
(19) United States
US 200300.46642A1

(12) Patent Application Publication (10) Pub. No.: US 2003/0046642 A1
Wheeler et al. (43) Pub. Date: Mar. 6, 2003

(54) EMPLOYING INTELLIGENT LOGICAL
MODELS TO ENABLE CONCISE LOGIC
REPRESENTATIONS FOR CLARITY OF
DESIGN DESCRIPTION AND FOR RAPID
DESIGN CAPTURE

(76) Inventors: William R. Wheeler, Southborough,
MA (US); Timothy J. Fennell,
Holliston, MA (US); Matthew J.
Adiletta, Worcester, MA (US)

Correspondence Address:
FISH & RICHARDSON, PC
4350 LA JOLLAVILLAGE DRIVE
SUTE 500
SAN DIEGO, CA 92122 (US)

(21) Appl. No.: 10/025, 193

(22) Filed: Dec. 18, 2001

Related U.S. Application Data

(60) Provisional application No. 60/315,852, filed on Aug.
29, 2001.

Publication Classification

(51) Int. Cl. ... G06F 17/50
(52) U.S. Cl. .. 716/2

(57) ABSTRACT

Representing a logic device generally includes creating a
model of a logic device, where the model represents a
collection of variants of the logic device. A representation of
the model may be used in a logic design and a particular
variant of the logic device may be Selected automatically
based on connections made to the representation. Connec
tion errors may be detected automatically and a first indi
cation may be displayed automatically when the connection
errors are detected. A Second indication that differs from the
first indication may be displayed automatically when the
connection errors are corrected.

200

Create a model of a logic
210 device where the model

represents a collection of
variants of the logic

device

220 Use a representation of
the model in a logic

design

230 Automatically select a
particular variant of the
logic device based on

| Connections made to the
representation

y

240 Select the particular
variant of the logic device
by an action that selects

pin properties of the
representation

y

250

- Automatically detect for
One Ormore Connection

eOS

Patent Application Publication

100 N

Computer

Memory

Operating
System

Application
Program

Library Module
Logic Design Program

Design Capture
Module

Mar. 6, 2003 Sheet 1 of 6

107

140

150
152

CPU
154

156
157

Communication
158 Card

Fig. 1

130

120

160

US 2003/0046642 A1

110

Patent Application Publication Mar. 6, 2003 Sheet 2 of 6 US 2003/0046642 A1

200

Create a model of a logic
210 device where the model
U represents a collection of

variants of the logic
device

220 Use a representation of
U the model in a logic

design

230 Automatically select a
particular variant of the
logic device based on

COnnections made to the
representation

w

240 Select the particular - p
variant of the logic device
by an action that selects

pin properties of the
representation

w

250

N- Automatically detect for
One or more Connection

eOS

Fig. 2

Patent Application Publication Mar. 6, 2003. Sheet 3 of 6 US 2003/0046642 A1

305 305

so-input al3:0 C, D Q output a 30- O
Input b7:0 D Q Output b7:0 J

Fig. 3A

Input a 3:0 C D Q Output a 3:0
Input b7:0 D Q Output b7:0

clk

36O

Fig. 3B

Patent Application Publication Mar. 6, 2003. Sheet 4 of 6 US 2003/0046642 A1

400
Input a 7:0
Input b7:0 410
Input cT:0 405 Input d7:0 Output 7:0
Input e7:0

select2:0

505

Patent Application Publication Mar. 6, 2003 Sheet 5 of 6 US 2003/0046642 A1

600

input a 31-0) output_b(31:0) 610
ity Num Valid 3:0 615
memory

Fig. 6

700

75 input as 1:0 output b|31:0) 70
256 entry
memory

7 15 Address. In 7:0

Fig. 7

Patent Application Publication Mar. 6, 2003. Sheet 6 of 6 US 2003/0046642 A1

800
892 Input 131:0

Output 10 806
804 - Input 231:0)

Fig. 8a

810 812 Input 131:0
-

814
-

Output 131:0) 816
-

Input 231:0

Fig. 8b

820
822 Input 131:0)

824
-

Output 131:0 826

Input 231:0 CarryOut(0. 828

Fig. 8c

US 2003/0046642 A1

EMPLOYING INTELLIGENT LOGICAL MODELS
TO ENABLE CONCISE LOGIC

REPRESENTATIONS FOR CLARITY OF DESIGN
DESCRIPTION AND FOR RAPID DESIGN

CAPTURE

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application claims priority from U.S. Provi
sional Application No. 60/315,852, filed Aug. 29, 2001, and
titled “Visual Modeling and Design Capture Environment,”
which is incorporated by reference.

