
US 20130054533A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0054533 A1

HaO et al. (43) Pub. Date: Feb. 28, 2013

(54) VERIFYING A DATA RECOVERY (52) U.S. Cl. 707/649; 707/674; 707/E17.007;
COMPONENT USING AMANAGED 707/E17.044
INTERFACE

(75) Inventors: Howard Hao, Bothell, WA (US); James
Robert Benton, Seattle, WA (US);
Thothathri Vanamamalai, Mill Creek,
WA (US)

(57) ABSTRACT

The subject disclosure is directed towards verifying a data
(73) Assignee: MICROSOFT CORPORATION recovery component of a Volume Snapshot service using a

gnee. Redmond, WA (US) s managed interface. The managed interface enables interop
erability between the data recovery component and one or

(21) Appl. No.: 13/216,960 more complementary data recovery components by convert
ing compatible instructions for the data recovery component

(22) Filed: Aug. 24, 2011 and a complementary data recovery component into native
data recovery operations for the Volume Snapshot service and

Publication Classification Vice versa. Via the managed interface, the complementary
data recovery component emulates the native data recovery

(51) Int. Cl. operations. Using status information associated with Such an
G06F 7700 (2006.01) emulation, the data recovery component is verifiable.

Requestor
204

File and Volume
Selections Information

Managed
Interface

Volume Snapshot 116
Service

Requestor
Requests

Return
Values

202

Writer
Metadata Parameters

208 2O6

Input/
Output
Activity Volume

Snapshots

212 210

Patent Application Publication Feb. 28, 2013 Sheet 1 of 9 US 2013/005.4533 A1

script hu- 118

Data Recovery

Simulation Instructions
Result

Emulation MOcule

Complementary
Data Recovery
Components

Native Data
Recovery
Operations 102

Metadata

Status
Information

Standard

Volume
Snapshot
Service

FIG. 1

Patent Application Publication Feb. 28, 2013 Sheet 2 of 9 US 2013/005.4533 A1

Requestor
204

File and Volume
Selections Information

Managed
Interface

2O2

Volume Snapshot 11
Service 6

Writer
Parameters Requestor Metadata

Requests
Return
Values

208 2O6

Input/
Output
Activity Volume

Snapshots

212 210

FIG. 2

US 2013/005.4533 A1

Jedde.JNA

Feb. 28, 2013 Sheet 3 of 9

0 || ||

ZZ9OZ98 | 9909

Patent Application Publication

Patent Application Publication Feb. 28, 2013 Sheet 4 of 9 US 2013/005.4533 A1

402

Instantiate Complementary Data Recovery
Components

ACCess Instructions

Emulate Native Data Recovery Operations

410

404

406

408

Simulate
FaultSP

Produce Status Information

Complies with
Standard?

YES

Communicate a Simulation Result Indicating a
SUCCeSS

422

412

Communicate
a Simulation

Result
Indicating a

Failure

Patent Application Publication Feb. 28, 2013 Sheet 5 of 9 US 2013/005.4533 A1

Receive Instructions from a Requestor 504

Convert into Native Data Recovery Operations 506

Encapsulate Execution of the Native Data Recovery 508
Operations

Simulate Simulate Simulate
Volume

510 Backup Restore 514
Snapshot PrOCess
Creation

PrOCess

Produce Status Information 516

Compare the Status information with a Standard to 518
produce a Simulation Result

Communicate the Simulation Result to the Requestor 520

End 522

Patent Application Publication Feb. 28, 2013 Sheet 6 of 9 US 2013/005.4533 A1

PrOCess Initialization instructions from a Writer 604

Convert into Native Data Recovery Operations 606

Request Writer Metadata associated with Files or 608
Volumes

Select Files for Volume Snapshot Creation 610
Process

Instruct the Writer to Freeze I/O activity and then, 612
Resume once the Volume Snapshot is Created

Produce Status Information 614

Compare the Status information with a Standard 616
to produce a Simulation Result

Communicate the Simulation Result to the Writer 618

End 620

F.G. 6

Patent Application Publication Feb. 28, 2013 Sheet 7 of 9 US 2013/005.4533 A1

Process Registration Instructions from a Provider 704

Convert into Native Data Recovery Operations 706
and Simulate Execution

Examine LUN information 708

Establish Parameters and Communicate
Instructions for preparing and creating a volume 710

Snapshot

PrOCess Return Values 712

714.

YES

se- Validate 716
Produce Status Information and Compare with 718

Standard

Generate and Communicate Simulation Result 720

End 722

Patent Application Publication Feb. 28, 2013 Sheet 8 of 9 US 2013/005.4533 A1

Computing -
Device 820

y
di S.

Computing Device
1 ,

7 |
M -

/
/ ?

x
/

N /
N /
N /
N /
N /

Object 826 Computing
COmmunications Device 828
NetWOrk/BUS

W

M
/ w

810

Server Object

Data
Store(s)
830

FIG. 8

US 2013/005.4533 A1 Feb. 28, 2013 Sheet 9 of 9 Patent Application Publication

(S)? JE LOCHWOO E LOWERH

7 TÕUGWITIT?ISKS

006 quÐUuu Ou?AU E bu??nCiUuOO

US 2013/005.4533 A1

VERIFYINGADATA RECOVERY
COMPONENT USING AMANAGED

INTERFACE

BACKGROUND

0001 Contemporary operating system based data recov
ery software applications are deployed at an enterprise-level
as well as at a user-level. The current landscape includes a
number of third-party vendors developing various compo
nents of the operating system-based data recovery Software
Solutions, such as backup/restore applications (i.e., request
ors), storage providers and application-specific writers. Many
of the third-party vendors utilize a volume snapshot service
(e.g., MICROSOFTWindows(R) operating system-based Vol
ume Shadow Copy Service (VSS)) to retain point-in-time
consistent data for data backup and/or restore processes.
0002 Today, these third party vendors use a framework of
application programming interfaces (APIs) associated with
the Volume Snapshot service to develop these components. To
facilitate a stable user experience, a third party vendor needs
to develop a data recovery software component. Such as a
requestor, that is compatible with the framework of APIs and
interoperable with complementary data recovery software
components, such as a writer or a provider, from different
vendors. Unfortunately, none of these third party vendors can
develop and/or debug the requestors, the providers and/or the
writers without considerable difficulty.
0003. One of a number of reasons behind such difficulty is
that the volume snapshot service framework is implemented
using a lower-level programming platform. Similarly, devel
oping an application-specific writer or a storage provider
faces the same dependency challenges as developing backup/
restore applications. Currently, native Volume Snapshot ser
Vice interfaces are designed for Volume Snapshot service
aware data recovery components. The interfaces utilized by
these components are complex and extremely time consum
ing to implement. Verifying compatibility and/interoperabil
ity of any one of these components is a significant undertak
ing and is cumbersome for the Software developers and
quality assurance Software engineers.

