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ABSTRACT 
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view of a byte order indicator value generated by the random 
number generator . 
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POWER SIDE - CHANNEL ATTACK 
RESISTANT ADVANCED ENCRYPTION 

STANDARD ACCELERATOR PROCESSOR 

RELATED APPLICATIONS 
[ 0001 ] This application is a continuation of U . S . patent 
application Ser . No . 15 / 088 , 823 , filed Apr . 1 , 2016 , now U . S . 
Pat . No . 10 , 103 , 873 , issued Oct . 16 , 2018 , which is hereby 
incorporated in its entirety herein by reference . 

TECHNICAL FIELD 
[ 0002 ] The embodiments of the disclosure relate generally 
to a computing device , and , more specifically , power side 
channel attack resistant advanced encryption standard 
( AES ) accelerator processor for performing cryptography in 
processors with tolerance to power side - channel attacks . 

BACKGROUND 
[ 0003 ] Cryptographic methods may be used to protect 
confidential information in computer systems and other 
electronic devices . For example , an encryption operation 
may be performed , in which a series of transformations as 
specified by a chosen cryptographic algorithm are performed 
on a plaintext input data ( e . g . , a sequence of bits represent 
ing text , numbers , intelligible characters , etc . ) using an 
encryption key ( e . g . , a sequence of bits ) to produce 
encrypted data ( cipher text ) . It is generally practically infea 
sible to determine the unencrypted plaintext data from the 
encrypted data , without knowing the cryptographic key . If 
the cryptographic key is known , a decryption ( sometimes 
referred to as inverse cipher ) operation may be performed on 
the encrypted data to reproduce the corresponding plaintext 
( unencrypted data ) . Side - channel attacks ( SCA ) on crypto 
graphic hardware have gained significant attention , exposing 
a potential weak - link in platform security . Such attacks 
allow malicious users to steal embedded secrets by observ 
ing leaky physical information such as current signature , 
electromagnetic ( EM ) radiation and timing data while the 
device is under regular operation . 

advanced encryption standard hardware accelerator in the 
processing system of FIG . 1 according to an embodiment of 
the present disclosure . 
[ 0009 . FIG . 4 illustrates a block diagram of a data inde 
pendent S - box and mix column computation module of the 
SCA power resistant advanced encryption standard hard 
ware accelerator in the processing system of FIG . 1 accord 
ing to an embodiment of the present disclosure . 
[ 0010 ] FIG . 5A illustrates a flow diagram for performing 
cryptography in processors with tolerance to power side 
channel attacks during first ten rounds of advanced encryp 
tion standard computation according to an embodiment of 
the present disclosure . 
[ 0011 ] FIG . 5B illustrates a flow diagram for performing 
cryptography in processors with tolerance to power side 
channel attacks during the last round of advanced encryption 
standard computation according to an embodiment of the 
present disclosure . 
[ 0012 ] FIG . 6A is a block diagram illustrating a micro 
architecture for a processor in which one embodiment of the 
disclosure may be used . 
[ 0013 ] FIG . 6B is a block diagram illustrating an in - order 
pipeline and a register renaming stage , out - of - order issue / 
execution pipeline implemented according to at least one 
embodiment of the disclosure . 
[ 0014 ] FIG . 7 illustrates a block diagram of the micro 
architecture for a processor in accordance with one embodi 
ment of the disclosure . 
[ 0015 ] FIG . 8 is a block diagram illustrating a system in 
which an embodiment of the disclosure may be used . 
[ 0016 ] FIG . 9 is a block diagram of a system in which an 
embodiment of the disclosure may operate . 
[ 0017 ] FIG . 10 is a block diagram of a system in which an 
embodiment of the disclosure may operate . 
[ 0018 ] FIG . 11 is a block diagram of a System - on - a - Chip 
( SOC ) in accordance with an embodiment of the present 
disclosure 
[ 0019 ] FIG . 12 is a block diagram of an embodiment of a 
SoC design in accordance with the present disclosure . 
[ 0020 ] FIG . 13 illustrates a block diagram of one embodi 
ment of a computer system . 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0004 ] The disclosure will be understood more fully from 
the detailed description given below and from the accom 
panying drawings of various embodiments of the disclosure . 
The drawings , however , should not be taken to limit the 
disclosure to the specific embodiments , but are for expla 
nation and understanding only . 
[ 0005 ] FIG . 1 illustrates a system - on - a - chip ( SOC ) includ 
ing a processing system to perform cryptography with 
tolerance to power SCAs according to an embodiment of the 
present disclosure . 
[ 0006 ] FIG . 2 illustrates a circuit diagram of the power 
SCA resistant advanced encryption standard hardware accel 
erator in the processing system of FIG . 1 according to an 
embodiment of the present disclosure . 
[ 0007 ] FIG . 3a illustrates a circuit diagram of a trace 
based dataflow switching module of the power SCA resistant 
advanced encryption standard hardware accelerator in the 
processing system of FIG . 1 according to an embodiment of 
the present disclosure . 
10008 ] FIG . 3b illustrates a block diagram of a trace - based 
dataflow switching module of the power SCA resistant 

DETAILED DESCRIPTION 
[ 0021 ] Disclosed herein are embodiments for providing an 
instruction set architecture environment for performing 
cryptography in processors with tolerance to power side 
channel attacks . 
[ 0022 ] Conventional techniques to mitigate data - depen 
dent power consumption leakage include random masking 
and dual - rail logic . Random masking includes mixing ran 
dom mask with data such that the correlations between the 
data and the power consumption are randomized . At the end 
of the computation cycle , the random mask is extracted out 
to obtain the original ciphertext ( plaintext ) during encryp 
tion ( decryption ) . Dual - rail logic involves both true and 
complementary versions of every signal to be computed in 
the hardware . Accordingly , such conventional techniques 
consume a significant amount of energy and require a large 
amount of area on the hardware . 
10023 ) Embodiments of the present disclosure overcome 
the above problems by implementing a mechanism for 
performing cryptography in processors with tolerance to 
power SCAs by employing multiple heterogeneous Galois 
field arithmetic based S - box operations in the advanced 
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encryption standard ( AES ) hardware accelerator . Each of the 
multiple heterogeneous Galois - field S - Box operations is 
designed to use distinct Galois - field arithmetic to disrupt 
correlation between data switching activity and correspond 
ing current signature , which results in multiple power con 
sumption profiles for identical input data . Correlation 
between input data and supply current signatures is dis 
rupted by randomizing byte dataflow within the AES accel 
erator in every cycle , which results in reduction in correla 
tion between the data and the current drawn from power 
supply . Further , an on - chip random number generator is used 
to permute the order in which data bytes are processed by the 
multiple S - box operations and is periodically reseeded with 
bytes from an intermediate cipher text to reduce the pre 
dictability of the random order . This eliminates the need for 
on - chip storage , thus reducing the amount of area required 
in the hardware . The accelerator utilizes the unused S - box 
and mix columns module to perform data - independent com 
putations during the last round of AES computation , which 
involves only the key addition operation in order to mask the 
correlation between data and current signatures . Thus , the 
power SCA resistant AES accelerator of the present disclo 
sure provides a reduction in correlation between data and 
current signatures and the area required for hardware result 
ing in a minimized performance overhead . 
10024 ] A cryptographic method , such as the Advanced 
Encryption Standard ( AES ) or SMS4 , may perform several 
iterations ( also referred to as “ rounds ” ) to transform , using 
an encryption key , a plaintext data into an encrypted cipher 
text . Each round may comprise a sequence of arithmetic , 
logical , or byte permutations operations performed on an 
input state using a round key , which is derived from the 
encryption key . The resulting state of each but the last round 
may then be utilized as the input state of the subsequent 
round . 
[ 0025 ] . At each round of a cryptographic operation , certain 
or all bits of the round key may be mixed / added with a 
subset or all of the round state bits , and the result may be fed 
into a substitution module commonly referred to as an S 
- box . A substitution box ( S - box ) substitutes a small block of 
input bits with another block of output bits . At each round , 
the round key ( obtained from the key with some simple 
operations , for instance , using S - boxes ) is mixed with the 
round state using some group operation , typically XOR . The 
output of the S - box may go through several operations to 
create an intermediate output that would repeatedly go 
through round iterations . Following the final round , the 
resulting round state bytes may be used to generate the final 
cipher output . Decryption is done by simply reversing the 
process ( using the inverse of the S - boxes ) and applying the 
round keys in reverse order . 
[ 0026 ] FIG . 1 illustrates a system - on - a - chip ( SOC ) 100 
including a processing system according to an embodiment 
of the present disclosure . The SoC 100 may include a 
processor ( such as a central processing unit ( CPU ) ) 102 and 
a memory that are connected to each other via a bus system 
108 . The processor 102 may execute tasks such as system 
applications and user applications using the memory 104 to 
store the instructions of the programs and data associated 
with the programs . 
0027 ] In one embodiment , the processor 102 may also 
include one or more processing cores 110 and a power 
SCA - resistant AES hardware accelerator unit 112 commu - 
nicatively coupled to the processing core 110 . The power 

