimize or maximize a power consumption profile .
[0122] In Example 6 , the subject matter of Examples 1 - 5
can optionally include a switching module coupled to the
first S - box module to restore an original order of data bytes
in a output byte sequence of the first S - box module ; and a
mapping module coupled to the switching module to restore
data in the output byte sequence to a common composite
field representation
[0123] In Example 7 , the subject matter of Examples 1 - 6
can optionally include a switching module coupled to the
second S - box module to restore original order of data bytes
in a output byte sequence of the second S - box module ; and
a mapping module coupled to the switching module to
restore data in the output byte sequence to a common
composite field representation .
[0124] In Example 8 , the subject matter of Examples 1 - 7
can optionally include wherein in at a last round of the
encryption round of the cryptographic computation , the
random value indicator generator to feed random data to a
mix columns module and at least one of the first S - box
module or the second S - box module .

US 2019 / 0116023 A1 Apr . 18 , 2019
13

[0134] In Example 18 , the subject matter of Examples
16 - 17 can optionally include wherein the first S - box module
is associated with a GF (24) ? composite Galois - field defined
by characteristic polynomials calculated to minimize imple
mentation area of the hardware accelerator and the second
S - box module is associated with the GF (24) 2 composite
Galois - field defined by characteristic polynomials calculated
to minimize implementation area of the hardware accelera
tor .

[0125] Example 9 is a system - on - a chip (SOC) comprising
a memory ; and a processor , communicatively coupled to the
memory , comprising a processing core ; and a hardware
accelerator for performing AES cryptographic operation , the
hardware accelerator communicatively coupled to the pro
cessing core , the hardware accelerator comprising a random
number generator to generate a byte order indicator ; and a
first switching module communicatively coupled to the
random value generator , the first switching module to
receive an input byte sequence in an encryption round of the
cryptographic operation ; and feed a portion of the input byte
sequence to one of a first substitute box (S - box) module or
a second S - box module based on a byte order indicator value
generated by the random number generator .
[0126] In Example 10 the subject matter of Example 9 can
optionally include wherein the first switching module feeds
a remaining portion of the input byte sequence to one of the
first S - box module or the second S - box module based on the
byte order indicator generated by the random number gen
erator .
[0127] In Example 11 , the subject matter of Examples
9 - 10 can optionally include wherein the random number
generator is reseeded with an intermediate value from a data
register at the beginning of every one of a encryption and
decryption round of the cryptographic operation .
[0128] In Example 12 , the subject matter of Examples
9 - 11 can optionally include wherein the one of the first
S - box module or the second S - box module is associated with
a GF (24) 2 composite Galois - field defined by characteristic
polynomials calculated to minimize implementation area of
the hardware accelerator and one of minimize or maximize
a power consumption profile .
[0129] In Example 13 , the subject matter of Examples
9 - 12 can optionally include a switching module coupled to
the first S - box module to restore an original order of data
bytes in an output byte sequence of the first S - box module ;
and a mapping module coupled to the switching module to
restore data in the output byte sequence to a common
composite field representation
[0130] In Example 14 , the subject matter of Examples
9 - 13 can optionally include a switching module coupled to
the second S - box module to restore original order of data
bytes in an output byte sequence of the second S - box
module ; and a mapping module coupled to the switching
module to restore data in the output byte sequence to a
common composite field representation .
[0131] In Example 15 , the subject matter of Examples
9 - 14 can optionally include wherein in at a last round of the
encryption round of the cryptographic computation , the
random value indicator generator feeds random data to a mix
columns module and at least one of the first S - box module
or the second S - box module .
[0132] Example 16 is a method comprising receiving an
input byte sequence in an encryption round of the crypto
graphic operation ; and feeding a portion of the input byte
sequence to one of a first substitute box (S - box) module or
a second S - box module based on a byte order indicator value
generated by a random number generator .
[0133] In Example 17 , the subject matter of Example 16
can optionally include feeding a remaining portion of the
input byte sequence to one of the first S - box module or the
second S - box module based on the byte order indicator
generated by the random number generator .

