a2 United States Patent

US012088849B2

ao) Patent No.: US 12,088,849 B2

Drugeon et al. 45) Date of Patent: Sep. 10, 2024
(54) ENCODER, DECODER, ENCODING (52) US. CL
METHOD, AND DECODING METHOD CPC HO4N 19/70 (2014.11); HO4N 19/132
(2014.11); HO4N 19/167 (2014.11); HO4N
(71) Applicant: Panasonic Intellectual Property 19/186 (2014.11)
Corporation of America, Torrance, CA (58) Field of Classification Search
us) CPC HO4N 19/70; HO4N 19/132; HO4N 19/167,
HO4N 19/186
(72) Inventors: Virginie Drugeon, Darmstadt (DE); See application file for complete search history.
Tadamasa Toma, Osaka (JP); Takahiro
Nishi, Nara (JP); Kiyofumi Abe, Osaka (56) References Cited
(IP); Yusuke Kato, Osaka (JP) U.S. PATENT DOCUMENTS
(73) Assignee: PANASONIC INTELLECTUAL 2015/0264404 Al* 9/2015 Hannuksela ... HO4N 19/30
PROPERTY CORPORATION OF 375/240.16
AMERICA, Torrance, CA (US) 2020/0021853 Al* 1/2020 Deshpande ... HO4N 21/85406
(*) Notice: Subject. to any disclaimer,. the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 34 days. International Search Report (ISR) issued on Feb. 22, 2021 in
International (PCT) Application No. PCT/JP2020/045744.
(21) Appl. No.: 17/832,973 (Continued)
(22) Filed: Jun. 6, 2022 Primary Examiner — Zhihan Zhou
(74) Attorney, Agent, or Firm — Wenderoth, Lind &
(65) Prior Publication Data Ponack, L.L..P.
US 2022/0321920 Al Oct. 6, 2022 57) ABSTRACT
L An encoder includes circuitry and memory coupled to the
Related U.S. Application Data circuitry. In operation, the circuitry determines whether or
(63) Continuation of application No. not a current Vide.o to be processed is a prqgressive Vidf:o.
PCT/IP2020/045744, filed on Dec. 8, 2020. When it is determined that the current YldeO is a progressive
video, the encoder encodes, into a bitstream, one syntax
. L element indicating a chroma location type which is infor-
(60) Provisional application No. 62/947,283, filed on Dec. mation indicating locations of chroma samples relative to
12, 2019. luma samples for a frame included in the current video.
When it is determined that the current video is not a
(51) Int. CIL progressive video, the encoder encodes two syntax elements
H04N 19/00 (2014.01) into the bitstream, each of which indicates the chroma
HO4N 19/132 (2014.01) location type for a different one of fields of two types
HO4N 197167 (2014.01) included in the current video.
HO4N 19/186 (2014.01)
HO4N 19/70 (2014.01) 2 Claims, 115 Drawing Sheets
Trs
160 M 200
DECODED
IMAGE STREAM STREAM IMAGE
et ENCODER DECODER >

US 12,088,849 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

H.265 (ISO/IEC 23008-2 HEVC (High Efficiency Video Coding)),
Dec. 1, 2013.

Virginie Drugeon, “AHG9: On Video Usability Information”, Joint
Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC
1/SC 29/WG 11, Document: JVET-Q0042, Jan. 2020, pp. 1-4.
Jill Boyce, et al., “Video usability information and supplemental
enhancement information for coded video bitstreams (Draft 3)”,
Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and
ISO/IEC JTC 1/SC 29/WG 11, Document: JVET-Q2007-v1, Jan.
2020, pp. 15-19.

Extended European Search Report issued on Dec. 14, 2022 in
corresponding European Patent Application No. 20899632.2.
“Text of ISO/IEC CD 23090-3 Versatile Video Coding”, ISO/IEC
JTC 1/SC 29/WG 11, No. n18692, Information technology—Coded
representation of immersive media—Part 3: Versatile video coding,
Jul. 2019, XP030221925.

* cited by examiner

US 12,088,849 B2

Sheet 1 of 115

Sep. 10, 2024

U.S. Patent

P A—

HOVIAL

HHAOOHA

INVHELS WVHNLS

JHA0OHA

YHAOINH e

N

0Oz AN

HOVINL
<

001

24,

DI

US 12,088,849 B2

Sheet 2 of 115

Sep. 10, 2024

U.S. Patent

G000

SOTEYWRGART

dFAVHEH 00

(L1871
a0

{Z1E1}
1

(11€1)

a3

(ois
e

1

OB

(Fei)
10

(£81)
ao

1)
Igle)

[enno

LIND

DINIAOD (3

(51
110

10

(1T

(211}
1)

(111)

011
13

(01)
1o

/

10

(G100

TONo

(010

HAOYVAM 045

L | e

sog | -

AoT1S

=

1L

R

LD

LD

O1Hg

SO

WAAVAH 40718

Aos

HOUls

WHOVHH HHALO

FEINLOId

BYOLO

jCh)

Sdd

Sdd

SdS

SdA

SLINDY AHHL

HOg (P

HOUTS (M

HUOLOIL {4)

1
H
H
H
i
i
H
i
¥
i
%
i
3
i
i
i
3
¥
w;
3
H
i
{
i
i
i
i
i
i
E
i
1
L5 W7 sy ey 4
DNIAOD (9)]
1
1
i
3
H
i
H
i
¢
H
:
§
H
H
H
i
i
i
b
¢
i
i
1
i
i
i
i
H
H
i

AONANHHS
OAATA (&)

¢ DId

U.S. Patent Sep. 10,2024 Sheet 3 of 115 US 12,088,849 B2

FIG. 3

ENCODING ORDER DECODING ORDER

SLICE 1

SLICE 2

SLICE &

SLICE 4 =

FIG. 4

ENCODING ORBER / DECODING ORDER

N
T

o e,
el ",

TILE § i e PILE 8

THE G o TILE 4

i
H
]

CTu

US 12,088,849 B2

Sheet 4 of 115

Sep. 10, 2024

U.S. Patent

hafialhclieclicieoch e diadhedhe ittt ittt il e dh et e i e tlialiacihechedhodiadiadiadiadioy |

¢
£ t
WHAVY ” m ”
asvd n
H 1y
b 1
: B
-
g
3
5
f
H
HEPAA ”
SRR HINYHNY ;
}
}
}
}
:
:
g
$
E1

Y

]

4
H3AVT
IVHOIWHEL

¢l

US 12,088,849 B2

Sheet 5 of 115

Sep. 10, 2024

U.S. Patent

HEANTY
HEVY @
4
3
3
H
H
i b1
H
SN VEING “
H
]
H
. S~ 3
yg ronsrg el grrern ¥
.- M...Muwm M\n,u s 3
o) m R '
o — ot 1 ¥ HAAYL
R A ET LAY e H Ty IR T
LIND 8800V , VHOLWNEL
. o H

9 "DIA

US 12,088,849 B2

Sheet 6 of 115

Sep. 10, 2024

U.S. Patent

AR

N

HOMUH
NOLISKIREE ~

\\)It\

HAIAWYHEVE NOLLSHES

i

OLNVHA?
AWVHY S NI

ff:tl.}lai‘slt‘isis

A

: AHOWEN
0¥

AWVES

k 4

HOLIGRN

"

061

¥

HALNT

3

a1 w71

951S

SHOWAW

MO

HOLIHIAY

B

VHENT

AOVEL

LU

gr1d

HOLAOERY
NOLLMGHYL

VR VL Y T vy

3
1
1
1
1
i
1
1
i
i
ki
1
1
i
i
i

A . e A W e e

3

A IOMENO
NI

3

(A

9711 A

HHWHOASNYUL
ARFHAME

115 1

TAZILAN TS
ASMIAN]

HAAOONT
Mwﬂwﬂv \@EMM

HADVIWL NOLEOI AN

F N SLNBE AR N OABNVHL

A

GINHIMALHEOD ,\\

WYHYLS

Lot

GHLLINYID

W L 4

HHFLINYND e SR

o]
-
S
7
i
o
&
k3

HOVINE

L TVNIDIHO

HALLI4S

o
Ve
<

Y
+%

R
80T oy mmngion

PHOAEKYHL

901

SR 4

kS
TYOEISAY
ROLEE G

i

sootg 90

L H1d

U.S. Patent

Sep. 10, 2024

¥1G. 8

Sheet 7 of 115

100

ENCODER
al

PROCESDOR

A

b,

k

A

8 o

MEMORY

US 12,088,849 B2

U.S. Patent Sep. 10,2024 Sheet 8 of 115 US 12,088,849 B2

FIG. @

START ENCODING)
| PROCESS
¥

| SPLIT BLOCK L/

:$ -~ QHZ

SELECT SPLITTING PATTERN o
¥

(START PROCESS OF BEACH BLOCK IN FIXED-SUZE 7{'5‘{,‘(){3'5{\

Yoo la Sa_jd

GENERATE PREBICTION IMAGE Sa 4
* I L
GENEHATE PREDICTION RESDUAL -/ . .
¥ Sa

GRENERATE QUANTIEZED COEBFFICIENTS

s

¥ f Sa B
ENCODE (%L'k\iiﬂ‘i} C{OE i*i{i ENTR/
PREDICTION PARAMETER
v '
RESTORE PREDICTION RESIDUAL

¥ o Jf’ b’dh

—_FINISHE
END ENCODING
PROCESS

U.S. Patent Sep. 10,2024 Sheet 9 of 115 US 12,088,849 B2

$
R aaat ’*\ .
3\ i
R ¥
i
¥
i
¥
{
i
=t Wy o
iy ¢ = i
i
i
i
]
i
I
{
§
4)
§
§
§
o fe ~f U oy
b H‘E = o=
H
H
H
MMMMMMMMMMMMMMMMMMM A,
Y
§
ot o~y QC‘E
at g o
DAt |
o~ 0
. 2|

FiG. 10

US 12,088,849 B2

Sheet 10 of 115

Sep. 10, 2024

U.S. Patent

KAOWHN
JIWYdd

mNHM

k4

AHOWAK
MY

HANIWHRLAA
DNBLLYIAS
MY

Y

HACLOKE Y] HHINT

9715

5

BE01

HHLLI IS

g115

L

(mmaammmmmm AEWEVEVEW

01

HAOINS
AdCELNT

J,.@:

HOLI I VHLNT

mwwm‘

HEWAOASGNVHL
HEHHEANT

Lt

v

RN CGISNVYL

N 901

L id

US 12,088,849 B2

Sheet 11 of 115

Sep. 10, 2024

U.S. Patent

DNLLLTIIS OM

N

SNOIDHY OML
OLNI DNILLI AR

A dH

SNOIDUY HHYHL
OINT ONLLLUTS

LA LH

SNOIDHY HO04d
OLNT DNELLITS

ol DA

U.S. Patent Sep. 10, 2024 Sheet 12 of 115 US 12,088,849 B2

= 2
<{: - =
o0
M
= e
by

U.S. Patent Sep. 10, 2024 Sheet 13 of 115 US 12,088,849 B2

HYT

it

3B
O

FIG. 131

US 12,088,849 B2

Sheet 14 of 115

Sep. 10, 2024

U.S. Patent

FIG. 14

i,
i, o
i orrt
e 7 kD
) i§
. vy P
: ortisnme, moieneen,
% o)
] o g
ek o
. Yorrrrrrrmigrorsrens. g (s
z - g] i
¢ peng
N sy
s
g [
i o by
4 i
o b0
3 3
o o
B o -
: o et
o) “
pec
Hana s R ermrarn i’
-
. o P
s o] ¥4
5 o 33

YRE

3y
+

TRANSFORMS

o
Foni
kg

]

DOT -V

DT - VHE

T -1

i

DT -

US 12,088,849 B2

T7

A T S S A A A S o S A A S i S A T s Sy

Sheet 15 of 115

Sep. 10, 2024

T8

3

o
L3

D

1

3

1

U.S. Patent

AL

&

T

2
¥
N

-

CA

RTIL

E

3
o,
e
oo

i
N
!
£

TIO

TION: HORIZO

]

{

i
L

DIRE
0O

DIREC
LOC

T8

X
AL

T
£

4

~
L L2
ory

b

DSTT

3

HORIZONT

STy
Al
EF

A%

e‘,{
-

7

e‘.{!
I A A

0

s BN

O
&

T
JCTIO

j

e‘,{

R

DIE

LOCATIO

DIREC

L

1
i
{
{
H
}
}
3
i
H
i
i
}
}
}
3
i
i
i
}
}
}
i
i
i
i
i
}
}
3
i
i
i
i
i
}
}
!
H
i
i
}
}
}
}
i
i
i
i
}
}
i
3
i
i
i
}
}
}
i
i
i
i
}
}
}
}

H

.

N

ATTO

8

Y.

1

N

1

A

-
¥

™~

LOC

US 12,088,849 B2

Sheet 16 of 115

Sep. 10, 2024

U.S. Patent

fa
bannt

o
I z"‘t

AdAL WHOASNVEL (ALOTTAS
\ ONLLVDIONT NOLLYWHOINT JUOONH

SN \;

Hd AL WHOASNYHL QALOWTES DNINTIIVY A

AANWHOAY A] LON

81 WHOASNVUL TVNODOHLYEO

SVHL DNLLYOION]
NOLLYVINHOANT HAOONH

GAWHOLTAA ST WHOASNVIL TVNODOHLYO

x

Ve

SHdAL WHOASNYUL A0 ALITYHIVT]
V IWOHA WHOASNVAL TYNODOHLAO
\ HOdA QS0 HY OL AdAL WHOASNVAL LA TS

(D SHA

NSO Hd 99

O Wd0d mﬁ,xmm IVNODOHLEO

AR

91 "DIA

US 12,088,849 B2

Sheet 17 of 115

Sep. 10, 2024

U.S. Patent

(INH

d30UD Hd AL WHOASNYH L
INODAS ONISN ¥001d
LNHYEO) WHOASKNYYL
TYNOODOHLIYO

.\ A

CTASOL A5 OL SLANOYD HIAL WHOISNVYL,
LSULE NI QA IONT SHIAL WHOASNVIL A0
ANO HOTHM ONILYDIONI NOLLYIWHOANT HOODNY

‘\ A
&ng

o

A00YDY Hd AL WHOASNVHL LSYIA NT GHAIV TN
AdAL WHOASNYHL DNISN MDOTd LNAHYND
A0 WHOASNVHL TVNODOHLYO WHOAMEd

s SHA

CADTVA
CTHd OF TV ALY 00

WHHLA

o INHOASNYYL,

L1 D14

US 12,088,849 B2

Sheet 18 of 115

Sep. 10, 2024

U.S. Patent

SINAHIDAAH 00 WHOASNVUL

HOVIOLS YALAWYEVd NOLLYZILNYAD

A

SENAIALHOD

(AZEINY OO

" Y LINM ONISSHOOU
PaOT NI
| AV
\ | NOLLVZIINYOD
A UOLVHINID
PRSI Ll) Eﬁvmew\w\&wrwﬁz@\wg@u S‘W M?avmmm W\MN&
s . S ST SOOI LNIRDIOD
9801 PRI ag01 ol | AOJ UALENVEVA
g NOLLVZIINYAO
NOLLVZILNVAD | MRty

HOLVIANTD SHLAWVIVA NOLLVZIINYOD FONAUHILIA

Legor e
UAZLINVD
YALAWVHYA NOLLVZILNYOD HONFUHLAAI Loy

YIAOONI
AJOMING

L

01t

ST Dl

U.S. Patent Sep. 10, 2024 Sheet 19 of 115 US 12,088,849 B2

FI1G. 19

, ' —— T NO
IS GUANTIZATION PO BE PERPOIRMEIR) :

YES
Y
GENEHATE QUANTIZATION PARAMETER FOR CURRENT B2
BLOCK

¥ f Sv_a

STORE QUANTIZATION PARAMETER FOR CURRENT BLOUK
{(o
g ~ CEYCY IR Y TR ! AFY T TV U GUR TIP CPYEUE AT ‘b\f‘_,_,_:‘i‘
QUANTIAE TRANSFORM CORFRFICIENTS USING /

GENERATED QUANTIZATION PARAMETER
¥ ~8v_5

OBTAIN QUANTIZATION PARAME Hli ‘ i’«‘{}f 1 PROCESSING
LINIT DIFFERENT FROM CURRENT BLOCK
GENERATE PREBICTED QUANTIZATHOIN PABAMETER FOR f -
CURRENT BLOCK, BASED ON QUANTIZATION PARAMETER
FOR PROCESSING UNIP DIFFERENT FROM CURRENT
BLOCK
¥ G =
INCE QUANTIZATION PARAMETER | /5%
METER FOR CURRENT BLOCK AND PREDICTED
QUANTIZATION PAHAMETER

GENERATE DIFFERE

¥ /SVMS
l ENCODE DIFFERENCE QUANTIZATION PARAMETER]

US 12,088,849 B2

HAAODNE

Sheet 20 of 115

Sep. 10, 2024

U.S. Patent

p DALY HHZTHVNIY
b «/& e i < N
PWVHHIS & ot e e
- — TYNDIS
AETIOUINOD g AT T L INW

X JXELNOD N
AVIVA ~
IXAINGD g0t 1

H
H
H
H
}
H
1
H
1
H
N AHZLINVOD)
H
H
H
H
H
H
3
H
}
}
H

 HHJOUNG AdOULNA

:-:: S

0¢ "DId

US 12,088,849 B2

Sheet 21 of 115

Sep. 10, 2024

U.S. Patent

e

S R K e o om e o o e me e R R R DR s G S e G 9 99 99 99 M9 MR R AR S R R R G 99 9% o9 99 9% o9 mm M N Am R KR S e G e ow 99 o 95 o9 e M s R R A

DNIAVS HOIVA LXELNOD

Sed0dd
Lo0d

Noune e e e e

Nt mne AR AR R R A AR R WS RS N W R RR AR RN AR R AR R R SRR W R R S e e ARl Rl AR RN AR R AR R AR R R NN N) R e Rl mme R AR AR RR AR R R SR R R W e e e e e

e e e e e e e e A

o R R SR R s R e W e W A

SRH0Ud HNIAOINA DLIFNHLIEY

S8HI0Hd
MO LD

> NOLLVZIHVYNIG

A e e WA e AR N R A e

. P PR PR e e e S e e e S S P MR MR PR MR AR PR R R SRR R e e M o e R e R R PR W R R RR R SRR S o e e e e MR e MR MR mR R e eR e e e e o e o

DNLLLHES HOYTVA LXHINOD TTVELINI

=

OLLVZTIVILING

DNICGOINY DIEHWHELIEY 40O NOLLVZIIVELING

W v e mee mw oma A e s man T

US 12,088,849 B2

Sheet 22 of 115

Sep. 10, 2024

U.S. Patent

T T 1

: VLAY VNS ”

) ” WOLADEXA | WOLNOAXH | »,w,g%%%mrw n

- ¢ e ¢ er [% R0 ER P § 34 M
™~ : AT OvE DNBIOOTEA | |

TOVIL ” oy
AHIONALENOOAY ! MY Hﬁ ./,&N .1 CELDNHE

ML : el o

; §

; WAL T dOOTT

66 DA

U.S. Patent Sep. 10, 2024 Sheet 23 of 115 US 12,088,849 B2

FIG. 23A

Caf G5 OB U8} e

r=N

FIG. 238

Co{npi iRy eIycieg o

FIG. 23C

CISPOLTEOIICLa Cea ClepOs PO T e

US 12,088,849 B2

Sheet 24 of 115

Sep. 10, 2024

U.S. Patent

o 1
¥ f

RP—C

SATINYS T
i)

BUIOI Y TV

F3OVE e

GAOVE e

SHTANYS
45

X0 ATV D0 |

GrAIY O *

A=

ST ATV e

BUN OVS

N Y

4

SHTANYS A

aes "HIA

U.S. Patent

Sep. 10, 2024

FiG. 23E

Sheet 25 of 115

OO0
OOO000
COO00

GO0

O‘

US 12,088,849 B2

US 12,088,849 B2

Sheet 26 of 115

Sep. 10, 2024

U.S. Patent

i & %\ fs.\, - R - LW
4y < 3 S I A Y OVe e
1O —iPe 4D ATV |« 0 OVS je

Qe

ATV 00
} BUIOIYD e
JHIOP

W) Bany P ﬁﬁm,ﬁ@. .
S Fry b Ove

U.S. Patent Sep. 10,2024 Sheet 27 of 115 US 12,088,849 B2

| S
o
e o
FEN it
bl gt
Fal
-
™
N
kY w
- &% =
" - o0
oo
ot
o
W g
e R
o
b
! o~
]

849 B2

12,088

US

Sheet 28 of 115

Sep. 10, 2024

U.S. Patent

G MRICRICAMIE T Taa
A wmmﬁw\\wm>wa HVHD
HAL A
. WL
HENINALH .
3084 |
uuuuuuuuuuu ATV TS
Y NOLLYNINALAC, . f\M%w.m et
HOLADAXE | g o N
ONTHIL : b .
{ Dy | L
; o | NOUyRIEBIaT) !
; : gﬁKL,,,:::%.,,,:\ !
(= 0
r..t.l..l.lwl llllllll e - .Sl..l.\\..llpl.illll\
AR iratal %
1
A Hi m NINHALA | o .
AHVONDL .
— AHVANAOY
10717 LTI B OL AV

¥ "Dl

US 12,088,849 B2

Sheet 29 of 115

Sep. 10, 2024

U.S. Patent

Qg +ebxg +ebxe+1h+ob+ody=3gb
vz + e thaepb s ody=1,b
8/ (F+ab+ I X+ 0bx E+0d x g+ 1y = b

od ALl
1d

1
1
f t
1
1
i
1
1

U.S. Patent Sep. 10, 2024 Sheet 30 of 115 US 12,088,849 B2

<
e
T
o~
nod
]
=
Qn e
b T, .t
o Sy
e L
A .
o & Q
&N v r
b et
e
S’
f—
o

US 12,088,849 B2

S HLO T

OMb HELL A0 SHOLDEA NOLLOW 40 SHHEYING
SUOOTE OML THL A0 NOLLVSNAGKROD NOLLOW HOJ SRV 40

ENAUALAWT EUY SX000d

11 8O AUVUINDOE 850HDY

CHERRICE

STHXIA HYOW HO ANG Ol SUNOISAHEO0 AV
OM BHL 40 SY0L0EA NOLLOW

CEAMAIE BN AL J0 HTVA BLYTOSY -

INOOE S50UOV sMD0Td

Sheet 31 of 115

SAD I WHOQASNVILL TVN
ANEOD HOEHM OIS ¥V EVH NV LN

KINJEE
SHANTONT mwmxw‘mm

LOF :@: M A0 WA AL AUVAN QQ |
303 WBOASNY YL OHEZ-NO

L A0 UNG LRVHTT ..m.&. 4

AT NOLOKTYA VHLINT ST SO0 HHE AQ UNO LSVHTT LY

RIS ?%.Q
DIHEM HOA AHVH .M w MSQ wﬂ:;\ \.3 Sﬁ\ %5@ NZ fu,\ o =y ,.:3 Tx\w.m HNOT :m.

C K m C& m,,m ‘&w m

Sep. 10, 2024

U.S. Patent

Old

US 12,088,849 B2

Sheet 32 of 115

Sep. 10, 2024

U.S. Patent

C aa)

ADVINT NOLLD I HA HLVHHNHD

g/

A

m LAVIS U

8¢ DA

US 12,088,849 B2

Sheet 33 of 115

Sep. 10, 2024

U.S. Patent

ﬂ AN v

X

RNOLLOIAWHd Lo 1Hs

_”,s.um, \\

o

A

NOLLVIVIVAA

NE@@ .\

A

UOHLAW GHIHL
DNISD HOVIN
NOMOWIHYd dAVHANGD

GOHLAN ONODUR
DNISO DV
NOLLOIGHHEd HLVHENTD

GOHLANW L5H
DNISO GOVING
NOLLOIGHHd HLVHENGD

\\ A
3170g

ﬁ...om\\\ 2

\ A
217oG

m JHVLS u

66 DIA

US 12,088,849 B2

Sheet 34 of 115

Sep. 10, 2024

U.S. Patent

m {IMC] v
A

ya

AOVINT NOLLODITHYd LOHTUS

¢ Pg

&,

NOLEVIYIVAY

A

& pg

r 3

NOLLOIGH Y HALNT

ONISO HDVIRT NOLLOD LAY HLVEUNYTD

»\\ A

q1ps

NOLLYH U VHLNT

ONISHT HODVINT NOLLODTGH YT BLVEANYTD

\\ A

BLPS

m JUVLS u

06 "Dld

U.S. Patent Sep. 10,2024 Sheet 35 of 115 US 12,088,849 B2

31

FI1G.

U.S. Patent Sep. 10, 2024

FIG. 32

(START)
¥

Sheet 36 of 115

US 12,088,849 B2

SELECT INTRA PREDICTION MODE

¥

GENERATE PREDICTION IMAGE
ACCORDING TO SELEC INTRA
PREICTION

,,, T

DETERMINE MOST PROBABLE
MODES (MPMR}

B SELECTED
INTRA PREDICTION
: i’\ MPMS?

| YIS /- See B

SET MPM FLAGTO L

w6

N A i\ A
INDICATING S
F\ E iv'k Pf\hi)i(

ORI INCL L*Di)

Sw_7
4 f“; W F

SET MPM FLAG TO O
ALTERNATIVELY, NO
SETTING OF MPM FLAG

\‘\H)\h I\T}‘ r\
PREDICTION MODES
WHICH ARE NOT
INCLUDED IN MPMS

r 3

END

U.S. Patent Sep. 10,2024 Sheet 37 of 115 US 12,088,849 B2

o3
¥
o
R 7
el P
B [aaat
e
=
L)

0 =«
0

TIME (POO)

Fi1G. 33

US 12,088,849 B2

Sheet 38 of 115

Sep. 10, 2024

U.S. Patent

{71Xpiyal

OF | 1d | 2" ISFTTT
b jed | ol 18I0
oryxppes

8y =)) 40 I8TT 4 0d01d AONTYHdHY

Pe "DId

US 12,088,849 B2

Sheet 39 of 115

Sep. 10, 2024

U.S. Patent

TYAGIsY

NOLIDKIHYd HLVHENAED

TVIHIISHY

- - -, -

HOVINT
NOLLIHIHYd
HIVHANAD

(NOLEDIIHAA
THLVYENHEINOD
NOLLOW)
NOLLYVSNAJdWOO NOLLOW

HDVINT NOLLIIA

- - _" . o nn

JOLYAA NOLLOW
ANINHH LA

£ g

- e e e e e e e S A A A M Rm AR WA WA

AW HATYHA

1 T~ 7708

HLVAIANYD

AW LOHTES

¥ S~ 1eg

CdaviEs

e "DId

US 12,088,849 B2

m (INH U ,,

: ANIAAY

HOUHIN TTYINION
HHLLNT TTVINHON

Sheet 40 of 115

JUAOONH LON SI NOLLYIWHOIN] GHAOINA ST NOLLVINYOANT NOILOW
KOLLOW HOTHA NI ZGOW NI AW JATYEA HOTHA NIHAOW NI AW HATHHA

Sep. 10, 2024

U.S. Patent

1]
C aavis)

9¢ DA

US 12,088,849 B2

(ENLLY) arse.
A

HOUAW TVINHON
D1Ed

3 ANV
TALNT TYINHON

Sheet 41 of 115

B GeaOONA LON B . ‘ HAOONT 5T HONHUHALI]
ADNHGHAATA AW HOTHM NI HAOW NI AW HATHHA AW HOTHM NTHAOW NT AW JATdHA

i

Sep. 10, 2024

U.S. Patent

1)
_

[]

Le i

US 12,088,849 B2

Sheet 42 of 115

Sep. 10, 2024

U.S. Patent

HAOW D14

AOOW AN

HAOR QAN NVHIL U HLO

AGOW AOUHAN

O

HONTHA AL
AW

G

NOLLVINHOAN
NOLLOW

HOOW HHINI

AOOW NOLLVAIMHA AN

v8e Dld

US 12,088,849 B2

Sheet 43 of 115

Sep. 10, 2024

U.S. Patent

-

)

7 HAOW SNIAAV

//

HAOW
A

HAOW
HAINT
TVINHON

HAOW

i i

dAOW
HIHHN
ANLAAY

AOON
JAWLY

HOOW

ATONVIHL

RAOW
J11D

AQOW
QAWK

HOOW
AHHN
TVINHON

HAOW

L onya

\ ATOW YAINI /

AN,

-

T HAVHE SN
HAOOW IdDOHHIN

NV IS8T AH ROLIVIHODHIVS ™

S/

qd86 DA

US 12,088,849 B2

Sheet 44 of 115

Sep. 10, 2024

U.S. Patent

f

AT HOVE H0d JOOT UNY

)

g8y

HONAH AL

SSHOUd NOLLVENAJWO) NOLLOW
f

AN

AW HATHHO

HHLLO
< SEINHYHAYY

CTHAODNA

E

NOLLVINHOUNT .

NOILOH S <y

HOLOIGAYd AW LOWTHS

HOLIHHA §7hg

1

AN

SALVAIANY) dOIDIdIHd AW LOVHLXH

1

(ISTTHIVAHINYD AW HIVHEANTD)
SLVOIONVYD AN NIVLHO

Mo0TY
e CPACTOUIN
A AW

1

ADOTE HOVH HO4 dO0T LUV LS

< EOdLO0O WVHHLE >

JHVLs

<NOLLVINYOAN]
AONHHHAAL >

6 A

US 12,088,849 B2

Sheet 45 of 115

Sep. 10, 2024

U.S. Patent

NOLLVINHOAN]
NOLLOATES

AN

L3I0 WVHHLE >

DO H

)

VA 04 4001 6

A

]

1

SHAIOM] |

NOLL

VENHIWNOOD NOLLOW

~

AW LOYHTHS

1

GESTT HLVAIANYD AW BLVHENADY
ALYUIANVD AW NIVLEO

AU
| HAONTIRIHY
, AHAOONH

HOO1E
e CPACOONY

MO HOVE HOAd JOOT JUVLS

TAVLS

A0 AW

<NOLLVINHOANT
HINFAHT AR >

0V DA

US 12,088,849 B2

Sheet 46 of 115

Sep. 10, 2024

U.S. Patent

MDOTE LNGEHND

ANV HOLITHEd AW 8V ISI'T JLVUI
AW WO HLVAIONYD AW 4!

#

HOd AW BV LI NDISEY

ALV

ASY
L SO R

| .&bg.\m Ld HONAHAATY
UHAODNA

3 -
Ty
{ 3]
I T
14 3
N‘\.Q

AHNEODI]
LNAHYN

Iy DI

US 12,088,849 B2

Sheet 47 of 115

Sep. 10, 2024

U.S. Patent

1)

4

(o

HALVIHINYD AW HHERLEI0EE WOYS LRNTHHLAT JAWH H8vHES

AltlllllilllIIIEitt!Illiilitittlltltll&ll

SAAWH

PAAWH

SdANWH

B AWH

TIAWH

dAd404d OdId dAWH

k2

k3

4 FLVAUINYD AN
,mzwﬁﬁmﬁ.m”mﬂ\‘,wv.‘w.ﬁ\wﬁ?.wM&m,‘r

T HLVOIANY D A
DRIGOGHDMAN ATIVLLY4S

LS ALVAIANYD AW

av A

U.S. Patent Sep. 10, 2024 Sheet 48 of 115 US 12,088,849 B2

FIG. 43

CREFERENCE < """" LPART) <QTREAM
INFORMATION> ‘ OUTPUT>

4 START LOOP w
f FOR BACH BLOCK

WART YL e E e {ye

RN ORTAIN MY CANDIDATE wd
BLOCK] NGENERATE MY
BLOUK CANDIDATE LIST)

¢
b

SRIETT .
BEST MV CANDIDATE o

k4

INCODE ¥ i
ii?é&t}ii’i}‘?ﬂi N ESTIMATION IN REGION |/
Bt oo SURROEINDING BEST MV CANOIIATE

Y

3
MOTION COMPENSATION
PROCESS

k END LOOP FOR EACH BLOCK)
(END)
C v

¥

US 12,088,849 B2

Sheet 49 of 115

Sep. 10, 2024

U.S. Patent

e

1AW

-
-
o
-
e

(L
o1 A7)
007 a0
T RHOLOM FVAL
NOLLOW

OAIN

P DI

U.S. Patent Sep. 10,2024 Sheet 50 of 115 US 12,088,849 B2

FIG. 45

o

| TEMPLATE 7
>

— 0

- f’ \

o

_ / Cur block
Ref0 Cur Pic

LR

U.S. Patent Sep. 10,2024 Sheet 51 of 115 US 12,088,849 B2

FIG. 464

e N \\
S N Y
< NN N
N NN
RN

FiG. 468

~ DD
S ENAN w\\
SN AN AN

U.S. Patent Sep. 10,2024 Sheet 52 of 115 US 12,088,849 B2

FIG. 47A

ENCODED BLOCK

K B £

b

CURRENT BLOCK

FIG. 478

(g };@} Oy vy

af

ENCODED BLOCK CURRENT BLOCK

U.S. Patent Sep. 10,2024 Sheet 53 of 115 US 12,088,849 B2

F1G. 47C

(g ¥t Dy vyt

2 0

=3 A —*
Vg Va

(X*c }‘*.} ~-. {e\“t ““_}

ENCODED BLOCK CURRENT BLOCK

U.S. Patent

Sep. 10, 2024

FIG. 48A

EN

Sheet 54 of 115

CODER BLOCK

D

H

| .
{ Vg

FIG. 488

EN

CURRENT BLOCK

CODED BLOCK

A i

13

R
{ ¥y

A F
Fif

CURRENT BLOCK

US 12,088,849 B2

U.S. Patent Sep. 10, 2024

FIG. 49A

{xge Yo

Sheet 55 of 115

US 12,088,849 B2

by, ¥y

b
¥

g, vl (R w9

ENCODED BLOCK

FIG. 408

CURRENT BLOCK

EP Y

R wyd vy

Vo ¥,

3

2 J«

(xg ¥

ENCODED BLOCK

CUBRENT BLOCK

US 12,088,849 B2

Sheet 56 of 115

Sep. 10, 2024

U.S. Patent

NOLLVINHOANT
NOLLOWIAS AN

CEOALO0
WyHHLS>

ﬁ MO HOVE HOd JOOT AN

A

MOOH-U0S HOVE HOd J0071

S

HIVSNHIWNOD NOLLOW HNTAAY

A

A

AW HNIAAV ALVIOVIVD

HAONAYHAAY

(400N E

L

A

ADOTL-E0S HOVE HOd 40071 ¥

HOOTd

INIOd TOYLNOD LV AN JATEHA

oo LA CHOOINT

A0 AW

MOOTE HOVE 404 dOOT LUVLS
C auvas)

<NOLLVINH O NG
AONTEHAHY >

04 "Old

U.S. Patent Sep. 10,2024 Sheet 57 of 115 US 12,088,849 B2

FIG. 51

BEFERENG > CALOCULATE AFFINE MV
PIOTURE)

P APRING MOTION COMPENSATION

L‘ LOOP FOR BACH SUB-RLOCK J

L DICFTRON BETIMATION Loor)

DETERMING MY -~
AT CONTROL POINT v

;f\w}“; MY
¥ Si@ DIFFERENCR

MOTION COMPENRBATION anl

k.4

L BND LOGE FOR BalH IzﬁL(.i(.’-K)

US 12,088,849 B2

Sheet 58 of 115

Sep. 10, 2024

U.S. Patent

NOLLILHV
CHRO0AS

Hae
INAHEND

.!r!...r“. m;w\.w».w
(NOYAS

,/ AW

JEULA

NOLBLAYE
AU

Vag "Old

US 12,088,849 B2

Sheet 59 of 115

Sep. 10, 2024

U.S. Patent

MOLLYO
Lmdid

SHATIHVS

SHTANYS
A0 148

L&A
A

A0LHS

Lhdid

7o\
e S

BATTAINYS oA X
JAE ANOOHEE

X

NN S 5 0 R S N N R S

dgy Dld

US 12,088,849 B2

Sheet 60 of 115

Sep. 10, 2024

U.S. Patent

&

e NLLLLYY L LS LA

¥

MOLLLLYYd]
JAHDVEAY

¥

A

NOLLJOd \\\\
dimtihd

8¢ DI

US 12,088,849 B2

Sheet 61 of 115

Sep. 10, 2024

U.S. Patent

HOOT HovE HOd J00TUNY J

%

AOVIRT NOLLOICOEY
UNODIE azﬁ ‘?wﬁﬁ NOLLIIOAYS
LICIQY QHIHNIEM

C,Q?x_ WA H L \ﬁm HMYE mZx GHOO
HOA BOVINT NOLIDIEHY] SLVHANTD

%

AW
CRODHS ONIED NOLILEYS GROMES 404

L

ADVIRI ROLLDHIA 8 TINOOMEE HLVEINID

X
&

1

;? SEHE ONISA NOLELLHYY 18414
AT ROLLYGANG L8 BUVHINAD

ﬁ

NOLLYWHOAN]T

NOLLOWIES €
NOLLOHTES <7

(A ONDDER(INY m.;..,.,m 15
LSPGO
HA mE\Jw Ewmr_ SV AN LR TS

$1)

:»—\

AW WO

M.w M\w« mw\: ummr“

\ﬂ

8T ANV AIANYD AR EVIENGT
HIVOIANVE AW NIV.IHO

1

NOLLYINYOANT
NOLALAYA

MELELAVE (ANODER NV NOLELLYVL
L5dEA OINT B LNGHAEND LIS

%

e
£7Xg
<LAdLNO
WVANLS

MG HOVH H04 JOOT IMVILS ;

JUVIS

<NOLLYWHOA

AuLLd
P EONEYEATY
CEGOONY

MO
mc_ﬂﬁ_r? 4

I
AT

64 "Dld

HHALOId LNHYHOD HY O HONTHEANY AHAOONH

US 12,088,849 B2

Sheet 62 of 115

Sep. 10, 2024

AT HONHYAANY
AW DNIANDOHYNS

ﬂm\

7 W

-

ADOTE INAYENO

U.S. Patent

e DA

US 12,088,849 B2

Sheet 63 of 115

Sep. 10, 2024

U.S. Patent

AW TTVNIA BV
AW TIATHEA
ANTINHALHE

\..e\ A

HAOW AW NI
APEUAIHAG

A

Coauvis D)

V‘ dapd

US 12,088,849 B2

Sheet 64 of 115

Sep. 10, 2024

U.S. Patent

(Ui AU TESVRCH ARSI
ANTdd4A CRERAIE HONHYALAY

UNODIS INHHYND LEgTd
L ADONE INETEAD]

7 - \\\
- R P e
e e e
L
A
o~ "

I SRS

i i
Y
v ®,

ALVUIHINVD

: e \u\,rw&
. : ' [R = ,
T AW ,

~,
s MOIaNYD e
7 ™~ e AW \\,\\ Pre
e .z.f e e
- \.\\ ./..a.(. \\,\\ \\\ \\.\\\
a e, o s -
.,
e, P \\\\

(U BANGIGNYD AW JO TN SONHSHLTY NV O BAVAIARNYD AW
40 AT BONAHAATY NO JUsvYE GRLVHHNDD LV IdNHL

9¢ "DI4

US 12,088,849 B2

Sheet 65 of 115

Sep. 10, 2024

U.S. Patent

L5TE
T NI DO

vy HONHYHARY

M00TH
LNANNOD LST1

(O PAN-==
UTPAI

T AR

I NI MOOId
HADNHYHATY

—

07T AWHUY

- - g o

e
an am wn wn wa we

oRo
XeReas

%

L9 D14

US 12,088,849 B2

Sheet 66 of 115

Sep. 10, 2024

U.S. Patent

& JHLS)

(% dHLS)

{1 J5LLS)

