
THE TWO TONTTITULU MATA DI HATA KULIA NATURE
US 20170308604A1

(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2017 / 0308604 A1

Gray et al . (43) Pub . Date : Oct . 26 , 2017

(54) EXECUTION OF QUERIES IN RELATIONAL
DATABASES

(52) U . S . CI .
CPC . G06F 17 / 30595 (2013 . 01) ; GO6N 99 / 005

(2013 . 01) (71) Applicant : salesforce . com , inc . , San Francisco , CA
(US)

(72) ABSTRACT (57) Inventors : William Victor Gray , San Francisco ,
CA (US) ; Jan Asita Fernando , San
Francisco , CA (US)

(21) Appl . No . : 15 / 138 , 704

(22) Filed : Apr . 26 , 2016
A learning system is provided to improve the speed of
queries in a relational database management system . The
learning system may include a query pipeline which utilizes
a transform generator and a transform engine to transform
uncommitted data corresponding to slow queries , and a
query multiplexer to query primary keys of uncommitted
data and committed data if the query has been improved by
an existing transform .

Publication Classification
Int . Ci .
G06F 1730 (2006 . 01)
G06N 99 / 00 (2010 . 01)

(51)

Learning System
100

Query Pipeline
102

Transform Generator
104

N Transform Engine Query Multiplexer
108 - 106

Patent Application Publication Oct . 26 , 2017 Sheet 1 of 6 US 2017 / 0308604 A1

Learning System
100

Query Pipeline
102

Transform Generator
104

-

-
Query Multiplexer

108
Transform Engine

106
-

we

FIG . 1

Patent Application Publication Oct . 26 , 2017 Sheet 2 of 6 US 2017 / 0308604 A1

Incoming query 202

204

An existing transform
applied to the query ?

Yes 4 . 0 Transmit
query to
query

multiplexer

206

No

Perform conventional
query 208

212

Yes
Transmit
query to
transform
generator

Was conventional
query slow ?

210

?

214

Return data

FIG . 2

Patent Application Publication Oct . 26 , 2017 Sheet 3 of 6 US 2017 / 0308604 A1

302 Start transform generator

Define row key from predicates 304

Define a transform from row key and entity schema 306

Backfill historical data 308

Notify user that query has been improved 310

Transmit the transform to transform engine 312

FIG . 3

Patent Application Publication Oct . 26 , 2017 Sheet 4 of 6 US 2017 / 0308604 A1

Start transform engine 402

408

Wait for relational
database store
insert / update

404
Timed

asynchronous job

Obtain all
transforms from all 410

queries 406
Store timestamp of
earliest uncommitted
data from relational

database store Obtain timestamp
of earliest

uncommitted data
412

41 Transform and
commit all

uncommitted data No

416

Were transform and
commitment successful ?

Yes
418

Update timestamp
for committed data

FIG . 4

Patent Application Publication Oct . 26 , 2017 Sheet 5 of 6 US 2017 / 0308604 A1

Start query multiplexer 502

Obtain transform 504
Query relational

database store for
primary keys of
uncommitted data

504

Generate row key 506

Query key - value
store for primary

keys of committed
data

508

Merge primary keys
of committed and
uncommitted data

510

Apply query against
subset of merged
primary keys

512

Return data 514

FIG . 5

Patent Application Publication Oct . 26 , 2017 Shet 6 of 6 US 2017 / 0308604 A1

FIG . 6 - -

Processor I / O Ctrl . Network
Interface 29

Memory
27 24 | 28

Bus
? ??
?? Display

22
User Input

26
Fixed

Storage 23
Removable
Media 25

FIG . 7
Client Server

| 13 10 FHC - 17 | |
?? Network Client

| 11
Database

15

? Remote Platform
| 17

US 2017 / 0308604 A1 Oct . 26 , 2017

EXECUTION OF QUERIES IN RELATIONAL
DATABASES

BACKGROUND
[0001] A relational database management system (RD
BMS) may process queries through the use of a predefined
index . A relational database of a large table size may contain
a large number of rows . As the relational database grows to
a very large size , for example , if it contains one or more
tables having billions of rows , the costs associated with the
creation of additional indexes may become problematic . As
a result , new queries may not be adequately processed with
a desired level of speed or efficiency . For large relational
databases , index creation and maintenance may require
human intervention to write indexes or to monitor the
creation of indexes . Such human intervention may be highly
labor intensive for large databases .

