
IND IN
US 20190332300A1

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2019/0332300 A1

Singh (43) Pub . Date : Oct. 31 , 2019

(54) DEDUPLICATION USING FINGERPRINT
TRIES

(71) Applicant : EMC IP Holding Company LLC ,
Hopkinton , MA (US)

(72) Inventor : Sweetesh Singh , Westborough , MA
(US)

(73) Assignee : EMC IP Holding Company LLC ,
Hopkinton , MA (US)

(52) U.S. CI .
CPC GO6F 370641 (2013.01) ; G06F 37067

(2013.01) ; G06F 17/3033 (2013.01) ; GO6F
17/30327 (2013.01)

(57) ABSTRACT
A fingerprint trie is used to store fingerprints for data
portions stored on a storage system for use in implementing
data deduplication on a storage system . The fingerprint trie
may be used to compare fingerprint values to determine
duplicate data portions , for example , in response to I / O
operations . Leaf nodes of the fingerprint trie may be keyed
by fingerprints , and a value of each leaf node may be a
reference to the physical storage location of the data portion
from which the fingerprint was generated . When an I / O
operation is received , a fingerprint may be generated for
each of one or more data portions included in the I / O
operation . A fingerprint trie may be searched , for example by
traversing multiple nodes of the trie according to pointers
provided by the nodes , to determine whether there is any
matching fingerprint specified in the fingerprint trie .

(21) Appl . No .: 15 / 966,138

(22) Filed : Apr. 30 , 2018

Publication Classification

(51) Int . Ci .
G06F 3/06
G06F 1730

(2006.01)
(2006.01)

400 402 Generate fingerprint

404 Search fingerprint trie to determine if any matching fingerprint

406 Yes Fingerprint match
?
No

408 Store data portion at physical address of storage system

410 Modify fingerprint trie

412

Store a reference to the physical address of data portion in physical
address reference table entry for fingerprint

416

Copy physical address reference stored at leaf node of matched fingerprint
418

Store copied physical address reference in physical address reference table entry for searched fingerprint

End

10

12

Data Storage System

Patent Application Publication

18

2 Oct. 31 , 2019 Sheet 1 of 12

14a

14n

14b

Host - 1

Host - 2

Host - n

FIG . 1

US 2019/0332300 A1

12

20n

20a

Patent Application Publication

24a

24b

24n
...

24 volumes 40 RA (Remote
Adapter)

23a

23b

23n .

Disk adapter

Disk adapter

Disk adapter

30

Oct. 31 , 2019 Sheet 2 of 12

25a

25b

26

Other

Global memory

30 .

21a

21b

21n

Host adapter

Host adapter

Host adapter

Host connections 31

FIG . 2A

US 2019/0332300 A1

20a

Memory 26

Patent Application Publication

37a

37b

37n

CM 38 FIG . 2B

Oct. 31 , 2019 Sheet 3 of 12

300

302

304

Data portion 1 Physical address reference 1 Data portion 2 Physical address reference 2

306

Data portion n

Physical address reference n

US 2019/0332300 A1

FIG . 3

400

402

Generate fingerprint

404

Search fingerprint trie to determine if any matching fingerprint

Patent Application Publication

406

Yes

Fingerprint match ? No

408

Store data portion at physical address of storage system

410

Modify fingerprint trie

412

Store a reference to the physical address of data portion in physical

address reference table entry for fingerprint

Oct. 31 , 2019 Sheet 4 of 12

416

Copy physical address reference stored at leaf node of matched fingerprint

418

Store copied physical address reference in physical address reference table entry for searched fingerprint End

US 2019/0332300 A1

FIG . 4

502

Initialize current node to root node

500

504

Initialize byte count = 0

Patent Application Publication

506

508

No

Does an active pointer of the current node match the next one or more bytes of the fingerprint

No match determined

510

Change current node to the node pointed - to by the matching pointer

512

Increment byte count by number of the one or more bytes matched

Oct. 31 , 2019 Sheet 5 of 12

514

No

Byte count = fingerprint length ?
Yes

516

Current node is leaf node ; Match determined End

US 2019/0332300 A1

FIG . 5

Root 601

600

603

Patent Application Publication

?

600

A 602

607
B

Root 601

AB 606

619

?

Null

Oct. 31 , 2019 Sheet 6 of 12

ABC 612

FIG . 6A

617

Null
FIG . 6B

US 2019/0332300 A1

600

Root 601

600

603

Root 601

605

Patent Application Publication

603

A

A

?

?

607

602

C 604

607

602

B

609

B

AB 606

611

619

AB 606

CC 608

611

?

619

613

?

Oct. 31 , 2019 Sheet 7 of 12

B

A

ABB 610

ABC 612

CCA

ABB 610

ABC 612

614

617

615
Null

Null

617

617

615
Null

Null

Null

FIG . 6C

FIG . 6D

US 2019/0332300 A1

601

600

621

600

602

637

ABC

Patent Application Publication

603

601

621

651 623

A B C

637

607

A B C ? ? ?

606

625

Null

627

A | B | C

619

Oct. 31 , 2019 Sheet 8 of 12

612

FIG . ZA

PAR

629

?? ? ?

631

Null

US 2019/0332300 A1

FIG . ZB

601

600

601

600

621

621

602

637

Patent Application Publication

A B C

602

637

ABC

603

639

604

603

651

641

651

643

623

A B | C

A | B | C

608

623

ABC

607

609

607

606

606

625

645

625

627

ABC

647

619

A | B | C

627

A | B | C

619

614
613 /

610

611

Oct. 31 , 2019 Sheet 9 of 12

612

610

611

612

633

649

PAR

PAR

629

PAR

633

PAR

PAR

629

635

A | B | C

631

651

A B

C

A | B | C

635

A | B | C

A | B | C

631

Null

Null

Null

Null

Null
FIG . 7C

US 2019/0332300 A1

FIG . 7D

800

Root 802

800

Root 802

801

ABC

Patent Application Publication

Null

ABC 804

FIG . 8A

FIG . 8B

800

Root 802

Root 802

813

803

800

803

AB

Oct. 31 , 2019 Sheet 10 of 12

AB

CCA

AB 806

805

AB 806

CCA 812

805

807

807

B

B

C

ABC

ABB 808

ABC 808

ABB 810

810

809

811

809

811

Null

Null

Null

Null

US 2019/0332300 A1

FIG . 8C

FIG . 8D

800

800

802
821

802
821

823

823

A B | C

801

ABC | B | C

Patent Application Publication

804
825

Null

PAR

827

A B C

FIG . 9A

Null FIG . 9B

802
821

800

802

823

821

803

AB BC

800

823

Oct. 31 , 2019 Sheet 11 of 12

ABB CCA

806
829

813

806

803

812

831

829

A | B | C

PAR

841

807

810

805

808

843

ABC
831

805

A | B | C

807

833

837

PAR

808

PAR

810

833

835

Null

839

A | B | C

?] ? | ?

PAR

PAR

835

ABC

?) B | C

839

837

Null

Null

US 2019/0332300 A1

Null

FIG . 9C

Null
FIG . 9D

1000

Yes

1002

Does the next one or more bytes of the

No

fingerprint match a beginning portion of any active pointers
of the current node

1004

Create new internal node for the matching beginning portion

?

Patent Application Publication

1006

1022

Change the index value of portion - matching pointer field
in current node to matching beginning portion

1008

Create a new leaf node for the remainder of the fingerprint

1024

Change the pointer value of the portion - matching matching
pointer field to point to the new internal node

Store physical address reference of fingerprint in new leaf node

1010

Create a first new leaf node for the remaining non - matching

portion of the former node pointer

Update pointer field with index value consisting of the remainder of the fingerprint value and pointer value

Copy the physical address reference from the from
the dead node to the first new leaf node

1026

Oct. 31 , 2019 Sheet 12 of 12

1012

Delete the dead node

1014
Create a second new leaf node for the remaining non - matching

portion of the fingerprint

1016
1018

Store the physical address reference for the data portion
from which the fingerprint was generated to the second new leaf node

1020

Activate pointers in the new internal node to the first new leaf node

and the second new leaf node

End

US 2019/0332300 A1

FIG . 10

US 2019/0332300 A1 Oct. 31 , 2019

DEDUPLICATION USING FINGERPRINT
TRIES

BACKGROUND

Technical Field

[0001] This application generally relates to data storage
and more particularly to techniques used in connection with
data deduplication .