SUMMARY

0004. This Summary is provided to introduce a selection
of representative concepts in a simplified form that are further
described below in the Detailed Description. This Summary
is not intended to identify key features or essential features of
the claimed Subject matter, nor is it intended to be used in any
way that would limit the scope of the claimed subject matter.
0005 Briefly, various aspects of the subject matter
described herein are directed to verifying a data recovery
component of a Volume Snapshot service using a managed
interface. In one aspect, an emulation module builds the man
aged interface using a wrapper that exposes native interface
functions of the volume snapshot service to the data recovery
component. Hence, instructions that are produced by the data
recovery componentare based on a higher level programming
platform. Using the wrapper, the managed interface facili
tates conversion between these instructions and native data
recovery operations.
0006. The managed interface includes one or more
complementary data recovery components that are interoper
able with the data recovery component. In another aspect, the
one or more complementary data recovery components simu

Feb. 28, 2013

late execution of commands that are based on the native data
recovery operations and issued by the Volume Snapshot ser
vice in order to verify compatibility of the data recovery
component and/or validate any errors associated with the
native data recovery operations.

BRIEF DESCRIPTION OF THE DRAWINGS

0007. The present invention is illustrated by way of
example and not limited in the accompanying figures in
which like reference numerals indicate similar elements and
in which:
0008 FIG. 1 is a block diagram illustrating an exemplary
system for verifying a data recovery component using a man
aged interface according to one example implementation.
0009 FIG. 2 is a block diagram illustrating an exemplary
system for emulating native data recovery operations accord
ing to one example implementation.
0010 FIG. 3 is a block diagram illustrating an exemplary
framework for verifying a data recovery component accord
ing to one example implementation.
0011 FIG. 4 is a flow diagram illustrating steps for veri
fying a data recovery component using a managed interface
according to one example implementation.
0012 FIG. 5 is a flow diagram illustrating steps for veri
fying a requestor using a managed interface according to one
example implementation.
0013 FIG. 6 is a flow diagram illustrating steps for veri
fying a writer using a managed interface according to one
example implementation.
0014 FIG. 7 is a flow diagram illustrating steps for veri
fying a provider using a managed interface according to one
example implementation.
0015 FIG. 8 is a block diagram representing exemplary
non-limiting networked environments in which various
embodiments described herein can be implemented.
0016 FIG.9 is a block diagram representing an exemplary
non-limiting computing system or operating environment in
which one or more aspects of various embodiments described
herein can be implemented.

DETAILED DESCRIPTION

0017 Various aspects of the technology described herein
are generally directed towards providing a managed interface
to Verify compliance between a data recovery component and
a Volume Snapshot service that uses one or more complemen
tary data recovery components. In addition, the managed
interface enables interoperability between the data recovery
component and the one or more complementary data recovery
components. In one exemplary implementation, an emulation
module provides the managed interface and the one or more
complementary data recovery components for the purpose of
emulating native data recovery operations that correspond
with instructions in a higher level programming platform as
described herein.
0018 To effectuate compliance and interoperability, the
managed interface converts instructions from the data recov
ery component into native data recovery operations that are
executed by the Volume Snapshot service. In response, the
Volume Snapshot service communicates native data recovery
operations (e.g., events, notifications, function calls and/or
the like) to the one or more complementary data recovery
components via the managed interface. As described herein,
the managed interface converts the native data recovery

US 2013/005.4533 A1

operations into compatible commands for the one or more
complementary data recovery components, which simulates
execution of these commands in order to perform the com
pliance and interoperability verification.
0019. According to one exemplary implementation, the
volume snapshot service is a set of Component Object Model
(COM) and C++ application programming interfaces (APIs)
that provides standardized interfaces, enabling third party
backup and restoration application Software to centrally man
age backup processes and restore processes on a variety of
application data and/or system data. In addition, the Volume
Snapshot service also provides standardize interfaces for
developing hardware providers or software providers as well
as application-specific writers. The Volume Snapshot service
also implements a framework that enables Volume Snapshots,
backups and/or restorations to be performed while the appli
cation-specific writers continue to access to the Volumes.
When performing a backup, the Volume Snapshot service
closely coordinates the Snapshot creation process with the
application-specific writers such that write-access permis
sion to the volume is revoked for a minimal time period while
read-access to the Volume continues unabated.
0020. In one exemplary implementation, the volume snap
shot service application programming interfaces (APIs) are
not accessible from the managed interface based in C# with
out a wrapper written in C++ and Common Language Infra
structure (CLI). The wrapper is exposed to the managed inter
face through COM and C++ interfaces. Writing a managed
interface in C++/CLI enables using C# or Visual Basic to
create and expose a Volume Snapshot to an application built in
a higher-level programming platform (e.g., .NET) as
described further below.
0021 FIG. 1 is a block diagram illustrating an exemplary
system for verifying a data recovery component using a man
aged interface according to one example implementation.
The exemplary system may support data recovery mecha
nisms that are provided by different vendors. The exemplary
system includes various example components, such as an
emulation module 102 and a data recovery component 104 as
described herein.
0022. According to one exemplary implementation, the
emulation module 102 provides the managed interface that
confirms interoperability between a volume snapshot service
116 and the data recovery component 104. The emulation
module 104 implements native interface functions in a higher
level programming platform, which eliminates the require
ment that the data recovery component 104 use the native
interface functions to interact with one or more complemen
tary data recovery components 106. Instead, the data recovery
component 104 calls higher level implementations of the
native interface functions using compatible instructions (i.e.,
executable software code), which convert these instructions
into native data recovery operations 108.
0023. Similarly, the one or more complementary data
recovery components 106 also call various higher level
implementations of the native interface functions using com
patible instructions. The one or more complementary data
recovery components 106 are used to evaluate compatibility
of the data recovery component 104 with the volume snapshot
service by simulating activities in response to the native data
recovery operations 108. In one exemplary implementation,
the one or more complementary data recovery components
106 generate various metadata 110, such as writer identifica
tion information, file and/or volume selections, file path infor