BRIEF DESCRIPTION OF THE DRAWINGS
[0002] The accompanying drawings , which are included
to provide a further understanding of the disclosed subject
matter , are incorporated in and constitute a part of this
specification . The drawings also illustrate implementations
of the disclosed subject matter , and together with the
detailed description , serve to explain the principles of imple
mentations of the disclosed subject matter . No attempt is
made to show structural details in more detail than may be
necessary for a fundamental understanding of the disclosed
subject matter and various ways in which it may be prac
ticed .
[0003] FIG . 1 shows an example of a learning system
according to embodiments of the disclosed subject matter .
[0004] FIG . 2 is a flowchart illustrating an example of
processing an incoming query according to embodiments of
the disclosed subject matter .
[0005] FIG . 3 is a flowchart illustrating an example of
generating a transform according to embodiments of the
disclosed subject matter .
[0006] FIG . 4 is a flowchart illustrating an example of
transforming and timestamping of previously uncommitted
data according to embodiments of the disclosed subject
matter .
[0007] FIG . 5 is a flowchart illustrating an example of
query multiplexing according to embodiments of the dis
closed subject matter .
[0008] FIG . 6 shows a computer according to an imple
mentation of the disclosed subject matter .
[0009 FIG . 7 shows a network configuration according to
an implementation of the disclosed subject matter .

[0011] An entity may be represented as a logical collection
of fields , such as a collection of name / value pairs , in which
the name of each name / value pair is static and known . An
entity may be defined by a “ shape , ” which includes one or
more characteristics , such as a field , a data type , or an
attribute . Relational databases typically use a schema for
each database , which includes a strict definition of the shape
of data , including , for example , a field name , an order , or a
data type . Within a relational database as disclosed herein ,
each entity represented in the database and / or having data
stored in the database may be uniquely identified by a single
identification (ID) value , also called a primary key . A
relational database store is a store in the relational database
that has a fixed schema . As used herein , a key - value store is
a data storage paradigm designed for storing , retrieving , and
managing associative arrays , which use a data structure also
known as a dictionary or hash , in which an entity is uniquely
identified by an arbitrary set of ordered fields . Dictionaries
typically contain a collection of objects , or records , which in
turn have many different fields within them , each containing
data . These records are stored and retrieved using a key that
uniquely identifies the record , and is used to quickly find the
data within the database . In contrast with relational database
stores , key - value stores have dynamic schemas .
[0012] As used herein , a predicate refers to a single filter
condition used in a query to select specific entities . Multiple
filter conditions and thus multiple predicates joined by one
or more logical operators , such as AND , OR , NOT , NAND ,
NOR , or XOR , may be used in a query . As used herein , a
transform refers to as an operation that changes the repre
sentation of a set of complex data without changing the
actual semantic meaning of the data itself . Within a rela
tional database system , as used herein , committed data refers
to data that has been transformed and stored in the key - value
store , whereas uncommitted data refers to data that exists in
the relational database store when a transform is pending on
the data . As used herein , multiplexing a query refers to
merging multiple simultaneous information streams into a
single result .
[0013] According to embodiments of the disclosed subject
matter , the performance of the computer system or the
network may be improved by identifying queries that are
slow , providing transforms to improve the speed of queries
by committing previously uncommitted data in the key
value store , and multiplexing queries by running the queries
on both committed data in the key - value store and uncom
mitted data in the relational database store to process the
queries efficiently . In large relational databases that may
contain millions or billions of rows of data , significant
improvements may be achieved in the speed or efficiency of
processing queries that may involve multiple fields or filter
conditions joined by multiple logical operators , including ,
for example , AND , OR , NOT , NAND , NOR , or XOR .
[0014] FIG . 1 shows an example of a learning system
according to embodiments of the disclosed subject matter .
The learning system 100 may include a query pipeline 102 ,
a transform generator 104 , a transform engine 106 , and a
query multiplexer 108 . The query pipeline 102 may be
configured to identify queries that have been improved with
existing transforms and to pass the queries that have been
improved with existing transforms to the query multiplexer
108 . The query pipeline 102 also may be configured to pass
queries that have not been improved with existing trans
forms and that have been identified as slow queries to the