Description of Related Art
[0002] Data duplication or “ dedupe ” reduces the amount
of data stored in a data storage system by determining
identical (or presumably identical) portions of data stored , or
intended to be stored , in the data storage system , and only
storing a single instance of the data portion " to disk ” i.e. ,
persisting in non - volatile memory , e.g. , tape , disk or solid
state , of the data storage system . In post - process deduplica
tion , these identical data portions are determined after the
data is stored to disk . In in - line deduplication , these identical
portions are determined before the data including the iden
tical portion is stored to disk .
[0003] To determine identical data portions , digital finger
prints (hereinafter “ fingerprints ”) of data portions are gen
erated and compared to previously generated fingerprints . A
fingerprint serves as an identifier of data having a fixed size
that is less than the size of the data itself , desirably much less
in size . A fingerprint may be generated by applying a hash
function to data , for example , Message Digest 5 (MD5) ,
Secure Hash Algorithm 1 (SHA - 1) , SHA - 2 or SHA - 256 ,
etc. , to produce a hash value or digest of the data . Finger
prints may be stored in an entry of a hash table , for example ,
in volatile memory of the data storage system , along with an
indication of the location at which the actual data is stored
within the data storage system , e.g. , on disk . Each new hash
value generated for an I / O (e.g. , write) operation may be
compared to hash table entries to determine whether there is
a match , in which case , rather than storing the data from
which the hash value was generated to disk , a reference (e.g. ,
pointer) to the hash entry in the hash table or the physical
storage location of the data portion represented by the hash
entry may be maintained , for example , in a physical address
reference table .
[0004] In some systems , a hash table in which linked - lists
are employed may be used . In such systems , the hash table
may be configured to have a predefined number of entries
less than the number of potential unique fingerprint values
for a given storage system . In such systems , a mathematical
function (e.g. , a Murmur function) may be used to translate
every hash value into a value (e.g. , an integer) corresponding
to an entry of the table , where the mathematical function
may translate / map multiple hash values to a same hash table
entry value . For such systems , for entries to which multiple
hashes map / translate , a linked list of fingerprints may be
maintained , where each linked item in the linked list speci
fies a fingerprint , a physical storage location (or an indirect
reference thereto) of the data portion corresponding to the
fingerprint and a link to a next linked item in the linked list ,
if any . Further , in some systems , a contiguous amount of
memory may be reserved for the hash table ; i.e. , enough to
accommodate the number of entries of the hash table , but not
necessarily the linked items for each entry . Given the
capacity of some of today's storage systems ; i.e. , on the

order of petabytes (PB ; 1015 bytes) , in some cases the size
of a hash table , and thus the contiguous memory space to
accommodate the hash table , can be substantial . For
example , for a terabyte (TB ; 1012 bytes) of storage capacity ,
it may be desirable (depending on the granularity of the data
portions being deduplicated) to have a hash table on the
order of 4 gigabytes (GB) , which , depending in part on the
entropy of the data being deduplicated , could result in the
linked list of a single entry being several megabytes or even
gigabytes in size . Even though a large amount of memory
may be reserved for a hash table , much of this memory space
may go unused if fingerprints are not generated for many
entries , for example , if the entropy of the data which it is
being used is low and / or a relatively low amount of the
storage capacity of the storage system is used .
(0005] In such systems , to perform deduplication on a
current data portion , a fingerprint is generated for the data
portion , and then a mathematical function is applied to the
fingerprint to map it to a hash table entry . If there are any
other fingerprints already stored for the entry (e.g. , one , or
a linked list) , then the generated fingerprint is compared to
each fingerprint at the entry . If there is a match , a reference
to the physical storage location of the data portion corre
sponding to the matched entry is recorded in the physical
table address entry for the current data portion . If no
fingerprint of the hash table entry matches , a new link item
is added to the linked list for the generated fingerprint of the
current data portion . If there are no other fingerprints already
stored for the entry , then the fingerprint generated for the
current data portion becomes the first item stored in the
entry . Thus , performing deduplication for a data portion can
be computationally expensive , involving at least : generating
a fingerprint , applying a mathematical function to map the
fingerprint to a hash table entry , potentially traversing mul
tiple linked items for a single hash table entry , and compar
ing fingerprint values to fingerprint values of each item (if
any) of a linked list of a hash table entry . Moreover , the
computation resources consumed depends on the number of
fingerprints stored in the hash table ; e.g. , the number of
linked items in each linked list of a hash table entry . Further ,
as described above , significant amounts of memory may
need to be reserved and / or used to implement a hash table
with liked lists , and much of this reserved memory may not
be used , which is an inefficient use of memory resources .
[0006] It may be desirable when using fingerprints to
implement data deduplication on a data storage system to
reduce an amount of memory consumed and potentially
unused , to reduce the amount of computational resources
consumed , and to make computation resources consumed
less dependent on the number of fingerprints currently stored
in memory .

SUMMARY OF THE INVENTION

[0007] In some embodiments of the invention , a method of
performing deduplication on a first data portion of an I / O
operation for a storage system is performed . The method
includes generating a first fingerprint of the first data portion ,
and searching a fingerprint trie generated from a plurality of
fingerprints generated from a plurality of data portions to
determine whether the first data portion is a duplicate of one
of the plurality of data portions . The fingerprint trie may be
a compressed fingerprint trie . The fingerprint trie may have
a root node , and the first fingerprint may have a predefined
number of bytes , where searching the fingerprint trie

US 2019/0332300 A1 Oct. 31 , 2019
2

includes determining whether the root node references a first
node of the fingerprint trie representing a string of one or
more characters matching one or more characters repre
sented by one or more bytes of the predefined number of
bytes of the first fingerprint . The method may further
include , if it is determined that the root node references the
first node , determining whether the first node references a
second node of the fingerprint trie representing a string of
one or more characters matching one or more characters
represented by one or more bytes of the predefined number
of bytes of the first fingerprint succeeding the first string . It
may be determined that the first data portion is not a
duplicate of the one or the plurality of data portions if it is
determined that there is not a first node of the fingerprint trie
representing a string of one or more characters matching one
or more characters represented by one or more bytes of the
predefined number of bytes of the first fingerprint . The
method may further include , if it determined by searching
the fingerprint trie that the first data portion is not a duplicate
of the one or the plurality of data portions , modifying the
fingerprint trie to include a representation of the first fin
gerprint . The method may further include , if it determined
by searching the fingerprint trie that the first data is a
duplicate of the one or the plurality of data portions , copying
a physical storage address reference from a node of the
fingerprint trie corresponding to the determined duplicate ,
and storing the physical storage address reference in an entry
of a physical address reference table corresponding to the
first data portion .
[0008] In some embod its , a system for performing
deduplication on a first data portion of an I / O operation , the
system including one or more processors and a memory
including code stored thereon that , when executed , performs
a method including generating a first fingerprint of the first
data portion and searching a fingerprint trie generated from
a plurality of fingerprints generated from a plurality of data
portions to determine whether the first data portion is a
duplicate of one of the plurality of data portions . The
fingerprint trie may be a compressed fingerprint trie . The
fingerprint trie may have a root node , and the first fingerprint
may have a predefined number of bytes , where searching the
fingerprint trie includes determining whether the root node
references a first node of the fingerprint trie representing a
string of one or more characters matching one or more
characters represented by one or more bytes of the pre
defined number of bytes of the first fingerprint . The method
may further include , if it is determined that the root node
references the first node , determining whether the first node
references a second node of the fingerprint trie representing
a string of one or more characters matching one or more
characters represented by one or more bytes of the pre
defined number of bytes of the first fingerprint succeeding
the first string . It may be determined that the first data
portion is not a duplicate of the one or the plurality of data
portions if it is determined that there is not a first node of the
fingerprint trie representing a string of one or more charac
ters matching one or more characters represented by one or
more bytes of the predefined number of bytes of the first
fingerprint . The method may further include , if it determined
by searching the fingerprint trie that the first data portion is
not a duplicate of the one or the plurality of data portions ,
modifying the fingerprint trie to include a representation of
the first fingerprint . The method may further include , if it
determined by searching the fingerprint trie that the first data

is a duplicate of the one or the plurality of data portions ,
copying a physical storage address reference from a node of
the fingerprint trie corresponding to the determined dupli
cate , and storing the physical storage address reference in an
entry of a physical address reference table corresponding to
the first data portion .
[0009] In some embodiments , a non - transitory computer
readable medium having software stored thereon for per
forming deduplication on a first data portion of an I / O
operation may be provided . The software includes execut
able code that generates a first fingerprint of the first data
portion , and executable code that searches a fingerprint trie
generated from a plurality of fingerprints generated from a
plurality of data portions to determine whether the first data
portion is a duplicate of one of the plurality of data portions .
The fingerprint trie may be a compressed fingerprint trie .
The fingerprint trie may have a root node , and the first
fingerprint may a predefined number of bytes , and where the
executable code that searches the fingerprint trie included
executable code that determines whether the root node
references a first node of the fingerprint trie representing a
string of one or more characters matching one or more
characters represented by one or more bytes of the pre
defined number of bytes of the first fingerprint . The software
may further include executable code that , if it is determined
that the root node references the first node , determines
whether the first node reference a second node of the
fingerprint trie representing a string of one or more charac
ters matching one or more characters represented by one or
more bytes of the predefined number of bytes of the first
fingerprint succeeding the first string . The software may
further include executable code that , if it determined by
searching the fingerprint trie that the first data portion is not
a duplicate of the one or the plurality of data portions ,
modifies the fingerprint trie to include a representation of the
first fingerprint . The software may further include execut
able code that , if it determined by searching the fingerprint
trie that the first data is a duplicate of the one or the plurality
of data portions , copies a physical storage address reference
from a node of the fingerprint trie corresponding to the
determined duplicate and stores the physical storage address
reference in an entry of a physical address reference table
corresponding to the first data portion .