SCA resistant AES hardware accelerator unit 112 functions 
to provide tolerance to power side - channel attacks . More 
specifically , the power SCA resistant AES hardware accel 
erator unit 112 functions to disrupt correlation between data 
switching / processing within itself and corresponding current 
signature . 
[ 0028 ] In one embodiment , the power SCA resistant AES 
hardware accelerator unit 112 includes a trace - based data 
flow switching module 114 . The trace - based dataflow 
switching module 114 masks data power dependency by 
switching S - box processing order of sequential data bytes 
randomly during every cycle in the first ten rounds of AES 
cryptographic computation . 
10029 ] In one embodiment , the power SCA resistant AES 
hardware accelerator unit 112 includes data - independent 
substitute - box ( S - box ) and mix columns computation mod 
ule 116 . The substitution box ( S - box ) computation module 
116 substitutes a block of input bits with another block of 
output bits . The last round of AES computation involves 
mixing of round key bits with the round state bits , which 
produces the cipher text . The data - independent S - box and 
mix columns computation module 116 masks data power 
dependency by utilizing the unused S - box and Mix Column 
blocks to perform completely uncorrelated operations to 
mask power consumption signatures of round key addition 
during the last round of AES cryptographic computation . 
[ 0030 ] In one embodiment , the power SCA resistant AES 
hardware accelerator unit 112 includes a variable composite 
field mapping module 118 . The variable composite - field 
mapping module 118 masks data power dependency by 
inserting multiple heterogeneous Galois - field arithmetic 
based S - box modules and suitable cross - field mapping into 
trace - based switching data path to further minimize corre 
lation between data and power leakage in a cryptographic 
computation . 
10031 ] FIG . 2 illustrates a detailed circuit diagram of a 
power SCA resistant AES hardware accelerator unit 212 in 
accordance with an embodiment of the present disclosure . 
The power SCA resistant AES hardware accelerator unit 212 
is same as the power SCA resistant AES hardware accel 
erator unit 112 of FIG . 1 . As discussed above , the power 
SCA resistant AES hardware accelerator unit 212 functions 
to allow tolerance to power side - channel attacks . More 
specifically , the power SCA resistant AES hardware accel 
erator unit 212 functions to disrupt correlation between data 
switching processing within itself and corresponding current 
signature . Also , as described above , the power SCA resistant 
AES hardware accelerator unit 212 functions to perform 
trace - based data flow switching which masks data power 
dependency by randomly switching the order of data bytes 
processed by the S - box during every cycle in the first ten 
rounds of cryptographic computation . Also , as noted above , 
the power SCA resistant AES hardware accelerator unit 212 
functions to perform data - independent S - box and mix col 
umns computation , which masks data power dependency by 
utilizing S - box operation and MixColumn operations to 
perform completely uncorrelated operations to mask power 
consumption of round key addition during the last ( eleventh ) 
round of cryptographic computation , as described in more 
details herein above . Also , as illustrated above , the power 
SCA resistant AES hardware accelerator unit 212 incorpo 
rates multiple heterogeneous Galois - field arithmetic based 
S - box modules and corresponding composite - field mapping 
modules in the variable composite - field mapping module 
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118 , which results in multiple power consumption signatures 
for identical data for further minimizing the data power 
correlation . Although , FIG . 2 illustrates cryptographic com 
putation in the encryption mode , similar circuitry can be 
utilized in the decryption mode by simply reversing the 
process ( using the inverse of the S - boxes ) and applying the 
round keys in inverse order . 
[ 0032 ] The power SCA resistant AES hardware accelera 
tor unit 212 includes a data register 216 including 128 bits 
of data and a key register 264 including 128 bits of key . In 
one embodiment , in every cycle , 2 bytes , i . e . 16 bits , of data 
is retrieved from the data register 216 and 2 bytes , i . e . 16 
bits , of key is retrieved from the key register 264 . In one 
embodiment , in all eleven rounds , both the 2 bytes of data 
from the data register 216 and the 2 bytes of key from the 
key register 264 are added by a first XOR operation 214a , 
the output of which is sent to the first multiplexer 222 . The 
output of first XOR 214a is used during the first and last 
rounds of AES computation . Also , in the all eleven rounds , 
another input to the first multiplexer 222 is the 2 byte key 
from the key register 264 . The output of the first multiplexer 
222 is mapped using a first mapping operation 224 . In one 
embodiment , a mapping operation is performed using a 
mapping matrix for transforming the standard AES field 
GF ( 28 ) to a composite - field GF ( 24 ) ? , and vice versa . The 
power SCA resistant AES hardware accelerator unit 212 
maps the output of first XOR operation 214a during the first 
round of AES computation to a composite - field GF ( 24 ) 2 
using the first mapping operation 224 so that the remaining 
operations occur in the composite - field . During the other 
rounds of AES computation , the first mapping operation 224 
is used to map the 2 bytes of key from key register unit 264 
to the composite - field GF ( 24 ) 2 . In one embodiment , in all 
eleven rounds , the 2 bytes of data from the data register 216 
is an input to a second XOR operation 214b . Also , in all 
eleven rounds , another input to the second XOR operation 
214b is the output of first mapping operation 224 . The output 
of second XOR operation 214b is the 2 bytes of data from 
data register unit 216 added with the 2 bytes of key in 
composite - field GF ( 24 ) 2 . 
[ 0033 ] In one embodiment , the output of the first mapping 
operation 224 is fed to a second multiplexer 226 . Also , in 
one embodiment , the output of the second XOR operation 
214b is fed to the second multiplexer 226 . Also , in one 
embodiment , the output of random number generator unit 
230 is fed to the second multiplexer 226 . At the beginning 
of every computation round , the random number generator 
unit 230 is reseeded with intermediate round output bytes 
stored in data register 216 . Accordingly , in the first ten 
rounds of AES operation , the output of the second multi 
plexer 226 is the output of second XOR unit 214b . In the last 
round of AES operation , the output of the second multi 
plexer 226 is the output of the random number generator unit 
230 . During the key generation rounds , the output of the 
second multiplexer 226 is the output of the first mapping 
operation 224 , which corresponds to the 2 bytes of key 
mapped into composite - field GF ( 24 ) 2 used for generating 
round key bits for the subsequent round of AES computa 
tion . The 2 bytes of output data from second multiplexer 
operation 226 are fed as inputs to the first switching opera 
tion 228 . In one embodiment , the random number generator 
230 generates a binary trace select signal , such as a byte 
order indicator value , which may have values of 0 or 1 , and 
is fed as the control input to the first switching operation 

228 . In one example , the random number generator 230 is a 
linear feedback shift register ( LFSR ) . 
[ 0034 ] As shown in FIG . 2 , the power SCA resistant AES 
hardware accelerator unit 212 also includes at least two 
S - box operations , a first S - box operation 232a and a second 
S - box operation 232b . The input and output of a S - box 
operation are elements in a composite - field GF ( 24 ) - , which 
may be viewed as a set of 256 8 - bit integers with certain 
operations defined on those integers . The composite - field 
GF ( 24 ) 2 may be defined by one or more irreducible field 
polynomials . In common implementations , the S - box may 
be implemented by performing certain multiplication , addi 
tion , and inversion operations on the S - box inputs . The 
power consumption signatures for data in an S - box depend 
on the polynomials that define the Galois - field of the S - box 
unit , including a ground - field polynomial and a composite 
field polynomial . 
[ 0035 ] In conventional AES hardware accelerators , all the 
data bytes are processed by identically designed S - box 
operations , which create a strong correlation between data 
switching activity and the corresponding current signature 
resulting in a fixed relationship between data bytes and 
power signatures . The power SCA resistant AES hardware 
accelerator unit 212 employs multiple heterogeneous com 
posite Galois - field S - box operations , each designed using a 
distinct composite - field arithmetic resulting in multiple 
power consumption profiles for the same input data . The 
arithmetic in a composite - field such as the GF ( 24 ) is gov 
erned by the choice of these pair of polynomials . The 
extension / composite - field is an irreducible polynomial of 
the form x + ax + ß with a , B = 0x { 0 . . . F } and impacts the 
mapping matrices and the structure of the S - box operation . 
The ground - field polynomial is an irreducible polynomial of 
the form x + + azxº + a2x² + ajx + a , with { az az a , a , } = 0x { 0 . . . 
F } and impacts all the GF ( 24 ) operations within the S - box . 
[ 0036 ] Such multiple composite - field based S - box opera 
tions may have significantly different power profiles for the 
same input data of 256 8 - bit integers . The composite - field 
polynomial is an irreducible polynomial of degree 2 that 
impacts the mapping - matrices and the structure of the S - box 
operation . The ground field polynomial is an irreducible 
polynomial of degree 4 that impacts all of the GF ( 24 ) 
operations within the S - box operation . In one embodiment , 
the polynomial pairs are selected such that a subset of the 
composite - field S - boxes exhibits significantly lower power 
consumption profiles when compared to other S - boxes in the 
multiple composite - field S - boxes module . 
[ 0037 ] In one embodiment , the first S - box operation 232a 
is performed in the first GF ( 24 ) 2 field defined by the first 
ground and composite - field polynomials , which may be 
selected among a plurality of field polynomial pairs . In one 
embodiment , the second S - box operation 232b is performed 
in a second GF ( 24 ) 2 by the second ground and composite 
field polynomials , which may be selected among a plurality 
of field polynomial pairs . Each of the plurality of field 
polynomial pairs defines a corresponding power consump 
tion profile of the data in the S - box operation . Accordingly , 
each of the first and the second S - box operations 232a and 
232b respectively is designed to use a distinct ground and 
composite - field polynomial pairs resulting in multiple 
S - boxes yielding combined power consumption profiles , 
which could not be easily correlated to the input and / or the 
output data . 
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[ 0038 ] The power SCA resistant AES hardware accelera 
tor unit 212 also includes a second switching operation 236 , 
a third mapping operation 240 and a fourth mapping opera 
tion 242 , details of which will be described below with 
respect to FIG . 3a . 
[ 0039 ] In one example , the random number generator 230 
generates a trace select signal such as a byte order indicator 
value , which has a value of 0 , which is sent as the control 
input to the first switching operation 228 and is also the 
control input to the second switching operation 236 . If the 
trace select signal has the value of “ O ” , the byte order of the 
inputs to the first and second S - box operations 232a and 
232b respectively is maintained identical with respect to the 
byte order of the output from second multiplexer operation 
226 . The second switching operation 236 also receives the 
trace select signal as the control input and does not change 
the byte order of the outputs from the first and the second 
S - box operations 232a and 232b respectively . The third 
mapping operation 240 and the fourth mapping operation 
242 are bypassed , the outputs of the second switching 
operation 236 are sent directly to a third multiplexer 238 , 
details of which will be described below . 
[ 0040 ] In another example , the random number generator 
230 generates a trace select signal such as a byte order 
indicator value , which has a value of 1 , which is sent as the 
control input to the first switching operation 228 . If the trace 
select signal has the value of “ 1 ” , the byte order of the inputs 
to the first and second S - box operations 232a and 232b 
respectively is switched by the first switching operation 228 
with respect to the byte order of the output from second 
multiplexer operation 226 and the second switching opera 
tion 236 restores the original byte order in the outputs from 
the first and second S - box operations 232a and 232b respec 
tively such that the byte order is identical to the byte order 
of the output from second multiplexer operation 226 . Also , 
in this embodiment , the output data bytes from the second 
switching block 236 are mapped using the third and the 
fourth mapping operations 240 and 242 respectively , outputs 
of which are sent to the third multiplexer 238 details of 
which will be described below . 
[ 0041 ] The output of third multiplexer operation 238 is the 
output from the first and the second S - box operations 232a 
and 232b respectively when trace select signal is “ O ” . If the 
trace select signal has a value “ 1 ” , the output of third 
multiplexer operation 238 is the mapped output of the first 
and the second S - box operations 232a and 232b respectively 
using the third mapping 240 and fourth mapping 242 opera 
tions respectively . The third mapping 240 and fourth map 
ping 242 blocks are chosen to map the byte sequence 
received from second switching operation 236 to the com 
posite - field representation of the MixColumns operation and 
in turn the common composite - field representation of the 
intermediate data generated in every encryption / decryption 
round and stored in data register 216 . The composite - field 
underlying the MixColumns operation can be one of the two 
composite - fields defining the S - box operations or a com 
pletely different composite - field . The output of third multi 
plexer operation 238 is fed as an input to fourth multiplexer 
operation 244 . Also , the output bytes of the third multiplexer 
238 are sent to a first inverse map 260a and a second inverse 
map 260b . The inverse computation may then be performed 
in the composite GF ( 24 ) 2 field such that the resulting data is 
in standard AES Galois - field GF ( 28 ) by applying an inverse 
mapping transform ( Mº ) using the first and the second 

inverse maps 260a and 260b respectively . In one embodi 
ment , the output data bytes from third multiplexer 238 are 
mapped to native AES Galois - field GF ( 28 ) during the tenth 
round of AES computation using the first and second inverse 
map operations 260a and 260b . During the round key 
generation operations , the outputs from first and second 
inverse map operations 260a and 260b are fed to the key 
generate block 262 , whose output is stored in the key 
register 264 . In one embodiment , the output of the first and 
the second inverse maps 260a and 260b are also sent as an 
input to a fifth multiplexer 254 . In all eleven rounds , another 
input to the fifth multiplexer 254 is the output of the first 
XOR operation 214a . The fifth multiplexer passes the output 
of inverse map operations 260a and 260b to a sixth multi 
plexer operation 250 during the tenth round of AES com 
putation and the output of first XOR operation 214a during 
the last ( eleventh ) round of AES computation to the sixth 
multiplexer operation 250 . 
[ 0042 ] The output of the third multiplexer 238 is fed as an 
input to a fourth multiplexer 244 . Another input to the fourth 
multiplexer 244 is the random data generated by the random 
number generator 230 . During the first nine rounds of AES 
computation , the output of fourth multiplexer 244 is the 
output of the third multiplexer operation 238 . During the 
tenth and eleventh rounds of AES computation , the output of 
fourth multiplexer is the random data generated by the 
random number generator 230 . The output of the fourth 
multiplexer 244 is sent to a mix columns operation 246 . The 
mix columns operation 246 operates on four adjacent output 
bytes from fourth multiplexer operation 244 and generates a 
new sequence of four bytes , where each byte is a function of 
all the four bytes in the input sequence . It is designed as a 
matrix multiplication and accumulation unit where each byte 
is treated as a polynomial in GF ( 24 ) 2 . The output of the mix 
columns operation 246 is a sequence of 4 bytes , which is 
further sent to a shift row operation 248 and to a sixth 
multiplexer 250 . The shift row operation 248 permutes the 
byte order of the input bytes such that the output has a new 
byte order . The first sequence of four bytes is unchanged and 
the subsequent four bytes are cyclically shifted with a 
certain offset . The second sequence of four bytes is shifted 
with an offset of one to the left and the third and fourth 
sequence of four bytes are shifted by offsets of two and three 
respectively . In one embodiment , the outputs of the mixed 
column operation 246 and the shift row operation 248 are 
sent to a sixth multiplexer 250 . In one embodiment , a 
plaintext in shift row byte order 252 is an input to the sixth 
multiplexer 250 . In one embodiment , the output of the fifth 
multiplexer 254 is sent to a sixth multiplexer 250 . The output 
of the sixth multiplexer 250 is sent to the data register 216 
for storage . At the beginning of the AES computation 
operation , the plain text is loaded in shift row byte order into 
data register block 216 through the sixth multiplexer 250 . 
During the first nine rounds of AES computation , the output 
of shift rows 248 is passed to the output of sixth multiplexer 
250 and is sent to data register 216 for storage . During the 
tenth round of computation , the output of fifth multiplexer 
254 , which corresponds to the output of inverse map opera 
tions 260a and 260b , is passed to the output of sixth 
multiplexer 250 and loaded in the data register 216 . During 
the last ( eleventh ) round of AES computation , the output of 
fifth multiplexer 254 , which corresponds to the output of 
first XOR operation 214a ( also the ciphertext ) , is directly 
loaded into data register 216 . 