TECHNICAL FIELD

0002 This invention relates to employing intelligent
logical models to enable concise logic representations for
clarity of design description and for rapid design capture.

BACKGROUND

0.003 Logic designs for computer chips typically include
combinatorial elements and State elements. Combinatorial
elements, Such as AND gates and OR gates, combine two or
more logic States to produce an output. State elements, Such
as latches and flip-flops (FFS), hold a logic State for a period
of time, usually until receipt of an external clock signal. The
combinatorial and State elements may be represented in a
logic design using a conventional Schematic or 2-dimen
Sional design. Conventional Schematic designs, however, do
not provide the flexibility desired by many logic designers.

DESCRIPTION OF DRAWINGS

0004)
0005 FIG. 2 is a flow chart of a process of representing
a logic device.
0006)
0007 FIG.3B is a block diagram of a model of a register
including a clock input.

FIG. 1 is a block diagram of a computer system.

FIG. 3A is a block diagram of a model of a register.

0008 FIG. 4 is a block diagram of a model of a multi
plexer.

0009 FIG. 5 is a block diagram of a model of an AND
gate.

0010 FIG. 6 is a block diagram of a model of a FIFO
memory.

0.011 FIG. 7 is a block diagram of a model of a memory
gate.

0012 FIG. 8a is a block diagram of a model of a binary
operator gate.

0013 FIG. 8b is a block diagram of a model of a binary
operator gate.

0.014 FIG. 8c is a block diagram of a model of a binary
operator gate.

0.015 Like reference symbols in the various drawings
indicate like elements.

DETAILED DESCRIPTION

0016 FIG. 1 illustrates an exemplary system 100 such as
a computer System that may be used in the logic design

Mar. 6, 2003

process. The system 100 may include various input/output
(I/O) devices (e.g., mouse 103, keyboard 105, and display
107) and a general purpose computer 110 having central
processor unit (CPU) 120, I/O unit 130, memory 140, and
storage 150. Storage 150 may store machine-executable
instructions, data, and various programs Such as an operating
System 152, one or more application programs 154, and one
or more logic design programs 156, all of which may be
processed by CPU 120.
0017 System 100 also may include a communications
card or device 160 (e.g., a modem and/or a network adapter)
for exchanging data with a network 170 using a communi
cations link 175 (e.g., a telephone line, a wireless network
link, a wired network link, or a cable network). Other
examples of system 100 may include a handheld device, a
WorkStation, a Server, a device, a component, other equip
ment, or Some combination of these capable of responding
to and executing instructions in a defined manner.
0018 System 100 may be arranged to operate in concert
with one or more Similar Systems to facilitate the logic
design process. The logic design proceSS may include dif
ferent tasks, Such as, for example, design, capture, docu
mentation, compilation, Simulation, and debug. The System
100 includes a logic design program 156 Stored in Storage
150 and used during the logic design process. The logic
design program 156 includes a library module 157 that
Stores models of logic devices that are used to create logic
designs. Models of logic devices may include, for example,
State elements (e.g., flip-flops and latches), combinatorial
elements (e.g., AND gates, NAND gates, OR gates, binary
operator gates, and multiplexers), tri-State devices and driv
ers, data buses (e.g., tri-state buses), memory components
(e.g., first-in/first-out (FIFO) memory), clocks, and other
elements commonly found in a logic design.
0019. A single model of a logic device may represent a
collection of variants of the logic device. For instance, a
Single model of a register gate may represent the variants of
a flip-flop. The model of the register gate may be changed
into any variants of a flip-flop, Such as, for example,
resetable, Settable, enableable, rising edge, falling edge,
input inverting, and output inverting flip-flops. By using a
Single model to represent the variants of a logic device, the
number of models required in the library module 157 is
reduced. This may allow for more efficient management and
Simplification of the number of models of logic devices used
in the library module 157.
0020. The logic design program 156 also includes a
design capture module 158 that uses a representation of a
model of a logic device from the library module 157 in a
logic design. A particular variant of the logic device may be
Selected automatically based on connections made to the
representation. Connections made to the representation may
include proximity wiring, which includes dragging a repre
Sentation of a wire near the representation of the logic
device. The logic model automatically Selects the particular
type of connection and/or variant of the logic device based
on the location of the proximity wiring in relation to the
representation of the logic model. For example, if the
proximity wiring is performed on the input Side of the
representation, then an input to the logic device is created.
The proximity wiring of an input to the logic device may
create other connections that are needed as a result of
creating the input for that particular logic device.