BRIEF DESCRIPTION OF THE DRAWINGS
[0010] Features and advantages of the present invention
will become more apparent from the following detailed
description of illustrative embodiments thereof taken in
conjunction with the accompanying drawings in which :
[0011] FIG . 1 is a block diagram illustrating an example of
a system according to embodiments of the invention ;
[0012] FIG . 2A is a block diagram illustrating an example
of a data storage system according to embodiments of the
invention ;
[0013] FIG . 2B is a block diagram illustrating an example
of logical internal communications between directors and
memory of the data storage system of FIG . 2A according to
embodiments of the invention ;
[0014] FIG . 3 is a block diagram illustrating an example of
a physical address reference table according to embodiments
of the invention ;
[0015] FIG . 4 is a flowchart illustrating an example of a
method of using a fingerprint trie to perform aspects of data
deduplication according to embodiments of the invention ;

US 2019/0332300 A1 Oct. 31 , 2019
3

be

[0016] FIG . 5 is a flowchart illustrating an example of a
method of searching a fingerprint trie to determine whether
there is a fingerprint match according to embodiments of the
invention ;
[0017] FIGS . 6A - 6D illustrate an example of a standard
fingerprint trie , according to embodiments of the invention ;
[0018] FIGS . 7A - 7D illustrate a more detailed example of
a standard fingerprint trie , according to embodiments of the
invention ;
[0019] FIGS . 8A - 8D illustrate an example of a com
pressed fingerprint trie , according to embodiments of the
invention ;
[0020] FIGS . 9A - 9D illustrate a more detailed example of
a compressed fingerprint trie , according to embodiments of
the invention ; and
[0021] FIG . 10 is a flowchart illustrating an example of a
method of modifying a compressed fingerprint trie in
response to determining a fingerprint match , according to
embodiments of the invention .

DETAILED DESCRIPTION OF EMBODIMENTS

[0022] Described herein is a system and techniques in
which a trie , for example , a standard trie or a compressed trie
like a radix trie , suffix trie , HAT - trie or the like , are used to
store fingerprints for data portions stored on a storage
system for use in implementing data deduplication on a
storage system . Such a trie of fingerprints (i.e. , a “ fingerprint
trie ”) may be used to compare fingerprint values to deter
mine duplicate data portions , for example , in response to I / O
(e.g. , write) operations . As will become clear from the more
detailed description herein , using a fingerprint trie , in par
ticular a compressed trie (e.g. , a radix trie of fingerprints) ,
instead of a hash table of fingerprints may reduce an amount
of memory required to store fingerprints (e.g. , in local
memory of a director) , reduce an amount of computational
resources consumed in determining matching fingerprints in
performing data deduplication , resulting in faster times in
determining fingerprint matches , and make the amount of
computation resources consumed dependent more on a size
of the fingerprints searched , as opposed the number of
fingerprints stored in memory .
[0023] Tries , including compressed tries , are a known type
of data structure . In some embodiments of the invention , a
non - compressed trie (i.e. , a standard trie) may be used to
store and search fingerprints , referred to herein as a standard
fingerprint trie , and in some embodiments a compressed trie
may be used , referred to herein as a compressed fingerprint
trie . Although the example of a radix trie is used to illustrate
compressed - trie embodiments of the invention , the inven
tion is not so limited , as other types of compressed tries
already known or later developed may be used such as , for
example , a suffix trie , HAT - trie , adapted radix trie , other type
of compressed trie , or any suitable combination of the
foregoing , and are intended to fall within the scope of the
invention . Fingerprint tries are described in more detail
elsewhere herein .
[0024] In some embodiments of the invention , leaf nodes
of the fingerprint trie are keyed by fingerprints , and a value
of each leaf node is a reference to the physical storage
location of the data portion from which the fingerprint was
generated . This reference could be a reference to another
data structure , for example , an entry in a physical storage
address table , or the physical storage address itself (e.g. , the
logical block address (LBA)) on disk . The value of other

nodes in the fingerprint trie , i.e. , the root node and internal
nodes , may be set to null or an empty string .
[0025] When an I / O operation , for example , a write opera
tion originating from a host , is received , a fingerprint may
generated for each of one or more data portions included in
the I / O operation . A fingerprint trie may be searched , for
example by traversing multiple nodes of the trie according
to pointers provided by the nodes , to determine whether
there is any matching fingerprint specified in the fingerprint
trie . If a matching fingerprint is found in the fingerprint trie ,
an entry in a physical address reference table for the data
portion from which the fingerprint being searched was
generated may be updated to reference a storage location
specified at a node in the fingerprint trie for the matching
fingerprint , and the fingerprint trie may remain unchanged .
If it is determined that there is no matching fingerprint in the
fingerprint trie for a current generated fingerprint , the fin
gerprint trie may be modified , for example , by creating at
least one new leaf node and modifying one or more existing
nodes , as described in more detail elsewhere herein .
[0026] In some embodiments , a maximum number of
nodes in the fingerprint trie that need to be accessed to
determine a match is equal to a number of bytes (e.g. , 20) in
the fingerprint being searched , which may be a predefined ,
plus one for the root node , which needs to be accessed for
all searches .
[0027] In some embodiments , logic may be provided (e.g. ,
as part of a rule engine) that determines what data structure
(e.g. , a hash table or a trie) to employ for storing and
searching search fingerprints to implement deduplication on
a storage system . Such logic may factor the amount or
anticipated amount of data to be stored , the entropy or
anticipated entropy of the data , the number and / or frequency
of actual or anticipated data reads , writes , searches , updates ,
additions and deletions , the granularity of deduplication to
be performed , the compute , network and storage capacities
of the system , the desired and / or required (e.g. , based on
service level objectives and the like) performance , etc.
Further , the system may be configured to select fingerprint
data structures based on historical data ; i.e. , what type of
data structure was selected in the past based on a set of
factors like those listed above , for example , by employing
machine learning techniques . That is , a system may be
configured with a machine learning model to train itself on
historical fingerprint data , including data structure choices ,
and make predictions for an optimal data structure choice ,
for example , based on one or more desired performance
metrics (e.g. speed , reliability , etc.) .
[0028] Referring now to FIG . 1 , shown is an example of
an embodiment of a system 10 according to some embodi
ments of the invention . The system 10 includes a data
storage system 12 connected to host systems 14a - 14n
through communication medium 18. In this embodiment of
the system 10 , the N hosts 14a - 14n may access the data
storage system 12 , for example , in performing input / output
(I / O) operations or data requests . The communication
medium 18 may be any one or more of a variety of networks
or other type of communication connections as known to
those skilled in the art . The communication medium 18 may
be a network connection , bus , and / or other type of data link ,
such as a hardwire or other connections known in the art . For
example , the communication medium 18 may be the Inter
net , an intranet , network or other wireless or other hardwired
connection (s) by which the host systems 14a - 14n may

US 2019/0332300 A1 Oct. 31 , 2019
4

may be

access and communicate with the data storage system 12 ,
and may also communicate with others included in the
system 10 .
[0029] Each of the host systems 14a - 14n and the data
storage system 12 included in the system 10 may be con
nected to the communication medium 18 by any one of a
variety of connections as may be provided and supported in
accordance with the type of communication medium 18. The
processors included in the host computer systems 14a - 14n

any one of a variety of proprietary or commercially
available single or multi - processor system , such as an Intel
based processor , or other type of commercially available
processor able to support traffic in accordance with each
particular embodiment and application .
[0030] It should be appreciated that the particulars of the
hardware and software included in each of the components
that may be included in the data storage system 12 are
described herein in more detail , and may vary with each
particular embodiment . Each of the host computers 14a - 14n
and data storage system may all be located at the same
physical site , or , alternatively , may also be located in dif
ferent physical locations . Communication media that may be
used to provide the different types of connections between
the host computer systems and the data storage system of the
system 10 may use a variety of different communication
protocols such as SCSI , ESCON , Fibre Channel , iSCSI , or
GIGE (Gigabit Ethernet) , and the like . Some or all of the
connections by which the hosts and data storage system 12
may be connected to the communication medium 18 may
pass through other communication devices , such as switch
ing equipment , a phone line , a repeater , a multiplexer or
even a satellite .
[0031] Each of the host computer systems may perform
different types of data operations in accordance with differ
ent tasks and applications executing on the hosts . In the
embodiment of FIG . 1 , any one of the host computers
14a - 14n may issue a data request to the data storage system
12 to perform a data operation . For example , an application
executing on one of the host computers 14a - 14n may
perform a read or write eration resulting in one
data requests to the data storage system 12 .
[0032] Referring now to FIG . 2A , shown is an example of
an embodiment of the data storage system 12 that may be
included in the system 10 of FIG . 1. Included in the data
storage system 12 of FIG . 2A are one or more data storage
systems 20a - 20n as may be manufactured by one or more
different vendors . Each of the data storage systems 20a - 20n
may be inter - connected (not shown) . Additionally , the data
storage systems may also be connected to the host systems
through any one or more communication connections 31 that
may vary with each particular embodiment and device in
accordance with the different protocols used in a particular
embodiment . The type of communication connection used
may vary with certain system parameters and requirements ,
such as those related to bandwidth and throughput required
in accordance with a rate of I / O requests as may be issued
by the host computer systems , for example , to the data
storage system 12. In this example , as described in more
detail in following paragraphs , reference is made to the more
detailed view of element 20a . It should be noted that a
similar more detailed description also may apply to any one
or more of the other elements , such as 20n , but have been
omitted for simplicity of explanation . It should also be noted
that an embodiment may include data storage systems from

