
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2009/0106420 A1

Creamer et al. (43) Pub. Date:

US 20090106420A1

Apr. 23, 2009

(54)

(75)

(73)

(21)

(22)

GHOSTAGENTS FOR APPLICATION
DOMAINS WITHINAGRID ENVIRONMENT

Thomas E. Creamer, Boca Raton,
FL (US); Bill H. Hilf, La Habra,
CA (US); Neil A. Katz, Parkland,
FL (US); Victor S. Moore, Lake
City, FL (US)

Inventors:

Correspondence Address:
Novak Druce + Quigg LLP
CityPlace Tower, 525 Okeechobee Blvd., Fifteenth
Floor
WEST PALM BEACH, FL 33401 (US)

Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
ARMONK, NY (US)

Appl. No.: 12/343,022

Filed: Dec. 23, 2008

12O

AZ
155 Y

(63)

(51)

(52)

(57)

Related U.S. Application Data

Continuation of application No. 10/666,309, filed on
Sep. 19, 2003.

Publication Classification

Int. C.
G06F 5/16 (2006.01)
U.S. Cl. .. 709/224

ABSTRACT

A method for evaluating system behavior of an application
domain within a grid environment can include the step of
identifying a host Software object within the application
domain. A software object can be associated with the host
software object. Within the associated software object, host
actions can be replicated. Replicated actions can be recorded.
The host software object can move from one grid within the
grid environment to a different grid. The associated Software
object can responsively move within the grid environment in
accordance with movement of the host software object.

Apr. 23, 2009 Sheet 1 of 5 US 2009/0106420 A1 Patent Application Publication

GG ||

US 2009/0106420 A1

D
D

N N

S
RS

s

Y

G

Apr. 23, 2009 Sheet 2 of 5

uyeu Jocuoleoiddy

R

2

ZZZZZZZZZZZZZZZZZZZZZZ
% 2
2 2.

Wins SSSSSSSSSSSS CCXXXXX XXXXXXXXXX XXXXXX XXX XC XXXXX XX XXYYXX. XXXXXXX XXX
a CXX s Xax X

XXX Sess
Ea.

RSSS XXX. X

Patent Application Publication

Patent Application Publication Apr. 23, 2009 Sheet 3 of 5 US 2009/0106420 A1

350

s Host 305

352 Ghost Agent 315

NY Ghost
identifier

360 325

Controller
330

Patent Application Publication Apr. 23, 2009 Sheet 4 of 5 US 2009/0106420 A1

Time 402 Ghost Agent 410

b-

Time 404

b- -is

Time 406

w
434

se-

Time 408A

D- was

Time 408B Ghost Agent 410

w v. W W

FIG. 4

Patent Application Publication Apr. 23, 2009 Sheet 5 of 5 US 2009/0106420 A1

US 2009/0106420 A1

GHOSTAGENTS FORAPPLICATION
DOMAINS WITHINAGRID ENVIRONMENT

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of, and accord
ingly claims the benefit of U.S. patent application Ser. No.
10/666,309, filed with the U.S. Patent and Trademark Office
on Sep.19, 2003, now U.S. Pat. No. , the disclosure of
which is hereby incorporated by reference.

BACKGROUND OF THE INVENTION

0002 1. Technical Field
0003. The present invention relates to the field of com
puter Software and, more particularly, to application-specific
process tracking and recordation within a grid environment.
0004 2. Description of the Related Art
0005. An application domain can be defined as an appli
cation that spans multiple grids of a grid computing environ
ment. That is, an application domain can include a set of
related tasks, which can be utilized by users of the application
domain. The computing resources used by the application
domain for performing its tasks can be provided by different
grids in a grid computing environment. Accordingly, an appli
cation domain can be a grid-based “virtual application. Appli
cation domains can include, for example, word processors,
database programs, Web browsers, development tools, draw
ing applications, image editing programs, communication
programs, and the like.
0006 AS used herein, a grid computing environment can
be a distributed computing environment where computing,
application, storage, and/or network resources can be shared
across geographically disperse organizations. An ideal grid
computing environment allows flexible, secure, coordinated
resource sharing among dynamic collections of individuals,
organizations, and resources. In the grid environment, a vari
ety of computing resources that contribute to a virtual
resource pool can be transparently utilized on an as-needed
basis. Grid computing resources in the virtual resource pool
can be treated as commodities or services, which can be
consumed in a manner similar to the commercial consump
tion of electricity and water.
0007 While grid computing may presently be at an early
stage in its evolution, several grid computing environments
have been successfully implemented. One noteworthy imple
mentation is the NC BioGrid Project that was successfully
implemented in the fall of 2001 to enable researchers and
educators throughout North Carolina to pool computing
resources for use in sequencing genes and related genetic
research. Other notable grid implementations include
SETI(a home, the Drug Design and Optimization Lab
(D2OL), and EUROGRID. Additionally, commercially avail
able software products exist for establishing a customizable
grid computing environment, Such as Avaki's data grid from
Avaki of Burlington, Me. and Grid MP Enterprise from
United Devices of Austin, Tex. Further, a number of readily
available toolkits and standards have been developed for cre
ating a grid computing environment including, for example,
the Globus Toolkit provided by the Globus project and the
Open Grid Services Architecture (OGSA).
0008. One problem with existing grid computing environ
ments relates to the logging or recordation of events or
actions. More specifically, within a grid environment, com