[0135] In Example 19 , the subject matter of Examples
16 - 18 can optionally include restoring an original order of
data bytes in an output of the first S - box module and
restoring an original order of data bytes in an output of the
second S - box module .
[0136] In Example 20 , the subject matter of Examples
16 - 19 can optionally include feeding random data to a mix
columns module and at least one of the first S - box module
or the second S - box module in a last round of the encryption
round of the cryptographic computation .
[0137] Example 21 is a non - transitory machine - readable
storage medium including instructions that , when accessed
by a processing device , cause the processing device to
perform operations comprising receiving an input byte
sequence in an encryption round of the cryptographic opera
tion ; and feeding a portion of the input byte sequence to one
of a first substitute box (S - box) module or a second S - box
module based on a byte order indicator value generated by
a random number generator .
[0138] In Example 22 , the subject matter of Example 21
can optionally include feeding a remaining portion of the
input byte sequence to one of the first S - box module or the
second S - box module based on the byte order indicator
generated by the random number generator .
[0139] In Example 23 , the subject matter of Examples
21 - 22 can optionally include wherein the first S - box module
is associated with a GF (24) 2 composite Galois - field defined
by characteristic polynomials calculated to minimize imple
mentation area of the hardware accelerator and the second
S - box module is associated with the GF (24) 2 composite
Galois - field defined by characteristic polynomials calculated
to minimize implementation area of the hardware accelera
tor .
[0140] In Example 24 , the subject matter of Examples
21 - 23 can optionally include restoring an original order of
data bytes in an output of the first S - box module ; and
restoring an original order of data bytes in an output of the
second S - box module .
[0141] In Example 25 , the subject matter of Examples
21 - 24 can optionally include feeding random data to a mix
columns module and at least one of the first S - box module
or the second S - box module in a last round of the encryption
round of the cryptographic computation .
[0142] While the disclosure has been described with
respect to a limited number of embodiments , those skilled in
the art will appreciate numerous modifications and varia
tions there from . It is intended that the appended claims
cover all such modifications and variations as fall within the
true spirit and scope of this disclosure .
[0143] A design may go through various stages , from
creation to simulation to fabrication . Data representing a
design may represent the design in a number of manners .
First , as is useful in simulations , the hardware may be
represented using a hardware description language or
another functional description language . Additionally , a cir

US 2019 / 0116023 A1 Apr . 18 , 2019
14

cuit level model with logic and / or transistor gates may be
produced at some stages of the design process . Furthermore ,
most designs , at some stage , reach a level of data represent
ing the physical placement of various devices in the hard
ware model . In the case where conventional semiconductor
fabrication techniques are used , the data representing the
hardware model may be the data specifying the presence or
absence of various features on different mask layers for
masks used to produce the integrated circuit . In any repre
sentation of the design , the data may be stored in any form
of a machine readable medium . A memory or a magnetic or
optical storage such as a disc may be the machine readable
medium to store information transmitted via optical or
electrical wave modulated or otherwise generated to trans
mit such information . When an electrical carrier wave
indicating or carrying the code or design is transmitted , to
the extent that copying , buffering , or re - transmission of the
electrical signal is performed , a new copy is made . Thus , a
communication provider or a network provider may store on
a tangible , machine - readable medium , at least temporarily ,
an article , such as information encoded into a carrier wave ,
embodying techniques of embodiments of the present dis
closure .
[0144] A module as used herein refers to any combination
of hardware , software , and / or firmware . As an example , a
module includes hardware , such as a micro - controller , asso
ciated with a non - transitory medium to store code adapted to
be executed by the micro - controller . Therefore , reference to
a module , in one embodiment , refers to the hardware , which
is specifically configured to recognize and / or execute the
code to be held on a non - transitory medium . Furthermore , in
another embodiment , use of a module refers to the non
transitory medium including the code , which is specifically
adapted to be executed by the microcontroller to perform
predetermined operations . And as can be inferred , in yet
another embodiment , the term module (in this example) may
refer to the combination of the microcontroller and the
non - transitory medium . Often module boundaries that are
illustrated as separate commonly vary and potentially over
lap . For example , a first and a second module may share
hardware , software , firmware , or a combination thereof ,
while potentially retaining some independent hardware ,
software , or firmware . In one embodiment , use of the term
logic includes hardware , such as transistors , registers , or
other hardware , such as programmable logic devices .
[0145] Use of the phrase " configured to , ' in one embodi
ment , refers to arranging , putting together , manufacturing ,
offering to sell , importing and / or designing an apparatus ,
hardware , logic , or element to perform a designated or
determined task . In this example , an apparatus or element
thereof that is not operating is still “ configured to perform
a designated task if it is designed , coupled , and / or intercon
nected to perform said designated task . As a purely illustra
tive example , a logic gate may provide a 0 or a 1 during
operation . But a logic gate “ configured to provide an enable
signal to a clock does not include every potential logic gate
that may provide a 1 or 0 . Instead , the logic gate is one
coupled in some manner that during operation the 1 or 0
output is to enable the clock . Note once again that use of the
term ' configured to ' does not require operation , but instead
focus on the latent state of an apparatus , hardware , and / or
element , where in the latent state the apparatus , hardware ,
and / or element is designed to perform a particular task when
the apparatus , hardware , and / or element is operating .

