a9 United States

US 20130054902A1

a2y Patent Application Publication (o) Pub. No.: US 2013/0054902 A1

Biswas et al.

43) Pub. Date: Feb. 28, 2013

(54) ACCELERATING BLOCKING MEMORY

OPERATIONS

(76)

(21) Appl. No.: 13/221,461

(22) Filed: Aug. 30,2011

Publication Classification

Int. Cl1.
GO6F 12/00

(51)
(2006.01)

Inventors: Sukalpa Biswas, Fremont, CA (US);
Hao Chen, San Ramon, CA (US)

(52) US.CL ..o 711/154; 711/E12.001

(57) ABSTRACT

A memory controller, system, and method for accelerating
blocking memory operations. A memory controller reorders
memory operations so as to maximize efficient use of the
memory device bus. When data for a newer memory opera-
tion is retrieved from memory and ready to be returned to a
source device, the newer memory operation can be held up
waiting for an older memory operation to be completed. In
response, the memory controller forwards a push request for
the older memory operation to a memory channel unit. The
memory channel unit then sets a push bit of the older memory
operation, which expedites the scheduling of the older
memory operation.

Memory 12A

Memory 12B

| |
| |
| |
: Memory PHY 42A Memory PHY 42B :
[ |
| i 4 |
| |
| A |
: Memory Controller 40 :
[ |
| |
| GO 44A | | Gl 4B | | CPU 44C | | NRT 44D | | RT 44E | !
| f |
! o~ l/face 1 S N !
| /, \\\ \\\\ //// \\ |
: e e ="T/face 2 \ :
| N Tfface2 |
| |
| v v 28 .
| NRT Peripherals 20 |
' P P !
|
! GO0 38 Gl 38B 16 16 |
! CPU 14 v |

RT Peripherals 22 [
: Graphics Unit 36 # CHPHETAs 22 |
| |
| i |
| Bridge/DMA Port Arbiter 28 |
I 30 |
| - |
! - Image Display Pipe(s !
: Peripheral ¢ Processor 24 P 2_(, pes) :
I o Clntetrfalclze Peripheral :
| “ontroller
' 34 2 A 4 :
| 34

to/from to/from
Camera(s) Display(s)



Patent Application Publication = Feb. 28,2013 Sheet 1 0of 10 US 2013/0054902 A1
Memory 12A Memory 12B

|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
,_.>—4|
|o(‘)|

Memory PHY 42 Mecemory PHY 42B
Memory Controller 40
GO 44A CPU 44C NRT44D | | RT44n |

T I/fdw 2 N\

- Tjface 2

~ L face I
v

L218
P

3

NRT Peripherals 20
G0 38 G138B 1P |
CPU 14 A 4
RT Peripherals 22
Graphics Unit 36 e CHpHera’s 22
iter ?
Bridge/DMA Port Arbiter 28
| 30
- Image Display Pipe(s)
Peripheral # Processor 24 26
éntetrfal(lze Peripheral
ontroller
32
to/from to/tfrom
Camera(s) Display(s)



Patent Application Publication = Feb. 28,2013 Sheet 2 of 10 US 2013/0054902 A1

RT QoS NRT QoS
Real Time Green (RTG) Best Effort (BEF)
Increasing Priority
Real Time Yellow (RTY) Low Latency (LLT)
Real Time Red (RTR) f
52 ~_ y

—

50 \V/A



Patent Application Publication = Feb. 28,2013 Sheet 3 of 10 US 2013/0054902 A1

Rd D T Wr Rd D T Wr

Y ¢ A 4 A 4 ‘ A 4

A A

I e e Y |
| — 58A L 5SB — 58C — 58D Mcmory Controller 40
[ v/ / v/ / [
|

| g | | o | | v | [ wr | | rT | AUS4| |
| A |
| A Al _| 4 A A |
I | : : ! \— 58E I
! | = s | |
[ i | ! : :
| | ! ) ! |
[ i D ; : ! |
] | R I e e ) e P ORI |
[ wrl : |
I : I
: Rd1 ; :
: Wr0 ; :
| | BW |
] RdO H Sharing |
! T YYY VYVY Regs 62 YyVY !
! MCIU - ChO 60A T MCIU - Chl 60B !
| < P |
| |
| |
| |
| |
| |
| |
| 1
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|

PSQ 64A PSQ 648
MIF 66A MIF 66B
A
MCUO S56A 56B MCU1
________________________________________________________ |
v v
to/from Memory PHY 42A to/from Memory PHY 42B



Patent Application Publication = Feb. 28,2013 Sheet 4 of 10 US 2013/0054902 A1

A
. Write
AR Read Data AW Write Respons Data

e O [
[ [ < [ Q.
(| 10A 708 70C :
| Read Response Write Response 1
: Gen 80 Gen 82 :
! I
! I
| v t 4 ¢ !
| e |
| Read Write 0
1| spawn —p| ROTT76 |la—p| . B Spawn  —| WOTT 78 | " iite Data | |
| Buffer 84 Fwd 88 [
| Gen 72 Gen74 |
! I
! |
! I
! I
|

| Port Interface Unit :
| 58C I
[ R R A 1

RdO Rd1 Wr0  Wrl DO D1




Patent Application Publication = Feb. 28,2013 Sheet 5 0of 10 US 2013/0054902 A1

v v v v
\ QoS Arbiter 94A /4* \ QoS Arbiter 94B /4—

MCIU - ChO 60A

Rd0, PO Rd0, P4 Wr0, PO Wr0, P4
e Hi e i) ety i
|
RAQO 90A WrQO 92A |
|
|
. |
v \ 4 !
FID | QoS | P| Oth RAQ4 FID | QoS [P | Oth wrQ4 | 1
|
FID | QoS | P| Oth 90B FID | QoS [P | Oth 92B |
|
|
|
|
|
|
|
|

Rd Wr
\4 v
from BW
to MCUO 56A Sharing to MCUO 56A
Regs 62



Patent Application Publication = Feb. 28,2013 Sheet 6 of 10 US 2013/0054902 A1

Rd Wr
! PSQ 64,
Transaction Queues 112
Enqueue Control Unit >

110 Read Affinity Queue 118A
: Read Affinity
Queue 1183

FID | QoS | p | Oth

Scheduler 114 l—

Write Affinity
Queue 120A

Write Affinity
Queue 1208

FID | P| Oth

to MIT 66



Patent Application Publication = Feb. 28,2013 Sheet 7 0of 10 US 2013/0054902 A1

I Memory Controller 40 :
! |
' |
: AU 54 |
' |
I
: Port Interface Unit 58C :
|
I
' |
' |
' |
I
| ROTT 76 |—p] Readxlzuffer :
I o2 |
' |
I
' |
' |
' |
' [
' |
I
| :
I ~— 130A — 130B |
[ |/ / I
' |
' |
' |
! |
: \ 4 A 4 I
' |
' |
l PSQ 64A PSQ 64B |
' |
I
| :
' |
' |
' |
' |
' |
' |



Patent Application Publication = Feb. 28,2013 Sheet 8 0of 10 US 2013/0054902 A1

Read Affinity
Queue 1188




Patent Application Publication  Feb. 28,2013 Sheet 9 of 10

( Start — Accelerating Mem Ops )

!

140 = | Receive a First Memory Operation From

a Source

v

142 ~ | Receive a Second Memory Operation
From the Source
144 —

| Dispatch the First and Second Memory
Operations to a Memory Channel Unit

v

146 ] Receive Second Memory Operation
Read Data Retrieved From Memory
148 N Store the Data in a Read Buffer
150 —,

US 2013/0054902 A1

C

End — Accelerating Mem Ops

)

*

Return the Data for the First and Second
Memory Operations to the Source

158

First Mem Op Outstanding?

Yecs

!

152 — | Transmit a Push Request for the First
) Memory Opcration to a Mcmory
Channel Unit

S

Reecive and Store the First Memory
Operation Data in the Read Buffer

156

*

Receive the Push Request and

Accelerate The First Memory Operation [/

at the Memory Channel Unit

— 154

*




Patent Application Publication = Feb. 28,2013 Sheet 10 of 10 US 2013/0054902 A1

Power Supply 176

Integrated Circuit 10  [——— Externai ;\/I emery Pen{)?:rals
o A



US 2013/0054902 A1

ACCELERATING BLOCKING MEMORY

OPERATIONS
BACKGROUND
[0001] 1. Field of the Invention
[0002] This invention is related computing systems, and

more particularly to the field of memory controllers.

[0003] 2. Description of the Related Art

[0004] Digital systems generally include a memory system
formed from semiconductor memory devices such as static
random access memory (SRAM), dynamic random access
memory (DRAM), synchronous DRAM (SDRAM), double
data rate (DDR, DDR2, DDR3, etc.) SDRAM including low
power versions (LPDDR, LPDDR2, etc.) SDRAM, etc. With
many technologies, the memory system is volatile meaning it
generally retains data only when powered on but not when
powered off. While such volatility may in some cases be seen
as a disadvantage, such technologies often provide low
latency access as compared to nonvolatile memories such as
Flash memory, magnetic storage devices such as disk drives,
or optical storage devices such a compact disk (CD), digital
video disk (DVD), and BluRay drives.