one or more vendors . Each of 20a - 20n may be resources
included in an embodiment of the system 10 of FIG . 1 to
provide storage services to , for example , host computer
systems .
[0033] Each of the data storage systems , such as 20a , may
include a plurality of data storage devices (e.g. , physical
non - volatile storage devices) , such as disk devices or vol
umes , for example , in an arrangement 24 consisting of n
rows of disks or volumes 24a - 24n . In this arrangement , each
row of disks or volumes may be connected to a disk adapter
(“ DA ”) or director responsible for the backend management
of operations to and from a portion of the disks or volumes
24. In the system 20a , a single DA , such as 23a , may be
responsible for the management of a row of disks or vol
umes , such as row 24a . System 20a also may include a
fabric that enables any of disk adapters 23a - 23n to access
any of disks or volumes 24-24N , in which one or more
technologies and / or protocols (e.g. , NVMe or NVMe - oF)
may be employed to communicate and transfer data between
the DAs and the disks or volumes . The system 20a may also
include one or more host adapters (“ HAs ”) or directors
21a - 21n . Each of these HAs may be used to manage
communications and data operations between one or more
host systems and the global memory . In an embodiment , the
HA may be a Fibre Channel Adapter or other type of adapter
which facilitates host communication .
[0034] Also shown in the storage system 20a is an RA or
remote adapter 40. The RA may be hardware including a
processor used to facilitate communication between data
storage systems , such as between two of the same or
different types of data storage systems .
[0035] One or more internal logical communication paths
may exist between the DAs , the RAs , the HAs , and the
memory 26. An embodiment , for example , may use one or
more internal busses and / or communication modules . For
example , the global memory portion 25b may be used to
facilitate data transfers and other communications between
the DAs , HAs and RAs in a data storage system . In one
embodiment , the DAs 23a - 23n may perform data operations
using a cache that may be included in the global memory
25b , for example , in communications with other disk adapt
ers or directors , and other components of the system 20a .
The other portion 25a is that portion of memory that may be
used in connection with other designations that may vary in
accordance with each embodiment .
[0036] It should be generally noted that the elements
24a - 24n denoting data storage devices may suitable
storage device such as a rotating disk drive , flash - based
storage , and the like . The particular data storage system as
described in this embodiment , or a particular device thereof ,
such as a rotating disk or solid - state storage device (SSD ;
e.g. , a flash - based storage device) , should not be construed
as a limitation . Other types of commercially available data
storage systems , as well as processors and hardware con
trolling access to these particular devices , may also be
included in an embodiment .
[0037] In at least one embodiment , write data received at
the data storage system from a host or other client may be
initially written to cache memory (e.g. , such as may be
included in the component designated as 25b) and marked as
write pending . Once written to cache , the host may be
notified that the write operation has completed . At a later
point time , the write data may be destaged from cache to the
physical storage device , such as by a DA .

or more

be any

US 2019/0332300 A1 Oct. 31 , 2019
5

[0038] Host systems provide data and access control infor
mation through channels to the storage systems , and the
storage systems may also provide data to the host systems
also through the channels . The host systems do not address
the disk drives of the storage systems directly , but rather
access to data may be provided to one or more host systems
from what the host systems view as a plurality of logical
devices , logical volumes or logical units (LUNS) . The LUNS
may or may not correspond to the actual disk drives . For
example , one or more LUNs may reside on a single physical
disk drive . Data in a single storage system may be accessed
by multiple hosts allowing the hosts to share the data
residing therein . The HAs may be used in connection with
communications between a data storage system and a host
system . The RAs may be used in facilitating communica
tions between two data storage systems . The DAs may be
used in connection with facilitating communications to the
associated disk drive (s) and LUN (s) residing thereon .
[0039] Referring to FIG . 2B , shown is a representation of
the logical internal communications between the directors
and memory included in a data storage system according to
some embodiments of the invention . Included in FIG . 2B is
a plurality of directors 37a - 37n coupled to the memory 26 .
Each of the directors 37a - 37n represents one of the HAS ,
RAs , or DAs that may be included in a data storage system .
In an embodiment disclosed herein , there may be up to
sixteen directors coupled to the memory 26. Other embodi
ments may use a higher or lower maximum number of
directors that may vary . The representation of FIG . 2B also
includes an optional communication module (CM) 38 that
provides an alternative communication path between the
directors 37a - 37n . Each of the directors 37a - 37n may be
coupled to the CM 38 so that any one of the directors
37a - 37n may send a message and / or data to any other one of
the directors 37a - 37n without needing to go through the
memory 26. The CM 38 may be implemented using con
ventional MUX / router technology where a sending one of
the directors 37a - 37n provides an appropriate address to
cause a message and / or data to be received by an intended
receiving one of the directors 37a - 37n . In addition , a send
ing one of the directors 37a - 37n may be able to broadcast a
message to all of the other directors 37a - 37n at the same
time .

[0040] In an embodiment of a data storage system in
accordance with techniques herein , components such as
HAS , DAs , and the like may be implemented using one or
more “ cores ” or processors each having their own memory
used for communication between the different front end and
back end components rather than utilize a global memory
accessible to all storage processors .
[0041] It should be noted that although examples of tech
niques herein may be made with respect to a physical data
storage system and its physical components (e.g. , physical
hardware for each HA , DA , HA port and the like) , tech
niques herein may be performed in a physical data storage
system including one or more emulated or virtualized com
ponents (e.g. , emulated or virtualized ports , emulated or
virtualized DAs or HAS) , and also a virtualized or emulated
data storage system including virtualized or emulated com
ponents .
[0042] In an embodiment in accordance with techniques
herein , the data storage system as described may be char
acterized as having one or more logical mapping layers in
which a logical device of the data storage system is exposed

to the host whereby the logical device is mapped by such
mapping layers of the data storage system to one or more
physical devices . Additionally , the host may also have one or
more additional mapping layers so that , for example , a host
side logical device or volume is mapped to one or more data
storage system logical devices as presented to the host .
[0043] Storage system 12 or one or more components
thereof described in relation to FIGS . 1-2B may be imple
mented using one or more Symmetrix® , VMAX® or
VMAX3® systems (hereinafter referred to generally as
VMAX storage systems) made available from Dell EMC .
[0044] FIG . 3 is a block diagram illustrating an example of
a physical address reference table 300 according to embodi
ments of the invention . Other embodiments of a physical
address reference table , for example , variations of physical
address reference table 300 , are possible and are intended to
fall within the scope of the invention . The physical address
table 300 may be included in one or more of the components
of the storage system 12 , for example , as part of a director
(e.g. , a disk adapter) , e.g. , in local memory of a director , or
in global memory . The physical address table 300 may
include a data portion column 302 , physical address refer
ence column 304 , perhaps other columns (not shown) and a
plurality of entries 306. Each of the entries 306 may specify
an identifier of a data portion (e.g. , defined by one or more
logical mapping layers of the storage system) in the data
portion column 302 and a physical address reference to the
location on a physical storage device (i.e. , disk or SSD
device) in the physical address reference column 304. For
example , the physical address reference may be a logical
block address (LBA) . As described in more detail elsewhere
herein , when it is determined that a data portion of an I / O
operation is a duplicate of another data portion already
stored on the storage system , the physical address reference
specified in the physical address reference field of an entry
in the physical address reference table 300 for the already
stored data portion may be copied to the physical address
reference field in an entry in the physical address reference
table 300 for the data portion of the I / O operation .
[0045] FIG . 4 is a flowchart illustrating an example of a
method 400 of using a fingerprint trie to perform aspects of
data deduplication according to embodiments of the inven
tion . Other embodiments of a method of using a fingerprint
trie to perform aspects of data deduplication , for example ,
variations of method 400 , are possible and are intended to
fall within the scope of the invention . Method 400 and / or
portions thereof may be implemented using data storage
system 12 and / or one or more components thereof . Method
400 may be performed in response to receiving an I / O
request (e.g. , a write request) from a host , the I / O request
specifying an I / O operation (e.g. , a write) and data on which
to perform the I / O operation . The data may be partitioned
into a plurality of data portions of predetermined size (e.g. ,
128 KB) depending on the granularity of deduplication to be
performed . The predetermined size may correspond to a
physical or logical construct within the system , for example ,
a size defined for a track on a disk . Other sizes may be used ,
which may correlate or at least take into consideration
logical and physical constructs of the storage system , includ
ing , but not limited to , an extent , a super - extent , sub - extent ,
disk sector , block , object or file . Data deduplication may be
performed on each data portion according to the method
400 .