US 2003/0046642 A1

0021 Additionally or alternatively, the particular variant
of the logic device may be selected based on an action that
cycles through various pin properties. For instance, Selecting
a particular pin property of the representation may include
toggling the pin property among Various pin properties
and/or Selecting a particular pin property may result in
production of a menu from which the various pin properties
may be Selected.
0022. The model of the logic device may automatically
detect connection errors without requiring any additional
action (e.g., an action from a user). The automatic detection
of connection errors may occur when a representation of the
logic device is inserted in a logic design and/or when one or
more connections to the representation of the logic device
are modified. Connections to the representation of the logic
device may be modified by adding new connections, remov
ing connections, and/or changing properties of existing
connections. An indication may be automatically displayed
to indicate that one or more connection errors exist. When
the connection errors are corrected, a different indication
may be automatically displayed to indicate that the connec
tion errors have been corrected. For example, devices for
which connection errors exist may be displayed using a first
color while devices for which connection errors do not exist
are displayed using a Second color.
0023 FIG. 2 illustrates an exemplary process 200 for
representing a logic device. ProceSS 200 typically includes
creating a model of a logic device (210). The model of the
logic device represents a collection of variants of the logic
device. A representation of the model is used in a logic
design (220) and a particular variant of the logic device is
automatically Selected based on connections made to the
representation (230). For instance, the particular variant of
the logic device may be automatically Selected based on
connecting a representation of a wire to the representation of
the logic model (230). As connections are modified, the
particular variant of the logic device may be automatically
changed.

0024 Process 200 further includes selecting the particu
lar variant of the logic device by an action that Selects pin
properties of the representation (240). For instance, the
action that Selects the pin properties may include clicking on
a portion of the representation and Selecting a particular pin
property from a menu that is presented (240).
0.025 Process 200 also includes automatically detecting
one or more connection errors (250). For instance, a con
nection error may include a bit-width discrepancy between
one or more inputs and one or more outputs of the repre
sentation of the logic model (250). A connection error also
may include an unconnected pin that requires a connection.
An indication (e.g., visual, audio, or otherwise) may be
displayed to indicate that a connection error exists. For
example, the representation of the logic model may use
colors to indicate the presence of a connection error (e.g.,
red to indicate a connection error). If the connection error is
corrected, then the representation of the logic model may
change indications (e.g., by changing from one color to
another color) to indicate that the error has been corrected.
0.026 If multiple connection errors are indicated, then the
representation of the logic model may change indications
once all of the connections errors have been corrected.
Additionally or alternatively, if multiple connection errors

Mar. 6, 2003

are indicated, then the representation of the logic model may
change indications to indicate that one or more of the
correction errors have been corrected, but that at least one
correction error Still exists.

0027 Process 200 may further include generating a C++
model and/or a Verilog model of the logic design. The
representation of a logic model used in the logic design may
be represented as a C++ model and/or a Verilog model.
0028 Illustrated below are exemplary implementations
of various models of logic devices capable of being used as
part of the library module 157 and the design capture module
158 of FIG. 1 and in process 200 of FIG. 2, as described
above.