[0005] The memory devices forming the memory system
generally have a low level interface to read and write the
memory according to memory device-specific protocols. The
sources that generate transactions typically communicate via
a higher level interface such as a bus, a point-to-point packet
interface, etc. The sources can be processors, peripheral
devices such as input/output (I/O) devices, audio and video
devices, etc. Generally, the transactions include read memory
operations to transfer data from the memory to the device and
write memory operations to transfer data from the source to
the memory. The term “transaction” may be used inter-
changeably with “memory operation” throughout this disclo-
sure. Additionally, “read memory operations” may be more
succinctly referred to herein as “read operations” or “reads”,
and similarly “write memory operations” may be more suc-
cinctly referred to herein as “write operations™ or “writes”.
[0006] Accordingly, a memory controller is typically
included to receive the memory operations from the higher
level interface and to control the memory devices to perform
the received operations. The memory controller generally
also includes queues to capture the memory operations, and
can include circuitry to improve performance. For example,
some memory controllers reorder memory operations in
order to achieve high efficiency on the interfaces to the
memory devices. However, some sources require that
memory operations are completed in the order in which they
were transmitted. As a result, it is possible for read data to be
buffered in the memory controller, ready to be returned to a
source, but waiting on read data from an earlier transaction
that has been delayed due to a reordering of memory opera-
tions.

SUMMARY

[0007] Inoneembodiment, a memory controller is contem-
plated which may include an agent interface unit coupled to
receive memory operations from multiple sources. The
memory controller may also include one or more memory
channel units coupled to one or more memory devices. To
improve memory efficiency, the order of memory operations
may be rearranged by the memory controller. In some cases,
when the memory operations are reordered as they approach

Feb. 28,2013

the memory device from the source, the data returned as a
result ofread operations may be out of order compared to how
the memory operations were originally transmitted by the
source. For some sources and bus protocols, the order in
which read data is returned should match the order in which
the operations were requested.

[0008] As a result, in certain situations, older memory
operations may need to be completed before more recent
memory operations can complete to the source, even though
the more recent memory operations may be of higher priority
or may have already obtained the read data from memory.
Therefore, in various embodiments, older embodiments may
be accelerated. In some embodiments, a push request for an
older memory operation may be transmitted from an agent
interface unit to a memory channel unit. In response to receiv-
ing the push request, the memory channel unit may expedite
the scheduling of the older memory operation. Subsequently,
the read data from the older memory operation may be
returned to the source, which will allow the stalled more
recent memory operations to complete to the source.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The following detailed description makes reference
to the accompanying drawings, which are now briefly
described.

[0010] FIG. 1 is a block diagram of one embodiment of a
system including a memory controller.

[0011] FIG. 2 is a block diagram of one embodiment of
QoS levels that may be defined for RT and NRT classes of
traffic.

[0012] FIG. 3 is a block diagram of one embodiment of the
memory controller shown in FIG. 1.

[0013] FIG. 4 is a block diagram of one embodiment of a
port interface unit that may be included in one embodiment of
an agent interface unit shown in FIG. 3.

[0014] FIG. 5 is a block diagram of one embodiment of a
memory channel interface unit that may be included in one
embodiment of an agent interface unit shown in FIG. 3.
[0015] FIG. 6 is a block diagram of one embodiment of a
pre-sorting queue (PSQ) illustrated in a memory channel unit
in FIG. 3.

[0016] FIG. 7 is a block diagram of one embodiment of a
portion of a memory controller.

[0017] FIG. 8 is a block diagram of one embodiment of a
portion of the PSQ shown in FIG. 6.

[0018] FIG.9 is aflowchart illustrating one embodiment of
a method for accelerating memory operations.

[0019] FIG. 10 is a block diagram of one embodiment of a
system including an integrated circuit illustrated in FIG. 1.
[0020] While the invention is susceptible to various modi-
fications and alternative forms, specific embodiments thereof
are shown by way of example in the drawings and will herein
be described in detail. It should be understood, however, that
the drawings and detailed description thereto are not intended
to limit the invention to the particular form disclosed, but on
the contrary, the intention is to cover all modifications,
equivalents and alternatives falling within the spirit and scope
of the present invention as defined by the appended claims.
The headings used herein are for organizational purposes
only and are not meant to be used to limit the scope of the
description. As used throughout this application, the word
“may” is used in a permissive sense (i.e., meaning having the
potential to), rather than the mandatory sense (i.e., meaning



US 2013/0054902 A1

must). Similarly, the words “include”, “including”, and
“includes” mean including, but not limited to.

[0021] This specification includes references to “one
embodiment”. The appearance of the phrase “in one embodi-
ment” in different contexts does not necessarily refer to the
same embodiment. Particular features, structures, or charac-
teristics may be combined in any suitable manner consistent
with this disclosure.

[0022] Terminology. The following paragraphs provide
definitions and/or context for terms found in this disclosure
(including the appended claims):

[0023] “Comprising.” This term is open-ended. As used in
the appended claims, this term does not foreclose additional
structure or steps. Consider a claim that recites: “A system
comprising a processor unit . . . ” Such a claim does not
foreclose the system from including additional components
(e.g., a memory device, input device, etc.).

[0024] “Configured To.” Various units, circuits, or other
components may be described or claimed as “configured to”
perform a task or tasks. In such contexts, “configured to” is
used to connote structure by indicating that the units/circuits/
components include structure (e.g., circuitry) that performs
the task or tasks during operation. As such, the unit/circuit/
component can be said to be configured to perform the task
even when the specified unit/circuit/component is not cur-
rently operational (e.g., is not on). The units/circuits/compo-
nents used with the “configured to” language include hard-
ware—for example, circuits, memory storing program
instructions executable to implement the operation, etc.
Reciting that a unit/circuit/component is “configured to” per-
form one or more tasks is expressly intended not to invoke 35
U.S.C. §112, sixth paragraph, for that unit/circuit/compo-
nent. Additionally, “configured to” can include generic struc-
ture (e.g., generic circuitry) that is manipulated by software
and/or firmware (e.g., an FPGA or a general-purpose proces-
sor executing software) to operate in manner that is capable of
performing the task(s) at issue. “Configured to” may also
include adapting a manufacturing process (e.g., a semicon-
ductor fabrication facility) to fabricate devices (e.g., inte-
grated circuits) that are adapted to implement or perform one
or more tasks.

[0025] “First,” “Second,” etc. As used herein, these terms
are used as labels for nouns that they precede, and do not
imply any type of ordering (e.g., spatial, temporal, logical,
etc.). For example, in a memory controller having five ports,
the terms “first” and “second” ports can be used to refer to any
two of the five ports.

[0026] “Based On.” As used herein, this term is used to
describe one or more factors that affect a determination. This
term does not foreclose additional factors that may affect a
determination. That is, a determination may be solely based
on those factors or based, at least in part, on those factors.
Consider the phrase “determine A based on B.” While B may
be a factor that affects the determination of A, such a phrase
does not foreclose the determination of A from also being
based on C. In other instances, A may be determined based
solely on B.

DETAILED DESCRIPTION OF EMBODIMENTS

[0027] Turning now to FIG. 1, a block diagram of one
embodiment of a system 5 is shown. In the embodiment of
FIG. 1, the system 5 includes an integrated circuit (IC) 10
coupled to external memories 12A-12B. In the illustrated
embodiment, the integrated circuit 10 includes a central pro-

Feb. 28,2013

cessor unit (CPU) block 14 which includes one or more
processors 16 and a level 2 (1.2) cache 18. Other embodiments
may not include [.2 cache 18 and/or may include additional
levels of cache. Additionally, embodiments that include more
than two processors 16 and that include only one processor 16
are contemplated. The integrated circuit 10 further includes a
set of one or more non-real time (NRT) peripherals 20 and a
set of one or more real time (RT) peripherals 22. In the
illustrated embodiment, the RT peripherals include an image
processor 24, one or more display pipes 26, and a port arbiter
28. Other embodiments may include more or fewer image
processors 24, more or fewer display pipes 26, and/or any
additional real time peripherals as desired. The image proces-
sor 24 may be coupled to receive image data from one or more
cameras in the system 5. Similarly, the display pipes 26 may
be coupled to one or more display controllers (not shown)
which control one or more displays in the system. In the
illustrated embodiment, the CPU block 14 is coupled to a
bridge/direct memory access (DMA) controller 30, which
may be coupled to one or more peripheral devices 32 and/or
one or more peripheral interface controllers 34. The number
of peripheral devices 32 and peripheral interface controllers
34 may vary from zero to any desired number in various
embodiments. The system 5 illustrated in FIG. 1 further
includes a graphics unit 36 comprising one or more graphics
controllers such as GO 38A and G1 38B. The number of
graphics controllers per graphics unit and the number of
graphics units may vary in other embodiments. As illustrated
in FIG. 1, the system 5 includes a memory controller 40
coupled to one or more memory physical interface circuits
(PHYs) 42A-42B. The memory PHY's 42A-42B are config-
ured to communicate on pins of the integrated circuit 10 to the
memories 12A-12B. The memory controller 40 also includes
a set of ports 44 A-44E. The ports 44A-44B are coupled to the
graphics controllers 38 A-38B, respectively via a first type of
interface (I/face 1). The CPU block 14 is coupled to the port
44C viaa second type of interface (I/face 2). The NRT periph-
erals 20 and the RT peripherals 22 are coupled to the ports
44D-44FE, respectively, via the second type of interface. The
number of ports included in a memory controller 40 may be
varied in other embodiments, as may the number of memory
controllers. The number of memory PHY's 42A-42B and cor-
responding memories 12A-12B may be one or more than two
in other embodiments.