DETAILED DESCRIPTION
[0010] According to embodiments of the disclosed subject
matter , a learning system is provided to identify and to
process slow queries on a relational database management
system (RDBMS) store . The learning system may improve
the processing of queries in a fast and efficient manner
through automatic creation , backfill , and ongoing mainte
nance of dynamic schema - less predicate dictionaries on a
secondary key - value store . In some implementations , the
learning system may also perform automated query multi
plexing and merging of data through use of these dynamic
schema - less predicate dictionaries in conjunction with exist
ing query techniques in an RDBMS query system .

US 2017 / 0308604 A1 Oct . 26 , 2017

transform generator 104 . An example of a process performed
by the query pipeline 102 will be described in further detail
below with reference to FIG . 2 . An example of a process
performed by the transform generator 104 will be described
in further detail below with reference to FIG . 3 . After a
transform is generated for a slow query by the transform
generator 104 , the transform engine 106 may apply the
transform to the slow query . An example of a process
performed by the transform engine 106 will be described in
further detail below with reference to FIG . 4 . In some
implementations , a query that has been improved with an
existing transform may be transmitted to the query multi
plexer 108 , which may be configured to split the query into
two or more separate queries based on a match between the
query predicates and the transform metadata . An example of
a process performed by the query multiplexer 108 will be
described in further detail below with reference to FIG . 5 .
[0015] FIG . 2 is a flowchart illustrating an example of
processing an incoming query according to embodiments of
the disclosed subject matter . In FIG . 2 , an incoming query is
received in block 202 . A determination is made as to whether
an existing transform has already been applied to the query
in block 204 . If it is determined that no existing transform
has been applied to the query in block 204 , then the query
is passed to a query multiplexer in block 206 . The query
multiplexer may perform a multiplexing process , an
example of which will be described below with reference to
FIG . 5 . After the query multiplexer performs a multiplexing
process on the query , data corresponding to the query
processed by the query multiplexer is returned in block 214 .
[0016] If it is determined that no existing transform has
been applied in block 204 , then a normal or conventional
querying process may be performed on the query in block
208 . A determination may be made as to whether the
conventional querying process performed on the query is
" slow ” in block 210 . In some implementations , the speed of
the normal querying process may be compared to a fixed
threshold speed to determine whether the query is consid
ered “ slow ” . For example , the speed of the normal querying
process may be deemed slow in block 210 if it is lower than
the fixed threshold speed . In some implementations , the
speed of a normal querying process may be considered slow
if it is below a dynamic threshold that is based on queries run
in the RDBMS within a selected or define period of time . As
a specific example , a normal querying process may be
considered “ slow ” if the speed of the querying process is
within the lowest 10 percentile among the speeds of all
queries executed in the previous 24 hours . More generally ,
a dynamic threshold may be selected based on the past
execution time of queries in the system , such as a maximum
execution time , an average execution time , or the like .
Alternatively or in addition , a static threshold speed may be
defined in the system , and any query with a greater process
ing time may be considered " slow ” . A threshold may be
based , for example , on the desired maximum or average
execution time of the system , regardless of past perfor
mance . If it is determined that the speed of the normal
querying process performed on the query is slow in block
210 , then the query is passed to a transform generator in
block 212 . The transform generator may perform a trans
form generation process , an example of which will be
described below with reference to FIG . 3 . If it is determined
that the normal query process is not slow in block 210 , then
data corresponding to the query is returned in block 214 .

