

US 20110262978A1

(19) United States(12) Patent Application Publication

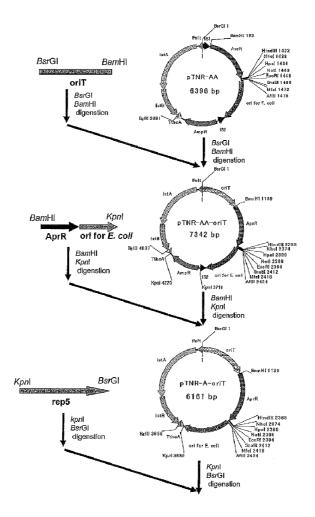
Fujii et al.

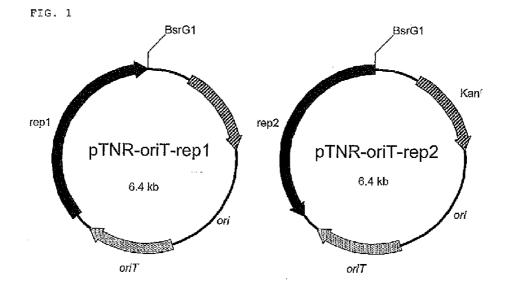
(10) Pub. No.: US 2011/0262978 A1 (43) Pub. Date: Oct. 27, 2011

(54) EXPRESSION VECTOR FOR PSEUDONOCARDIA AUTOTROPHICA

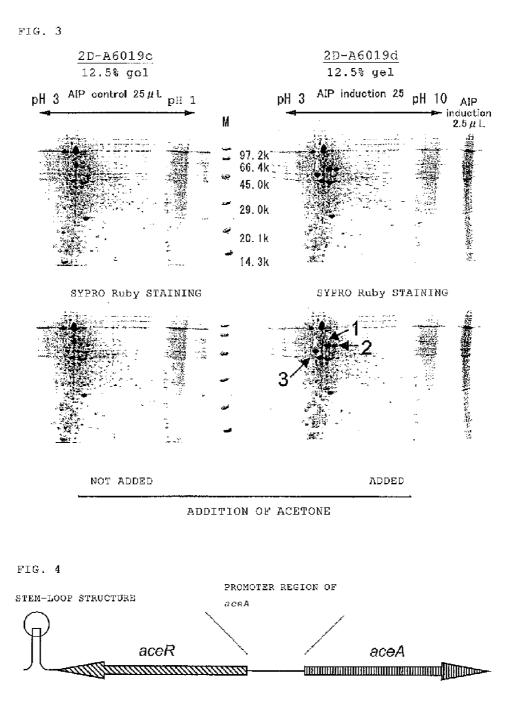
- (75) Inventors: Yoshikazu Fujii, Chuo-ku (JP); Tadashi Fujii, Chuo-ku (JP); Akira Arisawa, Chuo-ku (JP); Tomohiro Tamura, Sapporo-shi (JP)
- (73) Assignee: MERCIAN CORPORATION, Chuo-ku, Tokyo (JP)
- (21) Appl. No.: 13/122,675
- (22) PCT Filed: Oct. 5, 2009
- (86) PCT No.: PCT/JP2009/067324 § 371 (c)(1),
 - (2), (4) Date: Apr. 5, 2011

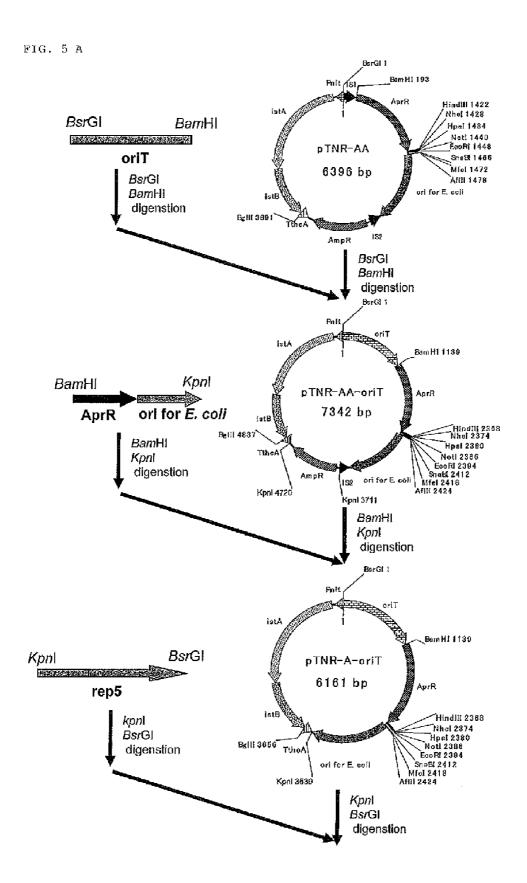
(30) Foreign Application Priority Data


Publication Classification


(51)	Int. Cl.	
	C12P 7/02	(2006.01)
	C12N 15/74	(2006.01)
	C12N 9/02	(2006.01)
	C12P 7/62	(2006.01)
	C12N 15/63	(2006.01)
	C12N 1/21	(2006.01)

(52) **U.S. Cl.** **435/127**; 435/320.1; 435/252.3; 435/189; 435/135


(57) ABSTRACT


An expression vector capable of expressing a foreign gene in *Pseudonocardia autotrophica*; a transformant of *Pseudonocardia autotrophica* produced by using the expression vector; a method for producing a protein by using the transformant; a method for producing an active form of vitamin D3 from vitamin D3, which comprises highly expressing a gene encoding an enzyme involved in the synthesis of the active form of vitamin D3 in a transformant by using the expression vector or the transformant; a method for producing 25-hydroxyvitamin D2 from vitamin D2; and a method for producing pravastatin from compactin, which comprises highly expressing a compactin hydroxylase gene in a transformant by using the expression vector or the transformant.

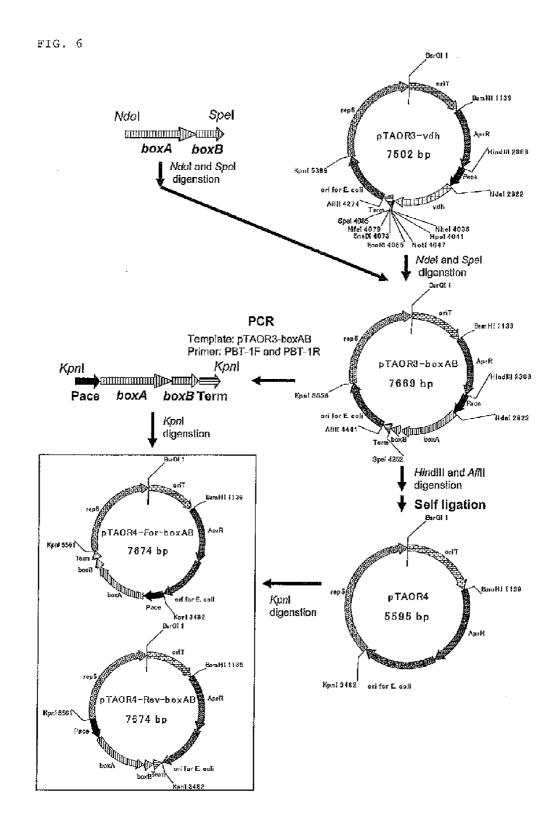


FIG. 2 4000 Dso-like	5000 Replicase	6000 Sso-like	7000	8000
CONSTRUCTED PRIM (F; HAVING BamHI $1F \rightarrow 420$ $2F \rightarrow 3$	SITE, R; HAVING B. -5750 ◀ 1- -59		Dsc: Double : Ssc: Single st COLONIES OF COLONIES	rand origin F TRANSFORMANT 8 APPEARED
3F	→ 4610-			NONIES APPEARED HIES APPEARED
PRIMER 2	AMPLIFIED DNA FRAG		rep1: O rep2: ×	
2F & 7R 3F & 7R 1F & 6R 1F & 5R 2F & 6R 2F & 6R 2F & 5R 2F & 4R 3F & 6R 3F & 6R 3F & 6R 3F & 4R			rep3: × rep4: × rep5: ○ rep6: △ rep7: × rep8: △ rep9: △ rep10: × rep11: × rep12: × rep13: ×	2.1 kb 1.8 kb 1.5 kb 1.9 kb 1.6 kb 1.3 kb 1.7 kb

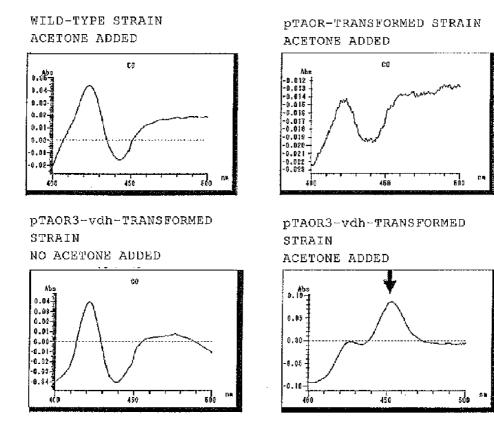


FIG. 8

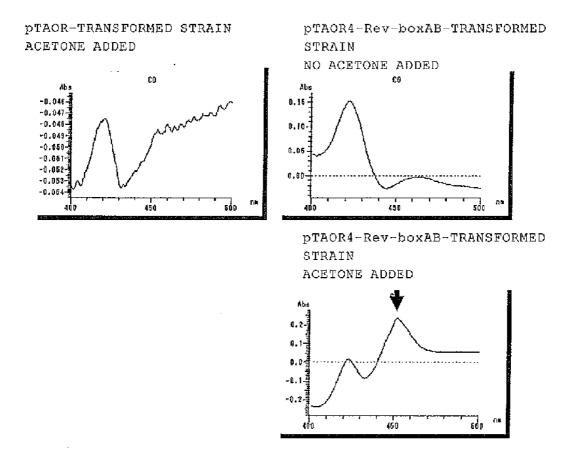
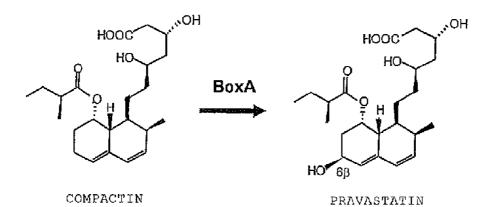
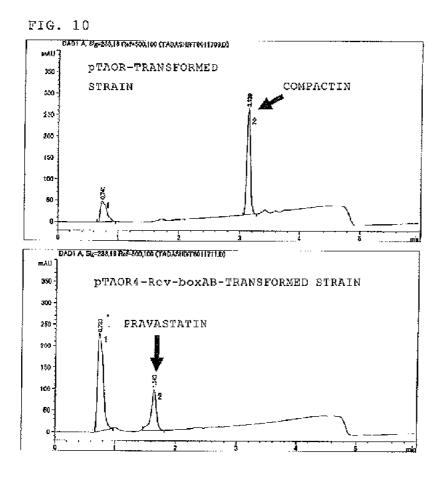
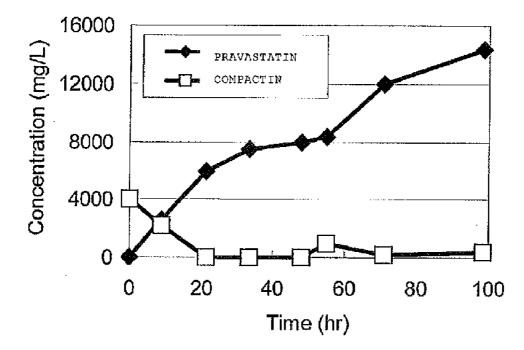





FIG. 9

EXPRESSION VECTOR FOR PSEUDONOCARDIA AUTOTROPHICA

TECHNICAL FIELD

[0001] The present invention relates to: an expression vector capable of expressing a foreign gene in *Pseudonocardia autotrophica*; a transformant of *Pseudonocardia autotrophica* produced by using the expression vector; and a method of producing a recombinant protein by using the transformant.

[0002] The present invention also relates to a method of producing an active form of the vitamin D group and pravastatin by using the above-mentioned expression vector and transformant.

BACKGROUND ART

[0003] *Pseudonocardia autotrophica* is one of actinomycetes and is known to have an ability to convert the vitamin D group such as vitamin D3 from an inactive form to an active form (K. Takeda, J. Ferment. Bioeng., 78(5), 380-382 (1994); Non Patent Document 1).

[0004] Vitamin D3 synthesized in biological synthesis systems is usually in an inactive form and shows little physiological activities without further treatments. The inactive form of vitamin D3 is hydroxylated at positions 25 and 1 α in the liver and kidney, respectively, and is converted into the active form of vitamin D3 (1 α ,25-dihydroxyvitamin D3) which shows various physiological activities. Therefore, the hydroxylation reaction from the inactive form to the active form is a particularly important step in expression of a function of vitamin D3.

[0005] The active form of vitamin D3 is known to promote absorption of calcium into the body and deposition of calcium to bone tissues, and deficiency of vitamin D3 causes a variety of diseases due to an abnormality of calcium metabolism, such as osteoporosis. Further, in recent years, involvement of the active form of vitamin D3 in cellular differentiation induction and immune regulation has attracted attention. Therefore, the active form of vitamin D3 can be used as a drug for improving or treating a disease caused by the abnormality of calcium metabolism, cellular differentiation, immune regulation, or the like.

[0006] As mentioned above, the active form of vitamin D3 can be used as a drug for treating a variety of diseases, but in the case where the active form of vitamin D3 is industrially produced, there are problems such as complex production steps and low yield in chemical synthesis. Therefore, establishment of a more efficient method of producing the active form of vitamin D3 has been desired.

[0007] In recent years, an ischemic heart disease caused by coronary arteriosclerosis is increasing in accordance with aging of population and westernization of diets. The incidence rate of the ischemic heart disease is known to increase in the case where a serum cholesterol value exceeds a certain level (W. B. Kannel, Ann. Inntern. Med., 74, 1 (1971); Non Patent Document 2). Cholesterol present in the body includes cholesterol absorbed from a diet and cholesterol biosynthesized in a living body. In the case of humans, it is reported that the amount of cholesterol biosynthesized is 3 to 4 times larger than that of cholesterol absorbed from a diet (J. M. Dietschy, N. Engl. J. Med., 282, 1179 (1970); Non Patent Document 3). Therefore, it is expected that suppression of biosynthesis of

cholesterol lowers serum cholesterol value to thereby obtain preventing and treating effects on ischemic heart diseases.

[0008] As inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which is a key enzyme of cholesterol biosynthesis, compactin and pravastatin obtained by hydroxylation of compactin at position 6β have been discovered (JP 61-13699 B (U.S. Pat. No. 4,346,227, etc.) (Patent Document 1), U.S. Pat. No. 4,346,227 (Patent Document 2), U.S. Pat. No. 4,410,629 (Patent Document 3), and U.S. Pat. No. 4,448,979 (Patent Document 4)). Pravastatin exhibits an excellent cholesterol biosynthesis inhibitory activity and organ-selective inhibitory activity and hence is used as an anti-hyperlipidemia agent for treating or preventing the ischemic heart disease such as arteriosclerosis.

[0009] As methods of synthesizing pravastatin, microbiological methods each including converting compactin used as a raw material into pravastatin by hydroxylation of compactin at position 6β are known (JP 62-54476 B (U.S. Pat. No. 4,346,227, etc.) (Patent Document 5), U.S. Pat. No. 4,346, 227 (Patent Document 2), U.S. Pat. No. 4,410,629 (Patent Document 3), U.S. Pat. No. 4,448,979 (Patent Document 4), and U.S. Pat. No. 5,179,013 (Patent Document 6)). However, the microbiological methods are insufficient in terms of pravastatin production ability and production efficiency, and hence establishment of a more efficient method of producing pravastatin has been desired.

[0010] The reaction from compactin into pravastatin is hydroxylation as in the case of the reaction from vitamin D3 into the active form of vitamin D3, and the use of *Pseudonocardia autotrophica* to be used in industrial production of the active form of vitamin D3 (K. Takeda, J. Ferment. Bioeng., 78(5), 380-382 (1994); Non Patent Document 1) has been expected to provide an efficient pravastatin production system. However, an expression vector for *Pseudonocardia autotrophica* serving as a host has not been reported.

CITATION LIST

Patent Documents

- [0011] [PATENT DOCUMENT 1] JP 61-13699 B
- [0012] [PATENT DOCUMENT 2] U.S. Pat. No. 4,346,227
- [0013] [PATENT DOCUMENT 3] U.S. Pat. No. 4,410,629
- [0014] [PATENT DOCUMENT 4] U.S. Pat. No. 4,448,979
- [0015] [PATENT DOCUMENT 5] JP 62-54476 B
- [0016] [PATENT DOCUMENT 6] U.S. Pat. No. 5,179,013

Non Patent Documents

- [0017] [NON PATENT DOCUMENT 1] K. Takeda, J. Ferment. Bioeng., 78(5), 380-382 (1994)
- [0018] [NON PATENT DOCUMENT 2] W. B. Kannel, Ann. Inntern, Med., 74, 1 (1971)
- [0019] [NON PATENT DOCUMENT 3] J. M. Dietschy, N. Engl. J. Med., 282, 1179 (1970)

DISCLOSURE OF INVENTION

Problem to be Solved by the Invention

[0020] An object of the present invention is to provide: an expression vector capable of expressing a foreign gene in *Pseudonocardia autotrophica*; a transformant of *Pseudonocardia autotrophica* produced by using the expression vector; and a method of producing a protein by using the transformant.

[0021] The present invention also relates to a method of producing an active form of vitamin D3 from vitamin D3 by highly expressing a gene encoding an enzyme involved in synthesis of the active form of vitamin D3 in a transformant by using the above-mentioned expression vector and transformant. The converting enzyme also has an activity to hydroxylate vitamin D2 at position 25, and hence the present invention also relates to a method of producing 25-hydrox-yvitamin D2 from vitamin D2.

[0022] The present invention also relates to a method of producing pravastatin from compactin by highly expressing a compactin hydroxylase gene in a transformant by using the above-mentioned expression vector and transformant.

Means to Solve the Problem

[0023] Recently, production of the active form of vitamin D3 using a microorganism has attracted attention instead of production of the active form of vitamin D3 by chemical synthesis. The method includes: giving an inactive form of vitamin D3 to a microorganism capable of converting vitamin D3 from an inactive from to an active form to produce the active form of vitamin D3 in the cells; and separating and purifying the resultant product. One of the microorganisms to be used is *Pseudonocardia autotrophica*.

[0024] An enzyme of cytochrome P450 group is known as an enzyme which catalyzes a hydroxylation reaction, and enzymes belonging to cytochrome P450 family have been discovered in a variety of bacteria.

[0025] The inventors of the present invention have made intensive studies to perform production of an active form of the vitamin D group using *Pseudonocardia autotrophica* more efficiently, and as a result, the inventors have found out that the active form of the vitamin D group can be produced more efficiently by: introducing a gene of an enzyme involved in synthesis of the active form of the vitamin D group into cells of *Pseudonocardia autotrophica* to be transformed; and expressing the enzyme protein in the transformant.

[0026] Further, the inventors of the present invention have made intensive studies to establish a method of producing pravastatin using *Pseudonocardia autotrophica* as a host, and as a result, the inventors have established a method of highly efficiently producing pravastatin by: introducing a gene of an enzyme involved in synthesis of pravastatin into cells of *Pseudonocardia autotrophica*; and expressing the enzyme protein in the transformant.

[0027] An expression vector for *Pseudonocardia autotrophica* serving as a host has not been known, and hence the inventors of the present invention has constructed a novel expression vector capable of introducing and expressing the target gene in *Pseudonocardia autotrophica*. Moreover, in order to efficiently produce the target protein in the transformant, the inventors has constructed a novel promoter capable of inducing expression of the target gene by an easy method, and thus completed the present invention.

[0028] That is, the present invention relates to the following items [1] to [12].

[1] An expression vector, including a replication initiation region derived from *Pseudonocardia autotrophica*, a multicloning site for introducing an exogenous gene, an exogenous gene introduced into the multicloning site, a promoter, a terminator, and a selection marker, which autonomously replicates in cells of *Pseudonocardia autotrophica* to enable expression of the exogenous gene introduced.

[2] The expression vector according to [1] above, in which the replication initiation region comprises a base sequence represented by SEQ ID NO: 49 or a complementary sequence thereof, or a base sequence having 80% or more homology to the above base sequence or a complementary sequence thereof.

[3] The expression vector according to [1] or [2] above, in which the promoter is induced by acetone to express the exogenous gene.

[4] The expression vector according to [3] above, in which the promoter region comprises a base sequence represented by SEQ ID NO: 26 or a complementary sequence thereof, or a base sequence having 80% or more homology to the above base sequence or a complementary sequence thereof.

[5] The expression vector according to any one of [1] to [4] above, further including a replication initiation region derived from *Escherichia coli*, and being autonomously replicable in both *Pseudonocardia autotrophica* and *Escherichia coli*, and can be used as a shuttle vector.