[0028] In one embodiment, each port 44A-44F may be
associated with a particular type of traffic. For example, in
one embodiment, the traffic types may include RT traffic,
NRT traffic, and graphics traffic. Other embodiments may
include other traffic types in addition to, instead of, or in
addition to a subset of the above traffic types. Each type of
traffic may be characterized differently (e.g., in terms of
requirements and behavior), and the memory controller may
handle the traffic types differently to provide higher perfor-
mance based on the characteristics. For example, RT traffic
requires servicing of each memory operation within a specific
amount of time. If the latency of the operation exceeds the
specific amount of time, erroneous operation may occur in the
RT peripheral. For example, image data may be lost in the
image processor 24 or the displayed image on the displays to
which the display pipes 26 are coupled may visually distort.
RT traffic may be characterized as isochronous, for example.
On the other hand, graphics traffic may be relatively high
bandwidth, but is not latency-sensitive. NRT traffic, such as
from the processors 16, is more latency-sensitive for perfor-



US 2013/0054902 A1

mance reasons but survives higher latency. That is, NRT
traffic may generally be serviced at any latency without caus-
ing erroneous operation in the devices generating the NRT
traffic. Similarly, the less latency-sensitive but higher band-
width graphics traffic may be generally serviced at any
latency. Other NRT traffic may include audio traffic, which is
relatively low bandwidth and generally may be serviced with
reasonable latency. Most peripheral traffic may also be NRT
(e.g., traffic to storage devices such as magnetic, optical, or
solid state storage).

[0029] By providing ports 44 A-44E associated with difter-
ent traffic types, the memory controller 40 may be exposed to
the different traffic types in parallel, and may thus be capable
of'making better decisions about which memory operations to
service prior to others based on traffic type. In some embodi-
ments, each port may be dedicated exclusively to either RT or
NRT traffic. In other embodiments, the ports may be associ-
ated with the particular traffic type, but other traffic types may
be supported on the port. In an embodiment, graphics traffic
may be considered to be NRT traffic, but having visibility to
the graphics traffic separate from other NRT traffic may be
useful for bandwidth balancing among the other NRT sources
and the RT source. Similarly, having the processor traffic
separate from the other NRT sources may be useful in band-
width balancing. In the illustrated embodiment, the RT port
44E may be associated with RT traffic and the remaining ports
44 A-44D may be associated with NRT traffic.

[0030] Generally, a port may be a communication point on
the memory controller 40 to communicate with one or more
sources. In some cases, the port may be dedicated to a source
(e.g., the ports 44A-44B may be dedicated to the graphics
controllers 38A-38B, respectively). In other cases, the port
may be shared among multiple sources (e.g., the processors
16 may share the CPU port 44C, the NRT peripherals 20 may
share the NRT port 44D, and the RT peripherals such as the
display pipes 26 and the image processor 24 may share the RT
port 44E. A port may be coupled to a single interface to
communicate with the one or more sources. Thus, when
sources share an interface, there may be an arbiter on the
sources’ side of the interface to select between the sources.
For example, the [.2 cache 18 may serve as an arbiter for the
CPU port 44C to the memory controller 40. The port arbiter
28 may serve as an arbiter for the RT port 44E, and a similar
port arbiter (not shown) may be an arbiter for the NRT port
44D. The single source on a port or the combination of
sources on a port may be referred to as an agent.

[0031] Each port 44A-44EF is coupled to an interface to
communicate with its respective agent. The interface may be
any type of communication medium (e.g., a bus, a point-to-
point interconnect, etc.) and may implement any protocol. In
some embodiments, the ports 44A-44F may all implement
the same interface and protocol. In other embodiments, dif-
ferent ports may implement different interfaces and/or proto-
cols. For example, the embodiment illustrated in FIG. 1
includes the graphics controllers 38A-38B using one type of
interface/protocol and the CPU block 14, the NRT peripherals
20 and the RT peripherals 22 using another type of interface/
protocol. An interface may refer to the signal definitions and
electrical properties of the interface, and the protocol may be
the logical definition of communications on the interface
(e.g., including commands, ordering rules, coherence support
if any, etc.). Supporting more than one interface on the vari-
ous ports 44A-44F may eliminate the need to convert from
one interface supported by a source/agent and the interface

Feb. 28,2013

supported by the memory controller 40, which may improve
performance in some embodiments. Additional, some
embodiments of the integrated circuit 10 may include cir-
cuitry purchased from a third party as a prepackaged unit
typically referred to in the industry as intellectual property
(IP). The IP may be “hard” (in which case it is specified as a
netlist of circuits that are laid out and placed on the IC as a
block) or “soft” (in which case it is specified as a synthesiz-
able block that can be synthesized with other blocks to be
included in the integrated circuit 10). Both soft and hard IP
include a specified interface and protocol, which generally
cannot be changed by the designer of the integrated circuit 10
(at least without payment of fees to the third party that owns
the IP). Accordingly, supporting multiple interfaces/proto-
cols may permit easier inclusion of third party IP.

[0032] Inanembodiment, each source may assign a quality
of service (QoS) parameter to each memory operation trans-
mitted by that source. The QoS parameter may identify a
requested level of service for the memory operation. Memory
operations with QoS parameter values requesting higher lev-
els of service may be given preference over memory opera-
tions requesting lower levels of service. For example, each of
the interfaces to the ports 44A-44E in FIG. 1 may include a
command (Cmd), a flow identifier (FID), and/or a QoS
parameter (QoS). The command may identify the memory
operation (e.g., read or write). A read command/memory
operation causes a transfer of data from the memory 12A-12B
to the source, whereas a write command/memory operation
causes a transfer of data from the source to the memory
12A-12B. Commands may also include commands to pro-
gram the memory controller 40. For example, which address
ranges are mapped to which memory channels, bandwidth
sharing parameters, etc. may all be programmable in the
memory controller 40. The FID may identify a memory
operation as being part of a flow of memory operations. A
flow of memory operations may generally be related, whereas
memory operations from different flows, even if from the
same source, may not be related. A portion of the FID (e.g., a
source field) may identify the source, and the remainder of the
FID may identify the flow (e.g., a flow field). Thus, an FID
may be similar to a transaction ID, and some sources may
simply transmit a transaction ID as an FID. In such a case, the
source field of the transaction 1D may be the source field of
the FID and the sequence number (that identifies the transac-
tion among transactions from the same source) of the trans-
action ID may be the flow field of the FID. Sources that group
transactions as a flow, however, may use the FIDs differently.
Alternatively, flows may be correlated to the source field (e.g.,
operations from the same source may be part of the same flow
and operations from a different source are part of a different
flow). The ability to identify transactions of a flow may be
used in a variety of ways described below (e.g., QoS upgrad-
ing, reordering, etc.).

[0033] Thus, a given source may be configured to use QoS
parameters to identify which memory operations are more
important to the source (and thus should be serviced prior to
other memory operations from the same source), especially
for sources that support out-of-order data transmissions with
respect to the address transmissions from the source. Further-
more, the QoS parameters may permit sources to request
higher levels of service than other sources on the same port
and/or sources on other ports.

[0034] In some embodiments, different traffic types may
have different definitions of QoS parameters. That is, the



US 2013/0054902 A1

different traffic types may have different sets of QoS param-
eters. The meaning of a given QoS parameter value depends
on the set of QoS parameters from which it is drawn. For
example, a set of RT QoS parameters may be defined and a set
of NRT QoS parameters may be defined. Thus, an RT QoS
parameter value is assigned meaning within the RT QoS
parameter set and an NRT QoS parameter value is assigned
meaning within the NRT QoS parameter set. Other embodi-
ments may implement the same QoS parameter set on all
ports or among all traffic types.

[0035] The memory controller 40 may be configured to
process the QoS parameters received on each port 44A-44E
and may use the relative QoS parameter values to schedule
memory operations received on the ports with respect to other
memory operations from that port and with respect to other
memory operations received on other ports. More specifi-
cally, the memory controller 40 may be configured to com-
pare QoS parameters that are drawn from different sets of
QoS parameters (e.g., RT QoS parameters and NRT QoS
parameters) and may be configured to make scheduling deci-
sions based on the QoS parameters.

[0036] The QoS parameters may thus be values that are
transmitted with memory operations, and which may be used
in the memory controller to identify requested QoS levels.
The QoS levels may be relative to other levels, and may
specify which memory operations are preferred to be selected
prior to others having lower QoS levels. Thus, the QoS levels
may function as a sort of priority after interpretation by the
memory controller 40 to consider QoS levels defined in dif-
ferent sets, although the priority can be balanced by other
factors.