[0146] Furthermore , use of the phrases ' to , ' capable of / to , '
and or “ operable to , ' in one embodiment , refers to some
apparatus , logic , hardware , and / or element designed in such
a way to enable use of the apparatus , logic , hardware , and / or
element in a specified manner . Note as above that use of to ,
capable to , or operable to , in one embodiment , refers to the
latent state of an apparatus , logic , hardware , and / or element ,
where the apparatus , logic , hardware , and / or element is not
operating but is designed in such a manner to enable use of
an apparatus in a specified manner .
101471 . A value , as used herein , includes any known rep
resentation of a number , a state , a logical state , or a binary
logical state . Often , the use of logic levels , logic values , or
logical values is also referred to as l ’ s and O ' s , which simply
represents binary logic states . For example , a 1 refers to a
high logic level and 0 refers to a low logic level . In one
embodiment , a storage cell , such as a transistor or flash cell ,
may be capable of holding a single logical value or multiple
logical values . However , other representations of values in
computer systems have been used . For example , the decimal
number ten may also be represented as a binary value of 910
and a hexadecimal letter A . Therefore , a value includes any
representation of information capable of being held in a
computer system .
[0148] . Moreover , states may be represented by values or
portions of values . As an example , a first value , such as a
logical one , may represent a default or initial state , while a
second value , such as a logical zero , may represent a
non - default state . In addition , the terms reset and set , in one
embodiment , refer to a default and an updated value or state ,
respectively . For example , a default value potentially
includes a high logical value , i . e . reset , while an updated
value potentially includes a low logical value , i . e . set . Note
that any combination of values may be utilized to represent
any number of states .
10149] The embodiments of methods , hardware , software ,
firmware or code set forth above may be implemented via
instructions or code stored on a machine - accessible ,
machine readable , computer accessible , or computer read
able medium which are executable by a processing element .
A non - transitory machine - accessible / readable medium
includes any mechanism that provides (i . e . , stores and / or
transmits) information in a form readable by a machine , such
as a computer or electronic system . For example , a non
transitory machine - accessible medium includes random - ac
cess memory (RAM) , such as static RAM (SRAM) or
dynamic RAM (DRAM) ; ROM ; magnetic or optical storage
medium ; flash memory devices , electrical storage devices ;
optical storage devices ; acoustical storage devices ; other
form of storage devices for holding information received
from transitory (propagated) signals (e . g . , carrier waves ,
infrared signals , digital signals) ; etc . , which are to be dis
tinguished from the non - transitory mediums that may
receive information there from .
[0150] Instructions used to program logic to perform
embodiments of the disclosure may be stored within a
memory in the system , such as DRAM , cache , flash
memory , or other storage . Furthermore , the instructions can
be distributed via a network or by way of other computer
readable media . Thus a machine - readable medium may
include any mechanism for storing or transmitting informa
tion in a form readable by a machine (e . g . , a computer) , but
is not limited to , floppy diskettes , optical disks , Compact
Disc , Read - Only Memory (CD - ROMs) , and magneto - opti