V84 Dld

US 12,088,849 B2

Sheet 67 of 115

Sep. 10, 2024

U.S. Patent

C oang D

m

RS RPN

i

| b UL

A

h,

LWLBHTIVING INIOI DNILIVLES

L

NYHL ddHLO L LNIOL LV 3500 81

e ¥ A

LALHHTTIVING ENTOZ DNILYV.LS

KVHL YHHLO INIOL LV IE00 8

| I dHLS |

A

C VI8 D

qd8e Old

US 12,088,849 B2

Sheet 68 of 115

Sep. 10, 2024

U.S. Patent

C ang)
£

HADVIND

grwg ML NOUOIATU LOTI0)
o AOYINT
g NOLLDIAHN SIVEINGD

1
C_Iuvis

1Y
Y, WO
OIS

6% "DId

US 12,088,849 B2

Sheet 69 of 115

Sep. 10, 2024

U.S. Patent

A
>

m

AOVIND NOLLIOAYE TN
SV EDVIRT NOLLOIGEYL
GHLIAGHOOND L4ET0

HOVINT NOLEYEYA
HERC AR m mxﬂwQ S.H K ?Aﬁ

A

mv

o ed DR

| NOLLIIOaUA

& uy B LVHENG

A

3

4 AW HATIHG

1

C

JYvILE

8} i)
FIWHO
HOTE

09 14

US 12,088,849 B2

Sheet 70 of 115

Sep. 10, 2024

U.S. Patent

7

y

Paz

TpBE 4 paig

i

1 paad

AN

d+PAg

Tpsg

ww .M.Vw‘ %

CINH

21 P8 A0 DNIAAVINIAD GALHDIEM
AL AOVINE NOLLOIGHEA LOH8H00

1

A HYVINY

HOVINE NOLLDIEAY A LOHY 80

1

AW A IV N

dHA NIVLHO

1

MO DNIBOHHDIH
LA 4O AT RIVIEOD

LEVIS

19 "Dl

US 12,088,849 B2

Sheet 71 of 115

Sep. 10, 2024

U.S. Patent

HOVINL
NOLLOITHYd TVNTd {17 padd Y peag pag

RN

A
N
MO m

AR e ONTHOBHOTAN L

LATL e \\M\\

EHYT o

AR € NI <) gy

. WHFId et W 1 S0 Py

VAW e R

ONAOEHDIN
L4

b

‘“\‘H:?@.ﬁ
\\\\\\
\\\\\\\

\.\-
AULLOId LNHHEILY GHOLDId @L lAMAdY

\

69 DI

US 12,088,849 B2

Sheet 72 of 115

Sep. 10, 2024

U.S. Patent

(HYNEDId-D)
M ALY

(LAAA DA

4,

0oy

(PAAIN O AN

<9 DI

US 12,088,849 B2

Sheet 73 of 115

Sep. 10, 2024

U.S. Patent

e

HAOIVA NOLLOMHYOD
DXIS0 F0NE LNAYEND ¥Od HOVINE NOLEURT LU HH00

,w\x«
. 3

A

(A4 58Y MOTA TYOLLAO ONISO

3 KRNI HO4 37TV A NOLLODESHOO0 TATHEA

AT

A

MG ANEHUER0
A0 MOOTH-EAS HIYH HOd {42 A MO TV OLLAO dATHAN

A

o 10T INEEUD) HOA
(AL AT SR D SHOVINT INHIGVED FAINEG

HOOTE INFUHEOD 04 (1 b SHOVHL ULV IOEINT HATHHA

ST ANTYEOO0 Y08 OVIRT NOLLHEYd FAAd

TTAVIS

79 Dld

US 12,088,849 B2

Sheet 74 of 115

Sep. 10, 2024

U.S. Patent

HOLIFHHOO ANVINT NOLLOIAHEL

AIVA NOLLIHEYHOD

N &

J9EL

HAATHAD

AIYA KOILEYHOD

MO TVLAO

A

QY HEOV L
CHLY IO BN

AIARAG AOTATIVILLIO

OV INRIGYESD A
IVILLEEA

oA
x;

ﬁv

{

el

ALY OAUN LN

HOVING

2T

ORIV IOLHALN

HOVINE

HAANHA HDVIN
GALYIO4HELNT

ML AN RAY 4971

{

AHOWHEW

HOLMOHEYd LN

./

92t
GO DI

US 12,088,849 B2

Sheet 75 of 115

Sep. 10, 2024

U.S. Patent

AOYINT NOLLAIGHHES

ADVINT ONAHHAHY

- - .
EeHH0Y
NOLLOATHOD 4D

A

WHLLAWVYHY NOLL YUY
ADNYNIWGT GLVTILY

A,

HINVNIIN

et

A

Hoaoid
LNHHHOD

AW

AUNLD I INTYEND

NOLLOWHYHOD
o3 AT HOS SNOFEIY
AN AT DNIGNNOMANS

Pa

d
NYNIOT D

Jad

™

"

HUNLON HONAUHATY

V89 D4

US 12,088,849 B2

Sheet 76 of 115

Sep. 10, 2024

U.S. Patent

-

HANLG

| AONAMAAAE NTHDYRT HONIHIATY 0 dariddv
\si\ 21 HHLAWNVEYd NOLLOHEH G BNV NIRRT HOHM

s | NI SSHNOUd NOLLOEHHO) HONVNINT ALO0dXH

A

HDNVHD SVH HONYNIINTYT AOH
HIVOIANT NOLIVINYOSNT DNISH Y4EHRVEY S
P NOLLOHYHOS ONVNINAT SIVINYIV)

MO LRHYHO0 DNIONOOBENS NOIDEY
ANAHHATY OIS GHONVIL) SVH HONVNINT
Pt MOH DNELVOIINT NOLLYIWYOANT LOVEEXH
YAl Y

FHNL HONATHATY WOHA MOOTY LNTHYD
O INFONGAIBHEYAO0 HOVNT HONEEIAEY NIVIEHO

=
N
¥
A

d99 "Dl

US 12,088,849 B2

Sheet 77 of 115

Sep. 10, 2024

U.S. Patent

o n w0 P 8 R A T S 0 PO R R W o w3 S A O o e o oy

14

i{txi{*%#i*t}vtw

NOLLOIIE U
2 077

gin
HOLOAKH
NOLLOIGAY

. "]~ -~ 5] 7

EMNM,

H
t 3
H
o AHOWHN | o HOLIIGHENd e
AWVHA y HHLNL 3
H i
vizs D18 :
| Rpowaw | f wosomasud | .
: ;
1 H
1 3
F]

0
ADVINT
NOLLDIGHYd
RAS1S1ECF I SLNATOLAHO0
NOLLDITAY AHZLINYOD

¥
H
H
H
H
H
H
i
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
i
H
§
i
§
H
H
H
H
H
i

AL o U HAWHOASNYYL | YAZILNYOD \,N ,

HALH
e

HOLVEANAD
&1 wﬁ WYHVE
WJIC &mﬁ

HAGODA

! JO0T xm% P UL ANT ASYAANI
e L7z N ¢ Lrn
_UDVIAL OV QEEDNUISNODIN 907 SINTILIAN00 WHOISN VYL
aAgOoHg 5::::::.:;.:..:;.:;.:....::;:.Eq,::::::;:; S LT

L I T R T

_AOBLINY

am\

£ V28~ HNILLYTAS

NOLLOIOHE

WYHHIS

L 20

US 12,088,849 B2

Sheet 78 of 115

Sep. 10, 2024

U.S. Patent

AHOWHN

g 3
74

k.4

HOSSHAOUL

w‘,\.}.\a«
M amaonna

ey
007z

89014

U.S. Patent Sep. 10,2024 Sheet 79 of 115 US 12,088,849 B2

FIG. 69

RESTORE PREDICTION RERIDUAL

\} - Sp 4
GENERATE PREDICTHIN IMAGE

A

b s
CIENERATE BECONSTRUCTED IMAGE

} Ep 6
FILTERING /

k'ﬁis\fﬂ PROCESSING OF FACH BLOOK,)

-]

a0

S ENTIRE
AN FINISHED?

(BN BECOIIN {’})

US 12,088,849 B2

Sheet 80 of 115

Sep. 10, 2024

U.S. Patent

AHOWHIW
AWYYA

hieS

AHOWHAW
Ho0rid

QMNW

\d

HANTINHALAA
DNLLIUIIS

HOLOIdHAYd
YHALNIT

A

5
i
g
g
g
i
;

¥

HOLOIGH A
YHINT

917 W

HAGOOHEA
AdOHINH

/Nf A7e

HAWHOABNVYL
ASHAAN]

US 12,088,849 B2

Sheet 81 of 115

Sep. 10, 2024

U.S. Patent

HAGOIEG
QLIAWHIIEY
AHVNIY

Y
N wm—

§— HUHZYVYNIHE

A

(QINHINIAIHOD TYNDIS] AULE
AAZLINY D) AHVNTH
TYNDIG 307 N
AT LI TN 606
| wETIoNINGD

JXHILNOD

ANVIVA LXTLNOD
GGOE

%
H
H
H
3
¥
H
¥
H
H
i
H
H
H
i
i
¥
H
H
¥
¥
¥
3
i
i
i
{
H
H
i
i
¥
¥
3
3
H
H
H
i
f

400530 AdOULNE

i
-4

e SRS AR

075

1L 7D

US 12,088,849 B2

Sheet 82 of 115

Sep. 10, 2024

U.S. Patent

' i
¥

* g Ty £ 1
! FE KT R e HeH20Hd i
: DNIAVE BOTVA LXLINOD RSO N
” rwuw.u a\w ﬁmw ¥
N ;

%,

T G bl e ool s e P W W W bl ol e o okl e W ol] e e o e e e o o o W B o bt e

¢ NOLLVZIHY NS]
m “
¢ t
i SSHOOU ”
w SO D “
! !
¥
S X SRS w
Y © NMIOOHT HLAWHLIEY ‘
s.. .\\
N
; DNILIAS :
! HOTVA LXEINOD TYLLINI \
: w
“)
M NowvzrviaNg)
N ~
1
M BNIGODHA DLl INHETa YV !
\ 40 NOILVZITYLLINI J

LS
. 4

g o - T B e L s L I A Thad

oL DId

US 12,088,849 B2

Sheet 83 of 115

Sep. 10, 2024

U.S. Patent

SLNATOIIAHO0
JAZILNVAD

AOVHOLS ALAWNVHVE NOLLYZLINVNAD

A
ooz | LINOONISSHOOMd
| INEYALATA M0OS YALAIWYYYd
NOILYZLINVID G4I01a34d

o O T HOLYUANGD HELANVHYA
EN @mm» 1) 8O NOLLVZIINVOS GULOI0INd
VALAWVHV] <10
NOLIVZIINY IO GFOZ INAUMND HOJ HALAINYEVY

¥ NOLYZLINY 0O GHLOI0EHd
JOLITYAEA i . — ;
- NOLLVZILNVOD 1 50 WOLVEANAD WALHNVEYS NOILVZLINYND
- ‘w._.}x ﬁw,,..\m. \wu ASHHANT LNIAS MO 'y T
WHOABNYHL o507 > WALANYUYA G
NOLLVZLINYND

YALAWVAV NOILVZILNY D AONAYHAATA

WAAOEA AJOUING
L3507

ld

U.S. Patent Sep. 10, 2024 Sheet 84 of 115 US 12,088,849 B2

FIG. 74

Is
INVERSE QUANTIZLS ’1 TON
L0 BE PERFOREMED?

NO

3 / Sy 132
OBTAIN DIFFERENCE QUANTIZATION PARAMETER

53 8 Fi1 ¥ 1$ - L;;V i %
OBTAIN QU ANTIZATION PARAMETER FOR ¥
PROCESSING UNIT DIFFERENT FROM CURRENT
BLOCK
¥

GENERATEP

REDICTLD QU ANTIZAT m\ P, \z\ AMETER e e 14
mm HCK, BASE]

N \.’i‘ifﬁ;'ﬁii}f\f A

2 —— Sy 10
STORE GUANTIZATION PARAMETER FOR CImweRT ™~

BLOCK

A ~ Sv 17

¥ y 7

INVERSE QUANTIZE QUANTIZED COEFFICIENTS

I

US 12,088,849 B2

Sheet 85 of 115

Sep. 10, 2024

U.S. Patent

NH

A

A AL WHOASNVHEL QUNTINHALAG DNISE
WHOASNVHL TYNODOHLYO BSHAANT WHO4HHd

A

(TH8l

WHOABNVHLTTVNODOHLHO 04
Hd AL WHOABNVUE NI HLHA

g1I8 r

A,

Ad AL WHOMENVY YL

NOLLYIWHOANE NIVIHO

ONELVOIANI wdA

‘

LINHSAY

TAWHOAYHS ST WHOASNYHL
TVNODOHLHO ONLLVEL DNILVOIINI

WAOAN]
51

11718

JAVLE

US 12,088,849 B2

Sheet 86 of 115

Sep. 10, 2024

U.S. Patent

(INH

.

g
3

PITRS

Ad AL
WHOASNYHL GUNINGHLHU DNIS
ADOH LNAHYD A0 WRIOASNVAL
TVNODOHLYO ASUHANT WHOLUHd

J00MY
AL WHOASNVIL ANODHIS

HNISN MO INAHIND 40
WHOASN VL TYNODOHLYO
ASHHANT WHOAMHD

\
1 ng

A

3

ON

eIng

A

WHOJSNVHI,
TVNODOHLYO 804 JUSH
Hd AL WHOASN VUL ANTINHHLHA

sl NAHY SVH 401080 HdAL
WHOASNYH, L HIA NTOHOTONT
mwm\w@ WHOAENYYL 40 UNO HOIHM
ONLLVOIANT NOILVINHOANI NIVIHO

6l 0y

\

Q&?m Ex ALAadudyd
OLTVOOH O NVHL 94TV ?w
CVAL ?aMO,MJZ,ﬂ 4

11 ng

JUVLS

D14

US 12,088,849 B2

Sheet 87 of 115

Sep. 10, 2024

U.S. Patent

e e il adiadiae il iatiadadclialie oo dhedie e dies 1

HOLOOEA

HOVINT AAGO0HO
HOVINL
ALDNHISNODTY
IR L]

HOLIHEXE

HOLOOHXH

E

HAL T 00T

s < v < WAL T
FIY OVS ONIOOTIHA
IENE AV AR

H
H
H
3
1y
3
3
H
H
14
i
H
H
H
H
H
3
3

<

HIWNWI
GHLOOYLENODEY

LL DA

US 12,088,849 B2

Sheet 88 of 115

Sep. 10, 2024

U.S. Patent

ﬁ (INGL U

A

17bg \

HOYIW NOLIDIGHY SLVIENED

A

8L 014

US 12,088,849 B2

Sheet 89 of 115

Sep. 10, 2024

U.S. Patent

|

QOHLHAW (HILL
DNISIHDVINI
NOLLOIHYd
ALVHANAD

.\\ A
97 AG

GOHLAN
AUIHL

GOHLAW ONOOHS
DINISH HDVING
NOLIDIGHYd
ALVHANAD

qa

QOHLHEW

ANODES

ANTWMILLA

m LHVLE v

SLAAON HOTHM

COHLEIN I8Y

NOLLOIGEYd

A LVHANTL
]

S
TG

s

T AOHLLAW
JLEHL

6L D14

US 12,088,849 B2

Sheet 90 of 115

Sep. 10, 2024

U.S. Patent

(TANIHY

(I

Het O,

s,
e,

™
#

ANTHINOD

A4 Ok

14
PANTIROD le

w&. TOVIE

NOLLOIA ww m&.

HLVYS

HAOW Ahn

ﬂ .,,wm.mﬂ

ML gmﬁw

ALVHE NI

HOOW K400

HOOW
NOMLOITHYd
YL
DNIATAAY
AY HOVIND
NOLL. ﬁaém dd
ALVHE

X T VHILNT
HNIATAIY
A€ HOVIT
L ﬁE NHD
GiL
LA wﬁqw FXHAN
IO ix

@;ﬁmr 1

SHA

Ft vy wdannr)

,.Nm hﬂ mw&.ﬁ

ON

Gt o
A0 M Eﬁ

SHCTOW 1Y nm?

.

AUOW WD

SEHDOH
ON

BHA
. @@.xk 0O

AR

LAVLS

OLLOIAHYd

SEINAILEICH 17)

YO8 DA

849 B2

088

Sep. 10, 2024 Sheet 91 of 115 US 12,

. Patent

U.S

f #* x 'y 4 & b, Fy
daON
wwm.._\: L TIVISHON HOON HUOW
4 xwm.fw A ;w Hw&(ﬁ.f ATV A4
; NOLLOIHE YL

(] «&QMQ&«?M ALYHANAD
HIVHHNY ?awm Jﬁmﬁ 4d &

& HLVHANAD

A

xﬁc W HAINTLE
NI x.\.m&%.,. Al
i \.; _.\M»_. qwm ;m*m M.M.am MMvHWW

HCOW AAPLY
ONIATAIY
A DV

NOLLOTOH o

Q M\mdnﬁmwﬁ

B
P2

k] RLE Jalur 3

{Guyy

. - (¢ Bayy ayBaven
) HOOW ANV TABIB
ON :
Oy CAAON
A (vw g mﬂv /e b/ wm.mrﬁ

AGOW
%«m@b gl
. A dY A AV
OLLWET Y BLVIENTD

i \D_QDN
YLV :.\w?m.

BLNYENAL

wm,m A Lr

mm O L

BHA

15
183 el
?wmmé& 3
SACTOWN Lx?w

T
xgﬁ.ﬂm: w&iﬁ:
SOOI NOLL IO
AHYIAENE

ft
iz mvm_m‘m,m&m 3

1#
HNOD

g

13 O

1A

US 12,088,849 B2

Sheet 92 of 115

Sep. 10, 2024

U.S. Patent

(N

1
 HOOIW NOILDIAHYd
a1 me VHLNT QNIRRT ONIATdAY

Al AOVINT NOLLOUTIN ALvas

b

SN NI QHATONT LON 81 HOIHM
AGOW NOLLOIAHEd VILNI d

ANYHLLH HOOW NOLLOIUHdd VNT 4!

SIWAW NI OHAYIONE
INGALEG

s.\. F3

LUmG

mw....amk\ WdW ENTINMHE LA

- t

FITRg

SN NI AAANRTO

GLON AUV HOTHM

DNILVOIONT NOLLVINHOANT NIVLHO

4
SWIW DNOWY
AGON NOLLOIOdud VILENT QHLOH TS
DNILVOIANT NOLLYIWYOANT NIV.LIAO

\\ A

- \M SHA
A uﬁfw e e o
© (1Y

WA 81 ATIALLY NUALTY)
HGINASAYd DV WA 5]

1 ﬁuﬁ,m

LUVIS

18 "Dld

US 12,088,849 B2

Sheet 93 of 115

Sep. 10, 2024

U.S. Patent

ANTAAY
HOWHW TTVINUON
HHINI TYIWHON

GHAOOHA STNOLLVIWHOANTI NOLLOW

-

ON HODTHM NI HOOW NI AW HAREA

AHAOHT
S NOLLVINGOANI NOLLOW
HOTHM NTHOOW NTAWN HATYHG

SO0

" OL NOLLVINHOAN]

MNOLLOW &1

m JUYLS U

SHA

8 DA

US 12,088,849 B2

Sheet 94 of 115

Sep. 10, 2024

U.S. Patent

INTAAY) (NH
AW TIYINHON
IS L)

(ANIAAV }
HALNTTVINHON

GHEAOONHA BT HONAUHAAIA AHAODAG 51 HONIYAA41d
AW ON HOITHM NI dGON NTAW HATMHG | AW HOTHM NI AAONW NI AW JATYAd

A

RGO
A OL AONAMAAAI AW

68 Dld

US 12,088,849 B2

Sheet 95 of 115

Sep. 10, 2024

U.S. Patent

HOLOIIEYd AN &

A0 HOVH HOHd JOOT UNY

AUNLId

SREO0H NOLLVENHAWOD NOLLOW

WUNNN— MO ¥ 1 B2 §2)

ANTYHAATA

qAdoodd

AN ——)

AW HATEHO

MEIRR AR TeT 1y A

A

NOLLOATHS —>

HOLOIAAYS AW JOHTHS

\ﬂ

SWLYOIONY D HOLDIATYd AW JOVYLXY

0

HoOTd

(LS HEVAIANYD AW HLVHENED)
SLVOIONYD AW NIVIYO

e A
A0 A

0

<LOdNT WVAHHLE>

A00Td HOVH 40d JOOT LYVES

JAVLS

Azcﬁw_ﬂﬁmﬁuxﬁw
AINTHALRY>

P2 DA

US 12,088,849 B2

Sheet 96 of 115

Sep. 10, 2024

U.S. Patent

A0 HOVE Y04 JOOTANH 4

A

BEdD0Hd NOLLVENAJIINOD NOLLOW

A

NOLLIVINHOANT s

AW LOATHS

NOWLOTTHS AW pyyg”™

£

A

s

(LSTTHILVOIONYD AW BLVEANAD)
ALVOUIGNYY AW NIVLYO

%

<LOANT WVHYLE>

SO0 HOVE 404 4001 INV.LS]

JUVLS

Hdilloid
¢ ADNHHALAY
HA00Ed

Moo
e {TALTOTAT
AOC AW

<NOLLVINHOANT
AONTTAIAY>

e DI

US 12,088,849 B2

Sheet 97 of 115

Sep. 10, 2024

U.S. Patent

MO HOVH HOA JOOTANG

1

e O NOLLYSNAJWOD NOLLOW

0

SLVOIONYD AW L8 ONTONDOWENS
NOIDHY NINOLLYINILSH

&

HHLOI
ADNTHHATY

2

ALVAIGANVO AN L8 LOHTHS

OO

0

ST ALVAIANYD AW BLVHUNYD)
HALVAIANYD AN NIVEHO

1

A

<INANT WYALLS>

A0 HOVH HOd JOOT JHVLS

)

JAVdS

MMy

e (FHO0HA

0O AN

<NOLLYINHOUNT
HONHYEHAU Y >

98 "Did

US 12,088,849 B2

Sheet 98 of 115

Sep. 10, 2024

U.S. Patent

MO HOVE Y04 JOOTANE

1

A0S HOVH HOA d0O0T

2

L -

NOLLYSNAINOD) NOLLOW UNTJAY

21 s

1

Rl

AW HNIAAV LV UIDTIVD)

$dNdoid
AONHYRAHY

1

AFAODAA

AOOT-406 HOVH 04 40071

yﬁ MoOd

NOLLYIWYO

3

NOLLOH TS AN |L

LINIOA TTORINGD LV AW JATEAA

l« GATONHT

o

A

118
4

MOOTY HOVH 404 400T.LHYLS

A AN
)

<LOANT WYHHELS>

LUVLS

<NOLLYWHOHANI
AINHEHATY>

L8 D4

US 12,088,849 B2

Sheet 99 of 115

Sep. 10, 2024

U.S. Patent

HOLOIAWY AN

I

OO HOVH HOJd dOOT (OND

1

MoOH-U08 HOVH HOd 40077

1

NOLLYSNAA WO NOLLOW INIAAV

1

AW ANIAY ALV IO

A

MoOrig-dias HOVE 404 JOOY

AN A4EA

A

J

104 TOULNGD LV AN HATHHA

AW M “f E
N Qﬁkg_ﬁmChKM

*

NOLWLOHTIS ——>
P

SNIOG TTOHINOD LV YOLOIOHYd AW GATHHA

0

AR
L

MOOd HOVA HOd 40O LHVLS

J

<LOANT WVHHIES>

LUV.LS

AL
ADNAGHAYH
REBR L

Hood
ticteteiexe

A AN

<NOLLVIWHOJINI

ADNAYHAAY>

g% "Dl

US 12,088,849 B2

Sheet 100 of 115

Sep. 10, 2024

U.S. Patent

&
ﬂ OO HOVH 04 SO0 ONE ,_
s

HOVINL

NOLLOIGHYd UNODAS UNY ADVINT NOLLOIGHYd L8814

A0 NOLLIGUV GALHDIAM DNINGO4UHd A MOOTd
LNHEHND 904 GOVINT NOLLIIOYHEd HLVEHENTD

»

AR GNODAS DNISH NOILILAYS ANOJAS

HOA ADVING NO w&pﬁmmmm ONODUS HLVHANAD

HHNLOI

AW LSHIA DNISA NOLLLLAY

HONHHHLHYE
GAaOooEd

PT RS

JEYEL A0 HOVINI NOLLOIAHH d LSt BLVHANAD
A

NOLLVIRHOANT
NOLLOHTIS AW —>

-\e?{:\\

(AW (INOOHS NV AW JEHI ANIWHHILAO

FHANYD AW WO GLVOTANYD AR LTS

A N

A

\.(!\\

ST HIVAIANVO AW HIVHINED)
HLVUIANYD AW NIVIEHO

DO
o (HAODH
A0 AW

rA NS~

A

NOLLYIWHOANT
NOLLLIYVY —>
]

NOLLILEVd ANOJHS

NV NOLLLIUVA LSYULE OLNT MO0 LNFHUND LITdE

P

11758

<LOANT WVHRLS>

S04 HOVA 404 dOOT LAV

................ %

LHVLS

<NOLLYIWHO!
AONAHHATY>

68 DA

US 12,088,849 B2

Sheet 101 of 115

Sep. 10, 2024

U.S. Patent

C ang D
A

AW
TAATEHA 40 NOIDAHY DNIUNAOYUNS
4 d0d DNIHDUVES Ad AW TVNIL HATMHEA

718 y

)

AGOW N NI AW UALRTHA

s)

C awvis D

06 DA

US 12,088,849 B2

Sheet 102 of 115

Sep. 10, 2024

U.S. Patent

)
W -~
S dilis ¥ LS
Y.
SHA
Ll VI
< LNIGA DNIIYVES NVHL WHIHLO INIOd E

(N

LS00 81

LESATIVING

LMIOd ONIDEVLS NVHL HEHLO AN G& w
&TC BN

_ T dHLE |

A,

C rvis D

16 Dld

US 12,088,849 B2

Sheet 103 of 115

Sep. 10, 2024

U.S. Patent

C ana D
1

Al J.zm \./\

AOVINT NOLLODIGHHL LOHYHOD

1 m.iﬂ.mmw \}k

A
HOVING
NOLLDIAWYd ALVEANAD
A

C pavis D

M
A WHO
g its)

US 12,088,849 B2

Sheet 104 of 115

Sep. 10, 2024

U.S. Patent

C ava D

AUVIANL NOLLOIUYM YD _
TYNIA SV OVINT NOLLOIUH Y]
GHLOHIHOONA LNJLN0

AOVINT NOLLOIOH M DNLLOAYYO0 AL
AOVINTI NOLLOIHYd "TVNIY ALVHUNGD

\\/\ A
g1 ug

prug ™ SHA

TN ANAd 318 OF

P

SSHIOUL NOLLOY

HHOD
=1 ‘

grug

e ADVINT NOLLOIGHYd HLVHENED

4

—~A AW HATYAA

£
C auvis

v.\w

€6 "DId

OrT

US 12,088,849 B2

Sheet 105 of 115

Sep. 10, 2024

U.S. Patent

1 PAg+T] Parg+paig

T pord

TAR

13 Poid 40 DNIdIVTEHAG GHLHOM A A
A HOVING NOLLDITHYd LOHYHOD

i

1AW A OVINI NOLIDIOHYS NIVLEO

AOOTE DNIHOUHDIEN Y3440 40 AW NIVLHO

\ﬂ,

Tpatd 40O ONIdIVTHIAQ GRLHOIEM
At HOVINE NOLLDHIAYd LOYYHOO

%

T AW A HOVINT NOLLDIOHYd NIVLHO

ADOTYG DNRMOUHDIEN L4RT 40 AW NIVIHO

SRIAAR

Y6 "DId

S

HHAODHA
A OWHO

US 12,088,849 B2

Sheet 106 of 115

Sep. 10, 2024

U.S. Patent

HIVIVA
NOLEDHYHO) DNISO MDOTE INHYHOD Y0 dDVINT NOLLOI

FHd LOHYE00

A

(A8 38 MOE TTVDIRLAO

DNISN MOOTY INAYUNO NTTTHX] HOA AVIVA NOLLDAYHOO AATMEA

A

HOOTH INEYHND A0 MD0T9-408 HOVE

HOJ (A8 Xa) MOTT IVOLLAO SAITNE
A

h

MOOT INFUHND MO (A1 W3 X1 8D SHOVINTL LNAIOVHD HAMHAJ

i

HOOTE INHUHNAD O (I o) SUOVINT GHLYTOdUHLNT HATMHJ

1

HOOTI LNIYEOD Y04
ADVINE NOLEDIUTHH AT

&6 DI

US 12,088,849 B2

Sheet 107 of 115

Sep. 10, 2024

U.S. Patent

AU HONAYEATY
NI HOVINT HONUHHATY OL dUTTddY 51 HHLANYYV NOLEDHEHOD
HONYNINDT HOTHMA NI S8HD0UL NOLLOHHEHOD AONYNINAT HLOXXY

e, \m\{

E 3

JADNYHD 8VH
HONVNINIYT MOH DNILVOIANT
NOLLVIWHOANT DNISO HALIWVEVA NOLLOHYYHOD HONVNINAT HLVINDIVD

&

HOOTE LNTHUND DNIONDOVHNS NOIDHY HONAYHIUY DNISO
GHONVHD SVH EDINVNINOT MOH DNLLVDIANT NOLLVINHOANT LOVEIXH

)

\\‘ll.\,

HULDd
AINHYAARY WOHA MOOTE LNHHUD HOA HDVIRT A0NHYHIHY NIVLHO

118

JAV.LE

96 "Dld

U.S. Patent Sep. 10, 2024 Sheet 108 of 115 US 12,088,849 B2

FI1G. 97

val_parametersd) | DBESCRIPTOR

aspect. rafio info. prosent flag uli

iaspret_ratio_info_preseni_flagh {

aspect_ratio_constant_flag ull)

aspect ratio_ids

Hlaspect_ratio_ide == 2550 {

sar_widih uliss}

sae height

3

i

oversear_info_prosent_flag ulld

iffeversean_info_present_{lagh §

pverscan_appropriate_flag 1

colour_deseription_present_flng w1}

fenlowr_deseription,_present flagh

. . £y
colour_primaries win

fraafer_characteristios (&)

matriy_roafly (&)

full_range_flag al 1)

K
§

general_progressive_source_flag u(l)

general_interiaced_sowrce_flag ull)

chrarna_loe_wdo_present_flag ulll

iflehroma_Joe_info_preseni,_flaght

if{general_progressive_source_flag && !general_interlaced_source_flag)

chroma_sample_loe_type {rame elv)

Y f
elen

chroma_sample_Jov type_top fiedd uely)

chrogra_sample_loe_{ype_bottom field wady)

o

[

U.S. Patent Sep. 10, 2024 Sheet 109 of 115 US 12,088,849 B2

FIG. 98

START _

RECEIVE VIDEQ INCLUDING
4:2:0 CHROMA CONTENT

¢- . §102

READ VUT INFORMATION

q, - 5103

general_prograssive_source flag
IS EQUALTO 1AND
general_inferlacad_sowee_flug
IS BQUALTOO?

8105

YES

- D104

CHROMA UPSAMPLING OF TOP CHROMA UPSAMPLING FOR
FIELD USING CHROMA WHOLE PICTURE USING
LOCATION TYPE CHROMA LOCATION TYPE
chroma_sample_loc_type_{op field chroma_sample loc_type_frame

......

RELATIVE TOLUMA RELATIVE TO LUMA

v __S106

-

CHROMA UPSAMPLING OF
BOTTOM FIELD USING CHROMA
LOCATION TYPE
ehvoma_sample_loe_type_botiom_field

RELATIVE

v v

patto;

U.S. Patent Sep. 10, 2024

Sheet 110 of 115 US 12,088,849 B2

FIG. 99

7 © CURRENT ™S
VIDEQ TO BE PROCESSED

IS PROGRESSIVE
~YIDEQ?

=202

23208

ENCODE, INTO BITSTREAM,
ONE SYNTAX ELEMENT
INDICATING CHROMA
LOCATION TYPE FOR FRAME
INCLUDED IN CURRENT VIDEQ

ENCODE, INTO BITSTREAM, TWO
SYNTAX ELEMENTS EACH INDICATING
CHROMA LOCATION TYPE FOR
DIEFERENT ONE OF FIELDS OF TWO
TYPES INCLUDED IN CURRENT VIDEO

FI1G. 100

START

CURRENT

L3301

{'{

IS PRO

5302

5303

DECODE, FROM BITSTREAM,
ONE SYNTAX ELEMENT
~ INDICATING CHROMA
LOCATION TYPE FOR FRAME
INCLUDED IN CURRENT VIDEO

DECODE, FROM BISTREAM, TWO
SYNTAX ELEMENTS EACH INDICATING
CHROMA LOCATION TYPE FOR
DIFFERENT ONE OF FIELDS OF TWQ
TYPES INCLUDED IN CURRENT VIDED

US 12,088,849 B2

Sheet 111 of 115

Sep. 10, 2024

U.S. Patent

3
1}
i
u
N
M
i
i
i
H

/

g% ANOHIIMVING opeeeprpd

AN

cOTXS YA AIAOH]

£h T, HTAHES DANHTLNT
e B g

prine dONVIIddV *oprre
AWOH ”

<7 B01X0

e

f,f\ . >

A

o1 1%s VHAINY] FOTIZD &ﬁmﬁwy&@ N Py T{3T ¥ }
p , Pk e:h/

N@ kkkkkkkkkkk | W <y SoPO(] SNOLWVOINOWINGD (g 0he

5, x 7 I
\\\\\\\\\\\\\\\\.g\\ / ll.l#\V}-.l!\.\\
1I%s HOIAHG wzm\eﬁww LOTYS ﬁ \ ,..;\,:s\.

S

(T e

{
#

\i 4

Bixe

1115 HHLOdWNOD & 4\\\

7 Ve s01s2 HIAYUS DNIWVHYLS
- £ CS? o Wy ,

““““““““““ Cd I
- :::::“] \w.\

\

AF
FRFTTT T TN gitxe JLITTHLVYS

&U:H.eo)o‘.o!l#m.{f..\\w.,liql 5 - \.N\ -

s e

‘W..\ua srenue (R wevass {1 n»‘&\.

o
L1139 NV QALY

I}I}Il~l!l
HE T

101 "DIA

U.S. Patent Sep. 10,2024 Sheet 112 of 115 US 12,088,849 B2

AN
=\
N/
J’“%;ﬁE
)
N
{v? M
C\] ¢
= A3
o R
-
oo’
-
o

U.S. Patent Sep. 10, 2024 Sheet 113 of 115 US 12,088,849 B2

FIG. 103

U.S. Patent Sep. 10,2024 Sheet 114 of 115 US 12,088,849 B2

FIG. 104

e dES

{oxd85) S

US 12,088,849 B2

Sheet 115 of 115

Sep. 10, 2024

U.S. Patent

HATTIOULNOD
LAdNT
HOVANLLNI
i
zaysa

AMERTNERLY.
a . w Qm 1Y
LOERS

AANIY LD

. 0100V
HOSEH 0

TVNDIS OJUIAL TOUPRE

T E o2y .x f » maw
TYNYY
ALY

GpRG 7

AV ATALN
HHSO

Do 7

AGVAHALNT

.....W)mmw.u.mm.w
VHHRYD AXA -
YEIYD T NG

MAXAIALLIOWN popnoe

E£Y-1

WIS e TOTE e

s AHOWHAN g o

e

Gope FOFXO

TFTOUINGT STV AT
w71 0T A00vindor. [LINSN VL
| erxe jopre P

(YD

A
\

-

HOPXD ©

JEITOHEY K idd!
HHMOG

1 L HITIOHANGD
N rvidsia | AV IdsId

-

s

G011 "Dl

US 12,088,849 B2

1

ENCODER, DECODER, ENCODING
METHOD, AND DECODING METHOD

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a U.S. continuation application of PCT
International Patent Application Number PCT/IP2020/
045744 filed on Dec. 8, 2020, designating the United States
of America, which is based on and claims priority of U.S.
Provisional Patent Application No. 62/947,283 filed on Dec.
12, 2019. The entire disclosures of the above-identified
applications, including the specifications, drawings and
claims are incorporated herein by reference in their entirety.

BACKGROUND

1. Technical Field

The present disclosure relates to video coding, and par-
ticularly relates to video coding and decoding systems,
components, and methods.

2. Description of the Related Art

With advancement in video coding technology, from
H.261 and MPEG-1 to H.264/AVC (Advanced Video Cod-
ing), MPEG-LA, H.265/HEVC (High Efficiency Video Cod-
ing) and H.266/VVC (Versatile Video Codec), there remains
a constant need to provide improvements and optimizations
to the video coding technology to process an ever-increasing
amount of digital video data in various applications.

Note that H.265 (ISO/JEC 23008-2 HEVC)YHEVC (High
Efficiency Video Coding) relates to one example of a con-
ventional standard regarding the above-described video cod-
ing technology.

SUMMARY

For example, an encoder according to an aspect of the
present disclosure includes circuitry and memory coupled to
the circuitry. In operation, the circuitry: determines whether
or not a current video to be processed is a progressive video.
When it is determined that the current video is a progressive
video, the circuitry encodes one syntax element indicating a
chroma location type into a bitstream. The chroma location
type is information indicating locations of chroma samples
relative to luma samples for a frame included in the current
video. When it is determined that the current video is not a
progressive video, the circuitry encodes two syntax elements
into the bitstream. Each of the two syntax elements indicates
the chroma location type for a different one of fields of two
types included in the current video.

Each of embodiments, or each of a configuration or a
method that is part of the embodiment enables at least one
of the following: an improvement in encoding efficiency; an
improvement in image quality; a reduction in the processing
amount of encoding/decoding; a reduction in the scale of
circuitry; and an improvement in the processing speed of
encoding/decoding. Alternatively, each of the embodiments
of the present disclosure or a configuration or a method that
is part of the embodiment enables appropriate selection of
operations or components used in encoding and decoding,
such as appropriate filters, block sizes, motion vectors,
reference pictures, and reference blocks. Note that the
present disclosure includes disclosure regarding configura-
tions and methods which may provide advantages other than

15

25

30

40

45

2

the above-described ones. Examples of such configurations
and methods include a configuration or method for improv-
ing encoding efficiency while reducing an increase in the
processing amount.

Additional benefits and advantages according to an aspect
of the present disclosure will become apparent from the
specification and drawings. The benefits and/or advantages
may be individually obtained by various embodiments and
features of the specification and drawings, and not all of
which need to be provided in order to obtain one or more of
such benefits and/or advantages.

It is to be noted that these general or specific aspects may
be implemented using a system, an integrated circuit, a
computer program, or a computer-readable medium (record-
ing medium) such as a CD-ROM, or any combination of
systems, methods, integrated circuits, computer programs,
and media.

BRIEF DESCRIPTION OF DRAWINGS

These and other objects, advantages and features of the
disclosure will become apparent from the following descrip-
tion thereof taken in conjunction with the accompanying
drawings that illustrate a specific embodiment of the present
disclosure.

FIG. 1 is a schematic diagram illustrating one example of
a configuration of a transmission system according to an
embodiment;

FIG. 2 is a diagram illustrating one example of a hierar-
chical structure of data in a stream;

FIG. 3 is a diagram illustrating one example of a slice
configuration;

FIG. 4 is a diagram illustrating one example of a tile
configuration;

FIG. 5 is a diagram illustrating one example of an
encoding structure in scalable encoding;

FIG. 6 is a diagram illustrating one example of an
encoding structure in scalable encoding;

FIG. 7 is a block diagram illustrating one example of a
configuration of an encoder according to an embodiment;

FIG. 8 is a block diagram illustrating a mounting example
of the encoder;

FIG. 9 is a flow chart illustrating one example of an
overall encoding process performed by the encoder;

FIG. 10 is a diagram illustrating one example of block
splitting;

FIG. 11 is a diagram illustrating one example of a
configuration of a splitter;

FIG. 12 is a diagram illustrating examples of splitting
patterns;

FIG. 13 A is a diagram illustrating one example of a syntax
tree of a splitting pattern;

FIG. 13B is a diagram illustrating another example of a
syntax tree of a splitting pattern;

FIG. 14 is a chart illustrating transform basis functions for
each transform type;

FIG. 15 is a diagram illustrating examples of SVT;

FIG. 16 is a flow chart illustrating one example of a
process performed by a transformer;

FIG. 17 is a flow chart illustrating another example of a
process performed by the transformer;

FIG. 18 is a block diagram illustrating one example of a
configuration of a quantizer;

FIG. 19 is a flow chart illustrating one example of
quantization performed by the quantizer;

FIG. 20 is a block diagram illustrating one example of a
configuration of an entropy encoder;

US 12,088,849 B2

3

FIG. 21 is a diagram illustrating a flow of CABAC in the
entropy encoder;

FIG. 22 is a block diagram illustrating one example of a
configuration of a loop filter;

FIG. 23A is a diagram illustrating one example of a filter
shape used in an adaptive loop filter (ALF);

FIG. 23B is a diagram illustrating another example of a
filter shape used in an ALF;

FIG. 23C is a diagram illustrating another example of a
filter shape used in an ALF;

FIG. 23D is a diagram illustrating an example where Y
samples (first component) are used for a cross component
ALF (CCALF) for Cb and a CCALF for Cr (components
different from the first component);

FIG. 23E is a diagram illustrating a diamond shaped filter;

FIG. 23F is a diagram illustrating an example for a joint
chroma CCALF (JC-CCALF);

FIG. 23G is a diagram illustrating an example for JC-
CCALF weight index candidates;

FIG. 24 is a block diagram illustrating one example of a
specific configuration of a loop filter which functions as a
DBF;

FIG. 25 is a diagram illustrating an example of a deblock-
ing filter having a symmetrical filtering characteristic with
respect to a block boundary.