m 
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[ 0043 ] FIG . 3a illustrates a detailed circuit diagram of a 
trace - based data flow switching module 314 when the ran 
dom number generator 230 generates a trace select signal 
such as a byte order indicator value , which has a value of 0 
in accordance with an embodiment of the present disclosure . 
The trace - based data flow switching module 314 is same as 
the trace - based data flow switching module 114 of FIG . 1 . 
As discussed above , although FIG . 3a illustrates crypto 
graphic computation in the encryption mode , similar cir 
cuitry can be utilized for the decryption mode . 
[ 0044 ] In one embodiment , the trace - based data flow 
switching module 314 of FIG . 3a includes same components 
as illustrated in FIG . 2 exclusive of the third mapping 
operation 240 and the fourth mapping operation 242 . 
[ 0045 ] In one embodiment , the random number generator 
230 generates a trace select signal such as a byte order 
indicator value , which has a value of 0 , which is sent as the 
control input to the first switching operation 228 and is also 
the control input to the second switching operation 236 . In 
this embodiment , the output bytes of the second multiplexer 
operation 226 are directly passed to the outputs of the first 
switching operation 228 without changing the byte order . 
The first byte out of the two output bytes from the first 
switching block 228 is fed to the first S - box operation 232a 
directly as the data is already in the composite - field that 
defines the first S - box operation 232a and the second byte 
from the first switching block 228 is fed to a second mapping 
operation 234 before feeding it to a second S - box operation 
232b . The second mapping operation 234 maps the incom 
ing data byte to the composite - field GF ( 24 ) 2 defining the 
second S - box operation 232b . The outputs from the first and 
second S - box operations 232a and 232b respectively are 
directly passed to the outputs of the second switching 
operation 236 without changing the byte order and then to 
the third multiplexer operation 238 . Accordingly , in this 
embodiment , the third and fourth mapping operations 240 
and 242 respectively are bypassed . 
[ 0046 ] FIG . 3b illustrates a detailed circuit diagram of a 
trace - based data flow switching module 314 when the ran 
dom number generator 230 generates a trace select signal 
such as a byte order indicator value , which has a value of 1 
in accordance with an embodiment of the present disclosure . 
The trace - based data flow switching module 314 is same as 
the trace - based data flow switching module 114 of FIG . 1 . 
As discussed above , although , FIG . 3b illustrates crypto 
graphic computation in the encryption mode , similar cir 
cuitry can be applied for the decryption mode . 
10047 ] In one embodiment , the trace - based data flow 
switching module 314 of FIG . 3a includes same components 
as illustrated in FIG . 2 . 
[ 0048 ] In one embodiment , the random number generator 
230 generates a trace select signal such as a byte order 
indicator value , which has a value of 1 , which is sent as the 
control input to the first switching operation 228 and also as 
the control input to the second switching operation 236 . The 
first switching operation 228 changes the byte order of its 
input data bytes . The second byte out of the two input bytes 
is sent to the first S - box operation 232a directly , as the data 
is already in the composite - field that defines the first S - box 
operation 232a . The first byte out of the two input bytes is 
sent to the second mapping operation 234 for mapping it in 
the composite - field GF ( 24 ) 2 defining the second S - box 
operation 232b . The mapped data byte from the second 
mapping operation 234 is sent to the second S - box operation 

232b . The computations of the first and the second S - box 
operations 232a and 232b respectively are sent to a second 
switching operation 236 . The second switching operation 
236 restores the original ( i . e . , before the first switching 
operation ) order of the 2 byte data using the trace select 
signal generated by the random number generator 230 as its 
control input . 

[ 0049 ] In one embodiment , when the random number 
generator 230 generates a trace select signal such as value of 
1 , the output computation of the second S - box operation 
232b is sent to a third mapping operation 240 to map it to a 
composite - field GF ( 24 ) 2 suitable for further processing in 
mix columns 246 prior to sending it to the third multiplexer 
238 . Also , the output computation of the first S - box opera 
tion 232a is sent to a fourth mapping operation 242 to map 
it to a composite - field GF ( 24 ) 2 suitable for further process 
ing in mix columns 246 prior to sending it to the third 
multiplexer 238 . The output of third multiplexer 238 is sent 
to further processing prior to storage in data register 216 , 
details of which can be found above with respect to FIG . 2 . 
[ 0050 ] FIG . 4 illustrates a detailed circuit diagram of a 
data - independent S - box and mix columns computation mod 
ule 416 in accordance with an embodiment of the present 
disclosure . The data - independent S - box and mix columns 
computation module 416 is same as the data - independent 
S - box and mix columns computation module 116 of FIG . 1 . 
As discussed above , the data - independent S - box and mix 
columns computation module 416 functions to mask data 
power dependency by utilizing S - box operation and Mix 
Column operations to perform completely uncorrelated 
operations to mask power consumption of round key addi 
tion during a last ( eleventh ) round of AES cryptographic 
computation . Although , FIG . 4 illustrates cryptographic 
computation in an encryption mode , similar computation 
can be applied in a decryption mode . 
10051 ] In one embodiment , the data - independent S - box 
and mix columns computation module 416 of FIG . 4 
includes same components as illustrated in FIG . 2 without 
utilization of the first multiplexer 222 , first mapping opera 
tion 224 , second XOR operation 214b and key generate 
operation 262 and shift rows operation 248 . 
[ 0052 ] In one embodiment , the data - independent S - box 
and mix columns computation module 416 of FIG . 4 func 
tions similar to the FIGS . 3a and 36 but since the first and 
the second S - box operations 232a and 232b respectively and 
the mix columns operation 246 do not contribute to cipher 
text generation in the last round , the power SCA resistant 
AES hardware accelerator unit 212 utilizes them to perform 
uncorrelated operations to mask the current signature from 
key addition . The uncorrelated data for the first and the 
second S - box operations 232a and 232b respectively and the 
mix columns operation 246 are generated by the random 
number generator 230 . Since , it is known that the S - box 
operations contribute for majority of power consumption in 
the AES hardware accelerator , the higher power consump 
tion profiles from the first and the second S - box operations 
232a and 232b respectively and the mix columns operation 
246 mask the power consumption information of round key 
addition , which is typically multiple orders of magnitude 
lower than the first and the second S - box operations 232a 
and 232b respectively and the mix columns operation 246 . 
Once , the key addition is completed , the computed data 
( ciphertext ) is loaded into the data register 216 . 
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[ 0053 ] FIG . 5A illustrates a flow diagram of a method for 
performing cryptography in processors with tolerance to 
power side - channel attacks during first ten rounds of AES 
computation according to an embodiment of the present 
disclosure . Method 500 may be performed by processing 
logic that may include hardware ( e . g . , circuitry , dedicated 
logic , programmable logic , microcode , etc . ) , software ( such 
as instructions run on a processing system , a general purpose 
computer system , or a dedicated machine ) , firmware , or a 
combination thereof . In one embodiment , method 500 may 
be performed , in part , by processing logics of any one of 
processing cores 110 executing an operating system with 
respect to FIG . 1 . 
[ 0054 ] For simplicity of explanation , the method 500 is 
depicted and described as a series of acts . However , acts in 
accordance with this disclosure can occur in various orders 
and / or concurrently and with other acts not presented and 
described herein . Furthermore , not all illustrated acts may be 
performed to implement the method 500 in accordance with 
the disclosed subject matter . In addition , those skilled in the 
art will understand and appreciate that the method 500 could 
alternatively be represented as a series of interrelated states 
via a state diagram or events . 
[ 0055 ] Referring to FIG . 5A , at block 502 , the processing 
logic receives a byte sequence including a data sequence and 
a key sequence . In one embodiment , the data sequence 
includes a plurality of data bits and the input key sequence 
includes a plurality of key bits . At block 504 , map the input 
key sequence to a composite field of the data sequence . At 
block 506 add the mapped key sequence with the data 
sequence to generate an input sequence . At block 508 
generate trace - select signal ( such as a byte order indicator 
value ) using a random number generator . At block 510 , it is 
determined whether a value of the trace - select signal is oor 
1 . At block 512 , feed a first portion of the input sequence to 
a first S - box operation and feed a second portion of the input 
sequence to a mapping operation prior to feeding to a second 
S - box operation when it is determined that the value of the 
trace - select signal is 0 . At block 514 , feed a second portion 
of the input sequence to the first S - box operation and feed 
the first portion of the input sequence to a mapping operation 
prior to sending to a second S - box operation when it is 
determined that the value of the trace - select signal is 1 . At 
block 516 , receive output data sequence computed by the 
first and the second S - box operations . At block 518 , restore 
the original order of the output data sequence to match with 
the order of the input data sequence using the value of the 
trace - select signal . At block 520 , send the restored order 
output data sequence for further processing prior to storage . 
[ 0056 ] FIG . 5B illustrates a flow diagram of a method for 
performing cryptography in processors with tolerance to 
power side - channel attacks during the eleventh ( last ) round 
of AES computation according to an embodiment of the 
present disclosure . Method 530 may be performed by pro 
cessing logic that may include hardware ( e . g . , circuitry , 
dedicated logic , programmable logic , microcode , etc . ) , soft 
ware ( such as instructions run on a processing system , a 
general purpose computer system , or a dedicated machine ) , 
firmware , or a combination thereof . In one embodiment , 
method 530 may be performed , in part , by processing logics 
of any one of processing cores 110 executing an operating 
system with respect to FIG . 1 . 
10057 ] For simplicity of explanation , the method 530 is 
depicted and described as a series of acts . However , acts in 