US 2019/0332300 A1 Oct. 31 , 2019
6

[0046] In a step 402 , a fingerprint may be generated for the
data portion . Any of a variety of known or future developed
techniques may be used to generate a fingerprint , for
example , application of any of a variety of hash functions ,
e.g. , in accordance with one of more standards such as , for
example , MD5 , SHA - 1 , SHA - 2 , SHA - 256 , other encryption
standards or a variation of any other foregoing . Other hash
functions may be used . The size of the resulting fingerprint
can be configured to be any of a variety of sizes based on any
of a variety of factors such as , for example , the size of the
data portion to be fingerprinted , the desired number of
possible fingerprint values , the likelihood of generating the
same fingerprint for different data portions (i.e. , the likeli
hood of generating a false fingerprint match) , compute and
storage resource available and that would be consumed , etc.
In some embodiments , for example , when a data portion size
is 128 KB , the fingerprint size may be configured to be 20
bytes . Other fingerprint sizes are possible and are intended
to fall within the scope of the invention .
[0047] In a step 404 , a fingerprint trie may be searched to
determine if there is any matching fingerprint , as described
in more detail elsewhere herein . If it is determined in the step
404 that there is a matching fingerprint , then a step 406 may
control the method 400 to proceed to a step 416. In some
embodiments , determining a match in the step 404 includes determining a leaf node in the fingerprint trie corresponding
to the fingerprint generated in the step 402 , as described in
more detail elsewhere herein . In the step 416 , a physical
address reference stored at the leaf node of the matched
fingerprint in the fingerprint trie may be copied , and in a step
418 , the copied physical address may be stored in an entry
of a physical address reference table (e.g. , the physical
address reference table 300) corresponding to the data
portion for which the fingerprint was generated in the step
402 .
[0048] If it is determined in the step 404 that there is not
a matching fingerprint in the fingerprint trie to the generated
fingerprint , then the step 406 may control the method 400 to
proceed to a step 408 in which the data portion from which
the fingerprint was generated is stored at a physical sto ge
address on a physical storage device of the storage system .
In a step 410 , the fingerprint trie may be modified to add
nodes and links for the generated fingerprint , as described in
more detail elsewhere herein . In a step 412 , a reference to
the physical storage address of the generated fingerprint may
be stored in an entry of a physical address reference table
(e.g. , the physical address reference table 300) correspond
ing to the data portion for which the fingerprint was gener
ated . It should be appreciated that one or more steps of the
method 40 or parts thereof may be performed concurrently
or in different orders than illustrated in FIG . 4. For example ,
the steps 410 and 412 may be performed concurrently to , or
before , the performance of the step 408. For example , a
physical storage location for the generated fingerprint may
be determined , and the fingerprint trie modified , prior to the
data portion being stored on the physical storage device .
[0049] FIG . 5 is a flowchart illustrating an example of a
method 500 of searching a fingerprint trie to determine
whether there is a fingerprint match according to embodi
ments of the invention , which may be used to implement the
step 406 of the method 400. Other embodiments of a method
of searching a fingerprint trie to determine whether there is
a fingerprint match , for example , variations of method 500 ,
are possible and are intended to fall within the scope of the

invention . Method 500 and / or portions thereof may be
implemented using the data storage system 12 and / or one or
more components thereof .
[0050] A fingerprint trie is an ordered tree - like data struc
ture of linked nodes in which the position of a node in the
trie defines the fingerprint key with which it is associated ,
and may be considered an associative array . Each fingerprint
may be represented by a unique branch of the fingerprint trie
defined by the root node and one or more descendant nodes
thereof and the links therebetween , terminating in a leaf
node . The nodes of a branch between a root node and a leaf
node may be referred to herein as internal nodes . Each leaf
node may be keyed by a fingerprint , and each internal node
may be keyed by a portion of the fingerprint , where each
internal node in the fingerprint trie is keyed by a portion of
the fingerprint that is a prefix (e.g. , of characters) for each of
its child nodes , each such key being a sequential portion of
a fingerprint starting at a beginning of the fingerprint (e.g. ,
a most significant byte or least significant byte) . Each node
in the fingerprint trie may have an array of reference / pointer /
link fields to specify a pointer to its child node (s) . Each
pointer field may have an index value indicative of the
fingerprint character string that it represents , and a pointer
value specifying the child node , if any , corresponding to the
index value ; i.e. , pointed - to by the pointer field . If no child
node has been created for a pointer array field , the value of
the pointer array field is null . In some embodiments , the
granularity at which a fingerprint is parsed for representation
in a fingerprint trie is one byte i.e. , byte - by - byte , and the
number of pointer fields in the array depends on the total
number of possible characters that can be represented by one
byte of data = 28 = 256 characters . That is , in such embodi
ments , each node in the fingerprint trie may have an array of
256 pointer fields , and may have up to 256 child nodes , each
pointed - to by one of the pointer fields .
[0051] Each node also may have a value field specifying
a value of the node (i.e. , a value for the key represented by
the node) . In some embodiments of the invention , only leaf
nodes have non - null values , for example , a physical address
reference for the physical storage at which the data portion
from which the fingerprint was generated is stored . Thus , a
fingerprint can be used as a key to the leaf node that
identifies a physical storage location of a data portion
uniquely identified by the fingerprint . The root node of a
fingerprint trie may be defined to be an empty string or null
value . When the fingerprint trie is initially created , the root
node is the only node and has all of its array pointers set to
null . In some embodiments of the inventions , nodes are only
added to a fingerprint trie as needed , i.e. , when a new
fingerprint not already represented in the fingerprint trie is
generated . Thus , a fingerprint trie may consume and waste
less memory resources than a conventional hash table (with
or without liked lists) , as a reservation of contiguous
memory space is not required , but rather may only be
allocated as needed when a new node is added . Further , as
is described in more detail elsewhere herein , nodes of a
fingerprint trie may be navigated one or more characters
(e.g. , bytes) at a time , e.g. , by comparing one or more
characters of a fingerprint at a time to node values in the
fingerprint trie , in contrast to hash tables in which whole
fingerprint values are compared . In this manner , each com
parison of one of more characters of a fingerprint may
consume less computational capacity than each comparison
of whole fingerprints using hash tables . Fingerprint match

US 2019/0332300 A1 Oct. 31 , 2019
7

ing , and thus deduplication , may be performed faster with
fingerprint tries than with hash tables .
[0052] In standard fingerprint tries , the index value of each
pointer array field is only a single character ; i.e. , each child
node corresponds to only a single character added to the
fingerprint prefix represented by the parent node , and nodes
that are the only child of a parent node are allowed , and thus
having only a single pointer array field of an internal node
specifying a non - null value (i.e. , of the only child node) is
permitted . In a radix fingerprint trie and other types of
compressed fingerprint tries , only - child nodes are not
allowed , but rather are compressed i.e. , compacted or
condensed) into their parent nodes , such that there are no
child nodes , and an index value of a pointer field of a root
node or an internal node may specify multiple characters of
a fingerprint . As a result , except for when it is first initialized
or when all possible fingerprint values for a fingerprint space
are represented in a fingerprint trie , a compressed fingerprint
trie includes less nodes than a standard fingerprint trie . As a
result , a compressed fingerprint trie typically consumes less
memory resources than a standard fingerprint trie , and may
consume less computational resources when searching the
fingerprint trie for a matching fingerprint , as less nodes may
be accessed and compared when performing the search . For
this reason , a compressed fingerprint trie (e.g. , radix finger
print trie) may be considered a space - optimized fingerprint
trie .

[0053] In some embodiments , a maximum number of
linked nodes that needs to be accessed to reach the leaf node
defining a fingerprint is equal to the number of bytes
defining the fingerprint plus one (because the root node
always must be accessed) . For example , if fingerprints are
20 bytes long , than a maximum number of linked nodes that
needs to be accessed to reach the leaf node defining a
fingerprint is 21. In such embodiments , if a standard finger
print trie is employed in which each array pointer has an
index value representing a single character corresponding to
a single byte , the number of linked nodes that needs to be
accessed to reach the leaf node defining a fingerprint is the
same for every fingerprint , equal to the maximum number of
linked nodes . However , if a compressed fingerprint trie is
employed in which each array pointer index value may be
multiple characters corresponding to multiple bytes of a
fingerprint , the number of linked nodes that need to be
accessed to reach the leaf node may be less the maximum
number of linked nodes . For either a standard or compressed
trie , the computation effort in searching the trie is a function
of the size of the fingerprints , not the number of fingerprints
stored in the fingerprint trie , as is the case with hash tables .
For example , as described above , if a predetermined size of
fingerprints is 20 bytes , at most only 21 nodes of the
fingerprint trie needs to be accessed , regardless of the
number of fingerprints represented in the fingerprint trie .
Examples of standard and compressed fingerprint tries are
described in more detail elsewhere herein .
[0054] Returning to the method 500 , in a step 502 , a
current node may be initialized to a root node and an initial
byte count may be set to 0 , after which the loop defined by
steps 506-514 may be repeated until it is determined whether
there is a fingerprint match . The byte count may be used in
embodiments in which each fingerprint has a same length
i.e. , has a same number of bytes . In the step 506 , it may be
determined whether an active pointer of the current node
matches the next one or more bytes of the fingerprint . As

used herein , an active pointer is a pointer field for which a
non - null pointer value is specified , and determining whether
an active pointer of the current node matches the next one
more bytes of the finger print means determining whether
the current node has a pointer field that has an index value
specifying one or more characters that are the same as the
one or more next characters of the fingerprint , and if so ,
whether such pointer field specifies a non - null value ; i.e. ,
specifies a child node . In embodiments in which a standard
trie is used , the index values of pointer fields are only one
character , such that the step 502 involves comparing only the
character represented by a single next byte of the fingerprint .
In embodiments in which a compressed trie is used , index
values may be one or more characters and thus the characters
of the next one or more bytes of the fingerprint may be
compared . It should be appreciated that , when the current
code is the root node , the next one or more bytes of the
fingerprint are the first one or more bytes of the fingerprint .
On future passes through the steps 506-514 for internal
nodes , the next one or more bytes are the bytes remaining in
the fingerprint following the one or more previous bytes for
which a match was determined in the step 506 .
[0055] If there is no match determined for one or more
bytes in the step 506 , then in a step 508 it may be determined
that there is no matching fingerprint in the fingerprint trie ,
and the method 500 may end , which may result in method
400 proceeding to the step 408 in the method 400. If a match
is determined for one or more bytes in the step 506 , then in
a step 510 the current node may be changed to the child node
of the fingerprint trie pointed - to (i.e. , specified by) by the
pointer field of the matching active pointer , and in a step 512
the byte count may be incremented by a number of the one
or more bytes that matched the index value of pointer field .
In embodiments in which a standard fingerprint trie is used ,
index values are only one character and thus the value of
only the next one byte was compared and matched , and thus
the byte count is always only incremented by one . In
embodiments in which a compressed fingerprint trie is used ,
the index values of pointer fields may be one or more
characters and thus the character (s) represented by the next
one or more bytes are compared and matched , and thus the
byte count may be incremented by a number equal to the
number of characters (i.e. , one or more) that matched .
[0056] In a step 514 , it may be determined whether the
byte count equals a predefined fingerprint length (e.g. , 20
bytes) , which would indicate that the current node is a leaf
node and a fingerprint match has been determined as indi
cated in a step 516 , after which the method 500 may end ,
which may result in proceeding to the step 416 in the method
400. If in the step 514 it is determined that byte count does
not equal the fingerprint length , this means that the current
node is an internal node , and method 500 may proceed to the
step 506 for processing of the current internal node . It should
be appreciated that in embodiments in which only leaf nodes
specify non - null values , e.g. , a physical address reference , it
may be determined whether the current node specifies a
non - null value , in which case the current node is a leaf node
and a fingerprint match has been determined , as an alterna
tive to keeping a byte count and checking it in the step 514 .
[0057] Examples of implementations of the method 400 ,
one example using a standard fingerprint trie and a second
example using a compressed fingerprint trie , will be now be
described . In the examples , fingerprint tries are used in
which a fingerprint is only three characters in length , and can