Apr. 23, 2009

puter processes, applications, and users can utilize computing
resources from many different hardware sources disposed
across several computing grids. Therefore, no common loca
tion exists for logging system information. Without accurate
system logs, system designers and administrators cannot
determine which computing resources are consumed by indi
vidual computer processes, application domains, and users.
Accordingly, in a grid computing environment, equitably
allocating grid computing resources among a set of consum
ers, troubleshooting computing grids, and efficiently upgrad
ing computing grids can be exceptionally difficult.
0009. As conventionally implemented, grid environments
do not generate application-specific usage records. More spe
cifically, conventional data recordation methods typically
attempt to establish standardized log files in a standardized
format used by every grid component. The various standard
ized logs can be interrogated by an application domain. Then
the application domain can then construct an application
specific activity record by piecing together the appropriate
standardized log entries.
0010 Appreciably, it is difficult to establish a mutually
agreeable log standard to be used across diverse grid compo
nents in a grid environment. One hurdle in forming Such a
standard is that different application domains can require data
recordation at different levels of granularity. Further, it can be
highly inefficient to overly record all computing actions per
formed by a grid component when records are only needed for
a limited number of application-specific computing actions.
Another hurdle is that constructing application-specific usage
records from several standardized logs can consume signifi
cant resources and time when an application domain spans a
multitude of distributed grid components.

SUMMARY OF THE INVENTION

0011. The invention disclosed herein provides a method, a
system, and an apparatus for establishing and utilizing ghost
agents for application domains within a grid environment.
More specifically, the present invention can utilize ghost
agents to record actions performed within an application
domain spanning multiple grids of a grid computing environ
ment. A ghost agent can be a software object associated with
a host software object that records actions taken by the host
Software object. A host software object can include applica
tion users, application features, application resources, and
application processes. An associated ghost agent is able to
follow its host software object from grid to grid in a grid
computing environment and is able to record the actions
performed by the host software agent. The recorded actions
can be conveyed to a ghost log repository established for a
specified application domain. This ghost log repository can
be used to model the behavior of the application domain.
0012. One aspect of the present invention includes a
method for evaluating system behavior of an application
domain within a grid environment. The method can identify a
host software object within the application domain. A soft
ware object can be associated with the host software object
and host actions can be replicated within the associated Soft
ware object. In one arrangement, the associated Software
object can be referred to as a ghost agent. The replicated
actions can be passive actions that are prevented from execut
ing in the grid environment. The associated Software object
can also record the replicated actions. For example, a location
for logging data can be determined and the recorded repli
cated actions can be conveyed to the determined location. The

US 2009/0106420 A1

determined location can be external to the associated Software
object. The host software object can be moved from one grid
within the grid environment to another grid. The associated
Software object can responsively move within the grid envi
ronment in accordance with the movement of the host soft
ware object. Multiple host software objects can be selected
within the application domain, wherein each host Software
object can be associated with a software object that replicates
and records the actions of the associated host software object.
0013. In one embodiment, usage statistics for the applica
tion domain can be determined based at least in part upon the
recorded actions. For example, usage statistics for application
domain features of the application domain can be determined.
The usage statistics can also be used to optimize performance
of the application domain.
0014. In another embodiment, the associated software
object can be disassociated from the host software object and
re-associated with a different host software object within the
application domain. Additionally, the associated Software
object can be cloned to create a copied object. The copied
object can be associated with a different host software object
within the application domain.
0015. Another aspect of the present invention can include
a system for logging application domain information within a
grid environment. The system can include an application
domain that utilizes computing resources from one or more
grids of the grid environment. The system can also include at
least one host Software object and at least one ghost agent.
Each host software object can be configured to execute
actions within the application domain, wherein different ones
of the executed actions can be executed within different grids
of the grid environment. Each ghost agent can be configured
to record the executed actions for an associated host Software
object.
0016. In one embodiment, a plurality of host software
objects and ghost agents can exist. An application domain
data store can be provided, which is configured to receive
messages from the ghost agents. An application analyzer can
also be provide, which is configured to analyze application
specific data gathered by the ghost agents.
0017. Yet another aspect of the present invention can
include a ghost agent that includes a ghost log, a ghost iden
tifier, and a ghost controller. The ghost log can record appli
cation-specific activities performed by a host software object.
The ghost identifier can identify the ghost agent to compo
nents within a grid environment. The ghost controller can
manage interactions between the ghost agent and the grid
environment. Further, the ghost agent can move from grid to
grid within the grid environment. A means for linking the
ghost agent with the host Software object can be included
within the system. Additionally, a means for disassociating
the ghostagent from the host software object and a means for
linking the disassociated ghost agent to a different host soft
ware object can be provided.