FIG. 26 is a diagram for illustrating a block boundary on
which a deblocking filter process is performed;

FIG. 27 is a diagram illustrating examples of Bs values;

FIG. 28 is a flow chart illustrating one example of a
process performed by a predictor of the encoder;

FIG. 29 is a flow chart illustrating another example of a
process performed by the predictor of the encoder;

FIG. 30 is a flow chart illustrating another example of a
process performed by the predictor of the encoder;

FIG. 31 is a diagram illustrating one example of sixty-
seven intra prediction modes used in intra prediction;

FIG. 32 is a flow chart illustrating one example of a
process performed by an intra predictor;

FIG. 33 is a diagram illustrating examples of reference
pictures;

FIG. 34 is a diagram illustrating examples of reference
picture lists;

FIG. 35 is a flow chart illustrating a basic processing flow
of inter prediction;

FIG. 36 is a flow chart illustrating one example of MV
derivation;

FIG. 37 is a flow chart illustrating another example of MV
derivation;

FIG. 38A is a diagram illustrating one example of cat-
egorization of modes for MV derivation;

FIG. 38B is a diagram illustrating one example of cat-
egorization of modes for MV derivation;

FIG. 39 is a flow chart illustrating an example of inter
prediction by normal inter mode;

FIG. 40 is a flow chart illustrating an example of inter
prediction by normal merge mode;

FIG. 41 is a diagram for illustrating one example of an
MYV derivation process by normal merge mode;

FIG. 42 is a diagram for illustrating one example of an
MYV derivation process by a history-based motion vector
predictor/predictor (HMVP) mode;

FIG. 43 is a flow chart illustrating one example of frame
rate up conversion (FRUC);

FIG. 44 is a diagram for illustrating one example of
pattern matching (bilateral matching) between two blocks
located along a motion trajectory;

10

15

20

25

30

35

40

45

55

4

FIG. 45 is a diagram for illustrating one example of
pattern matching (template matching) between a template in
a current picture and a block in a reference picture;

FIG. 46A is a diagram for illustrating one example of MV
derivation in units of a sub-block in affine mode in which
two control points are used;

FIG. 46B is a diagram for illustrating one example of MV
derivation in units of a sub-block in affine mode in which
three control points are used;

FIG. 47A is a conceptual diagram for illustrating one
example of MV derivation at control points in an affine
mode;

FIG. 47B is a conceptual diagram for illustrating one
example of MV derivation at control points in an affine
mode;

FIG. 47C is a conceptual diagram for illustrating one
example of MV derivation at control points in an affine
mode;

FIG. 48A is a diagram for illustrating an affine mode in
which two control points are used;

FIG. 48B is a diagram for illustrating an affine mode in
which three control points are used;

FIG. 49A is a conceptual diagram for illustrating one
example of a method for MV derivation at control points
when the number of control points for an encoded block and
the number of control points for a current block are different
from each other;

FIG. 49B is a conceptual diagram for illustrating another
example of a method for MV derivation at control points
when the number of control points for an encoded block and
the number of control points for a current block are different
from each other;

FIG. 50 is a flow chart illustrating one example of a
process in affine merge mode;

FIG. 51 is a flow chart illustrating one example of a
process in affine inter mode;

FIG. 52A is a diagram for illustrating generation of two
triangular prediction images;

FIG. 52B is a conceptual diagram illustrating examples of
a first portion of a first partition and first and second sets of
samples;

FIG. 52C is a conceptual diagram illustrating a first
portion of a first partition;

FIG. 53 is a flow chart illustrating one example of a
triangle mode;

FIG. 54 is a diagram illustrating one example of an
advanced temporal motion vector prediction/predictor
(ATMVP) mode in which an MV is derived in units of a
sub-block;

FIG. 55 is a diagram illustrating a relationship between a
merge mode and dynamic motion vector refreshing
(DMVR);

FIG. 56 is a conceptual diagram for illustrating one
example of DMVR;

FIG. 57 is a conceptual diagram for illustrating another
example of DMVR for determining an MV;

FIG. 58A is a diagram illustrating one example of motion
estimation in DMVR;

FIG. 58B is a flow chart illustrating one example of
motion estimation in DMVR;

FIG. 59 is a flow chart illustrating one example of
generation of a prediction image;

FIG. 60 is a flow chart illustrating another example of
generation of a prediction image;

FIG. 61 is a flow chart illustrating one example of a
correction process of a prediction image by overlapped
block motion compensation (OBMC);

US 12,088,849 B2

5

FIG. 62 is a conceptual diagram for illustrating one
example of a prediction image correction process by
OBMC;

FIG. 63 is a diagram for illustrating a model assuming
uniform linear motion;

FIG. 64 is a flow chart illustrating one example of inter
prediction according to BIO;

FIG. 65 is a diagram illustrating one example of a
configuration of an inter predictor which performs inter
prediction according to BIO;

FIG. 66A is a diagram for illustrating one example of a
prediction image generation method using a luminance
correction process by local illumination compensation
(LIC);

FIG. 66B is a flow chart illustrating one example of a
prediction image generation method using a luminance
correction process by LIC;

FIG. 67 is a block diagram illustrating a configuration of
a decoder according to an embodiment;

FIG. 68 is a block diagram illustrating a mounting
example of a decoder;

FIG. 69 is a flow chart illustrating one example of an
overall decoding process performed by the decoder;

FIG. 70 is a diagram illustrating a relationship between a
splitting determiner and other constituent elements;

FIG. 71 is a block diagram illustrating one example of a
configuration of an entropy decoder;

FIG. 72 is a diagram illustrating a flow of CABAC in the
entropy decoder;

FIG. 73 is a block diagram illustrating one example of a
configuration of an inverse quantizer;

FIG. 74 is a flow chart illustrating one example of inverse
quantization performed by the inverse quantizer;

FIG. 75 is a flow chart illustrating one example of a
process performed by an inverse transformer;

FIG. 76 is a flow chart illustrating another example of a
process performed by the inverse transformer;

FIG. 77 is a block diagram illustrating one example of a
configuration of a loop filter;

FIG. 78 is a flow chart illustrating one example of a
process performed by a predictor of the decoder;

FIG. 79 is a flow chart illustrating another example of a
process performed by the predictor of the decoder;

FIG. 80A is a flow chart illustrating a portion of other
example of a process performed by the predictor of the
decoder;

FIG. 80B is a flow chart illustrating the remaining portion
of the other example of the process performed by the
predictor of the decoder;

FIG. 81 is a diagram illustrating one example of a process
performed by an intra predictor of the decoder;

FIG. 82 is a flow chart illustrating one example of MV
derivation in the decoder;

FIG. 83 is a flow chart illustrating another example of MV
derivation in the decoder;

FIG. 84 is a flow chart illustrating an example
prediction by normal inter mode in the decoder;

FIG. 85 is a flow chart illustrating an example
prediction by normal merge mode in the decoder;

FIG. 86 is a flow chart illustrating an example
prediction by FRUC mode in the decoder;

FIG. 87 is a flow chart illustrating an example
prediction by affine merge mode in the decoder;

FIG. 88 is a flow chart illustrating an example
prediction by affine inter mode in the decoder;

FIG. 89 is a flow chart illustrating an example
prediction by triangle mode in the decoder;

of inter

of inter

of inter

of inter

of inter

of inter

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 90 is a flow chart illustrating an example of motion
estimation by DMVR in the decoder;

FIG. 91 is a flow chart illustrating one specific example of
motion estimation by DMVR in the decoder;

FIG. 92 is a flow chart illustrating one example of
generation of a prediction image in the decoder;

FIG. 93 is a flow chart illustrating another example of
generation of a prediction image in the decoder;

FIG. 94 is a flow chart illustrating another example of
correction of a prediction image by OBMC in the decoder;

FIG. 95 is a flow chart illustrating another example of
correction of a prediction image by BIO in the decoder;

FIG. 96 is a flow chart illustrating another example of
correction of a prediction image by LIC in the decoder;

FIG. 97 is a diagram illustrating an example of video
usability information (VUI) syntax structure;

FIG. 98 is a flow chart illustrating an example of an
operation performed by a decoder according to a first aspect;

FIG. 99 is a flow chart illustrating an operation performed
by the encoder;

FIG. 100 is a flow chart illustrating an operation per-
formed by the decoder;

FIG. 101 is a block diagram illustrating an overall con-
figuration of a content providing system for implementing a
content distribution service;

FIG. 102 is a diagram illustrating an example of a display
screen of a web page;

FIG. 103 is a diagram illustrating an example of a display
screen of a web page;

FIG. 104 is a diagram illustrating one example of a
smartphone; and

FIG. 105 is a block diagram illustrating an example of a
configuration of a smartphone.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

Introduction

An encoder according to an aspect of the present disclo-
sure includes circuitry and memory coupled to the circuitry.
In operation, the circuitry: determines whether or not a
current video to be processed is a progressive video. When
it is determined that the current video is a progressive video,
the circuitry encodes one syntax element indicating a
chroma location type into a bitstream. The chroma location
type is information indicating locations of chroma samples
relative to luma samples for a frame included in the current
video. When it is determined that the current video is not a
progressive video, the circuitry encodes two syntax elements
into the bitstream. Each of the two syntax elements indicates
the chroma location type for a different one of fields of two
types included in the current video.

Accordingly, the encoder encodes only one syntax ele-
ment indicating a chroma location type when a current video
to be processed is a progressive video, and this reduces the
processing amount. The coding efficiency of the encoder is
therefore enhanced.

For example, the circuitry may determine whether the
current video is a progressive video or an interlaced video,
using a first flag indicating whether or not the current video
is a progressive video and a second flag indicating whether
or not the current video is an interlaced video. The first flag
and the second flag are included in a video usability infor-
mation syntax structure.

This enables the encoder to determine whether the current
video is a progressive video or an interlaced video even

US 12,088,849 B2

7

when, for example, the current video includes a video whose
display mode (i.e., a scanning mode for display) is not
specified. Accordingly, the encoder can perform an appro-
priate process on the current video, and the coding efficiency
of the encoder is therefore enhanced.

For example, the circuitry may further encode, into the
bitstream, a third flag indicating whether or not the infor-
mation indicating the locations of chroma samples relative
to luma samples for the frame is included in the bitstream as
the one syntax element or the two syntax elements. In a case
where the third flag indicates that the information indicating
the locations of chroma samples relative to luma samples for
the frame is included in the bitstream, the circuitry may:
encode the one syntax element into the bitstream when it is
determined, using the first flag and the second flag, that the
current video is a progressive video; and encode the two
syntax elements into the bitstream when it is determined,
using the first flag and the second flag, that the current video
is an interlaced video.

This enables the encoder to switch a syntax element to be
encoded based on whether the current video is a progressive
video or an interlaced video. Accordingly, the encoder can
perform an appropriate process on the current video, and the
encoding efficiency of the encoder is therefore enhanced.

A decoder according to an aspect of the present disclosure
includes circuitry and memory coupled to the circuitry. In
operation, the circuitry: determines whether or not a current
video to be processed is a progressive video. When it is
determined that the current video is a progressive video, the
circuitry decodes one syntax element indicating a chroma
location type from a bitstream. The chroma location type is
information indicating locations of chroma samples relative
to luma samples for a frame included in the current video.
When it is determined that the current video is not a
progressive video, the circuitry decodes two syntax elements
from the bitstream. Each of the two syntax elements indi-
cates the chroma location type for a different one of fields of
two types included in the current video.

Accordingly, the decoder decodes only one syntax ele-
ment indicating a chroma location type when a current video
to be processed is a progressive video, and this reduces the
processing amount. The processing efficiency of the decoder
is therefore enhanced.

For example, the circuitry may determine whether the
current video is a progressive video or an interlaced video,
using a first flag indicating whether or not the current video
is a progressive video and a second flag indicating whether
or not the current video is an interlaced video. The first flag
and the second flag are included in a video usability infor-
mation syntax structure.

This enables the decoder to determine whether a current
video to be processed is a progressive video or an interlaced
video even when, for example, the current video includes a
video whose display mode (i.e., a scanning mode for dis-
play) is not specified. Accordingly, the decoder can perform
an appropriate process on the current video, and the pro-
cessing efficiency of the decoder is therefore enhanced.

For example, the circuitry may further decode, from the
bitstream, a third flag indicating whether or not the infor-
mation indicating the locations of chroma samples relative
to luma samples for the frame is included in the bitstream as
the one syntax element or the two syntax elements. In a case
where the third flag indicates that the information indicating
the locations of chroma samples relative to luma samples for
the frame is included in the bitstream, the circuitry may:
decode the one syntax element from the bitstream when it is
determined, using the first flag and the second flag, that the

30

40

45

50

55

8

current video is a progressive video; and decode the two
syntax elements from the bitstream when it is determined,
using the first flag and the second flag, that the current video
is an interlaced video.

This enables the decoder to switch a syntax element to be
decoded based on whether the current video is a progressive
video or an interlaced video. Accordingly, the decoder can
perform an appropriate process on the current video, and the
processing efficiency of the decoder is therefore enhanced.

An encoding method according to an aspect of the present
disclosure includes: determining whether or not a current
video to be processed is a progressive video; when it is
determined that the current video is a progressive video,
encoding one syntax element indicating a chroma location
type into a bitstream, where the chroma location type is
information indicating locations of chroma samples relative
to luma samples for a frame included in the current video;
and when it is determined that the current video is not a
progressive video, encoding two syntax elements into the
bitstream, where each of the two syntax elements indicates
the chroma location type for a different one of fields of two
types included in the current video.

Accordingly, a device that executes the encoding method
encodes only one syntax element indicating a chroma loca-
tion type when a current video to be processed is a progres-
sive video, and this reduces the processing amount. The
encoding efficiency of the device is therefore enhanced.

A decoding method according to an aspect of the present
disclosure includes: determining whether or not a current
video to be processed is a progressive video; when it is
determined that the current video is a progressive video,
decoding one syntax element indicating a chroma location
type from a bitstream, where the chroma location type is
information indicating locations of chroma samples relative
to luma samples for a frame included in the current video;
and when it is determined that the current video is not a
progressive video, decoding two syntax elements from the
bitstream, where each of the two syntax elements indicates
the chroma location type for a different one of fields of two
types included in the current video.

Accordingly, a device that executes the decoding method
decodes only one syntax element indicating a chroma loca-
tion type when a current video to be processed is a progres-
sive video, and this reduces the processing amount.

The processing efficiency of the device is therefore
enhanced.

Definitions of Terms

The respective terms may be defined as indicated below
as examples.
(1) Image

An image is a data unit configured with a set of pixels, is
a picture or includes blocks smaller than a picture. Images
include a still image in addition to a video.
(2) Picture

A picture is an image processing unit configured with a set
of pixels, and is also referred to as a frame or a field.
(3) Block

A block is a processing unit which is a set of a particular
number of pixels. The block is also referred to as indicated
in the following examples. The shapes of blocks are not
limited. Examples include a rectangle shape of MxN pixels
and a square shape of MxM pixels for the first place, and
also include a triangular shape, a circular shape, and other
shapes.

US 12,088,849 B2

(Examples of Blocks)

slice/tile/brick

CTU/super block/basic splitting unit

VPDU/processing splitting unit for hardware

CU/processing block unit/prediction block unit (PU)/

orthogonal transform block unit (TU)/unit

sub-block
(4) Pixel/Sample

A pixel or sample is a smallest point of an image. Pixels
or samples include not only a pixel at an integer position but
also a pixel at a sub-pixel position generated based on a pixel
at an integer position.
(5) Pixel Value/Sample Value

A pixel value or sample value is an eigen value of a pixel.
Pixel or sample values naturally include a luma value, a
chroma value, an RGB gradation level and also covers a
depth value, or a binary value of O or 1.
(6) Flag

A flag indicates one or more bits, and may be, for
example, a parameter or index represented by two or more
bits. Alternatively, the flag may indicate not only a binary
value represented by a binary number but also a multiple
value represented by a number other than the binary number.
(7) Signal

A signal is the one symbolized or encoded to convey
information. Signals include a discrete digital signal and an
analog signal which takes a continuous value.
(8) Stream/Bitstream

A stream or bitstream is a digital data string or a digital
data flow. A stream or bitstream may be one stream or may
be configured with a plurality of streams having a plurality
of hierarchical layers. A stream or bitstream may be trans-
mitted in serial communication using a single transmission
path, or may be transmitted in packet communication using
a plurality of transmission paths.
(9) Difference

In the case of scalar quantity, it is only necessary that a
simple difference (x-y) and a difference calculation be
included. Differences include an absolute value of a differ-
ence (Ix-yl), a squared difference (x"2-y"2), a square root of
a difference ((x-y)), a weighted difference (ax-by: a and b
are constants), an offset difference (x—y+a: a is an offset).
(10) Sum

In the case of scalar quantity, it is only necessary that a
simple sum (x+y) and a sum calculation be included. Sums
include an absolute value of a sum (Ix+yl), a squared sum
(X"2+y"2), a square root of a sum (Vx+y)), a weighted
difference (ax+by: a and b are constants), an offset sum
(x+y+a: a is an offset).
(11) Based on

A phrase “based on something” means that a thing other
than the something may be considered. In addition, “based
on” may beused in a case in which a direct result is obtained
or a case in which a result is obtained through an interme-
diate result.
(12) Used, Using

A phrase “something used” or “using something” means
that a thing other than the something may be considered. In
addition, “used” or “using” may be used in a case in which
a direct result is obtained or a case in which a result is
obtained through an intermediate result.
(13) Prohibit, Forbid

The term “prohibit” or “forbid” can be rephrased as “does
not permit” or “does not allow”. In addition, “being not
prohibited/forbidden™ or “being permitted/allowed” does
not always mean “obligation”.

10

15

20

25

30

35

40

45

50

55

60

65

10

(14) Limit, Restriction/Restrict/Restricted

The term “limit” or “restriction/restrict/restricted” can be
rephrased as “does not permit/allow” or “being not permit-
ted/allowed”. In addition, “being not prohibited/forbidden”
or “being permitted/allowed” does not always mean “obli-
gation”. Furthermore, it is only necessary that part of
something be prohibited/forbidden quantitatively or quali-
tatively, and something may be fully prohibited/forbidden.
(15) Chroma

An adjective, represented by the symbols Cb and Cer,
specifying that a sample array or single sample is represent-
ing one of the two color difference signals related to the
primary colors. The term chroma may be used instead of the
term chrominance.
(16) Luma

An adjective, represented by the symbol or subscript Y or
L, specifying that a sample array or single sample is repre-
senting the monochrome signal related to the primary colors.
The term luma may be used instead of the term luminance.

Notes Related to the Descriptions

In the drawings, same reference numbers indicate same or
similar components. The sizes and relative locations of
components are not necessarily drawn by the same scale.

Hereinafter, embodiments will be described with refer-
ence to the drawings. Note that the embodiments described
below each show a general or specific example. The numeri-
cal values, shapes, materials, components, the arrangement
and connection of the components, steps, the relation and
order of the steps, etc., indicated in the following embodi-
ments are mere examples, and are not intended to limit the
scope of the claims.

Embodiments of an encoder and a decoder will be
described below. The embodiments are examples of an
encoder and a decoder to which the processes and/or con-
figurations presented in the description of aspects of the
present disclosure are applicable. The processes and/or
configurations can also be implemented in an encoder and a
decoder different from those according to the embodiments.
For example, regarding the processes and/or configurations
as applied to the embodiments, any of the following may be
implemented:

(1) Any of the components of the encoder or the decoder
according to the embodiments presented in the descrip-
tion of aspects of the present disclosure may be sub-
stituted or combined with another component presented
anywhere in the description of aspects of the present
disclosure.

(2) In the encoder or the decoder according to the embodi-
ments, discretionary changes may be made to functions
or processes performed by one or more components of
the encoder or the decoder, such as addition, substitu-
tion, removal, etc., of the functions or processes. For
example, any function or process may be substituted or
combined with another function or process presented
anywhere in the description of aspects of the present
disclosure.

(3) In methods implemented by the encoder or the
decoder according to the embodiments, discretionary
changes may be made such as addition, substitution,
and removal of one or more of the processes included
in the method. For example, any process in the method
may be substituted or combined with another process
presented anywhere in the description of aspects of the
present disclosure.

(4) One or more components included in the encoder or
the decoder according to embodiments may be com-

US 12,088,849 B2

11

bined with a component presented anywhere in the
description of aspects of the present disclosure, may be
combined with a component including one or more
functions presented anywhere in the description of
aspects of the present disclosure, and may be combined
with a component that implements one or more pro-
cesses implemented by a component presented in the
description of aspects of the present disclosure.

(5) A component including one or more functions of the
encoder or the decoder according to the embodiments,
or a component that implements one or more processes
of the encoder or the decoder according to the embodi-
ments, may be combined or substituted with a compo-
nent presented anywhere in the description of aspects
of the present disclosure, with a component including
one or more functions presented anywhere in the
description of aspects of the present disclosure, or with
a component that implements one or more processes
presented anywhere in the description of aspects of the
present disclosure.

(6) In methods implemented by the encoder or the
decoder according to the embodiments, any of the
processes included in the method may be substituted or
combined with a process presented anywhere in the
description of aspects of the present disclosure or with
any corresponding or equivalent process.

(7) One or more processes included in methods imple-
mented by the encoder or the decoder according to the
embodiments may be combined with a process pre-
sented anywhere in the description of aspects of the
present disclosure.

(8) The implementation of the processes and/or configu-
rations presented in the description of aspects of the
present disclosure is not limited to the encoder or the
decoder according to the embodiments. For example,
the processes and/or configurations may be imple-
mented in a device used for a purpose different from the
moving picture encoder or the moving picture decoder
disclosed in the embodiments.

[System Configuration]

FIG. 1 is a schematic diagram illustrating one example of
a configuration of a transmission system according to an
embodiment.

Transmission system Trs is a system which transmits a
stream generated by encoding an image and decodes the
transmitted stream. Transmission system Trs like this
includes, for example, encoder 100, network Nw, and
decoder 200 as illustrated in FIG. 1.

An image is input to encoder 100. Encoder 100 generates
a stream by encoding the input image, and outputs the
stream to network Nw. The stream includes, for example, the
encoded image and control information for decoding the
encoded image. The image is compressed by the encoding.

It is to be noted that a previous image before being
encoded and being input to encoder 100 is also referred to
as the original image, the original signal, or the original
sample. The image may be a video or a still image. The
image is a generic concept of a sequence, a picture, and a
block, and thus is not limited to a spatial region having a
particular size and to a temporal region having a particular
size unless otherwise specified. The image is an array of
pixels or pixel values, and the signal representing the image
or pixel values are also referred to as samples. The stream
may be referred to as a bitstream, an encoded bitstream, a
compressed bitstream, or an encoded signal. Furthermore,
the encoder may be referred to as an image encoder or a
video encoder. The encoding method performed by encoder

20

25

35

40

45

50

55

60

65

12

100 may be referred to as an encoding method, an image
encoding method, or a video encoding method.

Network Nw transmits the stream generated by encoder
100 to decoder 200. Network Nw may be the Internet, the
Wide Area Network (WAN), the Local Area Network
(LAN), or any combination of these networks. Network Nw
is not always limited to a bi-directional communication
network, and may be a uni-directional communication net-
work which transmits broadcast waves of digital terrestrial
broadcasting, satellite broadcasting, or the like. Alterna-
tively, network Nw may be replaced by a medium such as a
Digital Versatile Disc (DVD) and a Blu-Ray Disc (BD)®,
etc. on which a stream is recorded.

Decoder 200 generates, for example, a decoded image
which is an uncompressed image by decoding a stream
transmitted by network Nw. For example, the decoder
decodes a stream according to a decoding method corre-
sponding to an encoding method by encoder 100.

It is to be noted that the decoder may also be referred to
as an image decoder or a video decoder, and that the
decoding method performed by decoder 200 may also be
referred to as a decoding method, an image decoding
method, or a video decoding method.

[Data Structure]

FIG. 2 is a diagram illustrating one example of a hierar-
chical structure of data in a stream. A stream includes, for
example, a video sequence. As illustrated in (a) of FIG. 2,
the video sequence includes a video parameter set (VPS), a
sequence parameter set (SPS), a picture parameter set (PPS),
supplemental enhancement information (SEI), and a plural-
ity of pictures.

In a video having a plurality of layers, a VPS includes: a
coding parameter which is common between some of the
plurality of layers; and a coding parameter related to some
of the plurality of layers included in the video or an
individual layer.

An SPS includes a parameter which is used for a
sequence, that is, a coding parameter which decoder 200
refers to in order to decode the sequence. For example, the
coding parameter may indicate the width or height of a
picture. It is to be noted that a plurality of SPSs may be
present.

A PPS includes a parameter which is used for a picture,
that is, a coding parameter which decoder 200 refers to in
order to decode each of the pictures in the sequence. For
example, the coding parameter may include a reference
value for the quantization width which is used to decode a
picture and a flag indicating application of weighted predic-
tion. It is to be noted that a plurality of PPSs may be present.
Each of the SPS and the PPS may be simply referred to as
a parameter set.

As illustrated in (b) of FIG. 2, a picture may include a
picture header and at least one slice. A picture header
includes a coding parameter which decoder 200 refers to in
order to decode the at least one slice.

As illustrated in (c¢) of FIG. 2, a slice includes a slice
header and at least one brick. A slice header includes a
coding parameter which decoder 200 refers to in order to
decode the at least one brick.

As illustrated in (d) of FIG. 2, a brick includes at least one
coding tree unit (CTU).

It is to be noted that a picture may not include any slice
and may include a tile group instead of a slice. In this case,
the tile group includes at least one tile. In addition, a brick
may include a slice.

A CTU is also referred to as a super block or a basis
splitting unit. As illustrated in (e) of FIG. 2, a CTU like this

US 12,088,849 B2

13

includes a CTU header and at least one coding unit (CU). A
CTU header includes a coding parameter which decoder 200
refers to in order to decode the at least one CU.

A CU may be split into a plurality of smaller CUs. As
illustrated in (f) of FIG. 2, a CU includes a CU header,
prediction information, and residual coefficient information.
Prediction information is information for predicting the CU,
and the residual coefficient information is information indi-
cating a prediction residual to be described later. Although
a CU is basically the same as a prediction unit (PU) and a
transform unit (TU), it is to be noted that, for example, an
SBT to be described later may include a plurality of TUs
smaller than the CU. In addition, the CU may be processed
for each virtual pipeline decoding unit (VPDU) included in
the CU. The VPDU is, for example, a fixed unit which can
be processed at one stage when pipeline processing is
performed in hardware.

It is to be noted that a stream may not include part of the
hierarchical layers illustrated in FIG. 2. The order of the
hierarchical layers may be exchanged, or any of the hierar-
chical layers may be replaced by another hierarchical layer.
Here, a picture which is a target for a process which is about
to be performed by a device such as encoder 100 or decoder
200 is referred to as a current picture. A current picture
means a current picture to be encoded when the process is
an encoding process, and a current picture means a current
picture to be decoded when the process is a decoding
process. Likewise, for example, a CU or a block of CUs
which is a target for a process which is about to be
performed by a device such as encoder 100 or decoder 200
is referred to as a current block. A current block means a
current block to be encoded when the process is an encoding
process, and a current block means a current block to be
decoded when the process is a decoding process.

[Picture Structure: Slice/Tile]

A picture may be configured with one or more slice units
or tile units in order to decode the picture in parallel.

Slices are basic encoding units included in a picture. A
picture may include, for example, one or more slices. In
addition, a slice includes one or more successive coding tree
units (CTUs).

FIG. 3 is a diagram illustrating one example of a slice
configuration. For example, a picture includes 11x8 CTUs,
and is split into four slices (slices 1 to 4). Slice 1 includes
sixteen CTUs, slice 2 includes twenty-one CTUs, slice 3
includes twenty-nine CTUs, and slice 4 includes twenty-two
CTUs. Here, each CTU in the picture belongs to one of the
slices. The shape of each slice is a shape obtained by
splitting the picture horizontally. A boundary of each slice
does not need to coincide with an image end, and may
coincide with any of the boundaries between CTUs in the
image. The processing order of the CTUs in a slice (an
encoding order or a decoding order) is, for example, a
raster-scan order. A slice includes a slice header and encoded
data. Features of the slice may be written in the slice header.
The features include a CTU address of a top CTU in the
slice, a slice type, etc.

A tile is a unit of a rectangular region included in a
picture. Each of tiles may be assigned with a number
referred to as Tileld in raster-scan order.

FIG. 4 is a diagram illustrating one example of a tile
configuration. For example, a picture includes 11x8 CTUs,
and is split into four tiles of rectangular regions (tiles 1 to 4).
When tiles are used, the processing order of CTUs is
changed from the processing order in the case where no tile
is used. When no tile is used, a plurality of CTUs in a picture
are processed in raster-scan order. When a plurality of tiles

10

15

20

25

30

35

40

45

50

55

60

65

14

are used, at least one CTU in each of the plurality of tiles is
processed in raster-scan order. For example, as illustrated in
FIG. 4, the processing order of the CTUs included in tile 1
is the order which starts from the left-end of the first column
of'tile 1 toward the right-end of the first column of'tile 1 and
then starts from the left-end of the second column of tile 1
toward the right-end of the second column of tile 1.

It is to be noted that one tile may include one or more
slices, and one slice may include one or more tiles.

It is to be noted that a picture may be configured with one
or more tile sets. A tile set may include one or more tile
groups, or one or more tiles. A picture may be configured
with only one of a tile set, a tile group, and a tile. For
example, an order for scanning a plurality of tiles for each
tile set in raster scan order is assumed to be a basic encoding
order of'tiles. A set of one or more tiles which are continuous
in the basic encoding order in each tile set is assumed to be
atile group. Such a picture may be configured by splitter 102
(see FIG. 7) to be described later.

[Scalable Encoding]

FIGS. 5 and 6 are diagrams illustrating examples of
scalable stream structures.

As illustrated in FIG. 5, encoder 100 may generate a
temporally/spatially scalable stream by dividing each of a
plurality of pictures into any of a plurality of layers and
encoding the picture in the layer. For example, encoder 100
encodes the picture for each layer, thereby achieving scal-
ability where an enhancement layer is present above a base
layer. Such encoding of each picture is also referred to as
scalable encoding. In this way, decoder 200 is capable of
switching image quality of an image which is displayed by
decoding the stream. In other words, decoder 200 deter-
mines up to which layer to decode based on internal factors
such as the processing ability of decoder 200 and external
factors such as a state of a communication bandwidth. As a
result, decoder 200 is capable of decoding a content while
freely switching between low resolution and high resolution.
For example, the user of the stream watches a video of the
stream halfway using a smartphone on the way to home, and
continues watching the video at home on a device such as a
TV connected to the Internet. It is to be noted that each of
the smartphone and the device described above includes
decoder 200 having the same or different performances. In
this case, when the device decodes layers up to the higher
layer in the stream, the user can watch the video at high
quality at home. In this way, encoder 100 does not need to
generate a plurality of streams having different image quali-
ties of the same content, and thus the processing load can be
reduced.

Furthermore, the enhancement layer may include meta
information based on statistical information on the image.
Decoder 200 may generate a video whose image quality has
been enhanced by performing super-resolution imaging on a
picture in the base layer based on the metadata. Super-
resolution imaging may be any of improvement in the
Signal-to-Noise (SN) ratio in the same resolution and
increase in resolution. Metadata may include information for
identifying a linear or a non-linear filter coefficient, as used
in a super-resolution process, or information identifying a
parameter value in a filter process, machine learning, or a
least squares method used in super-resolution processing.

Alternatively, a configuration may be provided in which
a picture is divided into, for example, tiles in accordance
with, for example, the meaning of an object in the picture.
In this case, decoder 200 may decode only a partial region
in a picture by selecting a tile to be decoded. In addition, an
attribute of the object (person, car, ball, etc.) and a position

US 12,088,849 B2

15

of the object in the picture (coordinates in identical images)
may be stored as metadata. In this case, decoder 200 is
capable of identifying the position of a desired object based
on the metadata, and determining the tile including the
object. For example, as illustrated in FIG. 6, the metadata
may be stored using a data storage structure different from
image data, such as SEI in HEVC. This metadata indicates,
for example, the position, size, or color of a main object.

Metadata may be stored in units of a plurality of pictures,
such as a stream, a sequence, or a random access unit. In this
way, decoder 200 is capable of obtaining, for example, the
time at which a specific person appears in the video, and by
fitting the time information with picture unit information, is
capable of identifying a picture in which the object is present
and determining the position of the object in the picture.
[Encoder]

Next, encoder 100 according to this embodiment is
described. FIG. 7 is a block diagram illustrating one
example of a configuration of encoder 100 according to this
embodiment. Encoder 100 encodes an image in units of a
block.

As illustrated in FIG. 7, encoder 100 is an apparatus
which encodes an image in units of a block, and includes
splitter 102, subtractor 104, transformer 106, quantizer 108,
entropy encoder 110, inverse quantizer 112, inverse trans-
former 114, adder 116, block memory 118, loop filter 120,
frame memory 122, intra predictor 124, inter predictor 126,
prediction controller 128, and prediction parameter genera-
tor 130. It is to be noted that intra predictor 124 and inter
predictor 126 are configured as part of a prediction executor.
[Mounting Example of Encoder]

FIG. 8 is a block diagram illustrating a mounting example
of encoder 100. Encoder 100 includes processor al and
memory a2. For example, the plurality of constituent ele-
ments of encoder 100 illustrated in FIG. 7 are mounted on
processor al and memory a2 illustrated in FIG. 8.

Processor al is circuitry which performs information
processing and is accessible to memory a2. For example,
processor al is dedicated or general electronic circuitry
which encodes an image. Processor al may be a processor
such as a CPU. In addition, processor al may be an
aggregate of a plurality of electronic circuits. In addition, for
example, processor al may take the roles of two or more
constituent elements other than a constituent element for
storing information out of the plurality of constituent ele-
ments of encoder 100 illustrated in FIG. 7, etc.

Memory a2 is dedicated or general memory for storing
information that is used by processor al to encode the
image. Memory a2 may be electronic circuitry, and may be
connected to processor al. In addition, memory a2 may be
included in processor al. In addition, memory a2 may be an
aggregate of a plurality of electronic circuits. In addition,
memory a2 may be a magnetic disc, an optical disc, or the
like, or may be represented as storage, a medium, or the like.
In addition, memory a2 may be non-volatile memory, or
volatile memory.

For example, memory a2 may store an image to be
encoded or a stream corresponding to an encoded image. In
addition, memory a2 may store a program for causing
processor al to encode an image.

In addition, for example, memory a2 may take the roles of
two or more constituent elements for storing information out
of the plurality of constituent elements of encoder 100
illustrated in FIG. 7. More specifically, memory a2 may take
the roles of block memory 118 and frame memory 122
illustrated in FIG. 7. More specifically, memory a2 may

10

15

20

25

30

35

40

45

50

55

60

65

16

store a reconstructed image (specifically, a reconstructed
block, a reconstructed picture, or the like).

It is to be noted that, in encoder 100, not all of the plurality
of constituent elements indicated in FIG. 7, etc. may be
implemented, and not all the processes described above may
be performed. Part of the constituent elements indicated in
FIG. 7 may be included in another device, or part of the
processes described above may be performed by another
device.

Hereinafter, an overall flow of processes performed by
encoder 100 is described, and then each of constituent
elements included in encoder 100 is described.

[Overall Flow of Encoding Process]

FIG. 9 is a flow chart illustrating one example of an
overall encoding process performed by encoder 100.

First, splitter 102 of encoder 100 splits each of pictures
included in an original image into a plurality of blocks
having a fixed size (128x128 pixels) (Step Sa_1). Splitter
102 then selects a splitting pattern for the fixed-size block
(Step Sa_2). In other words, splitter 102 further splits the
fixed-size block into a plurality of blocks which form the
selected splitting pattern. Encoder 100 performs, for each of
the plurality of blocks, Steps Sa_3 to Sa_9 for the block.

Prediction controller 128 and a prediction executor which
is configured with intra predictor 124 and inter predictor 126
generate a prediction image of a current block (Step Sa_3).
It is to be noted that the prediction image is also referred to
as a prediction signal, a prediction block, or prediction
samples.

Next, subtractor 104 generates the difference between a
current block and a prediction image as a prediction residual
(Step Sa_4). It is to be noted that the prediction residual is
also referred to as a prediction error.

Next, transformer 106 transforms the prediction image
and quantizer 108 quantizes the result, to generate a plurality
of quantized coefficients (Step Sa_5).

Next, entropy encoder 110 encodes (specifically, entropy
encodes) the plurality of quantized coeflicients and a pre-
diction parameter related to generation of a prediction image
to generate a stream (Step Sa_6).

Next, inverse quantizer 112 performs inverse quantization
of the plurality of quantized coefficients and inverse trans-
former 114 performs inverse transform of the result, to
restore a prediction residual (Step Sa_7).

Next, adder 116 adds the prediction image to the restored
prediction residual to reconstruct the current block (Step
Sa_8). In this way, the reconstructed image is generated. It
is to be noted that the reconstructed image is also referred to
as a reconstructed block, and, in particular, that a recon-
structed image generated by encoder 100 is also referred to
as a local decoded block or a local decoded image.

When the reconstructed image is generated, loop filter
120 performs filtering of the reconstructed image as neces-
sary (Step Sa_9).

Encoder 100 then determines whether encoding of the
entire picture has been finished (Step Sa_10). When deter-
mining that the encoding has not yet been finished (No in
Step Sa_10), processes from Step Sa_2 are executed repeat-
edly.

Although encoder 100 selects one splitting pattern for a
fixed-size block, and encodes each block according to the
splitting pattern in the above-described example, it is to be
noted that each block may be encoded according to a
corresponding one of a plurality of splitting patterns. In this
case, encoder 100 may evaluate a cost for each of the
plurality of splitting patterns, and, for example, may select

US 12,088,849 B2

17

the stream obtained by encoding according to the splitting
pattern which yields the smallest cost as a stream which is
output finally.

Alternatively, the processes in Steps Sa_1 to Sa_10 may
be performed sequentially by encoder 100, or two or more
of the processes may be performed in parallel or may be
reordered.

The encoding process by encoder 100 is hybrid encoding
using prediction encoding and transform encoding. In addi-
tion, prediction encoding is performed by an encoding loop
configured with subtractor 104, transformer 106, quantizer
108, inverse quantizer 112, inverse transformer 114, adder
116, loop filter 120, block memory 118, frame memory 122,
intra predictor 124, inter predictor 126, and prediction
controller 128. In other words, the prediction executor
configured with intra predictor 124 and inter predictor 126
is part of the encoding loop.

[Splitter]

Splitter 102 splits each of pictures included in the original
image into a plurality of blocks, and outputs each block to
subtractor 104. For example, splitter 102 first splits a picture
into blocks of a fixed size (for example, 128x128 pixels).
The fixed-size block is also referred to as a coding tree unit
(CTU). Splitter 102 then splits each fixed-size block into
blocks of variable sizes (for example, 64x64 pixels or
smaller), based on recursive quadtree and/or binary tree
block splitting. In other words, splitter 102 selects a splitting
pattern. The variable-size block is also referred to as a
coding unit (CU), a prediction unit (PU), or a transform unit
(TU). It is to be noted that, in various kinds of mounting
examples, there is no need to differentiate between CU, PU,
and TU; all or some of the blocks in a picture may be
processed in units of a CU, a PU, or a TU.

FIG. 10 is a diagram illustrating one example of block
splitting according to this embodiment. In FIG. 10, the solid
lines represent block boundaries of blocks split by quadtree
block splitting, and the dashed lines represent block bound-
aries of blocks split by binary tree block splitting.

Here, block 10 is a square block having 128x128 pixels.
This block 10 is first split into four square 64x64 pixel
blocks (quadtree block splitting).

The upper-left 64x64 pixel block is further vertically split
into two rectangle 32x64 pixel blocks, and the left 32x64
pixel block is further vertically split into two rectangle
16x64 pixel blocks (binary tree block splitting). As a result,
the upper-left square 64x64 pixel block is split into two
16x64 pixel blocks 11 and 12 and one 32x64 pixel block 13.

The upper-right square 64x64 pixel block is horizontally
split into two rectangle 64x32 pixel blocks 14 and 15 (binary
tree block splitting).

The lower-left square 64x64 pixel block is first split into
four square 32x32 pixel blocks (quadtree block splitting).
The upper-left block and the lower-right block among the
four square 32x32 pixel blocks are further split. The upper-
left square 32x32 pixel block is vertically split into two
rectangle 16x32 pixel blocks, and the right 16x32 pixel
block is further horizontally split into two 16x16 pixel
blocks (binary tree block splitting). The lower-right 32x32
pixel block is horizontally split into two 32x16 pixel blocks
(binary tree block splitting). The upper-right square 32x32
pixel block is horizontally split into two rectangle 32x16
pixel blocks (binary tree block splitting). As a result, the
lower-left square 64x64 pixel block is split into rectangle
16x32 pixel block 16, two square 16x16 pixel blocks 17 and

10

15

20

25

30

35

40

45

50

55

60

65

18

18, two square 32x32 pixel blocks 19 and 20, and two
rectangle 32x16 pixel blocks 21 and 22.

The lower-right 64x64 pixel block 23 is not split.

As described above, in FIG. 10, block 10 is split into
thirteen variable-size blocks 11 through 23 based on recur-
sive quadtree and binary tree block splitting. Such splitting
is also referred to as quad-tree plus binary tree splitting
(QTBT).

It is to be noted that, in FIG. 10, one block is split into four
or two blocks (quadtree or binary tree block splitting), but
splitting is not limited to these examples. For example, one
block may be split into three blocks (ternary block splitting).
Splitting including such ternary block splitting is also
referred to as multi type tree (MBT) splitting.

FIG. 11 is a diagram illustrating one example of a
configuration of splitter 102. As illustrated in FIG. 11,
splitter 102 may include block splitting determiner 102a4.
Block splitting determiner 102a may perform the following
processes as examples.

For example, block splitting determiner 102a collects
block information from either block memory 118 or frame
memory 122, and determines the above-described splitting
pattern based on the block information. Splitter 102 splits
the original image according to the splitting pattern, and
outputs at least one block obtained by the splitting to
subtractor 104.

In addition, for example, block splitting determiner 102a
outputs a parameter indicating the above-described splitting
pattern to transformer 106, inverse transformer 114, intra
predictor 124, inter predictor 126, and entropy encoder 110.
Transformer 106 may transform a prediction residual based
on the parameter. Intra predictor 124 and inter predictor 126
may generate a prediction image based on the parameter. In
addition, entropy encoder 110 may entropy encodes the
parameter.

The parameter related to the splitting pattern may be
written in a stream as indicated below as one example.