US 2019 / 0116023 A1 Apr . 18 , 2019
15

cal disks , Read - Only Memory (ROMs) , Random Access
Memory (RAM) , Erasable Programmable Read - Only
Memory (EPROM) , Electrically Erasable Programmable
Read - Only Memory (EEPROM) , magnetic or optical cards ,
flash memory , or a tangible , machine - readable storage used
in the transmission of information over the Internet via
electrical , optical , acoustical or other forms of propagated
signals (e . g . , carrier waves , infrared signals , digital signals ,
etc .) . Accordingly , the computer - readable medium includes
any type of tangible machine - readable medium suitable for
storing or transmitting electronic instructions or information
in a form readable by a machine (e . g . , a computer) .
[0151] Reference throughout this specification to " one
embodiment ” or “ an embodiment ” means that a particular
feature , structure , or characteristic described in connection
with the embodiment is included in at least one embodiment
of the present disclosure . Thus , the appearances of the
phrases “ in one embodiment ” or “ in an embodiment " in
various places throughout this specification are not neces
sarily all referring to the same embodiment . Furthermore ,
the particular features , structures , or characteristics may be
combined in any suitable manner in one or more embodi
ments .
[0152] In the foregoing specification , a detailed descrip
tion has been given with reference to specific exemplary
embodiments . It will , however , be evident that various
modifications and changes may be made thereto without
departing from the broader spirit and scope of the disclosure
as set forth in the appended claims . The specification and
drawings are , accordingly , to be regarded in an illustrative
sense rather than a restrictive sense . Furthermore , the fore
going use of embodiment and other exemplarily language
does not necessarily refer to the same embodiment or the
same example , but may refer to different and distinct
embodiments , as well as potentially the same embodiment .

1 . A processing system comprising :
a processing core ; and
a hardware accelerator for performing an AES crypto

graphic operation , the hardware accelerator communi
catively coupled to the processing core , the hardware
accelerator comprising :
a random number generator to generate a byte order

indicator ; and
a first switching module communicatively coupled to

the random number generator , the first switching
module to :
receive an input byte sequence in an encryption

round of the cryptographic operation ; and
feed a portion of the input byte sequence to one of a

first substitute box (S - box) module or a second
S - box module based on the byte order indicator
value generated by the random number generator .

2 . The processing system of claim 1 , wherein the first
switching module is to feed a remaining portion of the input
byte sequence to one of the first S - box module or the second
S - box module based on the byte order indicator value
generated by the random number generator .

3 . The processing system of claim 1 , wherein the first
S - box module is associated with a GF (24) 2 composite
Galois - field defined by characteristic polynomials calculated
to minimize implementation area of the hardware accelera
tor and one of minimize or maximize a power consumption
profile of the hardware accelerator .

4 . The processing system of claim 1 , wherein the second
S - box module is associated with a GF (24) 2 composite
Galois - field defined by characteristic polynomials calculated
to minimize implementation area of the hardware accelera
tor and one of minimize or maximize a power consumption
profile of the hardware accelerator .

5 . The processing system of claim 1 , further comprising :
a second switching module coupled to the first S - box
module to restore an original order of data bytes in a
output byte sequence of the first S - box module ; and

a mapping module coupled to the second switching mod
ule to restore data in the output byte sequence to a
common composite field representation .

6 . The processing system of claim 1 , further comprising :
a second switching module coupled to the second S - box
module to restore original order of data bytes in a
output byte sequence of the second S - box module ; and

a mapping module coupled to the second switching mod
ule to restore data in the output byte sequence to a
common composite field representation .