[0017] FIG . 3 is a flowchart illustrating an example of a
process of generating a transform if a conventional query is
slow as determined in block 210 of FIG . 2 according to
embodiments of the disclosed subject matter . In the example
shown in FIG . 3 , the transform generator starts in block 302 .
A row key , also called a predicate key , may be defined by the
predicates for the query in block 304 . A new transform may
be defined based on the row key and the entity schema in
block 306 . Backfilling of historical data in the key - value
store may be performed by applying the transformation rule
to the historical data in block 308 . In some implementations ,
backfilling of historical data may be beneficial if the existing
pipeline system only transforms data that has been modified
since the time at which the transform was defined . In order
to produce full results , it may be desirable to process
existing data through the pipeline before enabling the trans
form for query improvement . Otherwise , full results may not
be obtained if backfilling of historical data is not performed .
After the query has been improved with backfilled historical
data , a notification that the previously slow query has been
improved may be transmitted to the user in block 310 . The
new transform , which is defined in block 306 , may be
transmitted to the transform engine in block 312 .
[0018] FIG . 4 shows a flowchart illustrating an example of
a process of transforming and timestamping of previously
uncommitted data according to embodiments of the dis
closed subject matter . The transform engine starts in block
402 and starts two process flows in parallel . In the example
shown in FIG . 4 , one of the process flows includes processes
as shown in blocks 404 and 406 and the other process flow
includes processes as shown in blocks 408 - 418 . In block
404 , the learning system may wait for relational database
store inserts or updates . In some implementations , new rows
of data may be inserted or added to the relational database
store , and existing rows of the relational database store may
be updated with new data while queries are being made to
the relational database store . A timestamp of the earliest
uncommitted data from the relational database is stored in
block 406 . In some implementations , the processes of wait
ing for the relational database store inserts or updates in
block 404 and storing the timestamps of the earliest uncom
mitted data in block 406 may be repeated in a loop as shown
in FIG . 4 .
[00191 Timed asynchronous jobs may be performed in
block 408 in a conventional manner , for example , by using
a conventional RDBMS scheduler . All transforms from all
queries may be obtained in block 410 . In some implemen
tations , the transform for each previously identified slow
query may be generated by the transform generator in a
process shown in FIG . 3 and described above . After all the
transforms for all previously identified slow queries are
obtained in block 410 , a timestamp of the earliest uncom
mitted data may be obtained in block 412 . A benefit of
timestamping of the earliest uncommitted data is that it sets
the lower limit for data that must be transformed to avoid
re - processing of committed data . In some implementations ,
the timestamp of the earliest uncommitted data may be used
to limit the size of uncommitted data that needs to be
scanned during query multiplexing . In some implementa
tions , all previously uncommitted data may be transformed
and committed in block 414 , by using the transforms defined
by the transform generator . A determination may be made as
to whether the transform and commitment are successful in
block 416 . If it is determined that the transform and com