US 2019/0332300 A1 Oct. 31 , 2019
8

only have three possible values : “ A ” , “ B ” and “ C. ” How
ever , it should be appreciated that the invention is not so
limited and can apply , for example , to fingerprints of 20
characters in length (e.g. , each character = one byte) where
each byte can have up to 256 possible values .
[0058] In a first example , a standard fingerprint trie is
used . Reference is now made to FIG . 6A , which illustrates
an example of a standard fingerprint trie 600 , according to
embodiments of the invention . In the example of FIG . 6A ,
as well as examples of FIGS . 6B - 9D , fingerprint tries are
used in which a fingerprint is only three characters in length ,
and can only have three possible values : “ A ” , “ B ” and “ C. ”
The characters that appear within the internal and leaf nodes
illustrated in FIGS . 6B - 6D and 8B - 8D are not values defined
by the nodes , but rather keys for accessing the nodes . In FIG .
6A , the standard fingerprint trie 600 illustrates an initialized
standard fingerprint trie before any fingerprints have been
added , in which the only node is the root node 601 , and for
which all pointers are inactive (i.e. , all pointer fields specify
null values) . In some embodiments , a fingerprint trie node
may include another field , e.g. , a master pointer field , that
specifies when all pointers are inactive , and this field may be
used to determine when a root node is the only node in a
fingerprint trie or when a node is a leaf node . FIG . 7A
illustrates a more detailed example of the standard finger
print trie 600 following initialization , according to embodi
ments of the invention , illustrating that root node 601 may
include a value field 621 indicating an empty string or null
value and an array 637 including array fields for index
values “ A ” “ B ” and “ C ” that are all inactive .
[0059] In the step 402 , a fingerprint = " ABC ” is a first
fingerprint generated for the fingerprint trie 600. After
performance of the initialization steps 502 and 504 , perfor
mance of the step 506 for the root node 601 determines that
no active pointer values match any beginning portion of the
fingerprint , as all pointer field values are null . Accordingly ,
in the step 508 it is determined that there is no match .
Returning to the method 400 , in the step 408 , the data
portion from which the fingerprint “ ABC ” was generated is
stored in the data age system , and in the step 410 , the
fingerprint trie 600 is modified as illustrated in FIGS . 6B and
7B , to include nodes 602 , 606 and 612 for each of characters
“ A , ” “ B ” and “ C , " respectively , nodes 602 and 606 being
internal nodes specifying null values 621 and 651 , and node
612 being a leaf node specifying a physical address refer
ence (PAR) 629 for the data portion from which the finger
print “ ABC ” was generated . Nodes 601 , 602 and 606 have
arrays 637 , 623 and 627 , for which active pointers 603 , 607
and 619 for index values “ A , ” “ B ” and “ C ” have pointer
values pointing to nodes 602 , 606 and 612 , respectively , and
the remaining pointers in arrays 637 , 623 and 627 , and all
pointers of array 631 , are inactive (i.e. , have null pointer
field values) .
[0060] When a next fingerprint “ ABB ” is generated in the
step 402 , e.g. , in response to a write request received from
a host , the current node is set to root node 601 in the step
502 , and a byte counter is set to 0 in the step 504. Perfor
mance of the step 506 for the root node 601 determines that
the index value for active pointer 603 = “ A ” matches the
value of the first byte = “ A ” of the generated fingerprint .
Accordingly , in a next step 510 , the current node is set to the
node 602 pointed - to by pointer 603 , and in the step 512 the
byte count is incremented by 1 : 0 + 1 = 1 . In the step 514 , it is
determined that the byte count = 1 is not equal to the finger

print length of 3 , and the method 500 returns to the step 506 ,
performance of which determines that the index value of the
active pointer 607 = “ B ” matches the value of the next
byte = “ B ” of the generated fingerprint . Accordingly , in a next
step 510 , the current node is set to the node 606 pointed - to
by pointer 607 , and in the step 512 the byte count is
incremented by 1 : 1 + 1 = 2 . In the step 514 , it is determined
that the byte count = 2 is not equal to the fingerprint length of
3 , and the method 500 returns to the step 506 , performance
of which determines that none of the active pointers of node
606 match the value of the next byte = “ B ” of the generated
fingerprint .
[0061] Returning to the method 400 , in the step 408 , the
data portion from which the fingerprint “ ABB ” was gener
ated is stored in the data storage system , and in the step 410 ,
the fingerprint trie 600 is modified as illustrated in FIGS . 6C
and 7C to include new leaf node 610 for third character “ B ”
of the fingerprint , specifying a physical address reference
(PAR) 629 for the data portion from which the fingerprint
“ ABB ” was generated , and having an array 635 with all
inactive pointers . Array 627 of the node 606 is updated to
have a pointer value of the pointer field for the index value
“ B ” point to the new leaf node 610 .
[0062] When a next fingerprint “ CCA ” is generated in the
step 402 , e.g. , in response to a write request received from
a host , the current node is set to root node 601 in the step
502 , and a byte counter is set to 0 in the step 504. Perfor
mance of the step 506 for the root node 601 determines that
no active pointers of the root node match any beginning
portion of the fingerprint . Accordingly , in the step 508 it is
determined that there is no match . Returning to the method
400 , in the step 408 the data portion from which the
fingerprint " CCA ” was generated is stored in the data
storage system , and in the step 410 the fingerprint trie 600
is modified as illustrated in FIGS . 6D and 7D , to create
internal nodes 604 and 608 for characters “ C ” and “ C ”
respectively , create leaf node 614 for character “ A , ” which
specifies a physical address reference in PAR field 649 for
the data portion from which the fingerprint “ CCA ” was
generated . Nodes 601 , 604 and 608 have arrays 637 , 643 and
647 , including active pointers 639 , 609 and 613 for index
values “ C ” “ C ” and “ A ” that point to nodes 604 , 608 and
614 , respectively , and all pointers of array 631 are inactive .
[0063] When a next fingerprint “ ABB ” is generated , e.g. ,
in response to a write request received from a host , the
current node is set to root node 601 in the step 502 and a byte
counter is set to 0 in the step 504. Performance of the step
506 for the root node 601 determines that the index value of
the active pointer 603 = “ A ” matches the value of the first
byte = " A ” of the generated fingerprint . Accordingly , in a next
step 510 , the current node is set to the internal node 602
pointed - to by pointer 603 , and in the step 512 the byte count
is incremented by 1 : 0 + 1 = 1 . In the step 514 , it is determined
that the byte count = 1 is not equal to the fingerprint length of
3 , and the method 500 returns to the step 506 , performance
of which determines that the index value of the active
pointer 607 = “ B ” matches the value of the next byte = “ B ” of
the generated fingerprint . Accordingly , in a next step 510 ,
the current node is set to the internal node 606 pointed - to by
pointer 607 , and in the step 512 the byte count is incre
mented by 1 : 1 + 1 = 2 . In the step 514 , it is determined that the
byte count = 2 is not equal to the fingerprint length of 3 , and
the method 500 returns to the step 506 , performance of
which determines that the index value of the active pointer