[0037] In some embodiments, the memory controller 40
may be configured to upgrade QoS levels for pending
memory operations. Various upgrade mechanisms may be
supported. For example, the memory controller 40 may be
configured to upgrade the QoS level for pending memory
operations of a flow responsive to receiving another memory
operation from the same flow that has a QoS parameter speci-
fying a higher QoS level. This form of QoS upgrade may be
referred to as in-band upgrade, since the QoS parameters
transmitted using the normal memory operation transmission
method also serve as an implicit upgrade request for memory
operations in the same flow. The memory controller 40 may
be configured to push pending memory operations from the
same port or source, but not the same flow, as a newly received
memory operation specifying a higher QoS level. As another
example, the memory controller 40 may be configured to
couple to a sideband interface from one or more agents, and
may upgrade QoS levels responsive to receiving an upgrade
request on the sideband interface. In another example, the
memory controller 40 may be configured to track the relative
age of the pending memory operations. The memory control-
ler 40 may be configured to upgrade the QoS level of aged
memory operations at certain ages. The ages at which
upgrade occurs may depend on the current QoS parameter of
the aged memory operation.

[0038] The memory controller 40 may be configured to
determine the memory channel addressed by each memory
operation received on the ports, and may be configured to
transmit the memory operations to the memory 12A-12B on
the corresponding channel. The number of channels and the
mapping of addresses to channels may vary in various
embodiments and may be programmable in the memory con-
troller. The memory controller may use the QoS parameters

Feb. 28,2013

of the memory operations mapped to the same channel to
determine an order of memory operations transmitted into the
channel. That is, the memory controller may reorder the
memory operations from their original order of receipt on the
ports. Additionally, during processing in the channel, the
memory operations may be reordered again at one or more
points. At each level of reordering, the amount of emphasis
placed on the QoS parameters may decrease and factors that
affect memory bandwidth efficiency may increase. Once the
memory operations reach the end of the memory channel
pipeline, the operations may have been ordered by a combi-
nation of QoS levels and memory bandwidth efficiency. High
performance may be realized in some embodiments.

[0039] The processors 16 may implement any instruction
set architecture, and may be configured to execute instruc-
tions defined in that instruction set architecture. The proces-
sors 16 may employ any microarchitecture, including scalar,
superscalar, pipelined, superpipelined, out of order, in order,
speculative, non-speculative, etc., or combinations thereof.
The processors 16 may include circuitry, and optionally may
implement microcoding techniques. The processors 16 may
include one or more level 1 (I.1) caches coupled to level 2
(L2) cache 18. Other embodiments may include multiple
levels of caches in the processors 16, and the cache 18 may be
the next level down in the hierarchy. The cache 18 may
employ any size and any configuration (set associative, direct
mapped, etc.).

[0040] The graphics controllers 38A-38B may be any
graphics processing circuitry. Generally, the graphics con-
trollers 38A-38B may be configured to render objects to be
displayed into a frame buffer. The graphics controllers 38 A-
38B may include graphics processors that may execute graph-
ics software to perform a part or all of the graphics operation,
and/or hardware acceleration of certain graphics operations.
The amount of hardware acceleration and software imple-
mentation may vary from embodiment to embodiment.
[0041] The NRT peripherals 20 may include any non-real
time peripherals that, for performance and/or bandwidth rea-
sons, are provided independent access to the memory 12A-
12B. That is, access by the NRT peripherals 20 is independent
of'the CPU block 14, and may proceed in parallel with CPU
block memory operations. Other peripherals such as the
peripheral 32 and/or peripherals coupled to a peripheral inter-
face controlled by the peripheral interface controller 34 may
also be non-real time peripherals, but may not require inde-
pendent access to memory. Various embodiments of the NRT
peripherals 20 may include video encoders and decoders,
scaler/rotator circuitry, image compression/decompression
circuitry, etc.

[0042] As mentioned above, the RT peripherals 22 may
include the image processor 24 and the display pipes 26. The
display pipes 26 may include circuitry to fetch one or more
frames and to blend the frames to create a display image. The
display pipes 26 may further include one or more video pipe-
lines. The result of the display pipes 26 may be a stream of
pixels to be displayed on the display screen. The pixel values
may be transmitted to a display controller for display on the
display screen. The image processor 26 may receive camera
data and process the data to an image to be stored in memory.
[0043] The bridge/DMA controller 30 may comprise cir-
cuitry to bridge the peripheral(s) 32 and the peripheral inter-
face controller(s) 34 to the memory space. In the illustrated
embodiment, the bridge/DMA controller 30 may bridge the
memory operations from the peripherals/peripheral interface



US 2013/0054902 A1

controllers through the CPU block 14 to the memory control-
ler 40. The CPU block 14 may also maintain coherence
between the bridged memory operations and memory opera-
tions from the processors 16/[.2 Cache 18. The [.2 cache 18
may also arbitrate the bridged memory operations with
memory operations from the processors 16 to be transmitted
on the CPU interface to the CPU port 44C. The bridge/DMA
controller 30 may also provide DMA operation on behalf of
the peripherals 32 and the peripheral interface controllers 34
to transfer blocks of data to and from memory. More particu-
larly, the DMA controller may be configured to perform
transfers to and from the memory 12A-12B through the
memory controller 40 on behalf of the peripherals 32 and the
peripheral interface controllers 34. The DMA controller may
be programmable by the processors 16 to perform the DMA
operations. For example, the DMA controller may be pro-
grammable via descriptors. The descriptors may be data
structures stored in the memory 12A-12B that describe DMA
transfers (e.g., source and destination addresses, size, etc.).
Alternatively, the DMA controller may be programmable via
registers in the DMA controller (not shown).

[0044] The peripherals 32 may include any desired input/
output devices or other hardware devices that are included on
the integrated circuit 10. For example, the peripherals 32 may
include networking peripherals such as one or more network-
ing media access controllers (MAC) such as an Ethernet
MAC or a wireless fidelity (WiFi) controller. An audio unit
including various audio processing devices may be included
in the peripherals 32. One or more digital signal processors
may be included in the peripherals 32. The peripherals 32 may
include any other desired functional such as timers, an on-
chip secrets memory, an encryption engine, etc., or any com-
bination thereof.

[0045] The peripheral interface controllers 34 may include
any controllers for any type of peripheral interface. For
example, the peripheral interface controllers may include
various interface controllers such as a universal serial bus
(USB) controller, a peripheral component interconnect
express (PCle) controller, a flash memory interface, general
purpose input/output (I/O) pins, etc.

[0046] The memories 12A-12B may be any type of
memory, such as dynamic random access memory (DRAM),
synchronous DRAM (SDRAM), double data rate (DDR,
DDR2, DDR3, etc.) SDRAM (including mobile versions of
the SDRAMSs such as mDDR3, etc., and/or low power ver-
sions of the SDRAMSs such as LPDDR2, etc.), RAMBUS
DRAM (RDRAM), static RAM (SRAM), etc. One or more
memory devices may be coupled onto a circuit board to form
memory modules such as single inline memory modules
(SIMMs), dual inline memory modules (DIMMs), etc. Alter-
natively, the devices may be mounted with the integrated
circuit 10 in a chip-on-chip configuration, a package-on-
package configuration, or a multi-chip module configuration.
[0047] The memory PHY's 42A-42B may handle the low-
level physical interface to the memory 12A-12B. For
example, the memory PHY's 42A-42B may be responsible for
the timing of the signals, for proper clocking to synchronous
DRAM memory, etc. In one embodiment, the memory PHY's
42 A-42B may be configured to lock to a clock supplied within
the integrated circuit 10 and may be configured to generate a
clock used by the memory 12.

[0048] It is noted that other embodiments may include
other combinations of components, including subsets or
supersets of the components shown in FIG. 1 and/or other

Feb. 28,2013

components. While one instance of a given component may
be shown in FIG. 1, other embodiments may include one or
more instances of the given component. Similarly, throughout
this detailed description, one or more instances of a given
component may be included even if only one is shown, and/or
embodiments that include only one instance may be used
even if multiple instances are shown.

[0049] It is noted that other embodiments of the memory
controller 40 may not implement multiple ports, but may still
implement QoS parameters, different QoS parameters/levels
for different traffic types or classes such as NRT and RT, and
QoS upgrading.

[0050] Turning next to FIG. 2, a pair of tables 50 and 52 are
shown illustrating a definition of a set of RT QoS levels and a
set of NRT QoS levels, respectively, for one embodiment.
Other embodiments may include additional or substitute lev-
els, and other embodiments may include additional levels in
combination with a subset of the illustrated levels. As illus-
trated by the arrows pointing downward next to the tables 50
and 52 in FIG. 2, the tables illustrate the QoS levels within a
set in increasing priority. That is, the real time green (RTG)
QoS level is the lowest priority RT QoS level; the real time
yellow (RTY) QoS level is the medium priority RT QoS level;
and the real time red (RTR) QoS level is the highest priority
RT QoS level. Similarly, the best effort (BEF) QoS level is the
lowest priority NRT QoS level and the low latency (LLT) QoS
level is the highest priority NRT QoS level. The illustration of
the RT QoS levels and the NRT QoS levels next to each other
in FIG. 2 is not intended to indicate the relative priority of the
RT QoS levels with regard to the NRT QoS levels. Instead, the
memory controller 40 may determine such relative priorities
based, in part, on other factors indicating the traffic that is
being experienced by the memory controller 40 across the
various types and ports.