[6] The expression vector according to [5] above, having an oriT region and can perform transformation by conjugation of *Escherichia coli* S17-1 and *Pseudonocardia autotrophica*.

[7] The expression vector according to any one of [1] to [6] above, in which the exogenous gene is a gene encoding vitamin D hydroxylase or a gene encoding compactin hydroxylase.

[8] A transformant of *Pseudonocardia autotrophica* having introduced thereinto the expression vector according to any one of [1] to [7] above.

[9] A method of producing a protein comprising: introducing the expression vector according to any one of [1] to [7] above into *Pseudonocardia autotrophica* to be transformed; and expressing the exogenous gene in the resultant transformant to produce a protein.

[10] A method of producing an active form of vitamin D including: transforming *Pseudonocardia autotrophica* with the expression vector according to any one of [1] to [7] above, having introduced thereinto a vitamin D hydroxylase gene as an exogenous gene; and using the resultant transformant.

[11] The method of producing an active form of vitamin D according to [10] above, in which the active form of vitamin D is 25-hydroxyvitamin D2, 25-hydroxyvitamin D3, or 1α ,25-dihydroxyvitamin D3.

[12] A method of producing pravastatin including: transforming *Pseudonocardia autotrophica* with the expression vector according to any one of [1] to [7] above, having introduced thereinto a compactin hydroxylase gene as an exogenous gene; and using the resultant transformant to produce pravastatin from compactin.

Advantageous Effects of Invention

[0029] The expression vector of the present invention has a replication initiation region which enables autonomous replication in *Pseudonocardia autotrophica*, and hence can introduce and express the target gene into *Pseudonocardia autotrophica*.

[0030] Moreover, when a transformant of *Pseudonocardia autotrophica* having introduced thereinto the expression vector of the present invention is used, an enzyme gene involved in synthesis of an active form of vitamin D3 in the transformant can be highly expressed. Therefore, it is possible to produce the active form of vitamin D3 from vitamin D3 more efficiently and at a higher yield compared with a conventional

system for producing the active form of vitamin D3 using *Pseudonocardia autotrophica*.

[0031] In addition, when the transformant of *Pseudonocardia autotrophica* having introduced thereinto the expression vector of the present invention is used, an enzyme gene involved in synthesis of pravastatin in the transformant can be highly expressed. Therefore, it is possible to produce pravastatin from compactin highly efficiently at a high yield using *Pseudonocardia autotrophica*.

BRIEF DESCRIPTION OF DRAWINGS

[0032] FIG. **1** is a schematic view illustrating vectors of a plasmid pTNR-oriT-rep1 and a plasmid pTNR-oriT-rep2.

[0033] FIG. **2** is a table showing identification of replication initiation regions.

[0034] FIG. **3** is two-dimensional electrophoresis images showing identification of acetone-inducible proteins.

[0035] FIG. **4** is a gene map showing a sequence of a region from an aceR gene to an aceA gene (AceR-Pace-AceA; SEQ ID NO: 27).

[0036] FIG. **5**A is a diagram illustrating construction of VDH expression vectors. FIG. **5**A continues to FIG. **5**B.

[0037] FIG. **5**B continues from FIG. **5**A. FIG. **5**B is a diagram illustrating the construction of the VDH expression vectors.

[0038] FIG. **6** is a diagram illustrating construction of BoxAB expression vectors.

[0039] FIG. **7** is graphs showing the results of a VDH expression test by a reduced carbon monoxide-binding spectrum analysis.

[0040] FIG. **8** is graphs showing the results of a BoxA expression test by a reduced carbon monoxide-binding spectrum analysis.

[0041] FIG. **9** is a diagram illustrating conversion from compactin to pravastatin.

[0042] FIG. **10** is graphs showing the results of a compactin production test using a BoxAB-expressing strain.

[0043] FIG. 11 is a graph showing production of pravastatin.

DESCRIPTION OF EMBODIMENTS

[0044] Hereinafter, the expression vector, transformant, and method of producing a protein of the present invention are described in more detail.

1. Expression Vector

[0045] The expression vector of the present invention is an expression vector, including a replication initiation region derived from *Pseudonocardia autotrophica*, a multicloning site for introducing an exogenous gene, an exogenous gene introduced into the multicloning site, a promoter, a terminator, and a defective selection marker, and autonomously replicates in cells of *Pseudonocardia autotrophica* to enable expression of the exogenous gene introduced.

[0046] (1) Identification of Replication Initiation Region

[0047] First, the replication initiation region of *Pseudono-cardia autotrophica* in the expression vector of the present invention is described.

[0048] The term "replication initiation region" as used herein refers to a region essential for replication of a plasmid in cells of *Pseudonocardia autotrophica* (hereinafter, in this description, also referred to as "essential region for replication"). That is, a plasmid including the "replication initiation

region" replicates in the cells of *Pseudonocardia autotrophica*, and the plasmid is distributed to daughter cells in cell division and replicates in the cells.

[0049] The replication initiation region can be identified by isolating a plasmid carried by a bacterium belonging to the genus *Pseudonocardia*, and identifying the replication initiation region in the plasmid. Bacteria belonging to the genus *Pseudonocardia*, which have been isolated and retained hitherto, are collected from the culture collection or the like and cultured to extract plasmids, and a bacterial strain carrying the plasmid is identified. The DNA sequence of the plasmid extracted is determined, and homology search is performed to predict a replication initiation region. The replication initiation region is identified by transforming *Pseudonocardia autotrophica* with the plasmid having introduced thereinto the region, and confirming that *Pseudonocardia autotrophica* carries the plasmid.

[0050] According to the above-mentioned method, the base sequence of a replication initiation region, which is derived from *Pseudonocardia autotrophica* and is represented by SEQ ID NO: 49, can be obtained.

[0051] The replication initiation region derived from *Pseudonocardia autotrophica* in the expression vector of the present invention preferably includes a base sequence represented by SEQ ID NO: 49 or a complementary sequence thereof, or a base sequence having 80% or more, more preferably 90% or more homology to the base sequence or a complementary sequence thereof.

[0052] (2) Construction of Expression Vector

[0053] The expression vector of the present invention is constructed so as to include the replication initiation region derived from *Pseudonocardia autotrophica*, a multicloning site for introducing an exogenous gene, an exogenous gene introduced into the multicloning site, a promoter, a terminator, and a defective selection marker.

[0054] The multicloning site and terminator to be used in the expression vector of the present invention are not particularly limited, and the promoter may be an acetone-inducible promoter, a thiostrepton-inducible promoter (N. Nakashima, Appl. Environ. Microbiol., 5557-5568 (2004)), an ermE promoter (T. Schmitt-John, Appl. Microbiol. Biotechnol., 36, 493-498 (1992)), or the like. In addition, the defective selection marker may be a gene which is used for a general plasmid, the host of which is a microorganism, such as an ampicillin-resistant gene, a kanamycin-resistant gene, a chloramphenicol-resistant gene, or an apramycin-resistant gene.

[0055] When the expression vector of the present invention is used, an exogenous target gene can be introduced into *Pseudonocardia autotrophica* to be transformed. Further, when the expression vector of the present invention is used, the exogenous gene can be expressed in the transformant of *Pseudonocardia autotrophica* to produce a gene product such as a protein of interest.

2. Promoter

[0056] The promoter in the expression vector of the present invention is not particularly limited, but preferably has the sequence of a promoter which is induced by acetone and is derived from *Pseudonocardia autotrophica*.

[0057] When the expression vector of the present invention has the above-mentioned acetone-inducible promoter, it is

possible to induce expression of the target gene by addition of acetone and to produce a protein of interest by a low-cost and easy method at a high yield.

[0058] (1) Identification of Acetone-Inducible Promoter

[0059] First, a promoter induced by acetone is identified as a promoter which is derived from *Pseudonocardia autotrophica* and can induce the target gene easily and at a low cost.

[0060] Acetone is added to a culture medium of *Pseudono-cardia autotrophica* at a concentration of 1% (v/v), and *Pseudonocardia autotrophica* is further cultured. Then, a protein highly induced, compared with a case where acetone is not added, is identified as a band of two-dimensional electrophoresis. An acetone-inducible promoter can be identified by analyzing the amino acid sequence of the band to perform an analysis of a gene encoding the protein and identifying a promoter sequence present in the upstream of the gene encoding the protein.

[0061] The acetone-inducible promoter sequence which was represented by SEQ ID NO: 26 and was derived from *Pseudonocardia autotrophica* was obtained by the above-mentioned method.

[0062] The promoter sequence in the expression vector of the present invention is preferably a base sequence represented by SEQ ID NO: 26 or a complementary sequence thereof, or a base sequence having 80% or more, more preferably 90% or more homology to the above base sequence or a complementary sequence thereof.

[0063] (2) Construction of Acetone-Inducible Expression Vector

[0064] An acetone-inducible vector is constructed by inserting the acetone-inducible promoter into the upstream of a multicloning site in a plasmid. A strain transformed with the acetone-inducible vector constructed is cultured for about 2 days, and 0.5% or 1% acetone is added to the culture medium, to thereby highly express the gene inserted into the multicloning site.

[0065] The acetone-inducible expression vector of the present invention has the above-mentioned acetone-inducible promoter sequence. Therefore, when acetone is added to the expression system, it is possible to express the exogenous gene inserted into the downstream of the promoter region in *Pseudonocardia autotrophica* inductively at high efficiency.

3. Construction of Shuttle Vector

[0066] The expression vector of the present invention may be a complex vector (shuttle vector) to adapt the vector to a plurality of host cells.

[0067] Examples of the shuttle vector to be used in the present invention include a vector which can be introduced into both *Escherichia coli* and *Pseudonocardia autotrophica* and can express a foreign gene in cells of the hosts.

[0068] In the case of using the expression vector of the present invention as the shuttle vector, the shuttle vector is preferably an expression vector which includes not only the above-mentioned replication initiation region derived from *Pseudonocardia autotrophica* but also a replication initiation region derived from *Escherichia coli*, and can autonomously replicate in both *Pseudonocardia autotrophica* autotrophica and *Escherichia coli*. The replication initiation region derived from *Escherichia coli* is preferably the on for *E. coli* (the base sequence at positions 2,372 to 3,487 in SEQ ID NO: 46) illustrated in FIG. **6**.

[0069] The shuttle vector can be prepared by constructing a plasmid including a replication initiation region derived from *Escherichia coli* and a replication initiation region derived from *Pseudonocardia autotrophica*. In FIG. **6**, the on for *E. coli* and rep5 are the regions.

[0070] In order to conjugate *Escherichia coli* and *Pseud-onocardia autotrophica*, the vector preferably includes a conjugation region. For example, in the case of *Escherichia coli* S17-1 and *Pseudonocardia autotrophica*, a shuttle vector having an oriT region can conjugate and transform the bacteria.

4. Exogenous Gene

[0071] The expression vector of the present invention includes an exogenous gene. The exogenous gene which can be used in the present invention is not particularly limited, and examples thereof include a cytochrome P450 gene typified by a gene encoding vitamin D hydroxylase and a gene encoding compactin hydroxylase, and a hydrolase and dehydrogenase to be used for conversion of another compound. Of those, the cytochrome P450 gene such as the gene encoding vitamin D hydroxylase or the gene encoding compactin hydroxylase is preferred.

5. Construction of Transformant

[0072] Next, construction of a transformant of *Pseudono-cardia autotrophica* using the expression vector of the present invention is described.

[0073] The transformant of the present invention is obtained by introducing the above-mentioned expression vector of the present invention into *Pseudonocardia autotrophica*.

[0074] In the present invention, a method of introducing the vector is not particularly limited, but may be a known genetic engineering technique, and conjugation, a protoplast method, a competent cell, an electroporation method, and the like are preferably used. Of those, the conjugation and protoplast method are more preferred. For example, in the case where the expression vector of the present invention is the abovementioned shuttle vector, a transformant of Pseudonocardia autotrophica can be obtained by introducing the expression vector into Escherichia coli S17-1 to transform the bacterium and performing conjugation using the resultant transformant of Escherichia coli S17-1 and Pseudonocardia autotrophica. [0075] First, Escherichia coli strain S17-1 transformed with the expression vector of the present invention and Pseudonocardia autotrophica are separately cultured until the respective logarithmic growth phases, and the culture media are mixed. The bacterial cells are precipitated by slow centrifugation and cultured in an LB plate medium containing no antibiotics for 1 day to perform conjugation. The bacterial cells are scraped off and cultured in an LB plate medium containing an antibiotic to select a transformant. In this case, in order to grow only Pseudonocardia autotrophica transformed, nalidixic acid which inhibits growth of Escherichia coli is added in advance to the LB plate medium.

6. Method of Producing Protein Using Transformant

[0076] A protein of interest can be produced by introducing an exogenous gene into *Pseudonocardia autotrophica* using the expression vector of the present invention and expressing the exogenous gene in the resultant transformant of *Pseudonocardia autotrophica*. **[0077]** As a technique for expressing the target gene in a transformant to produce a protein, a known technique may be appropriately selected and used depending on properties of the promoter or the like in the expression vector.

[0078] (1) Method of Producing Active Form of the Vitamin D Group Using Transformant

[0079] Next, a method of producing an active form of the vitamin D group using the expression vector and transformant of the present invention is described.

[0080] The term "the vitamin D group" as used herein refers to vitamin D3, vitamin D2, and the like.

[0081] The method of producing the active form of the vitamin D group of the present invention includes: inserting a vitamin D hydroxylase gene into the above-mentioned expression vector to transform *Pseudonocardia autotrophica* with the vector; and inductively expressing the vitamin D hydroxylase gene in the resultant transformant to convert the vitamin D group into the active form of the vitamin D group. **[0082]** Compared with the vitamin D group, the active form of the vitamin D group has a structure hydroxylated at positions 25 and 1 α . Specifically, the active form of vitamin D3 is 25-hydroxyvitamin D3 or 1α , 25-dihydroxyvitamin D3.

[0083] In this case, the vitamin D hydroxylase which may be used in the method includes VDH derived from *Pseudonocardia autotrophica*, P450SU-1 derived from *Streptomyces griseolus*, and CYP2R1, CYP27A1, and CYP27B1 derived from mammals, all of which have been reported to catalyze hydroxylation of vitamin D3 (N. Sawada, Biochem. Biophys. Res. Commun., 320, 156-164 (2004), E. Uchida, Biochem. Biophys. Res. Commun., 320, 156-164 (2004), N. Strushkevich, J. Mol. Biol., 380, 95-106 (2008)). Of those, VDH which is a causative enzyme of production of the active form of vitamin D3 using *Pseudonocardia autotrophica* is preferably used.

[0084] The method of producing the active form of the vitamin D group using a transformant of *Pseudonocardia autotrophica* has been established by adding a step of induction by acetone to a method of producing the active form of the vitamin D group using a wild-type *Pseudonocardia autotrophica*. *Pseudonocardia autotrophica* transformed with the expression vector obtained by inserting vitamin D hydroxylase into the multicloning site is cultured for 2 days, and 1% acetone is added to inductively express the vitamin D group preliminarily mixed with cyclodextrin is added to the culture medium to perform conversion, to thereby produce the active form of the vitamin D group.

[0085] According to the method of producing the active form of the vitamin D group of the present invention, it is possible to introduce an exogenous hydroxylase gene into *Pseudonocardia autotrophica* and to highly express the hydroxylase gene in *Pseudonocardia autotrophica* by induction of expression, and hence the active form of the vitamin D group can be produced more efficiently at a high yield compared with a conventional system for producing the active form of the vitamin D group using a microorganism.

[0086] (2) Method of Producing Pravastatin Using Transformant

[0087] Next, a method of producing pravastatin using the expression vector and transformant of the present invention is described.

[0088] The method of producing pravastatin of the present invention includes: inserting a compactin hydroxylase gene

into the above-mentioned expression vector to transform *Pseudonocardia autotrophica* with the vector; and inductively expressing the compactin hydroxylase gene in the resultant transformant to convert compactin into pravastatin. **[0089]** Compactin and pravastatin are cholesterol biosyn-

obtained by introducing a hydroxy group into compactin. [0090] Pravastatin is preferably produced by converting compactin by adding compactin to a culture medium of *Pseudonocardia autotrophica* transformed with the expression vector obtained by inserting a compactin hydroxylase gene into a multicloning site.

thesis inhibitors. As shown in FIG. 9, pravastatin can be

[0091] As the compactin hydroxylase gene, boxA derived from *Streptomyces* sp. TM-7, P450sca-2 gene derived from *Streptomyces carbophilus* SANK strain 62585 (JP 06-70780 A), or the like may be used.

[0092] The method of producing pravastatin using a transformant of Pseudonocardia autotrophica has been established according to the method of producing the active form of vitamin D using a transformed strain of Pseudonocardia autotrophica. Pseudonocardia autotrophica transformed with an expression vector obtained by inserting boxAB genes encoding compactin hydroxylase and ferredoxin which is an electron transport system protein of P450 present in the downstream of the compactin hydroxylase into a multicloning site is cultured for 2 days, and 1% acetone is added to inductively express the compactin hydroxylase, followed by culture for 1 day. Compactin is added to the culture medium at a final concentration of 4,000 mg/L to perform conversion, to thereby produce pravastatin. If the amount of compactin decreases by conversion, compactin is added again to perform conversion, to thereby accumulate 13 g/L of pravastatin.

[0093] According to the method of producing pravastatin of the present invention, it is possible to introduce an exogenous hydroxylase gene into *Pseudonocardia autotrophica* and to highly express the hydroxylase gene in *Pseudonocardia autotrophica* by induction of expression, and hence pravastatin can be produced more efficiently at a high yield compared with a conventional system for producing pravastatin using a microorganism.

EXAMPLES

[0094] Hereinafter, the present invention is described in more detail by way of specific examples. However, the present invention is not limited to the examples. It should be noted that the percent (%) in the following examples means a percent by weight in the description of media and means a percent by volume in the description of mobile phases for HPLC.

Production Example

Construction of Expression Vector and Transformant

[0095] (1) Extraction of Plasmid from *Pseudonocardia autotrophica* DSM 43082 Strain

[0096]	25 st	rains of Pse	udonocard	ia autotroj	ohica (resp	bec-
tive s	strains	of DSM	535, DSI	M43082,	DSM430)83,
DSM4	3084,	DSM4303	85, DSM	143086,	DSM430)87,
DSM4	3088,	DSM4309	90, DSM	143091,	DSM430)94,
DSM4	3095,	DSM4309	96, DSM	143097,	DSM430)98,
DSM4	3099,	DSM4310	00, DSM	143102,	DSM431	03,
DSM4	3104,	DSM4310	05, DSM	143106,	DSM431	07,
DSM4	3129, a	nd DSM43:	558) obtain	ed from D	eutsche Sa	am-
mlung	von 1	Mikroorgan	ismen and	1 Zellkul	turen Grr	ıbН

(DSMZ) were each inoculated in an LB medium (1.0% Bacto Tryptone, 0.5% yeast extract, 1.0% sodium chloride) and subjected to shaking culture in the presence of two glass beads (diameter: 5 mm) at 30° C. After culture, the collected bacterial cells were suspended in P1 buffer (Plasmid Miniprep kit, QIAGEN) containing lysozyme at a final concentration of 1 mg/ml and allowed to react at 37° C. for 30 minutes, and P2 buffer was added to lyse the bacteria, followed by purification of plasmids according to the instructions of the kit. The purified DNAs were subjected to agarose electrophoresis to detect plasmid-like DNA bands from 11 strains (DSM535, DSM43082, DSM43085, DSM43085, DSM43087, DSM43095, DSM43102, DSM43104, DSM43105, DSM43107, and DSM43129). The purified plasmids derived from the strains DSM43082, DSM43085, and DSM43095 selected from the above-mentioned strains were treated with a restriction enzyme, and DNA cleavage types were compared. Then, the DNA plasmid derived from the strain DSM43082 was further analyzed.

[0097] It should be noted that *Pseudonocardia autotrophica* strain DSM43082 was obtained from Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ; Inhoffenstrasse 7 B, 38124 Braunschweig GER-MANY) on May 9, 2005 (contract date), but the place of sampling, date of sampling, isolation source, isolator, and date of isolation are unknown.

[0098] The plasmid derived from the strain DSM43082 was digested with a restriction enzyme KpnI to prepare DNA fragments, and fragments of about 0.9 kb and about 2.0 kb out of the resultant DNA fragments were separated and purified by an agarose gel and cloned into pBluescript SK(+) (Stratagene Corporation). The purified plasmid was subjected to a sequence reaction using T7 and T3 primers (SEQ ID NOS: 8 and 9) to determine a partial sequence of the cloned DNA fragment. Subsequently, primers were newly designed based on the partial information, and a sequence analysis was performed using the plasmid purified from the strain DSM43082 as a template. The sequencing was performed by a primer walking method, and the analysis was repeated until base sequence analysis initiation points of both the sense and antisense strands were confirmed, that is, until the DNA was confirmed to be a circular DNA. As a result, the resultant plasmid pPA43082 was found to be a circular DNA of 8047 bp (SEQ ID NO: 12).