0029 FIG. 3A illustrates an exemplary block diagram of
a model of a register gate 300. In this example, the register
gate 300 includes a first D/O input/output pair 305 and a
second D/Q input/output pair 310. The register gate 300 may
represent a flip-flop (e.g., an edge-triggered State element) or
a latch (e.g., a level-sensitive state element), and all of the
variants of flip-flops and latches. The variants of the register
gate 300 may be automatically selected based on connec
tions made to the register gate 300. Additionally or alterna
tively, variants of the register gate 300 may be selected by
an action applied to the pin properties of the representation.
0030. When the register gate represents a flip-flop, the
variants may include a resetable, Settable, enableable, rising
edge, falling edge, input inverting, and output inverting
flip-flop. The single model of the register gate 300 may be
changed into any of these variants automatically based on
connections made to the representation of the logic model or
by an action Such as mouse clicking on the representation
and/or on the appropriate pin on the representation and
cycling through a menu of the variants. A default represen
tation of the register gate 300 may include a predetermined
number of pairs of D/O input/output pins.
0031) Each D/Q input/output pair 305,310 may have an
independent bit width. Additional inputs and outputs may be
added to the register gate and the register gate automatically
checks for and detects connection errors, Such as, for
example, comparing the input bit width against the output bit
width and detecting whether the number of inputs match the
number of outputs. An input/output pair may be automati
cally created when a wire connection is made to either the
input or the outputside of the register gate. The register gate
may be sized (e.g., by Stretching from a default size) to
accommodate more input/output pairs. For instance, if a new
input is added, the model of the register gate may add a
corresponding output or may indicate that a corresponding
output is needed.
0032. In the case of register gate 300, the inputs and
outputs may be inverted. The register gate 300 may use a
default clock associated with the logic design or associated
with a particular portion of the logic design. A clock that
differs from the default clock may be added to the register
gate by proximity wiring to the clock input on the repre
sentation of the register gate. FIG. 3B illustrates a register
gate 350 using a non-default clock 360. In one implemen
tation, a register gate to which a clock input is not explicitly
connected may be implicitly connected as a positive edge
flip-flop to the net associated with the default clock input
port.

US 2003/0046642 A1

0033. Various pin properties of the register gate may be
Selected and changed. For example, the assertion/edge value
may be modified by mouse clicking on the clock pin and
cycling thru a menu of assertion choices without having to
delete the representation of the register model, go back to the
library module, and find the model of the register gate that
includes all of the Specific properties that are required for a
particular logic design. When the register gate represents a
flip-flop, the flip-flop may be enabled by proximity wiring to
the enable portion of the flip-flop. An indication of the
enable may be displayed on the representation. Additionally,
the assertion level for the enable may be changed by
Selecting the enable and Selecting the desired assertion level
from a menu of assertion level choices.

0034) More specifically, for example, proximity wiring to
the central three positions on either of the Sides perpendicu
lar to the data input and output Sides may create a control
input. The clock control pin property may be edited using
pin implementation properties to Select the pin as either edge
or level Sensitive to create a flip-flop or latch respectively.
An indication may be displayed to distinguish graphically
between a flip-flop and a latch. In one implementation, for
instance, an flip-flop may be designated by displaying a “V”
near the clock pin to indicate an edge-triggered device.
0.035 FIG. 4 illustrates a block diagram of an exemplary
model of a multiplexer 400. In this example, the multiplexer
400 includes a set of inputs 405, an output 410, and select
inputs 415. Any input 405 may be inverted by toggling the
polarity of the input pin. In this example, Input b 405 and
Input e 405 each include a bubble to indicate that the inputs
are inverted. In one implementation, the model of the
multiplexer 400 may be used to represent a collection of
variants of multiplexer devices. For instance, the model of
the multiplexer may represent a multiplexer or a priority
gate encode. The model of the multiplexer 400 may be
Stretched to accommodate additional connections. Addi
tional inputs may be made to the multiplexer by proximity
wiring to the data input side 405 of the multiplexer.
0.036 The pin property of each input 405 may be used to
Specify the Select condition for the corresponding data input.
The Select condition may be specified as a Verilog constant.
0037. The model of the multiplexer automatically checks
for connection errors. For example, the model automatically
checks to ensure that the data inputs and the data output have
the same bit width. The multiplexer model also automati
cally checks for connection errors between the width of the
select input 415 and the number of data inputs 405. The
multiplexer model also automatically checks for errors when
more than one input has the same Select value associated
with it.