[0051] The RTG, RTY, and RTR QoS levels may reflect
relative levels of urgency from an RT source. That is, as the
amount of time before data is needed by the RT source to
prevent erroneous operation decreases, the QoS level
assigned to each memory operation increases to indicate the
higher urgency. By treating operations having higher urgency
with higher priority, the memory controller 40 may return
data to the RT source more quickly and may thus aid the
correct operation of the RT source.

[0052] For example, the display pipe 26 may initiate the
reading of frame data from the memory 12A-12B for the next
frame to be displayed in the vertical blanking interval for the
display. The frame is not actually displayed until the end of
the vertical blanking interval, and thus the display pipe 26
may use the RTG level during this time period. As the frame
begins to be displayed (i.e. the display controller begins read-
ing frame pixels from the display pipe 26 output), the display
pipe 26 may raise the QoS level of frame data read operations
to the memory to the RTY level. For example, if the amount
of frame data that is read ahead of the current pixel being
displayed reduces below a first threshold, the level may be
raised to RTY. At a second threshold (lower than the first
threshold), the display pipe 26 may raise the QoS level of
memory operations to RTR.

[0053] The BEF NRT QoS level may be a request to return
the data as quickly as the memory controller 40 is able, once
the needs of other flows of data are met. On the other hand, the
LLT NRT QoS level may be a request for low latency data.
NRT memory operations having the LLT QoS level may be
treated more closely, in terms of priority with other memory



US 2013/0054902 A1

transactions, than those having the BEF QoS level (at least in
some cases). In other cases, the BEF and LLT QoS levels may
be treated the same by the memory controller 40.

[0054] Turning next to FIG. 3, a block diagram of one
embodiment of the memory controller 40 is shown. In the
embodiment of FIG. 3, the memory controller 40 includes an
agent interface unit (AIU) 54 and one or more memory chan-
nel units 56A-56B. There may be one memory channel unit
56A-568B for each memory channel included in a given
embodiment, and other embodiments may include one chan-
nel or more than two channels. As illustrated in FIG. 3, the
AIU 54 may include multiple port interface units 58 A-58E.
More particularly, there may be a port interface unit S§A-58E
for each port 44 A-44E on the memory controller 40. The ATU
54 may further include memory channel interface units
(MCIUs) 60A-60B (one for each memory channel unit 56 A-
56B). The AIU 54 may further include one or more bandwidth
sharing registers 62, which may be programmable to indicate
how bandwidth is to be shared among the ports. The port
interface units 58 A-58E may be coupled to receive memory
operations and to receive/transmit data and responses on the
corresponding port, and may also be coupled to the MCIUs
60A-60B. The MCIUs 60A-60B may further be coupled to
the bandwidth sharing registers 62 and to the corresponding
MCU 56A-56B. As illustrated in FIG. 3, the MCUs 56A-56B
may each include a presorting queue (PSQ) 64 and a memory
interface circuit (MIF) 66. The PSQs 64 are coupled to the
corresponding MCIUs 60A-60B and to the MIF 66 in the
same MCU 56A-56B. The MIF 66 in each MCU 56A-568B is
coupled to the corresponding memory PHY 42A-42B.

[0055] The AIU 54 may be configured to receive memory
operations on the ports 44A-44F and to switch the memory
operations to the channels addressed by those memory opera-
tions, using the QoS parameters of the memory operations as
a factor in deciding which memory operations to transmit to
one of the MCUs 56 A-56B prior to other memory operations
to the same MCU 56A-56B. Other factors may include the
bandwidth sharing controls to divide bandwidth on the
memory channels among the ports.

[0056] More particularly, each port interface unit S§A-58E
may be configured to receive the memory operations from the
corresponding port 44 A-44E, and may be configured to deter-
mine the memory channel to which a given memory operation
is directed. The port interface unit 58 A-58E may transmit the
memory operation to the corresponding MCIU 60A-60B, and
may transmit reads separately from writes in the illustrated
embodiment. Thus, for example, the port interface unit 58A
may have a RdO connection and a WrQ connection to the
MCIU 60A for read operations and write operations, respec-
tively. Similarly, the port interface unit 58 A may have a Rdl
and a Wrl connection to the MCIU 60B. The other port
interface units 58B-58F may have similar connections to the
MCIU 60A-60B. There may also be a data interface to trans-
mit read data from the port interface units 58A-58B to the
MCIUs 60A-60B, illustrated generally as the dotted “D”
interface for the MCIU 60A in FIG. 3.

[0057] The MCIUs 60A-60B may be configured to queue
the memory operations provided by the port interface units
58A-58E, and to arbitrate among the memory operations to
select operations to transmit to the corresponding MCUs
56A-56B. The arbitration among operations targeted at a
given memory channel may be independent of the arbitration
among operations targeted at other memory channels.

Feb. 28,2013

[0058] The MCIUs 60A-60B may be coupled to the band-
width sharing registers 62, which may be programmed to
indicate how memory bandwidth on a channel is to be allo-
cated to memory operations in the given channel. For
example, in one embodiment, the MCIUs 60A-60B may use
a deficit-weighted round-robin algorithm to select among the
ports when there is no high priority traffic present (e.g., RTR
or RTY QoS levels in the RT traffic). When RTR or RTY
traffic is present, a round-robin mechanism may be used to
select among the ports that have RTR/RTY traffic. The
weights in the deficit weighted round-robin mechanism may
be programmable to allocate relatively more bandwidth to
one port than another. The weights may be selected to favor
processor traffic over the graphics and NRT ports, for
example, or to favor the graphics ports over other ports. Any
set of weights may be used in various embodiments. Other
embodiments may measure the bandwidth allocations in
other ways. For example, percentages of the total bandwidth
may be used. In other embodiments, a credit system may be
used to control the relative number of operations from each
port that are selected. Generally, however, operations may be
selected based on both QoS parameters and on bandwidth
sharing requirements in various embodiments.

[0059] The MCUs 56A-56B are configured to schedule
memory operations from their queues to be transmitted on the
memory channel. The MCUs may be configured to queue
reads and writes separately in the PSQs 64, and may be
configured to arbitrate between reads and writes using a credit
based system, for example. In the credit-based system, reads
and writes are allocated a certain number of credits. The
number of write credits and read credits need not be equal.
Each scheduled memory operation may consume a credit.
Once both the write credits and the read credits are reduced to
zero or less and there is a pending transaction to be scheduled,
both credits may be increased by the corresponding allocated
number of credits. Other embodiments may use other mecha-
nisms to select between reads and writes. In one embodiment,
the credit system may be part of the arbitration mechanism
between reads and writes (along with measurements of the
fullness of the write queue). That is, as the write queue
becomes more full, the priority of the writes in the arbitration
mechanism may increase. Additional details are set forth
below.

[0060] Inoneembodiment,the QoS parameters of the write
operations may be eliminated on entry into the PSQs 64. The
read operations may retain the QoS parameters, and the QoS
parameters may affect the read scheduling from the PSQs 64.
[0061] Inanembodiment, the MCUs 56A-56B may sched-
ule memory operations in bursts of operations (each opera-
tion in the burst consuming a credit). If the burst reduces the
credit count to zero, the burst may be permitted to complete
and may reduce the credit count to a negative number. When
the credit counts are increased later, the negative credits may
be accounted for, and thus the total number of credits after
increase may be less than the allocated credit amount.

[0062] To create bursts of memory operations for schedul-
ing, the MCUs 56 A-56B may group memory operations into
affinity groups. A memory operation may be said to exhibit
affinity with another memory operation (or may be said to be
affine to the other memory operation) if the operations may be
performed efficiently on the memory interface when per-
formed in close proximity in time. Efficiency may be mea-
sured in terms of increased bandwidth utilization. For
example, SDRAM memories are characterized by a page that



US 2013/0054902 A1

can be opened using an activate command (along with an
address of the page). The size of the page may vary from
embodiment to embodiment, and generally may refer to a
number of contiguous bits that may be available for access
once the activate command has been transmitted. Asynchro-
nous DRAM memories may similarly have a page that may be
opened by asserting a row address strobe control signal and
by providing the row address. Two or more memory opera-
tions that access data in the same page may be affine, because
only one activate/RAS may be needed on the interface for the
memory operations. SDRAM memories also have indepen-
dent banks and ranks A bank may be a collection of memory
cells within an SDRAM chip that may have an open row
(within which page hits may be detected). A rank may be
selected via a chip select from the memory controller, and
may include one or more SDRAM chips. Memory operations
to different ranks or banks may also be affine operations,
because they do not conflict and thus do not require the page
to be closed and a new page to be opened. Memory operations
may be viewed as affine operations only if they transfer data
in the same direction (i.e. read operations may only be affine
to other read operations, and similarly write operations may
only be affine with other write operations). Memory opera-
tions to the same page (or to an open page) may be referred to
as page hits, and memory operations to different banks/ranks
may be referred to as bank hits and rank hits, respectively.