Feb. 28, 2013

mation, restore method configuration, LUN information and/
or parameters for directing Volume Snapshot creation by a
provider. For example, the writer identification information
may indicate which file types (e.g., a hypervisor virtual
machine configuration file) are managed by a particular
writer.

0024. After the volume snapshot service 116 executes the
native data recovery operations 108, the emulation module
102 produces status information 112 for the data recovery
component 104 and the one or more complementary data
recovery components 106. In one exemplary implementation,
the status information 112 includes one or more return values
or codes indicating a success or a failure with a Volume
Snapshot creation process, a backup process or a restore pro
cess. The one or more complementary data recovery compo
nents 106 may return one or more errors explaining why the
backup process or the restore process failed. The status infor
mation 112 may also include handled events and notifica
tions. The status information 112 is compared with a standard
114 that defines guidelines ensuring compatibility between
the one or more complementary data recovery components
106 and the data recovery component 104. The emulation
module 102 produces a simulation result based on such a
comparison.
0025. The volume snapshot service 116 typically includes
three components, such as a requestor (i.e., an application for
requesting Volume Snapshot creation), a provider (i.e., a com
ponent that provides the functionality to actually make the
Volume snapshot) and a writer (i.e., application-specific soft
ware that acts to ensure that application data is ready for
Volume Snapshot creation). The providers are also known as
mass storage providers and implement hardware or Software
Solutions to create Volume Snapshots. Applications, such as
MICROSOFT SQL server, MICROSOFT Exchange server,
and/or the like, provide their own volume snapshot service
aware writers to provide metadata for coordinating the
backup or restore of their application data.
0026. The volume snapshot service 116 coordinates these
components for the purpose of creating Volume Snapshots or
performing a backup or restoration. The requestor initiates
the Volume Snapshot creation, backup and/or restore pro
cesses and the provider controls execution of these processes
across a storage system. For example, the requestor instructs
the writer to prepare a dataset for a backup process. When the
dataset is ready, the requestor then instructs the provider to
create the Volume Snapshot, which holds an application-con
sistent copy of the dataset. During a restore process, the
requester restores the dataset to its original or alternate loca
tion using requester Supplied backup media underfull visibil
ity and coordination with the application-specific writer.
0027. In one exemplary implementation, the emulation
module 102 may use the standard 114 to determine whether
writer metadata or requestor metadata complies with the Vol
ume snapshot service 116. The emulation module 102 may
use the standard 114 to determine whether certain available
resources meet the Volume Snapshot service 116 require
ments. Furthermore, the emulation module 102 may induce
faults by removing a resource for which the data recovery
component 104 indicates a failure with a standard error code.
In another exemplary, the standard 114 may indicate that a
Volume Snapshot can be only taken on Supporting LUNs. The
emulation module 102 may report LUN information indicat
ing a lack of supporting LUNS to which the data recovery
component responds with an appropriate error code.

US 2013/005.4533 A1

0028 Optionally, a script 118 may be executed to deter
mine which instructions are communicated from the data
recovery component 104 and the one or more complementary
data recovery components 106. The script 118 may be
employed as an alternative to using command line parameters
to generate these instructions.
0029 FIG. 2 is a block diagram illustrating an exemplary
system for emulating native data recovery operations accord
ing to one example implementation. The exemplary system
includes a managed interface 202 for verifying interoperabil
ity between various data recovery components, such as a
requestor 204, a writer 206 and a provider 208. Furthermore,
the managed interface 202 also verifies compliances with the
volume snapshot service 116. The requestor 204 may emulate
a known, commercial requestor, such as a data backup appli
cation or a data restore application. In another exemplary
implementation, the requestor 204 may be new data backup
or restore application whose compatibility with the writer 206
and the provider 208 requires verification.
0030 Similarly, the writer 206 may emulate a known,
commercial writer for a certain type of application, Such as an
email application, a word processing application, a database
application, a virtual machine management application (e.g.,
Hyper-V application) and/or the like. The writer 206 may
store files 210 on a storage system. Each of the files 210 may
represent one or more Volumes. In another exemplary imple
mentation, the writer 206 may be new writer application
whose compatibility with the requestor 204 and the provider
208 requires verification. Furthermore, the writer 206 per
forms various input/output (I/O) activity on the files 210 and
updates various Volume and file metadata, such as file loca
tions and path information.
0031. Furthermore, the provider 208 may emulate a
known, commercial hardware or software provider, such as a
system provider or data provider. In another exemplary
implementation, the provider 208 may be new software or
hardware provider (e.g., a hardware or software provider)
whose compatibility with the writer 206 and the requestor
204 requires verification.
0032. The requestors 204, the provider 208 and the writer
206 communicate, via the managed interface 202 for the
Volume Snapshot service 116, in order to coordinate creation
of Volume Snapshots 212 as well as performance of a backup
process or a restore process using the Volume Snapshots 212.
Each of the volume snapshots 212 includes a duplication of
all the data held on a volume at one well-defined instant in
time. In one exemplary implementation, various metadata is
exchanged between the requestor 204, the writer 206 and the
provider 208.
0033 For example, the requester 204 controls volume
Snapshot features by setting various parameters that indicate
whether volume snapshots 212 will survive the current opera
tion and the degree of coordination with the writer 206 and the
provider 208. As another example, the writer 206 provides
information specifying files or Volumes being managed
through read-only metadata (e.g., Writer Metadata Docu
ment). The requester 204 interprets the metadata, selects files
for Volume Snapshot creation, and stores these decisions in its
own metadata (e.g., Backup Components Document). Then,
the writer 208 pauses scheduled Input/Output (I/O) activity
prior to creating the Volume Snapshots 212 and then, returns to
normal operation following completion of Volume Snapshot
creation.