FIG. 12 is a diagram illustrating examples of splitting
patterns. Examples of splitting patterns include: splitting
into four regions (QT) in which a block is split into two
regions both horizontally and vertically; splitting into three
regions (HT or VT) in which a block is split in the same
direction in a ratio of 1:2:1; splitting into two regions (HB
or VB) in which a block is split in the same direction in a
ratio of 1:1; and no splitting (NS).

It is to be noted that the splitting pattern does not have any
block splitting direction in the case of splitting into four
regions and no splitting, and that the splitting pattern has
splitting direction information in the case of splitting into
two regions or three regions.

FIGS. 13A and 13B are each a diagram illustrating one
example of a syntax tree of a splitting pattern. In the example
of FIG. 13A, first, information indicating whether to per-
form splitting (S: Split flag) is present, and information
indicating whether to perform splitting into four regions
(QT: QT flag) is present next. Information indicating which
one of splitting into three regions and two regions is to be
performed (TT: TT flag or BT: BT flag) is present next, and
lastly, information indicating a division direction (Ver: Ver-
tical flag or Hor: Horizontal flag) is present. It is to be noted
that each of at least one block obtained by splitting accord-
ing to such a splitting pattern may be further split repeatedly
in a similar process. In other words, as one example, whether
splitting is performed, whether splitting into four regions is
performed, which one of the horizontal direction and the
vertical direction is the direction in which a splitting method
is to be performed, which one of splitting into three regions
and splitting into two regions is to be performed may be
recursively determined, and the determination results may

US 12,088,849 B2

19

be encoded in a stream according to the encoding order
disclosed by the syntax tree illustrated in FIG. 13A.

In addition, although information items respectively indi-
cating S, QT, TT, and Ver are arranged in the listed order in
the syntax tree illustrated in FIG. 13A, information items
respectively indicating S, QT, Ver, and BT may be arranged
in the listed order. In other words, in the example of FIG.
13B, first, information indicating whether to perform split-
ting (S: Split flag) is present, and information indicating
whether to perform splitting into four regions (QT: QT flag)
is present next. Information indicating the splitting direction
(Ver: Vertical flag or Hor: Horizontal flag) is present next,
and lastly, information indicating which one of splitting into
two regions and splitting into three regions is to be per-
formed (BT: BT flag or TT: TT flag) is present.

It is to be noted that the splitting patterns described above
are examples, and splitting patterns other than the described
splitting patterns may be used, or part of the described
splitting patterns may be used.

[Subtractor]

Subtractor 104 subtracts a prediction image (prediction
image that is input from prediction controller 128) from the
original image in units of a block input from splitter 102 and
split by splitter 102. In other words, subtractor 104 calcu-
lates prediction residuals of a current block. Subtractor 104
then outputs the calculated prediction residuals to trans-
former 106.

The original signal is an input signal which has been input
to encoder 100 and represents an image of each picture
included in a video (for example, a luma signal and two
chroma signals).

[Transformer]

Transformer 106 transforms prediction residuals in spatial
domain into transform coefficients in frequency domain, and
outputs the transform coefficients to quantizer 108. More
specifically, transformer 106 applies, for example, a pre-
defined discrete cosine transform (DCT) or discrete sine
transform (DST) to prediction residuals in spatial domain.

It is to be noted that transformer 106 may adaptively
select a transform type from among a plurality of transform
types, and transform prediction residuals into transform
coeflicients by using a transform basis function correspond-
ing to the selected transform type. This sort of transform is
also referred to as explicit multiple core transform (EMT) or
adaptive multiple transform (AMT). In addition, a transform
basis function is also simply referred to as a basis.

The transform types include, for example, DCT-II, DCT-
V, DCT-VIII, DST-I, and DST-VIL. It is to be noted that these
transform types may be represented as DCT2, DCT5, DCTS,
DST1, and DST7. FIG. 14 is a chart illustrating transform
basis functions for each transform type. In FIG. 14, N
indicates the number of input pixels. For example, selection
of a transform type from among the plurality of transform
types may depend on a prediction type (one of intra predic-
tion and inter prediction), and may depend on an intra
prediction mode.

Information indicating whether to apply such EMT or
AMT (referred to as, for example, an EMT flag or an AMT
flag) and information indicating the selected transform type
is normally signaled at the CU level. It is to be noted that the
signaling of such information does not necessarily need to
be performed at the CU level, and may be performed at
another level (for example, at the sequence level, picture
level, slice level, brick level, or CTU level).

In addition, transformer 106 may re-transform the trans-
form coefficients (which are transform results). Such re-
transform is also referred to as adaptive secondary transform

10

15

20

25

30

35

40

45

50

55

60

65

20

(AST) or non-separable secondary transform (NSST). For
example, transformer 106 performs re-transform in units of
a sub-block (for example, 4x4 pixel sub-block) included in
a transform coefficient block corresponding to an intra
prediction residual. Information indicating whether to apply
NSST and information related to a transform matrix for use
in NSST are normally signaled at the CU level. It is to be
noted that the signaling of such information does not nec-
essarily need to be performed at the CU level, and may be
performed at another level (for example, at the sequence
level, picture level, slice level, brick level, or CTU level).

Transformer 106 may employ a separable transform and
a non-separable transform. A separable transform is a
method in which a transform is performed a plurality of
times by separately performing a transform for each of
directions according to the number of dimensions of inputs.
A non-separable transform is a method of performing a
collective transform in which two or more dimensions in
multidimensional inputs are collectively regarded as a single
dimension.

In one example of the non-separable transform, when an
input is a 4x4 pixel block, the 4x4 pixel block is regarded
as a single array including sixteen elements, and the trans-
form applies a 16x16 transform matrix to the array.

In another example of the non-separable transform, an
input block of 4x4 pixels is regarded as a single array
including sixteen elements, and then a transform (hypercube
givens transform) in which givens revolution is performed
on the array a plurality of times may be performed.

In the transform in transformer 106, the transform types
of transform basis functions to be transformed into the
frequency domain according to regions in a CU can be
switched. Examples include a spatially varying transform
(SVT).

FIG. 15 is a diagram illustrating one example of SVT.

In SVT, as illustrated in FIG. 15, CUs are split into two
equal regions horizontally or vertically, and only one of the
regions is transformed into the frequency domain. A trans-
form type can be set for each region. For example, DST7 and
DST8 are used. For example, among the two regions
obtained by splitting a CU vertically into two equal regions,
DST7 and DCT8 may be used for the region at position 0.
Alternatively, among the two regions, DST7 is used for the
region at position 1. Likewise, among the two regions
obtained by splitting a CU horizontally into two equal
regions, DST7 and DCTS are used for the region at position
0. Alternatively, among the two regions, DST7 is used for
the region at position 1. Although only one of the two
regions in a CU is transformed and the other is not trans-
formed in the example illustrated in FIG. 15, each of the two
regions may be transformed. In addition, splitting method
may include not only splitting into two regions but also
splitting into four regions. In addition, the splitting method
can be more flexible. For example, information indicating
the splitting method may be encoded and may be signaled in
the same manner as the CU splitting. It is to be noted that
SVT is also referred to as sub-block transform (SBT).

The AMT and EMT described above may be referred to
as MTS (multiple transform selection). When MTS is
applied, a transform type that is DST7, DCTS, or the like can
be selected, and the information indicating the selected
transform type may be encoded as index information for
each CU. There is another process referred to as IMTS
(implicit MTS) as a process for selecting, based on the shape
of a CU, a transform type to be used for orthogonal
transform performed without encoding index information.
When IMTS is applied, for example, when a CU has a

US 12,088,849 B2

21

rectangle shape, orthogonal transform of the rectangle shape
is performed using DST7 for the short side and DST2 for the
long side. In addition, for example, when a CU has a square
shape, orthogonal transform of the rectangle shape is per-
formed using DCT2 when MTS is effective in a sequence
and using DST7 when MTS is ineffective in the sequence.
DCT2 and DST7 are mere examples. Other transform types
may be used, and it is also possible to change the combi-
nation of transform types for use to a different combination
of transform types. IMTS may be used only for intra
prediction blocks, or may be used for both intra prediction
blocks and inter prediction block.

The three processes of MTS, SBT, and IMTS have been
described above as selection processes for selectively
switching transform types for use in orthogonal transform.
However, all of the three selection processes may be made
effective, or only part of the selection processes may be
selectively made effective. Whether each of the selection
processes is made effective can be identified based on flag
information or the like in a header such as an SPS. For
example, when all of the three selection processes are
effective, one of the three selection processes is selected for
each CU and orthogonal transform of the CU is performed.
It is to be noted that the selection processes for selectively
switching the transform types may be selection processes
different from the above three selection processes, or each of
the three selection processes may be replaced by another
process as long as at least one of the following four functions
[1] to [4] can be achieved. Function [1] is a function for
performing orthogonal transform of the entire CU and
encoding information indicating the transform type used in
the transform. Function [2] is a function for performing
orthogonal transform of the entire CU and determining the
transform type based on a predetermined rule without
encoding information indicating the transform type. Func-
tion [3] is a function for performing orthogonal transform of
a partial region of a CU and encoding information indicating
the transform type used in the transform. Function [4] is a
function for performing orthogonal transform of a partial
region of a CU and determining the transform type based on
a predetermined rule without encoding information indicat-
ing the transform type used in the transform.

It is to be noted that whether each of MTS, IMTS, and
SBT is applied may be determined for each processing unit.
For example, whether each of MTS, IMTS, and SBT is
applied may be determined for each sequence, picture, brick,
slice, CTU, or CU.

It is to be noted that a tool for selectively switching
transform types in the present disclosure may be rephrased
by a method for selectively selecting a basis for use in a
transform process, a selection process, or a process for
selecting a basis. In addition, the tool for selectively switch-
ing transform types may be rephrased by a mode for
adaptively selecting a transform type.

FIG. 16 is a flow chart illustrating one example of a
process performed by transformer 106.

For example, transformer 106 determines whether to
perform orthogonal transform (Step St_1). Here, when
determining to perform orthogonal transform (Yes in Step
St_1), transformer 106 selects a transform type for use in
orthogonal transform from a plurality of transform types
(Step St_2). Next, transformer 106 performs orthogonal
transform by applying the selected transform type to the
prediction residual of a current block (Step St_3). Trans-
former 106 then outputs information indicating the selected
transform type to entropy encoder 110, so as to allow
entropy encoder 110 to encode the information (Step St_4).

10

15

20

25

30

35

40

45

50

55

60

65

22

On the other hand, when determining not to perform
orthogonal transform (No in Step St_1), transformer 106
outputs information indicating that no orthogonal transform
is performed, so as to allow entropy encoder 110 to encode
the information (Step St_5). It is to be noted that whether to
perform orthogonal transform in Step St_1 may be deter-
mined based on, for example, the size of a transform block,
a prediction mode applied to the CU, etc. Alternatively,
orthogonal transform may be performed using a predefined
transform type without encoding information indicating the
transform type for use in orthogonal transform.

FIG. 17 is a flow chart illustrating another example of a
process performed by transformer 106. It is to be noted that
the example illustrated in FIG. 17 is an example of orthogo-
nal transform in the case where transform types for use in
orthogonal transform are selectively switched as in the case
of the example illustrated in FIG. 16.

As one example, a first transform type group may include
DCT2, DST7, and DCT8. As another example, a second
transform type group may include DCT2. The transform
types included in the first transform type group and the
transform types included in the second transform type group
may partly overlap with each other, or may be totally
different from each other.

More specifically, transformer 106 determines whether a
transform size is smaller than or equal to a predetermined
value (Step Su_1). Here, when determining that the trans-
form size is smaller than or equal to the predetermined value
(Yes in Step Su_1), transformer 106 performs orthogonal
transform of the prediction residual of the current block
using the transform type included in the first transform type
group (Step Su_2). Next, transformer 106 outputs informa-
tion indicating the transform type to be used among at least
one transform type included in the first transform type group
to entropy encoder 110, so as to allow entropy encoder 110
to encode the information (Step Su_3). On the other hand,
when determining that the transform size is not smaller than
or equal to the predetermined value (No in Step Su_1),
transformer 106 performs orthogonal transform of the pre-
diction residual of the current block using the second
transform type group (Step Su_4).

In Step Su_3, the information indicating the transform
type for use in orthogonal transform may be information
indicating a combination of the transform type to be applied
vertically in the current block and the transform type to be
applied horizontally in the current block. The first type
group may include only one transform type, and the infor-
mation indicating the transform type for use in orthogonal
transform may not be encoded. The second transform type
group may include a plurality of transform types, and
information indicating the transform type for use in orthogo-
nal transform among the one or more transform types
included in the second transform type group may be
encoded.

Alternatively, a transform type may be determined based
only on a transform size. It is to be noted that such
determinations are not limited to the determination as to
whether the transform size is smaller than or equal to the
predetermined value, and other processes are also possible
as long as the processes are for determining a transform type
for use in orthogonal transform based on the transform size.
[Quantizer|

Quantizer 108 quantizes the transform coefficients output
from transformer 106. More specifically, quantizer 108
scans, in a determined scanning order, the transform coef-
ficients of the current block, and quantizes the scanned
transform coeflicients based on quantization parameters

US 12,088,849 B2

23

(QP) corresponding to the transform coefficients. Quantizer
108 then outputs the quantized transform coefficients (here-
inafter also referred to as quantized coefficients) of the
current block to entropy encoder 110 and inverse quantizer
112.

A determined scanning order is an order for quantizing/
inverse quantizing transform coeflicients. For example, a
determined scanning order is defined as ascending order of
frequency (from low to high frequency) or descending order
of frequency (from high to low frequency).

A quantization parameter (QP) is a parameter defining a
quantization step (quantization width). For example, when
the value of the quantization parameter increases, the quan-
tization step also increases. In other words, when the value
of the quantization parameter increases, an error in quan-
tized coefficients (quantization error) increases.

In addition, a quantization matrix may be used for quan-
tization. For example, several kinds of quantization matrices
may be used correspondingly to frequency transform sizes
such as 4x4 and 8x8, prediction modes such as intra
prediction and inter prediction, and pixel components such
as luma and chroma pixel components. It is to be noted that
quantization means digitalizing values sampled at predeter-
mined intervals correspondingly to predetermined levels. In
this technical field, quantization may be represented as other
expressions such as rounding and scaling.

Methods using quantization matrices include a method
using a quantization matrix which has been set directly at the
encoder 100 side and a method using a quantization matrix
which has been set as a default (default matrix). At the
encoder 100 side, a quantization matrix suitable for features
of an image can be set by directly setting a quantization
matrix. This case, however, has a disadvantage of increasing
a coding amount for encoding the quantization matrix. It is
to be noted that a quantization matrix to be used to quantize
the current block may be generated based on a default
quantization matrix or an encoded quantization matrix,
instead of directly using the default quantization matrix or
the encoded quantization matrix.

There is a method for quantizing a high-frequency coet-
ficient and a low-frequency coefficient in the same manner
without using a quantization matrix. It is to be noted that this
method is equivalent to a method using a quantization
matrix (flat matrix) whose all coefficients have the same
value.

The quantization matrix may be encoded, for example, at
the sequence level, picture level, slice level, brick level, or
CTU level.

When using a quantization matrix, quantizer 108 scales,
for each transform coefficient, for example a quantization
width which can be calculated based on a quantization
parameter, etc., using the value of the quantization matrix.
The quantization process performed without using any quan-
tization matrix may be a process of quantizing transform
coeflicients based on a quantization width calculated based
on a quantization parameter, etc. It is to be noted that, in the
quantization process performed without using any quanti-
zation matrix, the quantization width may be multiplied by
a predetermined value which is common for all the trans-
form coefficients in a block.

FIG. 18 is a block diagram illustrating one example of a
configuration of quantizer 108.

For example, quantizer 108 includes difference quantiza-
tion parameter generator 108a, predicted quantization
parameter generator 1085, quantization parameter generator
108¢, quantization parameter storage 1084, and quantization
executor 108e.

10

15

20

25

30

35

40

45

50

55

60

65

24

FIG. 19 is a flow chart illustrating one example of
quantization performed by quantizer 108.

As one example, quantizer 108 may perform quantization
for each CU based on the flow chart illustrated in FIG. 19.
More specifically, quantization parameter generator 108¢
determines whether to perform quantization (Step Sv_1).
Here, when determining to perform quantization (Yes in
Step Sv_1), quantization parameter generator 108¢ gener-
ates a quantization parameter for a current block (Step
Sv_2), and stores the quantization parameter into quantiza-
tion parameter storage 1084 (Step Sv_3).

Next, quantization executor 108e¢ quantizes transform
coefficients of the current block using the quantization
parameter generated in Step Sv_2 (Step Sv_4). Predicted
quantization parameter generator 1085 then obtains a quan-
tization parameter for a processing unit different from the
current block from quantization parameter storage 1084
(Step Sv_5). Predicted quantization parameter generator
1085 generates a predicted quantization parameter of the
current block based on the obtained quantization parameter
(Step Sv_6). Difference quantization parameter generator
108a calculates the difference between the quantization
parameter of the current block generated by quantization
parameter generator 108¢ and the predicted quantization
parameter of the current block generated by predicted quan-
tization parameter generator 1085 (Step Sv_7). The differ-
ence quantization parameter is generated by calculating the
difference. Difference quantization parameter generator
108a outputs the difference quantization parameter to
entropy encoder 110, so as to allow entropy encoder 110 to
encode the difference quantization parameter (Step Sv_8).

It is to be noted that the difference quantization parameter
may be encoded, for example, at the sequence level, picture
level, slice level, brick level, or CTU level. In addition, the
initial value of the quantization parameter may be encoded
at the sequence level, picture level, slice level, brick level,
or CTU level. At this time, the quantization parameter may
be generated using the initial value of the quantization
parameter and the difference quantization parameter.

It is to be noted that quantizer 108 may include a plurality
of quantizers, and may apply dependent quantization in
which transform coefficients are quantized using a quanti-
zation method selected from a plurality of quantization
methods.

[Entropy Encoder]

FIG. 20 is a block diagram illustrating one example of a
configuration of entropy encoder 110.

Entropy encoder 110 generates a stream by entropy
encoding the quantized coeflicients input from quantizer 108
and a prediction parameter input from prediction parameter
generator 130. For example, context-based adaptive binary
arithmetic coding (CABAC) is used as the entropy encod-
ing. More specifically, entropy encoder 110 includes bina-
rizer 110a, context controller 1105, and binary arithmetic
encoder 110c. Binarizer 110a performs binarization in which
multi-level signals such as quantized coefficients and a
prediction parameter are transformed into binary signals.
Examples of binarization methods include truncated Rice
binarization, exponential Golomb codes, and fixed length
binarization. Context controller 1105 derives a context value
according to a feature or a surrounding state of a syntax
element, that is, an occurrence probability of a binary signal.
Examples of methods for deriving a context value include
bypass, referring to a syntax element, referring to an upper
and left adjacent blocks, referring to hierarchical informa-

US 12,088,849 B2

25

tion, and others. Binary arithmetic encoder 110¢ arithmeti-
cally encodes the binary signal using the derived context
value.

FIG. 21 is a diagram illustrating a flow of CABAC in
entropy encoder 110.

First, initialization is performed in CABAC in entropy
encoder 110. In the initialization, initialization in binary
arithmetic encoder 110¢ and setting of an initial context
value are performed. For example, binarizer 110a and binary
arithmetic encoder 110¢ execute binarization and arithmetic
encoding of a plurality of quantization coefficients in a CTU
sequentially. At this time, context controller 1105 updates
the context value each time arithmetic encoding is per-
formed. Context controller 1105 then saves the context value
as a post process. The saved context value is used, for
example, to initialize the context value for the next CTU.
[Inverse Quantizer]|

Inverse quantizer 112 inverse quantizes quantized coef-
ficients which have been input from quantizer 108. More
specifically, inverse quantizer 112 inverse quantizes, in a
determined scanning order, quantized coefficients of the
current block. Inverse quantizer 112 then outputs the inverse
quantized transform coefficients of the current block to
inverse transformer 114.

[Inverse Transformer]

Inverse transformer 114 restores prediction errors by
inverse transforming the transform coefficients which have
been input from inverse quantizer 112. More specifically,
inverse transformer 114 restores the prediction residuals of
the current block by performing an inverse transform cor-
responding to the transform applied to the transform coef-
ficients by transformer 106. Inverse transformer 114 then
outputs the restored prediction residuals to adder 116.

It is to be noted that since information is normally lost in
quantization, the restored prediction residuals do not match
the prediction errors calculated by subtractor 104. In other
words, the restored prediction residuals normally include
quantization errors.

[Adder]

Adder 116 reconstructs the current block by adding the
prediction residuals which have been input from inverse
transformer 114 and prediction images which have been
input from prediction controller 128. Consequently, a recon-
structed image is generated. Adder 116 then outputs the
reconstructed image to block memory 118 and loop filter
120.

[Block Memory]

Block memory 118 is storage for storing a block which is
included in a current picture and is referred to in intra
prediction. More specifically, block memory 118 stores a
reconstructed image output from adder 116.

[Frame Memory]

Frame memory 122 is, for example, storage for storing
reference pictures for use in inter prediction, and is also
referred to as a frame buffer. More specifically, frame
memory 122 stores a reconstructed image filtered by loop
filter 120.

[Loop Filter]

Loop filter 120 applies a loop filter to a reconstructed
image output by adder 116, and outputs the filtered recon-
structed image to frame memory 122. A loop filter is a filter
used in an encoding loop (in-loop filter). Examples of loop
filters include, for example, an adaptive loop filter (ALF), a
deblocking filter (DF or DBF), a sample adaptive offset
(SAO), etc.

FIG. 22 is a block diagram illustrating one example of a
configuration of loop filter 120.

20

25

30

40

45

50

65

26

For example, as illustrated in FIG. 22, loop filter 120
includes deblocking filter executor 120a, SAO executor
1205, and ALF executor 120c¢. Deblocking filter executor
120a performs a deblocking filter process of the recon-
structed image. SAO executor 1205 performs a SAO process
of the reconstructed image after being subjected to the
deblocking filter process. ALF executor 120¢ performs an
ALF process of the reconstructed image after being sub-
jected to the SAO process. The ALF and deblocking filter
processes are described later in detail. The SAO process is
aprocess for enhancing image quality by reducing ringing (a
phenomenon in which pixel values are distorted like waves
around an edge) and correcting deviation in pixel value.
Examples of SAO processes include an edge offset process
and a band offset process. It is to be noted that loop filter 120
does not always need to include all the constituent elements
disclosed in FIG. 22, and may include only part of the
constituent elements. In addition, loop filter 120 may be
configured to perform the above processes in a processing
order different from the one disclosed in FIG. 22.

[Loop Filter>Adaptive Loop Filter]

In an ALF, a least square error filter for removing com-
pression artifacts is applied. For example, one filter selected
from among a plurality of filters based on the direction and
activity of local gradients is applied for each of 2x2 pixel
sub-blocks in the current block.

More specifically, first, each sub-block (for example, each
2x2 pixel sub-block) is categorized into one out of a
plurality of classes (for example, fifieen or twenty-five
classes). The categorization of the sub-block is based on, for
example, gradient directionality and activity. In a specific
example, category index C (for example, C=5D+A) is
calculated based on gradient directionality D (for example,
0 to 2 or 0 to 4) and gradient activity A (for example, O to
4). Then, based on category index C, each sub-block is
categorized into one out of a plurality of classes.

For example, gradient directionality D is calculated by
comparing gradients of a plurality of directions (for
example, the horizontal, vertical, and two diagonal direc-
tions). Moreover, for example, gradient activity A is calcu-
lated by adding gradients of a plurality of directions and
quantizing the result of the addition.

The filter to be used for each sub-block is determined
from among the plurality of filters based on the result of such
categorization.

The filter shape to be used in an ALF is, for example, a
circular symmetric filter shape. FIG. 23 A through FIG. 23C
illustrate examples of filter shapes used in ALFs. FIG. 23A
illustrates a 5x5 diamond shape filter, FIG. 23B illustrates a
7x7 diamond shape filter, and FIG. 23C illustrates a 9x9
diamond shape filter. Information indicating the filter shape
is normally signaled at the picture level. It is to be noted that
the signaling of such information indicating the filter shape
does not necessarily need to be performed at the picture
level, and may be performed at another level (for example,
at the sequence level, slice level, brick level, CTU level, or
CU level).

The ON or OFF of the ALF is determined, for example,
at the picture level or CU level. For example, the decision of
whether to apply the ALF to luma may be made at the CU
level, and the decision of whether to apply ALF to chroma
may be made at the picture level. Information indicating ON
or OFF of the ALF is normally signaled at the picture level
or CU level. It is to be noted that the signaling of information
indicating ON or OFF of the ALF does not necessarily need
to be performed at the picture level or CU level, and may be

US 12,088,849 B2

27

performed at another level (for example, at the sequence
level, slice level, brick level, or CTU level).

In addition, as described above, one filter is selected from
the plurality of filters, and an ALF process of a sub-block is
performed. A coefficient set of coefficients to be used for
each of the plurality of filters (for example, up to the
fifteenth or twenty-fifth filter) is normally signaled at the
picture level. It is to be noted that the coefficient set does not
always need to be signaled at the picture level, and may be
signaled at another level (for example, the sequence level,
slice level, brick level, CTU level, CU level, or sub-block
level).

[Loop Filter>Cross Component Adaptive Loop Filter]

FIG. 23D is a diagram illustrating an example where Y
samples (first component) are used for a cross component
ALF (CCALF) for Cb and a CCALF for Cr (components
different from the first component). FIG. 23E is a diagram
illustrating a diamond shaped filter.

One example of CC-ALF operates by applying a linear,
diamond shaped filter (FIGS. 23D, 23E) to a luma channel
for each chroma component. The filter coefficients, for
example, may be transmitted in the APS, scaled by a factor
of 2710, and rounded for fixed point representation. The
application of the filters is controlled on a variable block size
and signaled by a context-coded flag received for each block
of samples. The block size along with a CC-ALF enabling
flag is received at the slice-level for each chroma compo-
nent. Syntax and semantics for CC-ALF are provided in the
Appendix. In the contribution, the following block sizes (in
chroma samples) were supported: 16x16,32x32, 64x64, and
128x128.

[Loop Filter>Joint Chroma Cross Component Adaptive
Loop Filter]|

FIG. 23F is a diagram illustrating an example for a joint
chroma CCALF (JC-CCALF).

One example of JC-CCALF, where only one CCALF
filter will be used to generate one CCALF filtered output as
a chroma refinement signal for one color component only,
while a properly weighted version of the same chroma
refinement signal will be applied to the other color compo-
nent. In this way, the complexity of existing CCALF is
reduced roughly by half.

The weight value is coded into a sign flag and a weight
index. The weight index (denoted as weight_index) is coded
into 3 bits, and specifies the magnitude of the JC-CCALF
weight JeCcWeight. It cannot be equal to 0.

The magnitude of JcCcWeight is determined as follows.

If weight_index is less than or equal to 4, JeCcWeight is

equal to weight_index>>2.

Otherwise, JcCcWeight is equal to 4/(weight_index—4).

The block-level on/off control of ALF filtering for Cb and
Cr are separate. This is the same as in CCALF, and two
separate sets of block-level on/off control flags will be
coded. Different from CCALF, herein, the Cb, Cr on/off
control block sizes are the same, and thus, only one block
size variable is coded.

[Loop Filter>Deblocking Filter|

In a deblocking filter process, loop filter 120 performs a
filter process on a block boundary in a reconstructed image
so as to reduce distortion which occurs at the block bound-
ary.

FIG. 24 is a block diagram illustrating one example of a
specific configuration of deblocking filter executor 120a.

For example, deblocking filter executor 120a includes:
boundary determiner 1201; filter determiner 1203; filter
executor 1205; process determiner 1208; filter characteristic
determiner 1207; and switches 1202, 1204, and 1206.

20

25

35

40

45

65

28

Boundary determiner 1201 determines whether a pixel to
be deblock filtered (that is, a current pixel) is present around
a block boundary. Boundary determiner 1201 then outputs
the determination result to switch 1202 and process deter-
miner 1208.

In the case where boundary determiner 1201 has deter-
mined that a current pixel is present around a block bound-
ary, switch 1202 outputs an unfiltered image to switch 1204.
In the opposite case where boundary determiner 1201 has
determined that no current pixel is present around a block
boundary, switch 1202 outputs an unfiltered image to switch
1206. It is to be noted that the unfiltered image is an image
configured with a current pixel and at least one surrounding
pixel located around the current pixel.

Filter determiner 1203 determines whether to perform
deblocking filtering of the current pixel, based on the pixel
value of at least one surrounding pixel located around the
current pixel. Filter determiner 1203 then outputs the deter-
mination result to switch 1204 and process determiner 1208.

In the case where filter determiner 1203 has determined to
perform deblocking filtering of the current pixel, switch
1204 outputs the unfiltered image obtained through switch
1202 to filter executor 1205. In the opposite case where filter
determiner 1203 has determined not to perform deblocking
filtering of the current pixel, switch 1204 outputs the unfil-
tered image obtained through switch 1202 to switch 1206.

When obtaining the unfiltered image through switches
1202 and 1204, filter executor 1205 executes, for the current
pixel, deblocking filtering having the filter characteristic
determined by filter characteristic determiner 1207. Filter
executor 1205 then outputs the filtered pixel to switch 1206.

Under control by process determiner 1208, switch 1206
selectively outputs a pixel which has not been deblock
filtered and a pixel which has been deblock filtered by filter
executor 1205.

Process determiner 1208 controls switch 1206 based on
the results of determinations made by boundary determiner
1201 and filter determiner 1203. In other words, process
determiner 1208 causes switch 1206 to output the pixel
which has been deblock filtered when boundary determiner
1201 has determined that the current pixel is present around
the block boundary and filter determiner 1203 has deter-
mined to perform deblocking filtering of the current pixel. In
addition, in a case other than the above case, process
determiner 1208 causes switch 1206 to output the pixel
which has not been deblock filtered. A filtered image is
output from switch 1206 by repeating output of a pixel in
this way. It is to be noted that the configuration illustrated in
FIG. 24 is one example of a configuration in deblocking
filter executor 120a. Deblocking filter executor 120a may
have another configuration.

FIG. 25 is a diagram illustrating an example of a deblock-
ing filter having a symmetrical filtering characteristic rela-
tive to a block boundary. In a deblocking filter process, one
of two deblocking filters having different characteristics,
that is, a strong filter and a weak filter is selected using pixel
values and quantization parameters, for example. In the case
of the strong filter, pixels p0 to p2 and pixels q0 to q2 are
present across a block boundary as illustrated in FIG. 25, the
pixel values of the respective pixels q0 to q2 are changed to
pixel values q'0 to q'2 by performing computations accord-
ing to the expressions below.

q0=(p1+2xp0+2xq0+2xq1+q2+4)/8
q'1=(p0+q0+q1+42+2)/4

q2=(p0+q0+q1+3xq2+2xq3+4)/8

US 12,088,849 B2

29

It is to be noted that, in the above expressions, p0 to p2
and g0 to g2 are the pixel values of respective pixels p0 to
p2 and pixels q0 to q2. In addition, g3 is the pixel value of
neighboring pixel g3 located at the opposite side of pixel q2
relative to the block boundary. In addition, in the right side
of each of the expressions, coeflicients which are multiplied
with the respective pixel values of the pixels to be used for
deblocking filtering are filter coefficients.

Furthermore, in the deblocking filtering, clipping may be
performed so that the calculated pixel values do not change
over a threshold value. In the clipping process, the pixel
values calculated according to the above expressions are
clipped to a value obtained according to “a pre-computation
pixel value+2xa threshold value” using the threshold value
determined based on a quantization parameter. In this way,
it is possible to prevent excessive smoothing.

FIG. 26 is a diagram for illustrating one example of a
block boundary on which a deblocking filter process is
performed. FIG. 27 is a diagram illustrating examples of Bs
values.

The block boundary on which the deblocking filter pro-
cess is performed is, for example, a boundary between CUs,
PUs, or TUs having 8x8 pixel blocks as illustrated in FIG.
26. The deblocking filter process is performed, for example,
in units of four rows or four columns. First, boundary
strength (Bs) values are determined as indicated in FIG. 27
for block P and block Q illustrated in FIG. 26.

According to the Bs values in FIG. 27, whether to perform
deblocking filter processes of block boundaries belonging to
the same image using different strengths may be determined.
The deblocking filter process for a chroma signal is per-
formed when a Bs value is 2. The deblocking filter process
for a luma signal is performed when a Bs value is 1 or more
and a determined condition is satisfied. It is to be noted that
conditions for determining Bs values are not limited to those
indicated in FIG. 27, and a Bs value may be determined
based on another parameter.

[Predictor (Intra Predictor, Inter Predictor, Prediction Con-
troller)]

FIG. 28 is a flow chart illustrating one example of a
process performed by a predictor of encoder 100. It is to be
noted that the predictor, as one example, includes all or part
of the following constituent elements: intra predictor 124;
inter predictor 126; and prediction controller 128. The
prediction executor includes, for example, intra predictor
124 and inter predictor 126.

The predictor generates a prediction image of a current
block (Step Sb_1). It is to be noted that the prediction image
is, for example, an intra prediction image (intra prediction
signal) or an inter prediction image (inter prediction signal).
More specifically, the predictor generates the prediction
image of the current block using a reconstructed image
which has been already obtained for another block through
generation of a prediction image, generation of a prediction
residual, generation of quantized coefficients, restoring of a
prediction residual, and addition of a prediction image.

The reconstructed image may be, for example, an image
in a reference picture or an image of an encoded block (that
is, the other block described above) in a current picture
which is the picture including the current block. The
encoded block in the current picture is, for example, a
neighboring block of the current block.

FIG. 29 is a flow chart illustrating another example of a
process performed by the predictor of encoder 100.

The predictor generates a prediction image using a first
method (Step Sc_la), generates a prediction image using a
second method (Step Sc_1b), and generates a prediction

10

15

20

25

30

35

40

45

50

55

60

65

30

image using a third method (Step Sc_1¢). The first method,
the second method, and the third method may be mutually
different methods for generating a prediction image. Each of
the first to third methods may be an inter prediction method,
an intra prediction method, or another prediction method.
The above-described reconstructed image may be used in
these prediction methods.

Next, the predictor evaluates the prediction images gen-
erated in Steps Sc_1a, Sc_15b, and Sc_1c¢ (Step Sc_2). For
example, the predictor calculates costs C for the prediction
images generated in Step Sc_la, Sc_15, and Sc_1¢, and
evaluates the prediction images by comparing the costs C of
the prediction images. It is to be noted that cost C is
calculated according to an expression of an R-D optimiza-
tion model, for example, C=D+AxR. In this expression, D
indicates compression artifacts of a prediction image, and is
represented as, for example, a sum of absolute differences
between the pixel value of a current block and the pixel
value of a prediction image. In addition, R indicates a bit rate
of'a stream. In addition, a indicates, for example, a multiplier
according to the method of Lagrange multiplier.

The predictor then selects one of the prediction images
generated in Steps Sc_1a, Sc_1b, and Sc_1c¢ (Step Sc_3). In
other words, the predictor selects a method or a mode for
obtaining a final prediction image. For example, the predic-
tor selects the prediction image having the smallest cost C,
based on costs C calculated for the prediction images.
Alternatively, the evaluation in Step Sc_2 and the selection
of the prediction image in Step Sc_3 may be made based on
a parameter which is used in an encoding process. Encoder
100 may transform information for identifying the selected
prediction image, the method, or the mode into a stream. The
information may be, for example, a flag or the like. In this
way, decoder 200 is capable of generating a prediction
image according to the method or the mode selected by
encoder 100, based on the information. It is to be noted that,
in the example illustrated in FIG. 29, the predictor selects
any of the prediction images after the prediction images are
generated using the respective methods. However, the pre-
dictor may select a method or a mode based on a parameter
for use in the above-described encoding process before
generating prediction images, and may generate a prediction
image according to the method or mode selected.

For example, the first method and the second method may
be intra prediction and inter prediction, respectively, and the
predictor may select a final prediction image for a current
block from prediction images generated according to the
prediction methods.

FIG. 30 is a flow chart illustrating another example of a
process performed by the predictor of encoder 100.

First, the predictor generates a prediction image using
intra prediction (Step Sd_la), and generates a prediction
image using inter prediction (Step Sd_15). It is to be noted
that the prediction image generated by intra prediction is
also referred to as an intra prediction image, and the pre-
diction image generated by inter prediction is also referred
to as an inter prediction image.

Next, the predictor evaluates each of the intra prediction
image and the inter prediction image (Step Sd_2). Cost C
described above may be used in the evaluation. The predic-
tor may then select the prediction image for which the
smallest cost C has been calculated among the intra predic-
tion image and the inter prediction image, as the final
prediction image for the current block (Step Sd_3). In other
words, the prediction method or the mode for generating the
prediction image for the current block is selected.

US 12,088,849 B2

31
[Intra Predictor]

Intra predictor 124 generates a prediction image (that is,
intra prediction image) of a current block by performing
intra prediction (also referred to as intra frame prediction) of
the current block by referring to a block or blocks in the
current picture which is or are stored in block memory 118.
More specifically, intra predictor 124 generates an intra
prediction image by performing intra prediction by referring
to pixel values (for example, luma and/or chroma values) of
a block or blocks neighboring the current block, and then
outputs the intra prediction image to prediction controller
128.

For example, intra predictor 124 performs intra prediction
by using one mode from among a plurality of intra predic-
tion modes which have been predefined. The intra prediction
modes normally include one or more non-directional pre-
diction modes and a plurality of directional prediction
modes.

The one or more non-directional prediction modes
include, for example, planar prediction mode and DC pre-
diction mode defined in the H.265/HEVC standard.

The plurality of directional prediction modes include, for
example, the thirty-three directional prediction modes
defined in the H.265/HEVC standard. It is to be noted that
the plurality of directional prediction modes may further
include thirty-two directional prediction modes in addition
to the thirty-three directional prediction modes (for a total of
sixty-five directional prediction modes). FIG. 31 is a dia-
gram illustrating sixty-seven intra prediction modes in total
used in intra prediction (two non-directional prediction
modes and sixty-five directional prediction modes). The
solid arrows represent the thirty-three directions defined in
the H.265/HEVC standard, and the dashed arrows represent
the additional thirty-two directions (the two non-directional
prediction modes are not illustrated in FIG. 31).

In various kinds of mounting examples, a luma block may
be referred to in intra prediction of a chroma block. In other
words, a chroma component of the current block may be
predicted based on a luma component of the current block.
Such intra prediction is also referred to as cross-component
linear model (CCLM). The intra prediction mode for a
chroma block in which such a luma block is referred to (also
referred to as, for example, a CCLM mode) may be added
as one of the intra prediction modes for chroma blocks.

Intra predictor 124 may correct intra-predicted pixel val-
ues based on horizontal/vertical reference pixel gradients.
The intra prediction which accompanies this sort of correct-
ing is also referred to as position dependent intra prediction
combination (PDPC). Information indicating whether to
apply PDPC (referred to as, for example, a PDPC flag) is
normally signaled at the CU level. It is to be noted that the
signaling of such information does not necessarily need to
be performed at the CU level, and may be performed at
another level (for example, at the sequence level, picture
level, slice level, brick level, or CTU level).

FIG. 32 is a flow chart illustrating one example of a
process performed by intra predictor 124.

Intra predictor 124 selects one intra prediction mode from
a plurality of intra prediction modes (Step Sw_1). Intra
predictor 124 then generates a prediction image according to
the selected intra prediction mode (Step Sw_2). Next, intra
predictor 124 determines most probable modes (MPMs)
(Step Sw_3). MPMs include, for example, six intra predic-
tion modes. Two modes among the six intra prediction
modes may be planar mode and DC prediction mode, and
the other four modes may be directional prediction modes.

5

10

15

20

25

30

35

40

45

50

55

60

65

32

Intra predictor 124 determines whether the intra prediction
mode selected in Step Sw_1 is included in the MPMs (Step
Sw_4).

Here, when determining that the intra prediction mode
selected in Step Sw_1 is included in the MPMs (Yes in Step
Sw_4), intra predictor 124 sets an MPM flag to 1 (Step
Sw_5), and generates information indicating the selected
intra prediction mode among the MPMs (Step Sw_6). It is
to be noted that the MPM flag set to 1 and the information
indicating the intra prediction mode are encoded as predic-
tion parameters by entropy encoder 110.

When determining that the selected intra prediction mode
is not included in the MPMs (No in Step Sw_4), intra
predictor 124 sets the MPM flag to O (Step Sw_7). Alter-
natively, intra predictor 124 does not set any MPM flag. Intra
predictor 124 then generates information indicating the
selected intra prediction mode among at least one intra
prediction mode which is not included in the MPMs (Step
Sw_8). It is to be noted that the MPM flag set to 0 and the
information indicating the intra prediction mode are encoded
as prediction parameters by entropy encoder 110. The infor-
mation indicating the intra prediction mode indicates, for
example, any one of 0 to 60.

[Inter Predictor]

Inter predictor 126 generates a prediction image (inter
prediction image) by performing inter prediction (also
referred to as inter frame prediction) of the current block by
referring to a block or blocks in a reference picture which is
different from the current picture and is stored in frame
memory 122. Inter prediction is performed in units of a
current block or a current sub-block in the current block. The
sub-block is included in the block and is a unit smaller than
the block. The size of the sub-block may be 4x4 pixels, 8x8
pixels, or another size. The size of the sub-block may be
switched for a unit such as slice, brick, picture, etc.