[0063] The MCUs 56A-56B may also be configured to
schedule commands on the memory interface to the memo-
ries 12A-12B (through the memory PHY's 42A-42B) to per-
form the scheduled memory operations. More particularly, in
an embodiment, the MCUs 56 A-56B may be configured to
presynthesize the commands for each memory operation and
to enqueue the commands. The MCUs 56A-56B may be
configured to schedule the commands to provide efficient use
of the memory bandwidth. The MIFs 66 in each MCU 56 A-
56B may implement the presynthesis of commands and the
scheduling of the commands, in an embodiment.

[0064] Turning now to FIG. 4, a block diagram of one
embodiment of the port interface unit 58C is shown. Other
port interface circuits 58 A-58B and 58D-58E may be similar,
although there may be differences in implementation for port
interface circuits that couple to different interfaces. In the
illustrated embodiment, the port interface unit 58C includes
buffers 70A-70B coupled to read (AR) and write (AW) inter-
faces to receive read and write memory operations, respec-
tively, as illustrated in FIG. 4. The buffers 70A-70B are
coupled to a read spawn generator 72 and a write spawn
generator 74, respectively, which are coupled to the Rd0/Rd1
interfaces and the Wr0/Wr1 interfaces, respectively. The read
spawn generator 72 is coupled to a read outstanding transac-
tion table (ROTT) 76, and the write spawn generator 74 is
coupled to a write outstanding transaction table (WOTT) 78.
The ROTT 76 is coupled to a read response generator 80
which is configured to generate a read response on the inter-
face. The ROTT 76 is also coupled to a read buffer 84, which
is coupled to receive data from either MCU 56 A-56B through
amux 86 and to provide read data on the interface. The WOTT
78 is coupled to a write response generator 82 which is con-
figured to generate a write response on the interface. The
WOTT 78 is also coupled to a write data forward buffer 88,
which is coupled to provide data to the MCUs 56A-56B and
is coupled to receive data from a buffer 70C, which is coupled
to receive write data from the interface.

Feb. 28,2013

[0065] Inoneembodiment,the read buffer 84 may be moni-
tored to determine when the amount of data in the read buffer
84 has reached a threshold. The threshold may be fixed or
programmable, in various embodiments. In one embodiment,
the ROTT 76 may be utilized to monitor the amount of data in
the read buffer 84. For example, the number and status of
active entries inthe ROTT 76 may provide an indication of the
amount of data in the read buffer 84.

[0066] When it has been detected that the amount of data in
the read butfer 84 has exceeded a threshold, an oldest memory
operation in the ROTT 76 may be identified, and then an
identification (ID) of this oldest memory operation may be
transmitted from the port interface unit 58C to the respective
memory channel unit (MCU) 56. In one embodiment, the ID
of the oldest memory operation may be sent with a push
request to the respective MCU 56. When the MCU 56
receives the push request with the memory operation ID, the
MCU 56 may accelerate the processing of the corresponding
memory operation. Processing may be accelerated by raising
the QoS level or by setting the push bit of the corresponding
memory operation. The corresponding memory operation
may be expedited and its read data may be returned to the read
buffer 84 to facilitate the clearing of the held-up data.
[0067] For aread operation, the buffer 70A may be config-
ured to receive the operation from the interface. The buffer
70A may be provided to capture the read operation and hold
it for processing by the read spawn generator 72. In an
embodiment, the buffer 70A may be a two entry “skid” buffer
that permits a second operation to be captured in the event of
delay for an unavailable resource to become available, for
example, thus easing timing on propagating back pressure
requests to the source(s) on the interface. The buffers 70B-
70C may similarly be two entry skid buffers. Other embodi-
ments may include additional entries in the skid buffers, as
desired.

[0068] The read spawn generator 72 may be configured to
decode the address of the read operation to determine which
memory channel is addressed by the read operation. The read
spawn generator 72 may be configured to transmit the read
operation to the addressed memory channel via the RdO or
Rd1 interface. In some embodiments, a read operation may
overlap memory channels. Each read operation may specify a
size (i.e. a number of bytes to be read beginning at the address
of the operation). If the combination of the size and the
address indicates that bytes are read from more than one
channel, the read spawn generator 72 may be configured to
generate multiple read operations to the addressed channels.
The read data from the multiple read operations may be
accumulated in the read buffer 84 to be returned to the source.
[0069] The read spawn generator 72 may also be config-
ured to update the ROTT 76, allocating an entry in the ROTT
76 to track the progress of the read. Once the data has been
received in the read buffer 84, the ROTT 76 may be config-
ured to signal the read response generator 80 to generate a
read response to transfer the data to the source. If read data is
to be returned in order on the interface (e.g., according to the
protocol onthe interface), the data may remain buffered in the
read buffer 84 until previous reads have been returned and
then the ROTT 76 may signal the read response generator 80
to transfer the data. The ROTT 76 may be coupled to receive
various status signals from the MCUs 56 A-56B to update the
status of the pending read operations (not shown in FIG. 4).
[0070] The buffer 70B, the write spawn generator 74, and
the WOTT 78 may operate similarly for write operations.



US 2013/0054902 A1

However, data is received rather than transmitted on the inter-
face. The write data may be received in the write data forward
buffer 88, and may be forwarded to the current location of the
corresponding write operation. The WOTT 78 may signal for
the write response once the write has been guaranteed to
complete, terminating the writes on the interface with a write
response earlier than might otherwise be possible.

[0071] Itis noted that, while the embodiment illustrated in
FIG. 4 includes an interface that conveys read and write
memory operations separately (AR and AW, respectively),
other embodiments may include a single transmission
medium for both read and write operations. In such an
embodiment, a single buffer 70 may receive the operations,
and the read spawn generator 72 and the write spawn genera-
tor 74 may decode the command from the interface to differ-
entiate read and write operations. Alternatively, there may be
one spawn generator which generates both read and write
operations and updates the ROTT 76 or the WOTT 78 accord-
ingly.

[0072] Turning now to FIG. 5, a block diagram illustrating
one embodiment of the MCIU 60A is shown. The MCIU 60B
may be similar except that it is coupled to receive the Rd1 and
Wrl inputs from each port and is coupled to the MCU 56B. In
the illustrated embodiment, the MCIU includes a set of read
queues such as read queues 90A-90B shown in FIG. 5 and a
set of write queues such as write queues 92A-92B. There may
be one read queue and one write queue for each port. Each
read queue is coupled to the RdO output of one of the port
interface units 58 A-58F and is coupled to a QoS arbiter 94A.
Each write queue is coupled to the Wr0 outputs of a respective
one of the port interface units 58 A-58E and to a QoS arbiter
94B. The outputs of the QoS arbiters 94 A-94B are provided to
the MCU 56A as read and write inputs, respectively. The QoS
arbiters 94A-94B are coupled to receive data from the band-
width sharing registers 62.

[0073] Two read queue entries are shown in the read queue
90A, and other read queues may be similar. The read queue
90A includes the FID of the memory operation, the QoS
parameter of the operation, a push bit (P), and an other field
(Oth). The FID and the QoS parameter may be the same
values that were transmitted with the memory operation on
the interface to the memory controller 40. Alternatively, one
or both values may be recoded by the memory controller 40
for convenience internally. The push bit may be used to force
a higher priority on a first memory operation if a second
memory operation is ordered behind the first memory opera-
tionand is a higher QoS level than the first memory operation.
For example, the second memory operation may be received
on the same port as the first memory operation, and the
interface on that port may require that data be returned in the
same order that the memory operations are transmitted. By
forcing the higher priority, the first memory operation may be
performed more quickly and may thus permit a more rapid
servicing of the second memory operation with the higher
QoS level. The other field may include various other infor-
mation for the memory operation (e.g., the address, size infor-
mation). Similarly, two write queue entries are shown in the
write queue 92A, and may include fields similar to the read
queue 90A. The other field may store different information
for writes as compared to reads, if desired.

[0074] The QoS arbiters 94A-94B may arbitrate among the
read queues 90A-90B and the write queues 92A-92B, respec-
tively. The QoS arbiters 94 may maintain the original order-
ing of memory operations from each source, such that newer

Feb. 28,2013

memory operations may not be scheduled ahead of older
memory operations from the same read queue 90.

[0075] Turning now to FIG. 6, a block diagram of one
embodiment of the PSQ 64 is shown. In the illustrated
embodiment, the PSQ 64 includes an enqueue control unit
110, a set of transaction queues 112, a scheduler 114, and a
bypass mux 116. The enqueue control unit 110 is coupled to
receive the read and write operations from the corresponding
MCIU 60A or 60B, and is coupled to the transaction queues
112. The transaction queues 112 may also be coupled to
receive push requests on a separate interface (not shown). The
transaction queues 112 are further coupled to the scheduler
114, the output of which is coupled to the bypass mux 116.
The bypass mux 116 is coupled to receive the read operation
as well, and is configured to select between the memory
operation scheduled by the scheduler 114 and the read opera-
tion. For example, the read operation may bypass the trans-
action queues 112 if there are no reads in the transaction
queues 112 and the number of writes is below a threshold
level. Other embodiments may not implement bypassing and
the bypass mux 116 may be eliminated.