Feb. 28, 2013

0034 FIG. 3 is a block diagram illustrating an exemplary
framework for verifying a data recovery component accord
ing to one example implementation. The exemplary frame
work includes various layers, such as a Volume Snapshot
service native interface 302, a wrapper 304, a managed inter
face layer 306 for verifying a data recovery component 308,
and an application layer 310.
0035. As described herein, the volume snapshot service
native interface 302 includes a group of interfaces (e.g., a
mixture of C++ and Component Object Model (COM) inter
faces) that allow Volume backup processes and restore pro
cesses to be performed while applications on an operating
system continue to write the files. The wrapper 304 enables
communication and interoperability between the volume
Snapshot service native interface 302 and the managed inter
face layer 306 by implementing native operations in a higher
level programming platform. An emulated writer 312, an
emulated requestor 314 and an emulated provider 316 can be
built on top of the managed interface layer 306. The wrapper
304 also provides the common utility functionalities that may
be used by the data recovery component 308. Alternatively,
the managed interface layer 306 may include a managed-code
environment that interacts with the Volume Snapshot service
native interface 302 via a COM Interoperability Assembly.
0036. A command line tool 318 allows customers to input
instructions for using the managed interface. For example, a
customer may provide instructions for listing writers and
writer components on a current system. In addition to the
command line tool318, a user interface (UI) tool 320 may be
built on the managed interface layer 306 for the purpose of
issuing step by step backup and restore instructions. In
another exemplary implementation, the managed interface
layer 306 permits the use of scripting to access the volume
snapshot service native interface 302. For example, a script
ing plug-in (e.g., a PowerShell cmdlet interface) may be built
on the managed interface layer 306 and enable backup and
restoration through an execution of a script.
0037 FIG. 4 is a flow diagram illustrating steps for veri
fying a data recovery component using a managed interface
according to one example implementation. Steps depicted in
FIG. 4 commence at step 402 and proceed to step 404 when
the emulation module 102 instantiates one or more comple
mentary data recovery components. In one exemplary imple
mentation, the emulation module 102 implements volume
Snapshot service native interface functions using a higher
level programming platform. Such implementations form a
managed interface from which the one or more complemen
tary data recovery components are built. Hence, the one or
more complementary data recovery components process
instructions that are compatible with the higher-level pro
gramming platform. Furthermore, each of the native interface
functions refers to one or more native data recovery opera
tions in C++/COM interfaces according to one exemplary
implementation.
0038 Step 406 is directed to accessing instructions built in
accordance with a higher level programming platform (e.g.,
.NET framework). In one exemplary implementation, the
emulation module 102 uses a common language infrastruc
ture (CLI), which ensures compatibility between various pro
gramming languages, to process the instructions. Step 408 is
directed to emulating native data recovery operations in
response to the instructions. After accessing the instructions,
the emulation module 102 converts the instructions into the
native data recovery operations using various mechanisms.

US 2013/005.4533 A1

As described herein, a custom set of interfaces (i.e., a wrap
per) that implements the native interface functions may be
used to ensure interoperability with the native interface.
0039 Step 410 illustrates a decision as to whether to simu
late faults during the emulation that is performed during step
408. In order to verify compatibility with the one or more data
recovery components, the emulation module 102 communi
cates errors (e.g., error return codes) to the data recovery
component being tested as represented by step 412. Based on
a response, the emulation module 102 determines whether the
data recovery component complies with standard protocol
rules and behaviors.

0040. In an alternate exemplary implementation, the data
recovery component induces fault conditions by communi
cating erroneous instructions and/or violating the standard
protocol rules and behaviors. The purpose of which is to test
error handling and troubleshooting at the data recovery com
ponent. For example, the data recovery component may be a
requestor that starts and stops a backup process before
completion. The emulation module 102 returns appropriate
errors and/or events that should not cause the data recovery
component to crash. For example, the emulation module 102
communicates .NET versions of counterpart COM events
using common language runtime (CLR).
0041 Step 414 is directed to producing status information
that describes behaviors of the data recovery component and
responses by the one or more complementary data recovery
components during the execution of the native data recovery
operations. In one exemplary implementation, the status
information includes codes or values that are returned by the
one or more complementary data recovery components.
These codes or values may indicate Successful completion of
a backup process or a restore process. On the other hand, these
codes or values may indicate one or more errors that occurred
during any of these processes.
0042 Step 416 illustrates a determination as to whether
the status information complies with a standard. As described
herein, the standard refers to compliant behaviors and activi
ties associated with the backup process and/or the restore
process. For example, if a requestor instructed a hardware
provider to prepare Snapshot for a Volume from an unsup
ported LUN, the hardware provider is to return an appropriate
failure code. If the requestor did not call a function that
determines whether the LUN is supported prior to preparing
the Volume Snapshot, the requestor is not in compliance with
the standard and therefore, is incompatible with the hardware
provider.
0043. On the other hand, if the hardware provider did not
communicate accurate LUN information and the requestor
communicated otherwise correct instructions, then the hard
ware provider did not comply with the standard and therefore,
is incompatible with the requestor. In yet another exemplary
implementation, if the requestor purposely induced Such a
fault and correctly handled the errors returned by the hard
ware provider, then both are in compliance with the standard.
Hence, the hardware provider and the requestor are interop
erable and compatible with each other.
0044) If a comparison between the status information and
the standard indicates non-compliance by the emulated native
data recovery operations, step 418 is performed. Step 418 is
directed to communicating a simulation result indicating a
failure to the data recovery component. On the other hand, if
the comparison indicates compliance, Step 420 is performed