For example, inter predictor 126 performs motion esti-
mation in a reference picture for a current block or a current
sub-block, and finds out a reference block or a reference
sub-block which best matches the current block or current
sub-block. Inter predictor 126 then obtains motion informa-
tion (for example, a motion vector) which compensates a
motion or a change from the reference block or the reference
sub-block to the current block or the current sub-block. Inter
predictor 126 generates an inter prediction image of the
current block or the current sub-block by performing motion
compensation (or motion prediction) based on the motion
information. Inter predictor 126 outputs the generated inter
prediction image to prediction controller 128.

The motion information used in motion compensation
may be signaled as inter prediction images in various forms.
For example, a motion vector may be signaled. As another
example, the difference between a motion vector and a
motion vector predictor may be signaled.

[Reference Picture List]

FIG. 33 is a diagram illustrating examples of reference
pictures. FIG. 34 is a conceptual diagram illustrating
examples of reference picture lists. Each reference picture
list is a list indicating at least one reference picture stored in
frame memory 122. It is to be noted that, in FIG. 33, each
of rectangles indicates a picture, each of arrows indicates a
picture reference relationship, the horizontal axis indicates
time, I, P, and B in the rectangles indicate an intra prediction
picture, a uni-prediction picture, and a bi-prediction picture,
respectively, and numerals in the rectangles indicate a
decoding order. As illustrated in FIG. 33, the decoding order
of'the pictures is an order of 10, P1, B2, B3, and B4, and the
display order of the pictures is an order of 10, B3, B2, B4,

US 12,088,849 B2

33

and P1. As illustrated in FIG. 34, the reference picture list is
a list representing reference picture candidates. For example,
one picture (or a slice) may include at least one reference
picture list. For example, one reference picture list is used
when a current picture is a uni-prediction picture, and two
reference picture lists are used when a current picture is a
bi-prediction picture. In the examples of FIGS. 33 and 34,
picture B3 which is current picture currPic has two reference
picture lists which are the LO list and the L1 list. When
current picture currPic is picture B3, reference picture
candidates for current picture currPic are 10, P1, and B2, and
the reference picture lists (which are the LO list and the L1
list) indicate these pictures. Inter predictor 126 or prediction
controller 128 specifies which picture in each reference
picture list is to be actually referred to in form of a reference
picture index refldxIx. In FIG. 34, reference pictures P1 and
B2 are specified by reference picture indices refldx[.O and
refldxL1.

Such a reference picture list may be generated for each
unit such as a sequence, picture, slice, brick, CTU, or CU.
In addition, among reference pictures indicated in reference
picture lists, a reference picture index indicating a reference
picture to be referred to in inter prediction may be signaled
at the sequence level, picture level, slice level, brick level,
CTU level, or CU level. In addition, a common reference
picture list may be used in a plurality of inter prediction
modes.

[Basic Flow of Inter Prediction]

FIG. 35 is a flow chart illustrating a basic processing flow
of inter prediction.

First, inter predictor 126 generates a prediction signal
(Steps Se_1 to Se_3). Next, subtractor 104 generates the
difference between a current block and a prediction image as
a prediction residual (Step Se_4).

Here, in the generation of the prediction image, inter
predictor 126 generates the prediction image through, for
example, determination of a motion vector (MV) of the
current block (Steps Se_1 and Se_2) and motion compen-
sation (Step Se_3). Furthermore, in determination of an MV,
inter predictor 126 determines the MV through, for example,
selection of a motion vector candidate (MV candidate) (Step
Se_1) and derivation of an MV (Step Se_2). The selection of
the MV candidate is made by means of, for example, inter
predictor 126 generating an MV candidate list and selecting
at least one MV candidate from the MV candidate list. It is
to be noted that MV derived in the past may be added to the
MYV candidate list. Alternatively, in derivation of an MV,
inter predictor 126 may further select at least one MV
candidate from the at least one MV candidate, and determine
the selected at least one MV candidate as the MV for the
current block. Alternatively, inter predictor 126 may deter-
mine the MV for the current block by performing estimation
in a reference picture region specified by each of the selected
at least one MV candidate. It is to be noted that the
estimation in the reference picture region may be referred to
as motion estimation.

In addition, although Steps Se_1 to Se_3 are performed by
inter predictor 126 in the above-described example, a pro-
cess that is, for example, Step Se_1, Step Se_2, or the like
may be performed by another constituent element included
in encoder 100.

It is to be noted that an MV candidate list may be
generated for each process in inter prediction mode, or a
common MV candidate list may be used in a plurality of
inter prediction modes. The processes in Steps Se_3 and
Se_4 correspond to Steps Sa_3 and Sa_4 illustrated in FIG.

10

15

20

25

30

35

40

45

34
9, respectively. The process in Step Se_3 corresponds to the
process in Step Sd_15 in FIG. 30.
[MV Derivation Flow]

FIG. 36 is a flow chart illustrating one example of MV
derivation.

Inter predictor 126 may derive an MV for a current block
in a mode for encoding motion information (for example, an
MYV). In this case, for example, the motion information may
be encoded as a prediction parameter, and may be signaled.
In other words, the encoded motion information is included
in a stream.

Alternatively, inter predictor 126 may derive an MV in a
mode in which motion information is not encoded. In this
case, no motion information is included in the stream.

Here, MV derivation modes include a normal inter mode,
a normal merge mode, a FRUC mode, an affine mode, etc.
which are described later. Modes in which motion informa-
tion is encoded among the modes include the normal inter
mode, the normal merge mode, the affine mode (specifically,
an affine inter mode and an affine merge mode), etc. It is to
be noted that motion information may include not only an
MYV but also MV predictor selection information which is
described later. Modes in which no motion information is
encoded include the FRUC mode, etc. Inter predictor 126
selects a mode for deriving an MV of the current block from
the plurality of modes, and derives the MV of the current
block using the selected mode.

FIG. 37 is a flow chart illustrating another example of MV
derivation.

Inter predictor 126 may derive an MV for a current block
in a mode in which an MV difference is encoded. In this
case, for example, the MV difference is encoded as a
prediction parameter, and is signaled. In other words, the
encoded MV difference is included in a stream. The MV
difference is the difference between the MV of the current
block and the MV predictor. It is to be noted that the MV
predictor is a motion vector predictor.

Alternatively, inter predictor 126 may derive an MV in a
mode in which no MV difference is encoded. In this case, no
encoded MV difference is included in the stream.

Here, as described above, the MV derivation modes
include the normal inter mode, the normal merge mode, the
FRUC mode, the affine mode, etc. which are described later.
Modes in which an MV difference is encoded among the
modes include the normal inter mode, the affine mode
(specifically, the affine inter mode), etc. Modes in which no
MYV difference is encoded include the FRUC mode, the
normal merge mode, the affine mode (specifically, the affine
merge mode), etc. Inter predictor 126 selects a mode for
deriving an MV of the current block from the plurality of
modes, and derives the MV for the current block using the
selected mode.

[MV Derivation Modes]

FIGS. 38A and 38B are each a diagram illustrating one
example of categorization of modes for MV derivation. For
example, as illustrated in FIG. 38A, MV derivation modes
are roughly categorized into three modes according to
whether to encode motion information and whether to
encode MV differences. The three modes are inter mode,
merge mode, and frame rate up-conversion (FRUC) mode.
The inter mode is a mode in which motion estimation is
performed, and in which motion information and an MV
difference are encoded. For example, as illustrated in FIG.
38B, the inter mode includes affine inter mode and normal
inter mode. The merge mode is a mode in which no motion
estimation is performed, and in which an MV is selected
from an encoded surrounding block and an MV for the

US 12,088,849 B2

35

current block is derived using the MV. The merge mode is
a mode in which, basically, motion information is encoded
and no MV difference is encoded. For example, as illustrated
in FIG. 38B, the merge modes include normal merge mode
(also referred to as normal merge mode or regular merge
mode), merge with motion vector difference (MMVD)
mode, combined inter merge/intra prediction (CIIP) mode,
triangle mode, ATMVP mode, and affine merge mode. Here,
an MV difference is encoded exceptionally in the MMVD
mode among the modes included in the merge modes. It is
to be noted that the affine merge mode and the affine inter
mode are modes included in the affine modes. The affine
mode is a mode for deriving, as an MV of a current block,
an MV of each of a plurality of sub-blocks included in the
current block, assuming affine transform. The FRUC mode
is a mode which is for deriving an MV of the current block
by performing estimation between encoded regions, and in
which neither motion information nor any MV difference is
encoded. It is to be noted that the respective modes will be
described later in detail.

It is to be noted that the categorization of the modes
illustrated in FIGS. 38A and 38B are examples, and catego-
rization is not limited thereto. For example, when an MV
difference is encoded in CIIP mode, the CIIP mode is
categorized into inter modes.

[MV Derivation>Normal Inter Mode]

The normal inter mode is an inter prediction mode for
deriving an MV of a current block by finding out a block
similar to the image of the current block from a reference
picture region specified by an MV candidate. In this normal
inter mode, an MV difference is encoded.

FIG. 39 is a flow chart illustrating an example of inter
prediction by normal inter mode.

First, inter predictor 126 obtains a plurality of MV can-
didates for a current block based on information such as
MVs of a plurality of encoded blocks temporally or spatially
surrounding the current block (Step Sg_1). In other words,
inter predictor 126 generates an MV candidate list.

Next, inter predictor 126 extracts N (an integer of 2 or
larger) MV candidates from the plurality of MV candidates
obtained in Step Sg_1, as motion vector predictor candidates
according to a predetermined priority order (Step Sg_2). It
is to be noted that the priority order is determined in advance
for each of the N MV candidates.

Next, inter predictor 126 selects one MV predictor can-
didate from the N MV predictor candidates as the MV
predictor for the current block (Step Sg_3). At this time,
inter predictor 126 encodes, in a stream, MV predictor
selection information for identifying the selected MV pre-
dictor. In other words, inter predictor 126 outputs the MV
predictor selection information as a prediction parameter to
entropy encoder 110 through prediction parameter generator
130.

Next, inter predictor 126 derives an MV of a current block
by referring to an encoded reference picture (Step Sg_4). At
this time, inter predictor 126 further encodes, in the stream,
the difference value between the derived MV and the MV
predictor as an MV difference. In other words, inter predic-
tor 126 outputs the MV difference as a prediction parameter
to entropy encoder 110 through prediction parameter gen-
erator 130. It is to be noted that the encoded reference
picture is a picture including a plurality of blocks which
have been reconstructed after being encoded.

Lastly, inter predictor 126 generates a prediction image
for the current block by performing motion compensation of
the current block using the derived MV and the encoded
reference picture (Step Sg_5). The processes in Steps Sg_1

20

25

30

35

40

45

50

36

to Sg_5 are executed on each block. For example, when the
processes in Steps Sg_1 to Sg_5 are executed on each of all
the blocks in the slice, inter prediction of the slice using the
normal inter mode finishes. For example, when the pro-
cesses in Steps Sg_1 to Sg_5 are executed on each of all the
blocks in the picture, inter prediction of the picture using the
normal inter mode finishes. It is to be noted that not all the
blocks included in the slice may be subjected to the pro-
cesses in Steps Sg_1 to Sg_5, and inter prediction of the slice
using the normal inter mode may finish when part of the
blocks are subjected to the processes. Likewise, inter pre-
diction of the picture using the normal inter mode may finish
when the processes in Steps Sg_1 to Sg_5 are executed on
part of the blocks in the picture.

It is to be noted that the prediction image is an inter
prediction signal as described above. In addition, informa-
tion indicating the inter prediction mode (normal inter mode
in the above example) used to generate the prediction image
is, for example, encoded as a prediction parameter in an
encoded signal.

It is to be noted that the MV candidate list may be also
used as a list for use in another mode. In addition, the
processes related to the MV candidate list may be applied to
processes related to the list for use in another mode. The
processes related to the MV candidate list include, for
example, extraction or selection of an MV candidate from
the MV candidate list, reordering of MV candidates, or
deletion of an MV candidate.

[MV Derivation>Normal Merge Mode]

The normal merge mode is an inter prediction mode for
selecting an MV candidate from an MV candidate list as an
MV for a current block, thereby deriving the MV. It is to be
noted that the normal merge mode is a merge mode in a
narrow meaning and is also simply referred to as a merge
mode. In this embodiment, the normal merge mode and the
merge mode are distinguished, and the merge mode is used
in a broad meaning.

FIG. 40 is a flow chart illustrating an example of inter
prediction by normal merge mode.

First, inter predictor 126 obtains a plurality of MV can-
didates for a current block based on information such as
MV of a plurality of encoded blocks temporally or spatially
surrounding the current block (Step Sh_1). In other words,
inter predictor 126 generates an MV candidate list.

Next, inter predictor 126 selects one MV candidate from
the plurality of MV candidates obtained in Step Sh_1,
thereby deriving an MV for the current block (Step Sh_2).
At this time, inter predictor 126 encodes, in a stream, MV
selection information for identifying the selected MV can-
didate. In other words, inter predictor 126 outputs the MV
selection information as a prediction parameter to entropy
encoder 110 through prediction parameter generator 130.

Lastly, inter predictor 126 generates a prediction image
for the current block by performing motion compensation of
the current block using the derived MV and the encoded
reference picture (Step Sh_3). The processes in Steps Sh_1
to Sh_3 are executed, for example, on each block. For
example, when the processes in Steps Sh_1 to Sh_3 are
executed on each of all the blocks in the slice, inter predic-
tion of the slice using the normal merge mode finishes. In
addition, when the processes in Steps Sh_1 to Sh_3 are
executed on each of all the blocks in the picture, inter
prediction of the picture using the normal merge mode
finishes. It is to be noted that not all the blocks included in
the slice may be subjected to the processes in Steps Sh_1 to
Sh_3, and inter prediction of the slice using the normal
merge mode may finish when part of the blocks are sub-

US 12,088,849 B2

37

jected to the processes. Likewise, inter prediction of the
picture using the normal merge mode may finish when the
processes in Steps Sh_1 to Sh_3 are executed on part of the
blocks in the picture.

In addition, information indicating the inter prediction
mode (normal merge mode in the above example) used to
generate the prediction image is, for example, encoded as a
prediction parameter in a stream.

FIG. 41 is a diagram for illustrating one example of an
MYV derivation process for a current picture by normal merge
mode.

First, inter predictor 126 generates an MV candidate list
in which MV candidates are registered. Examples of MV
candidates include: spatially neighboring MV candidates
which are MVs of a plurality of encoded blocks located
spatially surrounding a current block; temporally neighbor-
ing MV candidates which are MV of surrounding blocks on
which the position of a current block in an encoded reference
picture is projected; combined MV candidates which are
MVs generated by combining the MV value of a spatially
neighboring MV predictor and the MV value of a temporally
neighboring MV predictor; and a zero MV candidate which
is an MV having a zero value.

Next, inter predictor 126 selects one MV candidate from
a plurality of MV candidates registered in an MV candidate
list, and determines the MV candidate as the MV of the
current block.

Furthermore, entropy encoder 110 writes and encodes, in
a stream, merge_idx which is a signal indicating which MV
candidate has been selected.

It is to be noted that the MV candidates registered in the
MYV candidate list described in FIG. 41 are examples. The
number of MV candidates may be different from the number
of MV candidates in the diagram, the MV candidate list may
be configured in such a manner that some of the kinds of the
MYV candidates in the diagram may not be included, or that
one or more MV candidates other than the kinds of MV
candidates in the diagram are included.

A final MV may be determined by performing a dynamic
motion vector refreshing (DMVR) to be described later
using the MV of the current block derived by normal merge
mode. It is to be noted that, in normal merge mode, no MV
difference is encoded, but an MV difference is encoded. In
MMVD mode, one MV candidate is selected from an MV
candidate list as in the case of normal merge mode, an MV
difference is encoded. As illustrated in FIG. 38B, MMVD
may be categorized into merge modes together with normal
merge mode. It is to be noted that the MV difference in
MMVD mode does not always need to be the same as the
MYV difference for use in inter mode. For example, MV
difference derivation in MMVD mode may be a process that
requires a smaller amount of processing than the amount of
processing required for MV difference derivation in inter
mode.

In addition, a combined inter merge/intra prediction
(CIIP) mode may be performed. The mode is for overlap-
ping a prediction image generated in inter prediction and a
prediction image generated in intra prediction to generate a
prediction image for a current block.

It is to be noted that the MV candidate list may be referred
to as a candidate list. In addition, merge_idx is MV selection
information.

[MV Derivation>HMVP Mode]

FIG. 42 is a diagram for illustrating one example of an
MYV derivation process for a current picture by HMVP merge
mode.

20

30

40

45

50

55

60

38

In normal merge mode, an MV for, for example, a CU
which is a current block is determined by selecting one MV
candidate from an MV candidate list generated by referring
to an encoded block (for example, a CU). Here, another MV
candidate may be registered in the MV candidate list. The
mode in which such another MV candidate is registered is
referred to as HMVP mode.

In HMVP mode, MV candidates are managed using a
first-in first-out (FIFO) buffer for HMVP, separately from
the MV candidate list for normal merge mode.

In FIFO buffer, motion information such as MVs of
blocks processed in the past are stored newest first. In the
management of the FIFO buffer, each time when one block
is processed, the MV for the newest block (that is the CU
processed immediately before) is stored in the FIFO buffer,
and the MV of the oldest CU (that is, the CU processed
earliest) is deleted from the FIFO buffer. In the example
illustrated in FIG. 42, HMVP1 is the MV for the newest
block, and HMVPS is the MV for the oldest MV.

Inter predictor 126 then, for example, checks whether
each MV managed in the FIFO buffer is an MV different
from all the MV candidates which have been already reg-
istered in the MV candidate list for normal merge mode
starting from HMVP1. When determining that the MV is
different from all the MV candidates, inter predictor 126
may add the MV managed in the FIFO buffer in the MV
candidate list for normal merge mode as an MV candidate.
At this time, the MV candidate registered from the FIFO
buffer may be one or more.

By using the HMVP mode in this way, it is possible to add
not only the MV of a block which neighbors the current
block spatially or temporally but also an MV for a block
processed in the past. As a result, the variation of MV
candidates for normal merge mode is expanded, which
increases the probability that coding efficiency can be
increased.

It is to be noted that the MV may be motion information.
In other words, information stored in the MV candidate list
and the FIFO buffer may include not only MV values but
also reference picture information, reference directions, the
numbers of pictures, etc. In addition, the block is, for
example, a CU.

It is to be noted that the MV candidate list and the FIFO
buffer illustrated in FIG. 42 are examples. The MV candi-
date list and FIFO buffer may be different in size from those
in FIG. 42, or may be configured to register MV candidates
in an order different from the one in FIG. 42. In addition, the
process described here is common between encoder 100 and
decoder 200.

It is to be noted that the HMVP mode can be applied for
modes other than the normal merge mode. For example, it is
also excellent that motion information such as MVs of
blocks processed in affine mode in the past may be stored
newest first, and may be used as MV candidates. The mode
obtained by applying HMVP mode to affine mode may be
referred to as history affine mode.

[MV Derivation>FRUC Mode]

Motion information may be derived at the decoder 200
side without being signaled from the encoder 100 side. For
example, motion information may be derived by performing
motion estimation at the decoder 200 side. At this time, at
the decoder 200 side, motion estimation is performed with-
out using any pixel value in a current block. Modes in which
motion estimation is performed at the decoder 200 side in
this way include a frame rate up-conversion (FRUC) mode,
a pattern matched motion vector derivation (PMMVD)
mode, etc.

US 12,088,849 B2

39

One example of a FRUC process is illustrated in FIG. 43.
First, a list which indicates, as MV candidates, MVs for
encoded blocks each of which neighbors the current block
spatially or temporally is generated by referring to the MVs
(the list may be an MV candidate list, and be also used as the
MYV candidate list for normal merge mode) (Step Si_1).
Next, a best MV candidate is selected from the plurality of
MYV candidates registered in the MV candidate list (Step
Si_2). For example, the evaluation values of the respective
MYV candidates included in the MV candidate list are cal-
culated, and one MV candidate is selected as the best MV
candidate based on the evaluation values. Based on the
selected best MV candidate, a motion vector for the current
block is then derived (Step Si_4). More specifically, for
example, the selected best MV candidate is directly derived
as the MV for the current block. In addition, for example, the
MYV for the current block may be derived using pattern
matching in a surrounding region of a position which is
included in a reference picture and corresponds to the
selected best MV candidate. In other words, estimation
using the pattern matching in a reference picture and the
evaluation values may be performed in the surrounding
region of the best MV candidate, and when there is an MV
that yields a better evaluation value, the best MV candidate
may be updated to the MV that yields the better evaluation
value, and the updated MV may be determined as the final
MV for the current block. Update to the MV that yields the
better evaluation value may not be performed.

Lastly, inter predictor 126 generates a prediction image
for the current block by performing motion compensation of
the current block using the derived MV and the encoded
reference picture (Step Si_5). The processes in Steps Si_1 to
Si_5 are executed, for example, on each block. For example,
when the processes in Steps Si_1 to Si_5 are executed on
each of all the blocks in the slice, inter prediction of the slice
using the FRUC mode finishes. For example, when the
processes in Steps Si_1 to Si_5 are executed on each of all
the blocks in the picture, inter prediction of the picture using
the FRUC mode finishes. It is to be noted that not all the
blocks included in the slice may be subjected to the pro-
cesses in Steps Si_1 to Si_5, and inter prediction of the slice
using the FRUC mode may finish when part of the blocks are
subjected to the processes. Likewise, inter prediction of the
picture using the FRUC mode may finish when the processes
in Steps Si_1 to Si_5 are executed on part of the blocks
included in the picture.

Each sub-block may be processed similarly to the above-
described case of processing each block.

Evaluation values may be calculated according to various
kinds of methods. For example, a comparison is made
between a reconstructed image in a region in a reference
picture corresponding to an MV and a reconstructed image
in a determined region (the region may be, for example, a
region in another reference picture or a region in a neigh-
boring block of a current picture, as indicated below). The
difference between the pixel values of the two reconstructed
images may be used for an evaluation value of the MV. It is
to be noted that an evaluation value may be calculated using
information other than the value of the difference.

Next, pattern matching is described in detail. First, one
MV candidate included in an MV candidate list (also
referred to as a merge list) is selected as a starting point for
estimation by pattern matching. As the pattern matching,
either a first pattern matching or a second pattern matching
may be used. The first pattern matching and the second
pattern matching may be referred to as bilateral matching
and template matching, respectively.

40

45

50

55

40
[MV Derivation>FRUC>Bilateral Matching]

In the first pattern matching, the pattern matching is
performed between two blocks which are located along a
motion trajectory of a current block and included in two
different reference pictures. Accordingly, in the first pattern
matching, a region in another reference picture located along
the motion trajectory of the current block is used as a
determined region for calculating the evaluation value of the
above-described MV candidate.

FIG. 44 is a diagram for illustrating one example of the
first pattern matching (bilateral matching) between the two
blocks in the two reference pictures located along the motion
trajectory. As illustrated in FIG. 44, in the first pattern
matching, two motion vectors (MV0, MV1) are derived by
estimating a pair which best matches among pairs of two
blocks which are included in the two different reference
pictures (Ref0, Refl) and located along the motion trajec-
tory of the current block (Cur block). More specifically, a
difference between the reconstructed image at a specified
position in the first encoded reference picture (Ref0) speci-
fied by an MV candidate and the reconstructed image at a
specified position in the second encoded reference picture
(Refl) specified by a symmetrical MV obtained by scaling
the MV candidate at a display time interval is derived for the
current block, and an evaluation value is calculated using the
value of the obtained difference. It is excellent to select, as
the best MV, the MV candidate which yields the best
evaluation value among the plurality of MV candidates.

In the assumption of a continuous motion trajectory, the
motion vectors (MV0, MV1) specifying the two reference
blocks are proportional to temporal distances (TDO0, TD1)
between the current picture (Cur Pic) and the two reference
pictures (Ref0, Refl). For example, when the current picture
is temporally located between the two reference pictures and
the temporal distances from the current picture to the
respective two reference pictures are equal to each other,
mirror-symmetrical bi-directional MVs are derived in the
first pattern matching.

[MV Derivation>FRUC>Template Matching]

In the second pattern matching (template matching), pat-
tern matching is performed between a block in a reference
picture and a template in the current picture (the template is
a block neighboring the current block in the current picture
(the neighboring block is, for example, an upper and/or left
neighboring block(s))). Accordingly, in the second pattern
matching, the block neighboring the current block in the
current picture is used as the determined region for calcu-
lating the evaluation value of the above-described MV
candidate.

FIG. 45 is a diagram for illustrating one example of
pattern matching (template matching) between a template in
a current picture and a block in a reference picture. As
illustrated in FIG. 45, in the second pattern matching, the
MYV for the current block (Cur block) is derived by estimat-
ing, in the reference picture (Ref0), the block which best
matches the block neighboring the current block in the
current picture (Cur Pic). More specifically, the difference
between a reconstructed image in an encoded region which
neighbors both left and above or either left or above and a
reconstructed image which is in a corresponding region in
the encoded reference picture (Ref0) and is specified by an
MYV candidate is derived, and an evaluation value is calcu-
lated using the value of the obtained difference. It is excel-
lent to select, as the best MV candidate, the MV candidate
which yields the best evaluation value among the plurality of
MYV candidates.

US 12,088,849 B2

41

Such information indicating whether to apply the FRUC
mode (referred to as, for example, a FRUC flag) may be
signaled at the CU level. In addition, when the FRUC mode
is applied (for example, when a FRUC flag is true), infor-
mation indicating an applicable pattern matching method
(either the first pattern matching or the second pattern
matching) may be signaled at the CU level. It is to be noted
that the signaling of such information does not necessarily
need to be performed at the CU level, and may be performed
at another level (for example, at the sequence level, picture
level, slice level, brick level, CTU level, or sub-block level).
[MV Derivation>Affine Mode]

The affine mode is a mode for generating an MV using
affine transform. For example, an MV may be derived in
units of a sub-block based on motion vectors of a plurality
of neighboring blocks. This mode is also referred to as an
affine motion compensation prediction mode.

FIG. 46A is a diagram for illustrating one example of MV
derivation in units of a sub-block based on MVs of a
plurality of neighboring blocks. In FIG. 46A, the current
block includes sixteen 4x4 pixel sub-blocks. Here, motion
vector v at an upper-left corner control point in the current
block is derived based on an MV of a neighboring block, and
likewise, motion vector v, at an upper-right corner control
point in the current block is derived based on an MV of a
neighboring sub-block. Two motion vectors v, and v, are
projected according to an expression (1A) indicated below,
and motion vectors (v,, v,) for the respective sub-blocks in
the current block are derived.

[MATH. 1]
iy —var) (iy —voy) (1A)
=X Ty
w w
(Viy =voy) (Vix = Vo)
Vy = X+ —————) + Yy
w w

Here, x and y indicate the horizontal position and the
vertical position of the sub-block, respectively, and w indi-
cates a predetermined weighting coefficient.

Such information indicating the affine mode (for example,
referred to as an affine flag) may be signaled at the CU level.
It is to be noted that the signaling of such information does
not necessarily need to be performed at the CU level, and
may be performed at another level (for example, at the
sequence level, picture level, slice level, brick level, CTU
level, or sub-block level).

In addition, the affine mode may include several modes
for different methods for deriving MVs at the upper-left and
upper-right corner control points. For example, the affine
modes include two modes which are the affine inter mode
(also referred to as an affine normal inter mode) and the
affine merge mode.

FIG. 46B is a diagram for illustrating one example of MV
derivation in units of a sub-block in affine mode in which
three control points are used. In FIG. 46B, the current block
includes, for example, sixteen 4x4 pixel sub-blocks. Here,
motion vector v, at an upper-left corner control point in the
current block is derived based on an MV of a neighboring
block. Here, motion vector v, at an upper-right corner
control point in the current block is derived based on an MV
of a neighboring block, and likewise, motion vector v, at a
lower-left corner control point for the current block is
derived based on an MV of a neighboring block. Three
motion vectors v, v;, and v, are projected according to an

20

25

30

35

40

45

50

60

65

42

expression (1B) indicated below, and motion vectors (v,, v,)
for the respective sub-blocks in the current block are
derived.

[MATH. 2]

) 0 mvy) (B)

V= o "y vy,
w h

1y —voy) (V2 = Voy)
2Oy mvey) vy ~ Vo

+
W Y+ Yoy

Vy

Here, x and y indicate the horizontal position and the
vertical position of the sub-block, respectively, and each of
w and h indicates a predetermined weighting coefficient.
Here, w may indicate the width of a current block, and h may
indicate the height of the current block.

Affine modes in which different numbers of control points
(for example, two and three control points) are used may be
switched and signaled at the CU level. It is to be noted that
information indicating the number of control points in affine
mode used at the CU level may be signaled at another level
(for example, the sequence level, picture level, slice level,
brick level, CTU level, or sub-block level).

In addition, such an affine mode in which three control
points are used may include different methods for deriving
MVs at the upper-left, upper-right, and lower-left corner
control points. For example, the affine modes in which three
control points are used include two modes which are affine
inter mode and affine merge mode, as in the case of affine
modes in which two control points are used.

It is to be noted that, in the affine modes, the size of each
sub-block included in the current block may not be limited
to 4x4 pixels, and may be another size. For example, the size
of each sub-block may be 8x8 pixels.

[MV Derivation>Affine Mode>Control Point]

FIGS. 47A, 47B, and 47C are each a conceptual diagram
for illustrating one example of MV derivation at control
points in an affine mode.

As illustrated in FIG. 47A, in the affine mode, for
example, MV predictors at respective control points for a
current block are calculated based on a plurality of MVs
corresponding to blocks encoded according to the affine
mode among encoded block A (left), block B (upper), block
C (upper-right), block D (lower-left), and block E (upper-
left) which neighbor the current block. More specifically,
encoded block A (left), block B (upper), block C (upper-
right), block D (lower-left), and block E (upper-left) are
checked in the listed order, and the first effective block
encoded according to the affine mode is identified. The MV
at each control point for the current block is calculated based
on the plurality of MVs corresponding to the identified
block.

For example, as illustrated in FIG. 47B, when block A
which neighbors to the left of the current block has been
encoded according to an affine mode in which two control
points are used, motion vectors v; and v, projected at the
upper-left corner position and the upper-right corner posi-
tion of the encoded block including block A are derived.
Motion vector v, at the upper-left control point and motion
vector v, at the upper-right control point for the current
block are then calculated from derived motion vectors v; and
Vg
For example, as illustrated in FIG. 47C, when block A
which neighbors to the left of the current block has been
encoded according to an affine mode in which three control
points are used, motion vectors v, v,, and vs projected at the

US 12,088,849 B2

43

upper-left corner position, the upper-right corner position,
and the lower-left corner position of the encoded block
including block A are derived. Motion vector v, at the
upper-left control point for the current block, motion vector
v, at the upper-right control point for the current block, and
motion vector v, at the lower-left control point for the
current block are then calculated from derived motion
vectors Vs, V,, and vs.

The MV derivation methods illustrated in FIGS. 47A to
47C may be used in the MV derivation at each control point
for the current block in Step Sk_1 illustrated in FIG. 50
described later, or may be used for MV predictor derivation
at each control point for the current block in Step Sj_1
illustrated in FIG. 51 described later.

FIGS. 48A and 48B are each a conceptual diagram for
illustrating another example of MV derivation at control
points in affine mode.

FIG. 48A is a diagram for illustrating an affine mode in
which two control points are used.

In the affine mode, as illustrated in FIG. 48A, an MV
selected from MVs at encoded block A, block B, and block
C which neighbor the current block is used as motion vector
v, at the upper-left corner control point for the current block.
Likewise, an MV selected from MVs of encoded block D
and block E which neighbor the current block is used as
motion vector v, at the upper-right corner control point for
the current block.

FIG. 48B is a diagram for illustrating an affine mode in
which three control points are used.

In the affine mode, as illustrated in FIG. 48B, an MV
selected from MVs at encoded block A, block B, and block
C which neighbor the current block is used as motion vector
v, at the upper-left corner control point for the current block.
Likewise, an MV selected from MVs of encoded block D
and block E which neighbor the current block is used as
motion vector v, at the upper-right corner control point for
the current block. Furthermore, an MV selected from MV
of' encoded block F and block G which neighbor the current
block is used as motion vector v, at the lower-left corner
control point for the current block.

It is to be noted that the MV derivation methods illustrated
in FIGS. 48A and 48B may be used in the MV derivation at
each control point for the current block in Step Sk_1
illustrated in FIG. 50 described later, or may be used for MV
predictor derivation at each control point for the current
block in Step Sj_1 illustrated in FIG. 51 described later.

Here, when affine modes in which different numbers of
control points (for example, two and three control points) are
used may be switched and signaled at the CU level, the
number of control points for an encoded block and the
number of control points for a current block may be different
from each other.

FIGS. 49A and 49B are each a conceptual diagram for
illustrating one example of a method for MV derivation at
control points when the number of control points for an
encoded block and the number of control points for a current
block are different from each other.

For example, as illustrated in FIG. 49A, a current block
has three control points at the upper-left corner, the upper-
right corner, and the lower-left corner, and block A which
neighbors to the left of the current block has been encoded
according to an affine mode in which two control points are
used. In this case, motion vectors v, and v, projected at the
upper-left corner position and the upper-right corner posi-
tion in the encoded block including block A are derived.
Motion vector v, at the upper-left corner control point and
motion vector v, at the upper-right corner control point for

10

15

20

25

30

35

40

45

50

55

60

65

44

the current block are then calculated from derived motion
vectors vy and v,. Furthermore, motion vector v, at the
lower-left corner control point is calculated from derived
motion vectors v, and v;.

For example, as illustrated in FIG. 49B, a current block
has two control points at the upper-left corner and the
upper-right corner, and block A which neighbors to the left
of the current block has been encoded according to an affine
mode in which three control points are used. In this case,
motion vectors v, v,, and vs projected at the upper-left
corner position in the encoded block including block A, the
upper-right corner position in the encoded block, and the
lower-left corner position in the encoded block are derived.
Motion vector v, at the upper-left corner control point for the
current block and motion vector v, at the upper-right corner
control point for the current block are then calculated from
derived motion vectors vs, v,, and vs.

It is to be noted that the MV derivation methods illustrated
in FIGS. 49A and 49B may be used in the MV derivation at
each control point for the current block in Step Sk_1
illustrated in FIG. 50 described later, or may be used for MV
predictor derivation at each control point for the current
block in Step Sj_1 illustrated in FIG. 51 described later.
[MV Derivation>Affine Mode>Affine Merge Mode]

FIG. 50 is a flow chart illustrating one example of the
affine merge mode.

In the affine merge mode, first, inter predictor 126 derives
MVs at respective control points for a current block (Step
Sk_1). The control points are an upper-left corner point of
the current block and an upper-right corner point of the
current block as illustrated in FIG. 46A, or an upper-left
corner point of the current block, an upper-right corner point
of the current block, and a lower-left corner point of the
current block as illustrated in FIG. 46B. At this time, inter
predictor 126 may encode MV selection information for
identifying two or three derived MVs in a stream.

For example, when MV derivation methods illustrated in
FIGS. 47A to 47C are used, as illustrated in FIG. 47A, inter
predictor 126 checks encoded block A (left), block B (up-
per), block C (upper-right), block D (lower-left), and block
E (upper-left) in the listed order, and identifies the first
effective block encoded according to the affine mode.

Inter predictor 126 derives the MV at the control point
using the identified first effective block encoded according
to the identified affine mode. For example, when block A is
identified and block A has two control points, as illustrated
in FIG. 47B, inter predictor 126 calculates motion vector v,
at the upper-left corner control point of the current block and
motion vector v, at the upper-right corner control point of
the current block from motion vectors v; and v, at the
upper-left corner of the encoded block including block A and
the upper-right corner of the encoded block. For example,
inter predictor 126 calculates motion vector v, at the upper-
left corner control point of the current block and motion
vector v, at the upper-right corner control point of the
current block by projecting motion vectors v; and v, at the
upper-left corner and the upper-right corner of the encoded
block onto the current block.

Alternatively, when block A is identified and block A has
three control points, as illustrated in FIG. 47C, inter predic-
tor 126 calculates motion vector v, at the upper-left corner
control point of the current block, motion vector v, at the
upper-right corner control point of the current block, and
motion vector v, at the lower-left corner control point of the
current block from motion vectors v;, v,, and v at the
upper-left corner of the encoded block including block A,
the upper-right corner of the encoded block, and the lower-

US 12,088,849 B2

45

left corner of the encoded block. For example, inter predic-
tor 126 calculates motion vector v, at the upper-left corner
control point of the current block, motion vector v, at the
upper-right corner control point of the current block, and
motion vector v, at the lower-left corner control point of the
current block by projecting motion vectors v;, v,, and v at
the upper-left corner, the upper-right corner, and the lower-
left corner of the encoded block onto the current block.

It is to be noted that, as illustrated in FIG. 49A described
above, MVs at three control points may be calculated when
block A is identified and block A has two control points, and
that, as illustrated in FIG. 49B described above, MV at two
control points may be calculated when block A is identified
and block A has three control points.

Next, inter predictor 126 performs motion compensation
of each of a plurality of sub-blocks included in the current
block. In other words, inter predictor 126 calculates an MV
for each of the plurality of sub-blocks as an affine MV, using
either two motion vectors v, and v, and the above expression
(1A) or three motion vectors v,, v, and v, and the above
expression (1B) (Step Sk_2). Inter predictor 126 then per-
forms motion compensation of the sub-blocks using these
affine MVs and encoded reference pictures (Step Sk_3).
When the processes in Steps Sk_2 and Sk_3 are executed for
each of all the sub-blocks included in the current block, the
process for generating a prediction image using the affine
merge mode for the current block finishes. In other words,
motion compensation of the current block is performed to
generate a prediction image of the current block.

It is to be noted that the above-described MV candidate
list may be generated in Step Sk_1. The MV candidate list
may be, for example, a list including MV candidates derived
using a plurality of MV derivation methods for each control
point. The plurality of MV derivation methods may be any
combination of the MV derivation methods illustrated in
FIGS. 47A to 47C, the MV derivation methods illustrated in
FIGS. 48A and 48B, the MV derivation methods illustrated
in FIGS. 49A and 49B, and other MV derivation methods.

It is to be noted that MV candidate lists may include MV
candidates in a mode in which prediction is performed in
units of a sub-block, other than the affine mode.

It is to be noted that, for example, an MV candidate list
including MV candidates in an affine merge mode in which
two control points are used and an affine merge mode in
which three control points are used may be generated as an
MV candidate list. Alternatively, an MV candidate list
including MV candidates in the affine merge mode in which
two control points are used and an MV candidate list
including MV candidates in the affine merge mode in which
three control points are used may be generated separately.
Alternatively, an MV candidate list including MV candi-
dates in one of the affine merge mode in which two control
points are used and the affine merge mode in which three
control points are used may be generated. The MV
candidate(s) may be, for example, MVs for encoded block A
(left), block B (upper), block C (upper-right), block D
(lower-left), and block E (upper-left), or an MV for an
effective block among the blocks.

It is to be noted that index indicating one of the MVs in
an MV candidate list may be transmitted as MV selection
information.

[MV Derivation>Affine Mode>Afline Inter Mode]

FIG. 51 is a flow chart illustrating one example of an
affine inter mode.

In the affine inter mode, first, inter predictor 126 derives
MYV predictors (vq, v;) or (vq, V;, V,) of respective two or
three control points for a current block (Step Sj_1). The

5

10

20

25

30

40

45

50

55

60

65

46

control points are an upper-left corner point for the current
block, an upper-right corner point of the current block, and
a lower-left corner point for the current block as illustrated
in FIG. 46A or FIG. 46B.

For example, when the MV derivation methods illustrated
in FIGS. 48A and 48B are used, inter predictor 126 derives
the MV predictors (v,, v,) or (v,, v;, V,) at respective two
or three control points for the current block by selecting
MVs of any of the blocks among encoded blocks in the
vicinity of the respective control points for the current block
illustrated in either FIG. 48 A or FIG. 48B. At this time, inter
predictor 126 encodes, in a stream, MV predictor selection
information for identifying the selected two or three MV
predictors.

For example, inter predictor 126 may determine, using a
cost evaluation or the like, the block from which an MV as
an MV predictor at a control point is selected from among
encoded blocks neighboring the current block, and may
write, in a bitstream, a flag indicating which MV predictor
has been selected. In other words, inter predictor 126
outputs, as a prediction parameter, the MV predictor selec-
tion information such as a flag to entropy encoder 110
through prediction parameter generator 130.

Next, inter predictor 126 performs motion estimation
(Steps Sj_3 and Sj_4) while updating the MV predictor
selected or derived in Step Sj_1 (Step Sj_2). In other words,
inter predictor 126 calculates, as an affine MV, an MV of
each of sub-blocks which corresponds to an updated MV
predictor, using either the expression (1A) or expression
(1B) described above (Step Sj_3). Inter predictor 126 then
performs motion compensation of the sub-blocks using these
affine MVs and encoded reference pictures (Step Sj_4). The
processes in Steps Sj_3 and Sj_4 are executed on all the
blocks in the current block each time an MV predictor is
updated in Step Sj_2. As a result, for example, inter predic-
tor 126 determines the MV predictor which yields the
smallest cost as the MV at a control point in a motion
estimation loop (Step Sj_5). At this time, inter predictor 126
further encodes, in the stream, the difference value between
the determined MV and the MV predictor as an MV differ-
ence. In other words, inter predictor 126 outputs the MV
difference as a prediction parameter to entropy encoder 110
through prediction parameter generator 130.