(2) Identification of Essential Region for Replication in *Pseudonocardia autotrophica* in Sequence of pPA43082

[0099] The DNA sequence of the plasmid pPA43082 derived from Pseudonocardia autotrophica DSM43082 shown in SEQ ID NO: 12 was suggested to include a Sso (single-strand origin)-like sequence (SEQ ID NO: 52), a Dso (double-strand origin)-like sequence (SEQ ID NO: 51), and a Replicase gene (SEQ ID NO: 50) at about 4 kb to 6 kb region and to have a replication pattern of Rolling circle (S. A. Khan, Microbiol. Mol. Biol. Rev., 442-455 (1997)) (FIG. 2). In order to create an expression vector, it is necessary to include a region essential for replication, and a region at least necessary for replication was identified. That is, a test was performed to examine whether Pseudonocardia autotrophica was able to be transformed with a plasmid constructed by: amplifying DNA fragments with different lengths using the pPA43082 as a template by PCR; and replacing the DNA fragments using an istAB gene and BsrGI and BglII sites of pTNR-oriT (K. I. Sallam, Gene, 386, 173-182 (2007)).

[0100] First, pTNR-oriT was digested with BsrGI and BgIII, and a DNA fragment of about 4.0 kb was cut out by agarose gel electrophoresis and purified by Wizard SV Gel and PCR Clean-Up System (Promega KK.), to thereby obtain DNA fragment-1.

[0101] Next, in order to amplify essential regions for replication of pPA43082 by PCR, sets of primers: rep-1F (having BamHI site: SEQ ID NO: 17) and rep-7R (having BsrGI site: SEQ ID NO: 18); and rep-1R (having BsrGI site: SEQ ID NO: 19) and rep-7F (having BamHI site: SEQ ID NO: 20) were created. The two sets of primers were used to perform PCR reactions using pPA43082 as a template. The PCR reactions were performed using KOD plus (TOYOBO CO., LTD.) and a PCR amplification device (Biometra, T Gradient) by repeating a three-step reaction including: denaturation at 98° C. for 20 seconds; annealing at 55° C. for 30 seconds; and elongation at 68° C. for 3 minutes, 25 times. As a result, DNA fragments with lengths of about 2.4 kb were amplified. The fragment amplified from rep-1F and rep-7R was defined as DNA fragment-2, and the fragment amplified from rep-1R and rep-7F was defined as DNA fragment-3. The PCR reaction solutions were subjected to agarose gel electrophoresis, and DNA fragments of about 2.4 kb were cut out and collected by Wizard SV Gel and PCR Clean-Up System (PromegaKK.). The collected DNA fragments were ligated to DNA fragment-1 using DNA Ligation kit ver 2.1 (TAKARA BIO INC.), and Escherichia coli strain DH5a (TAKARA BIO INC.) was transformed. After that, LB agar medium (1.5% agar) containing kanamycin (25 µg/ml) was used to select transformed Escherichia coli. The thus-separated colonies of the transformed Escherichia coli were cultured in LB liquid medium containing kanamycin (25 µg/ml). The plasmid DNA was purified from the proliferated transformed Escherichia coli using Wizard Plus SV Minipreps DNA Purification system (Promega KK.), to thereby obtain a plasmid pTNRoriT-rep1 having inserted thereinto DNA fragment-2, and a plasmid pTNR-oriT-rep2 having inserted thereinto DNA fragment-3 (FIG. 1). Escherichia coli S17-1 was transformed with pTNR-oriT-rep1 and pTNR-oriT-rep2, and the transformed strains were cultured in LB medium containing 25 µg/ml kanamycin at 37° C. for 10 hours. 200 µl of the culture medium of the transformed strain of Escherichia coli S17-1 were mixed with 500 µl of a culture medium of Pseudonocardia autotrophica cultured in LB medium at 30° C. for 80 hours, and the mixture was centrifuged at 7,000 rpm for 30 seconds. 500 µl of the supernatant was discarded, and the precipitates were suspended in the residual supernatant, and the whole was applied to LB agar medium. In order to transform Pseudonocardia autotrophica with pTNR-oriT-rep1 and pTNR-oriT-rep2 by conjugation, culture was performed at 30° C. for 24 hours, and the bacterial cells on the agar medium were suspended in 2 ml of LB medium. 200 µl of the suspension was applied to LB agar medium containing 200 µg/ml kanamycin and 50 µg/ml nalidixic acid to select a transformed strain of Pseudonocardia autotrophica. The cells were cultured at 30° C. for 10 days, and as a result, a strain of Pseudonocardia autotrophica transformed with pTNR-oriT-rep1 was obtained, but a strain of Pseudonocardia autotrophica transformed with pTNR-oriT-rep2 was not obtained. The results suggested that the direction of the essential region for replication in pTNR-oriT was important, and it was decided that the following identification of the essential region for replication was performed in the rep1 direction.

[0102] In order to identify the essential region for replication, primers rep-2F (SEQ ID NO: 21), rep-3F (SEQ ID NO: 22), rep-4R (SEQ ID NO: 23), rep-5R (SEQ ID NO: 24), and rep-6R (SEQ ID NO: 25) were created. The primers were used as sets shown in FIG. 2 to perform PCR using pPA43082 as a template. PCR reactions were performed using KODplus (TOYOBOCO., LTD.) and the PCR amplification device (Biometra, T Gradient) by repeating a three-step reaction including: denaturation at 98° C. for 20 seconds; annealing at 55° C. for 30 seconds; and elongation at 68° C. for 3 minutes, 25 times. As a result, DNA fragments with lengths shown in FIG. 2 were amplified. DNA fragments amplified in the same way as described above were inserted into the BsrGI site and BgIII site of pTNR-oriT to create a plasmid, and Pseudonocardia autotrophica was transformed by conjugation. In the range examined, a DNA sequence including rep5 (nucleotides at positions 4,201 to 6,300 of pPA48032; 2.1 kb) was considered to be essential for replication in Pseudonocardia autotrophica.

[0103] Pseudonocardia autotrophica transformed with the plasmid pTNR-oriT-rep5 was cultured in 25 ml of LB medium containing 200 µg/ml kanamycin and 50 µg/ml nalidixic acid at 30° C. for 72 hours. 7 ml of the culture medium were centrifuged, and a plasmid DNA was purified using Wizard Plus SV Minipreps DNA Purification system (Promega KK.), to thereby obtain plasmid-1. The plasmid solution was subjected to agarose gel electrophoresis, and as a result, no band was observed. However, when Escherichia coli DH5a (TAKARA BIO INC.) was transformed using the plasmid solution, colonies were obtained on LB agar medium containing 25 µg/ml kanamycin. The colonies were cultured in LB medium containing 25 µg/ml kanamycin, and a plasmid DNA was purified using Wizard Plus SV Minipreps DNA Purification system (Promega KK.), to thereby obtain plasmid-2. When pTNR-oriT-rep5 and the extracted plasmid-2 were digested with BsrGI and BglII respectively, DNA fragments of 5.1 kb and 1.1 kb were obtained from the samples. The results suggested that the plasmid pTNR-oriT-rep5 did not undergo a structural change in Pseudonocardia autotrophica and was conserved.

(3) Identification of Acetone-Inducible Promoter Sequence

[0104] Pseudonocardia autotrophica strain NBRC12743 was inoculated into 150 ml of LB medium and cultured at 30° C. for 102 hours while shaking at 220 rpm. It should be noted that Pseudonocardia autotrophica strain NBRC12743 was obtained from Institute for Fermentation (IFO, now National Institute of Technology and Evaluation (NBRC, Department of Biotechnology, NITE Biological Resource Center; 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan)) before 1987, but the place of sampling, date of sampling, isolation source, isolator, and date of isolation are unknown. 10 ml of the culture medium were inoculated into two flasks each containing 200 ml of LB medium, and the bacterium was cultured at 30° C. for 70 hours while shaking at 220 rpm. 1 ml of acetone was added to one of the two culture media, and the bacterium was further cultured at 30° C. for 24 hours while shaking at 220 rpm. The culture media were centrifuged at 7,000 rpm for 10 minutes to obtain bacterial cells as precipitates. The cells were suspended in 20 ml of CV buffer (50 mM potassium phosphate buffer, pH 7.4, 10% Glycerol) to prepare 10-fold concentrated cell suspensions. A procedure of vigorously shaking 1 ml of the cell suspensions using Fast-PROTEIN BLUE kit (Funakoshi Corporation) by FastPrep FP120 (BIO101, SAVANT) at a speed of 6.0 for 40 seconds was repeated three times, to thereby break the cells. The broken cell suspensions were centrifuged at 13,000 rpm for 10 minutes, to thereby obtain cell-free extracts as supernatants. 25 µl of each sample was mixed with a swelling solution (7 M Urea, 2 M Thiourea, 20 mM Dithiothreitol (DTT), 2 mMTris-(2-cyanoethyl)phosphine, 2% CHAPS, 0.2% (v/v) BioLyte 3-10) containing Bromophenol Blue (BPB) to prepare a sample for two-dimensional electrophoresis. IPG ReadyStrip gel (7 cm, pH3-10NL, BIO-RAD; hereinafter, referred to as IPG gel) was swollen for 12 hours with 125 µl of the sample for two-dimensional electrophoresis. The gel was subjected to electrophoresis (first dimension, isoelectric focusing electrophoresis), and the IPG gel was equilibrated with an equilibration buffer A (50 mM Tris-HCl buffer, pH 8.5, 6 M Urea, 30% Glycerol, 2% SDS, 1% DTT, and 0.005% BPB) for 15 minutes and then with an equilibration buffer B (50 mM Tris buffer, pH 8.5, 6 M Urea, 30% Glycerol, 2% SDS, 4.5% Iodoacetamide, and 0.005% BPB) for 15 minutes. After that, the equilibrated IPG gel was set on 12.5% homogeneous gel (7×6.5 cm), and the second-dimensional electrophoresis was performed (second dimension, SDS polyacrylamide gel electrophoresis). After electrophoresis, the gel was stained with SYPRO Ruby (Invitrogen), and images were captured by Molecular Imager FX (BIO-RAD). After that, spot patterns of the respective samples were compared by visual observation. As a result, three kinds of bands of proteins, the expression each of which increased by addition of acetone, were observed (FIG. 3: Spots 1 to 3). The expression level of Spot 1 estimated to have a molecular weight of about 55 kDa most increased by addition of acetone. Therefore, a part of the gel corresponding to the protein band was cut out, and Tris buffer of pH 8.5 containing lysylendopeptidase was added to the gel piece to perform a treatment at 35° C. for 20 hours. After that, the whole solution was subjected to reversed-phase HPLC to separate fragment peptides. As a control, a part of the gel containing no spot was cut out and treated in the same way as described above.

[0105] [Reverse-Phase HPLC Conditions]

[0106] Column: TSKgel ODS-80Ts (2.0×250 mm, TOSOH),

[0107] Solvent A: 0.1% trifluoroacetic acid, 2% acetonitrile,

[0108] Solvent B: 0.1% trifluoroacetic acid, 90% acetonitrile,

[0109] Flow rate: 200 µl/min,

[0110] Temperature: room temperature,

[0111] Detection: 210 nm, 280 nm,

[0112] Gradient:

TABLE 1

(minutes)	(% B)	
0	0	
2	0	
7	10	
82	50	
87	100	
92	100	
97	0	

[0113] Fractionation: 200 µl/Fraction.

[0114] For five peaks which were obtained by the reversephase HPLC and were considered to be derived from Spot 1, amino acid sequence analyses were performed using Precise 494 HT Protein Sequence System (Applied Biosystems). As a result, the amino acid sequences shown in SEQ ID NOS: 1 to 5 were obtained. The amino acid sequences were subjected to homology search by BLAST search and were found to have high homology to internal sequences of a variety of aldehyde dehydrogenases.

[0115] In order to determine the sequence of the gene encoding the protein of Spot 1 induced by acetone, aceA-1F (SEO ID NO: 6) was created as a degenerate primer based on a fractionated peptide sequence GQYFENPTPITG (SEQ ID NO: 1), and aceA-1R (SEQ ID NO: 7) was created as a degenerate primer based on a peptide sequence MLDHYQQTK (SEQ ID NO: 2). Next, the two kinds of primers were used to perform PCR reactions using a chromosomal DNA of Pseudonocardia autotrophica strain NBRC12743 as a template. The PCR reactions were performed using KODplus (TOYOBO CO., LTD.) and the PCR amplification device (Biometra, T Gradient) by repeating a three-step reaction including: denaturation at 98° C. for 20 seconds; annealing at 55° C. for 30 seconds; and elongation at 68° C. for 2 minutes, 25 times. As a result, DNA fragment-4 with a size of about 1.3 kb was amplified. Unless otherwise specified, the following PCR was performed under the abovementioned conditions. The PCR reaction solution was subjected to agarose gel electrophoresis, and a DNA fragment of about 1.3 kb was cut out and collected by Wizard SV Gel and PCR Clean-Up System (Promega KK.). The DNA fragment-4 was phosphorylated using BKL kit (TAKARA BIO INC.) and ligated to pBluescript II (Stratagene Corporation), which had been digested with EcoRV and dephosphorylated with Calf intestine alkalinephosphatase (New England Biolabs). Escherichia coli strain DH5a was transformed with the ligation solution. After that, Escherichia coli strain transformed with the plasmid integrated with DNA fragment-4 was selected on LB agar medium (1.5% agar) containing ampicillin (50 µg/ml), X-gal (5-Bromo-4-chloro-3-indolyl- β -D-galactoside; 40 µg/ml)), and IPTG (Isopropyl- β -thiogalactopyranoside; 0.1 mM). Colonies of the Escherichia coli were cultured in LB medium containing ampicillin (50 µg/ml), and the plasmid DNA was purified from the proliferated transformed Escherichia coli using Wizard Plus SV Minipreps DNA Purification system (Promega KK.). The sequence of the DNA was analyzed by a dye-terminator cycle sequencing method using the resultant plasmid as a template by a DNA base sequence analyzer (Applied Biosystems; 3130) using two kinds of primers (SEQ ID NOS: 8 and 9) according to the accompanying protocol.

[0116] Based on the resultant sequence, primers for inverse PCR, aceA-inv-1F (SEQ ID NO: 10) and aceA-inv-1R (SEQ ID NO: 11), were created. Further, a chromosomal DNA of Pseudonocardia autotrophica strain NBRC12743 was digested with ClaI, and a self-circularized product was prepared as a template. The inverse PCR reactions were performed using KOD plus (TOYOBO CO., LTD.) and the PCR amplification device (Biometra, T Gradient) by repeating a three-step reaction including: denaturation at 94° C. for 1 minute; annealing at 65° C. for 30 seconds; and elongation at 72° C. for 3 minutes, 30 times. As a result, DNA fragment-5 with a size of about 2.0 kb was amplified. The PCR reaction solution was subjected to agarose gel electrophoresis, and a DNA fragment of about 2.0 kb was cut out to collect DNA fragment-5 by Wizard SV Gel and PCR Clean-Up System (Promega KK.). The DNA fragment-5 was phosphorylated using BKL kit (TAKARA BIO INC.) and ligated to pBluescript II (Stratagene Corporation), which had been digested with EcoRV and dephosphorylated with Calf intestine alkalinephosphatase (New England Biolabs) Escherichia coli strain DH5 α was transformed with the ligation solution. After that, Escherichia coli strain transformed with the plasmid integrated with the DNA fragment-5 was selected on LB agar medium (1.5% agar) containing ampicillin (50 µg/ml), X-gal (40 µg/ml), and IPTG (0.1 mM). Colonies of the Escherichia coli were cultured in LB medium containing ampicillin (50 µg/ml), and the plasmid DNA was purified from the proliferated transformed Escherichia coli using Wizard Plus SV Minipreps DNA Purification system (Promega KK.). The sequence of the DNA was analyzed by a dye-terminator cycle sequencing method using the resultant plasmid as a template by a DNA base sequence analyzer (Applied Biosystems; 3130) using two kinds of primers (SEQ ID NOS: 8 and 9) according to the accompanying protocol. As a result, an analysis of the upstream part of a gene encoding an acetoneinducible protein (AceA) was achieved.

[0117] Based on the resultant sequence, primers for inverse PCR, aceA-inv-2F (SEQ ID NO: 13) and aceA-inv-2R (SEQ ID NO: 14) were created. Further, a chromosomal DNA of *Pseudonocardia autotrophica* strain NBRC12743 was digested with AatII, and a self-circularized product was prepared as a template. Inverse PCR reactions were performed using KOD plus (TOYOBO CO., LTD.) and the PCR amplification device (Biometra, T Gradient) under the same conditions as those in the above-mentioned inverse PCR. As a result, DNA fragment-6 with a size of about 1.0 kb was amplified. The sequence of the DNA fragment-6 was analyzed by the same procedure as described above. As a result, the sequence of the upstream part of the gene encoding the acetone-inducible protein (AceA) was obtained.

[0118] Based on the resultant sequence, primers for inverse PCR, aceA-inv-3F (SEQ ID NO: 15) and aceA-inv-3R (SEQ ID NO: 16), were created. Further, a chromosomal DNA of Pseudonocardia autotrophica strain NBRC12743 was digested with BamHI, and a self-circularized product was prepared as a template. Inverse PCR reactions were performed using KOD plus (TOYOBO CO., LTD.) and the PCR amplification device (Biometra, T Gradient) under the same conditions as those in the above-mentioned inverse PCR. As a result, DNA fragment-7 with a size of about 3.0 kb was amplified. The sequence of the DNA fragment-7 was analyzed by the same procedure as described above. As a result, an analysis of the upstream part of the gene encoding the acetone-inducible protein (AceA) was achieved (SEQ ID NO: 48). The plasmid used as the template for the analysis was considered to include an unanalyzed part of the upstream of the aceA gene, and hence a sequence analysis was performed by the primer walking method to determine the DNA sequence of the open reading frame of a protein (AceR) present in the reverse direction to the upstream of the aceA gene and the sequence to the stem-loop structure present on the downstream of aceR (FIG. 4, SEQ ID NO: 47). The results suggested that the promoter region for expression of aceA was present between the aceA gene and the aceR gene, and hence a sequence of about 0.45 kb (Pace; SEQ ID NO: 26) was used as an acetone-inducible promoter region for the following vector construction. It should be noted that BLAST search using the amino acid sequence of AceR showed that the sequence had homology to GAF sensor protein and a transcriptional regulator (M. Y. Galperin, Environ. Microbial., 6(6), 552-567 (2004)). Thus, the sequence of the region

from the aceR gene to the aceA gene (AceR-Pace-AceA; SEQ ID NO: 27) shown in FIG. **4** was determined.

(4) Construction of Acetone-Inducible Expression Vector Capable of Transforming *Pseudonocardia autotrophica* (Construction of VDH-Expressing Vector)

[0119] In order to amplify the oriT gene, primers oriT-1F (SEQ ID NO: 28) and oriT-1R (SEQ ID NO: 29) were created. The primers were used to perform PCR reactions using pTNR-oriT (K. I. Sallam, Gene, 386, 173-182 (2007)) as a template. As a result, a DNA fragment with a length of about 1.1 kb was amplified. The DNA fragment was digested with BsrGI and BamHI and subjected to agarose gel electrophoresis, and a DNA fragment of about 1.1 kb was cut out and collected by Wizard SV Gel and PCR Clean-Up System (Promega KK.), to thereby obtain DNA fragment-8. A plasmid pTNR-AA (Tamura Tomohiro, et al., Journal of Environmental Biotechnology, 7(1), 3-10, 2007) was digested with BsrGI and BamHI and subjected to agarose gel electrophoresis, and a DNA fragment of about 6.2 kb was cut out and collected by Wizard SV Gel and PCR Clean-Up System (Promega KK.), to thereby obtain DNA fragment-9. The DNA fragment-9 and DNA fragment-8 were ligated using DNA Ligation kit ver 2.1 (TAKARA BIO INC.), to thereby obtain pTNR-AA-oriT (FIG. 5).

[0120] Subsequently, the following procedure was performed to remove an ampicillin-resistant gene from pTNR-AA-oriT. In order to amplify an apramycin-resistant gene of pTNR-AA and an essential region for replication of pTNR-AA in Escherichia coli, primers pTNR-AA-apr-1F (SEQ ID NO: 30) and pTNR-AA-ori-1R (SEQ ID NO: 31) were created. The primers were used to perform PCR reactions using pTNR-AA as a template. The PCR reactions were performed using KOD plus (TOYOBO CO., LTD.) and the PCR amplification device (Biometra, T Gradient) by repeating a threestep reaction including: denaturation at 98° C. for 20 seconds; annealing at 55° C. for 30 seconds; and elongation at 68° C. for 3 minutes, 25 times. As a result, a DNA fragment with a length of about 2.4 kb was amplified. The DNA fragment was digested with BamHI and KpnI and subjected to agarose gel electrophoresis, and a DNA fragment of about 2.4 kb was cut out and collected by Wizard SV Gel and PCR Clean-Up System (Promega KK.), to thereby obtain DNA fragment-10. A plasmid pTNR-AA-oriT was digested with BamHI and KpnI and subjected to agarose gel electrophoresis, and a DNA fragment of about 3.7 kb was cut out and collected by Wizard SV Gel and PCR Clean-Up System (Promega KK.), to thereby obtain DNA fragment-11. The DNA fragment-11 and DNA fragment-10 were ligated using DNA Ligation kit ver 2.1 (TAKARA BIO INC.), to thereby obtain pTNR-A-oriT (FIG. 5).