accordance with this disclosure can occur in various orders 
and / or concurrently and with other acts not presented and 
described herein . Furthermore , not all illustrated acts may be 
performed to implement the method 530 in accordance with 
the disclosed subject matter . In addition , those skilled in the 
art will understand and appreciate that the method 530 could 
alternatively be represented as a series of interrelated states 
via a state diagram or events . 
[ 0058 ] Referring to FIG . 5B , at block 532 , the processing 
logic to receive a byte sequence including a data sequence 
and a key sequence . In one embodiment , the data sequence 
includes a plurality of data bits and the key sequence 
includes a plurality of key bits . At block 534 , add the data 
sequence with key sequence to generate an input sequence . 
At block 536 , generate a random data from the random 
number generator . At block 538 , feed the random data into 
the multiple composite - field heterogeneous S - box units and 
mix columns operation to perform data - independent S - box 
and mix columns computation . At block 540 , send the input 
sequence for further processing and storage . 
[ 0059 ] FIG . 6A is a block diagram illustrating an in - order 
pipeline and a register re - naming stage , out - of - order issuel 
execution pipeline of a processor monitoring performance of 
a processing device to manage non - precise events according 
to at least one embodiment of the invention . FIG . 6B is a 
block diagram illustrating an in - order architecture core and 
a register renaming logic , out - of - order issuelexecution logic 
to be included in a processor according to at least one 
embodiment of the invention . The solid lined boxes in FIG . 
6A illustrate the in - order pipeline , while the dashed lined 
boxes illustrates the register renaming , out - of - order issue / 
execution pipeline . Similarly , the solid lined boxes in FIG . 
6B illustrate the in - order architecture logic , while the dashed 
lined boxes illustrates the register renaming logic and out 
of - order issue / execution logic . 
[ 0060 ] In FIG . 6A , a processor pipeline 600 includes a 
fetch stage 602 , a length decode stage 604 , a decode stage 
606 , an allocation stage 608 , a renaming stage 610 , a 
scheduling ( also known as a dispatch or issue ) stage 612 , a 
register read / memory read stage 614 , an execute stage 616 , 
a write back / memory write stage 618 , an exception handling 
stage 622 , and a commit stage 624 . In some embodiments , 
the stages are provided in a different order and different 
stages may be considered in order and out - of - order . 
[ 0061 ] In FIG . 6B , arrows denote a coupling between two 
or more units and the direction of the arrow indicates a 
direction of data flow between those units . FIG . 6B shows 
processor core 690 including a front end unit 630 coupled to 
an execution engine unit 650 , and both are coupled to a 
memory unit 70 . 
10062 ] . The core 690 may be a reduced instruction set 
computing ( RISC ) core , a complex instruction set comput 
ing ( CISC ) core , a very long instruction word ( VLIW ) core , 
or a hybrid or alternative core type . As yet another option , 
the core 690 may be a special - purpose core , such as , for 
example , a network or communication core , compression 
engine , graphics core , or the like . 
[ 0063 ] The front end unit 630 includes a branch prediction 
unit 632 coupled to an instruction cache unit 634 , which is 
coupled to an instruction translation lookaside buffer ( TLB ) 
636 , which is coupled to an instruction fetch unit 638 , which 
is coupled to a decode unit 640 . The decode unit or decoder 
may decode instructions , and generate as an output one or 
more micro - operations , micro - code entry points , microin 
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structions , other instructions , or other control signals , which 
are decoded from , or which otherwise reflect , or are derived 
from , the original instructions . The decoder may be imple 
mented using various different mechanisms . Examples of 
suitable mechanisms include , but are not limited to , look - up 
tables , hardware implementations , programmable logic 
arrays ( PLAS ) , microcode read only memories ( ROMs ) , etc . 
The instruction cache unit 634 is further coupled to a level 
2 ( L2 ) cache unit 676 in the memory unit 670 . The decode 
unit 640 is coupled to a rename / allocator unit 652 in the 
execution engine unit 650 . 
10064 ) The execution engine unit 650 includes the rename ! 
allocator unit 652 coupled to a retirement unit 654 and a set 
of one or more scheduler unit ( s ) 656 . The retirement unit 
654 may include a power SCA resistant AES hardware 
accelerator unit 603 for performing cryptography in proces 
sors with tolerance to power side - channel attacks according 
to embodiments of the invention . The scheduler unit ( s ) 656 
represents any number of different schedulers , including 
reservations stations , central instruction window , etc . The 
scheduler unit ( s ) 656 is coupled to the physical register 
file ( s ) unit ( s ) 658 . Each of the physical register file ( s ) units 
658 represents one or more physical register files , different 
ones of which store one or more different data types , such as 
scalar integer , scalar floating point , packed integer , packed 
floating point , vector integer , vector floating point , etc . , 
status ( e . g . , an instruction pointer that is the address of the 
next instruction to be executed ) , etc . The physical register 
file ( s ) unit ( s ) 658 is overlapped by the retirement unit 654 to 
illustrate various ways in which register renaming and 
out - of - order execution may be implemented ( e . g . , using a 
reorder buffer ( s ) and a retirement register file ( s ) , using a 
future file ( s ) , a history buffer ( s ) , and a retirement register 
file ( s ) ; using a register maps and a pool of registers ; etc . ) . 
[ 0065 ] Generally , the architectural registers are visible 
from the outside of the processor or from a programmer ' s 
perspective . The registers are not limited to any known 
particular type of circuit . Various different types of registers 
are suitable as long as they are capable of storing and 
providing data as described herein . Examples of suitable 
registers include , but are not limited to , dedicated physical 
registers , dynamically allocated physical registers using 
register renaming , combinations of dedicated and dynami 
cally allocated physical registers , etc . The retirement unit 
654 and the physical register file ( s ) unit ( s ) 658 are coupled 
to the execution cluster ( s ) 660 . The execution cluster ( s ) 660 
includes a set of one or more execution units 662 and a set 
of one or more memory access units 664 . The execution 
units 662 may perform various operations ( e . g . , shifts , 
addition , subtraction , multiplication ) and on various types of 
data ( e . g . , scalar floating point , packed integer , packed 
floating point , vector integer , vector floating point ) . 
[ 0066 ] While some embodiments may include a number of 
execution units dedicated to specific functions or sets of 
functions , other embodiments may include one execution 
unit or multiple execution units that all perform all func 
tions . The scheduler unit ( s ) 656 , physical register file ( s ) 
unit ( s ) 658 , and execution cluster ( s ) 660 are shown as being 
possibly plural because certain embodiments create separate 
pipelines for certain types of data / operations ( e . g . , a scalar 
integer pipeline , a scalar floating point / packed integer / 
packed floating point / vector integer / vector floating point 
pipeline , and / or a memory access pipeline that each have 
their own scheduler unit , physical register file ( s ) unit , and / or 

execution cluster and in the case of a separate memory 
access pipeline , certain embodiments are implemented in 
which the execution cluster of this pipeline has the memory 
access unit ( s ) 664 ) . It should also be understood that where 
separate pipelines are used , one or more of these pipelines 
may be out - of - order issue / execution and the rest in - order . 
[ 0067 ] The set of memory access units 664 is coupled to 
the memory unit 670 , which includes a data TLB unit 672 
coupled to a data cache unit 674 coupled to a level 2 ( L2 ) 
cache unit 676 . In one exemplary embodiment , the memory 
access units 664 may include a load unit , a store address 
unit , and a store data unit , each of which is coupled to the 
data TLB unit 672 in the memory unit 670 . The L2 cache 
unit 676 is coupled to one or more other levels of cache and 
eventually to a main memory . 
[ 0068 ] By way of example , the exemplary register renam 
ing , out - of - order issue / execution core architecture may 
implement the pipeline 600 as follows : 1 ) the instruction 
fetch 38 performs the fetch and length decoding stages 602 
and 604 ; 2 ) the decode unit 640 performs the decode stage 
606 ; 3 ) the rename / allocator unit 652 performs the allocation 
stage 608 and renaming stage 610 ; 4 ) the scheduler unit ( s ) 
656 performs the schedule stage 612 ; 5 ) the physical register 
file ( s ) unit ( s ) 658 and the memory unit 670 perform the 
register read / memory read stage 614 ; the execution cluster 
660 perform the execute stage 616 ; 6 ) the memory unit 670 
and the physical register file ( s ) unit ( s ) 658 perform the write 
back / memory write stage 618 ; 7 ) various units may be 
involved in the exception handling stage 622 ; and 8 ) the 
retirement unit 654 and the physical register file ( s ) unit ( s ) 
658 perform the commit stage 624 . 
[ 0069 ] The core 690 may support one or more instructions 
sets ( e . g . , the x86 instruction set ( with some extensions that 
have been added with newer versions ) ; the MIPS instruction 
set of MIPS Technologies of Sunnyvale , Calif . ; the ARM 
instruction set ( with additional extensions such as NEON ) of 
ARM Holdings of Sunnyvale , Calif . ) . 
[ 0070 ] It should be understood that the core may support 
multithreading ( executing two or more parallel sets of 
operations or threads ) , and may do so in a variety of ways 
including time sliced multithreading , simultaneous multi 
threading ( where a single physical core provides a logical 
core for each of the threads that physical core is simultane 
ously multithreading ) , or a combination thereof ( e . g . , time 
sliced fetching and decoding and simultaneous multithread 
ing thereafter such as in the Intel® Hyperthreading technol 
ogy ) . 
10071 ] While register renaming is described in the context 
of out - of - order execution , it should be understood that 
register renaming may be used in - order architecture . While 
the illustrated embodiment of the processor also includes a 
separate instruction and data cache units 634 / 674 and a 
shared L2 cache unit 676 , alternative embodiments may 
have a single internal cache for both instructions and data , 
such as , for example , a Level 1 ( L1 ) internal cache , or 
multiple levels of internal cache . In some embodiments , the 
system may include a combination of an internal cache and 
an external cache that is external to the core and / or the 
processor . Alternatively , all of the cache may be external to 
the core and / or the processor . 
10072 ] FIG . 7 is a block diagram illustrating a micro 
architecture for a processor 700 that includes logic circuits 
to perform instructions in accordance with one embodiment 
of the invention . In one embodiment , processor 700 moni 
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tors performance of a processing device to manage non 
precise events . In some embodiments , an instruction in 
accordance with one embodiment can be implemented to 
operate on data elements having sizes of byte , word , double 
word , quadword , etc . , as well as datatypes , such as single 
and double precision integer and floating point datatypes . In 
one embodiment , the in - order front end 701 is the part of the 
processor 700 that fetches instructions to be executed and 
prepares them to be used later in the processor pipeline . The 
front end 701 may include several units . In one embodiment , 
the instruction prefetcher 726 fetches instructions from 
memory and feeds them to an instruction decoder 728 , 
which in turn decodes or interprets them . For example , in 
one embodiment , the decoder decodes a received instruction 
into one or more operations called “ micro - instructions ” or 
" micro - operations ” ( also called micro op or uops ) that the 
machine can execute . 
[ 0073 ] In other embodiments , the decoder parses the 
instruction into an opcode and corresponding data and 
control fields that are used by the micro - architecture to 
perform operations in accordance with one embodiment . In 
one embodiment , the trace cache 730 takes decoded uops 
and assembles them into program ordered sequences or 
traces in the uop queue 734 for execution . When the trace 
cache 730 encounters a complex instruction , the microcode 
ROM 732 provides the uops needed to complete the opera 
tion . 
[ 0074 ] Some instructions are converted into a single 
micro - op , whereas others use several micro - ops to complete 
the full operation . In one embodiment , if more than four 
micro - ops are needed to complete an instruction , the decoder 
728 accesses the microcode ROM 732 to do the instruction . 
For one embodiment , an instruction can be decoded into a 
small number of micro ops for processing at the instruction 
decoder 728 . In another embodiment , an instruction can be 
stored within the microcode ROM 732 should a number of 
micro - ops be needed to accomplish the operation . The trace 
cache 730 refers to an entry point programmable logic array 
( PLA ) to determine a correct micro - instruction pointer for 
reading the micro - code sequences to complete one or more 
instructions in accordance with one embodiment from the 
micro - code ROM 732 . After the microcode ROM 732 
finishes sequencing micro - ops for an instruction , the front 
end 701 of the machine resumes fetching micro - ops from the 
trace cache 730 . 
[ 0075 ] The out - of - order execution engine 703 is where the 
instructions are prepared for execution . The out - of - order 
execution logic has a number of buffers to smooth out and 
re - order the flow of instructions to optimize performance as 
they go down the pipeline and get scheduled for execution . 
The allocator logic allocates the machine buffers and 
resources that each uop needs in order to execute . The 
register renaming logic renames logic registers onto entries 
in a register file . The allocator also allocates an entry for 
each uop in one of the two uop queues , one for memory 
operations and one for non - memory operations , in front of 
the instruction schedulers : memory scheduler , fast scheduler 
702 , slow / general floating point scheduler 704 , and simple 
floating point scheduler 706 . The uop schedulers 702 , 704 , 
706 determine when a uop is ready to execute based on the 
readiness of their dependent input register operand sources 
and the availability of the execution resources the uops use 
to complete their operation . The fast scheduler 702 of one 
embodiment can schedule on each half of the main clock 