0.038. The multiplexer model may be selected to enable
or disable different Select directives. In one implementation,
for instance, a “full case' Synthesis directive may be
enabled, in which case a logic designer is not required to
designate a data input for each Select input. Any non
designated Select inputs may be treated as defaults or “don’t
cares.” Thus, in the case of a three-bit Select input, it is not
necessary to have all eight inputs. If the full case Synthesis
directive is not enabled, then the logic designer must Specify
the terms that cover the entire Boolean Space Specified by the
width of the select input. In the case of a three-bit select
input, then it would be necessary to specify terms that cover
eight inputs.

Mar. 6, 2003

0039. Additionally or alternatively, for example, a “par
allel case' Synthesis directive may be enabled, in which case
no overlap may occur in Select inputs.
0040 FIG. 5 illustrates a block diagram of an exemplary
AND gate 500. In this example, the AND gate 500 includes
a set of inputs 505 and an output 510. Variants of the AND
gate 500 may be automatically selected based on connec
tions to the AND gate. For instance, additional inputs may
be added by proximity wiring to the input side 505 of the
AND gate. Any input pin or output pin may be inverted by
toggling the polarity of the pin. The logic model of the AND
gate 500 automatically checks for connection errors. For
instance, a connection error may occur when an input bit
width does not match the output bit width. An indication
may be displayed to indicate that a connection error exists.
When a connection error is resolved, the indication may
change to indicate that the connection error has been cor
rected.

0041 FIG. 6 illustrates a block diagram of an exemplary
model of a FIFO memory 600. In this example, the FIFO
memory 600 includes an input 605, an output 610, and a set
of pins representing a number of valid entries 615. As with
the other logic models described, additional inputs and
outputs may be added to the FIFO memory 600 by proximity
wiring. The model of the FIFO memory 600 also automati
cally detects connection errors and displays an indication
that a connection error exists. In the case of a FIFO memory,
a connection error may indicate when the input bit width 605
does not match the output bit width 610.
0042. In this example, the logic model of the FIFO
memory 600 also includes a set of pins for the number of
valid entries 615. The FIFO memory model automatically
adjusts the bit width of this pin based on the size of the FIFO
memory. In this implementation, the FIFO memory 600 is an
eight-entry FIFO meaning that the number of valid pins
needs to have a bit width of four bits to represent the eight
entries. If the number of FIFO entries is modified, then the
logic model of the FIFO memory automatically determines
if the bit width of the number of valid entries pin needs to
be changed and automatically changes the bit width if
neceSSary.

0043 FIG. 7 illustrates a block diagram of an exemplary
model of a memory gate 700. In this example, the memory
gate 700 represents a 256-entry memory that includes a
32-bit data input 705, a 32-bit data output 710, and an
eight-bit address line 715. The model of the memory gate
700 automatically sets the address to correspond to the
number of entries for the memory. In this case, a 256-entry
memory requires an eight-bit address line 715, so the
memory gate model automatically Selects an eight-bit
address line.

0044) Numerous variants of a memory gate are possible.
For example, read and write ports for a memory gate may be
dynamically configurable. The read ports and the write ports
may be included with or without enables. The model of the
memory gate automatically determines the appropriate pins
to display on the representation of the memory gate based on
the port configuration.

0045 Binary operator gates typically have different pin
widths depending on the binary operator type. The logic
model of a binary operator gate automatically sizes the

US 2003/0046642 A1

output based on the binary operation being performed by the
gate. The logic model of the binary operator gate automati
cally checks for connection errors, Such as, for example, bit
width errors between inputs and outputs.
0.046 FIG. 8a illustrates an exemplary model of a binary
operator gate 800 that includes a first input 802, a second
input 804, and an output 806. In this example, the binary
operator gate 800 compares two 32-bit inputs 802, 804 to
produce a single-bit output 806.