7 . The processing system of claim 1 , wherein in a last
round of encryption rounds of the AES cryptographic opera
tion , the random value indicator generator is to feed random
data to a mix columns module and at least one of the first
S - box module or the second S - box module .

8 . A system comprising :
a memory ; and
a processor , communicatively coupled to the memory ,

comprising :
a processing core ; and
a hardware accelerator for performing an AES crypto

graphic operation , the hardware accelerator commu
nicatively coupled to the processing core , the hard
ware accelerator comprising :
a random number generator to generate a byte order

indicator ; and
a first switching module communicatively coupled to

the random number generator , the first switching
module to :
receive an input byte sequence in an encryption

round of the cryptographic operation ; and
feed a portion of the input byte sequence to one of

a first substitute box (S - box) module or a sec
ond S - box module based on the byte order
indicator value generated by the random num
ber generator .

9 . The system of claim 8 , wherein the first switching
module is to feed a remaining portion of the input byte
sequence to one of the first S - box module or the second
S - box module based on the byte order indicator value
generated by the random number generator .

10 . The system of claim 8 , wherein the one of the first
S - box module or the second S - box module is associated with
a GF (24) 2 composite Galois - field defined by characteristic
polynomials calculated to minimize implementation area of
the hardware accelerator and one of minimize or maximize
a power consumption profile of the hardware accelerator .

11 . The system of claim 8 , further comprising :
a second switching module coupled to the first S - box
module to restore an original order of data bytes in an
output byte sequence of the first S - box module ; and

a mapping module coupled to the second switching mod
ule to restore data in the output byte sequence to a
common composite field representation .

US 2019 / 0116023 A1 Apr . 18 , 2019

12 . The system of claim 8 , further comprising :
a second switching module coupled to the second S - box
module to restore original order of data bytes in an
output byte sequence of the second S - box module ; and

a mapping module coupled to the second switching mod
ule to restore data in the output byte sequence to a
common composite field representation .

13 . The system of claim 8 , wherein in a last round of
encryption rounds of the AES cryptographic operation , the
random value indicator generator is to feed random data to
a mix columns module and at least one of the first S - box
module or the second S - box module .

14 . A method comprising :
generating , by a random number generator of a processor ,

a byte order indicator associated with a cryptographic
operation ;

receiving , by a hardware accelerator of the processor , an
input byte sequence in an encryption round of the
cryptographic operation ; and

feeding , by a switching module of the hardware accel
erator , a first portion of the input byte sequence to one
of a first substitute box (S - box) module or a second
S - box module based on the byte order indicator value
generated by the random number generator , to execute
the encryption round of the cryptographic operation .

15 . The method of claim 14 , further comprising feeding a
remaining portion of the input byte sequence to one of the

first S - box module or the second S - box module based on the
byte order indicator value generated by the random number
generator .

16 . The method of claim 14 , further comprising associ
ating the first S - box module with a GF (24) 2 composite
Galois - field defined by characteristic polynomials calculated
to minimize implementation area of the hardware accelera
tor .

17 . The method of claim 14 , further comprising associ
ating the second S - box module with a GF (24) composite
Galois - field defined by characteristic polynomials calculated
to minimize implementation area of the hardware accelera
tor .

18 . The method of claim 14 , further comprising :
restoring , using a second switching module , an original

order of data bytes in an output byte sequence of the
first S - box module ; and

restoring , using a mapping module , the output byte
sequence to a common composite field representation .

19 . The method of claim 14 , further comprising :
restoring , using a second switching module , an original

order of data bytes in an output byte sequence of the
second S - box module ; and

restoring , using a mapping module , the output byte
sequence to a common composite field representation .

20 . The method of claim 14 , further comprising feeding
random data to a mix columns module and at least one of the
first S - box module or the second S - box module in a last
round of encryption rounds of the cryptographic operation .