[0121] Next, the following procedure was performed to remove the istAB gene of pTNR-A-oriT and to insert the essential region for replication in *Pseudonocardia autotrophica* (rep5) identified in Production Example (2) into the site. In order to amplify the essential region for replication of pPA43082 (rep5), primers rep-4F (SEQ ID NO: 32) and rep-6R (SEQ ID NO: 25) were created. The primers were used to perform PCR reactions using pPA43082 as a template. The PCR reactions were performed using KOD plus (TOYOBO CO., LTD.) and the PCR amplification device (Biometra, T Gradient) by repeating a three-step reaction including: denaturation at 98° C. for 20 seconds; annealing at 55° C. for 30 seconds; and elongation at 68° C. for 3 minutes, 25 times. As a result, a DNA fragment with a length of about

2.1 kb was amplified. The DNA fragment was digested with BsrGI and KpnI and subjected to agarose gel electrophoresis, and a DNA fragment of about 2.1 kb was cut out and collected by Wizard SV Gel and PCR Clean-Up System (Promega KK.), to thereby obtain DNA fragment-12. A plasmid pTNR-A-oriT was digested with BsrGI and KpnI and subjected to agarose gel electrophoresis, and a DNA fragment of about 3.5 kb was cut out and collected by Wizard SV Gel and PCR Clean-Up System (Promega KK.), to thereby obtain DNA fragment-13. The DNA fragment-13 and DNA fragment-12 were ligated using DNA Ligation kit ver 2.1 (TAKARA BIO INC.), to thereby obtain pTAOR (FIG. **5**).

[0122] Next, the following procedure was performed to insert the acetone-inducible promoter sequence and vdh gene (SEQ ID NO: 44) into the multicloning site of pTAOR (WO 2008/096695 A1). First, in order to amplify the acetoneinducible promoter sequence, primers Pace-HindIII-1F (SEQ ID NO: 33) and Pace-NdeI-1R (SEQ ID NO: 34) were created. The primers were used to perform PCR reactions using a genomic DNA of *Pseudonocardia autotrophica* as a template. The PCR reactions were performed using KOD plus (TOYOBO CO., LTD.) and the PCR amplification device (Biometra, T Gradient) by repeating a three-step reaction including: denaturation at 98° C. for 20 seconds; annealing at 55° C. for 30 seconds; and elongation at 68° C. for 1 minute, 25 times. As a result, a DNA fragment with a length of about 0.4 kb was amplified. The DNA fragment was digested with HindIII and Ndel and subjected to agarose gel electrophoresis, and a DNA fragment of about 0.4 kb was cut out and collected by Wizard SV Gel and PCR Clean-Up System (Promega KK.), to thereby obtain DNA fragment-14. Subsequently, in order to amplify the vdh gene, primers VDH-1F (SEQ ID NO: 35) and VDH-1R (SEQ ID NO: 36) were created. The primers were used to perform PCR reactions using the genomic DNA of Pseudonocardia autotrophica NBRC12743 as a template. As a result, a DNA fragment with a length of about 1.2 kb was amplified. The DNA fragment was digested with Ndel and Nhel and subjected to agarose gel electrophoresis, and a DNA fragment of about 1.2 kb was cut out and collected by Wizard SV Gel and PCR Clean-Up System (Promega KK.), to thereby obtain DNA fragment-15. AplasmidpTAOR was digested with HindIII and Nhel and subjected to agarose gel electrophoresis, and a DNA fragment of about 5.7 kb was cut out and collected by Wizard SV Gel and PCR Clean-Up System (Promega KK.), to thereby obtain DNA fragment-16. The DNA fragment-16, DNA fragment-14, and DNA fragment-15 were ligated using DNA Ligation kit ver 2.1 (TAKARA BIO INC.), to thereby obtain pTAOR2vdh (FIG. 5).

[0123] Next, the following procedure was performed to insert a terminator sequence into the multicloning site of pTAOR2-vdh. In order to amplify the terminator sequence of pTipQT2 (N. Nakashima, Appl. Environ. Microbial., 5557-5568 (2004)), primers Terminator-1F (SEQ ID NO: 37) and Terminator-1R (SEQ ID NO: 38) were created. The primers were used to perform PCR reactions using pTipQT2 as a template. The PCR reactions were performed using KOD plus (TOYOBO CO., LTD.) and the PCR amplification device (Biometra, T Gradient) by repeating a three-step reaction including: denaturation at 98° C. for 20 seconds; annealing at 55° C. for 30 seconds; and elongation at 68° C. for 1 minute, 25 times. As a result, a DNA fragment with a length of about 0.2 kb was amplified. The DNA fragment was digested with MfeI and AfIII and subjected to agarose gel

electrophoresis, and a DNA fragment of about 0.2 kb was cut out and collected by Wizard SV Gel and PCR Clean-Up System (Promega KK.), to thereby obtain DNA fragment-17. The plasmid pTAOR2-vdh was digested with Mfel and AfIII and subjected to agarose gel electrophoresis, and a DNA fragment of about 7.3 kb was cut out and collected by Wizard SV Gel and PCR Clean-Up System (Promega), to thereby obtain DNA fragment-18. The DNA fragment-18 and DNA fragment-17 were ligated using DNA Ligation kit ver 2.1 (TAKARA BIO INC.), to thereby obtain an acetone-inducible VDH-expressing vector, pTAOR3-vdh (SEQ ID NO: 45) (FIG. **5**).

(5) Construction of BoxAB Expression Vector

[0124] Genes of boxA and boxB (hereinafter, also referred to as boxAB genes) derived from Streptomyces sp. TM-7 was acquired as a gene of an enzyme which catalyzes hydroxylation of compactin into pravastatin by Tadashi Fujii et al. (WO 2002/099109 A1). It should be noted that Streptomyces sp. strain TM-7 is a strain isolated by MERCIAN CORPORA-TION and has been domestically deposited with International Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology (Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan) (FERM P-18312) on Apr. 25, 2001 and transmitted to an international depositary authority on Apr. 5, 2002 (FERM BP-8003). The place of sampling is soil in the Fujisawa factory of MERCIAN COR-PORATION at Johnan, Fujisawa, Kanagawa, Japan, and the date of sampling, isolation source, isolator, and date of isolation are unknown.

[0125] In order to construct an acetone-inducible BoxAB expression vector of Pseudonocardia autotrophica, the following procedure was performed. First, in order to amplify the boxAB genes, primers BoxAB-1F (SEQ ID NO: 39) and BoxAB-1R (SEQ ID NO: 40) were created. The primers were used to perform PCR reactions using Streptomyces sp. TM-7 as a template. As a result, a DNA fragment with a length of about 1.5 kb was amplified. The DNA fragment was digested with NdeI and SpeI and subjected to agarose gel electrophoresis, and a DNA fragment of about 1.5 kb was cut out and collected by Wizard SV Gel and PCR Clean-Up System (Promega KK.), to thereby obtain DNA fragment-19. A plasmid pTAOR3-vdh was digested with NdeI and SpeI and subjected to agarose gel electrophoresis, and a DNA fragment of about 6.3 kb was cut out and collected by Wizard SV Gel and PCR Clean-Up System (Promega KK.), to thereby obtain DNA fragment-20. The DNA fragment-20 and DNA fragment-19 were ligated using DNA Ligation kit ver 2.1 (TAKARA BIO INC.), to thereby obtain an acetone-inducible BoxAB expression vector, pTAOR3-boxAB (FIG. 6). According to the method shown in Production Example (6) described below, Pseudonocardia autotrophica was tried to be transformed with pTAOR3-boxAB, but no transformed strain was able to be obtained. Therefore, the structure of the BoxAB expression vector was changed by the following procedure.

[0126] First, in order to amplify the acetone-inducible promoter sequence, boxAB genes, and terminator sequence, primers PBT-1F (SEQ ID NO: 41) and PBT-1R (SEQ ID NO: 42) were created. The primers were used to perform PCR reactions using pTAOR3-boxAB as a template. As a result, a DNA fragment with a length of about 2.0 kb was amplified. The DNA fragment was digested with KpnI and subjected to agarose gel electrophoresis, and a DNA fragment of about 2.0

kb was cut out and collected by Wizard SV Gel and PCR Clean-Up System (Promega KK.), to thereby obtain DNA fragment-21. Subsequently, in order to remove the promoter sequence, boxAB genes, and terminator sequence from the plasmid pTAOR3-boxAB, the fragment was digested with HindIII and AfIII and subjected to agarose gel electrophoresis, and a DNA fragment of about 5.6 kb was cut out and collected by Wizard SV Gel and PCR Clean-Up System (Promega KK.), to thereby obtain DNA fragment-22. End blunting and self-ligation of the DNA fragment-22 were performed by BKL kit (TAKARA BIO INC.), to thereby obtain pTAOR4. The plasmid pTAOR4 was digested with KpnI and subjected to agarose gel electrophoresis, and a DNA fragment of about 5.6 kb was cut out and collected by Wizard SV Gel and PCR Clean-Up System (Promega KK.), to thereby obtain DNA fragment-23. The DNA fragment-23 was dephosphorylated with alkaline phosphatase (Calf intestine) (TAKARA BIO INC.) and collected by Wizard SV Gel and PCR Clean-Up System (Promega KK), to thereby obtain DNA fragment-24. Escherichia coli DH5a was transformed with a reaction solution in which the DNA fragment-21 and DNA fragment-24 had been ligated using DNA Ligation kit ver 2.1 (TAKARA BIO INC.), and colonies of transformed strains were obtained on LB agar medium containing 60 µg/ml apramycin. Eight colonies of the resultant colonies were arbitrarily selected and cultured in 2 ml of LB medium containing 60 µg/ml apramycin, and the plasmid DNA was purified from the proliferated transformed Escherichia coli by Wizard Plus SV Minipreps DNA Purification system (Promega KK.). Analyses were performed by the dye-terminator cycle sequencing method using the resultant eight samples of plasmids as templates by the DNA base sequence analyzer (Applied Biosystems; 3130) using a primer (SEQ ID NO: 43) according to the accompanying protocol. The results showed that plasmids pTAOR4-For-boxAB and pTAOR4-RevboxAB (SEQ ID NO: 46), into which the DNA fragment-21 was inserted in the reverse directions, were obtained (FIG. 6). (6) Transformation of Pseudonocardia Autotrophica with VDH and BoxAB Expression Vector

[0127] In order to transform *Pseudonocardia autotrophica* strain NBRC12743 with pTAOR3-vdh, pTAOR3-boxAB, pTAOR4-For-boxAB, and pTAOR4-Rev-boxAB created in Production Example (4) and Production Example (5) by a conjugation method, the following procedure was performed. First, Escherichia coli strain S17-1 was transformed with the respective plasmids. The resultant transformed strains were cultured in LB medium containing 60 µg/ml apramycin at 30° C. for 15 hours to prepare culture media. On the other hand, Pseudonocardia autotrophica strain NBRC12743 was cultured in LB medium at 30° C. for 72 hours to prepare a culture medium. 200 µl of each of the culture media of the Escherichia coli strain S17-1 were centrifuged at 7,000 rpm for 30 seconds to precipitate bacterial cells. The supernatant was discarded, and 200 µl of LB medium was newly added to suspend the bacterial cells. 500 μ l of the culture medium of Pseudonocardia autotrophica strain NBRC12743 were added thereto, and the suspension was mixed. The suspension was centrifuged at 7,000 rpm for 30 seconds to precipitate the bacterial cells. 500 µl of the supernatant was discarded, and the bacterial cells were suspended in 200 µl of the residual supernatant. 150 µl of the cell suspension was spread to LB agar medium, and the cells were cultured at 30° C. for 24 hours. Growth of the bacterial cells on the surface of the agar medium was confirmed, and 2 ml of LB medium was added,

followed by suspension of the bacterial cells using a spreader. 200 μ l of the cell suspension was spread to LB agar medium containing 24 μ g/ml apramycin and 50 μ g/ml nalidixic acid, and the cells were cultured at 30° C. for 7 days, to thereby obtain only transformants of *Pseudonocardia autotrophica* strain NBRC12743 transformed with the plasmids pTAOR3vdh and pTAOR4-Rev-boxAB.

(7) Protein Expression Test Using Transformed Strain of *Pseudonocardia autotrophica* NBRC12743

1) VDH Expression Test

[0128] VDH is an enzyme protein belonging to cytochrome P450 group. Cytochrome P450 is a collective term of a group of proteins which are protoheme-containing proteins and show a characteristic absorbance peak at about 450 nm when carbon monoxide is bonded to reduced heme iron. Therefore, if a vdh gene is highly expressed in a transformed strain, expression of the gene can be detected by a carbon monoxide-binding spectrum analysis.

[0129] A test for confirming expression in VDH-inducible bacterial cells was performed by the following procedure. Colonies of Pseudonocardia autotrophica NBRC12743 transformed with pTAOR3-vdh obtained in Production Example (6) (P. autotrophica NBRC12743/pTAOR3-vdh) were inoculated into 100 ml of a preculture medium (1.5% glucose, 0.3% yeast extract, 0.4% sodium chloride, 0.2% calcium carbonate, and 1.5% polypeptone) containing 24 µg/ml apramycin and cultured at 30° C. and 220 rpm for 72 As controls, Pseudonocardia autotrophica hours. NBRC12743 wild-type strain and Pseudonocardia autotrophica NBRC12743 strain transformed with pTAOR were cultured in the same way as described above. 1 ml of each of the culture media was inoculated into 100 ml of a main culture medium (1% polypeptone, 2% glucose, 1% SOYPRO, 0.5% yeast extract, 0.04% K₂HPO₄, 0.04% sodium chloride, and 0.3% calcium carbonate) containing 24 µg/ml apramycin. The cells were cultured at 30° C. and 220 rpm for 48 hours, and 1 ml of acetone (final concentration: 1%) was added thereto, followed by culture at 30° C. and 220 rpm for 24 hours. Pseudonocardia autotrophica strain NBRC12743 transformed with pTAOR3-vdh was further subjected to a test without adding acetone. The culture medium was centrifuged at 7,000 rpm for 10 minutes, to thereby obtain bacterial cells as precipitates. The supernatant was discarded, and CV buffer was added to the culture medium in an amount of one-fifth of the medium, to thereby prepare a five-fold-concentrated cell suspension. A procedure of vigorously shaking 1 ml of the cell suspension using Fast-PROTEIN BLUE kit (Funakoshi Corporation) by FastPrep FP120 (BIO101, SAVANT) at a speed of 6.0 for 40 seconds was repeated three times while the sample was cooled on ice between the procedures, to thereby break the cells. The broken cell suspension was centrifuged at 13,000 rpm for 10 minutes, to thereby obtain a cell-free extract in the supernatant. The cell-free extract was divided into two test tubes with a cap in an amount of 700 µl, and carbon monoxide was passed through one of the cell-free extract. Next, sodium hydrosulfite was added to both the cell-free extracts in a small amount. The absorption spectrum from 400 nm to 500 nm of the sample through which carbon monoxide was not passed was defined as a baseline, and absorption from 400 nm to 500 nm of the sample through which carbon monoxide was passed was scanned using a spectrophotometer (U-3310 SpectrophotoMeter, HITACHI, Ltd.). As a result, an absorption peak characteristic to cytochrome P450 was observed at about 450 nm, and a VDH expression level in the culture medium was calculated from the absorption based on the molecular extinction coefficient of carbon monoxide-bonded and reduced P450, defined as 91 per mM. The results of the calculation suggested that 202 nM VDH was expressed per culture medium (FIG. 7).

2) BoxAB Expression Test

[0130] The boxAB genes derived from *Streptomyces* sp. TM-7 were acquired as a gene of an enzyme which catalyzes hydroxylation of compactin into pravastatin by Tadashi Fujii et al. (WO 2002/099109 A1). BoxA is cytochrome P450, and if the gene is highly expressed, expression of the gene can be detected by the carbon monoxide-binding spectrum analysis. In addition, a conversion test of compactin into pravastatin by BoxAB-inducible bacterial cells can confirm whether the gene is expressed and functions. Colonies of Pseudonocardia autotrophica NBRC12743 transformed with pTAOR4-RevboxAB obtained in Production Example (6) (P. autotrophica NBRC12743/pTAOR4-Rev-boxAB) were inoculated into 100 ml of a preculture medium (1.5% glucose, 0.3% yeast extract, 0.4% sodium chloride, 0.2% calcium carbonate, and 1.5% polypeptone) containing 24 µg/ml apramycin and cultured at 30° C. and 220 rpm for 72 hours. As controls, Pseudonocardia autotrophica NBRC12743 wild-type strain and Pseudonocardia autotrophica NBRC12743 strain transformed with pTAOR were cultured at the same time. 1 ml of each of the culture media was inoculated into 100 ml of a main culture medium (1% polypeptone, 2% glucose, 1% SOYPRO, 0.5% yeast extract, 0.04% K₂HPO₄, 0.04% sodium chloride, and 0.3% calcium carbonate) containing 24 µg/ml apramycin. The cells were cultured at 30° C. and 220 rpm for 48 hours, and 1 ml of acetone (final concentration: 1%) was added thereto, followed by culture at 30° C. and 220 rpm for 24 hours. Pseudonocardia autotrophica strain NBRC12743 transformed with pTAOR4-Rev-boxAB was further subjected to a test without adding acetone. 50 ml of the culture medium was used for conversion of compactin, and the residual culture medium was centrifuged at 7,000 rpm for 10 minutes, to thereby obtain bacterial cells as precipitates. The supernatant was discarded, and CV buffer was added to the precipitates in an amount of one-fifth of the medium, to thereby prepare a five-fold-concentrated cell suspension. A procedure of vigorously shaking 1 ml of the cell suspension using FastPROTEIN BLUE kit (Funakoshi Corporation) by FastPrep FP120 (BIO101, SAVANT) at a speed of 6.0 for 40 seconds was repeated three times while the sample was cooled on ice between the procedures, to thereby break the cells. The broken cell suspension was centrifuged at 13,000 rpm for 10 minutes, to thereby obtain a cell-free extract in the supernatant. The cell-free extract was divided into two test tubes with a cap in an amount of 700 µl, and carbon monoxide was passed through one of the cell-free extract. Next, sodium hydrosulfite was added to both the cell-free extracts in a small amount. The absorption spectrum from 400 nm to 500 nm of the sample through which carbon monoxide was not passed was defined as a baseline, and absorption from 400 nm to 500 nm of the sample through which carbon monoxide was passed was scanned using a spectrophotometer (U-3310 SpectrophotoMeter, HITACHI, Ltd.). As a result, a clear absorption peak was observed at about 450 nm in the sample of the strain transformed with pTAOR4-Rev-boxAB in the culture medium to which acetone was added, and it was suggested that 396 nM BoxA was expressed per culture medium (FIG. 8).

Example

Production of Pravastatin

[0131] A pravastatin production test using a BoxAB-expressing strain was performed. Compactin is converted into pravastatin by BoxA (FIG. 9). According to the above-mentioned culture method, the pTAOR4-Rev-boxAB-transformed strain was cultured, and induction by acetone was performed for 24 hours. As a control, a pTAOR-transformed strain was used. The culture medium in which induction was performed by 50 ml of acetone was centrifuged to precipitate the bacterial cells. The cells were suspended in 10 ml of Buffer A (50 mM potassium phosphate buffer, pH 7.4, 2% glycerol) to prepare a five-fold-concentrated cell suspension, and compactin was added thereto at a final concentration of 250 mg/L to perform conversion for 4 hours. A solvent (methanol:acetonitrile=1:1) was added to the sample at a ratio of 1:1 to stop the reaction, and the suspension was centrifuged at 15,000 rpm for 10 minutes to obtain the supernatant as a sample for HPLC analysis. Pravastatin was analyzed by HPLC under the following conditions. FIG. 10 shows the results of the analysis.

[0132] [Pravastatin Analyzing Conditions]

[0133] Column: Chromolith Performance RP-18e (100× 4.6 mm, Merck & Co., Inc.),

[0134] Solvent A: water:triethylamine:acetic acid=100:0.