cycle while the other schedulers can schedule once per main 
processor clock cycle . The schedulers arbitrate for the 
dispatch ports to schedule uops for execution . 
[ 0076 ] Register files 708 , 710 sit between the schedulers 
702 , 704 , 706 , and the execution units 712 , 714 , 716 , 718 , 
720 , 722 , 724 in the execution block 711 . There is a separate 
register file for integer and floating point operations , respec 
tively . Each register file 708 , 710 , of one embodiment also 
includes a bypass network that can bypass or forward just 
completed results that have not yet been written into the 
register file to new dependent uops . The integer register file 
708 and the floating point register file 710 are also capable 
of communicating data with the other . For one embodiment , 
the integer register file 708 is split into two separate register 
files , one register file for the low order 32 bits of data and 
a second register file for the high order 32 bits of data . The 
floating point register file 710 of one embodiment has 128 
bit wide entries because floating point instructions typically 
have operands from 66 to 128 bits in width . 
[ 0077 ] The execution block 711 contains the execution 
units 712 , 714 , 716 , 718 , 720 , 722 , 724 , where the instruc 
tions are actually executed . This section includes the register 
files 708 , 710 , that store the integer and floating point data 
operand values that the micro - instructions use to execute . 
The processor 700 of one embodiment is comprised of a 
number of execution units : address generation unit ( AGU ) 
712 , AGU 714 , fast ALU 716 , fast ALU 718 , slow ALU 720 , 
floating point ALU 722 , floating point move unit 724 . For 
one embodiment , the floating point execution blocks 722 , 
724 , execute floating point , MMX , SIMD , and SSE , or other 
operations . The floating point ALU 722 of one embodiment 
includes a 64 bit by 54 bit floating point divider to execute 
divide , square root , and remainder micro - ops . For embodi 
ments of the invention , instructions involving a floating 
point value may be handled with the floating point hardware . 
[ 0078 ] In one embodiment , the ALU operations go to the 
high - speed ALU execution units 716 , 718 . The fast ALUS 
716 , 718 , of one embodiment can execute fast operations 
with an effective latency of half a clock cycle . For one 
embodiment , most complex integer operations go to the 
slow ALU 720 as the slow ALU 720 includes integer 
execution hardware for long latency type of operations , such 
as a multiplier , shifts , flag logic , and branch processing . 
Memory load / store operations are executed by the AGUS 
712 , 714 . For one embodiment , the integer ALUS 716 , 718 , 
720 are described in the context of performing integer 
operations on 64 bit data operands . In alternative embodi 
ments , the ALUS 716 , 718 , 720 can be implemented to 
support a variety of data bits including 16 , 32 , 128 , 256 , etc . 
Similarly , the floating point units 722 , 724 can be imple 
mented to support a range of operands having bits of various 
widths . For one embodiment , the floating point units 722 , 
724 can operate on 128 bits wide packed data operands in 
conjunction with SIMD and multimedia instructions . 
[ 0079 ] In one embodiment , the uops schedulers 702 , 704 , 
706 dispatch dependent operations before the parent load 
has finished executing . As uops are speculatively scheduled 
and executed in processor 700 , the processor 700 also 
includes logic to handle memory misses . If a data load 
misses in the data cache , there can be dependent operations 
in flight in the pipeline that have left the scheduler with 
temporarily incorrect data . A replay mechanism tracks and 
re - executes instructions that use incorrect data . The depen 
dent operations should be replayed and the independent ones 
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are allowed to complete . The schedulers and replay mecha 
nism of one embodiment of a processor are also designed to 
catch instruction sequences for text string comparison opera 
tions . 
[ 0080 ] The processor 700 may include a retirement unit 
754 coupled to the execution block 711 . The retirement unit 
754 may include a power SCA resistant AES hardware 
accelerator unit 705 for performing cryptography in proces 
sors with tolerance to power side - channel attacks . 
[ 0081 ] The term “ registers ” may refer to the on - board 
processor storage locations that are used as part of instruc 
tions to identify operands . In other words , registers may be 
those that are usable from the outside of the processor ( from 
a programmer ' s perspective ) . However , the registers of an 
embodiment should not be limited in meaning to a particular 
type of circuit . Rather , a register of an embodiment is 
capable of storing and providing data , and performing the 
functions described herein . The registers described herein 
can be implemented by circuitry within a processor using 
any number of different techniques , such as dedicated physi 
cal registers , dynamically allocated physical registers using 
register renaming , combinations of dedicated and dynami 
cally allocated physical registers , etc . In one embodiment , 
integer registers store thirty - two bit integer data . 
[ 0082 ] A register file of one embodiment also contains 
eight multimedia SIMD registers for packed data . For the 
discussions below , the registers are understood to be data 
registers designed to hold packed data , such as 64 bits wide 
MMX registers ( also referred to as “ mm ' registers in some 
instances ) in microprocessors enabled with the MMXTM 
technology from Intel Corporation of Santa Clara , Calif . 
These MMX registers , available in both integer and floating 
point forms , can operate with packed data elements that 
accompany SIMD and SSE instructions . Similarly , 128 bits 
wide XMM registers relating to SSE2 , SSE3 , SSE4 , or 
beyond ( referred to generically as “ SSEx ” ) technology can 
also be used to hold such packed data operands . In one 
embodiment , in storing packed data and integer data , the 
registers do not differentiate between the two data types . In 
one embodiment , integer and floating point are contained in 
either the same register file or different register files . Fur 
thermore , in one embodiment , floating point and integer data 
may be stored in different registers or the same registers . 
[ 0083 ] Referring now to FIG . 8 , shown is a block diagram 
of a system 800 in accordance with one embodiment of the 
invention . The system 800 may include one or more pro 
cessors 810 , 815 , which are coupled to graphics memory 
controller hub ( GMCH ) 820 . The optional nature of addi 
tional processors 815 is denoted in FIG . 8 with broken lines . 
In one embodiment , a processor 810 , 815 monitors perfor 
mance of a processing device to manage non - precise events . 
[ 0084 ] Each processor 810 , 815 may be some version of 
the circuit , integrated circuit , processor , and / or silicon inte 
grated circuit as described above . However , it should be 
noted that it is unlikely that integrated graphics logic and 
integrated memory control units would exist in the proces 
sors 810 , 815 . FIG . 8 illustrates that the GMCH 820 may be 
coupled to a memory 840 that may be , for example , a 
dynamic random access memory ( DRAM ) . The DRAM 
may , for at least one embodiment , be associated with a 
non - volatile cache . 
[ 0085 ] The GMCH 820 may be a chipset , or a portion of 
a chipset . The GMCH 820 may communicate with the 
processor ( s ) 810 , 815 and control interaction between the 

processor ( s ) 810 , 815 and memory 840 . The GMCH 820 
may also act as an accelerated bus interface between the 
processor ( s ) 810 , 815 and other elements of the system 800 . 
For at least one embodiment , the GMCH 820 communicates 
with the processor ( s ) 810 , 815 via a multi - drop bus , such as 
a frontside bus ( FSB ) 895 . 
[ 0086 ] Furthermore , GMCH 820 is coupled to a display 
845 ( such as a flat panel or touchscreen display ) . GMCH 820 
may include an integrated graphics accelerator . GMCH 820 
is further coupled to an input / output ( 1 / 0 ) controller hub 
( ICH ) 850 , which may be used to couple various peripheral 
devices to system 800 . Shown for example in the embodi 
ment of FIG . 8 is an external graphics device 860 , which 
may be a discrete graphics device coupled to ICH 850 , along 
with another peripheral device 870 . 
[ 0087 ] Alternatively , additional or different processors 
may also be present in the system 800 . For example , 
additional processor ( s ) 815 may include additional proces 
sors ( s ) that are the same as processor 810 , additional pro 
cessor ( s ) that are heterogeneous or asymmetric to processor 
810 , accelerators ( such as , e . g . , graphics accelerators or 
digital signal processing ( DSP ) units ) , field programmable 
gate arrays , or any other processor . There can be a variety of 
differences between the processor ( s ) 810 , 815 in terms of a 
spectrum of metrics of merit including architectural , micro 
architectural thermal , power consumption characteristics , 
and the like . These differences may effectively manifest 
themselves as asymmetry and heterogeneity amongst the 
processors 810 , 815 . For at least one embodiment , the 
various processors 810 , 815 may reside in the same die 
package . 
[ 0088 ] Embodiments may be implemented in many dif 
ferent system types . FIG . 9 is a block diagram of a SoC 900 
in accordance with an embodiment of the present disclosure . 
Dashed lined boxes are optional features on more advanced 
SoCs . In FIG . 9 , an interconnect unit ( s ) 912 is coupled to : 
an application processor 920 which includes a set of one or 
more cores 902A - N and shared cache unit ( s ) 906 ; a system 
agent unit 910 ; a bus controller unit ( s ) 916 ; an integrated 
memory controller unit ( s ) 914 ; a set or one or more media 
processors 918 which may include integrated graphics logic 
908 , an image processor 924 for providing still and / or video 
camera functionality , an audio processor 926 for providing 
hardware audio acceleration , and a video processor 928 for 
providing video encode / decode acceleration ; an static ran 
dom access memory ( SRAM ) unit 930 ; a direct memory 
access ( DMA ) unit 932 ; and a display unit 940 for coupling 
to one or more external displays . In one embodiment , a 
memory module may be included in the integrated memory 
controller unit ( s ) 914 . In another embodiment , the memory 
module may be included in one or more other components 
of the SoC 900 that may be used to access and / or control a 
memory . The application processor 920 may include a 
conditional branch , indirect branch and event execution 
logics as described in embodiments herein . 
10089 ] The memory hierarchy includes one or more levels 
of cache within the cores , a set or one or more shared cache 
units 906 , and external memory ( not shown ) coupled to the 
set of integrated memory controller units 914 . The set of 
shared cache units 906 may include one or more mid - level 
caches , such as level 2 ( L2 ) , level 3 ( L3 ) , level 4 ( L4 ) , or 
other levels of cache , a last level cache ( LLC ) , and / or 
combinations thereof . 
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10090 ] In some embodiments , one or more of the cores 
902A - N are capable of multi - threading . 
[ 0091 ] The system agent 910 includes those components 
coordinating and operating cores 902A - N . The system agent 
unit 910 may include for example a power control unit 
( PCU ) and a display unit . The PCU may be or include logic 
and components needed for regulating the power state of the 
cores 902A - N and the integrated graphics logic 908 . The 
display unit is for driving one or more externally connected 
displays . 
[ 0092 ] The cores 902A - N may be homogenous or hetero 
geneous in terms of architecture and / or instruction set . For 
example , some of the cores 902A - N may be in order while 
others are out - of - order . As another example , two or more of 
the cores 902A - N may be capable of execution the same 
instruction set , while others may be capable of executing 
only a subset of that instruction set or a different instruction 
set . 
[ 0093 ] The application processor 920 may be a general 
purpose processor , such as a CoreTM i3 , i5 , i7 , 2 Duo and 
Quad , XeonTM , ItaniumTM , AtomTM , XScaleTM or Stron 
GARMTM processor , which are available from IntelTM Cor 
poration , of Santa Clara , Calif . Alternatively , the application 
processor 920 may be from another company , such as ARM 
HoldingsTM , Ltd , MIPSTM , etc . The application processor 
920 may be a special - purpose processor , such as , for 
example , a network or communication processor , compres 
sion engine , graphics processor , co - processor , embedded 
processor , or the like . The application processor 920 may be 
implemented on one or more chips . The application proces 
sor 920 may be a part of and / or may be implemented on one 
or more substrates using any of a number of process tech 
nologies , such as , for example , BiCMOS , CMOS , or 
NMOS . 
[ 0094 ] FIG . 10 is a block diagram of an embodiment of a 
system on - chip ( SoC ) design in accordance with the present 
disclosure . As a specific illustrative example , SoC 1000 is 
included in user equipment ( UE ) . In one embodiment , UE 
refers to any device to be used by an end - user to commu 
nicate , such as a hand - held phone , smartphone , tablet , 
ultra - thin notebook , notebook with broadband adapter , or 
any other similar communication device . Often a UE con 
nects to a base station or node , which potentially corre 
sponds in nature to a mobile station ( MS ) in a GSM network . 
[ 0095 ] Here , SOC 1000 includes 2 cores - 1006 and 1007 . 
Cores 1006 and 1007 may conform to an Instruction Set 
Architecture , such as an Intel® Architecture CoreTM - based 
processor , an Advanced Micro Devices , Inc . ( AMD ) pro 
cessor , a MIPS - based processor , an ARM - based processor 
design , or a customer thereof , as well as their licensees or 
adopters . Cores 1006 and 1007 are coupled to cache control 
1008 that is associated with bus interface unit 1008 and L2 
cache 1010 to communicate with other parts of system 1000 . 
Interconnect 1010 includes an on - chip interconnect , such as 
an IOSF , AMBA , or other interconnect discussed above , 
which potentially implements one or more aspects of the 
described disclosure . In one embodiment , a conditional 
branch , indirect branch and event execution logics may be 
included in cores 1006 , 1007 . 
[ 0096 ] Interconnect 1010 provides communication chan 
nels to the other components , such as a Subscriber Identity 
Module ( SIM ) 1030 to interface with a SIM card , a boot 
ROM 1035 to hold boot code for execution by cores 1006 
and 1007 to initialize and boot SoC 1000 , a SDRAM 