Lastly, inter predictor 126 generates a prediction image
for the current block by performing motion compensation of
the current block using the determined MV and the encoded
reference picture (Step Sj_6).

It is to be noted that the above-described MV candidate
list may be generated in Step Sj_1. The MV candidate list
may be, for example, a list including MV candidates derived
using a plurality of MV derivation methods for each control
point. The plurality of MV derivation methods may be any
combination of the MV derivation methods illustrated in
FIGS. 47A to 47C, the MV derivation methods illustrated in
FIGS. 48A and 48B, the MV derivation methods illustrated
in FIGS. 49A and 49B, and other MV derivation methods.

It is to be noted that the MV candidate list may include
MYV candidates in a mode in which prediction is performed
in units of a sub-block, other than the affine mode.

It is to be noted that, for example, an MV candidate list
including MV candidates in an affine inter mode in which
two control points are used and an affine inter mode in which
three control points are used may be generated as an MV
candidate list. Alternatively, an MV candidate list including
MYV candidates in the affine inter mode in which two control
points are used and an MV candidate list including MV
candidates in the affine inter mode in which three control

US 12,088,849 B2

47

points are used may be generated separately. Alternatively,
an MV candidate list including MV candidates in one of the
affine inter mode in which two control points are used and
the affine inter mode in which three control points are used
may be generated. The MV candidate(s) may be, for
example, MVs for encoded block A (left), block B (upper),
block C (upper-right), block D (lower-left), and block E
(upper-left), or an MV for an effective block among the
blocks.

It is to be noted that index indicating one of the MV
candidates in an MV candidate list may be transmitted as
MYV predictor selection information.

[MV Derivation>Triangle Mode]

Inter predictor 126 generates one rectangular prediction
image for a rectangular current block in the above example.
However, inter predictor 126 may generate a plurality of
prediction images each having a shape different from a
rectangle for the rectangular current block, and may com-
bine the plurality of prediction images to generate the final
rectangular prediction image. The shape different from a
rectangle may be, for example, a triangle.

FIG. 52A is a diagram for illustrating generation of two
triangular prediction images.

Inter predictor 126 generates a triangular prediction image
by performing motion compensation of a first partition
having a triangular shape in a current block by using a first
MYV of the first partition, to generate a triangular prediction
image. Likewise, inter predictor 126 generates a triangular
prediction image by performing motion compensation of a
second partition having a triangular shape in a current block
by using a second MV of the second partition, to generate a
triangular prediction image. Inter predictor 126 then gener-
ates a prediction image having the same rectangular shape as
the rectangular shape of the current block by combining
these prediction images.

It is to be noted that a first prediction image having a
rectangular shape corresponding to a current block may be
generated as a prediction image for a first partition, using a
first MV. In addition, a second prediction image having a
rectangular shape corresponding to a current block may be
generated as a prediction image for a second partition, using
a second MV. A prediction image for the current block may
be generated by performing a weighted addition of the first
prediction image and the second prediction image. It is to be
noted that the part which is subjected to the weighted
addition may be a partial region across the boundary
between the first partition and the second partition.

FIG. 52B is a conceptual diagram for illustrating
examples of a first portion of a first partition which overlaps
with a second partition, and first and second sets of samples
which may be weighted as part of a correction process. The
first portion may be, for example, one fourth of the width or
height of the first partition. In another example, the first
portion may have a width corresponding to N samples
adjacent to an edge of the first partition, where N is an
integer greater than zero, and N may be, for example, the
integer 2. As illustrated, the left example of FIG. 52B shows
a rectangular partition having a rectangular portion with a
width which is one fourth of the width of the first partition,
with the first set of samples including samples outside of the
first portion and samples inside of the first portion, and the
second set of samples including samples within the first
portion. The center example of FIG. 52B shows a rectan-
gular partition having a rectangular portion with a height
which is one fourth of the height of the first partition, with
the first set of samples including samples outside of the first
portion and samples inside of the first portion, and the

10

15

20

25

30

35

40

45

50

55

60

65

48

second set of samples including samples within the first
portion. The right example of FIG. 52B shows a triangular
partition having a polygonal portion with a height which
corresponds to two samples, with the first set of samples
including samples outside of the first portion and samples
inside of the first portion, and the second set of samples
including samples within the first portion.

The first portion may be a portion of the first partition
which overlaps with an adjacent partition. FIG. 52C is a
conceptual diagram for illustrating a first portion of a first
partition, which is a portion of the first partition that overlaps
with a portion of an adjacent partition. For ease of illustra-
tion, a rectangular partition having an overlapping portion
with a spatially adjacent rectangular partition is shown.
Partitions having other shapes, such as triangular partitions,
may be employed, and the overlapping portions may overlap
with a spatially or temporally adjacent partition.

In addition, although an example is given in which a
prediction image is generated for each of two partitions
using inter prediction, a prediction image may be generated
for at least one partition using intra prediction.

FIG. 53 is a flow chart illustrating one example of a
triangle mode.

In the triangle mode, first, inter predictor 126 splits the
current block into the first partition and the second partition
(Step Sx_1). At this time, inter predictor 126 may encode, in
a stream, partition information which is information related
to the splitting into the partitions as a prediction parameter.
In other words, inter predictor 126 may output the partition
information as the prediction parameter to entropy encoder
110 through prediction parameter generator 130.

First, inter predictor 126 obtains a plurality of MV can-
didates for a current block based on information such as
MV of a plurality of encoded blocks temporally or spatially
surrounding the current block (Step Sx_2). In other words,
inter predictor 126 generates an MV candidate list.

Inter predictor 126 then selects the MV candidate for the
first partition and the MV candidate for the second partition
as a first MV and a second MV, respectively, from the
plurality of MV candidates obtained in Step Sx_2 (Step
Sx_3). At this time, inter predictor 126 encodes, in a stream,
MYV selection information for identifying the selected MV
candidate, as a prediction parameter. In other words, inter
predictor 126 outputs the MV selection information as a
prediction parameter to entropy encoder 110 through pre-
diction parameter generator 130.

Next, inter predictor 126 generates a first prediction
image by performing motion compensation using the
selected first MV and an encoded reference picture (Step
Sx_4). Likewise, inter predictor 126 generates a second
prediction image by performing motion compensation using
the selected second MV and an encoded reference picture
(Step Sx_5).

Lastly, inter predictor 126 generates a prediction image
for the current block by performing a weighted addition of
the first prediction image and the second prediction image
(Step Sx_6).

It is to be noted that, although the first partition and the
second partition are triangles in the example illustrated in
FIG. 52A, the first partition and the second partition may be
trapezoids, or other shapes different from each other. Fur-
thermore, although the current block includes two partitions
in the example illustrated in FIG. 52A, the current block may
include three or more partitions.

In addition, the first partition and the second partition may
overlap with each other. In other words, the first partition
and the second partition may include the same pixel region.

US 12,088,849 B2

49

In this case, a prediction image for a current block may be
generated using a prediction image in the first partition and
a prediction image in the second partition.

In addition, although the example in which the prediction
image is generated for each of the two partitions using inter
prediction has been illustrated, a prediction image may be
generated for at least one partition using intra prediction.

It is to be noted that the MV candidate list for selecting the
first MV and the MV candidate list for selecting the second
MYV may be different from each other, or the MV candidate
list for selecting the first MV may be also used as the MV
candidate list for selecting the second MV.

It is to be noted that partition information may include an
index indicating the splitting direction in which at least a
current block is split into a plurality of partitions. The MV
selection information may include an index indicating the
selected first MV and an index indicating the selected second
MV. One index may indicate a plurality of pieces of infor-
mation. For example, one index collectively indicating a part
or the entirety of partition information and a part or the
entirety of MV selection information may be encoded.
[MV Derivation>ATMVP Mode]

FIG. 54 is a diagram illustrating one example of an
ATMVP mode in which an MV is derived in units of a
sub-block.

The ATMVP mode is a mode categorized into the merge
mode. For example, in the ATMVP mode, an MV candidate
for each sub-block is registered in an MV candidate list for
use in normal merge mode.

More specifically, in the ATMVP mode, first, as illustrated
in FIG. 54, a temporal MV reference block associated with
a current block is identified in an encoded reference picture
specified by an MV (MVO0) of a neighboring block located
at the lower-left position relative to the current block. Next,
in each sub-block in the current block, the MV used to
encode the region corresponding to the sub-block in the
temporal MV reference block is identified. The MV identi-
fied in this way is included in an MV candidate list as an MV
candidate for the sub-block in the current block. When the
MYV candidate for each sub-block is selected from the MV
candidate list, the sub-block is subjected to motion compen-
sation in which the MV candidate is used as the MV for the
sub-block. In this way, a prediction image for each sub-block
is generated.

Although the block located at the lower-left position with
respect to the current block is used as a surrounding MV
reference block in the example illustrated in FIG. 54, it is to
be noted that another block may be used. In addition, the size
of the sub-block may be 4x4 pixels, 8x8 pixels, or another
size. The size of the sub-block may be switched for a unit
such as a slice, brick, picture, etc.

[Motion Estimation>DMVR]

FIG. 55 is a diagram illustrating a relationship between a
merge mode and DMVR.

Inter predictor 126 derives an MV for a current block
according to the merge mode (Step SI_1). Next, inter pre-
dictor 126 determines whether to perform estimation of an
MYV that is motion estimation (Step S1_2). Here, when
determining not to perform motion estimation (No in Step
S1_2), inter predictor 126 determines the MV derived in Step
S1_1 as the final MV for the current block (Step S1_4). In
other words, in this case, the MV for the current block is
determined according to the merge mode.

When determining to perform motion estimation in Step
S1_1 (Yes in Step S1_2), inter predictor 126 derives the final
MYV for the current block by estimating a surrounding region
of the reference picture specified by the MV derived in Step

5

10

15

20

25

30

35

40

45

50

55

60

65

50

S1_1 (Step S1_3). In other words, in this case, the MV for the
current block is determined according to the DMVR.

FIG. 56 is a conceptual diagram for illustrating another
example of DMVR for determining an MV.

First, in the merge mode for example, MV candidates (LO
and 1) are selected for the current block. A reference pixel
is identified from a first reference picture (LO) which is an
encoded picture in the L0 list according to the MV candidate
(LO). Likewise, a reference pixel is identified from a second
reference picture (LL1) which is an encoded picture in the L1
list according to the MV candidate (L1). A template is
generated by calculating an average of these reference
pixels.

Next, each of the surrounding regions of MV candidates
of the first reference picture (L0) and the second reference
picture (L1) are estimated using the template, and the MV
which yields the smallest cost is determined to be the final
MV. It is to be noted that the cost may be calculated, for
example, using a difference value between each of the pixel
values in the template and a corresponding one of the pixel
values in the estimation region, the values of MV candidates,
etc.

Exactly the same processes described here do not always
need to be performed. Any process for enabling derivation
of'the final MV by estimation in surrounding regions of MV
candidates may be used.

FIG. 57 is a conceptual diagram for illustrating another
example of DMVR for determining an MV. Unlike the
example of DMVR illustrated in FIG. 56, in the example
illustrated in FIG. 57, costs are calculated without generat-
ing any template.

First, inter predictor 126 estimates a surrounding region
of'a reference block included in each of reference pictures in
the LO list and L1 list, based on an initial MV which is an
MYV candidate obtained from each MV candidate list. For
example, as illustrated in FIG. 57, the initial MV corre-
sponding to the reference block in the 1.0 list is InitMV_L.0,
and the initial MV corresponding to the reference block in
the L1 list is InitMV_L1. In motion estimation, inter pre-
dictor 126 firstly sets a search position for the reference
picture in the L.O list. Based on the position indicated by the
vector difference indicating the search position to be set,
specifically, the initial MV (that is, InitMV_L0), the vector
difference to the search position is MVd_LO. Inter predictor
126 then determines the estimation position in the reference
picture in the L1 list. This search position is indicated by the
vector difference to the search position from the position
indicated by the initial MV (that is, InitMV_L1). More
specifically, inter predictor 126 determines the vector dif-
ference as MVd_L1 by mirroring of MVd_L0O. In other
words, inter predictor 126 determines the position which is
symmetrical with respect to the position indicated by the
initial MV to be the search position in each reference picture
in the L0 list and the .1 list. Inter predictor 126 calculates,
for each search position, the total sum of the absolute
differences (SADs) between values of pixels at search
positions in blocks as a cost, and finds out the search position
that yields the smallest cost.

FIG. 58A is a diagram illustrating one example of motion
estimation in DMVR, and FIG. 58B is a flow chart illus-
trating one example of the motion estimation.

First, in Step 1, inter predictor 126 calculates the cost
between the search position (also referred to as a starting
point) indicated by the initial MV and eight surrounding
search positions. Inter predictor 126 then determines
whether the cost at each of the search positions other than
the starting point is the smallest. Here, when determining

US 12,088,849 B2

51

that the cost at the search position other than the starting
point is the smallest, inter predictor 126 changes a target to
the search position at which the smallest cost is obtained,
and performs the process in Step 2. When the cost at the
starting point is the smallest, inter predictor 126 skips the
process in Step 2 and performs the process in Step 3.

In Step 2, inter predictor 126 performs the search similar
to the process in Step 1, regarding, as a new starting point,
the search position after the target change according to the
result of the process in Step 1. Inter predictor 126 then
determines whether the cost at each of the search positions
other than the starting point is the smallest. Here, when
determining that the cost at the search position other than the
starting point is the smallest, inter predictor 126 performs
the process in Step 4. When the cost at the starting point is
the smallest, inter predictor 126 performs the process in Step
3.

In Step 4, inter predictor 126 regards the search position
at the starting point as the final search position, and deter-
mines the difference between the position indicated by the
initial MV and the final search position to be a vector
difference.

In Step 3, inter predictor 126 determines the pixel position
at sub-pixel accuracy at which the smallest cost is obtained,
based on the costs at the four points located at upper, lower,
left, and right positions with respect to the starting point in
Step 1 or Step 2, and regards the pixel position as the final
search position. The pixel position at the sub-pixel accuracy
is determined by performing weighted addition of each of
the four upper, lower, left, and right vectors ((0, 1), (0, -1),
(-1, 0), and (1, 0)), using, as a weight, the cost at a
corresponding one of the four search positions. Inter pre-
dictor 126 then determines the difference between the posi-
tion indicated by the initial MV and the final search position
to be the vector difference.

[Motion Compensation>BIO/OBMC/LIC]

Motion compensation involves a mode for generating a
prediction image, and correcting the prediction image. The
mode is, for example, BIO, OBMC, and LIC to be described
later.

FIG. 59 is a flow chart illustrating one example of
generation of a prediction image.

Inter predictor 126 generates a prediction image (Step
Sm_1), and corrects the prediction image according to any
of the modes described above (Step Sm_2).

FIG. 60 is a flow chart illustrating another example of
generation of a prediction image.

Inter predictor 126 derives an MV of a current block (Step
Sn_1). Next, inter predictor 126 generates a prediction
image using the MV (Step Sn_2), and determines whether to
perform a correction process (Step Sn_3). Here, when
determining to perform a correction process (Yes in Step
Sn_3), inter predictor 126 generates the final prediction
image by correcting the prediction image (Step Sn_4). It is
to be noted that, in LIC described later, luminance and
chrominance may be corrected in Step Sn_4. When deter-
mining not to perform a correction process (No in Step
Sn_3), inter predictor 126 outputs the prediction image as
the final prediction image without correcting the prediction
image (Step Sn_5).

[Motion Compensation>OBMC]

It is to be noted that an inter prediction image may be
generated using motion information for a neighboring block
in addition to motion information for the current block
obtained by motion estimation. More specifically, an inter
prediction image may be generated for each sub-block in a
current block by performing weighted addition of a predic-

20

35

40

45

55

60

52

tion image based on the motion information obtained by
motion estimation (in a reference picture) and a prediction
image based on the motion information of the neighboring
block (in the current picture). Such inter prediction (motion
compensation) is also referred to as overlapped block
motion compensation (OBMC) or an OBMC mode.

In OBMC mode, information indicating a sub-block size
for OBMC (referred to as, for example, an OBMC block
size) may be signaled at the sequence level. Moreover,
information indicating whether to apply the OBMC mode
(referred to as, for example, an OBMC flag) may be signaled
at the CU level. It is to be noted that the signaling of such
information does not necessarily need to be performed at the
sequence level and CU level, and may be performed at
another level (for example, at the picture level, slice level,
brick level, CTU level, or sub-block level).

The OBMC mode will be described in further detail.
FIGS. 61 and 62 are a flow chart and a conceptual diagram
for illustrating an outline of a prediction image correction
process performed by OBMC.

First, as illustrated in FIG. 62, a prediction image (Pred)
by normal motion compensation is obtained using an MV
assigned to a current block. In FIG. 62, the arrow “MV”
points a reference picture, and indicates what the current
block of the current picture refers to in order to obtain the
prediction image.

Next, a prediction image (Pred_L) is obtained by applying
a motion vector (MV_L) which has been already derived for
the encoded block neighboring to the left of the current
block to the current block (re-using the motion vector for the
current block). The motion vector (MV_L) is indicated by an
arrow “MV_L” indicating a reference picture from a current
block. A first correction of a prediction image is performed
by overlapping two prediction images Pred and Pred_L.. This
provides an effect of blending the boundary between neigh-
boring blocks.

Likewise, a prediction image (Pred_U) is obtained by
applying an MV (MV_U) which has been already derived
for the encoded block neighboring above the current block
to the current block (re-using the MV for the current block).
The MV (MV_U) is indicated by an arrow “MV_U” indi-
cating a reference picture from a current block. A second
correction of a prediction image is performed by overlap-
ping the prediction image Pred_U to the prediction images
(for example, Pred and Pred_I) on which the first correction
has been performed. This provides an effect of blending the
boundary between neighboring blocks. The prediction
image obtained by the second correction is the one in which
the boundary between the neighboring blocks has been
blended (smoothed), and thus is the final prediction image of
the current block.

Although the above example is a two-path correction
method using left and upper neighboring blocks, it is to be
noted that the correction method may be three- or more-path
correction method using also the right neighboring block
and/or the lower neighboring block.

It is to be noted that the region in which such overlapping
is performed may be only part of a region near a block
boundary instead of the pixel region of the entire block.

It is to be noted that the prediction image correction
process according to OBMC for obtaining one prediction
image Pred from one reference picture by overlapping
additional prediction images Pred_L. and Pred_U has been
described above. However, when a prediction image is
corrected based on a plurality of reference images, a similar
process may be applied to each of the plurality of reference
pictures. In such a case, after corrected prediction images are

US 12,088,849 B2

53

obtained from the respective reference pictures by perform-
ing OBMC image correction based on the plurality of
reference pictures, the obtained corrected prediction images
are further overlapped to obtain the final prediction image.

It is to be noted that, in OBMC, a current block unit may
be a PU or a sub-block unit obtained by further splitting the
PU.

One example of a method for determining whether to
apply OBMC is a method for using an obmc_flag which is
a signal indicating whether to apply OBMC. As one specific
example, encoder 100 may determine whether the current
block belongs to a region having complicated motion.
Encoder 100 sets the obme_flag to a value of “1” when the
block belongs to a region having complicated motion and
applies OBMC when encoding, and sets the obmc_flag to a
value of “0” when the block does not belong to a region
having complicated motion and encodes the block without
applying OBMC. Decoder 200 switches between application
and non-application of OBMC by decoding the obmc_flag
written in a stream.

[Motion Compensation>BIO]

Next, an MV derivation method is described. First, a
mode for deriving an MV based on a model assuming
uniform linear motion is described. This mode is also
referred to as a bi-directional optical flow (BIO) mode. In
addition, this bi-directional optical flow may be written as
BDOF instead of BIO.

FIG. 63 is a diagram for illustrating a model assuming
uniform linear motion. In FIG. 63, (vx, vy) indicates a
velocity vector, and t0 and 7l indicate temporal distances
between a current picture (Cur Pic) and two reference
pictures (Ref,, Ref)). (MVx,, MVy,) indicates an MV
corresponding to reference picture Ref,,, and (MVx,, MVy,)
indicates an MV corresponding to reference picture Ref;.

Here, under the assumption of uniform linear motion
exhibited by a velocity vector (vx, vy), (MVx,, MVy,) and
(MVx,, MVy,) are represented as (vxt0, vyt0) and (-vxtl,
-vytl), respectively, and the following optical flow equation
(2) is given.

[MATH. 3]

B /3t+v, 1P x+v,IP By=0)

Here, 1(k) denotes a luma value from reference image k
(k=0, 1) after motion compensation. This optical flow equa-
tion shows that the sum of (i) the time derivative of the luma
value, (ii) the product of the horizontal velocity and the
horizontal component of the spatial gradient of a reference
image, and (iii) the product of the vertical velocity and the
vertical component of the spatial gradient of a reference
image is equal to zero. A motion vector of each block
obtained from, for example, an MV candidate list may be
corrected in units of a pixel, based on a combination of the
optical flow equation and Hermite interpolation.

It is to be noted that a motion vector may be derived on
the decoder 200 side using a method other than deriving a
motion vector based on a model assuming uniform linear
motion. For example, a motion vector may be derived in
units of a sub-block based on MVs of a plurality of neigh-
boring blocks.

FIG. 64 is a flow chart illustrating one example of inter
prediction according to BIO. FIG. 65 is a diagram illustrat-
ing one example of a configuration of inter predictor 126
which performs inter prediction according to BIO.

As illustrated in FIG. 65, inter predictor 126 includes, for
example, memory 126q, interpolated image deriver 1265,
gradient image deriver 126¢, optical flow deriver 1264,

20

30

35

40

45

55

60

54

correction value deriver 126¢, and prediction image correc-
tor 126f. It is to be noted that memory 1264 may be frame
memory 122.

Inter predictor 126 derives two motion vectors (MO, M1),
using two reference pictures (Ref,,, Ref)) different from the
picture (Cur Pic) including a current block. Inter predictor
126 then derives a prediction image for the current block
using the two motion vectors (M0, M1) (Step Sy_1). Itis to
be noted that motion vector MO is motion vector (MVX,,
MVy,) corresponding to reference picture Ref,,, and motion
vector M1 is motion vector (MVx,, MVy,) corresponding to
reference picture Ref].

Next, interpolated image deriver 1265 derives interpo-
lated image 1° for the current block, using motion vector MO
and reference picture L.O by referring to memory 126a. Next,
interpolated image deriver 1265 derives interpolated image
I' for the current block, using motion vector M1 and refer-
ence picture L1 by referring to memory 126a (Step Sy_2).
Here, interpolated image I° is an image included in reference
picture Ref, and to be derived for the current block, and
interpolated image I' is an image included in reference
picture Ref| and to be derived for the current block. Each of
interpolated image I° and interpolated image I' may be the
same in size as the current block. Alternatively, each of
interpolated image I° and interpolated image I' may be an
image larger than the current block. Furthermore, interpo-
lated image 1° and interpolated image I' may include a
prediction image obtained by using motion vectors (MO,
M1) and reference pictures (L0, 1) and applying a motion
compensation filter.

In addition, gradient image deriver 126¢ derives gradient
images (Ix°, Ix', Iy°, Iy") of the current block, from inter-
polated image 1° and interpolated image I*. It is to be noted
that the gradient images in the horizontal direction are (Ix°,
Ix'), and the gradient images in the vertical direction are
(Iy°, Iy"). Gradient image deriver 126c may derive each
gradient image by, for example, applying a gradient filter to
the interpolated images. It is only necessary that a gradient
image indicate the amount of spatial change in pixel value
along the horizontal direction or the vertical direction.

Next, optical flow deriver 1264 derives, for each sub-
block of the current block, an optical flow (vx, vy) which is
a velocity vector, using the interpolated images (I°, I') and
the gradient images (Ix°, Ix', Iy°, Iy'). The optical flow
indicates coefficients for correcting the amount of spatial
pixel movement, and may be referred to as a local motion
estimation value, a corrected motion vector, or a corrected
weighting vector. As one example, a sub-block may be 4x4
pixel sub-CU. It is to be noted that the optical flow deriva-
tion may be performed for each pixel unit, or the like,
instead of being performed for each sub-block.

Next, inter predictor 126 corrects a prediction image for
the current block using the optical flow (vx, vy). For
example, correction value deriver 126e derives a correction
value for the value of a pixel included in a current block,
using the optical flow (vx, vy) (Step Sy_5). Prediction image
corrector 126/ may then correct the prediction image for the
current block using the correction value (Step Sy_6). It is to
be noted that the correction value may be derived in units of
a pixel, or may be derived in units of a plurality of pixels or
in units of a sub-block.

It is to be noted that the BIO process flow is not limited
to the process disclosed in FIG. 64. Only part of the
processes disclosed in FIG. 64 may be performed, or a
different process may be added or used as a replacement, or
the processes may be executed in a different processing
order.

US 12,088,849 B2

55

[Motion Compensation>LIC]

Next, one example of a mode for generating a prediction
image (prediction) using a local illumination compensation
(LIC) is described.

FIG. 66A is a diagram for illustrating one example of a
prediction image generation method using a luminance
correction process performed by LIC. FIG. 66B is a flow
chart illustrating one example of a prediction image genera-
tion method using the LIC.

First, inter predictor 126 derives an MV from an encoded
reference picture, and obtains a reference image correspond-
ing to the current block (Step Sz_1).

Next, inter predictor 126 extracts, for the current block,
information indicating how the luma value has changed
between the current block and the reference picture (Step
Sz_2). This extraction is performed based on the luma pixel
values of the encoded left neighboring reference region
(surrounding reference region) and the encoded upper neigh-
boring reference region (surrounding reference region) in
the current picture, and the luma pixel values at the corre-
sponding positions in the reference picture specified by the
derived MVs. Inter predictor 126 calculates a luminance
correction parameter, using the information indicating how
the luma value has changed (Step Sz_3).

Inter predictor 126 generates a prediction image for the
current block by performing a luminance correction process
in which the luminance correction parameter is applied to
the reference image in the reference picture specified by the
MV (Step Sz_4). In other words, the prediction image which
is the reference image in the reference picture specified by
the MV is subjected to the correction based on the luminance
correction parameter. In this correction, luminance may be
corrected, or chrominance may be corrected. In other words,
a chrominance correction parameter may be calculated using
information indicating how chrominance has changed, and a
chrominance correction process may be performed.

It is to be noted that the shape of the surrounding
reference region illustrated in FIG. 66A is one example;
another shape may be used.

Moreover, although the process in which a prediction
image is generated from a single reference picture has been
described here, cases in which a prediction image is gener-
ated from a plurality of reference pictures can be described
in the same manner. The prediction image may be generated
after performing a luminance correction process of the
reference images obtained from the reference pictures in the
same manner as described above.

One example of a method for determining whether to
apply LIC is a method for using a lic_flag which is a signal
indicating whether to apply the LIC. As one specific
example, encoder 100 determines whether the current block
belongs to a region having a luminance change. Encoder 100
sets the lic_flag to a value of “1” when the block belongs to
a region having a luminance change and applies LIC when
encoding, and sets the lic_flag to a value of “0” when the
block does not belong to a region having a luminance change
and performs encoding without applying LIC. Decoder 200
may decode the lic_flag written in the stream and decode the
current block by switching between application and non-
application of LIC in accordance with the flag value.

One example of a different method of determining
whether to apply a LIC process is a determining method in
accordance with whether a LIC process has been applied to
a surrounding block. As one specific example, when a
current block has been processed in merge mode, inter
predictor 126 determines whether an encoded surrounding
block selected in MV derivation in merge mode has been

10

15

20

25

30

35

40

45

50

55

60

65

56

encoded using LIC. Inter predictor 126 performs encoding
by switching between application and non-application of
LIC according to the result. It is to be noted that, also in this
example, the same processes are applied to processes at the
decoder 200 side.

The luminance correction (LIC) process has been
described with reference to FIGS. 66A and 66B, and is
further described below.

First, inter predictor 126 derives an MV for obtaining a
reference image corresponding to a current block from a
reference picture which is an encoded picture.

Next, inter predictor 126 extracts information indicating
how the luma value of the reference picture has been
changed to the luma value of the current picture, using the
luma pixel values of encoded surrounding reference regions
which neighbor to the left of and above the current block and
the luma pixel values in the corresponding positions in the
reference pictures specified by MVs, and calculates a lumi-
nance correction parameter. For example, it is assumed that
the luma pixel value of a given pixel in the surrounding
reference region in the current picture is p0, and that the
luma pixel value of the pixel corresponding to the given
pixel in the surrounding reference region in the reference
picture is pl. Inter predictor 126 calculates coefficients A
and B for optimizing Axp1+B=p0 as the luminance correc-
tion parameter for a plurality of pixels in the surrounding
reference region.

Next, inter predictor 126 performs a luminance correction
process using the luminance correction parameter for the
reference image in the reference picture specified by the MV,
to generate a prediction image for the current block. For
example, it is assumed that the luma pixel value in the
reference image is p2, and that the luminance-corrected
luma pixel value of the prediction image is p3. Inter pre-
dictor 126 generates the prediction image after being sub-
jected to the luminance correction process by calculating
Axp2+B=p3 for each of the pixels in the reference image.

For example, a region having a determined number of
pixels extracted from each of an upper neighboring pixel and
a left neighboring pixel may be used as a surrounding
reference region. In addition, the surrounding reference
region is not limited to a region which neighbors the current
block, and may be a region which does not neighbor the
current block. In the example illustrated in FIG. 66A, the
surrounding reference region in the reference picture may be
a region specified by another MV in a current picture, from
a surrounding reference region in the current picture. For
example, the other MV may be an MV in a surrounding
reference region in the current picture.

Although operations performed by encoder 100 have been
described here, it is to be noted that decoder 200 performs
similar operations.

It is to be noted that LIC may be applied not only to luma
but also to chroma. At this time, a correction parameter may
be derived individually for each of Y, Cb, and Cr, or a
common correction parameter may be used for any of Y, Cb,
and Cr.

In addition, the LIC process may be applied in units of a
sub-block. For example, a correction parameter may be
derived using a surrounding reference region in a current
sub-block and a surrounding reference region in a reference
sub-block in a reference picture specified by an MV of the
current sub-block.

[Prediction Controller]

Prediction controller 128 selects one of an intra prediction
image (an image or a signal output from intra predictor 124)
and an inter prediction image (an image or a signal output

US 12,088,849 B2

57

from inter predictor 126), and outputs the selected prediction
image to subtractor 104 and adder 116.
[Prediction Parameter Generator]

Prediction parameter generator 130 may output informa-
tion related to intra prediction, inter prediction, selection of
a prediction image in prediction controller 128, etc. as a
prediction parameter to entropy encoder 110. Entropy
encoder 110 may generate a stream, based on the prediction
parameter which is input from prediction parameter genera-
tor 130 and quantized coefficients which are input from
quantizer 108. The prediction parameter may be used in
decoder 200. Decoder 200 may receive and decode the
stream, and perform the same processes as the prediction
processes performed by intra predictor 124, inter predictor
126, and prediction controller 128. The prediction parameter
may include (i) a selection prediction signal (for example, an
MYV, a prediction type, or a prediction mode used by intra
predictor 124 or inter predictor 126), or (ii) an optional
index, a flag, or a value which is based on a prediction
process performed in each of intra predictor 124, inter
predictor 126, and prediction controller 128, or which indi-
cates the prediction process.

[Decoder]

Next, decoder 200 capable of decoding a stream output
from encoder 100 described above is described. FIG. 67 is
a block diagram illustrating a configuration of decoder 200
according to this embodiment. Decoder 200 is an apparatus
which decodes a stream that is an encoded image in units of
a block.

As illustrated in FIG. 67, decoder 200 includes entropy
decoder 202, inverse quantizer 204, inverse transformer 206,
adder 208, block memory 210, loop filter 212, frame
memory 214, intra predictor 216, inter predictor 218, pre-
diction controller 220, prediction parameter generator 222,
and splitting determiner 224. It is to be noted that intra
predictor 216 and inter predictor 218 are configured as part
of a prediction executor.

[Mounting Example of Decoder]|

FIG. 68 is a block diagram illustrating a mounting
example of decoder 200. Decoder 200 includes processor bl
and memory b2. For example, the plurality of constituent
elements of decoder 200 illustrated in FIG. 67 are mounted
on processor bl and memory b2 illustrated in FIG. 68.

Processor bl is circuitry which performs information
processing and is accessible to memory b2. For example,
processor bl is a dedicated or general electronic circuit
which decodes a stream. Processor bl may be a processor
such as a CPU. In addition, processor bl may be an
aggregate of a plurality of electronic circuits. In addition, for
example, processor bl may take the roles of two or more
constituent elements other than a constituent element for
storing information out of the plurality of constituent ele-
ments of decoder 200 illustrated in FIG. 67, etc.

Memory b2 is dedicated or general memory for storing
information that is used by processor b1 to decode a stream.
Memory b2 may be electronic circuitry, and may be con-
nected to processor bl. In addition, memory b2 may be
included in processor b1. In addition, memory b2 may be an
aggregate of a plurality of electronic circuits. In addition,
memory b2 may be a magnetic disc, an optical disc, or the
like, or may be represented as a storage, a medium, or the
like. In addition, memory b2 may be non-volatile memory,
or volatile memory.

For example, memory b2 may store an image or a stream.
In addition, memory b2 may store a program for causing
processor bl to decode a stream.

25

30

40

45

50

58

In addition, for example, memory b2 may take the roles
of two or more constituent elements for storing information
out of the plurality of constituent elements of decoder 200
illustrated in FIG. 67, etc. More specifically, memory b2
may take the roles of block memory 210 and frame memory
214 illustrated in FIG. 67. More specifically, memory b2
may store a reconstructed image (specifically, a recon-
structed block, a reconstructed picture, or the like).

It is to be noted that, in decoder 200, not all of the plurality
of constituent elements illustrated in FIG. 67, etc. may be
implemented, and not all the processes described above may
be performed. Part of the constituent elements indicated in
FIG. 67, etc. may be included in another device, or part of
the processes described above may be performed by another
device.

Hereinafter, an overall flow of the processes performed by
decoder 200 is described, and then each of the constituent
elements included in decoder 200 is described. It is to be
noted that, some of the constituent elements included in
decoder 200 perform the same processes as performed by
some of the constituent elements included in encoder 100,
and thus the same processes are not repeatedly described in
detail. For example, inverse quantizer 204, inverse trans-
former 206, adder 208, block memory 210, frame memory
214, intra predictor 216, inter predictor 218, prediction
controller 220, and loop filter 212 included in decoder 200
perform similar processes as performed by inverse quantizer
112, inverse transformer 114, adder 116, block memory 118,
frame memory 122, intra predictor 124, inter predictor 126,
prediction controller 128, and loop filter 120 included in
encoder 100, respectively.

[Overall Flow of Decoding Process]|

FIG. 69 is a flow chart illustrating one example of an
overall decoding process performed by decoder 200.

First, splitting determiner 224 in decoder 200 determines
a splitting pattern of each of a plurality of fixed-size blocks
(128128 pixels) included in a picture, based on a parameter
which is input from entropy decoder 202 (Step Sp_1). This
splitting pattern is a splitting pattern selected by encoder
100. Decoder 200 then performs processes of Steps Sp_2 to
Sp_6 for each of a plurality of blocks of the splitting pattern.

Entropy decoder 202 decodes (specifically, entropy
decodes) encoded quantized coefficients and a prediction
parameter of a current block (Step Sp_2).

Next, inverse quantizer 204 performs inverse quantization
of the plurality of quantized coefficients and inverse trans-
former 206 performs inverse transform of the result, to
restore prediction residuals of the current block (Step Sp_3).

Next, the prediction executor including all or part of intra
predictor 216, inter predictor 218, and prediction controller
220 generates a prediction image of the current block (Step
Sp_4).

Next, adder 208 adds the prediction image to a prediction
residual to generate a reconstructed image (also referred to
as a decoded image block) of the current block (Step Sp_5).

When the reconstructed image is generated, loop filter
212 performs filtering of the reconstructed image (Step
Sp_6).

Decoder 200 then determines whether decoding of the
entire picture has been finished (Step Sp_7). When deter-
mining that the decoding has not yet been finished (No in
Step Sp_7), decoder 200 repeatedly executes the processes
starting with Step Sp_1.

It is to be noted that the processes of these Steps Sp_1 to
Sp_7 may be performed sequentially by decoder 200, or two

US 12,088,849 B2

59

or more of the processes may be performed in parallel. The
processing order of the two or more of the processes may be
modified.

[Splitting Determiner]

FIG. 70 is a diagram illustrating a relationship between
splitting determiner 224 and other constituent eclements.
Splitting determiner 224 may perform the following pro-
cesses as examples.

For example, splitting determiner 224 collects block
information from block memory 210 or frame memory 214,
and furthermore obtains a parameter from entropy decoder
202. Splitting determiner 224 may then determine the split-
ting pattern of a fixed-size block, based on the block
information and the parameter. Splitting determiner 224 may
then output information indicating the determined splitting
pattern to inverse transformer 206, intra predictor 216, and
inter predictor 218. Inverse transformer 206 may perform
inverse transform of transform coefficients, based on the
splitting pattern indicated by the information from splitting
determiner 224. Intra predictor 216 and inter predictor 218
may generate a prediction image, based on the splitting
pattern indicated by the information from splitting deter-
miner 224.

[Entropy Decoder]

FIG. 71 is a block diagram illustrating one example of a
configuration of entropy decoder 202.

Entropy decoder 202 generates quantized coefficients, a
prediction parameter, and a parameter related to a splitting
pattern, by entropy decoding the stream. For example,
CABAC is used in the entropy decoding. More specifically,
entropy decoder 202 includes, for example, binary arithme-
tic decoder 202a, context controller 2025, and debinarizer
202¢. Binary arithmetic decoder 202a¢ arithmetically
decodes the stream using a context value derived by context
controller 2025 to a binary signal. Context controller 2025
derives a context value according to a feature or a surround-
ing state of a syntax element, that is, an occurrence prob-
ability of a binary signal, in the same manner as performed
by context controller 11056 of encoder 100. Debinarizer 202¢
performs debinarization for transforming the binary signal
output from binary arithmetic decoder 202a to a multi-level
signal indicating quantized coefficients as described above.
This binarization is performed according to the binarization
method described above.

With this, entropy decoder 202 outputs quantized coeffi-
cients of each block to inverse quantizer 204. Entropy
decoder 202 may output a prediction parameter included in
a stream (see FIG. 1) to intra predictor 216, inter predictor
218, and prediction controller 220. Intra predictor 216, inter
predictor 218, and prediction controller 220 are capable of
executing the same prediction processes as those performed
by intra predictor 124, inter predictor 126, and prediction
controller 128 at the encoder 100 side.

[Entropy Decoder]

FIG. 72 is a diagram illustrating a flow of CABAC in
entropy decoder 202.

First, initialization is performed in CABAC in entropy
decoder 202. In the initialization, initialization in binary
arithmetic decoder 202a and setting of an initial context
value are performed. Binary arithmetic decoder 202a and
debinarizer 202¢ then execute arithmetic decoding and debi-
narization of, for example, encoded data of a CTU. At this
time, context controller 20256 updates the context value each
time arithmetic decoding is performed. Context controller
2025 then saves the context value as a post process. The
saved context value is used, for example, to initialize the
context value for the next CTU.

25

40

45

60

[Inverse Quantizer]|

Inverse quantizer 204 inverse quantizes quantized coef-
ficients of a current block which are inputs from entropy
decoder 202. More specifically, inverse quantizer 204
inverse quantizes the quantized coefficients of the current
block, based on quantization parameters corresponding to
the quantized coefficients. Inverse quantizer 204 then out-
puts the inverse quantized transform coefficients (that are
transform coefficients) of the current block to inverse trans-
former 206.

FIG. 73 is a block diagram illustrating one example of a
configuration of inverse quantizer 204.

Inverse quantizer 204 includes, for example, quantization
parameter generator 204a, predicted quantization parameter
generator 2045, quantization parameter storage 204d, and
inverse quantization executor 204e.

FIG. 74 is a flow chart illustrating one example of inverse
quantization performed by inverse quantizer 204.

Inverse quantizer 204 may perform an inverse quantiza-
tion process as one example for each CU based on the flow
illustrated in FIG. 74. More specifically, quantization param-
eter generator 204a determines whether to perform inverse
quantization (Step Sv_11). Here, when determining to per-
form inverse quantization (Yes in Step Sv_11), quantization
parameter generator 204a obtains a difference quantization
parameter for the current block from entropy decoder 202
(Step Sv_12).

Next, predicted quantization parameter generator 2045
then obtains a quantization parameter for a processing unit
different from the current block from quantization parameter
storage 2044 (Step Sv_13). Predicted quantization param-
eter generator 2045 generates a predicted quantization
parameter of the current block based on the obtained quan-
tization parameter (Step Sv_14).

Quantization parameter generator 204a then adds the
difference quantization parameter for the current block
obtained from entropy decoder 202 and the predicted quan-
tization parameter for the current block generated by pre-
dicted quantization parameter generator 2045 (Step Sv_15).
This addition generates a quantization parameter for the
current block. In addition, quantization parameter generator
204a stores the quantization parameter for the current block
in quantization parameter storage 2044 (Step Sv_16).

Next, inverse quantization executor 204e inverse quan-
tizes the quantized coefficients of the current block into
transform coeflicients, using the quantization parameter gen-
erated in Step Sv_15 (Step Sv_17).

It is to be noted that the difference quantization parameter
may be decoded at the bit sequence level, picture level, slice
level, brick level, or CTU level. In addition, the initial value
of the quantization parameter may be decoded at the
sequence level, picture level, slice level, brick level, or CTU
level. At this time, the quantization parameter may be
generated using the initial value of the quantization param-
eter and the difference quantization parameter.