BRIEF DESCRIPTION OF THE DRAWINGS

0018. There are shown in the drawings embodiments,
which are presently preferred, it being understood, however,
that the invention is not limited to the precise arrangements
and instrumentalities shown.
0019 FIG. 1 is a schematic diagram illustrating an exem
plary grid environment enabled for ghost agents and host
processes in accordance with the inventive arrangements dis
closed herein.

Apr. 23, 2009

0020 FIG. 2 is a schematic diagram illustrating the rela
tionship between exemplary application domains and a grid
environment in accordance with the inventive arrangements
disclosed herein.
0021 FIG. 3 is a schematic diagram detailing a host soft
ware object and a ghost agent within a grid environment in
accordance with the inventive arrangements disclosed herein.
0022 FIG. 4 is a schematic diagram illustrating the inter
action between hosts and ghost agents over time in accor
dance with inventive arrangements disclosed herein.
0023 FIG. 5 is a schematic diagram illustrating the inter
action of ghostagents with components of a grid environment
and an application domain in accordance with inventive
arrangements disclosed herein.

DETAILED DESCRIPTION OF THE INVENTION

0024. The invention disclosed herein provides a method, a
system, and an apparatus for establishing and utilizing ghost
agents for application domains within a grid environment. A
ghost agent is a Software object that can be associated with a
host software object, such as an application user, an applica
tion feature, an application resource, and/or an application
process. The ghost agent can replicate the actions of the host
software object and follow the host software object whenever
the host software object moves from grid to grid. The repli
cated actions can be recorded, thereby establishing a log for
the activities of the host software object. The logs for indi
vidual ghostagents can be conveyed to a centralized applica
tion-specific ghost log repository and used to characterize the
usage of computing resources within the application domain.
0025 FIG. 1 is a schematic diagram illustrating an exem
plary grid environment 100 enabled for ghostagents and host
processes. The grid environment 100 can be a distributed
shared computing environment where a pool of computing
resources are accessible on an as needed basis to a multitude
of applications, users, and organizations. That is, within the
grid computing environment 100 computing resources can be
treated as commodities in a fashion similar to other consumer
commodities, such as electricity and water.
0026. The grid environment 100 infrastructure can include
components that utilize any hardware platform, operating
system, storage scheme, and Software resource. In order to be
integrated within the grid environment 100, each computing
component can be communicatively linked to the grid envi
ronment 100. Each computing component can also adhere to
the standards and protocols defined within the architecture of
the grid environment 100. The grid environment 100 can
include one or more grids, such as grids 110, 115, 120, and
125, communicatively linked to one another through a net
work 105. Each grid can represent a grouping of physically
differentiable hardware resources. Users, applications, and
processes utilizing the grid environment 100 can utilize com
puting resources produced by hardware residing within one
or more grids.
0027. The network 105 can communicatively link the vari
ous computing components that form the grid environment
100. The network 105 can utilize any communication
medium to facilitate information exchange within the grid
environment including, but not limited to, wireless pathways,
line-based pathways, satellite pathways, and line-of site path
ways. Moreover, the network 105 can include global net
works, local networks, and stand-alone computing devices.
For example, the network 105 can include the Internet, intra
nets, and other sub-networks. Additionally, the network 105

US 2009/0106420 A1

can include mainframes, personal computers, personal data
assistants, cellular telephones, landline telephones, net
worked peripherals, and other hardware. The network 105
can also include circuit and/or packet Switched network
equipment.
0028. The grid 110 can include a multitude of mainframe
or Supercomputers. Grids designed primarily for computing
power, often called computational grids, typically contain
one or more Supercomputers. The grid 115 can include sev
eral local area networks, workgroups, and computing arrays.
Grids including resources from dispersed local area networks
are often referred to as scattered grids.
0029. The grid 120 is yet another exemplary grid that can
include computing resources arranged according to any
topography including, but not limited to, star topographies,
Fiber Distributed Data Interface (FDDI) rings, token rings,
and the like. Organized and redundant topographies are often
used to store essential data in a redundant fashion so that
single points of failure do not result in System outages. Grids
designed primarily for data storage and retrieval are often
called data grids.
0030 The grid 125 is still another exemplary grid that can
include one or more peer-to-peer networks. The peer-to-peer
networks can be secured and/or unsecured networks. It
should be noted that any type of grid can be included in the
grid environment and that grids 110, 115, 120, and 125 are
merely illustrative examples of possible grids. One of ordi
nary skill in the art can appreciate that the invention is not to
be limited in this regard, that any hardware resources, topog
raphy, and Software can be included in the grid environment
100, and that Such arrangements are contemplated herein.
0031 Software objects called host software objects 150
can traverse the various grids 110, 115, 120, and 125 of the
grid environment and execute actions therein. Host Software
objects 150 can include such objects as user objects 130,
applications 135, application features 136, and application
resources 138. Each type of host software object 150 can
move from grid to grid within the grid environment 100.
0032 Each user object 130 can represent an identity of an
entity logged into the grid environment 100 including, but not
limited to, users, categories of users, companies, organiza
tions, and virtual organizations. The user object 130 can
execute actions responsive to requests. For example, the user
object 130 can convey user requests to Suitable components
within the grid environment 100, receive request responses,
and provide the request responses to the user.
0033 Each application 135 can represent a software unit
configured to perform a group of related actions. In one
arrangement, the application 135 can be functionally directed
towards a particular set of tasks. For example, the application
135 can be a word processing application configured to per
form tasks relating to textual electronic documents such as
editing, storing, searching, proofreading, translating, tran
scribing, formatting, and the like. In a different functional
example, the application 135 can be an interactive voice
response (IVR) application configured to automatically pro
vide customer related services.