controller 1040 to interface with external memory ( e . g . 
DRAM 1060 ) , a flash controller 1045 to interface with 
non - volatile memory ( e . g . Flash 1065 ) , a peripheral control 
1050 ( e . g . Serial Peripheral Interface ) to interface with 
peripherals , video codecs 1020 and Video interface 1025 to 
display and receive input ( e . g . touch enabled input ) , GPU 
1015 to perform graphics related computations , etc . Any of 
these interfaces may incorporate aspects of the disclosure 
described herein . In addition , the system 1000 illustrates 
peripherals for communication , such as a Bluetooth module 
1070 , 3G modem 1075 , GPS 1080 , and Wi - Fi 1085 . 
[ 0097 ] Referring now to FIG . 11 , shown is a block dia 
gram of a system 1100 in accordance with an embodiment 
of the invention . As shown in FIG . 11 , multiprocessor 
system 1100 is a point - to - point interconnect system , and 
includes a first processor 1170 and a second processor 1180 
coupled via a point - to - point interconnect 1150 . Each of 
processors 1170 and 1180 may be some version of the 
processors of the computing systems as described herein . In 
one embodiment , processors 1170 , 1180 monitoring perfor 
mance of a processing device to manage non - precise events 
to monitor performance of a processing device to manage 
non - precise events . 
[ 0098 ] While shown with two processors 1170 , 1180 , it is 
to be understood that the scope of the disclosure is not so 
limited . In other embodiments , one or more additional 
processors may be present in a given processor . 
[ 0099 ] Processors 1170 and 1180 are shown including 
integrated memory controller units 1172 and 1182 , respec 
tively . Processor 1170 also includes as part of its bus 
controller units point - to - point ( P - P ) interfaces 1176 and 
1178 ; similarly , second processor 1180 includes P - P inter 
faces 1186 and 1188 . Processors 1170 , 1180 may exchange 
information via a point - to - point ( PPP ) interface 1150 using 
P - P interface circuits 1178 , 1188 . As shown in FIG . 11 , 
IMCs 1172 and 1182 couple the processors to respective 
memories , namely a memory 1132 and a memory 1134 , 
which may be portions of main memory locally attached to 
the respective processors . 
[ 0100 ] Processors 1170 and 1180 may each exchange 
information with a chipset 1190 via individual P - P interfaces 
1152 , 1154 using point to point interface circuits 1176 , 1194 , 
1186 , 1198 . Chipset 1190 may also exchange information 
with a high - performance graphics circuit 1138 via a high 
performance graphics interface 1139 . 
[ 0101 ] A shared cache ( not shown ) may be included in 
either processor or outside of both processors , yet connected 
with the processors via P - P interconnect , such that either or 
both processors ' local cache information may be stored in 
the shared cache if a processor is placed into a low power 
mode . 
[ 0102 ] Chipset 1190 may be coupled to a first bus 1116 via 
an interface 1116 . In one embodiment , first bus 1116 may be 
a Peripheral Component Interconnect ( PCI ) bus , or a bus 
such as a PCI Express bus or another third generation I / O 
interconnect bus , although the scope of the disclosure is not 
so limited . 
[ 0103 ] As shown in FIG . 11 , various I / O devices 1114 may 
be coupled to first bus 1116 , along with a bus bridge 1118 , 
which couples first bus 1116 to a second bus 1120 . In one 
embodiment , second bus 1120 may be a low pin count ( LPC ) 
bus . Various devices may be coupled to second bus 1120 
including , for example , a keyboard and / or mouse 1122 , 
communication devices 1127 and a storage unit 1128 such as 
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a disk drive or other mass storage device which may include 
instructions / code and data 1130 , in one embodiment . Fur 
ther , an audio I / 0 1124 may be coupled to second bus 1120 . 
Note that other architectures are possible . For example , 
instead of the point - to - point architecture of FIG . 11 , a 
system may implement a multi - drop bus or other such 
architecture . 
[ 0104 ] Referring now to FIG . 12 , shown is a block dia 
gram of a system 1200 in accordance with an embodiment 
of the invention . FIG . 12 illustrates processors 1270 , 1280 . 
In one embodiment , processors 1270 , 1280 monitor perfor 
mance of a processing device to manage non - precise events . 
Furthermore , processors 1270 , 1280 may include integrated 
memory and I / O control logic ( " CL " ) 1272 and 1282 , 
respectively and intercommunicate with each other via 
point - to - point interconnect 1250 between point - to - point 
( P - P ) interfaces 1278 and 1288 respectively . Processors 
1270 , 1280 each communicate with chipset 1290 via point 
to - point interconnect 1252 and 1254 through the respective 
P - P interfaces 1276 to 1294 and 1286 to 1298 as shown . For 
at least one embodiment , the CL 1272 , 1282 may include 
integrated memory controller units . CLs 1272 , 1282 may 
include I / O control logic . As depicted , memories 1232 , 1234 
coupled to CLs 1272 , 1282 and 1 / 0 devices 1214 are also 
coupled to the control logic 1272 , 1282 . Legacy I / O devices 
1215 are coupled to the chipset 1290 via interface 1296 . 
[ 0105 ] FIG . 13 illustrates a block diagram 1300 of an 
embodiment of tablet computing device , a smartphone , or 
other mobile device in which touchscreen interface connec 
tors may be used . Processor 1310 may monitor performance 
of a processing device to manage non - precise events . In 
addition , processor 1310 performs the primary processing 
operations . Audio subsystem 1320 represents hardware 
( e . g . , audio hardware and audio circuits ) and software ( e . g . , 
drivers , codecs ) components associated with providing 
audio functions to the computing device . In one embodi 
ment , a user interacts with the tablet computing device or 
smartphone by providing audio commands that are received 
and processed by processor 1310 . 
[ 010 ] Display subsystem 1332 represents hardware ( e . g . , 
display devices ) and software ( e . g . , drivers ) components that 
provide a visual and / or tactile display for a user to interact 
with the tablet computing device or smartphone . Display 
subsystem 1330 includes display interface 1332 , which 
includes the particular screen or hardware device used to 
provide a display to a user . In one embodiment , display 
subsystem 1330 includes a touchscreen device that provides 
both output and input to a user . 
[ 0107 ) 1 / 0 controller 1340 represents hardware devices 
and software components related to interaction with a user . 
I / O controller 1340 can operate to manage hardware that is 
part of audio subsystem 1320 and / or display subsystem 
1330 . Additionally , I / O controller 1340 illustrates a connec 
tion point for additional devices that connect to the tablet 
computing device or smartphone through which a user might 
interact . In one embodiment , I / O controller 1340 manages 
devices such as accelerometers , cameras , light sensors or 
other environmental sensors , or other hardware that can be 
included in the tablet computing device or smartphone . The 
input can be part of direct user interaction , as well as 
providing environmental input to the tablet computing 
device or smartphone . 
0108 ] In one embodiment , the tablet computing device or 
smartphone includes power management 1350 that manages 

battery power usage , charging of the battery , and features 
related to power saving operation . Memory subsystem 1360 
includes memory devices for storing information in the 
tablet computing device or smartphone . Connectivity 1370 
includes hardware devices ( e . g . , wireless and / or wired con 
nectors and communication hardware ) and software com 
ponents ( e . g . , drivers , protocol stacks ) to the tablet comput 
ing device or smartphone to communicate with external 
devices . Cellular connectivity 1372 may include , for 
example , wireless carriers such as GSM ( global system for 
mobile communications ) , CDMA ( code division multiple 
access ) , TDM ( time division multiplexing ) , or other cellular 
service standards ) . Wireless connectivity 1374 may include , 
for example , activity that is not cellular , such as personal 
area networks ( e . g . , Bluetooth ) , local area networks ( e . g . , 
WiFi ) , and / or wide area networks ( e . g . , WiMax ) , or other 
wireless communication . 
[ 0109 ] Peripheral connections 1380 include hardware 
interfaces and connectors , as well as software components 
( e . g . , drivers , protocol stacks ) to make peripheral connec 
tions as a peripheral device ( “ to ” 1382 ) to other computing 
devices , as well as have peripheral devices ( " from " 1384 ) 
connected to the tablet computing device or smartphone , 
including , for example , a " docking " connector to connect 
with other computing devices . Peripheral connections 1380 
include common or standards - based connectors , such as a 
Universal Serial Bus ( USB ) connector , DisplayPort includ 
ing MiniDisplayPort ( MDP ) , High Definition Multimedia 
Interface ( HDMI ) , Firewire , etc . 
[ 0110 ] FIG . 14 illustrates a diagrammatic representation of 
a machine in the example form of a computing system 1400 
within which a set of instructions , for causing the machine 
to perform any one or more of the methodologies discussed 
herein , may be executed . In alternative embodiments , the 
machine may be connected ( e . g . , networked ) to other 
machines in a LAN , an intranet , an extranet , or the Internet . 
The machine may operate in the capacity of a server or a 
client device in a client - server network environment , or as a 
peer machine in a peer - to - peer ( or distributed ) network 
environment . The machine may be a personal computer 
( PC ) , a tablet PC , a set - top box ( STB ) , a Personal Digital 
Assistant ( PDA ) , a cellular telephone , a web appliance , a 
server , a network router , switch or bridge , or any machine 
capable of executing a set of instructions ( sequential or 
otherwise ) that specify actions to be taken by that machine . 
Further , while only a single machine is illustrated , the term 
" machine ” shall also be taken to include any collection of 
machines that individually or jointly execute a set ( or 
multiple sets ) of instructions to perform any one or more of 
the methodologies discussed herein . 
[ 0111 ] The computing system 1400 includes a processing 
device 1402 , a main memory 1404 ( e . g . , read - only memory 
( ROM ) , flash memory , dynamic random access memory 
( DRAM ) ( such as synchronous DRAM ( SDRAM ) or 
DRAM ( RDRAM ) , etc . ) , a static memory 1406 ( e . g . , flash 
memory , static random access memory ( SRAM ) , etc . ) , and 
a data storage device 1418 , which communicate with each 
other via a bus 1430 . 
[ 0112 ] Processing device 1402 represents one or more 
general - purpose processing devices such as a microproces 
sor , central processing unit , or the like . More particularly , 
the processing device may be complex instruction set com 
puting ( CISC ) microprocessor , reduced instruction set com 
puter ( RISC ) microprocessor , very long instruction word 
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( VLIW ) microprocessor , or processor implementing other 
instruction sets , or processors implementing a combination 
of instruction sets . Processing device 1402 may also be one 
or more special - purpose processing devices such as an 
application specific integrated circuit ( ASIC ) , a field pro 
grammable gate array ( FPGA ) , a digital signal processor 
( DSP ) , network processor , or the like . In one embodiment , 
processing device 1402 may include one or processing 
cores . The processing device 1402 is configured to execute 
the processing logic 1426 for performing the operations 
discussed herein . In one embodiment , processing device 
1402 is the same as computer systems 100 and 200 as 
described with respect to FIG . 1 that implements the NPEBS 
module 106 . Alternatively , the computing system 1400 can 
include other components as described herein . 
[ 0113 ] The computing system 1400 may further include a 
network interface device 1408 communicably coupled to a 
network 1420 . The computing system 1400 also may include 
a video display unit 1410 ( e . g . , a liquid crystal display 
( LCD ) or a cathode ray tube ( CRT ) ) , an alphanumeric input 
device 1412 ( e . g . , a keyboard ) , a cursor control device 1414 
( e . g . , a mouse ) , a signal generation device 1416 ( e . g . , a 
speaker ) , or other peripheral devices . Furthermore , comput - 
ing system 1400 may include a graphics processing unit 
1422 , a video processing unit 1428 and an audio processing 
unit 1432 . In another embodiment , the computing system 
1400 may include a chipset ( not illustrated ) , which refers to 
a group of integrated circuits , or chips , that are designed to 
work with the processing device 1402 and controls commu 
nications between the processing device 1402 and external 
devices . For example , the chipset may be a set of chips on 
a motherboard that links the processing device 1402 to very 
high - speed devices , such as main memory 1404 and graphic 
controllers , as well as linking the processing device 1402 to 
lower - speed peripheral buses of peripherals , such as USB , 
PCI or ISA buses . 
[ 0114 ] The data storage device 1418 may include a com 
puter - readable storage medium 1424 on which is stored 
software 1426 embodying any one or more of the method 
ologies of functions described herein . The software 1426 
may also reside , completely or at least partially , within the 
main memory 1404 as instructions 1426 and / or within the 
processing device 1402 as processing logic 1426 during 
execution thereof by the computing system 1400 ; the main 
memory 1404 and the processing device 1402 also consti 
tuting computer - readable storage media . 
[ 0115 ] The computer - readable storage medium 1424 may 
also be used to store instructions 1426 utilizing the NPEBS 
module 106 described with respect to FIG . 1 and / or a 
software library containing methods that call the above 
applications . While the computer - readable storage medium 
1424 is shown in an example embodiment to be a single 
medium , the term " computer - readable storage medium ” 
should be taken to include a single medium or multiple 
media ( e . g . , a centralized or distributed database , and / or 
associated caches and servers ) that store the one or more sets 
of instructions . The term " computer - readable storage 
medium ” shall also be taken to include any medium that is 
capable of storing , encoding or carrying a set of instruction 
for execution by the machine and that cause the machine to 
perform any one or more of the methodologies of the 
embodiments . The term " computer - readable storage 
medium ” shall accordingly be taken to include , but not be 
limited to , solid - state memories , and optical and magnetic 