US 2017 / 0308604 A1 Oct . 26 , 2017

mitment are successful in block 416 , then the timestamp is
updated in block 418 , and additional timed asynchronous
jobs may be performed in block 408 . In these implementa
tions , commitment and transform of data may be deemed
successful when a determination is made that the data is
saved in the key - value store . For example , the commitment
and transform of the data may be deemed successful based
on a response from key - value store . On the other hand , a
failure may be inferred from the lack of a response from the
key - value store indicating that committed data has been
saved in the key - value store . Referring to FIG . 4 , if it is
determined that the transform and commitment are not
successful in block 416 , then the processes of obtaining the
timestamp of the earliest uncommitted data in block 412 and
transforming and committing all previously uncommitted
data in block 414 may be repeated until the transform and
commitment are successful . In database management sys
tems in which a resilience model is implemented , commit
ment of data in key - value stores may entail asynchronous
processes and one or more repeated attempts until the
commitment is successful . In some implementations , if
commitment of data to the key - value store is deemed
unsuccessful in a given iteration , another attempt may be
made in a subsequent iteration to commit newly received
uncommitted data in addition to the existing uncommitted
data that was unsuccessfully committed in the previous
iteration . Such iterations may continue until the data is
successfully committed , for a set or selected number of
attempts , for a set or selected time period , or the like .
[0020] FIG . 5 is a flowchart illustrating an example of a
process of query multiplexing according to embodiments of
the disclosed subject matter . The processing speed of the
overall system may be improved by multiplexing queries ,
which allows the system to run the queries on both com
mitted data in the key - value store and uncommitted data in
the relational database store and to merge the results of
queries on both the committed data and the uncommitted
data . In the example shown in FIG . 2 and described above ,
a query is passed to the query multiplexer 108 if the query
is identified as having been improved with an existing
transform in block 204 . In the example shown in FIG . 5 , the
query multiplexer starts in block 502 . The incoming query
may be split into two or more separate queries . In some
implementations , a query may involve uncommitted data
from the relational database store and committed data from
the key - value store . Primary keys of committed data from
the key - value store and primary keys of uncommitted data
from the relational database store may be obtained by
performing separate processes in parallel , for example . In
the example shown in FIG . 5 , the relational database store
may be queried for primary keys of uncommitted data in
block 504 . Querying of the relational database store may be
achieved by a standard querying method . On the other hand ,
for committed data , a transform generated by the transform
generator may be obtained in block 504 , and the transform
metadata , which may include a set of multiple fields , the
ordering of the fields , and logical operators such as AND ,
OR , NOT , NAND , NOR , or XOR , to join the fields , may be
extracted from the transform . A row key may be generated
based on the transform metadata in block 506 . The key
value store may be queried for primary keys of committed
data in block 508 by using the row key derived from the
transform .

[0021] After the primary keys of uncommitted data from
the relational database store are obtained in block 504 and
the primary keys of committed data from the key - value store
are obtained in block 508 , the primary keys for both uncom
mitted and committed data are merged in block 510 to form
a set of merged primary keys , which includes a subset of
primary keys for the relational database store . A query may
be applied against the subset of primary keys on the rela
tional database store in block 512 , and resultant sets of
uncommitted and committed data are merged and returned
in block 514 . In some implementations , one or more sets of
limits , offsets , or orders may be applied to the merged data
which includes both uncommitted and committed data .
[0022] A tenant includes a group of users who share a
common access with specific privileges to a software
instance . A multi - tenant architecture provides a tenant with
a dedicated share of the software instance typically includ
ing one or more of tenant specific data , user management ,
tenant - specific functionality , configuration , customizations ,
non - functional properties , associated applications , etc .
Multi - tenancy contrasts with multi - instance architectures ,
where separate software instances operate on behalf of
different tenants .
[0023] The learning system for improving the execution
speeds of queries disclosed herein may be implemented as a
multi - tenant system . The system may include a server that
can generate one or more virtual applications based on data
stored in a common database shared between the tenants .
Each virtual application may provide access to data in the
database for each of the one or more tenants utilizing the
system . A tenant may , for example , request social media
posts , metadata , and / or analytics provider data . Although
multiple tenants may share access to a common server and
database , the particular data and services provided from the
system to each tenant can be securely isolated from those
provided to other tenants . The multi - tenant architecture
therefore allows different sets of users to share functionality
without necessarily sharing their private data . Similarly , the
appearance of the interface of each tenant with the system
may be unique .
[0024] Implementations of the presently disclosed subject
matter may be implemented in and used with a variety of
component and network architectures . FIG . 6 is an example
of a computer 20 suitable for implementations of the pres
ently disclosed subject matter . The example of the computer
as shown in FIG . 6 may be a client device , a remote platform
or a server in which a learning system for improving the
execution speeds of queries , an example of which is shown
in FIG . 1 and described above , may be implemented . The
example of the computer as shown in FIG . 6 may be
configured to perform one or more processes for query
pipelining , transform generation , timestamping and trans
formation of uncommitted data , and / or query multiplexing
as shown in one or more of FIGS . 2 - 5 and described above .
[0025] As shown in FIG . 6 , the computer 20 includes a bus
21 which interconnects major components of the computer
20 , such as a central processor 24 , a memory 27 (typically
RAM , but which may also include ROM , flash RAM , or the
like) , an input / output controller 28 , a user display 22 , such
as a display screen via a display adapter , a user input
interface 26 , which may include one or more controllers and
associated user input devices such as a keyboard , mouse ,
and the like , and may be closely coupled to the I / O controller
28 , fixed storage 23 , such as a hard drive , flash storage , Fiber