0034. In another arrangement, the application 135 can
include a set of structurally related software objects and cor
responding methods. For example, the application 135 can
represent a region or realm within a Massive Multi-Player
Gaming (MMPG) system. In a different structural example,

Apr. 23, 2009

the application 135 can represent the set of components that
form a virtual machine executing within the grid environment
1OO.
0035 Each application feature 136 can represent a soft
ware unit configured to perform a Subset of tasks. For
example, a word processing application can include table
features, drawing features, graphic editing features, printing
features, and the like. In another example, a MMPG can
include guild features, combat features, interactive chat fea
tures, character customization features, dial-up specific con
nectivity features, character background features, language
translation features, speech recognition features, and the like.
0036) Each application resource 138 can represent a soft
ware unit configured to monitor a specified resource. A moni
tored resource can be either a hardware or a software
resource. A Software resource can include the utilization of a
software module, library, or routine. For example, a software
resource can include, but is not limited to, a data search
routine, a Dynamic Link Library (DLL), and an object linking
and embedding (OLE) object. A software resource can also
include an instance of an application when only a predefined
number of application instances can be simultaneously uti
lized. For example, many office applications, such as word
processors and databases shared across a network, can have a
limited number of licensed instances that can be utilized at
any period. A hardware resource, on the other hand, can
include any hardware resource that can be monitored such as
CPU cycles utilized, storage space consumed, pages printed,
faxes sent, email conveyed, and the like.
0037 Each host software object 150 can have an associ
ated ghost agent 155. The ghost agent 155 can replicate the
actions of the host software object 150 and follow the host
software object 150 from grid to grid. The actions replicated
within the ghost agent 155 can be recorded or logged. In one
embodiment, the replicated actions within the ghost agents
can be passive actions that are prevented from executing
within the grid environment 100. In an alternate embodiment,
the ghost agents 155 can generate active actions that are
operationally executed within the grid environment 100.
0038. It should be noted that if a statistically relevant num
ber of ghost agents 155 are included within the grid environ
ment 100, the behavior of the grid environment 100 can be
modeled. For example, if one fifth of the users of the grid
environment 100 are a statistically relevant quantity for mod
eling purposes, then grid environment 100 can be modeled by
associating a ghost agent 155 to one out of every five user
objects 130.
0039. One illustrative example of ghost agents 155 oper
ating within a grid environment 100 can relate to a MMPG
system. Each player of the MMPG system can be represented
by a user object 130 that responds to user instructions and
interacts with the gaming environment. While playing the
MMPG, players can move from one game play area to
another, thereby moving from one grid to another within the
grid environment 100. Ghost agents 155 can be attached to
selected players. For example, a MMPG developer imple
menting a new guild or organization that players can join can
attach ghost agents 155 to a portion of players belonging to
the guild so that guild related behavior can be examined. The
ghostagents 155 can record the actions of associated players
regardless of which grid a player utilizes. The recorded
actions of the monitored players can be conveyed by the ghost
agents 155 to a centralized network location configured to log
player activities.

US 2009/0106420 A1

0040 Similarly, a ghostagent 155 can record actions relat
ing to a particular object within the MMPG system, such as a
weapon. The selected object can function within the grid
environment 100 as the host software object 150. For
example, the ghost agent 155 can be associated directly with
the selected weapon, wherein the selected weapon is the host
software object 150.
0041. In another example, the actions relating to the
selected object of the MMPG system can be monitored using
one or more ghost agents 155 that are not directly associated
with the monitored object. For instance, the ghost agent 155
can be associated with whatever player currently possesses
the selected weapon and can record only weapon specific
actions. If the weapon is conveyed from one player to another,
the ghostagent 155 can automatically disassociate itself with
the first player and re-associate itself with the player now
possessing the weapon. The ghost agent can convey the
recorded actions relating to the weapon to a centralized loca
tion configured to log actions pertaining to game items. Of
course, the above MMPG example is just one possible appli
cation within which ghost agents 155 can be utilized and the
invention is not limited in this regard.
0042 FIG. 2 is a schematic diagram illustrating the rela
tionship between exemplary application domains 220 and a
grid environment 205 using the system of FIG. 1. In FIG. 2,
the grid environment 205 can be represented by node GE and
can included one or more grids 210, which can be represented
by nodes G1, G2, and G3. The grid environment 205 and the
grids 210 have been previously defined herein. Each grid 210
can provide one or more computing resources 215, which can
be represented by nodes R1, R2, R3, R4, R5, and R6. Appli
cation domains 220, which can be represented in FIG. 2 by
application domain1 and application domain 2, can span one
or more grids 210 utilizing computing resources 215 to per
form application-specific functions.
0043. The computing resources 215 can be pooled into the
resource pool of the grid environment 205 and be utilized by
various grid users on demand. Computing resources 215 can
include low-leveland high-level resources as well as software
and hardware resources. Low-level resources can include
processing cycles of a CPU, storage space in a memory,
capacity, or bandwidth within a communication pathway, and
other such hardware resources. Low-level resources can also
include microcode routines, threads, CPU processes, and
other such software resources. High-level hardware comput
ing resources can include printers, fax machines, copiers,
input devices, display devices, database storage space,
removable media, and the like. High-level software resources
can include algorithms and heuristics Such as database search
routines, spell-checking routines, transcription services, text
to-speech services, format conversions, and the like.
0044) The application domains 220 can function as a “vir
tual applications' disposed within the grid environment 205
that are accessible by users communicatively linked to the
grid environment 205. Unlike traditional applications that
reside on one server, each of the application domains can
physically span across several geographically disperse hard
ware resources yet logically function as a single set of user
accessible tasks. Exemplary application domains 220 can
include productivity applications, entertainment applica
tions, development applications, office applications, utility
applications, multimedia applications, data management
applications, graphic design applications, and the like.