[0135] Solvent B: methanol:triethylamine:acetic acid=100:0.1:0.1,

[0136] Flow rate: 2.0 ml/min,

<160> NUMBER OF SEQ ID NOS: 51

[0137] Temperature: 40° C.,

[0138] Detection: 238 nm,

[0139] Gradient:

TABLE 2

(minutes)	(% B)	
0	50	
3.0	50 90	

SEQUENCE LISTING

<pre><210> SEQ ID NO 1 <211> LENGTH: 12 <212> TYPE: PRT <213> ORGANISM: Pseu</pre>	idonocardia autotrophica
<400> SEQUENCE: 1	
Gly Gln Tyr Phe Glu 1 5	Asn Pro Thr Pro Ile Thr Gly 10
<210> SEQ ID NO 2 <211> LENGTH: 9 <212> TYPE: PRT	
<213> ORGANISM: Pseu	Idonocardia autotrophica
<400> SEQUENCE: 2	
Met Leu Asp His Tyr 1 5	Gln Gln Thr Lys

TABLE 2-continued

(minutes)	(% B)
3.5	90
3.5 3.51	50
5.0	50

[0140] Injection: 15 μl,

Retention time:	compactin pravastatin	3.1 minutes, 1.6 minutes.	

[0141] As is clear from FIG. **10**, in the case of the BoxABexpressing strain, production of 244 mg/L pravastatin was detected. In the case of the controls, production of pravastatin was not confirmed, and the results showed that pravastatin was produced by the reaction of BoxAB.

[0142] Compactin (ring-opened form) was fed to the transformed BoxAB expressing strain (P. autotrophica NBRC12743/pTAOR4-Rev-boxAB) of Pseudonocardia autotrophica NBRC12743, which had been cultured and underwent induction by acetone in the same way as described above, to examine the accumulation of pravastatin. A solution of 25 g/L compactin (ring-opened form) was added to 25 ml of the BoxAB-induced culture medium in an amount of 4 ml at the start of the reaction, in an amount of 1 ml at 9 hours from the start, in an amount of 2 ml at 21.5 hours from the start, in an amount of 2 ml at 33.5 hours from the start, in an amount of 3 ml at 48 hours from the start, in an amount of 3 ml at 55 hours from the start, in an amount of 3 ml at 71 hours from the start, and in an amount of 3 ml at 80 hours from the start. FIG. 11 shows time-dependent conversion of concentrations of compactin and pravastatin in the medium. As the result, 13 g/L pravastatin was accumulated for 100 hours in the conversion solution, and a highly efficient pravastatin production system was constructed.

13

<210> SEQ ID NO 3 <211> LENGTH: 14 <212> TYPE: PRT
<213> ORGANISM: Pseudonocardia autotrophica <400> SEQUENCE: 3 Ala Leu Asp Ala Ala His Gly Ala Ala Pro Ala Trp Gly Lys 1 5 10 <210> SEQ ID NO 4 <211> LENGTH: 19 <212> TYPE: PRT <213> ORGANISM: Pseudonocardia autotrophica <400> SEQUENCE: 4 Ser Pro Asn Ile Phe Phe Asp Asp Val Ala Ser Gln Gln Asp Ala Phe 1 5 10 15 Tyr Asp Lys <210> SEQ ID NO 5 <211> LENGTH: 16 <212> TYPE: PRT <213> ORGANISM: Pseudonocardia autotrophica <400> SEQUENCE: 5 Met Ala Asp Arg Ile Glu Ala Asn Leu Glu Ala Val Ala Ile Ala Glu 5 10 1 15 <210> SEQ ID NO 6 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic oligonucleotide <400> SEQUENCE: 6 ggscartayt tygaraaycc <210> SEQ ID NO 7 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (15)..(15) <223> OTHER INFORMATION: n is a, c, g, or t <400> SEQUENCE: 7 tgctgrtart grtcnarcat <210> SEQ ID NO 8 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 8 taatacgact cactataggg

20

20

2.0

<210> SEO ID NO 9 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 9 attaaccctc actaaaggga a 21 <210> SEQ ID NO 10 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 10 cggatcgagg cgaacctcga ggcggtcgcg 30 <210> SEQ ID NO 11 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 11 gtcggccatc ttgttcagga tgttcgcccg 30 <210> SEQ ID NO 12 <211> LENGTH: 8047 <212> TYPE: DNA <213> ORGANISM: Pseudonocardia autotrophica <400> SEOUENCE: 12 acteetegat cageteggae ageaeggtet egtagtegee caggtettet ggegeggtge 60 120 ctcgggagac ggcgaactcg atgaggtgcc gcacgtgggc agtcatcgtc gggatctcct gctgctcggc ccacgcccgc gcctcgcctg cggacttcca ccggctgtcg acgtcgacca 180 ggagcagcgc cgcggtcagc ggcgacaggg cgtcggcctc ggccgcgagc tcaaagaccc 240 gctcgaccgc tgccaggtcc gcgccggtgg gtcgcagcgg caccaccagg tgctcggaca 300 ggetcatege etgggtgage aggttegggt tetteggeee gaegtegate accaegtggg 360 cgtagtcgat cagcatcgga cggagctgcc gggccaggtg ccggtcggcg gcttcgatga 420 cgatgcagcg atccgccggc caatccgcgg cctcctgcga ccaggccaac gccccgtcct 480 ggtcggggtc ggcgtcgacg agcagcgtcc ggccctgacg ggcgaggccg agcgccaggt 540 gcaccgccgt cgtggtcttg cccgttccgc ctttgaggtg ccccaccgtg agtctcatga 600 660 tcactccgcc gctgtcgtcg tatcgtcgac actaccgtca cgacggtgtg ccgctgctgc accccgccgc atgtccccgg tcgtcgtccg ccgcgtggcc gcggtgagcc ggttccaccg 720 cttctgcatc gcctgccgcc cgccgagctg gccgtcgacg gcctcggcga cctgctgcca 780 ggtcatcccc tcgccgcccc atttcagggc tcgcaacaga tcccgctcgt agaaatcggc 840 ageggeacge attteetege acataeggaa caaagegget geetegeeat tggtaaaete 900 gtaatetteg tegttgttta etegtttatg aaaaacatee agatagteeg egetgtgett 960