0047 FIG. 8b illustrates an exemplary model of a binary
operator gate 810 that includes a first input 812, a second
input 814, and an output 816. In this example, the binary
operator gate 810 multiplies two 32-bit inputs 812, 814 to
produce a 32-bit output 816.
0.048 FIG. 8c illustrates an exemplary model of a binary
operator gate 820 that includes a first input 822, a second
input 824, an output 826, and a carry out bit 828. In this
example, the binary operator gate 820 adds two 32-bit
quantity inputs 822, 824 to produce a 32-bit output 826 and
a carry out bit 828.
0049. The described systems, methods, and techniques
may be implemented in digital electronic circuitry, computer
hardware, firmware, Software, or in combinations of these
elements. Apparatus embodying these techniques may
include appropriate input and output devices, a computer
processor, and a computer program product tangibly embod
ied in a machine-readable Storage device for execution by a
programmable processor.
0050 A process embodying these techniques may be
performed by a programmable processor executing a pro
gram of instructions to perform desired functions by oper
ating on input data and generating appropriate output data.
The techniques may be implemented in one or more com
puter programs that are executable on a programmable
System including at least one programmable processor
coupled to receive data and instructions from, and to trans
mit data and instructions to, a data Storage System, at least
one input device, and at least one output device. Each
computer program may be implemented in a high-level
procedural or object-oriented programming language, or in
assembly or machine language if desired; and in any case,
the language may be a compiled or interpreted language.
Suitable processors include, by way of example, both gen
eral and Special purpose microprocessors. Generally, a pro
ceSSor will receive instructions and data from a read-only
memory and/or a random access memory. Storage devices
Suitable for tangibly embodying computer program instruc
tions and data include all forms of non-volatile memory,
including by way of example Semiconductor memory
devices, Such as Erasable Programmable Read-only
Memory (EPROM), Electrically Erasable Programmable
Read-Only Memory (EEPROM), and flash memory devices;
magnetic diskS Such as internal hard disks and removable
disks, magneto-optical disks, and Compact Disc Read-Only
Memory (CD-ROM). Any of the foregoing may be supple
mented by, or incorporated in, Specially-designed ASICS
(application-specific integrated circuits).
0051. It will be understood that various modifications
may be made. For example, advantageous results still could
be achieved if Steps of the disclosed techniques were per
formed in a different order and/or if components in the

Mar. 6, 2003

disclosed Systems were combined in a different manner
and/or replaced or Supplemented by other components.
Accordingly, other implementations are within the Scope of
the following claims.

What is claimed is:
1. A method of representing a logic device, the method

comprising:
creating a model of a logic device, the model representing

a collection of variants of the logic device,
using a representation of the model in a logic design; and
automatically Selecting a particular variant of the logic

device based on connections made to the representa
tion.

2. The method of claim 1 further comprising Selecting the
particular variant of the logic device based on an action that
cycles through pin properties of the representation.

3. The method of claim 1 further comprising automati
cally detecting one or more connection errors.

4. The method of claim 3 wherein automatically detecting
one or more connection errors includes automatically detect
ing one or more bit width errors.

5. The method of claim 3 wherein automatically detecting
one or more connection errors includes automatically detect
ing one or more unconnected pin errors.

6. The method of claim 3 further comprising automati
cally displaying a first indication of the one or more con
nection errors when the one or more connection errors are
detected.

7. The method of claim 6 further comprising:
correcting the one or more connection errors, and
automatically displaying a Second indication that differs

from the first indication to indicate when the one or
more connection errors are corrected.

8. The method of claim 1 further comprising:
modifying a connection made to the representation; and
automatically detecting connection errors.
9. The method of claim 8 further comprising automati

cally displaying an indication when connection errors are
detected.

10. The method of claim 1 further comprising generating
a C++ model of the logic design.

11. The method of claim 1 further comprising generating
a Verilog model of the logic design.

12. The method of claim 1 wherein:

creating the model of the logic device includes creating
the model of a State logic device, and

automatically Selecting the particular variant of the logic
device includes automatically Selecting the particular
Variant of the State logic device based on connections
made to the representation.

13. The method of claim 12 wherein:

creating the model of the State logic device includes
creating a model of a flip-flop, and

automatically Selecting the particular variant of the State
logic device includes automatically Selecting the par
ticular variant of the flip-flop based on connections
made to the representation.