Apr. 23, 2009

0045 FIG. 3 is a schematic diagram detailing a host soft
ware object 305 and a ghost agent 315 within a grid environ
ment 300 in accordance with the inventive arrangements
described herein. The host software object 305 can be any
definable software unit within the grid environment 300 that
can receive input 350 and execute actions 356. For example,
the host software object 305 can include, but is not limited to,
a user object, an application, and a process.
0046. The ghost agent 315 can be a passive or active soft
ware object that can be associated with a host software object
305 and replicate message flows received from and per
formed by the host software object 305. The ghost agent 315
can copy the host input 350 received by the host software
object 305, thereby creating ghost input 352. The ghostagent
315 can also replicate the host actions 356 performed by the
host software object 305, wherein the replicated actions can
be referred to as ghost actions 358. The operation of the host
software object 305 is generally not appreciably affected by
the existence of the ghost agent 315. Consequently, the rela
tionship between the host software object 305 and the ghost
agent 315 can often be considered a passive one.
0047. The ghost agent 315 can include a ghost log 320, a
ghost identifier 325, and a ghost controller 330. The ghost log
320 can record the ghost input 350 and ghost actions 358,
thereby creatingalog. The ghost log 320 can be configured to
record all activities relating to the associated host Software
object 305 or can be configured to record only selected activi
ties. For example, in one embodiment, the ghost log 320 can
record only activities considered errors, thereby generating
an error log. In another example, the ghost log 320 can record
a statistically relevant portion of actions, such as recording
every fifth ghost input 352 and corresponding ghost actions
358. The ghost log 320 can also capture system information
and add annotations from this system information to the gen
erated log.
0048 For example, system clock information can be cap
tured and used to annotate the time between receiving a ghost
input 352 and generating ghost actions 358. In another
example, metadata information contained within message
flows, such as host input 350, ghost input 352, host action
356, and ghost action 358, can be utilized by the ghost log
320. Additionally, the ghost log 320 can time stamp actions
recorded within the ghost agent 315.
0049. The ghost log 320 can also record the log informa
tion in a ghost log repository 340. The ghost log repository
340 can be a temporary buffer or a persistent data storage
area. If the ghost log repository 340 is external to the ghost
agent 315, any of a variety of different mechanisms can be
utilized to convey the log data to the ghost log repository 340.
0050 For example, an intermittent communication link,
Such as a unicast or a point-to-point communication link can
be established between the ghost log 320 and the ghost log
repository 340 through which data can be conveyed. In
another example, a buffer space within the ghost agent 315
can record log information. Whenever the buffer reaches a
specified Volume of data, a message containing the buffered
information can be conveyed to the ghost log repository 340
and the buffer within the ghost agent 315 can be cleared and
used to store fresh data.
0051. In yet another example, ghostagents 315 can convey
log data to a local data server. The local data server can then
convey all received log data to the ghost log repository 340
from time to time or on a periodic basis. In still another
example, the ghost agent 315 can intermittently deposit log