It is to be noted that inverse quantizer 204 may include a
plurality of inverse quantizers, and may inverse quantize the
quantized coefficients using an inverse quantization method
selected from a plurality of inverse quantization methods.
[Inverse Transformer]

Inverse transformer 206 restores prediction residuals by
inverse transforming the transform coefficients which are
inputs from inverse quantizer 204.

For example, when information parsed from a stream
indicates that EMT or AMT is to be applied (for example,
when an AMT flag is true), inverse transformer 206 inverse

US 12,088,849 B2

61

transforms the transform coefficients of the current block
based on information indicating the parsed transform type.

Moreover, for example, when information parsed from a
stream indicates that NSST is to be applied, inverse trans-
former 206 applies a secondary inverse transform to the
transform coefficients.

FIG. 75 is a flow chart illustrating one example of a
process performed by inverse transformer 206.

For example, inverse transformer 206 determines whether
information indicating that no orthogonal transform is per-
formed is present in a stream (Step St_11). Here, when
determining that no such information is present (No in Step
St_11), inverse transformer 206 obtains information indi-
cating the transform type decoded by entropy decoder 202
(Step St_12). Next, based on the information, inverse trans-
former 206 determines the transform type used for the
orthogonal transform in encoder 100 (Step St_13). Inverse
transformer 206 then performs inverse orthogonal transform
using the determined transform type (Step St_14).

FIG. 76 is a flow chart illustrating another example of a
process performed by inverse transformer 206.

For example, inverse transformer 206 determines whether
a transform size is smaller than or equal to a predetermined
value (Step Su_11). Here, when determining that the trans-
form size is smaller than or equal to a predetermined value
(Yes in Step Su_11), inverse transformer 206 obtains, from
entropy decoder 202, information indicating which trans-
form type has been used by encoder 100 among at least one
transform type included in the first transform type group
(Step Su_12). It is to be noted that such information is
decoded by entropy decoder 202 and output to inverse
transformer 206.

Based on the information, inverse transformer 206 deter-
mines the transform type used for the orthogonal transform
in encoder 100 (Step Su_13). Inverse transformer 206 then
inverse orthogonal transforms the transform coefficients of
the current block using the determined transform type (Step
Su_14). When determining that a transform size is not
smaller than or equal to the predetermined value (No in Step
Su_11), inverse transformer 206 inverse transforms the
transform coefficients of the current block using the second
transform type group (Step Su_15).

It is to be noted that the inverse orthogonal transform by
inverse transformer 206 may be performed according to the
flow illustrated in FIG. 75 or FIG. 76 for each TU as one
example. In addition, inverse orthogonal transform may be
performed by using a predefined transform type without
decoding information indicating a transform type used for
orthogonal transform. In addition, the transform type is
specifically DST7, DCTS, or the like. In inverse orthogonal
transform, an inverse transform basis function correspond-
ing to the transform type is used.

[Adder]

Adder 208 reconstructs the current block by adding a
prediction residual which is an input from inverse trans-
former 206 and a prediction image which is an input from
prediction controller 220. In other words, a reconstructed
image of the current block is generated. Adder 208 then
outputs the reconstructed image of the current block to block
memory 210 and loop filter 212.

[Block Memory]

Block memory 210 is storage for storing a block which is
included in a current picture and is referred to in intra
prediction. More specifically, block memory 210 stores a
reconstructed image output from adder 208.

10

15

20

25

30

35

40

45

50

55

60

65

62
[Loop Filter]

Loop filter 212 applies a loop filter to the reconstructed
image generated by adder 208, and outputs the filtered
reconstructed image to frame memory 214 and a display
device, etc.

When information indicating ON or OFF of an ALF
parsed from a stream indicates that an ALF is ON, one filter
from among a plurality of filters is selected based on the
direction and activity of local gradients, and the selected
filter is applied to the reconstructed image.

FIG. 77 is a block diagram illustrating one example of a
configuration of loop filter 212. It is to be noted that loop
filter 212 has a configuration similar to the configuration of
loop filter 120 of encoder 100.

For example, as illustrated in FIG. 77, loop filter 212
includes deblocking filter executor 212a, SAO executor
212b, and ALF executor 212¢. Deblocking filter executor
212a performs a deblocking filter process of the recon-
structed image. SAO executor 2125 performs a SAO process
of the reconstructed image after being subjected to the
deblocking filter process. ALF executor 212¢ performs an
ALF process of the reconstructed image after being sub-
jected to the SAO process. It is to be noted that loop filter
212 does not always need to include all the constituent
elements disclosed in FIG. 77, and may include only part of
the constituent elements. In addition, loop filter 212 may be
configured to perform the above processes in a processing
order different from the one disclosed in FIG. 77.

[Frame Memory]

Frame memory 214 is, for example, storage for storing
reference pictures for use in inter prediction, and is also
referred to as a frame buffer. More specifically, frame
memory 214 stores a reconstructed image filtered by loop
filter 212.

[Predictor (Intra Predictor, Inter Predictor, Prediction Con-
troller)]

FIG. 78 is a flow chart illustrating one example of a
process performed by a predictor of decoder 200. It is to be
noted that the prediction executor includes all or part of the
following constituent elements: intra predictor 216; inter
predictor 218; and prediction controller 220. The prediction
executor includes, for example, intra predictor 216 and inter
predictor 218.

The predictor generates a prediction image of a current
block (Step Sq_1). This prediction image is also referred to
as a prediction signal or a prediction block. It is to be noted
that the prediction signal is, for example, an intra prediction
signal or an inter prediction signal. More specifically, the
predictor generates the prediction image of the current block
using a reconstructed image which has been already
obtained for another block through generation of a predic-
tion image, restoration of a prediction residual, and addition
of a prediction image. The predictor of decoder 200 gener-
ates the same prediction image as the prediction image
generated by the predictor of encoder 100. In other words,
the prediction images are generated according to a method
common between the predictors or mutually corresponding
methods.

The reconstructed image may be, for example, an image
in a reference picture, or an image of a decoded block (that
is, the other block described above) in a current picture
which is the picture including the current block. The
decoded block in the current picture is, for example, a
neighboring block of the current block.

FIG. 79 is a flow chart illustrating another example of a
process performed by the predictor of decoder 200.

US 12,088,849 B2

63

The predictor determines either a method or a mode for
generating a prediction image (Step Sr_1). For example, the
method or mode may be determined based on, for example,
a prediction parameter, etc.

When determining a first method as a mode for generating
a prediction image, the predictor generates a prediction
image according to the first method (Step Sr_2a). When
determining a second method as a mode for generating a
prediction image, the predictor generates a prediction image
according to the second method (Step Sr_25). When deter-
mining a third method as a mode for generating a prediction
image, the predictor generates a prediction image according
to the third method (Step Sr_2c).

The first method, the second method, and the third method
may be mutually different methods for generating a predic-
tion image. Each of the first to third methods may be an inter
prediction method, an intra prediction method, or another
prediction method. The above-described reconstructed
image may be used in these prediction methods.

FIG. 80A and FIG. 80B illustrate a flow chart illustrating
another example of a process performed by a predictor of
decoder 200.

The predictor may perform a prediction process according
to the flow illustrated in FIG. 80A and FIG. 80B as one
example. It is to be noted that intra block copy illustrated in
FIG. 80A and FIG. 80B is one mode which belongs to inter
prediction, and in which a block included in a current picture
is referred to as a reference image or a reference block. In
other words, no picture different from the current picture is
referred to in intra block copy. In addition, the PCM mode
illustrated in FIG. 80A is one mode which belongs to intra
prediction, and in which no transform and quantization is
performed.

[Intra Predictor]

Intra predictor 216 performs intra prediction by referring
to a block in a current picture stored in block memory 210,
based on the intra prediction mode parsed from the stream,
to generate a prediction image of a current block (that is, an
intra prediction image). More specifically, intra predictor
216 performs intra prediction by referring to pixel values
(for example, luma and/or chroma values) of a block or
blocks neighboring the current block to generate an intra
prediction image, and then outputs the intra prediction
image to prediction controller 220.

It is to be noted that when an intra prediction mode in
which a luma block is referred to in intra prediction of a
chroma block is selected, intra predictor 216 may predict the
chroma component of the current block based on the luma
component of the current block.

Moreover, when information parsed from a stream indi-
cates that PDPC is to be applied, intra predictor 216 corrects
intra predicted pixel values based on horizontal/vertical
reference pixel gradients.

FIG. 81 is a diagram illustrating one example of a process
performed by intra predictor 216 of decoder 200.

Intra predictor 216 firstly determines whether an MPM
flag indicating 1 is present in the stream (Step Sw_11). Here,
when determining that the MPM flag indicating 1 is present
(Yes in Step Sw_11), intra predictor 216 obtains, from
entropy decoder 202, information indicating the intra pre-
diction mode selected in encoder 100 among MPMs (Step
Sw_12). It is to be noted that such information is decoded by
entropy decoder 202 and output to intra predictor 216. Next,
intra predictor 216 determines an MPM (Step Sw_13).
MPMs include, for example, six intra prediction modes.
Intra predictor 216 then determines the intra prediction
mode which is included in a plurality of intra prediction

10

15

20

25

30

35

40

45

50

55

60

65

64
modes included in the MPMs and is indicated by the
information obtained in Step Sw_12 (Step Sw_14).

When determining that no MPM flag indicating 1 is
present (No in Step Sw_11), intra predictor 216 obtains
information indicating the intra prediction mode selected in
encoder 100 (Step Sw_15). In other words, intra predictor
216 obtains, from entropy decoder 202, information indi-
cating the intra prediction mode selected in encoder 100
from among at least one intra prediction mode which is not
included in the MPMs. It is to be noted that such information
is decoded by entropy decoder 202 and output to intra
predictor 216. Intra predictor 216 then determines the intra
prediction mode which is not included in a plurality of intra
prediction modes included in the MPMs and is indicated by
the information obtained in Step Sw_15 (Step Sw_17).

Intra predictor 216 generates a prediction image accord-
ing to the intra prediction mode determined in Step Sw_14
or Step Sw_17 (Step Sw_18).

[Inter Predictor]

Inter predictor 218 predicts the current block by referring
to a reference picture stored in frame memory 214. Predic-
tion is performed in units of a current block or a current
sub-block in the current block. It is to be noted that the
sub-block is included in the block and is a unit smaller than
the block. The size of the sub-block may be 4x4 pixels, 8x8
pixels, or another size. The size of the sub-block may be
switched for a unit such as a slice, brick, picture, etc.

For example, inter predictor 218 generates an inter pre-
diction image of a current block or a current sub-block by
performing motion compensation using motion information
(for example, an MV) parsed from a stream (for example, a
prediction parameter output from entropy decoder 202), and
outputs the inter prediction image to prediction controller
220.

When the information parsed from the stream indicates
that the OBMC mode is to be applied, inter predictor 218
generates the inter prediction image using motion informa-
tion of a neighboring block in addition to motion informa-
tion of the current block obtained through motion estima-
tion.

Moreover, when the information parsed from the stream
indicates that the FRUC mode is to be applied, inter pre-
dictor 218 derives motion information by performing motion
estimation in accordance with the pattern matching method
(bilateral matching or template matching) parsed from the
stream. Inter predictor 218 then performs motion compen-
sation (prediction) using the derived motion information.

Moreover, when the BIO mode is to be applied, inter
predictor 218 derives an MV based on a model assuming
uniform linear motion. In addition, when the information
parsed from the stream indicates that the affine mode is to be
applied, inter predictor 218 derives an MV for each sub-
block, based on the MVs of a plurality of neighboring
blocks.

[MV Derivation Flow]

FIG. 82 is a flow chart illustrating one example of MV
derivation in decoder 200.

Inter predictor 218 determines, for example, whether to
decode motion information (for example, an MV). For
example, inter predictor 218 may make the determination
according to the prediction mode included in the stream, or
may make the determination based on other information
included in the stream. Here, when determining to decode
motion information, inter predictor 218 derives an MV for a
current block in a mode in which the motion information is
decoded. When determining not to decode motion informa-

US 12,088,849 B2

65

tion, inter predictor 218 derives an MV in a mode in which
no motion information is decoded.

Here, MV derivation modes include a normal inter mode,
a normal merge mode, a FRUC mode, an affine mode, etc.
which are described later. Modes in which motion informa-
tion is decoded among the modes include the normal inter
mode, the normal merge mode, the affine mode (specifically,
an affine inter mode and an affine merge mode), etc. It is to
be noted that motion information may include not only an
MYV but also MV predictor selection information which is
described later. Modes in which no motion information is
decoded include the FRUC mode, etc. Inter predictor 218
selects a mode for deriving an MV for the current block from
the plurality of modes, and derives the MV for the current
block using the selected mode.

FIG. 83 is a flow chart illustrating another example of MV
derivation in decoder 200.

For example, inter predictor 218 may determine whether
to decode an MV difference, that is for example, may make
the determination according to the prediction mode included
in the stream, or may make the determination based on other
information included in the stream. Here, when determining
to decode an MV difference, inter predictor 218 may derive
an MV for a current block in a mode in which the MV
difference is decoded. In this case, for example, the MV
difference included in the stream is decoded as a prediction
parameter.

When determining not to decode any MV difference, inter
predictor 218 derives an MV in a mode in which no MV
difference is decoded. In this case, no encoded MV differ-
ence is included in the stream.

Here, as described above, the MV derivation modes
include the normal inter mode, the normal merge mode, the
FRUC mode, the affine mode, etc. which are described later.
Modes in which an MV difference is encoded among the
modes include the normal inter mode and the affine mode
(specifically, the affine inter mode), etc. Modes in which no
MYV difference is encoded include the FRUC mode, the
normal merge mode, the affine mode (specifically, the affine
merge mode), etc. Inter predictor 218 selects a mode for
deriving an MV for the current block from the plurality of
modes, and derives the MV for the current block using the
selected mode.

[MV Derivation>Normal Inter Mode]

For example, when information parsed from a stream
indicates that the normal inter mode is to be applied, inter
predictor 218 derives an MV based on the information
parsed from the stream and performs motion compensation
(prediction) using the MV.

FIG. 84 is a flow chart illustrating an example of inter
prediction by normal inter mode in decoder 200.

Inter predictor 218 of decoder 200 performs motion
compensation for each block. At this time, first, inter pre-
dictor 218 obtains a plurality of MV candidates for a current
block based on information such as MVs of a plurality of
decoded blocks temporally or spatially surrounding the
current block (Step Sg_11). In other words, inter predictor
218 generates an MV candidate list.

Next, inter predictor 218 extracts N (an integer of 2 or
larger) MV candidates from the plurality of MV candidates
obtained in Step Sg_11, as motion vector predictor candi-
dates (also referred to as MV predictor candidates) accord-
ing to the predetermined ranks in priority order (Step
Sg_12). It is to be noted that the ranks in priority order are
determined in advance for the respective N MV predictor
candidates.

20

25

30

40

45

50

55

66

Next, inter predictor 218 decodes the MV predictor selec-
tion information from the input stream, and selects one MV
predictor candidate from the N MV predictor candidates as
the MV predictor for the current block using the decoded
MYV predictor selection information (Step Sg_13).

Next, inter predictor 218 decodes an MV difference from
the input stream, and derives an MV for the current block by
adding a difference value which is the decoded MV differ-
ence and the selected MV predictor (Step Sg_14).

Lastly, inter predictor 218 generates a prediction image
for the current block by performing motion compensation of
the current block using the derived MV and the decoded
reference picture (Step Sg_15). The processes in Steps
Sg 11 to Sg_15 are executed on each block. For example,
when the processes in Steps Sg_11 to Sg_15 are executed on
each of all the blocks in the slice, inter prediction of the slice
using the normal inter mode finishes. For example, when the
processes in Steps Sg_11 to Sg_15 are executed on each of
all the blocks in the picture, inter prediction of the picture
using the normal inter mode finishes. It is to be noted that not
all the blocks included in the slice may be subjected to the
processes in Steps Sg_11 to Sg_15, and inter prediction of
the slice using the normal inter mode may finish when part
of the blocks are subjected to the processes. Likewise, inter
prediction of the picture using the normal inter mode may
finish when the processes in Steps Sg_11 to Sg 15 are
executed on part of the blocks in the picture.

[MV Derivation>Normal Merge Mode]

For example, when information parsed from a stream
indicates that the normal merge mode is to be applied, inter
predictor 218 derives an MV and performs motion compen-
sation (prediction) using the MV.

FIG. 85 is a flow chart illustrating an example of inter
prediction by normal merge mode in decoder 200.

At this time, first, inter predictor 218 obtains a plurality of
MYV candidates for a current block based on information
such as MVs of a plurality of decoded blocks temporally or
spatially surrounding the current block (Step Sh_11). In
other words, inter predictor 218 generates an MV candidate
list.

Next, inter predictor 218 selects one MV candidate from
the plurality of MV candidates obtained in Step Sh_11,
thereby deriving an MV for the current block (Step Sh_12).
More specifically, inter predictor 218 obtains MV selection
information included as a prediction parameter in a stream,
and selects the MV candidate identified by the MV selection
information as the MV for the current block.

Lastly, inter predictor 218 generates a prediction image
for the current block by performing motion compensation of
the current block using the derived MV and the decoded
reference picture (Step Sh_13). The processes in Steps
Sh_11 to Sh_13 are executed, for example, on each block.
For example, when the processes in Steps Sh_11 to Sh_13
are executed on each of all the blocks in the slice, inter
prediction of the slice using the normal merge mode finishes.
In addition, when the processes in Steps Sh_11 to Sh_13 are
executed on each of all the blocks in the picture, inter
prediction of the picture using the normal merge mode
finishes. It is to be noted that not all the blocks included in
the slice are subjected to the processes in Steps Sh_11 to
Sh_13, and inter prediction of the slice using the normal
merge mode may finish when part of the blocks are sub-
jected to the processes. Likewise, inter prediction of the
picture using the normal merge mode may finish when the
processes in Steps Sh_11 to Sh_13 are executed on part of
the blocks in the picture.

US 12,088,849 B2

67
[MV Derivation>FRUC Mode]

For example, when information parsed from a stream
indicates that the FRUC mode is to be applied, inter pre-
dictor 218 derives an MV in the FRUC mode and performs
motion compensation (prediction) using the MV. In this
case, the motion information is derived at the decoder 200
side without being signaled from the encoder 100 side. For
example, decoder 200 may derive the motion information by
performing motion estimation. In this case, decoder 200
performs motion estimation without using any pixel value in
a current block.

FIG. 86 is a flow chart illustrating an example of inter
prediction by FRUC mode in decoder 200.

First, inter predictor 218 generates a list indicating MVs
of decoded blocks spatially or temporally neighboring the
current block by referring to the MVs as MV candidates (the
list is an MV candidate list, and may be used also as an MV
candidate list for normal merge mode (Step Si_11). Next, a
best MV candidate is selected from the plurality of MV
candidates registered in the MV candidate list (Step Si_12).
For example, inter predictor 218 calculates the evaluation
value of each MV candidate included in the MV candidate
list, and selects one of the MV candidates as the best MV
candidate based on the evaluation values. Based on the
selected best MV candidate, inter predictor 218 then derives
an MV for the current block (Step Si_14). More specifically,
for example, the selected best MV candidate is directly
derived as the MV for the current block. In addition, for
example, the MV for the current block may be derived using
pattern matching in a surrounding region of a position which
is included in a reference picture and corresponds to the
selected best MV candidate. In other words, estimation
using the pattern matching in a reference picture and the
evaluation values may be performed in the surrounding
region of the best MV candidate, and when there is an MV
that yields a better evaluation value, the best MV candidate
may be updated to the MV that yields the better evaluation
value, and the updated MV may be determined as the final
MV for the current block. Update to the MV that yields the
better evaluation value may not be performed.

Lastly, inter predictor 218 generates a prediction image
for the current block by performing motion compensation of
the current block using the derived MV and the decoded
reference picture (Step Si_15). The processes in Steps Si_11
to Si_15 are executed, for example, on each block. For
example, when the processes in Steps Si_11 to Si_15 are
executed on each of all the blocks in the slice, inter predic-
tion of the slice using the FRUC mode finishes. For example,
when the processes in Steps Si_11 to Si_15 are executed on
each of all the blocks in the picture, inter prediction of the
picture using the FRUC mode finishes. Each sub-block may
be processed similarly to the above-described case of pro-
cessing each block.

[MV Derivation>Affine Merge Mode]

For example, when information parsed from a stream
indicates that the affine merge mode is to be applied, inter
predictor 218 derives an MV in the affine merge mode and
performs motion compensation (prediction) using the MV.

FIG. 87 is a flow chart illustrating an example of inter
prediction by the affine merge mode in decoder 200.

In the affine merge mode, first, inter predictor 218 derives
MVs at respective control points for a current block (Step
Sk_11). The control points are an upper-left corner point of
the current block and an upper-right corner point of the
current block as illustrated in FIG. 46A, or an upper-left
corner point of the current block, an upper-right corner point

20

25

35

40

45

50

55

60

65

68

of the current block, and a lower-left corner point of the
current block as illustrated in FIG. 46B.

For example, when the MV derivation methods illustrated
in FIGS. 47A to 47C are used, as illustrated in FIG. 47A,
inter predictor 218 checks decoded block A (left), block B
(upper), block C (upper-right), block D (lower-left), and
block E (upper-left) in this order, and identifies the first
effective block decoded according to the affine mode.

Inter predictor 218 derives the MV at the control point
using the identified first effective block decoded according
to the affine mode. For example, when block A is identified
and block A has two control points, as illustrated in FIG.
478, inter predictor 218 calculates motion vector v, at the
upper-left corner control point of the current block and
motion vector v, at the upper-right corner control point of
the current block by projecting motion vectors v; and v, at
the upper-left corner and the upper-right corner of the
decoded block including block A onto the current block. In
this way, the MV at each control point is derived.

It is to be noted that, as illustrated in FIG. 49A, MVs at
three control points may be calculated when block A is
identified and block A has two control points, and that, as
illustrated in FIG. 49B, MV at two control points may be
calculated when block A is identified and when block A has
three control points.

In addition, when MV selection information is included as
a prediction parameter in a stream, inter predictor 218 may
derive the MV at each control point for the current block
using the MV selection information.

Next, inter predictor 218 performs motion compensation
of each of a plurality of sub-blocks included in the current
block. In other words, inter predictor 218 calculates an MV
for each of the plurality of sub-blocks as an affine MV, using
either two motion vectors v, and v, and the above expression
(1A) or three motion vectors v,, v,, and v, and the above
expression (1B) (Step Sk_12). Inter predictor 218 then
performs motion compensation of the sub-blocks using these
affine MVs and decoded reference pictures (Step Sk_13).
When the processes in Steps Sk_12 and Sk_13 are executed
for each of all the sub-blocks included in the current block,
the inter prediction using the affine merge mode for the
current block finishes. In other words, motion compensation
of the current block is performed to generate a prediction
image of the current block.

It is to be noted that the above-described MV candidate
list may be generated in Step Sk_11. The MV candidate list
may be, for example, a list including MV candidates derived
using a plurality of MV derivation methods for each control
point. The plurality of MV derivation methods may be any
combination of the MV derivation methods illustrated in
FIGS. 47A to 47C, the MV derivation methods illustrated in
FIGS. 48A and 48B, the MV derivation methods illustrated
in FIGS. 49A and 49B, and other MV derivation methods.

It is to be noted that an MV candidate list may include MV
candidates in a mode in which prediction is performed in
units of a sub-block, other than the affine mode.

It is to be noted that, for example, an MV candidate list
including MV candidates in an affine merge mode in which
two control points are used and an affine merge mode in
which three control points are used may be generated as an
MV candidate list. Alternatively, an MV candidate list
including MV candidates in the affine merge mode in which
two control points are used and an MV candidate list
including MV candidates in the affine merge mode in which
three control points are used may be generated separately.
Alternatively, an MV candidate list including MV candi-
dates in one of the affine merge mode in which two control

US 12,088,849 B2

69

points are used and the affine merge mode in which three
control points are used may be generated.
[MV Derivation>Afline Inter Mode]

For example, when information parsed from a stream
indicates that the affine inter mode is to be applied, inter
predictor 218 derives an MV in the affine inter mode and
performs motion compensation (prediction) using the MV.

FIG. 88 is a flow chart illustrating an example of inter
prediction by the affine inter mode in decoder 200.

In the affine inter mode, first, inter predictor 218 derives
MYV predictors (v, v;) or (v,, v, V,) of respective two or
three control points for a current block (Step Sj_11). The
control points are an upper-left corner point of the current
block, an upper-right corner point of the current block, and
a lower-left corner point of the current block as illustrated in
FIG. 46A or FIG. 46B.

Inter predictor 218 obtains MV predictor selection infor-
mation included as a prediction parameter in the stream, and
derives the MV predictor at each control point for the current
block using the MV identified by the MV predictor selection
information. For example, when the MV derivation methods
illustrated in FIGS. 48A and 48B are used, inter predictor
218 derives the motion vector predictors (v, v,) or (vg, vy,
v,) at control points for the current block by selecting the
MYV of the block identified by the MV predictor selection
information among decoded blocks in the vicinity of the
respective control points for the current block illustrated in
either FIG. 48A or FIG. 48B.

Next, inter predictor 218 obtains each MV difference
included as a prediction parameter in the stream, and adds
the MV predictor at each control point for the current block
and the MV difference corresponding to the MV predictor
(Step Sj_12). In this way, the MV at each control point for
the current block is derived.

Next, inter predictor 218 performs motion compensation
of each of a plurality of sub-blocks included in the current
block. In other words, inter predictor 218 calculates an MV
for each of the plurality of sub-blocks as an affine MV, using
either two motion vectors v, and v, and the above expression
(1A) or three motion vectors v,, v, and v, and the above
expression (1B) (Step Sj_13). Inter predictor 218 then
performs motion compensation of the sub-blocks using these
affine MVs and decoded reference pictures (Step Sj_14).
When the processes in Steps Sj_13 and Sj_14 are executed
for each of all the sub-blocks included in the current block,
the inter prediction using the affine merge mode for the
current block finishes. In other words, motion compensation
of the current block is performed to generate a prediction
image of the current block.

It is to be noted that the above-described MV candidate
list may be generated in Step Sj_11 as in Step Sk_11.
[MV Derivation>Triangle Mode]

For example, when information parsed from a stream
indicates that the triangle mode is to be applied, inter
predictor 218 derives an MV in the triangle mode and
performs motion compensation (prediction) using the MV.

FIG. 89 is a flow chart illustrating an example of inter
prediction by the triangle mode in decoder 200.

In the triangle mode, first, inter predictor 218 splits the
current block into a first partition and a second partition
(Step Sx_11). At this time, inter predictor 218 may obtain,
from the stream, partition information which is information
related to the splitting as a prediction parameter. Inter
predictor 218 may then split a current block into a first
partition and a second partition according to the partition
information.

10

15

20

25

30

35

40

45

50

55

60

65

70

Next, first, inter predictor 218 obtains a plurality of MV
candidates for a current block based on information such as
MVs of a plurality of decoded blocks temporally or spatially
surrounding the current block (Step Sx_12). In other words,
inter predictor 218 generates an MV candidate list.

Inter predictor 218 then selects the MV candidate for the
first partition and the MV candidate for the second partition
as a first MV and a second MV, respectively, from the
plurality of MV candidates obtained in Step Sx_11 (Step
Sx_13). At this time, inter predictor 218 may obtain, from
the stream, MV selection information for identifying each
selected MV candidate, as a prediction parameter. Inter
predictor 218 may then select the first MV and the second
MYV according to the MV selection information.

Next, inter predictor 218 generates a first prediction
image by performing motion compensation using the
selected first MV and a decoded reference picture (Step
Sx_14). Likewise, inter predictor 218 generates a second
prediction image by performing motion compensation using
the selected second MV and a decoded reference picture
(Step Sx_15).

Lastly, inter predictor 218 generates a prediction image
for the current block by performing a weighted addition of
the first prediction image and the second prediction image
(Step Sx_16).

[Motion Estimation>DMVR]

For example, information parsed from a stream indicates
that DMVR is to be applied, inter predictor 218 performs
motion estimation using DMVR.

FIG. 90 is a flow chart illustrating an example of motion
estimation by DMVR in decoder 200.

Inter predictor 218 derives an MV for a current block
according to the merge mode (Step SI1_11). Next, inter
predictor 218 derives the final MV for the current block by
searching the region surrounding the reference picture indi-
cated by the MV derived in SI_11 (Step S1_12). In other
words, the MV of the current block is determined according
to the DMVR.

FIG. 91 is a flow chart illustrating a specific example of
motion estimation by DMVR in decoder 200.

First, in Step 1 illustrated in FIG. 58A, inter predictor 218
calculates the cost between the search position (also referred
to as a starting point) indicated by the initial MV and eight
surrounding search positions. Inter predictor 218 then deter-
mines whether the cost at each of the search positions other
than the starting point is the smallest. Here, when determin-
ing that the cost at one of the search positions other than the
starting point is the smallest, inter predictor 218 changes a
target to the search position at which the smallest cost is
obtained, and performs the process in Step 2 illustrated in
FIG. 58A. When the cost at the starting point is the smallest,
inter predictor 218 skips the process in Step 2 illustrated in
FIG. 58A and performs the process in Step 3.

In Step 2 illustrated in FIG. 58A, inter predictor 218
performs search similar to the process in Step 1, regarding
the search position after the target change as a new starting
point according to the result of the process in Step 1. Inter
predictor 218 then determines whether the cost at each of the
search positions other than the starting point is the smallest.
Here, when determining that the cost at one of the search
positions other than the starting point is the smallest, inter
predictor 218 performs the process in Step 4. When the cost
at the starting point is the smallest, inter predictor 218
performs the process in Step 3.

In Step 4, inter predictor 218 regards the search position
at the starting point as the final search position, and deter-

US 12,088,849 B2

71

mines the difference between the position indicated by the
initial MV and the final search position to be a vector
difference.

In Step 3 illustrated in FIG. 58A, inter predictor 218
determines the pixel position at sub-pixel accuracy at which
the smallest cost is obtained, based on the costs at the four
points located at upper, lower, left, and right positions with
respect to the starting point in Step 1 or Step 2, and regards
the pixel position as the final search position. The pixel
position at the sub-pixel accuracy is determined by perform-
ing weighted addition of each of the four upper, lower, left,
and right vectors ((0, 1), (0, -1), (-1, 0), and (1, 0)), using,
as a weight, the cost at a corresponding one of the four
search positions. Inter predictor 218 then determines the
difference between the position indicated by the initial MV
and the final search position to be the vector difference.
[Motion Compensation>BIO/OBMC/LIC]

For example, when information parsed from a stream
indicates that correction of a prediction image is to be
performed, upon generating a prediction image, inter pre-
dictor 218 corrects the prediction image based on the mode
for the correction. The mode is, for example, one of BIO,
OBMC, and LIC described above.

FIG. 92 is a flow chart illustrating one example of
generation of a prediction image in decoder 200.

Inter predictor 218 generates a prediction image (Step
Sm_11), and corrects the prediction image according to any
of the modes described above (Step Sm_12).

FIG. 93 is a flow chart illustrating another example of
generation of a prediction image in decoder 200.

Inter predictor 218 derives an MV for a current block
(Step Sn_11). Next, inter predictor 218 generates a predic-
tion image using the MV (Step Sn_12), and determines
whether to perform a correction process (Step Sn_13). For
example, inter predictor 218 obtains a prediction parameter
included in the stream, and determines whether to perform
a correction process based on the prediction parameter. This
prediction parameter is, for example, a flag indicating
whether each of the above-described modes is to be applied.
Here, when determining to perform a correction process
(Yes in Step Sn_13), inter predictor 218 generates the final
prediction image by correcting the prediction image (Step
Sn_14). It is to be noted that, in LIC, the luminance and
chrominance of the prediction image may be corrected in
Step Sn_14. When determining not to perform a correction
process (No in Step Sn_13), inter predictor 218 outputs the
final prediction image without correcting the prediction
image (Step Sn_15).

[Motion Compensation>OBMC]

For example, when information parsed from a stream
indicates that OBMC is to be performed, upon generating a
prediction image, inter predictor 218 corrects the prediction
image according to the OBMC.

FIG. 94 is a flow chart illustrating an example of correc-
tion of a prediction image by OBMC in decoder 200. It is to
be noted that the flow chart in FIG. 94 indicates the
correction flow of a prediction image using the current
picture and the reference picture illustrated in FIG. 62.

First, as illustrated in FIG. 62, inter predictor 218 obtains
a prediction image (Pred) by normal motion compensation
using an MV assigned to the current block.

Next, inter predictor 218 obtains a prediction image
(Pred_L) by applying a motion vector (MV_L) which has
been already derived for the decoded block neighboring to
the left of the current block to the current block (re-using the
motion vector for the current block). Inter predictor 218 then
performs a first correction of a prediction image by over-

10

15

20

25

30

35

40

45

50

55

60

65

72

lapping two prediction images Pred and Pred_L. This pro-
vides an effect of blending the boundary between neighbor-
ing blocks.

Likewise, inter predictor 218 obtains a prediction image
(Pred_U) by applying an MV (MV_U) which has been
already derived for the decoded block neighboring above the
current block to the current block (re-using the motion
vector for the current block). Inter predictor 218 then
performs a second correction of the prediction image by
overlapping the prediction image Pred U to the prediction
images (for example, Pred and Pred_I.) on which the first
correction has been performed. This provides an effect of
blending the boundary between neighboring blocks. The
prediction image obtained by the second correction is the
one in which the boundary between the neighboring blocks
has been blended (smoothed), and thus is the final prediction
image of the current block.

[Motion Compensation>BIO]

For example, when information parsed from a stream
indicates that BIO is to be performed, upon generating a
prediction image, inter predictor 218 corrects the prediction
image according to the BIO.

FIG. 95 is a flow chart illustrating an example of correc-
tion of a prediction image by the BIO in decoder 200.

As illustrated in FIG. 63, inter predictor 218 derives two
motion vectors (MO, M1), using two reference pictures
(Ref,, Ref)) different from the picture (Cur Pic) including a
current block. Inter predictor 218 then derives a prediction
image for the current block using the two motion vectors
(MO, M1) (Step Sy_11). It is to be noted that motion vector
MO is a motion vector (MVx,, MVy,) corresponding to
reference picture Ref,, and motion vector M1 is a motion
vector (MVx;, MVy,) corresponding to reference picture
Ref].

Next, inter predictor 218 derives interpolated image I° for
the current block using motion vector MO and reference
picture LO. In addition, inter predictor 218 derives interpo-
lated image I* for the current block using motion vector M1
and reference picture L1 (Step Sy_12). Here, interpolated
image I° is an image included in reference picture Ref;, and
to be derived for the current block, and interpolated image
I' is an image included in reference picture Ref, and to be
derived for the current block. Each of interpolated image I°
and interpolated image I' may be the same in size as the
current block. Alternatively, each of interpolated image I°
and interpolated image 1' may be an image larger than the
current block. Furthermore, interpolated image I° and inter-
polated image I' may include a prediction image obtained by
using motion vectors (MO, M1) and reference pictures (L0,
L1) and applying a motion compensation filter.

In addition, inter predictor 218 derives gradient images
(Ix°, Ix%, Iy°, Iy") of the current block, from interpolated
image I° and interpolated image II (Step Sy_13). It is to be
noted that the gradient images in the horizontal direction are
(Ix°, Ix"), and the gradient images in the vertical direction
are (Iy°, Iy'). Inter predictor 218 may derive the gradient
images by, for example, applying a gradient filter to the
interpolated images. The gradient images may be the ones
each of which indicates the amount of spatial change in pixel
value along the horizontal direction or the amount of spatial
change in pixel value along the vertical direction.

Next, inter predictor 218 derives, for each sub-block of
the current block, an optical flow (vx, vy) which is a velocity
vector, using the interpolated images (I°, I') and the gradient
images (Ix°, Ix*, Iy", Iy'). As one example, a sub-block may
be 4x4 pixel sub-CU.

US 12,088,849 B2

73

Next, inter predictor 218 corrects a prediction image for
the current block using the optical flow (vx, vy). For
example, inter predictor 218 derives a correction value for
the value of a pixel included in a current block, using the
optical flow (vx, vy) (Step Sy_15). Inter predictor 218 may
then correct the prediction image for the current block using
the correction value (Step Sy_16). It is to be noted that the
correction value may be derived in units of a pixel, or may
be derived in units of a plurality of pixels or in units of a
sub-block.

It is to be noted that the BIO process flow is not limited
to the process disclosed in FIG. 95. Only part of the
processes disclosed in FIG. 95 may be performed, or a
different process may be added or used as a replacement, or
the processes may be executed in a different processing
order.

[Motion Compensation>LIC]

For example, when information parsed from a stream
indicates that LIC is to be performed, upon generating a
prediction image, inter predictor 218 corrects the prediction
image according to the LIC.

FIG. 96 is a flow chart illustrating an example of correc-
tion of a prediction image by the LIC in decoder 200.

First, inter predictor 218 obtains a reference image cor-
responding to a current block from a decoded reference
picture using an MV (Step Sz_11).

Next, inter predictor 218 extracts, for the current block,
information indicating how the luma value has changed
between the current picture and the reference picture (Step
Sz_12). This extraction is performed based on the luma pixel
values for the decoded left neighboring reference region
(surrounding reference region) and the decoded upper neigh-
boring reference region (surrounding reference region), and
the luma pixel values at the corresponding positions in the
reference picture specified by the derived MVs. Inter pre-
dictor 218 calculates a luminance correction parameter,
using the information indicating how the luma value
changed (Step Sz_13).

Inter predictor 218 generates a prediction image for the
current block by performing a luminance correction process
in which the luminance correction parameter is applied to
the reference image in the reference picture specified by the
MV (Step Sz_14). In other words, the prediction image
which is the reference image in the reference picture speci-
fied by the MV is subjected to the correction based on the
luminance correction parameter. In this correction, lumi-
nance may be corrected, or chrominance may be corrected.
[Prediction Controller]

Prediction controller 220 selects either an intra prediction
image or an inter prediction image, and outputs the selected
image to adder 208. As a whole, the configurations, func-
tions, and processes of prediction controller 220, intra
predictor 216, and inter predictor 218 at the decoder 200 side
may correspond to the configurations, functions, and pro-
cesses of prediction controller 128, intra predictor 124, and
inter predictor 126 at the encoder 100 side.

[First Aspect]

The following describes encoder 100 and decoder 200
according to a first aspect of the present disclosure.

Encoder 100 determines whether a current video to be
processed is a progressive video (hereinafter also referred to
as progressive content). When it is determined that the
current video is a progressive video, encoder 100 encodes,
into a bitstream, one syntax element indicating a chroma
location type which is information indicating the locations
of chroma samples relative to luma samples for a frame
included in the current video. When it is determined that the

10

15

20

25

30

35

40

45

55

60

65

74

current video is not a progressive video, encoder 100
encodes, into the bitstream, two syntax elements each indi-
cating the chroma location type for a different one of fields
of two types included in the current video.

Decoder 200 determines whether a current video to be
processed is a progressive video. When it is determined that
the current video is a progressive video, decoder 200
decodes, from a bitstream, one syntax element indicating a
chroma location type which is information indicating the
locations of chroma samples relative to luma samples for a
frame included in the current video. When it is determined
that the current video is not a progressive video, decoder 200
decodes, from the bitstream, two syntax elements each
indicating the chroma location type for a different one of
fields of two types included in the current video.

Encoder 100 or decoder 200 determines whether the
current video is a progressive video or an interlaced video,
using, for example, a first flag indicating whether the current
video is a progressive video and a second flag indicating
whether the current video is an interlaced video (hereinafter
also referred to as interlaced content) which are included in
a video usability information (hereinafter also referred to as
VUI) syntax structure.

The following describes the internal structure of VUI in
encoder 100 with reference to the diagrams.

[Internal Structure of VUI Syntax in Encoder]

FIG. 97 is a diagram illustrating an example of the video
usability information (VUI) syntax structure. Information
contained in the VUI syntax structure is not required for
decoding luma samples and chroma samples of a video
signal. However, some pieces of the information are essen-
tial for properly displaying the video signal on a display and
are becoming even more essential in today’s world where:
video can be high dynamic range (HDR) or standard
dynamic range (SDR); the standard definition (SD), high
definition (HD), or ultra-high definition (UHD) color pri-
maries are used; and International Telecommunication
Union Radiocommunication Sector (ITU-R) recommenda-
tions (hereinafter simply referred to as recommendations)
broadcasting service (television) 709 (BT. 709) or the broad-
casting service (television) 2020 (BT. 2020) chroma samples
location (hereinafter also referred to as chroma location)
relative to luma samples location are used. In particular,
signalling information related to chroma samples location
for progressive content has become essential now that
recommendations BT. 2020 and BT. 2100 use the type 2
chroma samples location instead of the type O chroma
samples location used for previous formats. If this informa-
tion is signaled using two syntax elements chroma_
sample_loc_type_top_field and chroma_sample_loc_type-
_bottom_field even for progressive content, it is unclear how
the display should react to different values of these two types
of fields (e.g., a top field and a bottom field) for progressive
content.

In view of this, encoder 100 according to the first aspect
of'the present disclosure determines whether or not a current
video to be processed is a progressive video. When it is
determined that the current video is a progressive video,
encoder 100 encodes, into a bitstream, one syntax element
chroma_sample_loc_type_frame indicating a chroma loca-
tion type that indicates the locations of chroma samples
relative to luma samples for a frame included in the current
video.