Feb. 28, 2013

where the simulation result is communicated indicating a
success. Step 422 terminates the steps of the method illus
trated by FIG. 4.
0045 FIG. 5 is a flow diagram illustrating steps for veri
fying a requestor using a managed interface according to one
example implementation. Steps depicted in FIG. 5 commence
at step 502 and proceed to step 504 when the emulation
module 102 receives instructions from a requestor. These
instructions utilize functions on a managed interface that is
built on a higher level programming platform (e.g., .NET) and
enables interoperability with native interfaces (e.g., COM/
C++) for Volume Snapshot services.
0046 Step 506 illustrates conversion of the instructions
into native data recovery operations that are in accordance
with the native interfaces. As described herein, the managed
interface uses functions associated with a custom wrapper
(e.g., the wrapper 304 of FIG. 3) to effectuate the conversion
according to one exemplary implementation. Step 508 repre
sents encapsulating execution of the native data recovery
operations. Via the native interfaces, the Volume Snapshot
service responds to these operations by issuing events (e.g.,
identify, PrepareSnapshot, PreBackup and/or the like), call
ing functions and/or establishing parameters on writers and
providers. The native data recovery operations may refer to
creating a Snapshot, performing a backup of one or more files
to backup media and/or restoring the one or more files to a
volume. Accordingly, after completing step 508, the method
described in FIG.5 may proceed to step 510, step 512 or step
514 during which the emulation module 102 simulates execu
tion of any of these processes.
0047 Step 510 refers to simulating a volume snapshot
creation process in response to the native data recovery opera
tions. In one exemplary implementation, the writers and the
providers are emulated and implemented in the higher level
programming platform by the emulation module 102.
Accordingly, the requestor, via the managed interface and the
Volume Snapshot service, requests metadata from the writers,
selects one or more files or Volumes and identifies an appro
priate, emulated writer for the selected files or volumes. As a
response, the identified writer prepares the Volumes for Snap
shot creation, which includes determining which files are to
be shadow copied, determining whether the writer will par
ticipate in a Volume Snapshot freeze, creating writer-specific
metadata and/or the like.

0048. The volume snapshot service, via the managed
interface, requests metadata, Such as Logical Unit Number
(LUN) information, from the emulated providers and pro
ceeds to map volumes to LUNs, determine which LUNS store
the selected files or volumes and whether these LUNS are
supported. Then, the volume snapshot service, on behalf of
the requestor, selects an appropriate emulated provider to
complete the Volume Snapshot creation process simulation.
Furthermore, the volume snapshot service establishes various
parameters (i.e., also known as context) for the provider, Such
as whether the Volume Snapshot is a copy-on-write and/or full
copy mirror (e.g., differential). Once the emulation module
102 notifies the requestor that the simulated volume snapshot
creation process completed, the requestor may initiate a
backup process or a restore process at a later point-in-time.
0049. In one exemplary implementation, the emulation
module 102 simulates the backup process, as represented by
step 512, on a snapshot that already exists on a LUN Sup
ported by the emulated provider. The requestor, via the man
aged interface, issues instructions for migrating point-in-time

US 2013/005.4533 A1

consistent application data to the backup media. These
instructions are converted into native data recovery opera
tions that indicate a type of backup, Such as a full, incremental
or differential backup as well as other parameters. The appro
priate emulated writer, in turn, provides information associ
ated with moving one or more files to backup media. In an
alternate exemplary implementation, the emulation module
102, via the managed interface, simulates the restore process
as represented by step 514. The appropriate emulated writer,
as a response, provides information associated with moving
one or more files to a target Volume or produces an error to
simulate a transient problem with the restore process.
0050 Step 516 is directed to producing status information
associated with the simulation of the Volume Snapshot cre
ation process, the backup process or the restore process. For
example, the emulation module 102 may process values
returned by the emulated provider or the emulated writer. As
another example, the emulation module 102 may request the
status information from the emulated provider or the emu
lated writer. Step 518 is directed to comparing the status
information with a standard to produce a simulation result.
Step 520 is directed to communicating the simulation result to
the requestor for further evaluation. Step 522 terminates the
steps of the method illustrated by FIG. 5.
0051 FIG. 6 is a flow diagram illustrating steps for veri
fying a writer using a managed interface according to one
example implementation. Steps depicted in FIG. 6 commence
at step 602 and proceed to step 604 when the emulation
module 102 receives initialization instructions from a writer.
Furthermore, these instructions utilize functions on a man
aged interface that is built on a higher level programming
platform (e.g., .NET) and enables interoperability with native
interfaces (e.g., COM/C++) for volume snapshot services.
0052 Step 606 is directed to converting the initialization
instructions into native data recovery operations that are com
patible with the native interfaces. In one exemplary imple
mentation, the writer, via the managed interface provided by
the emulation module 102, creates an object that can be used
by the Volume Snapshot service for communication and event
handling purposes. Furthermore, the object includes various
metadata, Such as a writerid, an instance id and a type for data
is managed by the writer, maximum timeout permitted
between a freeze event and a thaw event and/or the like. As
described herein, exceeding Such a timeout causes the writer,
via the managed interface, to issue an error event to a
requestor. In response, the requestor issues an abort backup
event, via the Volume Snapshot service, in order to inform all
of the writers involved in a current backup or volume snap
shot creation process.
0053 Step 608 is directing to requesting writer metadata
associated with actual files or Volumes being managed. In one
exemplary implementation, the writer returns file names and
path information as well as file metadata (e.g., byte offsets).
Based on this information, the requestor selects one or more
Volumes for Volume Snapshot creation as described in step
610. The volume snapshot service creates a snapshot set and
instructs the writer to prepare for a Snapshot.
0054 Step 612 is directed to instructing the writer to
freeze input/output activity and then, resume Such activity
once a thaw event is received indicating that the Volume
Snapshot creation process completed. In one alternative
exemplary implementation, the writer may participate in a
Subsequent backup of point-in-time consistent application
data to backup media using the created Snapshot. Further