US 2019/0332300 A1 Oct. 31 , 2019
9

619 = “ B ” matches the value of the next byte = “ B ” of the
generated fingerprint . Accordingly , in a next step 510 , the
current node is set to the leaf node 612 pointed - to by pointer
619 , and in the step 512 the byte count is incremented by 1 :
1 + 1 = 3 . In the step 514 , it is determined that the byte count = 3
is equal to the fingerprint length of 3 bytes , from which it is
determined in the step 516 that the current node 612 is a leaf
node indicating that a fingerprint match has been deter
mined , and the method 500 ends , returning to the step 416
of the method 400. In the step 416 , the physical address
reference stored in the field 629 of the node 612 is copied
and stored in the entry in physical address reference table
300 for the data portion from which the fingerprint generated
in the step 402 was generated .
[0064] A second example of implementation of the steps
404-412 of method 400 will be now be described , in which
a compressed fingerprint trie is used , and in which a finger
print is only three characters in length , and can only have
three possible values : “ A ” , “ B ” and “ C. "
[0065] Reference is now made to FIG . 8A , which illus
trates an example of a compressed fingerprint trie 800 ,
according to embodiments of the invention . In FIG . 8A , the
compressed fingerprint trie 800 illustrates an initialized
compressed fingerprint trie before any fingerprints have
been added , in which the only node is the root node 802 , and
for which all pointers are inactive . FIG . 9Aillustrates a more
detailed example of a compressed fingerprint trie 800 fol
lowing initialization , according to embodiments of the
invention , illustrating that root node 802 may include a value
field 821 indicating an empty string or null value and an
array 823 including array fields for index values “ A ” “ B ”
and “ C ” all of which are inactive .
[0066] In the step 402 , a fingerprint = " ABC ” is a first
fingerprint generated for the fingerprint trie 800. After
performance of the initialization steps 502 and 504 , perfor
mance of the step 506 for the root node 802 determines that
no active pointers of the root node 802 match any beginning
portion of the fingerprint “ ABC ” , as all pointers are inactive .
Accordingly , in the step 508 it is determined that there is no
match . Returning to the method 400 , in the step 408 , the data
portion from which the fingerprint “ ABC ” was generated is
stored in the data storage system , and in the step 410 , the
fingerprint trie 800 may be modified as illustrated in FIGS .
8B and 9B , for example , by performance of the method 1000
illustrated in FIG . 10 .
[0067] FIG . 10 is a flowchart illustrating an example of a
method 1000 of modifying a compressed fingerprint trie ,
specifically a radix fingerprint trie , in response to determin
ing a fingerprint match , according to embodiments of the
invention . Other embodiments of a method of modifying a
compressed fingerprint trie in response to determining a
fingerprint match , for example , variations of method 1000 ,
are possible and are intended to fall within the scope of the
invention . Method 1000 and / or portions thereof may be
implemented using data storage system 12 and / or one or
more components thereof .
[0068] In a step 1002 , it may be determined whether the
next one or more bytes of the fingerprint “ ABC ” generated
in the step 402 match a beginning portion of any of the active
pointers of the current node_i.e . , match the beginning
portion an index value of a pointer field for which a non - null
pointer value is specified . The next one or more bytes are the
next one or more bytes of the fingerprint after any sequence
of bytes starting at the beginning of the fingerprint for which

no node pointers have been matched during performance of
the method 500 for the fingerprint . In the current example ,
the current node is the root node 802 , and " ABC ” is a first
fingerprint generated for the compressed fingerprint trie ,
such that all current node pointers are inactive . Accordingly ,
the step 1002 determines that that there is no such match ,
and the method 1000 proceeds to a step 1022 , in which a
new leaf node 804 may be created for the remainder of the
fingerprint that was not matched , in this case , the entire
fingerprint “ ABC ” , as reflected in FIGS . 8B and 9B , having
an array 827 of inactive pointers . In the step 1024 the value
of the new leaf node 804 may be set to a physical storage
reference for the data portion from which the fingerprint
“ ABC ” was generated . In the step 1026 , the pointer field in
the current node 802 for the index value “ A ” is updated with
an index value consisting of the remainder of the fingerprint
that was not matched , in this case , the entire fingerprint
“ ABC , ” and the pointer field pointer value specifies pointer
801 to the new leaf node . Returning to the method 500 , in
the step 412 , a reference to the physical address of the data
portion for which the fingerprint “ ABC ”) was generated may
be stored in the entry for the data portion in the physical
address reference table 300 .
[0069] Returning to the method 400 , when a next finger
print “ ABB ” is generated in the step 402 , e.g. , in response
to a write request received from a host , the current node is
set to root node 802 in the step 502 , and a byte counter is set
to 0 in the step 504. Performance of the step 506 for the root
node 802 determines that no pointer values of the root node
match any beginning portion of the fingerprint . Specifically ,
the only non - null pointer value = " ABC ” does not match
“ ABB . ” Accordingly , in the step 508 it is determined that
there is no match . Returning to the method 400 , in the step
408 , the data portion from which the fingerprint “ ABB ” was
generated is stored in the data storage system , and in the step
410 the fingerprint trie 800 may be modified as illustrated in
FIGS . 8C and 9C , for example , by performance of the
method 1000 illustrated in FIG . 10 .
[0070] In the step 1002 , it may be determined whether the
next one or more bytes of the fingerprint “ ABB ” match a
beginning portion of any of the active pointers of the current
node (e.g. , node 802) ; i.e. , match the beginning portion an
index value of a pointer field for which a non - null pointer
value is specified . In the example , the step 1002 determines
that the first two bytes of the fingerprint = “ AB ” equals a
beginning portion of the index value of the active pointer for
“ ABC ” and the method 1000 proceeds to a step 1004 , in
which a new internal node (e.g. , node 806) may be created
for the matching portion (e.g. , “ AB ”) . In a step 1006 , the
index value (e.g. , " ABC ”) of the index value of the pointer
field of the current node (e.g. , node 802) that has the
matching beginning portion (the portion - matching pointer
field) may be changed to the matching beginning portion
(e.g. , “ AB ”) , and in a step 1008 the pointer value of the
portion - matching pointer field may be changed (e.g. , from
801 to 803) to point to the new internal node (e.g. , 806) . The
node to which the changed pointer value formerly pointed
(e.g. , node 804) is referred to herein as the dead node . In a
step 1010 , a first new leaf node (e.g. , leaf node 810) may be
created for the remaining non - matching portion (e.g. , " C ")
of the portion - matching pointer field , and in a step 1012 , the
physical address reference may be copied from the dead
node (e.g. , node 804) to the first new leaf node (e.g. , leaf
node 810) .

US 2019/0332300 A1 Oct. 31 , 2019
10

[0071] In a step 1014 , the dead node may be deleted . In a
step 1016 , a second new leaf node (e.g. , the leaf node 808)
may be created for the remaining non - matching portion
(e.g. , “ B ”) of the fingerprint . In a step 1018 , the physical
address reference for the data portion from which the
fingerprint (e.g. , “ ABB ”) was generated may be stored to the
second new leaf node (e.g. , the leaf node 808) , e.g. , in the
value field (e.g. , field 833) of the second new leaf node . In
a step 1020 , pointers (e.g. , 807 and 805) to the first and
second new leaf nodes may be activated . Returning to the
method 400 , in the step 412 , a reference to the physical
address of the data portion for which the fingerprint (e.g. ,
“ ABB ”) was generated may be stored in the entry for the
data portion in the physical address reference table 300 .
[0072] Returning to the method 400 , when a next finger
print “ CCA ” is generated in the step 402 , e.g. , in response
to a write request received from a host , the current node is
set to root node 802 in the step 502 and a byte counter is set
to 0 in the step 504. Performance of the step 506 for the root
node 802 determines that no active pointers of the root node
match any beginning portion of the fingerprint . Specifically ,
the only active pointer value = " AB ” does not match " CC . ”
Accordingly , in the step 508 it is determined that there is no
match . Returning to the method 400 , in the step 408 , the data
portion from which the fingerprint “ CCA ” was generated is
stored in the data storage system , and in the step 410 , the
fingerprint trie 800 may be modified as illustrated in FIGS .
8D and 9D , for example , by performance of the method
1000 illustrated in FIG . 10 .
[0073] In a step 1002 , it may be determined whether the
next one or more bytes of the fingerprint “ CCA ” generated
in the step 402 match a beginning portion of any of the active
pointers of the current node_i.e . , match the beginning
portion an index value of a pointer field for which a non - null
pointer value is specified . The step 1002 determines that the
next byte “ C ” does not equals a beginning portion (= “ A ”) of
the only active pointer of the root node (“ AB ”) , and the
method 1000 proceeds to the step 1022 , in which a new leaf
node 812 may be created for the remainder of the fingerprint
that was not matched , in this case , the entire fingerprint
“ CCA , ” as reflected in FIGS . 8D and 9D , having an array
843 of inactive pointers . In the step 1024 , the value of the
new leaf node 812 may be set to a physical storage reference
for the data portion from which the fingerprint “ CCA ” was
generated . In the step 1026 , the pointer field in the current
node 802 for the index value “ C ” is updated with an index
value consisting of the remainder of the fingerprint that was
not matched , in this case , the entire fingerprint “ CCA , " and
the pointer field pointer value specifies pointer 813 to the
new leaf node 812. Returning to the method 500 , in the step
412 , a reference to the physical address of the data portion
for which the fingerprint “ CCA ” was generated may be
stored in the entry for the data portion in the physical address
reference table 300 .
[0074] When a next fingerprint “ ABB ” is generated in the
step 402 , e.g. , in response to a write request received from
a host , the current node is set to root node 802 in the step 502
and a byte counter is set to 0 in the step 504. Performance
of the step 506 for the root node 802 determines that the
index value of pointer 803 = “ AB ” matches the value of the
first two bytes = “ AB ” of the generated fingerprint . Accord
ingly , in a next step 510 , the current node is set to the node
806 pointed - to by pointer 803 , and in the step 512 the byte
count is incremented by 2 : 0 + 2 = 2 . In the step 514 , it is