US 2017 / 0308604 A1 Oct . 26 , 2017

Channel network , SAN device , SCSI device , and the like ,
and a removable media component 25 operative to control
and receive an optical disk , flash drive , and the like .
[0026] The bus 21 allows data communication between
the central processor 24 and the memory 27 , which may
include read - only memory (ROM) or flash memory (neither
shown) , and random access memory (RAM) (not shown) , as
previously noted . The RAM is generally the main memory
into which the operating system and application programs
are loaded . The ROM or flash memory can contain , among
other code , the Basic Input - Output system (BIOS) which
controls basic hardware operation such as the interaction
with peripheral components . Applications resident with the
computer 20 are generally stored on and accessed via a
computer readable medium , such as a hard disk drive (e . g . ,
fixed storage 23) , an optical drive , floppy disk , or other
storage medium 25 .
[0027] The fixed storage 23 may be integral with the
computer 20 or may be separate and accessed through other
interfaces . A network interface 29 may provide a direct
connection to a remote server via a wired or wireless
telephone link , a cable link , an optical fiber link , a satellite
link or the like , to the Internet via an Internet service
provider (ISP) , or a direct connection to a remote server via
a direct network link to the Internet via a POP (point of
presence) or other technique . The network interface 29 may
provide such connection using wireless techniques , includ
ing digital cellular telephone connection , Cellular Digital
Packet Data (CDPD) connection , digital satellite data con
nection or the like . For example , the network interface 29
may allow the computer to communicate with other com
puters via one or more local , wide - area , or other networks ,
as shown in FIG . 6 .
[0028] Many other devices or components (not shown)
may be connected in a similar manner (e . g . , document
scanners , digital cameras and so on) . Conversely , all of the
components shown in FIG . 6 need not be present to practice
the present disclosure . The components can be intercon
nected in different ways from that shown . The operation of
a computer such as that shown in FIG . 6 is readily known in
the art and is not discussed in detail in this application . Code
to implement the present disclosure can be stored in com
puter - readable storage media such as one or more of the
memory 27 , fixed storage 23 , removable media 25 , or on a
remote storage location .
[0029] FIG . 7 shows an example network arrangement
according to an implementation of the disclosed subject
matter . One or more clients 10 and / or 11 , such as local
computers , smart phones , tablet computing devices , and the
like may connect to other devices via one or more networks
7 . The network may be a local network , wide - area network ,
the Internet , or any other suitable communication network or
networks , and may be implemented on any suitable platform
including wired and / or wireless networks . The clients may
communicate with one or more servers 13 and / or databases
15 . The devices may be directly accessible by the clients 10 ,
11 , or one or more other devices may provide intermediary
access such as where a server 13 provides access to
resources stored in a database 15 . The clients 10 , 11 also may
access remote platforms 17 or services provided by remote
platforms 17 such as cloud computing arrangements and
services . The remote platform 17 may include one or more
servers 13 and / or databases 15 .