US 2009/0106420 A1

data to a local location. Then a data-reaping object can gather
packets of the log data that have been locally deposited by the
various ghost agents 315. The packets of log data can be
conveyed to the ghost log repository 340 by the data-reaping
objects.
0052 While ghost log repository 340 is depicted as being
external and possibly remotely located from the ghost agent
315, it should be appreciated that the ghost log repository 340
can also be an allocated memory space internal to the ghost
agent 315. For example, the ghost log repository 340 can be a
dynamically allocated segment of random access memory
(RAM) available to the ghost agent 315 as needed.
0053. The ghost identifier 325 can provide identification,
authorization, and security related functions for the ghost
agent 315. That is, the ghost identifier 325 can identify the
ghost agent 315 to the various components of the grid envi
ronment 300. Accordingly, servers in the grid environment
300 can have an awareness of the ghost agent 315. The grid
servers can then use policy-based controls to manage permis
sions, authentication, resource utilization, and security for the
ghost agents 315. Ghost agents 315 adhering to the estab
lished policies can be permitted to automatically enter and
exit the various grids of the grid environment 300.
0054 The ghost agent 315 can be granted different access
privileges to computing resources as the ghost agent 315
traverses from one grid in a grid environment 300 to another
depending on grid-based policies. Privileges afforded the
ghostagent 315 can be determined any manner known in the
art. For example, a ghost agent 315 can replicate the pass
words provided by the host software object 305 and use the
replicated passwords to provide authentication to the grid
environment 300. In another example, before a ghost agent
315 can be permitted to follow an associated host software
object 305 from one grid in the grid environment 300 to the
next, a password or digital certificate unique to the ghost
agent 315 can be required. The ghost agent 315 can receive
the same system privilege level with the grid environment 300
as the host software object 305 or can receive a different
privilege level.
0055. The ghost controller 330 can manage the ghost
agent 315. For example, the ghost controller 330 can establish
a life span for a particular ghost agent 315 so that the ghost
agent 315 self-terminates after a designated period. In another
example, the ghost controller 330 can restrict the computing
resources consumed by the ghost agent 315, thereby freeing
up system resources in the grid environment 300 for improved
operational performance. Alternately, the ghost controller
330 can increase the computing resources consumed by the
ghost agent 315, thereby slowing down operational perfor
mance in the grid environment 300. Slowing performance can
be beneficial when simulating a load during testing.
0056. In one embodiment, the ghost controller 330 can
accept control signals 360 from an external source. For
example, the ghost controller 330 can receive control signals
360 causing the ghostagent 315 to alter previously designated
behavior. Further, the ghost controller 330 can include a lis
tener object capable of responding to particular events broad
casted by a corresponding notifier object. For example, a
server could broadcast a signal causing all ghost controllers
330 to limit the resource consumption of all ghost agents 315
presently disposed in the server. Similarly, a grid wide broad
cast could cause specified ghostagents 315 to self-terminate.
0057. In one embodiment, the ghost actions 358 can be
transmitted into the grid environment 300 by the ghost con

Apr. 23, 2009

troller 330 to be executed. For example, the ghost action 358
can be directed to a test environment, as opposed to an opera
tional environment, in order to prevent duplicative actions
from being operationally performed. Ghost actions 358 can
be also be directly executed within an operational environ
ment. When duplicative actions are operationally undesir
able, the results of executed ghost actions 358 can be rolled
back.

0058. In another embodiment, the ghost actions 358 can be
logged internally yet not be transmitted to system compo
nents external to the ghost agent 315. For example, when the
ghostagent 315 is a passive software object, the ghost actions
358 need not be transmitted for execution.

0059 A ghost interface 310 can be used to associate or
bind the ghost agent 315 with the host software object 305
using any suitable technique. For example, techniques used
by Software debugging programs to attach monitors to run
ning programs in order to evaluate system behavior and step
through code can be used to bind the ghost agent 315 with the
host software object 305. Additionally, techniques used by
system calibration and hardware performance testing utilities
can be used by the ghost interface 310 to bind the ghostagent
315 with the host software object 305. Further, operating
system level commands, tools, and functions analogous or
similar to the UNIX commands “strace' and “ttrace.” can be
used by the ghost interface 310 to bind the host software
object 305 with the ghost agent 315.
0060 FIG. 4 is a schematic diagram illustrating the inter
action between hosts and ghost agents over time in accor
dance with the inventive arrangements disclosed herein. The
interaction can begin at time 402 with an unassociated ghost
agent 410 and a host software object 405 executing host
actions 430. At time 404, the ghost agent 410 can associate
itself with the host software object 405. During this associa
tion process, each host action 430 within the host software
object 405 can be replicated within the ghost agent 410 as a
ghost action 432. Further, anytime a new action is initiated
within the host software agent 410, the new action can be
replicated within the associated ghost agent 410.
0061 Each ghost action 432 can be either a passive or an
active action. For example, the host actions 430 can be
executed within the grid environment while the ghost actions
432 can be passive actions that are operationally disabled.
Passive actions are those actions that do not affect the opera
tional behavior of the host software agent 405. Passive actions
are also not executed or acted upon by an operational portion
of the grid environment. Accordingly, passive actions can be
utilized primarily for logging and/or testing purposes.
0062. In another arrangement, the ghost actions 432 can be
active actions affecting the operational performance of the
environment and/or the associated host software agent 405.
For instance, a ghost action 432 can consume limited com
puting resources thereby inducing a delay into the system and
potentially slowing down system response time for the cor
responding host software object 405. Delays induced by
ghost actions 432 can be tailored by changing the execution
details of the instruction set described within individual ghost
actions 432.