[0076] As illustrated in FIG. 6, the transaction queues 112
may include a set of read affinity queues such as queues
118A-118B and a set of write affinity queues such as queues
120A-120B. The number of read affinity queues and write
affinity queues may vary from embodiment to embodiment,
and the number of read affinity queues need not equal the
number of write affinity queues. Each affinity queue may
store one or more memory operations that have been deter-
mined by the enqueue control unit 110 to exhibit affinity with
each other. Thus, as a memory operation is received by the
enqueue control unit 110, the enqueue control unit 110 may
be configured to compare the memory operation to the affinity
queues 118A-118B (for a read operation) or the affinity
queues 120A-120B (for a write operation). If the memory
operation is affine, it may be enqueued in the corresponding
affinity queue. If not, the memory operation may be enqueued
in another affinity queue. In an embodiment, a read affinity
queue may be reserved for reads that are not affine, and
similarly a write affinity queue may be reserved for writes that
are not affine.

[0077] The scheduler 114 may be configured to schedule
memory operations to be transmitted to the MIF 66. For read
operations, the scheduler 114 may be configured to consider
both QoS levels in the read affinity queues 118A-118B and
the number of affine memory operations in each read affinity
queue 118A-118B. More details of one embodiment are
described below. Generally, however, the scheduler 114 may
be configured to favor read operations that have high QoS
levels and larger numbers of affine memory operations. For
write operations, the QoS levels may be eliminated in the PSQ
64. That is, the QoS levels of the write operations may be
dropped as the write operations are written to the transaction
queues 112. As illustrated in the exemplary entries in each of
the queues 118A and 120A, the read operations may retain
QoS while the write operations may not. The scheduler 114
may be configured to schedule between read operations and
write operations based on fullness of the write queues and
QoS levels in the read queues, for example.

[0078] Itisnoted that, in some embodiments, the read affin-
ity queues 118A-118B and write affinity queues 120A-120B
may be physically instantiated (e.g., as separate data struc-
tures or as one or more data structures that are divided via
logic circuitry in the PSQ 64 and/or programmably sepa-



US 2013/0054902 A1

rated). In other embodiments, the affinity queues may be
virtual. That is, there may be a read queue and a write queue,
for example, and tagging may be used to identify affine opera-
tions. It is further noted that, in addition to the circuitry
illustrated in FIG. 6, there may be a data path (not shown) in
the MCUs 56A-56B to transport write data from the AIU 54
to the memory and to transport read data from the memory to
the ATU 54.

[0079] Referring now to FIG. 7, a block diagram of a por-
tion of a memory controller is shown. The memory controller
40 includes the ATU 54, which includes the port interface unit
58C. The port interface unit 58C includes the read outstand-
ing transaction table (ROTT) 76 and the read buffer 84. The
memory controller 40 also includes the MCUO 56 A and the
MCU1 56B, each of which includes a respective PSQ 64. It is
noted that the memory controller 40 may include many other
components and interfaces not shown in FIG. 7, and the
components of the memory controller 40 may also include
various other components and interfaces not shown in FIG. 7.
It is also noted that in other embodiments, the memory con-
troller 40 may include one MCU or more than two MCUs.

[0080] Inoneembodiment, the order of memory operations
scheduled from PSQs 64A-B may be rearranged so as to
maximize efficient use of the memory device bus. However,
the originating requestor may require that memory operations
are returned in the order in which the originating requester
issued the memory operations to the memory controller 40.
Therefore, the port interface unit 58C may reorder memory
operation read data retrieved from memory back to the origi-
nal order before the read data is forwarded to the originating
requestor.

[0081] When data from a read memory operation is
retrieved from memory, the data may be received by the port
interface unit 58C on the data’s return path to the requestor
and stored in the read buffer 84. After the read data is received
and stored in the read buffer 84, the ROTT 76 may determine
if a prior memory operation is still outstanding. If there is a
prior memory operation that has not been completed, then the
read data for the just-received memory operation may wait in
the read buffer 84 instead of being forwarded to the requestor.
The AIU 54 may determine that a source enforces an order of
how memory operations are returned, and as a result, the ATU
54 may reorder the memory operations to comply with the
source’s requirements. Additionally, the AIU 54 may send a
request to the respective MCU 56 to accelerate the processing
of'one or more older blocking memory operations in response
to determining data from one or more newer memory opera-
tions have been retrieved from memory but are waiting in the
read buffer 84. The read data from the one or more newer
memory operations may be ready to be returned to the source,
but the enforcement of the order of memory operations may
prevent the read data from being returned.

[0082] In various embodiments, the ROTT 76 may detect
the return of data retrieved from memory when the data is
written to the read buffer 84. The ROTT 76 may determine
that data from a prior memory operation is preventing the
just-returned data from being forwarded to the source. There-
fore, in response, the ROTT 76 may send a request to the
respective MCU 56 to expedite the prior memory operation.
In one embodiment, the ROTT 76 may send a push request to
the respective MCU 56. In another embodiment, the ROTT 76
may send an upgrade request to the respective MCU 56. The

Feb. 28,2013

ROTT 76 may utilize paths 130A and 130B to send push/
upgrade requests to MCUOQ 56A and MCU1 56B, respec-
tively.

[0083] The PSQs 64A-B may include upgrade circuitry
configured to upgrade a QoS level or set a push bit. In one
embodiment, when the PSQ 64A or PSQ 64B receives a
push/upgrade request, the respective PSQ 64 may upgrade the
QoS level of the corresponding memory operation. In another
embodiment, the respective PSQ 64 may set a push bit of the
corresponding memory operation in response to receiving a
push request. As a result, the processing of the corresponding
memory operation may be accelerated, and the corresponding
read data may be retrieved more quickly from the memory.
Then, the corresponding read data may be returned to the port
interface unit 58C and returned to the source.

[0084] Turning now to FIG. 8, a block diagram illustrating
one embodiment of a push request mechanism is shown. In
this mechanism, receiving a push request for a memory
operation may cause one of the read affinity queues 118A-B
to set the push bit for the identified memory operation. A
portion of the PSQ 64A of the MCUO 56A is illustrated in
FIG. 8. The PSQ 64B in the MCU1 56B may be similar.
[0085] The PSQ 64A may receive memory operations from
the MCIU 60A as previously discussed, and the PSQ 64A
may queue the received memory operations in one of the read
affinity queues 118A-B. The PSQ 64A may also receive push
requests from one or more ROTTs 76 on interface 130A, and
each push request may identify a memory operation that was
previously received by the PSQ 64A. The PSQ 64A may
locate the outstanding memory operation in one of the read
affinity queues 118A-B using a received identifier, and then
PSQ 64A may set the push (P) bit of the identified memory
operation. In another embodiment, in response to receiving a
push request, the PSQ 64 A may upgrade the QoS level of the
identified memory operation to a higher QoS level. In one
embodiment, the read affinity queues 118A-B may include
content addressable memories to locate the memory opera-
tion using the identifier received on interface 130A. In some
cases, the identified memory operation may have already
been forwarded out of PSQ 64 A to a memory interface circuit
(not shown).

[0086] Referring now to FIG. 9, a flowchart of one embodi-
ment of accelerating blocking memory operations is shown.
While blocks are shown in a particular order for ease of
understanding, other orders may be used. It should be noted
that in various embodiments of the method described below,
one or more of the blocks described may be performed con-
currently or may be omitted entirely, and other additional
blocks may also be performed as desired. Blocks may be
performed in parallel in combinatorial logic in the memory
controller 40 (of FIG. 3). Blocks, combinations of blocks,
and/or the flowchart as a whole may be pipelined over mul-
tiple clock cycles. In one embodiment, the memory controller
40 may be configured to implement the operation illustrated
in FIG. 7. More particularly, the agent interface unit (AIU) 54
may be configured to implement blocks 140-152 and 156-
158, and the memory channel unit (MCU) 56 may be config-
ured to implement block 154.

[0087] In one embodiment, a first memory operation may
be received from a source (block 140). Next, a second
memory operation may be received from the source (block
142). The first and second memory operations may be
received by a memory controller. More particularly, the first
and second memory operations may be received by a port



US 2013/0054902 A1

interface unit of the memory controller. In one embodiment,
the memory controller may include an AIU, and the AIU may
include a port interface unit for each source coupled to the
memory controller. Each port interface unit may maintain a
table with an entry for each received memory operation that
has not been completed. This table may be a read outstanding
transactiontable (ROTT). The source may enforce an order of
memory operation read data returned from the memory con-
troller, and the port interface unit may utilize the ROTT to
determine the proper order for returning read data to the
source.