Feb. 28, 2013

more, the creation of the Snapshot and/or backup of the appli
cation data may be simulated or actually performed in order to
verify the writer.
0055 Step 614 is directed to producing status information
associated with the Volume Snapshot creation process. For
example, the emulation module 102 may process values
returned by the emulated provider or the emulated requestor.
As another example, the emulation module 102 may request
the status information from the emulated provider or the
emulated requestor. Step 616 is directed to comparing the
status information with a standard to produce a simulation
result. Step 618 is directed to communicating the simulation
result to the writer for furtherevaluation. As described herein,
the writer can receive an abort backup event from the emu
lated requestor, or the emulated provider can trigger one
itself. In handling an abort backup event, the writer is to
restore whatever input/output activity it executed to its nor
mal running state as well as perform any error handling and
logging. The emulation module 102 may include any logged
errors and returned values from the writer in the status infor
mation. For example, the writer may run out of memory or
any other resource to which the Volume Snapshot service
waits and retries creating the volume snapshot. If the writer
continues to run out of the memory, the simulation result may
be used by the writer developerto identify any problems with
memory usage. Step 620 terminates the steps of the method
illustrated by FIG. 6.
0056 FIG. 7 is a flow diagram illustrating steps for veri
fying a provider using a managed interface according to one
example implementation. Steps depicted in FIG. 7 commence
at step 702 and proceed to step 704 when the emulation
module 102 receives registration instructions from a provider.
These instructions utilize functions on a managed interface
that is built on a higher level programming platform (e.g.,
.NET) and enables interoperability with native interfaces
(e.g., COM/C++) for volume snapshot services.
0057 Step 706 is directed to converting the registration
instructions into native data recovery operations and simulat
ing execution of Such operations. The Volume Snapshot ser
Vice registers a providerid and a provider type and then, loads
an instance of the provider. Step 708 is directed to examining
LUN information that is communicated by the provider. The
Volume Snapshot service, via the managed interface provided
by the emulation module 102, uses the LUN information to
identify which volumes are stored on which LUN or LUNs.
Furthermore, the volume snapshot service uses the LUN
information to discover LUNs created during the volume
Snapshot creation process and transport LUNs on a Storage
Area Network (SAN).
0.058 Step 710 illustrates establishing parameters and
communicating instructions for preparing and creating a Vol
ume Snapshot. As described herein, such parameters (i.e.,
provider context enumerations) may specify that the Volume
Snapshot is an auto-release, non-persistent copy created with
or without writer participation. The parameters may also
instruct the provider to use a rollback mechanism to ensure
that the files or volumes are in well-defined state and point
in-time consistent. If one of the parameters is invalid or the
restore method is in correct, the provider must return values
(e.g., codes) indicating such errors.
0059 Step 712 is directed to processing returned values
from the provider. Step 714 represents a decision as to
whether the returned values indicate one or more errors. If the
returned values include one or more error codes, step 716 is

US 2013/005.4533 A1

performed during which the one or more errors are validated.
For example, if the emulated requestor purposefully utilized
an invalid parameter when preparing a Volume for Snapshot
creation, then the provider responded appropriately by return
ing a corresponding error code.
0060 Regardless of whether the returned values do or do
not include any error codes, step 718 is performed where
status information is produced and compared with a standard.
Step 720 represents generating and communicating a simu
lation result based on the comparison performed at step 718.
In one exemplary implementation, the simulation result indi
cates whether the provider complied with required provider
behavior. As an example, there are multiple timing limit win
dows that providers must follow. Well-behaved providers will
performall unnecessary processing before committing a Vol
ume Snapshot and after committing the Volume Snapshot.
Step 722 terminates the steps of the method illustrated by
FIG. 7.
0061 FIG. 8 provides a schematic diagram of an exem
plary networked or distributed computing environment. The
distributed computing environment comprises computing
objects 810, 812, etc., and computing objects or devices 820,
822, 824, 826, 828, etc., which may include programs, meth
ods, data stores, programmable logic, etc. as represented by
example applications 830,832,834, 836,838. It can be appre
ciated that computing objects 810, 812, etc. and computing
objects or devices 820, 822, 824, 826, 828, etc. may comprise
different devices, such as personal digital assistants (PDAs),
audio/video devices, mobile phones, MP3 players, personal
computers, laptops, etc.
0062 Each computing object 810, 812, etc. and comput
ing objects or devices 820,822, 824, 826, 828, etc. can com
municate with one or more other computing objects 810, 812,
etc. and computing objects or devices 820, 822, 824, 826,
828, etc. by way of the communications network 840, either
directly or indirectly. Even though illustrated as a single ele
ment in FIG. 8, communications network 840 may comprise
other computing objects and computing devices that provide
services to the system of FIG. 8, and/or may represent mul
tiple interconnected networks, which are not shown. Each
computing object 810,812, etc. or computing object or device
820, 822, 824, 826, 828, etc. can also contain an application,
such as applications 830,832, 834, 836,838, that might make
use of an API, or other object, software, firmware and/or
hardware, Suitable for communication with or implementa
tion of the application provided in accordance with various
embodiments of the subject disclosure.
0063. There are a variety of systems, components, and
network configurations that Support distributed computing
environments. For example, computing systems can be con
nected together by wired or wireless systems, by local net
works or widely distributed networks. Currently, many net
works are coupled to the Internet, which provides an
infrastructure for widely distributed computing and encom
passes many different networks, though any network infra
structure can be used for exemplary communications made
incident to the systems as described in various embodiments.
0064. Thus, a host of network topologies and network
infrastructures, such as client/server, peer-to-peer, or hybrid
architectures, can be utilized. The "client' is a member of a
class or group that uses the services of another class or group
to which it is not related. A client can be a process, e.g.,
roughly a set of instructions or tasks, that requests a service
provided by another program or process. The client process