0063 For example, if a host action 430 invokes a portion
of code Such as an interactive process that cycles fifty times,
the originally copied ghost action 432 can also cycle fifty
times. The ghostagent 410 can increase the number of cycles
in the iterative process to some number greater than fifty to

US 2009/0106420 A1

slow down processing time and can decrease the cycles to a
number less than fifty to speed up processing time.
0064. At time 406, an interaction between host software
object 405 and host software object 415 executing actions 434
can occur. This interaction can trigger either a transfer of the
ghost agent 410 or a cloning of the ghost agent 410, wherein
time 408A illustrates the results of an exemplary transfer
action and time 408B illustrates the results of an exemplary
cloning action.
0065. At time 408A, the ghostagent 410 can be transferred
from host software object 405 to host software object 415. For
example, the ghost agent 410 can be first disassociated with
host software object 405. The disassociation causes the ghost
agent 410 to stop replicating actions of the host 405. Then the
ghost agent 410 can be associated with host software object
415. During the association, the actions 434 can be replicated
within ghostagent 410 resulting in ghost actions 436. Accord
ingly, the actions now recorded by the ghost agent 410 and
placed within a ghost log repository are based upon host
software object 415 and are not based upon host software
object 405. In another example, the ghost agent 410 can be
replicated and attached to the host software agent 415. Once
replicated, the original ghost agent 410 associated with the
host software object 405 can be deleted.
0066. At time 408B, the ghost agent 410 can be cloned
resulting in the creation of ghostagent 412, which is a copy of
ghostagent 410. Ghostagent 412 is then associated with host
415. During the association, the actions 434 can be replicated
within ghostagent 412. Accordingly, the actions for both host
software object 405 and host software object 415 can be
recorded by respective ghost agents 410 and 412 and there
after placed in the ghost log repository for logging purposes.
0067. It should be noted that ghostagents 410 and 412 can
be self-managing, self-identifying Software objects capable
of performing predefined tasks in a self-sufficient manner.
For example, the ghost agents 410 and 412 can be pro
grammed to seek a host Software object of a specified type, to
track a desired host Software object from one grid location to
another within a grid environment, to move from one grid in
a grid environment to another, and/or to associate with host
Software objects. In another example, the ghost agents 410
and 412 can be programmed to clone and attach themselves
whenever a predetermined condition occurs, such as when
ever a user object of a particular type is encountered.
0068 FIG. 5 is a schematic diagram illustrating the inter
action of ghostagents with components of a grid environment
505 and an application domain environment 510 in accor
dance with inventive arrangements disclosed herein. Within
the grid environment 505, a host software object 550 and an
associated ghost agent 545 can move from grid 515 to grid
520 and back over time. That is, the various grids of the grid
environment 505 contain different computing resources that
the host software object 550 can utilize. The ghost agent 545
can record the actions taken by the host software object 550
regardless of the grid in which the action was executed.
0069. Movement of the host software object 550 and the
ghost agent 545 from grid 515 to grid 520 can occur in many
different ways. For example, movement can signify the con
veyance of a self-managing software object from grid 515 to
grid 520, which can include the software object providing
identification information to grid 520 and the software object
receiving authorization to enter grid 520.
0070. In another example, the movement can actually
involve duplicating in grid 520 at least an operational portion

Apr. 23, 2009

of a software object of grid 515. In such an example, the data
recorded in grid 515 by the ghostagent 545 can be duplicated
either when the ghost agent 545 is created in grid 520 or can
be excluded from the duplicated ghostagent 545. If the dupli
cated ghost agent 545 does not contain the previously
recorded data, this data can be conveyed to a data storage area
before the original ghost agent 545 of grid 515 is terminated.
0071. The various ghost agents can be associated with
particular application domains of the application domain
environment 510. For example, the ghost agent 545 can be
used to record data for application domain 525. From time to
time, the recorded data can be conveyed from a ghostagent to
an application domain data store 535. Different ghost agents
within the grid environment 505 can be associated with other
application domains, such as application domain 530 that
records data in application domain data store 540.
0072 A data analyzer 570 can examine the data stored
within the application domain data store 535 for patterns. The
data analyzer 570 can utilize a variety of different analysis
techniques known in the art for a variety of different purposes.
For example, the data analyzer 570 can determine the features
of the application domain 525 that are used the most so that
developers can focus on the most utilized features when pro
viding additional enhancements to the application domain
525. Similarly, the data analyzer 570 can determine the fea
tures of the application domain 525 that are used the least so
that developers can shift their attention away from maintain
ing and enhancing the segments of the application domain
525 that are seldom utilized. In another example, the data
analyzer 570 can determine traffic or usage patters among
various computing resources within the application domain
525. The traffic patterns can be used to optimize the perfor
mance of the application domain or increase the efficiency
with which the application domain 525 utilizes resources.
The data analyzer 570 can also determine if patterns exist
between groupings of users and application features in order
to target application domains for specific groups of users.
0073. The present invention can be realized in hardware,
software, or a combination of hardware and software. The
present invention can be realized in a centralized fashion in
one computer system or in a distributed fashion where differ
ent elements are spread across several interconnected com
puter systems. Any kind of computer system or other appa
ratus adapted for carrying out the methods described herein is
Suited. A typical combination of hardware and Software can
be a general-purpose computer system with a computer pro
gram that, when being loaded and executed, controls the
computer system such that it carries out the methods
described herein.