US 2003/0046642 A1

14. The method of claim 12 wherein:

creating the model of the State logic device includes
creating a model of a latch, and

automatically Selecting the particular variant of the State
logic device includes automatically Selecting the par
ticular variant of the latch based on connections made
to the representation.

15. The method of claim 1 wherein:

creating the model of the logic device includes creating a
model of a combinatorial logic device, and

automatically Selecting the particular variant of the logic
device includes automatically Selecting the particular
variant of the combinatorial logic device based on
connections made to the representation.

16. The method of claim 15 wherein:

creating the model of the combinatorial logic device
includes creating a model of a multiplexer, and

automatically Selecting the particular variant of the com
binatorial logic device includes automatically Selecting
the particular variant of the multiplexer based on con
nections made to the representation.

17. The method of claim 15 wherein:

creating the model of the combinatorial logic device
includes creating a model of an AND gate, and

automatically Selecting the particular variant of the com
binatorial logic device includes automatically Selecting
the particular variant of the AND gate based on con
nections made to the representation.

18. The method of claim 15 wherein:

creating the model of the combinatorial logic device
includes creating a model of a binary operator gate, and

automatically Selecting the particular variant of the com
binatorial logic device includes automatically Selecting
the particular variant of the binary operator gate based
on connections made to the representation.

19. The method of claim 1 wherein:

creating the model of the logic device includes creating
the model of a FIFO memory, and

automatically Selecting the particular variant of the logic
device includes automatically Selecting the particular
variant of the FIFO memory based on connections
made to the representation.

20. A machine-accessible medium, which when accessed
results in a machine performing operations comprising:

creating a model of a logic device, the model representing
a collection of variants of the logic device,

using a representation of the model in a logic design; and
automatically Selecting a particular variant of the logic

device based on connections made to the representa
tion.

21. The machine-accessible medium of claim 20 further
comprising Selecting the particular variant of the logic
device based on an action that cycles through pin properties
of the representation.

22. The machine-accessible medium of claim 20 further
comprising automatically detecting one or more connection
COS.

Mar. 6, 2003

23. The machine-accessible medium of claim 22 wherein
automatically detecting one or more connection errors
includes automatically detecting one or more bit width
COS.

24. The machine-accessible medium of claim 22 wherein
automatically detecting one or more connection errors
includes automatically detecting one or more unconnected
pin errors.

25. The machine-accessible medium of claim 22 further
comprising automatically displaying a first indication of the
one or more connection errors when the one or more
connection errors are detected.

26. The machine-accessible medium of claim 25 further
comprising:

correcting the one or more connection errors, and

automatically displaying a Second indication that differs
from the first indication to indicate when the one or
emore connection errors are corrected.

27. The machine-accessible medium of claim 20 further
comprising:

modifying a connection made to the representation; and

automatically detecting connection errors.
28. The machine-accessible medium of claim 27 further

comprising automatically displaying an indication when
connection errors are detected.

29. A System for representing a logic device comprising:

a library module that is structured and arranged to include
a model of a logic device, the model representing a
collection of variants of the logic device; and

a design capture module that is structured and arranged to
use a representation of the model in a logic design and
to Select automatically a particular variant of the logic
device based on connections made to the representa
tion.

30. The system of claim 29 wherein the design capture
module is structured and arranged to Select the particular
variant of the logic device based on an action that cycles
through pin properties of the representation.

31. The system of claim 29 wherein the design capture
module is structured and arranged to automatically detect
one or more connection errors.

32. The system of claim 31 wherein the design capture
module is structured and arranged to display automatically
a first indication of the one or more connection errors when
the one or more connection errors are detected.

33. The system of claim 32 wherein the design capture
module is structured and arranged to display automatically
a second indication that differs from the first indication to
indicate when the connection errors are corrected.

34. The system of claim 29 wherein the design capture
module is structured and arranged to modify a connection
made to the representation and to detect automatically for
connection errors.

35. The system of claim 34 wherein the design capture
module is structured and arranged to display automatically
an indication when connection errors are detected.