[0088] In various embodiments, the memory controller
may also include one or more memory channel interface units
(MCIUs) and one or more MCUs. Each MCIU may be
coupled to a respective MCU. The port interface unit may
include a read spawn generator, and the read spawn generator
may dispatch the first and second memory operations to a
MCIU, and then the MCIU may dispatch the first and second
memory operations to a MCU (block 144). The first and
second memory operations may be dispatched to the MCU in
their original order. The MCU may reorder the first and sec-
ond memory operations in an effort to achieve greater
memory efficiency. The MCU may retrieve data from
memory for the second memory operation, and then the MCU
may transmit the data to the port interface unit via the MCIU.
The port interface unit may receive the second memory
operation read data retrieved from memory (block 146).
Then, the data may be stored in a read buffer in the port
interface unit (block 148).

[0089] Inone embodiment, the ROTT may detect that read
data for the second memory operation has been received and
is stored in the read buffer. The ROTT may also detect if the
first memory operation is still outstanding (decision block
150) and is preventing the second memory operation read
data from being forwarded to the source. In various embodi-
ments, the ROTT may be configured to detect if the first
memory operation is still outstanding in response to deter-
mining the source requires memory operations to be returned
in the original order in which they are transmitted to the
memory controller.

[0090] Ifitis determined that the first memory operation is
not outstanding (decision block 150), such that read data for
the first memory operation has already been retrieved and
returned to the read buffer in the port interface unit, then the
read data for the first and second memory operations may be
returned to the source (block 158). The read data for the first
memory operation may be returned to the source prior to the
read data for the second memory operation. In some embodi-
ments, the read data for the first memory operation may have
already been returned to the source prior to block 158.
[0091] If the first memory operation is still outstanding
(decision block 150), such that read data for the first memory
operation has not been returned to the read buffer, then the
port interface unit may transmit a push request for the first
memory operation to the MCU (block 152). In one embodi-
ment, the ROTT may transmit the push request for the first
memory operation to the MCU. In various embodiments, the
push request may include an identifier of the first memory
operation, and the push request may be sent on a second path
different than the first path used for sending memory opera-
tions from the port interface unit to the MCU (via the MCIU).
[0092] The MCU may receive the push request and then in
response to receiving the push request, the MCU may accel-
erate the processing of the first memory operation (block

Feb. 28,2013

154). In various embodiments, the MCU may set a push bit of
the first memory operation or the MCU may upgrade a QoS
level of the first memory operation. As a result, the first
memory operation may be scheduled to access memory faster
than it otherwise would have been without the set push bit or
the upgraded QoS level. Then, after the read data has been
retrieved from memory and conveyed back to the port inter-
face unit, the port interface unit may receive and store the first
memory operation read data in the read buffer (block 156).
After block 156, the read data for the first and second memory
operations may be returned to the source (block 158).
[0093] Turning next to FIG. 10, a block diagram of one
embodiment of a system 170 is shown. In the illustrated
embodiment, the system 170 includes at least one instance of
the integrated circuit 10 coupled to external memory 12 (e.g.,
the memory 12A-12B in FIG. 1). The integrated circuit 10 is
coupled to one or more peripherals 174 and the external
memory 12. A power supply 176 is also provided which
supplies one or more supply voltages to the integrated circuit
10, the memory 12, and/or the peripherals 174. In some
embodiments, more than one instance of the integrated circuit
10 may be included (and more than one external memory 12
may be included as well).

[0094] The peripherals 174 may include any desired cir-
cuitry, depending on the type of system 170. For example, in
one embodiment, the system 170 may be a mobile device
(e.g., personal digital assistant (PDA), smart phone, elec-
tronic reading device) and the peripherals 174 may include
devices for various types of wireless communication, such as
wifi, Bluetooth, cellular, global positioning system, etc. The
peripherals 174 may also include additional storage, includ-
ing RAM storage, solid state storage, or disk storage. The
peripherals 174 may include user interface devices such as a
display screen, including touch display screens or multitouch
display screens, keyboard or other input devices, micro-
phones, speakers, etc. In other embodiments, the system 170
may be any type of computing system (e.g., desktop personal
computer, tablet computer, laptop, workstation, nettop).
[0095] Numerous variations and modifications will
become apparent to those skilled in the art once the above
disclosure is fully appreciated. It is intended that the follow-
ing claims be interpreted to embrace all such variations and
modifications.

What is claimed is:

1. A memory controller comprising:

one or more memory channel units; and

an agent interface unit configured to be coupled to one or

more sources of memory operations, wherein the agent

interface unit is configured to:

receive a first memory operation and a second memory
operation from a source of said sources;

receive data corresponding to the second memory opera-
tion from a memory; and

accelerate processing of the first memory operation in
response to determining data corresponding to the
first memory operation has not yet been retrieved
from the memory.

2. The memory controller as recited in claim 1, wherein
accelerating processing of the first memory operation is in
further response to determining that data corresponding to the
first memory operation must be forwarded to the source prior
to the data corresponding to the second memory operation.

3. The memory controller as recited in claim 1, wherein the
agent interface unit is further configured to:



US 2013/0054902 A1

transmit memory operations to a given memory channel

unit on a first path; and

transmit push requests to the given memory channel uniton

a second path different from the first path.

4. The memory controller as recited in claim 3, wherein the
agent interface unit comprises a table for storing entries of
outstanding memory operations, and wherein the table is
configured to convey push requests on the second path.

5. The memory controller as recited in claim 3, wherein the
agent interface unit comprises one or more port interface
units, wherein each port interface unit is coupled to a respec-
tive source, and wherein each port interface unit comprises a
table for storing entries of outstanding memory operations.

6. The memory controller as recited in claim 5, wherein
each port interface unit is configured to read a corresponding
entry in the table to detect that data corresponding to a
memory operation has not yet been retrieved from the
memory.

7. The memory controller as recited in claim 5, wherein the
port interface unit comprises a read spawn generator, wherein
the read spawn generator is configured to transmit memory
operations to a respective memory channel unit on the first
path.

8. The memory controller as recited in claim 1, wherein the
agent interface unit is further configured to determine that a
respective source requires memory operations to be returned
in an original order in which the memory operations were
transmitted by the respective source.

9. The memory controller as recited in claim 8, wherein the
agent interface unit is further configured to reconstruct the
original order of memory operations prior to returning data
corresponding to memory operations to a respective source.

10. A memory controller comprising:

an interface configured to be coupled to one or more

sources of memory operations; and

one or more memory channel units, each of the one or more

memory channel units configured to interface to a
memory;

wherein a port for a given source of the one or more sources

on the interface is configured to:

receive read data awaiting forwarding to a given source;

accelerate a blocking memory operation in response to
receiving said read data.

11. The memory controller as recited in claim 10, wherein
the port is further configured to send an identification of said
blocking memory operation to a memory channel unit,
wherein the port is further configured to determine to which
respective memory channel unit to send the identifier based
on a corresponding entry from a read outstanding transaction
table.

12. The memory controller as recited in claim 10, wherein
each memory operation of the plurality of memory operations
is accompanied by a quality of service (QoS) parameter that
may be modified by a memory channel unit.

13. The memory controller as recited in claim 11, wherein
the respective memory channelunit is configured to set a push
bit of an oldest outstanding memory operation responsive to
receiving the identifier.

11

Feb. 28,2013

14. A method comprising:

receiving a first memory operation and a second memory
operation from a source, wherein the second memory
operation is received subsequent to the first memory
operation;

receiving data retrieved from a memory, wherein the data is

associated with the second memory operation;

storing the data in a buffer; and

responsive to determining data associated with the first

memory operation has not yet been retrieved from the
memory, transmitting a push request with an identifica-
tion of the first memory operation to a memory channel
unit.

15. The method as recited in claim 14, further comprising
maintaining a table, wherein the table indicates an order of
memory operations received from the source.

16. The method as recited in claim 14, further comprising
dispatching the first memory operation to the memory chan-
nel unit prior to the second memory operation.

17. The method as recited in claim 14, further comprising
the memory channel unit setting a push bit of the first memory
operation responsive to receiving the push request.

18. The method as recited in claim 14, further comprising
scheduling the second memory operation to access the
memory prior to the first memory operation responsive to
determining that reordering the first and second memory
operations will result in an increase in memory efficiency.

19. A system comprising:

one or more devices configured to transmit memory opera-

tions; and

a memory controller coupled to the one or more devices

and coupled to one or more memory devices, wherein

the memory controller is configured to:

receive an indication that a second memory operation
has been completed, wherein the second memory
operation was received from a given device; and

transmit a request to expedite the first memory operation
to a respective memory channel unit, wherein the first
memory operation was conveyed by the given device
to the memory controller prior to the second memory
operation, responsive to detecting that the first
memory operation has not yet been completed.

20. The system as recited in claim 19, wherein the given
device requires the first memory operation and the second
memory operation be completed in order.

21. The system as recited in claim 20, wherein the request
to expedite the first memory operation is an upgrade request,
and wherein the respective memory channel unit is config-
ured to raise a quality of service level of the first memory
operation responsive to receiving the upgrade request.

22. The system as recited in claim 20, wherein the request
to expedite the first memory operation is a push request, and
wherein the respective memory channel unit is configured to
set a push bit of the first memory operation responsive to
receiving the push request.

23. The system as recited in claim 20, wherein the memory
controller is further configured to determine that a first
memory operation has not yet been completed responsive to
determining that the given device enforces an order in which
memory operations are returned from the memory controller.

#* #* #* #* #*