[0030] More generally , various implementations of the
presently disclosed subject matter may include or be imple
mented in the form of computer - implemented processes and
apparatuses for practicing those processes . Implementations
also may be implemented in the form of a computer program
product having computer program code containing instruc
tions implemented in non - transitory and / or tangible media ,
such as floppy diskettes , CD - ROMs , hard drives , USB
(universal serial bus) drives , or any other machine readable
storage medium , wherein , when the computer program code
is loaded into and executed by a computer , the computer
becomes an apparatus for practicing implementations of the
disclosed subject matter . Implementations also may be
implemented in the form of computer program code , for
example , whether stored in a storage medium , loaded into
and / or executed by a computer , or transmitted over some
transmission medium , such as over electrical wiring or
cabling , through fiber optics , or via electromagnetic radia
tion , wherein when the computer program code is loaded
into and executed by a computer , the computer becomes an
apparatus for practicing implementations of the disclosed
subject matter . When implemented on a general - purpose
microprocessor , the computer program code segments con
figure the microprocessor to create specific logic circuits . In
some configurations , a set of computer - readable instructions
stored on a computer - readable storage medium may be
implemented by a general - purpose processor , which may
transform the general - purpose processor or a device con
taining the general - purpose processor into a special - purpose
device configured to implement or carry out the instructions .
Implementations may be implemented using hardware that
may include a processor , such as a general purpose micro
processor and / or an Application Specific Integrated Circuit
(ASIC) that implements all or part of the techniques accord
ing to implementations of the disclosed subject matter in
hardware and / or firmware . The processor may be coupled to
memory , such as RAM , ROM , flash memory , a hard disk or
any other device capable of storing electronic information .
The memory may store instructions adapted to be executed
by the processor to perform the techniques according to
implementations of the disclosed subject matter .
[0031] The foregoing description , for purpose of explana
tion , has been described with reference to specific imple
mentations . However , the illustrative discussions above are
not intended to be exhaustive or to limit implementations of
the disclosed subject matter to the precise forms disclosed .
Many modifications and variations are possible in view of
the above teachings . The implementations were chosen and
described in order to explain the principles of implementa
tions of the disclosed subject matter and their practical
applications , to thereby enable others skilled in the art to
utilize those implementations as well as various implemen
tations with various modifications as may be suited to the
particular use contemplated .

1 . A method of processing queries in a database , the
method comprising :

determining whether a first transform has been applied to
a query ;

processing the query on committed data in a key - value
store or on uncommitted data in a relational database
store based on a determination that the first transform
has been applied to the query ;

US 2017 / 0308604 A1 Oct . 26 , 2017

determining whether an execution speed of the query is
slower than a threshold speed based on a determination
that the first transform has not been applied to the
query ; and

applying a second transform to the query based on a
determination that the query is slower than the thresh
old speed .

2 . The method of claim 1 , wherein applying the second
transform comprises defining a row key based on one or
more predicates of the query .

3 . The method of claim 2 , wherein applying the second
transform further comprises defining the second transform
based on the key and an entity shape .

4 . The method of claim 3 , wherein applying the second
transform further comprises backfilling historical data in the
key - value store .

5 . The method of claim 1 , wherein applying the second
transform further comprises storing a timestamp of earliest
uncommitted data received from the relational database
store to set a time limit for data to be transformed by the
second transform to avoid re - processing of committed data .

6 . The method of claim 5 , wherein applying the second
transform further comprises :

transforming previously uncommitted data including the
earliest uncommitted data ; and

committing the previously uncommitted data .
7 . The method of claim 6 , further comprising :
determining that transforming the previously uncommit

ted data is a success based on a response from the
key - value store indicating that the previously uncom
mitted data has been saved in the key - value store ; and

updating a timestamp for the committed data based on a
determination that transforming the previously uncom
mitted data is a success .

8 . The method of claim 6 , further comprising :
determining that transforming the previously uncommit

ted data is a failure based on a lack of a response from
the key - value store indicating that the previously
uncommitted data has been saved in the key - value
store ; and

based upon the failure :
obtaining a second timestamp of the earliest uncom
mitted data ;

transforming the previously uncommitted data ; and
committing the previously uncommitted data .