media . While the invention has been described with respect 
to a limited number of embodiments , those skilled in the art 
will appreciate numerous modifications and variations there 
from . It is intended that the appended claims cover all such 
modifications and variations as fall within the true spirit and 
scope of this invention . 
[ 0116 ] The following examples pertain to further embodi 
ments . 
[ 0117 ] Example 1 is a processing system comprising a 
processing core ; and a hardware accelerator for performing 
AES cryptographic operation , the hardware accelerator 
communicatively coupled to the processing core , the hard 
ware accelerator comprising a random number generator to 
generate a byte order indicator ; and a first switching module 
communicatively coupled to the random number generator , 
the first switching module to receive an input byte sequence 
in an encryption round of the cryptographic operation ; and 
feed a portion of the input byte sequence to one of a first 
substitute box ( S - box ) module or a second S - box module 
based on a byte order indicator value generated by the 
random number generator . 
[ 0118 ] In Example 2 , the subject matter of Example 1 can 
optionally include wherein the first switching module feeds 
a remaining portion of the input byte sequence to one of the 
first S - box module or the second S - box module based on the 
byte order indicator generated by the random number gen 
erator . 
[ 0119 ] In Example 3 , the subject matter of Examples 1 - 2 
can optionally include wherein the random number genera 
tor is reseeded with an intermediate value from a data 
register at the beginning of each one of a encryption and 
decryption round of the cryptographic operation . 
[ 0120 ] In Example 4 , the subject matter of Examples 1 - 3 
can optionally include wherein the first S - box module is 
associated with a GF ( 24 ) composite Galois - field defined by 
characteristic polynomials calculated to minimize imple 
mentation area of the hardware accelerator and one of 
minimize or maximize a power consumption profile . 
[ 0121 ] In Example 5 , the subject matter of Examples 1 - 4 
can optionally include wherein the second S - box module is 
associated with a GF ( 24 ) 2 composite Galois - field defined by 
characteristic polynomials calculated to minimize imple 
mentation area of the hardware accelerator and one of 
minimize or maximize a power consumption profile . 
[ 0122 ] In Example 6 , the subject matter of Examples 1 - 5 
can optionally include a switching module coupled to the 
first S - box module to restore an original order of data bytes 
in a output byte sequence of the first S - box module ; and a 
mapping module coupled to the switching module to restore 
data in the output byte sequence to a common composite 
field representation 
[ 0123 ] In Example 7 , the subject matter of Examples 1 - 6 
can optionally include a switching module coupled to the 
second S - box module to restore original order of data bytes 
in a output byte sequence of the second S - box module ; and 
a mapping module coupled to the switching module to 
restore data in the output byte sequence to a common 
composite field representation . 
[ 0124 ] In Example 8 , the subject matter of Examples 1 - 7 
can optionally include wherein in at a last round of the 
encryption round of the cryptographic computation , the 
random value indicator generator to feed random data to a 
mix columns module and at least one of the first S - box 
module or the second S - box module . 
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[ 0134 ] In Example 18 , the subject matter of Examples 
16 - 17 can optionally include wherein the first S - box module 
is associated with a GF ( 24 ) ? composite Galois - field defined 
by characteristic polynomials calculated to minimize imple 
mentation area of the hardware accelerator and the second 
S - box module is associated with the GF ( 24 ) 2 composite 
Galois - field defined by characteristic polynomials calculated 
to minimize implementation area of the hardware accelera 
tor . 

[ 0125 ] Example 9 is a system - on - a chip ( SOC ) comprising 
a memory ; and a processor , communicatively coupled to the 
memory , comprising a processing core ; and a hardware 
accelerator for performing AES cryptographic operation , the 
hardware accelerator communicatively coupled to the pro 
cessing core , the hardware accelerator comprising a random 
number generator to generate a byte order indicator ; and a 
first switching module communicatively coupled to the 
random value generator , the first switching module to 
receive an input byte sequence in an encryption round of the 
cryptographic operation ; and feed a portion of the input byte 
sequence to one of a first substitute box ( S - box ) module or 
a second S - box module based on a byte order indicator value 
generated by the random number generator . 
[ 0126 ] In Example 10 the subject matter of Example 9 can 
optionally include wherein the first switching module feeds 
a remaining portion of the input byte sequence to one of the 
first S - box module or the second S - box module based on the 
byte order indicator generated by the random number gen 
erator . 
[ 0127 ] In Example 11 , the subject matter of Examples 
9 - 10 can optionally include wherein the random number 
generator is reseeded with an intermediate value from a data 
register at the beginning of every one of a encryption and 
decryption round of the cryptographic operation . 
[ 0128 ] In Example 12 , the subject matter of Examples 
9 - 11 can optionally include wherein the one of the first 
S - box module or the second S - box module is associated with 
a GF ( 24 ) 2 composite Galois - field defined by characteristic 
polynomials calculated to minimize implementation area of 
the hardware accelerator and one of minimize or maximize 
a power consumption profile . 
[ 0129 ] In Example 13 , the subject matter of Examples 
9 - 12 can optionally include a switching module coupled to 
the first S - box module to restore an original order of data 
bytes in an output byte sequence of the first S - box module ; 
and a mapping module coupled to the switching module to 
restore data in the output byte sequence to a common 
composite field representation 
[ 0130 ] In Example 14 , the subject matter of Examples 
9 - 13 can optionally include a switching module coupled to 
the second S - box module to restore original order of data 
bytes in an output byte sequence of the second S - box 
module ; and a mapping module coupled to the switching 
module to restore data in the output byte sequence to a 
common composite field representation . 
[ 0131 ] In Example 15 , the subject matter of Examples 
9 - 14 can optionally include wherein in at a last round of the 
encryption round of the cryptographic computation , the 
random value indicator generator feeds random data to a mix 
columns module and at least one of the first S - box module 
or the second S - box module . 
[ 0132 ] Example 16 is a method comprising receiving an 
input byte sequence in an encryption round of the crypto 
graphic operation ; and feeding a portion of the input byte 
sequence to one of a first substitute box ( S - box ) module or 
a second S - box module based on a byte order indicator value 
generated by a random number generator . 
[ 0133 ] In Example 17 , the subject matter of Example 16 
can optionally include feeding a remaining portion of the 
input byte sequence to one of the first S - box module or the 
second S - box module based on the byte order indicator 
generated by the random number generator . 

[ 0135 ] In Example 19 , the subject matter of Examples 
16 - 18 can optionally include restoring an original order of 
data bytes in an output of the first S - box module and 
restoring an original order of data bytes in an output of the 
second S - box module . 
[ 0136 ] In Example 20 , the subject matter of Examples 
16 - 19 can optionally include feeding random data to a mix 
columns module and at least one of the first S - box module 
or the second S - box module in a last round of the encryption 
round of the cryptographic computation . 
[ 0137 ] Example 21 is a non - transitory machine - readable 
storage medium including instructions that , when accessed 
by a processing device , cause the processing device to 
perform operations comprising receiving an input byte 
sequence in an encryption round of the cryptographic opera 
tion ; and feeding a portion of the input byte sequence to one 
of a first substitute box ( S - box ) module or a second S - box 
module based on a byte order indicator value generated by 
a random number generator . 
[ 0138 ] In Example 22 , the subject matter of Example 21 
can optionally include feeding a remaining portion of the 
input byte sequence to one of the first S - box module or the 
second S - box module based on the byte order indicator 
generated by the random number generator . 
[ 0139 ] In Example 23 , the subject matter of Examples 
21 - 22 can optionally include wherein the first S - box module 
is associated with a GF ( 24 ) 2 composite Galois - field defined 
by characteristic polynomials calculated to minimize imple 
mentation area of the hardware accelerator and the second 
S - box module is associated with the GF ( 24 ) 2 composite 
Galois - field defined by characteristic polynomials calculated 
to minimize implementation area of the hardware accelera 
tor . 
[ 0140 ] In Example 24 , the subject matter of Examples 
21 - 23 can optionally include restoring an original order of 
data bytes in an output of the first S - box module ; and 
restoring an original order of data bytes in an output of the 
second S - box module . 
[ 0141 ] In Example 25 , the subject matter of Examples 
21 - 24 can optionally include feeding random data to a mix 
columns module and at least one of the first S - box module 
or the second S - box module in a last round of the encryption 
round of the cryptographic computation . 
[ 0142 ] While the disclosure has been described with 
respect to a limited number of embodiments , those skilled in 
the art will appreciate numerous modifications and varia 
tions there from . It is intended that the appended claims 
cover all such modifications and variations as fall within the 
true spirit and scope of this disclosure . 
[ 0143 ] A design may go through various stages , from 
creation to simulation to fabrication . Data representing a 
design may represent the design in a number of manners . 
First , as is useful in simulations , the hardware may be 
represented using a hardware description language or 
another functional description language . Additionally , a cir 
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cuit level model with logic and / or transistor gates may be 
produced at some stages of the design process . Furthermore , 
most designs , at some stage , reach a level of data represent 
ing the physical placement of various devices in the hard 
ware model . In the case where conventional semiconductor 
fabrication techniques are used , the data representing the 
hardware model may be the data specifying the presence or 
absence of various features on different mask layers for 
masks used to produce the integrated circuit . In any repre 
sentation of the design , the data may be stored in any form 
of a machine readable medium . A memory or a magnetic or 
optical storage such as a disc may be the machine readable 
medium to store information transmitted via optical or 
electrical wave modulated or otherwise generated to trans 
mit such information . When an electrical carrier wave 
indicating or carrying the code or design is transmitted , to 
the extent that copying , buffering , or re - transmission of the 
electrical signal is performed , a new copy is made . Thus , a 
communication provider or a network provider may store on 
a tangible , machine - readable medium , at least temporarily , 
an article , such as information encoded into a carrier wave , 
embodying techniques of embodiments of the present dis 
closure . 
[ 0144 ] A module as used herein refers to any combination 
of hardware , software , and / or firmware . As an example , a 
module includes hardware , such as a micro - controller , asso 
ciated with a non - transitory medium to store code adapted to 
be executed by the micro - controller . Therefore , reference to 
a module , in one embodiment , refers to the hardware , which 
is specifically configured to recognize and / or execute the 
code to be held on a non - transitory medium . Furthermore , in 
another embodiment , use of a module refers to the non 
transitory medium including the code , which is specifically 
adapted to be executed by the microcontroller to perform 
predetermined operations . And as can be inferred , in yet 
another embodiment , the term module ( in this example ) may 
refer to the combination of the microcontroller and the 
non - transitory medium . Often module boundaries that are 
illustrated as separate commonly vary and potentially over 
lap . For example , a first and a second module may share 
hardware , software , firmware , or a combination thereof , 
while potentially retaining some independent hardware , 
software , or firmware . In one embodiment , use of the term 
logic includes hardware , such as transistors , registers , or 
other hardware , such as programmable logic devices . 
[ 0145 ] Use of the phrase " configured to , ' in one embodi 
ment , refers to arranging , putting together , manufacturing , 
offering to sell , importing and / or designing an apparatus , 
hardware , logic , or element to perform a designated or 
determined task . In this example , an apparatus or element 
thereof that is not operating is still “ configured to perform 
a designated task if it is designed , coupled , and / or intercon 
nected to perform said designated task . As a purely illustra 
tive example , a logic gate may provide a 0 or a 1 during 
operation . But a logic gate “ configured to provide an enable 
signal to a clock does not include every potential logic gate 
that may provide a 1 or 0 . Instead , the logic gate is one 
coupled in some manner that during operation the 1 or 0 
output is to enable the clock . Note once again that use of the 
term ' configured to ' does not require operation , but instead 
focus on the latent state of an apparatus , hardware , and / or 
element , where in the latent state the apparatus , hardware , 
and / or element is designed to perform a particular task when 
the apparatus , hardware , and / or element is operating . 