0074 The present invention also can be embedded in a
computer program product, which comprises all the features
enabling the implementation of the methods described
herein, and which when loaded in a computer system is able
to carry out these methods. Computer program in the present
context means any expression, in any language, code or nota
tion, of a set of instructions intended to cause a system having
an information processing capability to perform a particular
function either directly or after either or both of the following:
a) conversion to another language, code or notation; b) repro
duction in a different material form.

0075. This invention can be embodied in otherforms with
out departing from the spirit or essential attributes thereof.
Accordingly, reference should be made to the following

US 2009/0106420 A1

claims, rather than to the foregoing specification, as indicat
ing the scope of the invention.

What is claimed is:
1. A computer implemented system for logging application

domain information within a grid environment comprising:
an application domain, wherein said application domain

comprises a plurality of computing resources located in
a plurality of different grids in said grid environment for
executing actions of at least one host software object,

wherein different ones of said executed actions are
executed within different grids of said grid environment
by transferring said at least one host Software object
among said different grids, and

wherein said application domain associates at least one
ghostagent located in one of said different grid to said at
least one host software object operating within said one
different grid, wherein said at least one ghost agent is
configured to replicate and record said executed actions
of said associated host software object in said one grid,
and wherein in response to transferring said associated
host software object from one computing resource in
one grid of said grid environment to another computing
resource in another grid of said grid environments said
associated ghost agent is also transferred from said one
grid to said another grid, wherein said associated ghost
Software object replicates said host Software actions
within said another grid, and wherein said associated
ghost software object records said replicated actions in
said another grid.

2. The system of claim 1, wherein said at least one host
Software object comprises a plurality of host Software objects,
and wherein said at least one ghostagent comprises a plurality
of ghost agents.

3. The system of claim 2, said application domain further
comprising:

an application domain data store configured to receive
messages from said ghost agents.

4. The system of claim 2, said application domain further
comprising:

an application analyzer configured to analyze application
specific data gathered by said ghost agents.

5. A computer-readable storage medium having stored
thereon, a computer program having a plurality of code sec
tions executable by a machine for causing the machine to
perform the steps of:

recording in a ghost log of a ghostagent associated to a host
Software object application-specific activities per
formed by said host software object operating in com
puting resources of different grids of a grid environment,
wherein said host software object is transferred between
said different grids to execute at least one of said activi
ties;

identifying said ghostagent to components within said grid
environment using a ghost identifier of said ghostagent;
and,

managing interactions between said ghost agent and said
grid environment using a ghost controller of said ghost
agent, wherein in response to said transfer of said host
Software object from one grid to another grid in said grid
environment said ghost controller transfers said ghost
agent from said one grid to said another grid within said
grid environment.

Apr. 23, 2009

6. The storage medium of claim 5, further comprising code
sections for:

disassociating said associated ghost agent from said host
Software object; and,

re-associating said disassociated ghost agent to a different
host Software object in a same one of said grids as said
disassociated ghost agent.

7. A computer-readable storage medium having stored
thereon, a computer program having a plurality of code sec
tions, said code sections executable by a machine for causing
the machine to perform the steps of:

identifying a host Software object operating within a com
puting resource of an application domain, said comput
ing resource within one grid of said grid environment;

associating a ghost software object located within said one
grid to said host Software object, wherein said associated
ghost software object replicates actions of said host soft
ware executed within said one grid, and wherein said
associated ghost Software object records said replicated
actions;

transferring said host software object from said computing
resource in said one grid within said grid environment to
another computing resource, said another resource
within another grid within said grid environment; and,

responsive to transferring said host object to said another
grid, transferring said associated ghost Software object
from said one grid to said another grid, wherein said
associated ghost Software object replicates said host
Software actions within said another grid, and wherein
said associated ghost software object records said repli
cated actions in said another grid.

8. The computer-readable storage medium of claim 7, fur
ther comprising the step of

determining usage statistics for said application domain
based at least in part upon said recorded actions.

9. The computer-readable storage medium of claim 8, fur
ther comprising the step of

optimizing performance of said application domain based
upon said usage statistics.

10. The computer-readable storage medium of claim 7.
wherein said replicated actions are passive actions, said
method further comprising the step of

preventing said replicated actions from operationally
executing in said grid environment.

11. The computer-readable storage medium of claim 7.
further comprising the steps of

determining a location for logging data that is external to
said associated Software object; and,

conveying said recorded replicated actions to said deter
mined location.

12. The computer-readable storage medium of claim 7.
further comprising the steps of

disassociating said associated ghost Software object from
said host software object; and,

re-associating said ghost software object to a different host
Software object within a same one of said grids as said
disassociated ghost software object.

13. The computer-readable storage medium of claim 7.
further comprising the steps of

US 2009/0106420 A1 Apr. 23, 2009
8

cloning said associated ghost software object to create a selecting a plurality of host software objects within said
cloned ghost software object; and, application domain; and,

associating said cloned ghost object to a different host for each said selected host Software object, repeating said
Software object within a same one of said grids as said associating step, said replicating step, said recording
cloned ghost object. step, and said transferring steps.

14. The computer-readable storage medium of claim 7.
further comprising the steps of ck