9 . The method of claim 1 , wherein processing the query
on committed data in a key - value store or on uncommitted
data in a relational database store based on a determination
that the execution speed of the query has been improved
with the first transform comprises :

obtaining transform metadata for the first transform ;
generating a row key based on the transform metadata ;

data in a relational database store based on a determination
that the execution speed of the query has been improved
with the first transform further comprises merging the first
plurality of primary keys of the committed data and the
second plurality of primary keys of the uncommitted data to
generate a set of merged primary keys .

12 . The method of claim 11 , wherein processing the query
on committed data in a key - value store or on uncommitted
data in a relational database store based on a determination
that the execution speed of the query has been improved
with the first transform further comprises merging the
uncommitted data and the committed data to generate
merged data .

13 . The method of claim 1 , wherein the threshold speed
is selected from a group consisting of a fixed threshold speed
and a dynamic threshold speed .

14 . A system for improving execution speeds of queries in
a database , the system comprising :

a processor ; and
a memory communicably coupled to the processor , the
memory including computer instructions configured to
cause the processor to :
determine whether a first transform has been applied to

a query ;
process the query on committed data in a key - value

store or on uncommitted data in a relational database
store based on a determination that the first transform
has been applied to the query ;

determine whether an execution speed of the query is
slower than a threshold speed based on a determi
nation that the first transform has not been applied to
the query ; and

apply a second transform to the query based on a
determination that the query is slower than the
threshold speed .

15 . The system of claim 14 , wherein the computer instruc
tions further comprise computer instructions to cause the
processor to :

define a row key based on one or more predicates of the
query ; and

define the second transform based on the key and an entity
shape .

16 . The system of claim 15 , wherein the computer instruc
tions further comprise computer instructions to cause the
processor to :

transform previously uncommitted data ; and
commit the previously uncommitted data .
17 . The system of claim 16 , wherein the computer instruc

tions to cause the processor to multiplex the query comprise
computer instructions to cause the processor to :

obtain transform metadata for the first transform ;
generate a row key based on the transform metadata ;
obtain a first plurality of primary keys of committed data

in the key - value store ;
obtain a second plurality of primary keys of uncommitted

data in the relational database store ; and
merge the first plurality of primary keys of the committed

data and the second plurality of primary keys of the
uncommitted data to generate a set of merged primary
keys .

and
obtaining a first plurality of primary keys of committed

data in the key - value store .
10 . The method of claim 9 , wherein processing the query

on committed data in a key - value store or on uncommitted
data in a relational database store based on a determination
that the execution speed of the query has been improved
with the first transform further comprises obtaining a second
plurality of primary keys of uncommitted data in the rela
tional database store .

11 . The method of claim 10 , wherein processing the query
on committed data in a key - value store or on uncommitted

US 2017 / 0308604 A1 Oct . 26 , 2017

18 . A system for improving execution speeds of queries in
a database , the system comprising :

a query apparatus configured to :
determine whether an execution speed of a query has
been improved with a first transform ;

process the query on committed data in a key - value
store or on uncommitted data in a relational database
store based on a determination that the execution
speed of the query has been improved with the first
transform ;

determine whether the execution speed of the query is
slower than a threshold speed based on a determi
nation that the execution speed of the query has not
been improved with the first transform ; and

improve the execution speed of the query with a second
transform based on a determination that the query is
slower than the threshold speed .

19 . The system of claim 18 , wherein the query apparatus
is further configured to :

obtain transform metadata for the first transform ;
generate a row key based on the transform metadata ;
obtain a first plurality of primary keys of committed data

in the key - value store ;
obtain a second plurality of primary keys of uncommitted

data in the relational database store ; and
merge the first plurality of primary keys of the committed

data and the second plurality of primary keys of the
uncommitted data to generate a set of merged primary
keys .

20 . The system of claim 18 , wherein the transform gen
erator is configured to :

define a row key based on one or more predicates of the
query ; and

define the second transform based on the key and an entity
shape .

* * * * *