type type <td< th=""><th>-continued</th><th></th></td<>	-continued	
acqatatag eggcaacae ittgtaegi tagegeaa acgtaetig tegteggi 1140 cgactagti gaetgegag ecteeceit tegtaetig eggeatgeg acaeaeagi 120 ageteggit ggeeggeag gaegeaaga gaegeaaga gaatggeag gaetggeag gaeetggeg etteegi 120 ageteggit eggeeggeag eggaetgi acteggeg eaceggeet eggegateg 120 acceecegta eggeegget gtegaaetg acteggeg gaeetggee geteaegt 130 ggaeggeag eacegeegg geeggaetg ageeggeag eaceggge etteegge 130 ggaeggeag eacegeegg geeggaetg ageeggeegg etteegge etteegge ageeggeegg 120 ggaeggeag eacegeegg geeggaetg agteggegg etteegge etteegge ageeggeegg 120 tttetetee geetegge geeggaetg agteggeg eggeegge etteegge etteegge ageeggeegge reggeigggge geeggeegg geeggaetg agteggigg eggeegdee eggeeggee 120 tttetetee geetegge geeggaegg eggeegge eggeegge etteegge eggeeggee	tgcaaccgtg tcggaatget cgateteete tgecgggaat teeeteeca geaetteeag	g 1020
cgactagttggaatgeggagcctcccogtatcgttactaggtaccaggaaacacagga1200agctoggtcggcogagcaggaggocaggaggaatcaggaccagcogagtag1320cogtoggtgtogtgtocgactogocgacaaggocgagagtocaggaggatcaggac1300cocacgoccacaaggocgacaaggocgaggcogagtagggcocaggaggocogagcag1300cocacgoccacaaggocgacacgoccaggggcoggacggcocacggcatogtocgacacgoccag1400ggcoggacaggcocacgggccocacgocgccocacgoccag16001600gggcoggacaggcocacggactogtoccagactogtoccagcagcocacg1600ttttttttacoggacaggacocaccogaccatggacagacatgocacgcocaccogac1800ttttttttacoggacaggacocaccogaccatgocacgacatgocacga1800ggacaccacgggacaccactatgocacgacatgocacga1800ggacaccacgggacaccactatgocacgacatgocacga1800gggcoggacgggacaccactatgocacgatatgocacga1800ggggaccacggggaccacgatatgocacgatatgocacga1800ggcoggacagggtgtattatatgocacgatatgocacga1800ggcoggacagggtgtattatatgocacgagaccacgac1800ggcoggacagggtgtattatatgocacgatatgocacga1800ggcoggacaggcctaggacggacactagggacacgac1800ggcoggacaggcctaggacggacacgactatggcacga1200ggcoggacag <td>ggetteeetg ateteeatac gteaateata egaegaeage geegtegtgt eaacettae</td> <td>g 1080</td>	ggetteeetg ateteeatac gteaateata egaegaeage geegtegtgt eaacettae	g 1080
Agttogitt gjorgagag gaggagag gagtaggo gattggo ga Gattggo ga Gattggo gagtagg gagt gg Agttogitt gjorgagag goggaadg gagtaggo teattagagg atetgggg gtetaagg 1320 caaeggeaa caaggtogg goggaatga aggogtoegg eetggoetae aceegeeeg 1440 ggtaeggat egtetgtag goggaacga eatgtagg getegge etggoetae aceegeeeg 1440 ggtaeggat egtetgae ggeeggeae gaegeeegg atgtetgg egaageteg gaeggaaga 1560 oggetgagg eetgeeeg gaegeeegg atgtetgg egaageteg gaegegaae eegteata 1680 ttttetteta getegttat eggeaeegg teatetaeeg egaegegae eegteata 1680 tttettette getegttat eggeaeegg teatetaeeg egaegegae eegteata 1680 tteetgeggaa egaegetat eeggaaegge teetge egaegege eegteata 1680 tteetgeggaa egaegetat eeggaaegge teetge eggaegege eegteata 1680 tteetgeggaa egaegetat eeggaaegge teetge eggaegege eegteata 1680 tteetgeggaa egaegetat eeggaaegge teetge eggaeegge eegteata 1740 teetgeggaa egaegetat eeggaaegge teetge eggaeegge eegteata 1740 teetgeggaa egaegetat eeggaaegge teetge eggaeegge ateetegge 1820 aggegetega egaegetat eeggaaegge teetge egg eegaeged eggaegeg 1860 tgegeetaa eataeagag gggaaeeeg teetge egg eegaaegt eggaeggaa 1860 gagaeetea eataeagag gggaaeeeg teetge egg eegaaegt eggeeegg 2100 ggegegateg aacaeggga eetggeteg eeggeeegg teetaegge 2100 ggeeggateg aacaeggga eetgge gaeeggaae eeggaaege teeggeeegg 220 eagegaaege gaeegteeg eeggeeega gegeeegg agetgeeg egaegtae 2220 eagegaaee gaeeggaa eggeeeeg agetgeegg eggeeegga geeeggae 2220 eagegaaee gaeeggaa geeeeega geeegegae eggeeegga geeeggaa 2220 eagegaaee gaeeggaa geeeeega geeegeae eggeeegga geeeggaa 2220 eagegaaee gaeeggaa agteegge gaeeeegg eggeeegga geeeggee 2220 eageagae eeggeegg eggeeegge geeegeeg eggeeegga geeegege 2220 eageagae eeggeegg eggeeegge geeegeeg geeeggeegge 2220 eageagae eeggeegg eggeeegge geeegeegae eggeeegge 2220 eageagae eeggeegga geeegeegg eggeeegga geeegeegg 2220 eageagae eeggeegg eeggeeegg eggeeegge geeegeegg 2220 eageagae eeggeegg eggeeegge geeegeegg geeegeegg 2220 eageagae eeggeegg eeggeeegg eggeeegge geeeggeeggeeggeeggeeggeegge 2220 eageagae eeggeeggeeg eeggeeegge geeegeegg eeggeeeegg 2240 gegaeeget g	acgatataga cggcaaaccg tttgtacggt tagacggcaa accgtactgg tcgttcggg	t 1140
accccccgi cgtgragte gtaaageg dtaatgeg categete ggggateg gegteggta teggtgrag dtaagget atgegeg geeteggg gactgggg gtateagg gegteggta teggtgrag geegaatta aggegteg eteeggtee geggeatg gggageget categreeg geegaatta atgegede eteeggteet geggeatg gggageget categreeg geegaatta atgegede geaggeatg geggaged geeggeged geeggeat getegate atcegeeoa tgageatee gaggaggag geeggeea geeggeat getegate atcegeeoa tgageatee gaggaggag tittettet getegtte gegeaegg tateataeg gageagea cagtaega 1620 ttttetteta getegttet geegaaegt gateataa aggeega cagtaega aggagaaga tateggaa ggageatt eeggaaege categeea aaageega eaggagea 1740 teetgeggaa eggeegat eeggaeeg gegaeega aaageega aaggeega aggagaga gageeeaa agagagaa eggaagete gggaeege categeega atetegeeg aggaggaega 1860 tgegeetaa cateaaega ggggaeege teeteegaa aageegaa atetegeega 1860 ggageeeaa cateaaega ggggaeege teeteegaa ageeegaa atetegeega 1860 ggegeetaa cateaaega ggggaeege teeteegaa ageeegaa atetegeega 1860 ggegeetaa cateaaega ggggaeege teeteegaa ageeegaa atetegeega 1860 ggegeetaa cateaaega ggggaaeege teeteegaa ageeegaa atetegeega 1860 ggegegateg acteegaat ggegaeega teeteegaa ageeegaa ateegeega 1860 ggegegateg acteegaa tggeeagg eetaggeega deeeaege 2100 ggegegateg aaaeeggga aegeegaa gegeeegaa teeaegee 2200 cageegaae gaceegaa tgeeegaa gegeeegaa geeeaaege 2100 gaeageagee gaeegaag gegeageag geeeeaaeg 220 geeegaaga ceeeeaag gegeegeag geeeaaege 250 geeegaaga ceeeeaag geeegaaeg geeeaaege 250 gegegaaega geegaaega geeegaae eeeaaege 250 gegegaaega geegaaega geeegaae eeeaaege 250 geeegaaga geegaaega geeegaae eeeaaege 250 geeegaaga geegaaega geeegaae eeeaaege 250 geeegaaega geegaaega egeeegaa geeeeaaege 250 geeegaaega geegaaega egeeegaa geeegaaeg eeeaaege 250 geeegaaega geegaaega egeeegaae eeeaaege 250 geeegaaega geegaaega egeeegaae eeeaaege 250 geeegaaega geegaaega geeegaaega eeeaaege 250 geeegaaega geegaaega geeegaae eeeaaege 250 geeegaaega geegaaega geeegaaega eeeaaege 250 geeegaaega geegaaega geeegaaega eeeaaege 250 geeegaega geegaaega geeegaae eeeaaege 250 geeegaega geegaaega geeegaega eeeaaege 250 geeegaega	cgactagttg gaatgeggag eeteeegta tegttaetta ggtaeeagge aacaaeagg	t 1200
cgycgytg t cgycgycg a ctgyggyt gatorggy gacotggg gatorggy gagargg gagaggy ggycgytg t cgycgycg gogaatga agogtogg godagtg cycgygota coogocoog ggycgytg ggygaggo googacoo gacogoog attogoga gacogoo cygycact 1500 ggyggggg googgocac gacogoog attogoga gacogoo gaaggagaa 1560 cooggyggagg googgocac gacogoog tatotacoo gacogoo cyttaata 1680 tttetetea gotgttat cygecoog tatotacoo gacogoo cyttaata 1680 tttetetea gotgttat cygecoog tatotacoo gacogoo cyttaata 1680 tttetetea googgaa gagacgt gggaacgo togoo coogac cagtaggagaa 1740 teetgogaa cygegat coggaagga coccoo cacacgoo gacgoo gagaggaga 1860 ttgetgetea catacacga gggaacget teetgoog catetacoo gacgoo gagaggaga 1860 tggegetaa catacacga gggaacgt ggtgtate cocacogot categoog agaggagaa 1860 tggegetaa catacacga gggaacget teetgoog catetacoo goocogat cacetoo 1920 agggetggac gategagt ggtgtatae tetacooga agegecag atectgacg 1920 agggegateg accettgaat teecagat gaacgagt cggaacgg coggacagg teegacgg 2200 ggeggateg accettgaat gyccaga ggtegetg ggecagaa categoo 2200 ggeegggt cggaccag accettga ggtgcagg cggaacge gogegaga catacge 2200 cacegoogg accettecaga tggtega cggoacceg agteggetgg cgeaggaca 2280 ggeegggt cggacacag tgetegoo ggoacceg googac categoo 2400 ggeeggate gacagagag ggecaceg ggecaceg ggeegga ceatacacg 250 cageogaga cocceceag ggtegoo ggoacceg geegaga agtegge ggeegg 220 cacegoaga cocceceag ggtegoog ggeatege geegaga agteggeegg 220 gacegagag coceeceag ggtegoog googace ggeegaga geegaga 250 cageogaga coceeceag ggtegoog ggeatego ggeegga geegge 250 cageogaga coceeceag agtegoog geegaceg geegaga geeggegg 250 cageogaga geegat gacgateg gacogoog gactoo gacogaa cacacageg 250 cageogaga geegata deegaege gacegoog ceeceaga geegaga geeggeg 250 cageogaga geegata deegaege gategoog gaceeceg geegaga geeggeg 250 cageogaga geegaega geegaege gacegoog geegaege 250 cageogaga geegaege geegaege geeegaga accaceeg geegaga 250 cageogaege geegaege gagaege geeegaga accaceeg geegagaeg 250 cageogaege geegaege geegaege geeegaga accaceege geegaege 250 cageogaege geegaege gagegeege geeegaga accaceege geegaege 250 cageogaege geegae g	ageteggtte ggeegageag gaggeaagag gaatggeage gaacaagate cagegagtag	g 1260
Caragycca caagycog geogaatga aggegteeg ottgeetae accegteeg 1440 aggtaegget accegteeg geotegate attgeeget coggeetae accegteeg 1460 gggtaegget accegteeg geotegate attgeeget coggeetae accegteege 1620 cogggtagge geoggeee gaetegate tatgeege geotegat accegteege geotegat accegteege 1620 tttteteta geotegate geotegate geotegat accesteege geotegat accegteege 1620 tttteteta geotegate geotegate gegetagat accesteege geotegate acgeegeege gaeggegeae acgetagat acgeegege gaeggeege teetgeegege geotegate acgeegeege geotegate acgeegeege gaeggegeae acgeegeege geotegate gegetage teetgeege geotegate accesteege geotegate acgeegeege geotegate geotegate accesteege geotegate acgeegeege geotegate gegetaget geotegate tetaeceeg geotegate accesteege geotegate geotegate geotegatee tetaeceega accesteege gaetegate geotegate geotegate accesteege geotegate geotegate geotegate tetaeceega accesteege geotegate geotegate geotegate geotegate geotegatee tetaeceega accesteege geotegate geotegate geotegate gaetegateg egotegate tetaeceega accesteege geotegate geotegate geotegate geotegate geotegate geotegate geotegate geotegate tetaeceega accesteege geotegate geote	accccccgta cgtgcagatc gtcaacgcga tcactgagcg catcgcctcc ggggatctg	g 1320
gggtaggate oktogteog ggogagteo geaegteog etcoggteot geogeatg 1500 ggegggageget ogeogeae ggetegatet ateggeeat tgageaetee gagaggaga 1560 ogggtaggeg geoggeeae gageegge tatetaeog egaegegee egtteatta 1680 ttteette getgtttet oggeaegeg tagteogeg ogaegegee egtteatta 1680 ttteette ottgttetg ocogeaegg tagteogeg tagteogege eggaaggag 1740 teetgeggaa ogaegegte gagategt gggtagtteg ogeaegege acgetaatta 1680 ttgetgete ottgttetg ocogeaegg toetgeeae egtteaetta 1680 ttgetgete agagegae gagategt gggtagtteg ogeaegege acgetagte 1900 gagaeetea agagaege gagategt gggtagteg ogeaegege gagaggaga 1660 ttgetgeea agagaege gagategt gggtagteg ocogeaege teetgaega ateetgeeg 1920 agggetage gategaggt gggtatea teetaegag ageocoga ateetgaega 1980 gtegoeaega ocetegaag ggggaaggg octaggtae teaaggge oggeeegg 2010 ggeggatega aacaeggag gegtateg gaaegaggt otegaeegg teetaegge 2010 ggeggatega aceteeag aggaeggg octaggtae teaagge oggeeegg 2010 ggegggatega aceteeaga ggeeegag ateeggee degeega ateetgaega 2160 ceaaggeegga oceteeag aggeeega gtegeega aggegeega 2280 ggeegggate gaeedgag geeegeeg ggeegaeeg geegaegg geegaegg 2220 cagegagaae gaeedgag geegeega gtegeege geegaeeg geegaegg 2220 cagegagaae ceeegeeag gtgteeage ggeegaeeg geegaegg geegaegg 2220 cagegagae ceeegeeag gtgteeage ggeegaeeg geegaegg 2280 ggeeegegt aggeeege geeegeeg geegeega geegaegg 2280 ggeeegegt aggeeege geegeega geegaeeg geegaegg 2280 ggeeegegg ateggeegg geegeegg geegeegg geegaegg 2280 ggeegegg ateggeegg geegeegg geegeegg geegeegg geegaegg 2280 ggeegegg aggeegeg geegeegg geegeegg geegeegg geegee	cggtcggtga tcgtgtgccg actgaggctg agatccggga gacctggggc gtctcacgtg	g 1380
ggcagocat ogocoaca ogocoaca ogocoaca tatogocoa tagacata ogagagaga 1560 ogggtaggac ogogocaca ogocoaca attogocat ogagagaga 1560 tittetteta getegittat oggaacaca tagacaga oggacat oggaacaga 1740 tittetteta oggaagat oggagat oggaat oggaagaga 1860 titgetgeta oggaagat oggagat oggagaga oggaagaga 1860 tiggegetaa ottogaag oggagat oggagagag ottogogog oggagaga 1860 tiggegetaa ottogaag oggagaga ottogogog ottogogog oggagaga 1860 tiggegetaa ottogaag oggagaga ottogogog ottogogog oggagaga 1860 tiggegetaa ottogaag oggagagag oggatat ottogogog oggagaga 1860 ggagatetgi aggatat toocoaga oggagagag ottogogog ottogogog oggagaga 1860 tiggegetaa ottogaag oggagagag ottogogog ottogogog ottogogog oggagaga 1860 ggagatetgi aggatat toocoaga agaggga ottogogog ottogogog ottogogogog ottogogogo getegecaga ottotaga toocoaga agaggagag ottaggaac totagaga totagaga 1960 ggagagacat gacaggag oggagagag ottaggaac totagaga totagagaga 1860 coaggogogo acottocaga tagtacaga oggacacage togaacagt togaacagt toogoo ggeoggagaca gacaggag oggacagg ottaggaac toagagat ottagagtag 1960 ggacaggaa coocogo ag tagtacaga oggacacaga togaacagt toogoo ggeoggaga ogocottog goococaga gtogoogaa togottog 220 cagogagaac gacaggag ogacaga oggacaga oggaaga tgogottog 220 cagogagaa coocogoo goo ggogoa gtogoogaa togogoga ogaggtoa 2280 ggocaggag coocogoo goo ggagaga ogcocaga gtogoogaa ogocoga 2280 ggocagaga coocogocag gtytocago ggocacaca ggocagaga tagogoogga 2260 ggocagaga coocogocag gtytocago ggocacaca goccagga agotogo 2280 ggocagaga googotga gtogogog gacagga coocoga ggocacaca goccagaga 2250 cagocagaga googotga gtogogo gacagga coocogo ggocaga ogocaca goccagaga 2250 cagocaga agocogo googo gacagaga coocogo googo googo 2280 ggocagaga googotga gtogogo gacagaga coocogo goocoga 250 cagocaga agocoga googotga gocogo gacagag dacagaga coococogo 250 cagocaga googotga gtogocaga gacagaga coococoga gacagaga 220 gacagaga googotga googoga gacagaga coococoga gacagaga coococo 2700 geocagaga googoga gacagaga coococoga gacagaga coococoga gacagaga 220 agagagacag ggocago gacagagag acococo gacaca gaccacoc gacagaga 2	ccacggccaa caaggtcgcg gccgaactga aggcgtccgg cctggcctac acccgccccg	g 1440
cgggggggg geoggecae gaeggecae gaeggecaeg atgtegtgg egaegteteg gatgecaege 1620 ttttetetea getegttat eggecaeeg teatetaee egaeggee egaeggee eggegaeggee 1740 tteetgegga eggegate eggetgete tggaeggee eceeegae eaggeeggee eggeggeeg 1860 gggaegeea eaggaeggee ggggaegge eceeggeeggeeggeeggeeggeeggeeggeegge	ggtacggact catcgtccga gggcagtccc gcaacgtcgc ctccggtcct gcggccatg	t 1500
LitteteteaSingSingSingSingSingSingSingSingSingSingSingSingLitteteteaGetegttetGegeacegeIggacacegeGaacegeacGegacageacIggacaceaIggacaceaIggacaceaIggagacgaceIggacgacgaceIggagacgaceIggagacgaceIggacgacgace	ggcagcgcat cgcctcgacc ggctcgatct atctgcccaa tgagcactcc gagaggaag	a 1560
ttgetgetet etgegstat ergegsegs ergegesegs ergeses ergesegs ergesegs ergegesegs ergegeses ergeseses ergesegs ergegesegs ergegesegs ergegesegs er	cgggtgaggc gccggccacc gacgccccgg atgtcgtggt cgcagctctg gatgccacc	g 1620
tectgeggaa cgagogtat egggaggag eggaggag eggaggteg eggeggag eggaggag egggagteg egggggat eggecegag ecteace agggaggat eggecegag ecteace agggaggag egggaggaggg eggggggaggagggg egggggggagggggggg	ttttctctca getegtttat eggeacegeg teatetaeeg egaegegeae eegtteaeta	a 1680
gagacetea agagacgac gagategt gggtagteg egeecega ateregae ateregae 2400 ggeceggg eceegega geecegt getecege ggecegae geecega agtegee 240 ggecegega eceegega geecege geecegae geecegae geecegae agteregae 240 ggecegege gategaege egeegega geecege geecegae geecegae agteregae 240 ggecegege geecegega geecege geecege geecegae geecegae agterege geecege ggecegege geecegega geecege geecegae ecee ece	ttgctgtctc ctggtttctg cccgcactgc tggaccagca aaagccgatc acggaacgac	c 1740
tggeggtea eateaacgag ggggaccege teetegge eateegg ateetege 2220 eageggagae gaccaggat gegegegg eggeecega gteegegge eateggegg eggagetgg eggagetgg gegeeceggg gegeeceggg gegeecegg gteeggge ggeecegg gteeggge eggeecegg geegeggg eeggage eggeecegg geegeggg eeggage eggeecegg geegeggg eeggage eggeecegg geegeggg eeggeecegg geegeggg eeggeecegg geegeggg eeggeecegg geegeggg eeggeecegg geeeeggg geeeegeggg geeeegeggg geeeegeggg eeggeeee eggeeeggg eeggeee eggeeeggg eeggeee eggeeeggg eeggeee eggeeeggg eeggeeeggge eeggeeeggg geeeegegg eegeeegegg eegeeegegg eegeeegeg geeeegegg geeeegegg eegeeegegg eegeeegeg geeeegegg eegeeegegg eegeeegeggeg	teetgeggaa egagegtatt eeggaaggea eeeeegeta eategeegat eageteggte	c 1800
agggetgge gategaggt gytetae tetaeceega agegeegga tetaget g geegeegg aceteegg gytetae teeggeegg geegega geegegg geeegegg geegegg geeegegg geeegege geeegegee geeegege geeegege geeegege geeegegee geeegegee geeegegee geeegege geeegege geeegege geeegege geeegegee geeegegee geeegegeege	gagaceteae agagaegaee gagategttg gggtagtteg egeaaeggee gaggaggeag	g 1860
gicgccacga cetetgaate teeceagetg gaacgaggta tetaggtage typecetig 2040 gggtaetgttg aggtaeetga gagaaggag eetaggtae teacacggte eggeeeegg 2100 ggeeggatega aacacgggag acgeeatgte gaaceagggt eegaacaget teaagatega 2160 eeaggeegga aeetteeaga tygetatggt eatggaegte gegeegaage tyeegtteegg 2220 eagegagaee gaeeaggag geegeeegga eggeeeggaage tgeggtteegg 2220 gggeegggte eggaeetteg geegeeegga etgegeeggaege teggeeggaee 2280 ggeegggte eggaeetteg geegeeegga egteeeggee etggeggaeeg 2240 gggeegggte eggaeetteg geegeeegga eggeeegga geegeegga eggeeegga 2400 ggeegggtg atggaeaaga agateaagga eegeeegge ggeeeggag aggeegegg 2460 ggeegeggte taetaeegg eegeeegge eegeeegge geegeeegga geegeeegg 2520 eageegaggee geegeegg eegeeeggee geegeeegg eegeeegge geegee	tggcgctcaa catcaacgag ggggaccege teetgegegt catctegaeg atettegeeg	g 1920
ggtattgttg aggtactag gggagcaggg octaggtac toacacggto oggococgg 2100 ggoggattog aacacgggag acgocatgto gaaccaggot cogaacagot toaagatog 2220 caggoggatog acottocaga tggtoatggt odgococcog aagtggaogg ogdaggtoac 2280 ggocgggtto oggacottog oggococgaa gttogocgo gtoggatoa coatogoot 2340 ggocgggtto occogocagg gtgtocago ggogacacoo ggocaggot gogocgogg 2460 ggocgggtt tactacogg ocgaggot ocgocgaac oggocagag gogocagag 2520 caggoagaga gocogotgat gtooggocog gootootg toggotog 2520 cagacagtga octtocacg aggoctog gootootg toggotog occocga gootootg 2580 cagacagtoa cooggatt ogagatog ogacacco gaccagt ocgocgotg 2580 cagacagtoa cooggatt googacgo gootootg toggotto 2580 cagocagtag octtoacog aggoctogt gocaccac cagacgatt occocgott 2700 gocogooga gotgaccat accacggo oggatogo cogocgo gootootg toggocgg 2770 gtottoacag aggoggoc oggatggat accagtoa cooccoc goocgoog googgagcag gacagatog gocgggge gagotggtg accagota toggacacc cooccoc gtocgggg 2820 agcaggacag gocgoggo gagotggtg accagota toggacaca cooccoc gtocggg 2820 agcaggatog gocgggge gagotggtg accagota toggacacca tgacacgtg coocggg 2820 agcaggacag gocgoggo gagotggtg accagota toggacaca tgacacgtg 2820 agcaggacag gocgoggo gagotggtg accagota toggacaca tgacacgtg 2820 agcaggacag gocgggeg gagotggtg accagota taggacag toggacgag 2820 agcaggacag coggocgg gagotggtg accagota toggaccac tgacacgtg 2820 agcaggacag coggocgg gagotggtg accagota taggacag toggacgag 2820 agcaggacag coggocgg gagotggtg accagotac tgacacgtg cogoggoct 2880 gogagacagt coggocgg gagotggtg accagotac tgacacgtg cogoggoc 2880	agggetggee gategaggte ggtgtetace tetaceeega agegeeegag ateetgaega	a 1980
ggeggatega aacaegggag aegeetegte gaaceagggt eegaegegg eegeeggage 2220 caageeggg acetteegge eggeeggeg eggeeggage eggeeggage teeggeegg 2220 ggeegggtte eggaeetteg gegeeegaa gttegeegte etggegatea eeategeete 2340 ggeeggggte eeggeeggg aegteggge eggegeggeg	gtcgccacga cetetgaate teeccageta gaacgaggta tetaggtage ttgteeetg	t 2040
ceaggeegg acetteeaga tggteatggt eatggaegte gegeegaage tgegtttegg 2220 eagegagaee gaeeaggag geetgaagga eggeeeega agteggeeg geegaggeeae 2280 ggeeegggtte eggaeetteg gegeeeegaa gttegeegte etggegatea eeategeete 2340 ggeeggaggae eeegeega gtgteeagee gggeatgeeg gtegagetgg teggeetgga 2400 ggeegaggetg atggaeaaga agateaagga eegeegaa gtegeegega geeeaeaageg 2520 eggeegagge eeegegtgat gteeggeeeg geegteetg tgetggtetg eaceteetge 2580 eageaeggteg eegagateg egaeggeeg gateggetg etgaeggeeg gaeedeege 2580 gaeeggeeggg eetteeeege egaeggeeg gaeegeetg tgetgaetg eeeegegegeg 2640 gaeeggeegg eetteeege eegaegge gateggeeg gaeegeeg gaeedeet egaeeggeg 2700 geeegeegga geeggeeg geegteetg eegaeegg geeggeegg 2700 geeegeegeg geeggeege gaeeggeeg eegeeegg geeggeeg	ggtactgttg aggtacctag gggagcaggg cctaggtacc tcacacggtc cggccccgg	t 2100
cagegagace gaceaggagt geatgaagga eggeaceeeg aagtggaegg egeaggteae 2280 ggeegggtte eggaeetteg gegeeeegaa gttegeegte etggegatea eeategeete 2340 ggeeggggtg atggaeaaga agateaagga eegegaeaee ggeeaggaga aggteggegg 2460 ggeegaggae taetaeege eegagggeat eegeeegae ggeegggga geeaeaageg 2520 eggeegagaea geegegtga gteeggeeeg geegteetgg tgetggtetg eaceteetge 2580 eageeggagea geegegtga gteeggeeeg gaeeggeetge etgateagte gaeeegggte 2640 gaeeggetgg etteaeegg aggeetegte geeaeeaet egaeeggete 2640 gaeeggetgg eetteaeegg aggeetegte geeaeeaet egaeeggete gaeeegggte 2640 gaeeggetgg eetteaeegg aggeetegte geeaeeaet egaeeggete gaeeeggete 2700 geeeggegag geeggeeg geegteegg aeeaeete egaeegge geeggaegg 2770 gteeteaega aggggggeee gegatggea tetggaeeae egeeegg geeggagegg 2820 ageeaggaeeg geegggeeg gagetggtg aceageete tgaeeggetg eeeggggee 2880 geeggagaeegt eggeeggee gagetggtg agetgeete eggeaeeae tgaeeggtg 2940 eggeageaegt eggeeggee gaetgetge eegaeegg acegeete ggeeaeaeg ategtegge 2940	ggcggatcga aacacgggag acgccatgtc gaaccagggt ccgaacagct tcaagatcg	a 2160
ggeegggtte eggaeetteg gegeeeegaa gttegeegte etggegatea eeategeete 2340 geaeggagae eeeegagg gtgteeagee gggeatgeeg gtegagetgg teggeetgga 2460 ggeegaggte taetaeege eegggeege geegeeega geegageeg 2520 eggeegageag geegegtgat gteeggeeg geegteetgg tgetggtetg eaeeteete 2580 eageaegteg eegagategt egaegaege gateggetge etgateagtg eeeegggtge 2640 gaeeggetgg eetteaeeg aggeetegte geeaeeaeet egaeegaete gaeteeggte 2640 gaeeggeega getgaeet geeaeeaeet egaeegaete gaeegeggtge 2640 gaeeggeega getgaeet geeaeeaeet egaeegaegte gaeteeggte 2700 geeeggeega getgaeeat aceaeggee eggteeggag aceaeeteeg gteegggege 2760 gtteteaega aggggggeee gegatggge aceageteae tgaeegegg geeggagegag 2820 ageaggaeeg geegggeeg gagetggtg aceageteae tgaeegegg egeegggeet 2880 geeggaeegt egggeeggee gagetggtge aggtegeete eggaeede 2940 egaegttgge eegggeegae gteteeggte eegaeeeggt getgategte aagttgatge 2940	ccaggeegeg acetteeaga tggteatggt eatggaegte gegeegaage tgegttteg	g 2220
geacgaggae ceceggeegae geegeggee gageeggee eegaeegge geegaegge geegaggee 2400 ggeegaggee tactacegeg eegagggeat eegeeegge ggeeggeegga geeacaageg 2520 eggeegageag geegegtgat gteeggeeeg geegteetgg tgetggtetg eaceteetge 2580 eageaeggteg eetteacegg aggeetgee gateggetge etgateagtg eeegegggee 2640 gaeeggetggg eetteacegg aggeetget geeaceaeet egaeegaete gaeegeegg 2700 geeegeegga getgaeegg accaeet eggeeggegg eeegeggg eeggaggeeg 270 gtteteaceg aggeggee gaateggeeg accaeet egaeegeegg eeggageegg 2820 ageaggaeeg geegggeeg egaetggeg accaeet egaeegeegg eeggageegg 2820 ageaggaeeg eeggeegge gaeeggetg accaeet egaeegeegg eeggageegg 2820 ageaggaeeg eeggeegge gagetggtg accaeete eggeeegegg eeggageegg 2820 ageaggaeeg eeggeegge gagetggtg accaeete eggeeege geegggeeet 2880 geegageaegt eegggeegae gteteeggte eegaeeegt getgategte aagttgatge 2940	cagegagaee gaeeaggagt geatgaagga eggeaeeeeg aagtggaegg egeaggtea	c 2280
ggteggegtg atggacaaga agateaagga eegeegegg ggeegeegeg ageegeegeg geegeegegg 2520 eggegageag geegegtgat gteeggeeeg geegteetgg tgetggtetg eaceteetge 2580 eageaegtea eegagategt egaegaegge gateggetge etgateagtg eeegeggtge 2640 gaeegeegega getgaceatg aceaeggee eggteeggag aceaeete gaeegaete gaeteeggte 2700 geeegegega getgaeeatg aceaeggee eggteeggag aceaeeteeg gteeggggee 2760 gtteteaega aggggggee gegatggteg aceageteae eggeegegg gegagaeggag 2820 ageaggaeeg ggeegggege gagetggtg aceageteae tgaeegeegg geegggeet 2880 geegageaegt eggeeggeeg gagetggtg aceageteae tgaeeggeg 2620 ageaggaeeg eggeeggeeg gagetggtg aggtegeete eggeeegg geegggeet 2880 geegageaegt egggetgtee eaegeggtg aggtegeete eggeeegg geegggeet 2880	ggeegggtte eggaeetteg gegeeeegaa gttegeegte etggegatea eeategeete	c 2340
ggegegaggte taetaecegeg eegagggeat eegeeegate ggegeegeega geeacaaageg 2520 eggeegageag geegegtgat gteeggeeeg geegteetgg tgetggtetg eaceteetge 2580 eageaegtegg eetteaecegg aggeetegte geeaceaeet egaeegaete gaeteegete 2700 geeegegega getgaeeatg aceaeggeee eggteeggag aceaeeteeg gteeggggee 2760 gtteteaega aggggggeee gegatgggea tetggaeeae egeeeggg geeggageegg 2820 ageaggaeeg ggeegggege gagetggtgg aceageteae tgaeeegegg geeggageegg 2880 geegageaegt egggetgtee eaegeggtge aggteegeete eggeeegegg ateegtegg egeegggeet 2880 geegaeegte egggeegge gagetggtge aeeagetee eggeeeeg ateegeete 2940 eggeegttgge eegggeegae gteteeggte eegaeeeggt getgategte aagttgatge 3000	gcacgaggac ccccgccagg gtgtccagcc gggcatgccg gtcgagctgg tcggcctgg	a 2400
cggcgagcag gccgcgtgat gtccggcccg gccgtcctgg tgctggtctg cacctcctgc 2580 cagcaggtgag ccttcaccgg aggcctcgtc gccaccacct cgaccgactc gactccggtgc 2640 gacgggcggag gctgaccatg accacggcc cggtccggag accacctccg gtccgggggc 2760 gttctcacga aggggggcc gcgatgggca tetggaccac cgccgccgg gcggagegag 2820 agcaggaccg ggccgggeg gagetggtg accagctca tgacacgtg cgccggggct 2880 gcgaggaccgt cgggctgtc cacgcggtgc aggtcgcct cggcaccacg atcgtcgtg 2940 cgacgttgge ccgggccgac gtctccggt ccgacccggt gctgatcgt aagttgatgc 3000	ggtcggcgtg atggacaaga agatcaagga ccgcgacacc ggccaggaga aggtcgtcg	g 2460
cagcacgtca ccgagatcgt cgacgacggc gatcggctgc ctgatcagtg cccgcggtgc 2640 gacggctggg ccttcaccgg aggectcgtc gccaccacct cgaccgactc gactccgctc 2700 gcccgcgcga gctgaccatg accacggccc cggtccggag accacctccg gtccggggcc 2760 gttctcacga aggggggccc gcgatgggca tctggaccac cgeccgccgg gcggagcgag 2820 agcaggaccg ggccgggcgc gagctggtgg accagctcac tgacacgtgg cgccgggcct 2880 gcgagcacgt cgggctgtcc cacgeggtgc aggtcgcct cggcaccacg atcgtcgtgc 2940 cgacgttggc ccgggccgac gtctccggtc ccgacccggt gctgatcgtc aagttgatgc 3000	ggcgcaggtc tactaccgcg ccgagggcat ccgcccgatc ggcgccgcga gccacaage	g 2520
gacggetggg eetteacegg aggeetegte geeaceaeet egacegaete gaeteegete 2700 geeegegega getgaeeatg aceaeggeee eggteeggag aceaeeteeg gteeggggee 2760 gtteteaega aggggggeee gegatgggea tetggaeeae egeeegeegg geggagegag 2820 ageaggaeeg ggeegggege gagetggtgg aceageteae tgaeaegtgg egeegggeet 2880 gegageaegt egggetgtee eaegeggtge aggtegeete eggeaeeaeg ategtegtge 2940 egaegttgge eegggeegae gteteeggte eegaeeeggt getgategte aagttgatge 3000	cggcgagcag gccgcgtgat gtccggcccg gccgtcctgg tgctggtctg cacctcctg	c 2580
geeegegega getgaeeatg aceaeggeee eggteeggag aceaecteeg gteeggggee 2760 gtteteaega aggggggeee gegatgggea tetggaeeae egeeegeegg geggagegag 2820 ageaggaeeg ggeegggege gagetggtgg aceageteae tgaeaegtgg egeegggeet 2880 gegageaegt egggetgtee eaegeggtge aggtegeete eggeaeeaeg ategtegtge 2940 egaegttgge eegggeegae gteteeggte eegaeeeggt getgategte aagttgatge 3000	cagcacgtca ccgagatcgt cgacgacggc gatcggctgc ctgatcagtg cccgcggtg	c 2640
gtteteacga agggggggee gegatgggea tetggaceae egeeeggg geggagegag 2820 ageaggaeeg ggeegggege gagetggtgg accageteae tgaeaegtgg egeegggeet 2880 gegageaegt egggetgtee eaegeggtge aggtegeete eggeaeeaeg ategtegtge 2940 egaegttgge eegggeegae gteteeggte eegaeeeggt getgategte aagttgatge 3000	gacggetggg cetteacegg aggeetegte gecaecaeet egacegaete gaeteegete	c 2700
agcaggaccg ggccgggcgc gagctggtgg accagctcac tgacacgtgg cgccgggcct 2880 gcgagcacgt cgggctgtcc cacgcggtgc aggtcgcctc cggcaccacg atcgtcgtgc 2940 cgacgttggc ccgggccgac gtctccggtc ccgacccggt gctgatcgtc aagttgatgc 3000	gcccgcgcga gctgaccatg accacggccc cggtccggag accacctccg gtccggggcc	c 2760
gcgagcacgt cgggccgtcc cacgcggtgc aggtcgcctc cggcaccacg atcgtcgtgc 2940 cgacgttggc ccgggccgac gtctccggtc ccgacccggt gctgatcgtc aagttgatgc 3000	gtteteacga agggggggeee gegatgggea tetggaceae egeeegeegg geggagegag	g 2820
cgacgttggc ccgggccgac gtctccggtc ccgacccggt gctgatcgtc aagttgatgc 3000	agcaggaccg ggccgggcgc gagctggtgg accagctcac tgacacgtgg cgccgggcct	t 2880
	gcgagcacgt cgggctgtcc cacgcggtgc aggtcgcctc cggcaccacg atcgtcgtg	c 2940
	cgacgttggc ccgggccgac gtctccggtc ccgacccggt gctgatcgtc aagttgatg	c 3000
zgggccaget eccegeggae tteegggeee eggaggtege geageggete teggeegege 3060	cgggccaget eccegeggae tteegggeee eggaggtege geageggete teggeegeg	c 3060
tgggetgega eegeateegg gtegageeee geggeeegea etgggteegg ategagetge 3120	tgggctgcga ccgcatccgg gtcgagcccc gcggcccgca ctgggtccgg atcgagctg	c 3120
tgaccggega ceceetegee gtegaegtea ceacegeget eeeggeeege gaceaetegg 3180	tgaceggega ecceetegee gtegaegtea ecaeegeget eeeggeeege gaceaeteg	g 3180
tcagcggage tcaggteete gtegeeegeg acgagetegg eegeeegetg gegatgeagt 3240	tcageggage tcaggteete gtegeeegeg acgagetegg eegeeegetg gegatgeag	t 3240