determined that the byte count = 2 is not equal to the finger
print length of 3 , and the method 500 returns to the step 506 ,
performance of which determines that the value of the
pointer 805 = “ B ” matches the value of the next byte = “ B ” of
the generated fingerprint . Accordingly , in a next step 510 ,
the current node is set to the node 808 pointed - to by pointer
805 , and in the step 512 the byte count is incremented by 1 :
2 + 1 = 3 . In the step 514 , it is determined that the byte count = 3
is equal to the fingerprint length of 3 bytes , from which it is
determined in the step 516 that the current node 808 is a leaf
node indicating that a fingerprint match has been deter
mined , and the method 500 ends , returning to the step 416
of the method . In the step 416 , the physical address reference
stored in the field 833 of the node 808 is copied and stored
in the entry in physical address reference table 300 for the
data portion from which the fingerprint generated in the step
402 was generated .
[0075] It should be appreciated that one or more steps of
the method 1000 , or parts thereof may be performed con
currently or in different orders than illustrated in FIG . 4. For
example , various of the steps 1004-1020 may be performed
concurrently or in different orders than illustrated in relation
to others of the steps 1004-1020 .
[0076] A comparison between the evolution of the stan
dard fingerprint trie 600 shown in FIGS . 6A - 6D to the
evolution of the compressed fingerprint trie 800 illustrated in
FIGS . 8A - D , respectively , for the same three fingerprints
“ ABC , ” “ ABB ” and “ CCA ” illustrates how the compressed
fingerprint trie 800 is essentially the standard fingerprint trie
for which only - child nodes are compressed into their parent
nodes . For example , the node 804 of the compressed fin
gerprint trie 800 of FIG . 8B represents a compressed version
of the nodes 602 , 606 and 612 of standard fingerprint trie
600 illustrated in FIG . 6B , and node 812 of the compressed
fingerprint trie 800 of FIG . 8D represents a compressed
version of the nodes 609 , 613 and 617 of the standard
fingerprint trie 600 illustrated in FIG . 6D .
[0077] A comparison between the evolution of the stan
dard fingerprint trie 600 shown in FIGS . 6A - 6D to the
evolution of the compressed fingerprint trie 800 illustrated in
FIGS . 8A - D also illustrates the space optimization that a
compressed fingerprint trie , e.g. , in form of a radix trie , can
provide over a standard fingerprint trie . For each stage of
evolution , except for the initialization , the compressed fin
gerprint trie 800 uses less nodes (2 , 4 and 5 in FIGS . 8B , 8C
and 8D , respectively) than the standard trie 600 (4 , 5 and 8
in FIGS . 6B , 6C and 6D , respectively) , resulting in less
consumption memory resources , and thus faster trie tra
versal , for example , when searching for matching finger
prints .
[0078] Various embodiments of the invention discussed
herein may be combined with each other in appropriate
combinations . Additionally , in some instances , the order of
steps in the flowcharts , flow diagrams and / or described flow
processing may be modified , where appropriate . It should be
appreciated that any of the methods described herein , includ
ing 400 , 500 and 1000 , or parts thereof , may be implemented
using one or more of the systems described in relation to
FIGS . 1-3 or components thereof . Further , various aspects of
the invention may be implemented using software , hard
ware , a combination of software and hardware and / or other
computer - implemented modules or devices having the
described features and performing the described functions .

US 2019/0332300 A1 Oct. 31 , 2019
11

[0079] Software implementations of embodiments of the
invention may include executable code that is stored in a
computer readable medium and executed by one or more
processors . The computer readable medium may be non
transitory and include a computer hard drive , ROM , RAM ,
flash memory , portable computer storage media such as a
CD - ROM , a DVD - ROM , a flash drive , an SD card and / or
other drive with , for example , a universal serial bus (USB)
interface , and / or any other appropriate tangible or non
transitory computer readable medium or computer memory
on which executable code may be stored and executed by a
processor . Embodiments of the invention may be used in
connection with any appropriate operating system .
[0080) Other embodiments of the invention will be appar
ent to those skilled in the art from a consideration of the
specification or practice of the invention disclosed herein . It
is intended that the specification and examples be considered
as exemplary only , with the true scope and spirit of the
invention being indicated by the following claims .
What is claimed is :
1. A method of performing deduplication on a first data

portion of an I / O operation for a storage system , the method
comprising

generating a first fingerprint of the first data portion ; and
searching a fingerprint trie generated from a plurality of

fingerprints generated from a plurality of data portions
to determine whether the first data portion is a duplicate
of one of the plurality of data portions .

2. The method of claim 1 , wherein the fingerprint trie is
a compressed fingerprint trie .

3. The method of claim 1 , wherein the fingerprint trie has
a root node , and the first fingerprint has a predefined number
of bytes , and

wherein searching the fingerprint trie includes determin
ing whether the root node references a first node of the
fingerprint trie representing a string of one or more
characters matching one or more characters represented
by one or more bytes of the predefined number of bytes
of the first fingerprint .

4. The method of claim 3 , further comprising :
if it is determined that the root node references the first
node , determining whether the first node references a
second node of the fingerprint trie representing a string
of one or more characters matching one or more
characters represented by one or more bytes of the
predefined number of bytes of the first fingerprint
succeeding the first string .

5. The method of claim 3 , wherein it is determined that the
first data portion is not a duplicate of the one or the plurality
of data portions if it is determined that there is not a first
node of the fingerprint trie representing a string of one or
more characters matching one or more characters repre
sented by one or more bytes of the predefined number of
bytes of the first fingerprint .

6. The method of claim 1 , wherein the method further
comprises :

if it determined by searching the fingerprint trie that the
first data portion is not a duplicate of the one or the
plurality of data portions , modifying the fingerprint trie
to include a representation of the first fingerprint .

7. The method of claim 1 , wherein the method further
comprises , if it determined by searching the fingerprint trie
that the first data is a duplicate of the one or the plurality of
data portions :

copying a physical storage address reference from a node
of the fingerprint trie corresponding to the determined
duplicate ; and

storing the physical storage address reference in an entry
of a physical address reference table corresponding to
the first data portion .

8. A system for performing deduplication on a first data
portion of an I / O operation , the system comprising :
one or more processors ; and
a memory comprising code stored thereon that , when

executed , performs a method comprising :
generating a first fingerprint of the first data portion ;
and

searching a fingerprint trie generated from a plurality of
fingerprints generated from a plurality of data por
tions to determine whether the first data portion is a
duplicate of one of the plurality of data portions .

9. The system of claim 8 , wherein the fingerprint trie is a
compressed fingerprint trie .

10. The system of claim 8 , wherein the fingerprint trie has
a root node , and the first fingerprint has a predefined number
of bytes , and
wherein searching the fingerprint trie includes determin

ing whether the root node references a first node of the
fingerprint trie representing a string of one or more
characters matching one or more characters represented
by one or more bytes of the predefined number of bytes
of the first fingerprint .

11. The system of claim 10 , wherein the method further
comprises , if it is determined that the root node references
the first node , determining whether the first node references
a second node of the fingerprint trie representing a string of
one or more characters matching one or more characters
represented by one or more bytes of the predefined number
of bytes of the first fingerprint succeeding the first string .

12. The system of claim 10 , wherein it is determined that
the first data portion is not a duplicate of the one or the
plurality of data portions if it is determined that there is not
a first node of the fingerprint trie representing a string of one
or more characters matching one or more characters repre
sented by one or more bytes of the predefined number of
bytes of the first fingerprint .

13. The system of claim 8 , wherein the method further
comprises , if it determined by searching the fingerprint trie
that the first data portion is not a duplicate of the one or the
plurality of data portions , modifying the fingerprint trie to
include a representation of the first fingerprint .

14. The system of claim 8 , wherein the method further
comprises , if it determined by searching the fingerprint trie
that the first data is a duplicate of the one or the plurality of
data portions :
copying a physical storage address reference from a node
of the fingerprint trie corresponding to the determined
duplicate ; and

storing the physical storage address reference in an entry
of a physical address reference table corresponding to
the first data portion .

15. A non - transitory computer - readable medium having
software stored thereon for performing deduplication on a
first data portion of an I / O operation , the software compris
ing :

executable code that generates a first fingerprint of the
first data portion ; and

US 2019/0332300 A1 Oct. 31 , 2019
12

executable code that searches a fingerprint trie generated
from a plurality of fingerprints generated from a plu
rality of data portions to determine whether the first
data portion is a duplicate of one of the plurality of data
portions .

16. The non - transitory computer - readable medium of
claim 15 , wherein the fingerprint trie is a compressed
fingerprint trie .

17. The non - transitory computer - readable medium of
claim 15 , wherein the fingerprint trie has a root node , and the
first fingerprint has a predefined number of bytes , and

wherein the executable code that searches the fingerprint
trie includes executable code that determines whether
the root node references a first node of the fingerprint
trie representing a string of one or more characters
matching one or more characters represented by one or
more bytes of the predefined number of bytes of the
first fingerprint .

18. The non - transitory computer - readable medium of
claim 17 , wherein the software further comprises executable
code that , if it is determined that the root node references the
first node , determines whether the first node references a

second node of the fingerprint trie representing a string of
one or more characters matching one or more characters
represented by one or more bytes of the predefined number
of bytes of the first fingerprint succeeding the first string .

19. The non - transitory computer - readable medium of
claim 15 , wherein the software further comprises executable
that , if it determined by searching the fingerprint trie that the
first data portion is not a duplicate of the one or the plurality
of data portions , modifies the fingerprint trie to include a
representation of the first fingerprint .

20. The non - transitory computer - readable medium of
claim 15 , wherein the software further comprises executable
code that , if it determined by searching the fingerprint trie
that the first data is a duplicate of the one or the plurality of
data portions :

copies a physical storage address reference from a node of
the fingerprint trie corresponding to the determined
duplicate ; and

stores the physical storage address reference in an entry of
a physical address reference table corresponding to the
first data portion .