[ 0146 ] Furthermore , use of the phrases ' to , ' capable of / to , ' 
and or “ operable to , ' in one embodiment , refers to some 
apparatus , logic , hardware , and / or element designed in such 
a way to enable use of the apparatus , logic , hardware , and / or 
element in a specified manner . Note as above that use of to , 
capable to , or operable to , in one embodiment , refers to the 
latent state of an apparatus , logic , hardware , and / or element , 
where the apparatus , logic , hardware , and / or element is not 
operating but is designed in such a manner to enable use of 
an apparatus in a specified manner . 
101471 . A value , as used herein , includes any known rep 
resentation of a number , a state , a logical state , or a binary 
logical state . Often , the use of logic levels , logic values , or 
logical values is also referred to as l ’ s and O ' s , which simply 
represents binary logic states . For example , a 1 refers to a 
high logic level and 0 refers to a low logic level . In one 
embodiment , a storage cell , such as a transistor or flash cell , 
may be capable of holding a single logical value or multiple 
logical values . However , other representations of values in 
computer systems have been used . For example , the decimal 
number ten may also be represented as a binary value of 910 
and a hexadecimal letter A . Therefore , a value includes any 
representation of information capable of being held in a 
computer system . 
[ 0148 ] . Moreover , states may be represented by values or 
portions of values . As an example , a first value , such as a 
logical one , may represent a default or initial state , while a 
second value , such as a logical zero , may represent a 
non - default state . In addition , the terms reset and set , in one 
embodiment , refer to a default and an updated value or state , 
respectively . For example , a default value potentially 
includes a high logical value , i . e . reset , while an updated 
value potentially includes a low logical value , i . e . set . Note 
that any combination of values may be utilized to represent 
any number of states . 
10149 ] The embodiments of methods , hardware , software , 
firmware or code set forth above may be implemented via 
instructions or code stored on a machine - accessible , 
machine readable , computer accessible , or computer read 
able medium which are executable by a processing element . 
A non - transitory machine - accessible / readable medium 
includes any mechanism that provides ( i . e . , stores and / or 
transmits ) information in a form readable by a machine , such 
as a computer or electronic system . For example , a non 
transitory machine - accessible medium includes random - ac 
cess memory ( RAM ) , such as static RAM ( SRAM ) or 
dynamic RAM ( DRAM ) ; ROM ; magnetic or optical storage 
medium ; flash memory devices , electrical storage devices ; 
optical storage devices ; acoustical storage devices ; other 
form of storage devices for holding information received 
from transitory ( propagated ) signals ( e . g . , carrier waves , 
infrared signals , digital signals ) ; etc . , which are to be dis 
tinguished from the non - transitory mediums that may 
receive information there from . 
[ 0150 ] Instructions used to program logic to perform 
embodiments of the disclosure may be stored within a 
memory in the system , such as DRAM , cache , flash 
memory , or other storage . Furthermore , the instructions can 
be distributed via a network or by way of other computer 
readable media . Thus a machine - readable medium may 
include any mechanism for storing or transmitting informa 
tion in a form readable by a machine ( e . g . , a computer ) , but 
is not limited to , floppy diskettes , optical disks , Compact 
Disc , Read - Only Memory ( CD - ROMs ) , and magneto - opti 
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cal disks , Read - Only Memory ( ROMs ) , Random Access 
Memory ( RAM ) , Erasable Programmable Read - Only 
Memory ( EPROM ) , Electrically Erasable Programmable 
Read - Only Memory ( EEPROM ) , magnetic or optical cards , 
flash memory , or a tangible , machine - readable storage used 
in the transmission of information over the Internet via 
electrical , optical , acoustical or other forms of propagated 
signals ( e . g . , carrier waves , infrared signals , digital signals , 
etc . ) . Accordingly , the computer - readable medium includes 
any type of tangible machine - readable medium suitable for 
storing or transmitting electronic instructions or information 
in a form readable by a machine ( e . g . , a computer ) . 
[ 0151 ] Reference throughout this specification to " one 
embodiment ” or “ an embodiment ” means that a particular 
feature , structure , or characteristic described in connection 
with the embodiment is included in at least one embodiment 
of the present disclosure . Thus , the appearances of the 
phrases “ in one embodiment ” or “ in an embodiment " in 
various places throughout this specification are not neces 
sarily all referring to the same embodiment . Furthermore , 
the particular features , structures , or characteristics may be 
combined in any suitable manner in one or more embodi 
ments . 
[ 0152 ] In the foregoing specification , a detailed descrip 
tion has been given with reference to specific exemplary 
embodiments . It will , however , be evident that various 
modifications and changes may be made thereto without 
departing from the broader spirit and scope of the disclosure 
as set forth in the appended claims . The specification and 
drawings are , accordingly , to be regarded in an illustrative 
sense rather than a restrictive sense . Furthermore , the fore 
going use of embodiment and other exemplarily language 
does not necessarily refer to the same embodiment or the 
same example , but may refer to different and distinct 
embodiments , as well as potentially the same embodiment . 

1 . A processing system comprising : 
a processing core ; and 
a hardware accelerator for performing an AES crypto 

graphic operation , the hardware accelerator communi 
catively coupled to the processing core , the hardware 
accelerator comprising : 
a random number generator to generate a byte order 

indicator ; and 
a first switching module communicatively coupled to 

the random number generator , the first switching 
module to : 
receive an input byte sequence in an encryption 

round of the cryptographic operation ; and 
feed a portion of the input byte sequence to one of a 

first substitute box ( S - box ) module or a second 
S - box module based on the byte order indicator 
value generated by the random number generator . 

2 . The processing system of claim 1 , wherein the first 
switching module is to feed a remaining portion of the input 
byte sequence to one of the first S - box module or the second 
S - box module based on the byte order indicator value 
generated by the random number generator . 

3 . The processing system of claim 1 , wherein the first 
S - box module is associated with a GF ( 24 ) 2 composite 
Galois - field defined by characteristic polynomials calculated 
to minimize implementation area of the hardware accelera 
tor and one of minimize or maximize a power consumption 
profile of the hardware accelerator . 

4 . The processing system of claim 1 , wherein the second 
S - box module is associated with a GF ( 24 ) 2 composite 
Galois - field defined by characteristic polynomials calculated 
to minimize implementation area of the hardware accelera 
tor and one of minimize or maximize a power consumption 
profile of the hardware accelerator . 

5 . The processing system of claim 1 , further comprising : 
a second switching module coupled to the first S - box 
module to restore an original order of data bytes in a 
output byte sequence of the first S - box module ; and 

a mapping module coupled to the second switching mod 
ule to restore data in the output byte sequence to a 
common composite field representation . 

6 . The processing system of claim 1 , further comprising : 
a second switching module coupled to the second S - box 
module to restore original order of data bytes in a 
output byte sequence of the second S - box module ; and 

a mapping module coupled to the second switching mod 
ule to restore data in the output byte sequence to a 
common composite field representation . 

7 . The processing system of claim 1 , wherein in a last 
round of encryption rounds of the AES cryptographic opera 
tion , the random value indicator generator is to feed random 
data to a mix columns module and at least one of the first 
S - box module or the second S - box module . 

8 . A system comprising : 
a memory ; and 
a processor , communicatively coupled to the memory , 

comprising : 
a processing core ; and 
a hardware accelerator for performing an AES crypto 

graphic operation , the hardware accelerator commu 
nicatively coupled to the processing core , the hard 
ware accelerator comprising : 
a random number generator to generate a byte order 

indicator ; and 
a first switching module communicatively coupled to 

the random number generator , the first switching 
module to : 
receive an input byte sequence in an encryption 

round of the cryptographic operation ; and 
feed a portion of the input byte sequence to one of 

a first substitute box ( S - box ) module or a sec 
ond S - box module based on the byte order 
indicator value generated by the random num 
ber generator . 

9 . The system of claim 8 , wherein the first switching 
module is to feed a remaining portion of the input byte 
sequence to one of the first S - box module or the second 
S - box module based on the byte order indicator value 
generated by the random number generator . 

10 . The system of claim 8 , wherein the one of the first 
S - box module or the second S - box module is associated with 
a GF ( 24 ) 2 composite Galois - field defined by characteristic 
polynomials calculated to minimize implementation area of 
the hardware accelerator and one of minimize or maximize 
a power consumption profile of the hardware accelerator . 

11 . The system of claim 8 , further comprising : 
a second switching module coupled to the first S - box 
module to restore an original order of data bytes in an 
output byte sequence of the first S - box module ; and 

a mapping module coupled to the second switching mod 
ule to restore data in the output byte sequence to a 
common composite field representation . 
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12 . The system of claim 8 , further comprising : 
a second switching module coupled to the second S - box 
module to restore original order of data bytes in an 
output byte sequence of the second S - box module ; and 

a mapping module coupled to the second switching mod 
ule to restore data in the output byte sequence to a 
common composite field representation . 

13 . The system of claim 8 , wherein in a last round of 
encryption rounds of the AES cryptographic operation , the 
random value indicator generator is to feed random data to 
a mix columns module and at least one of the first S - box 
module or the second S - box module . 

14 . A method comprising : 
generating , by a random number generator of a processor , 

a byte order indicator associated with a cryptographic 
operation ; 

receiving , by a hardware accelerator of the processor , an 
input byte sequence in an encryption round of the 
cryptographic operation ; and 

feeding , by a switching module of the hardware accel 
erator , a first portion of the input byte sequence to one 
of a first substitute box ( S - box ) module or a second 
S - box module based on the byte order indicator value 
generated by the random number generator , to execute 
the encryption round of the cryptographic operation . 

15 . The method of claim 14 , further comprising feeding a 
remaining portion of the input byte sequence to one of the 

first S - box module or the second S - box module based on the 
byte order indicator value generated by the random number 
generator . 

16 . The method of claim 14 , further comprising associ 
ating the first S - box module with a GF ( 24 ) 2 composite 
Galois - field defined by characteristic polynomials calculated 
to minimize implementation area of the hardware accelera 
tor . 

17 . The method of claim 14 , further comprising associ 
ating the second S - box module with a GF ( 24 ) composite 
Galois - field defined by characteristic polynomials calculated 
to minimize implementation area of the hardware accelera 
tor . 

18 . The method of claim 14 , further comprising : 
restoring , using a second switching module , an original 

order of data bytes in an output byte sequence of the 
first S - box module ; and 

restoring , using a mapping module , the output byte 
sequence to a common composite field representation . 

19 . The method of claim 14 , further comprising : 
restoring , using a second switching module , an original 

order of data bytes in an output byte sequence of the 
second S - box module ; and 

restoring , using a mapping module , the output byte 
sequence to a common composite field representation . 

20 . The method of claim 14 , further comprising feeding 
random data to a mix columns module and at least one of the 
first S - box module or the second S - box module in a last 
round of encryption rounds of the cryptographic operation . 