Feb. 28, 2013

utilizes the requested service without having to “know’ any
working details about the other program or the service itself.
0065. In a client/server architecture, particularly a net
worked system, a client is usually a computer that accesses
shared network resources provided by another computer, e.g.,
a server. In the illustration of FIG. 8, as a non-limiting
example, computing objects or devices 820, 822, 824, 826,
828, etc. can be thought of as clients and computing objects
810, 812, etc. can be thought of as servers where computing
objects 810, 812, etc., acting as servers provide data services,
Such as receiving data from client computing objects or
devices 820, 822, 824,826,828, etc., storing of data, process
ing of data, transmitting data to client computing objects or
devices 820, 822, 824,826, 828, etc., although any computer
can be considered a client, a server, or both, depending on the
circumstances.
0066. A server is typically a remote computer system
accessible over a remote or local network, such as the Internet
or wireless network infrastructures. The client process may
be active in a first computer system, and the server process
may be active in a second computer system, communicating
with one another over a communications medium, thus pro
viding distributed functionality and allowing multiple clients
to take advantage of the information-gathering capabilities of
the server.
0067. In a network environment in which the communica
tions network 840 or bus is the Internet, for example, the
computing objects 810, 812, etc. can be Web servers with
which other computing objects or devices 820,822,824, 826,
828, etc. communicate via any of a number of known proto
cols, such as the hypertext transfer protocol (HTTP). Com
puting objects 810, 812, etc. acting as servers may also serve
as clients, e.g., computing objects or devices 820, 822, 824,
826, 828, etc., as may be characteristic of a distributed com
puting environment.

Exemplary Computing Device
0068. As mentioned, advantageously, the techniques
described herein can be applied to any device. It can be
understood, therefore, that handheld, portable and other com
puting devices and computing objects of all kinds are con
templated for use in connection with the various embodi
ments. Accordingly, the below general purpose remote
computer described below in FIG. 9 is but one example of a
computing device.
0069 Embodiments can partly be implemented via an
operating system, for use by a developer of services for a
device or object, and/or included within application software
that operates to perform one or more functional aspects of the
various embodiments described herein. Software may be
described in the general context of computer executable
instructions, such as program modules, being executed by one
or more computers, such as client workstations, servers or
other devices. Those skilled in the art will appreciate that
computer systems have a variety of configurations and pro
tocols that can be used to communicate data, and thus, no
particular configuration or protocol is considered limiting.
0070 FIG.9 thus illustrates an example of a suitable com
puting system environment 900 in which one or aspects of the
embodiments described herein can be implemented, although
as made clear above, the computing system environment 900
is only one example of a Suitable computing environment and
is not intended to Suggest any limitation as to scope of use or
functionality. In addition, the computing system environment

US 2013/005.4533 A1

900 is not intended to be interpreted as having any depen
dency relating to any one or combination of components
illustrated in the exemplary computing system environment
900.
(0071. With reference to FIG. 9, an exemplary remote
device for implementing one or more embodiments includes
a general purpose computing device in the form of a computer
910. Components of computer 910 may include, but are not
limited to, a processing unit 920, a system memory 930, and
a system bus 922 that couples various system components
including the system memory to the processing unit 920.
0072 Computer 910 typically includes a variety of com
puter readable media and can be any available media that can
be accessed by computer 910. The system memory 930 may
include computer storage media in the form of volatile and/or
nonvolatile memory such as read only memory (ROM) and/or
random access memory (RAM). By way of example, and not
limitation, system memory 930 may also include an operating
system, application programs, other program modules, and
program data.
0073. A user can entercommands and information into the
computer 910 through input devices 940. A monitor or other
type of display device is also connected to the system bus 922
via an interface, such as output interface 950. In addition to a
monitor, computers can also include other peripheral output
devices Such as speakers and a printer, which may be con
nected through output interface 950.
0074 The computer 910 may operate in a networked or
distributed environment using logical connections to one or
more other remote computers, such as remote computer 980.
The remote computer 980 may be a personal computer, a
server, a router, a network PC, a peer device or other common
network node, or any other remote media consumption or
transmission device, and may include any or all of the ele
ments described above relative to the computer 910. The
logical connections depicted in FIG.9 include a network 982,
such local area network (LAN) or a wide area network
(WAN), but may also include other networks/buses. Such
networking environments are commonplace in homes,
offices, enterprise-wide computer networks, intranets and the
Internet.

0075. As mentioned above, while exemplary embodi
ments have been described in connection with various com
puting devices and network architectures, the underlying con
cepts may be applied to any network system and any
computing device or system in which it is desirable to
improve efficiency of resource usage.
0076 Also, there are multiple ways to implement the same
or similar functionality, e.g., an appropriate API, tool kit,
driver code, operating system, control, standalone or down
loadable software object, etc. which enables applications and
services to take advantage of the techniques provided herein.
Thus, embodiments herein are contemplated from the stand
point of an API (or other software object), as well as from a
software or hardware object that implements one or more
embodiments as described herein. Thus, various embodi
ments described herein can have aspects that are wholly in
hardware, partly inhardware and partly in Software, as well as
in software.
0077. The word “exemplary” is used herein to mean serv
ing as an example, instance, or illustration. For the avoidance
of doubt, the subject matter disclosed herein is not limited by
Such examples. In addition, any aspect or design described
herein as “exemplary' is not necessarily to be construed as