				-contir	nued	
gggaccaggc	tccgcacacc	tgcgtgcagg	gcgcgacccg	ctccggtaag	tcggtgtggt	3300
gctactcggt	gctcgcgcag	ctcgcccgcc	tcgacgacgt	cctgatcgcc	ggatccgacc	3360
cgtccgggct	gctgctcggt	cgcccttggg	caggcacccg	ccaccacgag	tggcaggcca	3420
ccggcagccg	cgacgtcctg	gcccaccgcg	acctgctcga	ccgcctggtc	gcggagatgg	3480
acgcgcgcat	cgccgagctg	cccgcacggc	aggacaagct	cgccgtcttc	acccccgccc	3540
ggccgctgat	cgtggtcgtc	ctcgaggagt	tggccggcct	tttgcgcctg	gcctcgacca	3600
ccccgacccc	gaagggcgag	gccaaggtcc	gcgagcagct	cctgcacgcg	ttcggccgcc	3660
tggtctcgga	gggacacaag	gccgggatgc	ggctgctggt	ggtcacccag	cgcgcggacg	3720
tgacgattat	cgagggcttc	gcccgcggtc	agctcgggct	gcggctgagc	ttccgcgtcg	3780
atgaccccga	ggctctggtc	atgctccacg	gccaggacgc	ccgcgccgag	ctggtccagc	3840
accgccagtc	cccgcccggt	gtcgccctgg	tccaggcccc	cggcatcgcc	ctcacccggg	3900
cccgcggccc	gcgcctgccc	ggcccgtcgg	aggacgccga	ctacgcacgg	ttctgggacg	3960
aggtggcagg	ggacgtcccg	gcgcgcctcc	accaggtagc	ggcctgagca	ggccagagtc	4020
agcgaccagg	ccgacaaaga	agtgagcccc	caggtgttgg	cgcacccagg	ggetegeeeg	4080
tcggccggaa	gtcatcacca	tctgagaacg	gatcggaccg	gccaacgtgg	ctgacctcag	4140
ggtacccacg	tgccagcgac	tcggctctac	gccacgcggg	cacatctcca	ccccccacac	4200
ctcccgccgc	cccgcacggc	acgccgtcat	gacggtcaac	cgtcggcgtc	gtcctatcga	4260
cgacagcacc	ggatgccgga	cggggaacag	gagcaccgcc	cgtctcgacc	gctgcccttc	4320
ctcgatacaa	ggccgcacga	gtgcgggggca	ggttcagtca	agggtcggcg	cagccgatcg	4380
cgtagcgacg	ccgcaggcgc	ccttggcggg	ttctgacctg	cattcgacac	ttagccgcca	4440
tcgaggtagg	gcccaccgca	gcacgcgcta	cagcaccggc	accgagaaca	ccctcagctc	4500
tcgcgccgca	ggcgcgcgcc	cggtccggac	gggcccggcc	cgcgggccgg	aggcaggagc	4560
gggccggagc	ccggcccggc	cgggcgccgg	ccacagcggc	ccgatcgctg	gcggtgctcg	4620
atgaccgccg	cgctgacgcg	cgtcgacgcg	ggcgtgcccg	cgcttggtac	tgacgcgaaa	4680
agtgcggcca	ccgcaggtca	ggtccccgtg	ggggactggg	cagggagctt	ctgggagcgg	4740
caggaccgcg	ccttgcggga	gaagtaccgg	gcccgccgtg	agctggccag	gatcacgacg	4800
ctgcgtcgcg	ttgcacgctg	cggacgctcc	tcgatgaacg	acggcggaga	cgtcgtcctg	4860
cgctactcgc	ccggcaccgg	ggaggacggc	tcggcgtcgg	cgggtttcgg	cggactggtg	4920
acctgcggca	gcctgtgggc	ctgcccggtc	tgctcggcca	agatcagcgc	ccgccgggcc	4980
cgggagctgg	aacacctgat	cacctggaac	gccgcccgcg	gcggcaccgt	cgcgctgctc	5040
agcctgacca	tgcgccacca	cagcggccac	cgcctgcgcg	acctgcgccg	agggctgagc	5100
gccgcgtggc	gccacgtcac	cagctcccgc	gggtggaagc	gctggaagag	cgtcttggga	5160
atggactacg	tccgcgggat	tgaggccacc	cacggagcga	acggctggca	tctgcacatc	5220
cacgccctgc	tgatcttccc	cggcgacgtc	acggaggaga	tgcacgccct	caccgccgag	5280
atctggaccc	gctggtcgac	cggcctgcgg	cgcaagggct	tcgacgccac	gatcgcccac	5340
ggcgtcgacg	tccgggtcgg	caccggcgcc	ctcgaacagc	tcggccgcta	catctccaaa	5400
ctggccttcg	agacctccgg	cggccggtgg	aagctgggca	agaacggcag	ccgtaccccg	5460
ttccagatcc	tcgccgacgc	cctggaccga	gcccgcgacc	gagacctcgc	gctctgggcg	5520

		-continued	
gagtgggagc aggccagcca	cggcatgcag cagetegtgt	ggtccaacgg actcaaggo	cg 5580
gcctgccagc tcgacgagat	cgacgacgag acgatcgcgg	aggaggacga cggtggtga	ag 5640
ttcgtcgccc agctcccccg	ccgcacctgg gagaaggtct	accccgtcgc cgaagacct	zg 5700
atcatcgcca cccgcactgg	tggccccgaa gcaggccgcg	cctggcttga cgcccgcgc	ge 5760
ctggcctatg accacgagcg	cgacacgagc gaacgagcag	tcctgctcga cgagccgga	ac 5820
ccgccgttcg cgtggctgag	ggccgctctc gcggccgaag	accccgagca gcgccggga	ag 5880
cgacgccgcc gctactaccg	caccgcacag accaactgag	ctcgatgagg agcagaaco	ca 5940
cgatggccga cacctggacg	atcagecege tgateegeee	cctgctgcgc aagctcgat	-g 6000
agcgcggagg ctgcgcctac	ccgcaggact tcccgcactg	ccacggcgcc gagatccac	gc 6060
acaccgacgg caccgccgaa	tgcttcaacc ccggccagcc	ctgcccctac ccacgacco	cg 6120
gcgcgcacgc cttcgtccac	acctgcgctg acgtcaccca	ccggctcacc caccgctgc	ca 6180
cccgctgccg ctgattcacc	acaggccatg cacctatgca	ttgcccaatg atgatctto	cg 6240
gctgctgacg tcgtcgatac	gacgacatta ctcaattctg	ttgtcccata aagcatcto	gg 6300
cctctaatgg ccccaaccag	tcgactgact ggcccacact	tacatatatg tagtttcgc	cg 6360
ctgtaaaggg tattcatccc	atttggcggc taccggtcac	actatcgatt ttggaaggg	gt 6420
ctgtgacccg aagtaattcg	acctcaagcc actggggcct	taaatgaaga ctctcgcto	cg 6480
teeggteaaa teegeggeag	tatcactctt ggcggctgtc	gctctgttcg gtactgcgg	gc 6540
agcaagteet ategegeeee	aggettegge gaaceeagtt	ggaaactgtg ggggctctg	gt 6600
ccagacctat cgccagaacg	gcccaattga cgcctggcgg	gtgcgggtca ccggagtgg	Ja 6660
tctgatgggg atcatcaggc	ctgcggtgcg aggcgagttc	aacatgtcga tcagtggad	20 6720
ggacggcgaa tcatttctcg	ctcgttcgat tccgttcgat	gaatttactg gaccgagte	ga 6780
tagcgttatc gtcagaggac	cggaggtccg ggtctcggtc	caggtcgttg ctacgccto	gc 6840
caacggcagg agctgcagct	actactacgt ggcaccctat	ccgggtgcgt aagtaacag	gc 6900
gagagtggga aatgactcat	ccagcgttgg gccgactcaa	gagactgaac gcagcggto	ca 6960
atgaagtagg gctgtctgag	tccgaggaag agccgctgac	tgctgaggcc ctcaaagag	gg 7020
cgatctcgca tttctcaaca	ttgttgttcc agctcggaat	aagtgctggc tacttcaac	cg 7080
actccgatct agcgaagacg	ctagaccttg atgacaagtg	gagagacttt ttcaccgat	ac 7140
tgagcgcggc gcagcgttct	gccttttatc tactggaggc	gagcgtaggt gagagggct	ze 7200
cacaggaacc ggatgacggc	tctaggccct ggatcggtcc	gcactaatcg aggettgad	2t 7260
aaggggggtat ctctgccttg	gctggcgtgc ggttgagagc	cggtccgccc tgaacacto	ga 7320
gtggtgtcgt cgataggacg	acggggccgg atatgactac	agtcggtgac cacgcgtco	20 7380
tcaagatcgt ttgatgcata	ggtgtgagtc aattgatctt	ggtcgggggt gtgactggo	ct 7440
gtggtcagac ggggctgacg	ccggtctcgg cgttggcgtg	ctggcacaga acgaggaco	gc 7500
gategeegte ggtgeegegg	tagatcgtct ggccgtcgta	gtcggtcagg tggtggato	2g 7560
gcgcggggttc gccggagatc	ttccggacgg cgtgggtcca	gggeggeggg tgeeggteg	gg 7620
tgatcttctc ggtcatcgcc	gcggcgcctg cttgccgatc	atcgtgacga cctggtcgc	eg 7680
caggetegeg tegteggegg	cgagcagcac gagagcggac	aggacctcga tccggtcca	ac 7740
gtggcggccc agccgtcgcc	gcgctacccg ggccaggtgc	tcgaacgcgt cgcgggtgt	cc 7800

-continued

-continued	
gtcgtcgagg accgeggtgt acttegacee geeeegegee ggaegtaceg eggggaeete	7860
acgeggetge ggtggtgegg ceaeeggete ggegaeegeg aceggeaeeg gegteeeggg	7920
cagggtgatc tggtccgggt gctgcgggtg ctcgacgggc gtgtcgtcgt tacgacgacc	7980
tttggtggag geggeggeeg egaggetgeg aegggeteeg getegettge geteageeat	8040
gatcagg	8047
<210> SEQ ID NO 13 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 13	
atcaccgggg agaacttcac cgaggtcgcc	30
<210> SEQ ID NO 14 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 14	
cggggtgggg ttotogaagt actggooott	30
<210> SEQ ID NO 15 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 15	
gggtgccctc gacgagctcg a	21
<210> SEQ ID NO 16 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 16	
acgcgatggg caccgcgctg t	21
<210> SEQ ID NO 17 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 17	
geeggateee teeegeegee eegeaeggea	30
<210> SEQ ID NO 18 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	

19

-continued		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 18		
gcctgtacat gaccegeace egecaggegt	30	
<210> SEQ ID NO 19		
<211> LENGTH: 30 <212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 19		
geetgtaeae teeegeegee eegeaeggea	30	
<210> SEQ ID NO 20		
<211> LENGTH: 30		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 20		
geeggateet gaeeegeace egeeaggegt	30	
<210> SEQ ID NO 21		
<211> LENGTH: 30 <212> TYPE: DNA		
<212> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 21		
gccggatccg gttctgacct gcattcgaca	30	
<210> SEQ ID NO 22		
<211> LENGTH: 30		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 22		
geeggateeg ategetggeg gtgetegatg	30	
<210> SEQ ID NO 23		
<211> LENGTH: 30		
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide		
<400> SEQUENCE: 23		
gcctgtacac aggcgcggcc tgcttcgggg	30	
<210> SEQ ID NO 24		
<211> LENGTH: 30		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence <220> FEATURE:		
<223> OTHER INFORMATION: Synthetic oligonucleotide		

<400> SEQUENCE: 24

20

-continued	
gcctgtacag cgggctgatc gtccaggtgt	30
<pre><210> SEQ ID NO 25 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
<400> SEQUENCE: 25	
gcctgtacaa ttagaggcca gatgctttat	30
<210> SEQ ID NO 26 <211> LENGTH: 448 <212> TYPE: DNA <213> ORGANISM: Pseudonocardia autotrophica	
<400> SEQUENCE: 26	
gtgeetggee tgeteggeeg eggegaegag ggteteeege ageageggea ggaeetgege	60
cageggatgt eeggegegea geteggegae etegeeegge tggtaggtgt gegagggeeg	120
ggaccgetee ggategaegg eggeggeeag egaaegetee eaggaegeee ggateteegg	180
gcgcacctcc ggtgcggccg aaccggtcag cgcggcgcca cgcgcccgct ccagcccgcc	240
tcgttcacgc gtcacgacac tcaccctatg gttagctcag ccttacctga atcgaatccg	300
cgggatcggc acteteegga ggtteaggtt eegeatetge gtgeaaceee tgtgeaacee	360
ccaccttcct agtgtccggc atcacgcgca atgcagtgat atctccacgg acatccccca	420
cggacatece ceaegggaag gaceateg	448
<210> SEQ ID NO 27 <211> LENGTH: 3200 <212> TYPE: DNA <213> ORGANISM: Pseudonocardia autotrophica	
<400> SEQUENCE: 27	
cacteeegaa acagggatea tgetegeegg eegggaegag tggggtggat eageegtegg	60
gcagegeeag gtegegatgg teecegteeg gtagegeeeg eegeageegg teeegeaget	120
eggtgteegg ategetgtee ggateggege geageagege gageagegee teeggatege	180
ccgagcgcag tacggcggta cgggtcgagg ccaccaggtg ctcgcgctcg gcccgcacac	240
ccggcgactc cgaggtcggc agcaacggac cgcgggccgc ctcggccgcg gcgtcgcgga	300
cccgcccgtg ccgcagcgcc tcgcgcagcc ggaggaagtc ggcgtccacc cgggcggcga	360
geogataggg etgggtaegg aeggtgteet egeogaegea geggegeage eggtgeatet	420
eggeeeggae ggtgateggg egeeetegt egeegtagag egegeeggeg agetggtegg	480
ccgtcagccc ctctgggtgc agcgcgagca gggtgagcac ctcggcgtgc cgcagcccga	540
geegeagegg eeggeegteg egeegggega eeggegeeet ggeeeegagg aaeggeaggg	600
tgagegeegg cageaeegga eeegagggtg tgggeaeeeg gageageeag eeetegeeea	660
geggeteeag caeggeeteg gegeegeegt egageaggat eeggtegeeg egetegggea	720
gcgtcacccg gacagggaag cggtgcgccg gggtggcggc cagcacccgg ccgtgtggtg	780
acagcagcgc gccggggacg tcgccgagcc gggacaggtg cggcaggttg gtgtcccgca	840
ategeeggte acgateetee ageagegeeg ceageeggtg eteggegage egegggeeg	900

-continued	
cggtgaccag cgacagcgtc atcggatgga acgacteete eggeeeggtg acgtegaegg	960
cgccgatctg gcggccggtc tccgggtcgt gcaccggagc ggccgcgcag gtccacgggt	1020
gataggeget gaccaggtge teggeegagt ggateeggae eggeeggteg teggaeageg	1080
cggtgcccat cgcgttggtg ccgaccgagt cctcgctcca gcgggtgccc tcgacgagct	1140
cgacccgctc ggcccggcgc agcacctcgc gcgcaccctc ccgccacagg atgtgcccgc	1200
getegteggt caegateate atgtgeetgg eetgetegge egeggegaeg agggteteee	1260
gcagcagcgg caggacctgc gccagcggat gtccggcgcg cagetcggcg acctcgcccg	1320
gctggtaggt gtgcgagggc cgggaccgct ccggatcgac ggcggcggcc agcgaacgct	1380
cccaggacgc ccggatctcc gggcgcacct ccggtgcggc cgaaccggtc agcgcggcgc	1440
cacgegeeeg etceageeeg eetegtteae gegteaegae acteaeeeta tggttagete	1500
ageettaeet gaategaate egegggateg geacteteeg gaggtteagg tteegeatet	1560
gcgtgcaacc cctgtgcaac ccccaccttc ctagtgtccg gcatcacgcg caatgcagtg	1620
atateteeac ggacateeecc caeggacate eeccaeggga aggaceateg atggeeaegt	1680
acgeggeace gggteageeg gaeagegteg tetegtteaa geetegetae gaeeaettea	1740
toggoggoga gtacatogog coggogaagg gocagtaott ogagaacooo acooogatoa	1800
ccggggagaa cttcaccgag gtcgcccgcg gcaccgccga cgacgtcgag aaggccctcg	1860
acgcggcgca cggcgccgca ccggcctggg gcaagacete geecaecgag cgggcgaaca	1920
teetgaacaa gatggeegae eggategagg egaacetega ggeggtegeg ategeegagt	1980
cctgggagaa cggcaaggcc tgccgggaga ccctggcggc cgacatcccg ctggcgatcg	2040
accacctgcg ctacttcgcc ggtgcgatcc gggcgcagga gggcggtctc tcccagatcg	2100
acgacgacac cgtcgcctac cacttccacg agccgctggg cgtcgtcggc cagatcatcc	2160
cgtggaactt cccgatcctg atggcgatct ggaagctcgc cccggcgctc gccgcaggca	2220
acgcgatcgt cctcaagccg gccgagcaga cgccggtctc gatccacgtc ctgctggacc	2280
tggtcgccga cctgctgccg cccggtgtgc tcaacatcgt caacgggttc ggcgtcgagg	2340
ccggcaagcc gctggcgtcc aacaagcgca tctcgaagat cgccttcacc ggtgagacca	2400
ccaccggccg gctgatcatg cagtacgcct cggagaacct gatcccggtc accctggagc	2460
tgggtggcaa gagcccgaac atcttcttcg acgacgtcgc ctcccagcag gacgcgttct	2520
acgacaaggc gctcgagggc ttcgcgatgt tcgccctcaa ccagggcgag gtctgcacct	2580
gecegtegeg egegetgate eagggeggea tetaceagga gtteetggag eaggeggtea	2640
agegeacega geagateaag eagggeaace egetegaeae egaeaceeag ateggtgege	2700
aggcetegaa egaceagtte gagaagatee tgteetaeat egacateggt egteaggagg	2760
gggccaaggt cctcaccggt ggcgagaagg ccgatctcgg cggcgacctc tccggcggct	2820
actacatcaa geegaeegtg ttegagggea acaaeeagat geggatette eaggaggaga	2880
tetteggtee ggtegteteg gtggeeeggt teteegaeta egaegaegee ateeggaeeg	2940
ccaacgacac gctctacggc ctcggcgccg gcgtgtggag ccgggacacg aacaccgcct	3000
accgggcggg tcgcgacatc caggccggcc gggtgtgggt gaacaactac cacgcgtacc	3060
cggcgcacgc tgccttcggc ggctacaagc agtccggcat cgggcgcgag aaccacaagc	3120
agatgetega ceactaceag cagaceaaga aegteetgea gagetaeteg eegaaegege	3180