For example, in the first aspect of the present disclosure,
whether a current video to be processed is progressive
content is determined using two flags general_
progressive_source_flag and general_interlaced_source_f-

US 12,088,849 B2

75

lag, as illustrated in the syntax in FIG. 97. It should be noted
that general_progressive_source_flag is one example of the
first flag indicating whether the current video is progressive
content, and general_interlaced_source_flag is one example
of the second flag indicating whether the current video is
interlaced content.

In the first aspect of the present disclosure, when it is
determined that the current video is not a progressive video,
encoder 100 encodes, into a bitstream, two syntax elements
chroma_sample_loc_type_top_field and chroma_sample_I-
oc_type_bottom_field each indicating a chroma location
type for a different one of fields of two types included in the
current video.

Furthermore, encoder 100 may encode, into the bitstream,
a third flag (e.g., chroma_loc_info_present_flag) indicating
whether information indicating the locations of chroma
samples relative to luma samples for a frame included in the
current video is included in the bitstream as the one syntax
element or the two syntax elements, as illustrated in FIG. 97.
In the case where the third flag indicates that the information
indicating the locations of chroma samples relative to luma
samples for the frame is included in the bitstream, encoder
100 may: encode the one syntax element into the bitstream
when it is determined, using the first flag and the second flag,
that the current video is progressive content; and encode the
two syntax elements into the bitstream when it is deter-
mined, using the first flag and the second flag, that the
current video is not progressive content.

Note that the first flag and the second flag may be
indicated in a general_constraint_info syntax structure.
Since these two flags convey information about an encoded
video signal rather than a bitstream (contrary to the other
flags in the general_constraint_info syntax structure), the
two flags may be moved into a VUI syntax structure instead
of the general_constraint_info syntax structure or repeated
(i.e., indicated many times) in VUI syntax.

Although the description has been provided herein using
encoder 100 as an example, the aforementioned internal
structure of VUI syntax is common to encoder 100 and
decoder 200.

[Example of Operation Performed by Decoder]

Next, an operation performed when decoder 200 receives
a current video to be processed will be described using an
example of an operation performed in the case of receiving
a video signal having a 4:2:0 (YUV) chroma format.

FIG. 98 is a flow chart illustrating an example of an
operation performed by decoder 200 according to the first
aspect. Hereinafter, information indicated in a VUI syntax
structure is referred to as VUI information.

First, upon receiving a video signal including 4:2:0
(YUV) chroma content (step S101), decoder 200 reads VUI
information from a bitstream (step S102).

Subsequently, decoder 200 checks the values of the two
flags general_progressive_source_flag (i.e., the first flag)
and general_interlaced_source_flag (i.e., the second flag)
included in the VUI information read from the bitstream in
step S102. When the value of general_
progressive_source_flag is equal to 1 and the value of
general_interlaced_source_flag is equal to 0 (Yes in step
S103), decoder 200 determines that content (hereinafter also
referred to as a current video to be processed) included in the
video signal received in step S101 is progressive content
(not shown in the diagram).

When it is determined that the current video is progressive
content, decoder 200 performs chroma upsampling for a
whole picture (i.e., a frame), using one syntax element
chroma_sample_loc_type_frame indicating a chroma loca-

20

30

40

45

50

55

76

tion type which is information indicating the locations of
chroma samples relative to luma samples for a frame
included in the current video (step S104). Accordingly,
chroma samples relative to luma samples location are gen-
erated.

More specifically, decoder 200 decodes one syntax ele-
ment from the bitstream in step S104. Subsequently, decoder
200 calls a process to perform chroma upsampling of a
frame (also referred to as a frame picture) included in the
current video (not shown in the diagram), using a chroma
location type indicated by the one syntax element that has
been decoded. Decoder 200 then performs chroma upsam-
pling for the whole picture for each picture (i.e., frame
picture) included in the current video, in accordance with the
process that has been called (step S104). Such a process
typically depends on an application or a specific implemen-
tation.

When decoder 200 checks the values of the two flags
included in the VUI information read from the bitstream in
step S102 and general_progressive_source_flag (i.e., the
first flag) is not equal to 1 and/or general_
interlaced_source_flag (i.e., the second flag) is not equal to
0 (No in step S103), decoder 200 determines that the content
(i.e., the current video) included in the video signal received
in step S101 is interlaced content or unknown content (not
shown in the diagram). Note that unknown content is, for
instance, content that includes a current video regarding
which whether interlaced or progressive is unknown or
unspecified, or content whose information indicating
frames/fields is not encoded.

Stated differently, decoder 200 determines as follows: (1)
when general_progressive_source_flag is equal to 1 and
general_interlaced_source_flag is equal to 0, decoder 200
determines that the current video is progressive content; (2)
when general_progressive_source_flag is equal to 0 and
general_interlaced_source_flag is equal to 1, decoder 200
determines that the current video is interlaced content; (3)
when general_progressive_source_flag is equal to 0 and
general_interlaced_source_flag is equal to 0, decoder 200
determines that the current video is unknown content; and
(4) when general_progressive_source_flag is equal to 1 and
general_interlaced_source_flag is equal to 1, decoder 200
determines that the current video is content whose informa-
tion indicating frames/fields is transmitted by a means (e.g.,
SEI messages) different from that used for transmitting VUI.

When the current video is determined as being interlaced
content or unknown content, decoder 200 performs chroma
upsampling of each of fields of two types, using two syntax
elements chroma_sample_loc_type_top_field and chro-
ma_sample_loc_type_bottom_field each indicating a
chroma location type which is information indicating the
locations of samples relative to luma samples for a different
one of the fields of two types included in the current video
(steps S105 and S106). Accordingly, chroma samples rela-
tive to luma samples location are generated.

More specifically, when the current video is determined as
being interlaced content or unknown content, decoder 200
decodes two syntax elements each indicating a chroma
location type for a different one of fields of two types (not
shown in the diagram). Subsequently, decoder 200 calls two
processes for separately performing chroma upsampling of
fields of two types (e.g., a top field and a bottom field)
included in the current video, using the chroma location
types indicated by the two syntax elements that have been
decoded. Decoder 200 then separately performs, for each
picture (i.e., frame picture) included in the current video,
chroma upsampling of the fields of two types according to

US 12,088,849 B2

77

the two processes that have been called. For example,
decoder 200 performs chroma upsampling of a top filed,
using the syntax element chroma_sample_loc_type_
top_field out of the two syntax elements that have been
decoded which indicates a chroma location type relative to
luma samples for the top field (step S105). Subsequently,
decoder 200 performs chroma upsampling of a bottom field,
using the syntax element chroma_sample_loc_type_
bottom_field out of the two syntax elements that have been
decoded which indicates a chroma location type relative to
luma samples for the bottom field (step S106).

Note that the processes in steps S105 and S106 may be
performed in the reverse order of the order shown in FIG.
98. For example, decoder 200 may firstly perform chroma
upsampling of a bottom field and then perform chroma
upsampling of a top field for fields of two types included in
the current video. It is also to be noted that in the case where
a bitstream is encoded using frames instead of fields,
decoder 200 needs to transform the frames into fields in
order to separately call the two processes for two fields.

After repeating the process in step S104 or the processes
in steps S105 and S106 for all the pictures included in the
current video, decoder 200 ends the processing.

Note that the processing flow is one example and the order
of the processes described herein may be changed, or one or
more of the processes described herein may be removed, or
a process not described herein may be added.

For example, the following processes may be added
between step S102 and step S103: a process of decoding,
from a bitstream, a third flag chroma_loc_info_present_flag
indicating whether information indicating the locations of
chroma samples relative to luma samples for a frame
included in the current video is included in the bitstream as
the one syntax element or the two syntax elements; and a
process of determining whether the decoded third flag
indicates that the information indicating the locations of
chroma samples relative to luma samples for a frame
included in the current video is included in the bitstream.

Although the description has been provided herein using
decoder 200 as an example, if the term “decode” is replaced
by the term “encode”, the aforementioned processing is
common to encoder 100 and decoder 200.

Advantageous Effects of First Aspect

As described above, when a current video to be processed
is a progressive video, encoder 100 according to the first
aspect of the present disclosure encodes only one syntax
element indicating a chroma location type for a frame
included in the current video. When the current video is not
a progressive video, encoder 100 encodes two syntax ele-
ments each indicating a chroma location type for a different
one of fields of two types included in the current video. This
reduces the amount of codes, and the coding efficiency of
encoder 100 is therefore enhanced.

Moreover, when a current video to be processed is a
progressive video, decoder 200 according to the first aspect
of the present disclosure decodes only one syntax element
indicating a chroma location type for a frame included in the
current video. When the current video is not a progressive
video, decoder 200 decodes two syntax elements each
indicating a chroma location type for a different one of fields
of two types included in the current video. This reduces the
processing amount, and the processing efficiency of decoder
200 is therefore enhanced.

Furthermore, according to the first aspect of the present
disclosure, an improvement in coding efliciency, an

20

25

30

40

45

55

65

78

improvement in image quality, a reduction in the processing
amount, and an improvement in processing efficiency can be
achieved even though a current video to be processed is
progressive content having a 4:2:0 chroma format.

Note that not all of the components described in the first
aspect are necessarily required, and encoder 100 or decoder
200 may include only one or more of the components.
Moreover, not all of the processes described above are
necessarily required, and encoder 100 or decoder 200 may
include one or more of the processes.

[Representative Examples of Processing]

The following describes representative examples of pro-
cessing performed by encoder 100 and decoder 200
described above.

FIG. 99 is a flow chart illustrating an operation performed
by encoder 100. Encoder 100 includes circuitry and memory
coupled to the circuitry. The circuitry and memory included
in encoder 100 may correspond to processor al and memory
a2 illustrated in FIG. 8. In operation, the circuitry in encoder
100 performs the following.

For example, the circuitry in encoder 100: determines
whether or not a current video to be processed is a progres-
sive video. When it is determined that the current video is a
progressive video, the circuitry encodes one syntax element
indicating a chroma location type into a bitstream. The
chroma location type is information indicating the locations
of chroma samples relative to luma samples for a frame
included in the current video. When it is determined that the
current video is not a progressive video, the circuitry
encodes two syntax elements into the bitstream. Each of the
two syntax elements indicates the chroma location type for
a different one of fields of two types included in the current
video.

Accordingly, since encoder 100 encodes only one syntax
element indicating a chroma location type in the case where
the current video is a progressive video, the processing
amount is reduced. The coding efficiency of encoder 100 is
therefore enhanced.

For example, the circuitry in encoder 100 may determine
whether the current video is a progressive video or an
interlaced video, using a first flag indicating whether or not
the current video is a progressive video and a second flag
indicating whether or not the current video is an interlaced
video. The first flag and the second flag are included in a
video usability information syntax structure.

This enables encoder 100 to determine whether the cur-
rent video is a progressive video or an interlaced video even
when, for example, the current video includes a video whose
display mode (i.e., a scanning mode for display) is not
specified. Accordingly, encoder 100 can perform a more
appropriate process on the current video.

For example, the circuitry in encoder 100 may further
encode, into the bitstream, a third flag indicating whether or
not the information indicating the locations of chroma
samples relative to luma samples for the frame is included
in the bitstream as the one syntax element or the two syntax
elements. In a case where the third flag indicates that the
information indicating the locations of chroma samples
relative to luma samples for the frame included in the
bitstream, the circuitry may: encode the one syntax element
into the bitstream when it is determined, using the first flag
and the second flag, that the current video is a progressive
video; and encode the two syntax elements into the bitstream
when it is determined, using the first flag and the second flag,
that the current video is an interlaced video.

This enables encoder 100 to switch a syntax element to be
encoded, based on whether the current video is a progressive

US 12,088,849 B2

79

video or an interlaced video. Accordingly, encoder 100 can
perform a more appropriate process on the current video,
and the coding efficiency of encoder 100 is therefore
enhanced.

FIG. 100 is a flow chart illustrating an operation per-
formed by decoder 200. Decoder 200 includes circuitry and
memory coupled to the circuitry. The circuitry and memory
included in decoder 200 may correspond to processor b1 and
memory b2 illustrated in FIG. 68. In operation, the circuitry
in decoder 200 performs the following.

For example, the circuitry in decoder 200 determines
whether or not a current video to be processed is a progres-
sive video. When it is determined that the current video is a
progressive video, the circuitry decodes one syntax element
indicating a chroma location type from a bitstream. The
chroma location type is information indicating the locations
of chroma samples relative to luma samples for a frame
included in the current video. When it is determined that the
current video is not a progressive video, the circuitry
decodes two syntax elements from the bitstream, where each
of the two syntax elements indicates the chroma location
type for a different one of fields of two types included in the
current video.

Accordingly, since decoder 200 decodes only one syntax
element indicating a chroma location type in the case where
the current video is a progressive video, the processing
amount is reduced. The processing efficiency of decoder 200
is therefore enhanced.

For example, the circuitry in decoder 200 may determine
whether the current video is a progressive video or an
interlaced video, using a first flag indicating whether or not
the current video is a progressive video and a second flag
indicating whether or not the current video is an interlaced
video. The first flag and the second flag are included in a
video usability information syntax structure.

This enables decoder 200 to determine whether the cur-
rent video is a progressive video or an interlaced video even
when, for example, the current video includes a video whose
display mode (i.e., a scanning mode for display) is not
specified. Accordingly, decoder 200 can perform a more
appropriate process on the current video, and the processing
efficiency of decoder 200 is therefore enhanced.

For example, the circuitry in decoder 200 may further
decode, from the bitstream, a third flag indicating whether or
not the information indicating the locations of chroma
samples relative to luma samples for the frame is included
in the bitstream as the one syntax element or the two syntax
elements. In a case where the third flag indicates that the
information indicating the locations of chroma samples
relative to luma samples for the frame is included in the
bitstream, the circuitry may: decode the one syntax element
from the bitstream when it is determined, using the first flag
and the second flag, that the current video is a progressive
video; and decode the two syntax elements from the bit-
stream when it is determined, using the first flag and the
second flag, that the current video is an interlaced video.

This enables decoder 200 to switch a syntax element to be
decoded, based on whether the current video is a progressive
video or an interlaced video. Accordingly, decoder 200 can
perform a more appropriate process on the current video,
and the processing efficiency of decoder 200 is therefore
enhanced.

As described above, each component may be a circuit.
The circuits may be integrated into single circuitry as a
whole, or may be separated from each other. Each compo-
nent may be implemented as a general-purpose processor or
as a dedicated processor.

10

15

20

25

30

35

40

45

50

55

60

65

80

A process performed by a specific component may be
performed by another component. The order of processes
may be changed or multiple processes may be performed in
parallel. An encoding/decoding device may include encoder
100 and decoder 200.

The above has described the aspects of encoder 100 and
decoder 200 based on exemplary embodiments, but the
aspects of encoder 100 and decoder 200 are not limited to
these exemplary embodiments. Various modifications to
each of the exemplary embodiments that can be conceived
by those skilled in the art, and forms configured by com-
bining components in different exemplary embodiments
without departing from the spirit of the present disclosure
may be included in the scope of the aspects of encoder 100
and decoder 200.

Note that one or more of the aspects disclosed herein may
be implemented in combination with at least one or more of
the other aspects according to the present disclosure. In
addition, one or more of the processes in any one of the flow
charts, part of the configuration of any of the devices, and
part of any of the syntaxes described in one or more of the
aspects disclosed herein may be implemented in combina-
tion with the other aspects.

Implementations and Applications

As described in each of the above embodiments, each
functional or operational block may typically be realized as
an MPU (micro processing unit) and memory, for example.
Moreover, processes performed by each of the functional
blocks may be realized as a program execution unit, such as
a processor which reads and executes software (a program)
recorded on a medium such as ROM. The software may be
distributed. The software may be recorded on a variety of
media such as semiconductor memory. Note that each func-
tional block can also be realized as hardware (dedicated
circuit).

The processing described in each of the embodiments
may be realized via integrated processing using a single
apparatus (system), and, alternatively, may be realized via
decentralized processing using a plurality of apparatuses.
Moreover, the processor that executes the above-described
program may be a single processor or a plurality of proces-
sors. In other words, integrated processing may be per-
formed, and, alternatively, decentralized processing may be
performed.

Embodiments of the present disclosure are not limited to
the above exemplary embodiments; various modifications
may be made to the exemplary embodiments, the results of
which are also included within the scope of the embodi-
ments of the present disclosure.

Next, application examples of the moving picture encod-
ing method (image encoding method) and the moving pic-
ture decoding method (image decoding method) described in
each of the above embodiments will be described, as well as
various systems that implement the application examples.
Such a system may be characterized as including an image
encoder that employs the image encoding method, an image
decoder that employs the image decoding method, or an
image encoder-decoder that includes both the image encoder
and the image decoder. Other configurations of such a
system may be modified on a case-by-case basis.

Usage Examples

FIG. 101 illustrates an overall configuration of content
providing system ex100 suitable for implementing a content

US 12,088,849 B2

81

distribution service. The area in which the communication
service is provided is divided into cells of desired sizes, and
base stations ex106, ex107, ex108, ex109, and ex110, which
are fixed wireless stations in the illustrated example, are
located in respective cells.

In content providing system ex100, devices including
computer ex111, gaming device ex112, camera ex113, home
appliance ex114, and smartphone ex115 are connected to
internet ex101 via internet service provider ex102 or com-
munications network ex104 and base stations ex106 through
ex110. Content providing system ex100 may combine and
connect any of the above devices. In various implementa-
tions, the devices may be directly or indirectly connected
together via a telephone network or near field communica-
tion, rather than via base stations ex106 through ex110.
Further, streaming server ex103 may be connected to
devices including computer ex111, gaming device ex112,
camera ex113, home appliance ex114, and smartphone
ex115 via, for example, internet ex101. Streaming server
ex103 may also be connected to, for example, a terminal in
a hotspot in airplane ex117 via satellite ex116.

Note that instead of base stations ex106 through ex110,
wireless access points or hotspots may be used. Streaming
server ex103 may be connected to communications network
ex104 directly instead of via internet ex101 or internet
service provider ex102, and may be connected to airplane
ex117 directly instead of via satellite ex116.

Camera ex113 is a device capable of capturing still
images and video, such as a digital camera. Smartphone
ex115 is a smartphone device, cellular phone, or personal
handyphone system (PHS) phone that can operate under the
mobile communications system standards of the 2G, 3G,
3.9G, and 4G systems, as well as the next-generation 5G
system.

Home appliance ex114 is, for example, a refrigerator or a
device included in a home fuel cell cogeneration system.

In content providing system ex100, a terminal including
an image and/or video capturing function is capable of, for
example, live streaming by connecting to streaming server
ex103 via, for example, base station ex106. When live
streaming, a terminal (e.g., computer ex111, gaming device
ex112, camera ex113, home appliance ex114, smartphone
ex115, or a terminal in airplane ex117) may perform the
encoding processing described in the above embodiments on
still-image or video content captured by a user via the
terminal, may multiplex video data obtained via the encod-
ing and audio data obtained by encoding audio correspond-
ing to the video, and may transmit the obtained data to
streaming server ex103. In other words, the terminal func-
tions as the image encoder according to one aspect of the
present disclosure.

Streaming server ex103 streams transmitted content data
to clients that request the stream. Client examples include
computer ex111, gaming device ex112, camera ex113, home
appliance ex114, smartphone ex115, and terminals inside
airplane ex117, which are capable of decoding the above-
described encoded data. Devices that receive the streamed
data decode and reproduce the received data. In other words,
the devices may each function as the image decoder, accord-
ing to one aspect of the present disclosure.

[Decentralized Processing]

Streaming server ex103 may be realized as a plurality of
servers or computers between which tasks such as the
processing, recording, and streaming of data are divided. For
example, streaming server ex103 may be realized as a
content delivery network (CDN) that streams content via a
network connecting multiple edge servers located through-

10

15

20

25

30

35

40

45

50

55

60

65

82

out the world. In a CDN, an edge server physically near a
client is dynamically assigned to the client. Content is
cached and streamed to the edge server to reduce load times.
In the event of, for example, some type of error or change
in connectivity due, for example, to a spike in traffic, it is
possible to stream data stably at high speeds, since it is
possible to avoid affected parts of the network by, for
example, dividing the processing between a plurality of edge
servers, or switching the streaming duties to a different edge
server and continuing streaming.

Decentralization is not limited to just the division of
processing for streaming; the encoding of the captured data
may be divided between and performed by the terminals, on
the server side, or both. In one example, in typical encoding,
the processing is performed in two loops. The first loop is for
detecting how complicated the image is on a frame-by-frame
or scene-by-scene basis, or detecting the encoding load. The
second loop is for processing that maintains image quality
and improves encoding efficiency. For example, it is pos-
sible to reduce the processing load of the terminals and
improve the quality and encoding efficiency of the content
by having the terminals perform the first loop of the encod-
ing and having the server side that received the content
perform the second loop of the encoding. In such a case,
upon receipt of a decoding request, it is possible for the
encoded data resulting from the first loop performed by one
terminal to be received and reproduced on another terminal
in approximately real time. This makes it possible to realize
smooth, real-time streaming.

In another example, camera ex113 or the like extracts a
feature amount from an image, compresses data related to
the feature amount as metadata, and transmits the com-
pressed metadata to a server. For example, the server deter-
mines the significance of an object based on the feature
amount and changes the quantization accuracy accordingly
to perform compression suitable for the meaning (or content
significance) of the image. Feature amount data is particu-
larly effective in improving the precision and efficiency of
motion vector prediction during the second compression
pass performed by the server. Moreover, encoding that has
a relatively low processing load, such as variable length
coding (VLC), may be handled by the terminal, and encod-
ing that has a relatively high processing load, such as
context-adaptive binary arithmetic coding (CABAC), may
be handled by the server.

In yet another example, there are instances in which a
plurality of videos of approximately the same scene are
captured by a plurality of terminals in, for example, a
stadium, shopping mall, or factory. In such a case, for
example, the encoding may be decentralized by dividing
processing tasks between the plurality of terminals that
captured the videos and, if necessary, other terminals that did
not capture the videos, and the server, on a per-unit basis.
The units may be, for example, groups of pictures (GOP),
pictures, or tiles resulting from dividing a picture. This
makes it possible to reduce load times and achieve streaming
that is closer to real time.

Since the videos are of approximately the same scene,
management and/or instructions may be carried out by the
server so that the videos captured by the terminals can be
cross-referenced. Moreover, the server may receive encoded
data from the terminals, change the reference relationship
between items of data, or correct or replace pictures them-
selves, and then perform the encoding. This makes it pos-
sible to generate a stream with increased quality and effi-
ciency for the individual items of data.

US 12,088,849 B2

83

Furthermore, the server may stream video data after
performing transcoding to convert the encoding format of
the video data. For example, the server may convert the
encoding format from MPEG to VP (e.g., VP9), and may
convert H.264 to H.265.

In this way, encoding can be performed by a terminal or
one or more servers. Accordingly, although the device that
performs the encoding is referred to as a “server” or “ter-
minal” in the following description, some or all of the
processes performed by the server may be performed by the
terminal, and likewise some or all of the processes per-
formed by the terminal may be performed by the server. This
also applies to decoding processes.

[3D, Multi-Angle]

There has been an increase in usage of images or videos
combined from images or videos of different scenes con-
currently captured, or of the same scene captured from
different angles, by a plurality of terminals such as camera
ex113 and/or smartphone ex115. Videos captured by the
terminals are combined based on, for example, the sepa-
rately obtained relative positional relationship between the
terminals, or regions in a video having matching feature
points.

In addition to the encoding of two-dimensional moving
pictures, the server may encode a still image based on scene
analysis of a moving picture, either automatically or at a
point in time specified by the user, and transmit the encoded
still image to a reception terminal. Furthermore, when the
server can obtain the relative positional relationship between
the video capturing terminals, in addition to two-dimen-
sional moving pictures, the server can generate three-dimen-
sional geometry of a scene based on video of the same scene
captured from different angles. The server may separately
encode three-dimensional data generated from, for example,
a point cloud and, based on a result of recognizing or
tracking a person or object using three-dimensional data,
may select or reconstruct and generate a video to be trans-
mitted to a reception terminal, from videos captured by a
plurality of terminals.

This allows the user to enjoy a scene by freely selecting
videos corresponding to the video capturing terminals, and
allows the user to enjoy the content obtained by extracting
a video at a selected viewpoint from three-dimensional data
reconstructed from a plurality of images or videos. Further-
more, as with video, sound may be recorded from relatively
different angles, and the server may multiplex audio from a
specific angle or space with the corresponding video, and
transmit the multiplexed video and audio.

In recent years, content that is a composite of the real
world and a virtual world, such as virtual reality (VR) and
augmented reality (AR) content, has also become popular. In
the case of VR images, the server may create images from
the viewpoints of both the left and right eyes, and perform
encoding that tolerates reference between the two viewpoint
images, such as multi-view coding (MVC), and, alterna-
tively, may encode the images as separate streams without
referencing. When the images are decoded as separate
streams, the streams may be synchronized when reproduced,
s0 as to recreate a virtual three-dimensional space in accor-
dance with the viewpoint of the user.

In the case of AR images, the server superimposes virtual
object information existing in a virtual space onto camera
information representing a real-world space, based on a
three-dimensional position or movement from the perspec-
tive of the user. The decoder may obtain or store virtual
object information and three-dimensional data, generate
two-dimensional images based on movement from the per-

10

15

20

25

30

35

40

45

50

55

60

65

84

spective of the user, and then generate superimposed data by
seamlessly connecting the images. Alternatively, the
decoder may transmit, to the server, motion from the per-
spective of the user in addition to a request for virtual object
information. The server may generate superimposed data
based on three-dimensional data stored in the server, in
accordance with the received motion, and encode and stream
the generated superimposed data to the decoder. Note that
superimposed data includes, in addition to RGB values, an
a value indicating transparency, and the server sets the a
value for sections other than the object generated from
three-dimensional data to, for example, 0, and may perform
the encoding while those sections are transparent. Alterna-
tively, the server may set the background to a determined
RGB wvalue, such as a chroma key, and generate data in
which areas other than the object are set as the background.

Decoding of similarly streamed data may be performed by
the client (i.e., the terminals), on the server side, or divided
therebetween. In one example, one terminal may transmit a
reception request to a server, the requested content may be
received and decoded by another terminal, and a decoded
signal may be transmitted to a device having a display. It is
possible to reproduce high image quality data by decentral-
izing processing and appropriately selecting content regard-
less of the processing ability of the communications terminal
itself. In yet another example, while a TV, for example, is
receiving image data that is large in size, a region of a
picture, such as a tile obtained by dividing the picture, may
be decoded and displayed on a personal terminal or termi-
nals of a viewer or viewers of the TV. This makes it possible
for the viewers to share a big-picture view as well as for each
viewer to check his or her assigned area, or inspect a region
in further detail up close.

In situations in which a plurality of wireless connections
are possible over near, mid, and far distances, indoors or
outdoors, it may be possible to seamlessly receive content
using a streaming system standard such as MPEG Dynamic
Adaptive Streaming over HTTP (MPEG-DASH). The user
may switch between data in real time while freely selecting
a decoder or display apparatus including the user’s terminal,
displays arranged indoors or outdoors, etc. Moreover, using,
for example, information on the position of the user, decod-
ing can be performed while switching which terminal
handles decoding and which terminal handles the displaying
of content. This makes it possible to map and display
information, while the user is on the move in route to a
destination, on the wall of a nearby building in which a
device capable of displaying content is embedded, or on part
of the ground. Moreover, it is also possible to switch the bit
rate of the received data based on the accessibility to the
encoded data on a network, such as when encoded data is
cached on a server quickly accessible from the reception
terminal, or when encoded data is copied to an edge server
in a content delivery service.

[Web Page Optimization]

FIG. 102 illustrates an example of a display screen of a
web page on computer ex111, for example. FIG. 103 illus-
trates an example of a display screen of a web page on
smartphone ex115, for example. As illustrated in FIG. 102
and FIG. 103, a web page may include a plurality of image
links that are links to image content, and the appearance of
the web page differs depending on the device used to view
the web page. When a plurality of image links are viewable
on the screen, until the user explicitly selects an image link,
or until the image link is in the approximate center of the
screen or the entire image link fits in the screen, the display
apparatus (decoder) may display, as the image links, still

US 12,088,849 B2

85

images included in the content or I pictures; may display
video such as an animated gif using a plurality of still images
or I pictures; or may receive only the base layer, and decode
and display the video.

When an image link is selected by the user, the display
apparatus performs decoding while giving the highest pri-
ority to the base layer. Note that if there is information in the
Hyper Text Markup Language (HTML) code of the web
page indicating that the content is scalable, the display
apparatus may decode up to the enhancement layer. Further,
in order to guarantee real-time reproduction, before a selec-
tion is made or when the bandwidth is severely limited, the
display apparatus can reduce delay between the point in time
at which the leading picture is decoded and the point in time
at which the decoded picture is displayed (that is, the delay
between the start of the decoding of the content to the
displaying of the content) by decoding and displaying only
forward reference pictures (I picture, P picture, forward
reference B picture). Still further, the display apparatus may
purposely ignore the reference relationship between pic-
tures, and coarsely decode all B and P pictures as forward
reference pictures, and then perform normal decoding as the
number of pictures received over time increases.
[Autonomous Driving]

When transmitting and receiving still image or video data
such as two- or three-dimensional map information for
autonomous driving or assisted driving of an automobile, the
reception terminal may receive, in addition to image data
belonging to one or more layers, information on, for
example, the weather or road construction as metadata, and
associate the metadata with the image data upon decoding.
Note that metadata may be assigned per layer and, alterna-
tively, may simply be multiplexed with the image data.

In such a case, since the automobile, drone, airplane, etc.,
containing the reception terminal is mobile, the reception
terminal may seamlessly receive and perform decoding
while switching between base stations among base stations
ex106 through ex110 by transmitting information indicating
the position of the reception terminal. Moreover, in accor-
dance with the selection made by the user, the situation of
the user, and/or the bandwidth of the connection, the recep-
tion terminal may dynamically select to what extent the
metadata is received, or to what extent the map information,
for example, is updated.

In content providing system ex100, the client may
receive, decode, and reproduce, in real time, encoded infor-
mation transmitted by the user.

[Streaming of Individual Content]

In content providing system ex100, in addition to high
image quality, long content distributed by a video distribu-
tion entity, unicast or multicast streaming of low image
quality, and short content from an individual are also pos-
sible. Such content from individuals is likely to further
increase in popularity. The server may first perform editing
processing on the content before the encoding processing, in
order to refine the individual content. This may be achieved
using the following configuration, for example.

In real time while capturing video or image content, or
after the content has been captured and accumulated, the
server performs recognition processing based on the raw
data or encoded data, such as capture error processing, scene
search processing, meaning analysis, and/or object detection
processing. Then, based on the result of the recognition
processing, the server—either when prompted or automati-
cally—edits the content, examples of which include: cor-
rection such as focus and/or motion blur correction; remov-
ing low-priority scenes such as scenes that are low in

10

15

20

25

30

35

40

45

50

55

60

65

86

brightness compared to other pictures, or out of focus; object
edge adjustment; and color tone adjustment. The server
encodes the edited data based on the result of the editing. It
is known that excessively long videos tend to receive fewer
views. Accordingly, in order to keep the content within a
specific length that scales with the length of the original
video, the server may, in addition to the low-priority scenes
described above, automatically clip out scenes with low
movement, based on an image processing result. Alterna-
tively, the server may generate and encode a video digest
based on a result of an analysis of the meaning of a scene.

There may be instances in which individual content may
include content that infringes a copyright, moral right,
portrait rights, etc. Such instance may lead to an unfavorable
situation for the creator, such as when content is shared
beyond the scope intended by the creator. Accordingly,
before encoding, the server may, for example, edit images so
as to blur faces of people in the periphery of the screen or
blur the inside of a house, for example. Further, the server
may be configured to recognize the faces of people other
than a registered person in images to be encoded, and when
such faces appear in an image, may apply a mosaic filter, for
example, to the face of the person. Alternatively, as pre- or
post-processing for encoding, the user may specify, for
copyright reasons, a region of an image including a person
or a region of the background to be processed. The server
may process the specified region by, for example, replacing
the region with a different image, or blurring the region. If
the region includes a person, the person may be tracked in
the moving picture, and the person’s head region may be
replaced with another image as the person moves.

Since there is a demand for real-time viewing of content
produced by individuals, which tends to be small in data
size, the decoder first receives the base layer as the highest
priority, and performs decoding and reproduction, although
this may differ depending on bandwidth. When the content
is reproduced two or more times, such as when the decoder
receives the enhancement layer during decoding and repro-
duction of the base layer, and loops the reproduction, the
decoder may reproduce a high image quality video including
the enhancement layer. If the stream is encoded using such
scalable encoding, the video may be low quality when in an
unselected state or at the start of the video, but it can offer
an experience in which the image quality of the stream
progressively increases in an intelligent manner. This is not
limited to just scalable encoding; the same experience can be
offered by configuring a single stream from a low quality
stream reproduced for the first time and a second stream
encoded using the first stream as a reference.

[Other Implementation and Application Examples]

The encoding and decoding may be performed by LSI
(large scale integration circuitry) ex500 (see FIG. 101),
which is typically included in each terminal. LSI ex500 may
be configured of a single chip or a plurality of chips.
Software for encoding and decoding moving pictures may
be integrated into some type of a medium (such as a
CD-ROM, a flexible disk, or a hard disk) that is readable by,
for example, computer ex111, and the encoding and decod-
ing may be performed using the software. Furthermore,
when smartphone ex115 is equipped with a camera, video
data obtained by the camera may be transmitted. In this case,
the video data is coded by LSI ex500 included in smartphone
ex115.

Note that LSI ex500 may be configured to download and
activate an application. In such a case, the terminal first
determines whether it is compatible with the scheme used to
encode the content, or whether it is capable of executing a

US 12,088,849 B2

87

specific service. When the terminal is not compatible with
the encoding scheme of the content, or when the terminal is
not capable of executing a specific service, the terminal first
downloads a codec or application software and then obtains
and reproduces the content.

Aside from the example of content providing system
ex100 that uses internet ex101, at least the moving picture
encoder (image encoder) or the moving picture decoder
(image decoder) described in the above embodiments may
be implemented in a digital broadcasting system. The same
encoding processing and decoding processing may be
applied to transmit and receive broadcast radio waves super-
imposed with multiplexed audio and video data using, for
example, a satellite, even though this is geared toward
multicast, whereas unicast is easier with content providing
system ex100.

[Hardware Configuration]

FIG. 104 illustrates further details of smartphone ex115
shown in FIG. 101. FIG. 105 illustrates a configuration
example of smartphone ex115. Smartphone ex115 includes
antenna ex450 for transmitting and receiving radio waves to
and from base station ex110, camera ex465 capable of
capturing video and still images, and display ex458 that
displays decoded data, such as video captured by camera
ex465 and video received by antenna ex450. Smartphone
ex115 further includes user interface ex466 such as a touch
panel, audio output unit ex457 such as a speaker for out-
putting speech or other audio, audio input unit ex456 such
as a microphone for audio input, memory ex467 capable of
storing decoded data such as captured video or still images,
recorded audio, received video or still images, and mail, as
well as decoded data, and slot ex464 which is an interface
for Subscriber Identity Module (SIM) ex468 for authorizing
access to a network and various data. Note that external
memory may be used instead of memory ex467.

Main controller ex460, which comprehensively controls
display ex458 and user interface ex466, power supply circuit
ex461, user interface input controller ex462, video signal
processor ex455, camera interface ex463, display controller
ex459, modulator/demodulator ex452, multiplexer/demulti-
plexer ex453, audio signal processor ex454, slot ex464, and
memory ex467 are connected via bus ex470.

When the user turns on the power button of power supply
circuit ex461, smartphone ex115 is powered on into an
operable state, and each component is supplied with power
from a battery pack.

Smartphone ex115 performs processing for, for example,
calling and data transmission, based on control performed
by main controller ex460, which includes a CPU, ROM, and
RAM. When making calls, an audio signal recorded by
audio input unit ex456 is converted into a digital audio
signal by audio signal processor ex454, to which spread
spectrum processing is applied by modulator/demodulator
ex452 and digital-analog conversion and frequency conver-
sion processing are applied by transmitter/receiver ex451,
and the resulting signal is transmitted via antenna ex450.
The received data is amplified, frequency converted, and
analog-digital converted, inverse spread spectrum processed
by modulator/demodulator ex452, converted into an analog
audio signal by audio signal processor ex454, and then
output from audio output unit ex457. In data transmission
mode, text, still-image, or video data is transmitted by main
controller ex460 via user interface input controller ex462
based on operation of user interface ex466 of the main body,
for example. Similar transmission and reception processing
is performed. In data transmission mode, when sending a
video, still image, or video and audio, video signal processor

10

15

20

25

30

35

40

45

50

55

60

65

88

ex455 compression encodes, by the moving picture encod-
ing method described in the above embodiments, a video
signal stored in memory ex467 or a video signal input from
camera ex465, and transmits the encoded video data to
multiplexer/demultiplexer ex453. Audio signal processor
ex454 encodes an audio signal recorded by audio input unit
ex456 while camera ex465 is capturing a video or still
image, and transmits the encoded audio data to multiplexer/
demultiplexer ex453. Multiplexer/demultiplexer ex453 mul-
tiplexes the encoded video data and encoded audio data
using a determined scheme, modulates and converts the data
using modulator/demodulator (modulator/demodulator cir-
cuit) ex452 and transmitter/receiver ex451, and transmits the
result via antenna ex450.

When a video appended in an email or a chat, or a video
linked from a web page, is received, for example, in order
to decode the multiplexed data received via antenna ex450,
multiplexer/demultiplexer ex453 demultiplexes the multi-
plexed data to divide the multiplexed data into a bitstream of
video data and a bitstream of audio data, supplies the
encoded video data to video signal processor ex455 via
synchronous bus ex470, and supplies the encoded audio data
to audio signal processor ex454 via synchronous bus ex470.
Video signal processor ex455 decodes the video signal using
a moving picture decoding method corresponding to the
moving picture encoding method described in the above
embodiments, and video or a still image included in the
linked moving picture file is displayed on display ex458 via
display controller ex459. Audio signal processor ex454
decodes the audio signal and outputs audio from audio
output unit ex457. Since real-time streaming is becoming
increasingly popular, there may be instances in which repro-
duction of the audio may be socially inappropriate, depend-
ing on the user’s environment. Accordingly, as an initial
value, a configuration in which only video data is repro-
duced, i.e., the audio signal is not reproduced, may be
preferable; and audio may be synchronized and reproduced
only when an input is received from the user clicking video
data, for instance.

Although smartphone ex115 was used in the above
example, three other implementations are conceivable: a
transceiver terminal including both an encoder and a
decoder; a transmitter terminal including only an encoder;
and a receiver terminal including only a decoder. In the
description of the digital broadcasting system, an example is
given in which multiplexed data obtained as a result of video
data being multiplexed with audio data is received or
transmitted. The multiplexed data, however, may be video
data multiplexed with data other than audio data, such as text
data related to the video. Further, the video data itself rather
than multiplexed data may be received or transmitted.

Although main controller ex460 including a CPU is
described as controlling the encoding or decoding processes,
various terminals often include Graphics Processing Units
(GPUs). Accordingly, a configuration is acceptable in which
a large area is processed at once by making use of the
performance ability of the GPU via memory shared by the
CPU and GPU, or memory including an address that is
managed so as to allow common usage by the CPU and
GPU. This makes it possible to shorten encoding time,
maintain the real-time nature of streaming, and reduce delay.
In particular, processing relating to motion estimation,
deblocking filtering, sample adaptive offset (SAO), and
transformation/quantization can be effectively carried out by
the GPU, instead of the CPU, in units of pictures, for
example, all at once.

US 12,088,849 B2

89

Although only some exemplary embodiments of the pres-
ent disclosure have been described in detail above, those
skilled in the art will readily appreciate that many modifi-
cations are possible in the exemplary embodiments without
materially departing from the novel teachings and advan-
tages of the present disclosure. Accordingly, all such modi-
fications are intended to be included within the scope of the
present disclosure.

INDUSTRIAL APPLICABILITY

The present disclosure is applicable to, for example,
television receivers, digital video recorders, car navigation
systems, mobile phones, digital cameras, digital video cam-
eras, video conference systems, and electron mirrors.

What is claimed is:
1. An encoder comprising:
circuitry; and
memory coupled to the circuitry, wherein
in operation, the circuitry:
determines whether or not a current video to be pro-
cessed is a progressive video;
when it is determined that the current video is a
progressive video, encodes one syntax element indi-
cating a chroma location type into a bitstream, the
chroma location type being information indicating

10

15

20

25

90

locations of chroma samples relative to luma
samples for a frame included in the current video;
and
when it is determined that the current video is not a
progressive video, encodes two syntax elements into
the bitstream, each of the two syntax elements indi-
cating the chroma location type for a different one of
fields of two types included in the current video.
2. A decoder comprising:
circuitry; and
memory coupled to the circuitry, wherein
in operation, the circuitry:
determines whether or not a current video to be pro-
cessed is a progressive video;
when it is determined that the current video is a
progressive video, decodes one syntax element indi-
cating a chroma location type from a bitstream, the
chroma location type being information indicating
locations of chroma samples relative to luma
samples for a frame included in the current video;
and
when it is determined that the current video is not a
progressive video, decodes two syntax elements
from the bitstream, each of the two syntax elements
indicating the chroma location type for a different
one of fields of two types included in the current
video.