Feb. 28, 2013

preferred or advantageous over other aspects or designs, nor
is it meant to preclude equivalent exemplary structures and
techniques known to those of ordinary skill in the art. Fur
thermore, to the extent that the terms “includes,” “has,” “con
tains, and other similar words are used, for the avoidance of
doubt, such terms are intended to be inclusive in a manner
similar to the term “comprising as an open transition word
without precluding any additional or other elements when
employed in a claim.
0078. As mentioned, the various techniques described
herein may be implemented in connection with hardware or
software or, where appropriate, with a combination of both.
As used herein, the terms “component,” “module.” “system
and the like are likewise intended to refer to a computer
related entity, either hardware, a combination of hardware
and software, software, or software in execution. For
example, a component may be, but is not limited to being, a
process running on a processor, a processor, an object, an
executable, a thread of execution, a program, and/or a com
puter. By way of illustration, both an application running on
computer and the computer can be a component. One or more
components may reside within a process and/or thread of
execution and a component may be localized on one com
puter and/or distributed between one or more computers.
007.9 The aforementioned systems have been described
with respect to interaction between several components. It
can be appreciated that such systems and components can
include those components or specified sub-components,
some of the specified components or sub-components, and/or
additional components, and according to various permuta
tions and combinations of the foregoing. Sub-components
can also be implemented as components communicatively
coupled to other components rather than included within
parent components (hierarchical). Additionally, it can be
noted that one or more components may be combined into a
single component providing aggregate functionality or
divided into several separate sub-components, and that any
one or more middle layers, such as a management layer, may
be provided to communicatively couple to Such sub-compo
nents in order to provide integrated functionality. Any com
ponents described herein may also interact with one or more
other components not specifically described herein but gen
erally known by those of skill in the art.
0080. In view of the exemplary systems described herein,
methodologies that may be implemented in accordance with
the described subject matter can also be appreciated with
reference to the flowcharts of the various figures. While for
purposes of simplicity of explanation, the methodologies are
shown and described as a series of blocks, it is to be under
stood and appreciated that the various embodiments are not
limited by the order of the blocks, as some blocks may occur
in different orders and/or concurrently with other blocks from
what is depicted and described herein. Where non-sequential,
or branched, flow is illustrated via flowchart, it can be appre
ciated that various other branches, flow paths, and orders of
the blocks, may be implemented which achieve the same or a
similar result. Moreover, some illustrated blocks are optional
in implementing the methodologies described hereinafter.

CONCLUSION

I0081. While the invention is susceptible to various modi
fications and alternative constructions, certain illustrated
embodiments thereof are shown in the drawings and have
been described above in detail. It should be understood, how

US 2013/005.4533 A1

ever, that there is no intention to limit the invention to the
specific forms disclosed, but on the contrary, the intention is
to cover all modifications, alternative constructions, and
equivalents falling within the spirit and scope of the inven
tion.
0082 In addition to the various embodiments described
herein, it is to be understood that other similar embodiments
can be used or modifications and additions can be made to the
described embodiment(s) for performing the same or equiva
lent function of the corresponding embodiment(s) without
deviating therefrom. Still further, multiple processing chips
or multiple devices can share the performance of one or more
functions described herein, and similarly, storage can be
effected across a plurality of devices. Accordingly, the inven
tion is not to be limited to any single embodiment, but rather
is to be construed in breadth, spirit and scope in accordance
with the appended claims.
What is claimed is:
1. In a computing environment, a method performed at

least in part on at least one processor, comprising, providing
a managed interface for verifying a data recovery component,
including, accessing instructions for using a complementary
data recovery component, wherein the complementary data
recovery component is interoperable with the data recovery
component via the managed interface, emulating native data
recovery operations in response to the instructions and pro
ducing status information associated with the native data
recovery operations.

2. The method of claim 1, wherein emulating the native
data recovery operations further comprises identifying at
least one error in response to the native data recovery opera
tions.

3. The method of claim 1, wherein emulating the native
data recovery operations further comprises generating meta
data associated with using the complementary data recovery
component.

4. The method of claim 1, wherein emulating the native
data recovery operations further comprises simulating a
backup process or a restore process.

5. The method of claim 1, wherein emulating the native
data recovery operations in response to the instructions fur
ther comprises simulating a Volume Snapshot creation pro
CCSS,

6. The method of claim 1 further comprising validating at
least one error that is returned by the data recovery compo
nent.

7. The method of claim 1, wherein emulating the native
data recovery operations further comprises establishing at
least one parameter for creating at least one Volume Snapshot.

8. The method of claim 1, wherein emulating the native
data recovery operations further comprises converting the
instructions into at least one of the native data recovery opera
tions that correspond with the data recovery component.

9. The method of claim 1, wherein accessing the instruc
tions for using at least one complementary data recovery
component further comprises executing a script that gener
ates the instructions for performing a backup process or a
restore process.

10. The method of claim 1 further comprising comparing
the status information with a standard associated with a Vol
ume Snapshot creation process, a backup process or a restore

Feb. 28, 2013

process to produce a simulation result, wherein the simulation
result is communicated to the data recovery component.

11. In a computing environment, a system, comprising, an
emulation module for verifying a data recovery component
using a managed interface, wherein the managed interface is
configured to permit interoperability between the data recov
ery component and a complementary data recovery compo
nent, wherein the emulation module is further configured to
convert instructions from the data recovery component into
native data recovery operations for using the complementary
data recovery component, executing the native data recovery
operations and communicate a simulation result associated
with the native data recovery operations to the data recovery
component.

12. The system of claim 11, wherein the instructions are
produced from a script.

13. The system of claim 11, wherein the emulation module
validate at least one error returned by the data recovery com
ponent in response to the native data recovery operations.

14. The system of claim 11, wherein the emulation module
compares status information from the complementary data
recovery component with a standard to produce a simulation
result.

15. The system of claim 11, wherein the emulation module
generates metadata while executing of the native data recov
ery operations.

16. The system of claim 11, wherein the emulation module
simulates a backup process or a restore process.

17. One or more computer-readable media having com
puter-executable instructions, which when executed perform
steps, comprising:

access instructions for using a complementary data recov
ery component to process at least one Volume Snapshot,
wherein the complementary data recovery component
are interoperable with a data recovery component via
managed interface;

emulating native data recovery operations in response to
the instructions;

producing status information associated with the native
data recovery operations; and

verifying the data recovery component based on the status
information.

18. The one or more computer-readable media of claim 17
having further computer-executable instructions comprising:

validating at least one error returned by the data recovery
component in response to the native data recovery
operations.

19. The one or more computer-readable media of claim 17
having further computer-executable instructions comprising:

converting the instructions into at least one of the native
data recovery operations that correspond with the data
recovery component.

20. The one or more computer-readable media of claim 17
having further computer-executable instructions comprising:

comparing the status information with a standard associ
ated with a Volume Snapshot creation process, a backup
process or a restore process to produce a simulation
result; and

communicating the simulation result to the data recovery
component.