-cont	lnu	led

-continued	
tgggcttctt ctgatggggc	3200
<210> SEQ ID NO 28 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 28	
gcctgtacat cgcggacgtg ctcatagtcc	30
<pre><210> SEQ ID NO 29 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
<400> SEQUENCE: 29	
geeggateee etgatagaaa cagaageeae	30
<pre><210> SEQ ID NO 30 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide</pre>	
<400> SEQUENCE: 30	
gtcccggcaa cgctgggtgg atggatccat	30
<210> SEQ ID NO 31 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 31	
gccggtaccc caaaatccct taacgtgagt	30
<210> SEQ ID NO 32 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 32	
geeggtaeee teeegeegee eegeaeggea	30
<210> SEQ ID NO 33 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 33	
gccaagettg tgeetggeet geteggeege	30

<211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 34 gcccatatgt ggtccttccc gtggggggatg 30 <210> SEQ ID NO 35 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 35 gccccccata tggcgctgac caccaccggc 30 <210> SEQ ID NO 36 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 36 30 gccgctagct caggcgctgc gcggccccat <210> SEQ ID NO 37 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 37 30 gcccaattga ctagtcgacc caccggcacc <210> SEQ ID NO 38 <211> LENGTH: 30 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 38 gcccttaagt agagtcccgc tgaggcggcg 30 <210> SEQ ID NO 39 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 39 geccatatga cegagacegt taegaegece 30 <210> SEQ ID NO 40 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:

<pre></pre>	
<400> SEQUENCE: 40	
gccactagtc tactogacga cgogtacogo	30
<210> SEQ ID NO 41 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 41	
geeggtaeeg tgeetggeet geteggeege	30
<210> SEQ ID NO 42 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 42	
gccggtacct agagtcccgc tgaggcggcg	30
<210> SEQ ID NO 43 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide	
<400> SEQUENCE: 43	
ctacactaga aggacagtat t	21
<210> SEQ ID NO 44 <211> LENGTH: 1212 <212> TYPE: DNA <213> ORGANISM: Pseudonocardia autotrophica	
<400> SEQUENCE: 44	
atggcgctga ccaccaccgg caccgagcag cacgacctgt tctcgggcac cttctggcag	60
aacccgcatc ccgcctacgc ggcactccgt gccgaggatc cggtacgcaa gctcgcgctg	120
ccggacgggc cggtctggct gctcacccgc tacgccgacg tgcgcgaggc gttcgtcgat	180
ccgcgcctgt cgaaggactg gcgccacacg ctgcccgagg accagcgggc ggacatgccg	240
gccacgccga cgccgatgat gatcctgatg gatccgccgg atcacacccg gctgcgcaag	300
ctggtcggca ggtcgttcac cgtccgccgg atgaacgagc tggagccgcg gatcaccgag	360
atcgccgacg gcctgctcgc cggcctgccc accgacggcc cggtcgacct gatgcgcgag	420
tacgcgttcc agatcccggt acaggtgatc tgcgagctgc tcggggtgcc cgccgaggac	480
cgcgacgact teteegegtg gtegteggtg etggtegaeg aetegeegge egaegaeaag	540
aacgeggeea tgggeaaget geaeggetae etgteegaee tgetggageg eaagegeaee	600
gageeegaeg aegegetgtt gtegtegetg etggeggtgt eegaegagga eggegaeegg	660
ctctcccagg aggagetegt egegatggeg atgetgetge tgategeegg geaegagaeg	720
acggtcaacc tgatcggcaa cggcgtcctc gccctgctca cgcaccccga ccagcggaag	780

-continued				
ctgctggccg aggacccgtc gctgatcagc tcggcggtcg aggagttcct gcggttcgac	840			
tetecegtet egeaggeece gateeggtte acegeggagg acgteaceta eteeggegtg	900			
accatecegg eeggegagat ggteatgete gggetggeeg eegeeaaceg ggaegeegae	960			
tggatgcccg agccggaccg gctcgacatc acccgggacg cctccggcgg ggtgttcttc	1020			
gggcacggca tccacttctg cctcggtgcc cagctggccc ggctggaggg ccgggtcgcg	1080			
ateggaegge tgttegeega tegeeeggag etggegeteg eggteggeet egaegagetg	1140			
gtctaccggg agtcgacgct ggtccggggg ctgtcgagga tgccggtgac gatggggccg	1200			
cgcagcgcct ga	1212			
<210> SEQ ID NO 45 <211> LENGTH: 7510 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide				
<400> SEQUENCE: 45				
tgtacatcgc ggacgtgctc atagtccacg acgcccgtga ttttgtagcc ctggccgacg	60			
gccagcaggt aggccgacag gctcatgccg gccgccgccg ccttttcctc aatcgctctt	120			
cgttcgtctg gaaggcagta caccttgata ggtgggctgc ccttcctggt tggcttggtt	180			
toatcageca teegettgee etcatetgtt acgeeggegg tageeggeea geetegeaga	240			
gcaggattcc cgttgagcac cgccaggtgc gaataaggga cagtgaagaa ggaacacccg	300			
ctcgcgggtg ggcctacttc acctatectg eccegetgae geogttggat acaecaagga	360			
aagtetacae gaaceetttg geaaaateet gtatategtg egaaaaagga tggatataee	420			
gaaaaaatcg ctataatgac cccgaagcag ggttatgcag cggaaaagcg ctgcttccct	480			
gctgttttgt ggaatatcta ccgactggaa acaggcaaat gcaggaaatt actgaactga	540			
ggggacaggc gagagacgat gccaaagagc teetgaaaat etegataaet caaaaaatae	600			
gcccggtagt gatcttattt cattatggtg aaagttggaa cctcttacgt gccgatcaac	660			
gteteatttt egecaaaagt tggeeeaggg etteeeggta teaacaggga eaceaggatt	720			
tatttattct gcgaagtgat cttccgtcac aggtatttat tcggcgcaaa gtgcgtcggg	780			
tgatgctgcc aacttactga tttagtgtat gatggtgttt ttgaggtgct ccagtggctt	840			
ctgtttctat cagctcctga aaatctcgat aactcaaaaa atacgcccgg tagtgatctt	900			
atttcattat ggtgaaagtt ggaacctctt acgtgccgat caacgtctca ttttcgccaa	960			
aagttggccc agggcttccc ggtatcaaca gggacaccag gatttattta ttctgcgaag	1020			
tgatetteeg teacaggtat ttatteggeg caaagtgegt egggtgatge tgecaactta	1080			
ctgatttagt gtatgatggt gtttttgagg tgctccagtg gcttctgttt ctatcagggg	1140			
atccatgccg tatttgcagt accagcgtac ggcccacaga atgatgtcac gctgaaaatg	1200			
ccggcctttg aatgggttca tgtgcagctc catcagcaaa aggggatgat aagtttatca	1260			
ccaccgacta tttgcaacag tgccgttgat cgtgctatga tcgactgatg tcatcagcgg	1320			
tggagtgcaa tgtcgtgcaa tacgaatggc gaaaagccga gctcatcggt cagcttctca	1380			
acettggggt tacceeegge ggtgtgetge tggteeaeag eteetteegt agegteegge	1440			
ccctcgaaga tgggccactt ggactgatcg aggccctgcg tgctgcgctg ggtccgggag	1500			

		-continued	
ggacgetegt catgeceteg	tggtcaggtc tggacgacga	gccgttcgat cctgccacgt	1560
cgcccgttac accggacctt	ggagttgtct ctgacacatt	ctggcgcctg ccaaatgtaa	a 1620
agcgcagcgc ccatccattt	geetttgegg cageggggee	acaggcagag cagatcatct	1680
ctgatccatt gcccctgcca	cctcactcgc ctgcaagccc	ggtcgcccgt gtccatgaac	2 1740
tcgatgggca ggtacttctc	e ctcggcgtgg gacacgatgc	caacacgacg ctgcatcttg	g 1800
ccgagttgat ggcaaaggtt	ccctatgggg tgccgagaca	ctgcaccatt cttcaggatg	g 1860
gcaagttggt acgcgtcgat	tatctcgaga atgaccactg	ctgtgagcgc tttgccttgg	g 1920
cggacaggtg gctcaaggag	aagagccttc agaaggaagg	tccagtcggt catgcctttg	g 1980
ctcggttgat ccgctcccgc	gacattgtgg cgacagccct	gggtcaactg ggccgagato	2 2040
cgttgatctt cctgcatccg	ı ccagaggegg gatgegaaga	atgcgatgcc gctcgccagt	2100
cgattggctg agctcatgag	ı cggagaacga gatgacgttg	gagggggcaag gtcgcgctga	a 2160
ttgctggggc aacacgtgga	gcggatcggg gattgtcttt	cttcagctcg ctgatgatat	2220
gctgacgctc aatgccgttt	ggcctccgac taacgaaaat	cccgcatttg gacggctgat	2280
ccgattggca cggcggacgg	ı cgaatggcgg agcagacgct	cgtccgggggg caatgagata	a 2340
tgaaaaagcc tgaactcacc	gcgacgtaag cttgtgcctg	geetgetegg eegeggegae	2400
gagggtctcc cgcagcagcg	gcaggacetg egecagegga	tgteeggege geagetegge	2 2460
gacctcgccc ggctggtagg	ı tgtgcgaggg ccgggaccgc	teeggatega eggeggegge	2 2520
cagcgaacgc tcccaggacg	cccggatete cgggegeace	teeggtgegg eegaaeeggt	2580
cagegeggeg ceaegegeee	gctccagccc gcctcgttca	cgcgtcacga cactcaccct	2640
atggttagct cagcettace	tgaatcgaat ccgcgggatc	ggcactctcc ggaggttcag	g 2700
gttccgcatc tgcgtgcaac	e cootgtgoaa cooccacott	cctagtgtcc ggcatcacgc	2 2760
gcaatgcagt gatateteca	cggacatece ceaeggacat	cccccacggg aaggaccatc	2820
gcatatggcg ctgaccacca	a ccggcaccga gcagcacgac	ctgttctcgg gcaccttctg	3 2880
gcagaacccg catcccgcct	acgeggeaet eegtgeegag	gateeggtae geaagetege	2940
gctgccggac gggccggtct	ggctgctcac ccgctacgcc	gacgtgcgcg aggcgttcgt	3000
cgatccgcgc ctgtcgaagg	actggcgcca cacgctgccc	gaggaccagc gggcggacat	3060
gccggccacg ccgacgccga	tgatgateet gatggateeg	ccggatcaca cccggctgcg	3 3120
caagctggtc ggcaggtcgt	tcaccgtccg ccggatgaac	gagetggage egeggateae	2 3180
cgagatcgcc gacggcctgc	tcgccggcct gcccaccgac	ggcccggtcg acctgatgcg	3 3240
cgagtacgcg ttccagatco	e cggtacaggt gatctgcgag	ctgctcgggg tgcccgccga	a 3300
ggaccgcgac gacttctccg	cgtggtcgtc ggtgctggtc	gacgactcgc cggccgacga	a 3360
caagaacgcg gccatgggca	agetgeaegg etacetgtee	gacctgctgg agcgcaagcg	3 3420
caccgageee gaegaegege	tgttgtcgtc gctgctggcg	gtgtccgacg aggacggcga	a 3480
ccggctctcc caggaggagc	tcgtcgcgat ggcgatgctg	ctgctgatcg ccgggcacga	a 3540
gacgacggtc aacctgatcg	gcaacggcgt cctcgccctg	ctcacgcacc ccgaccagcg	g 3600
gaagetgetg geegaggaee	cgtcgctgat cagctcggcg	gtcgaggagt tcctgcggtt	3660
cgactetece gtetegeagg	ccccgatccg gttcaccgcg	gaggacgtca cctactccgg	3 3720
cgtgaccatc ccggccggcg	agatggtcat gctcgggctg	geegeegeea aeegggaege	3780

		-continued	
cgactggatg cccgagccgg	accggctcga catcacccgg	gacgceteeg geggggtgt	t 3840
cttcgggcac ggcatccact	tctgcctcgg tgcccagctg	gcccggctgg agggccggg	gt 3900
cgcgatcgga cggctgttcg	ccgatcgccc ggagctggcg	ctcgcggtcg gcctcgacg	ga 3960
gctggtctac cgggagtcga	cgctggtccg ggggctgtcg	aggatgccgg tgacgatgg	gg 4020
gccgcgcagc gcctgagcta	gcgttaacgc ggccgcgaat	tcaggcctat gcattacgt	a 4080
caattgacta gtcgacccac	cggcacccgt gagcccctcg	ctgcgggtgc cggtgcgag	gg 4140
gactgcaaca cgcgaaacct	gcacaaacac acggaggttg	gaatgagege caeggaeae	ca 4200
cccgataccg gcgccgttcc	accccggttg gtgaccaccg	ctgggggggg tgacctgct	a 4260
cgccgcctca gcgggactct	acttaagcag cttgagtatt	ctatagtgtc acctaaata	ag 4320
cttggcgtaa tcatggtcat	agctgtttcc tgtgtgaaat	tgttatccgc tcacaatto	cc 4380
acacaacata cgagccggaa	gcataaagtg taaagcctgg	ggtgcctaat gagtgagct	a 4440
actcacatta attgcgttgc	gctcactgcc cgctttccag	tcgggaaacc tgtcgtgcc	ca 4500
gctgcattaa tgaatcggcc	aacgcgcggg gagaggcggt	ttgcgtattg ggcgctctt	cc 4560
cgcttcctcg ctcactgact	cgctgcgctc ggtcgttcgg	ctgcggcgag cggtatcag	JC 4620
tcactcaaag gcggtaatac	ggttatccac agaatcaggg	gataacgcag gaaagaaca	at 4680
gtgagcaaaa ggccagcaaa	aggccaggaa ccgtaaaaag	geegegttge tggegtttt	ct 4740
cgataggete egececetg	acgagcatca caaaaatcga	cgctcaagtc agaggtggc	2g 4800
aaacccgaca ggactataaa	gataccaggc gtttccccct	ggaageteee tegtgeget	cc 4860
teetgtteeg accetgeege	ttaccggata cctgtccgcc	tttctccctt cgggaagcg	yt 4920
ggcgctttct catagctcac	gctgtaggta tctcagttcg	gtgtaggtcg ttcgctcca	aa 4980
gctgggctgt gtgcacgaac	cccccgttca gcccgaccgc	tgcgccttat ccggtaact	a 5040
tcgtcttgag tccaacccgg	taagacacga cttatcgcca	ctggcagcag ccactggta	aa 5100
caggattagc agagcgaggt	atgtaggcgg tgctacagag	ttettgaagt ggtggeeta	aa 5160
ctacggctac actagaagga	cagtatttgg tatctgcgct	ctgctgaagc cagttacct	t 5220
cggaaaaaga gttggtagct	cttgatccgg caaacaaacc	accgctggta gcggtggtt	t 5280
ttttgtttgc aagcagcaga	ttacgcgcag aaaaaaagga	tctcaagaag atcctttga	at 5340
cttttctacg gggtctgacg	ctcagtggaa cgaaaactca	cgttaaggga ttttggggt	a 5400
ccctcccgcc gccccgcacg	gcacgccgtc atgacggtca	accgtcggcg tcgtcctat	cc 5460
gacgacagca ccggatgccg	gacgggggaac aggagcaccg	cccgtctcga ccgctgccc	t 5520
teetegatae aaggeegeae	gagtgcgggg caggttcagt	caagggtcgg cgcagccga	at 5580
cgcgtagcga cgccgcaggc	gcccttggcg ggttctgacc	tgcattcgac acttagccg	gc 5640
catcgaggta gggcccaccg	cagcacgcgc tacagcaccg	gcaccgagaa caccctcag	ge 5700
tetegegeeg caggegegeg	cccggtccgg acgggcccgg	cccgcgggcc ggaggcagg	ja 5760
gegggeegga geeeggeeeg	gccgggcgcc ggccacagcg	geeegatege tggeggtge	ct 5820
cgatgaccgc cgcgctgacg	cgcgtcgacg cgggcgtgcc	cgcgcttggt actgacgcg	ja 5880
aaagtgcggc caccgcaggt	caggtccccg tgggggactg	ggcagggagc ttctgggag	JC 5940
ggcaggaccg cgccttgcgg	gagaagtacc gggcccgccg	tgagetggee aggateace	Ja 6000
cgctgcgtcg cgttgcacgc	tgcggacgct cctcgatgaa	cgacggcgga gacgtcgtc	cc 6060

-continued			
tgcgctactc gcccggcacc ggggaggacg gctcggcgtc ggcgggtttc ggcggactgg	6120		
tgacetgegg cageetgtgg geetgeeegg tetgetegge caagateage geeegeeggg	6180		
cccgggagct ggaacacctg atcacctgga acgccgcccg cggcggcacc gtcgcgctgc	6240		
tcageetgae catgegeeae cacageggee acegeetgeg egaeetgege egagggetga	6300		
gegeegegtg gegeeaegte accageteee gegggtggaa gegetggaag agegtettgg	6360		
gaatggacta cgtccgcggg attgaggcca cccacggagc gaacggctgg catctgcaca	6420		
tecaegeeet getgatette eeeggegaeg teaeggagga gatgeaegee eteaeegeeg	6480		
agatetggae eegetggteg aceggeetge ggegeaaggg ettegaegee aegategeee	6540		
acggcgtcga cgtccgggtc ggcaccggcg ccctcgaaca gctcggccgc tacatctcca	6600		
aactggcett egagaeetee ggeggeeggt ggaagetggg caagaaegge ageegtaeee	6660		
cgttccagat cctcgccgac gccctggacc gagcccgcga ccgagacctc gcgctctggg	6720		
cggagtggga gcaggccagc cacggcatgc agcagctcgt gtggtccaac ggactcaagg	6780		
cggcctgcca gctcgacgag atcgacgacg agacgatcgc ggaggaggac gacggtggtg	6840		
agttegtege ceageteece egeegeacet gggagaaggt etaeceegte geegaagaee	6900		
tgatcatcgc caccegeact ggtggeeeeg aageaggeeg egeetggett gaegeeegeg	6960		
geetggeeta tgaeeaegag egegaeaega gegaaegage agteetgete gaegageegg	7020		
accegeegtt egegtggetg agggeegete tegeggeega agaeeeegag eagegeeggg	7080		
agogaogoog oogotactao ogoacogoac agaccaactg agotogatga ggagoagaac	7140		
cacgatggee gacaeetgga egateageee getgateege eeetgetge geaagetega	7200		
tgagegegga ggetgegeet accegeagga etteeegeae tgeeaeggeg eegagateea	7260		
gcacaccgac ggcaccgccg aatgetteaa eeeeggeeag eeetgeeeet acceacgace	7320		
cggcgcgcac gcettegtee acaeetgege tgaegteace caeeggetea eccaeegetg	7380		
caccegetge egetgattea ceaeaggeea tgeaeetatg eattgeeeaa tgatgatett	7440		
cggotgotga ogtogtogat acgaogacat taotoaatto tgttgtocoa taaagoatot	7500		
ggcctctaat	7510		
<210> SEQ ID NO 46 <211> LENGTH: 7685 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polynucleotide			
<400> SEQUENCE: 46			
tgtacatege ggaegtgete atagteeaeg aegeeegtga ttttgtagee etggeegaeg	60		
gccagcaggt aggeegacag geteatgeeg geegeegeeg eetttteete aategetett	120		
cgttcgtctg gaaggcagta caccttgata ggtgggctgc ccttcctggt tggcttggtt	180		
tcatcagcca tccgcttgcc ctcatctgtt acgccggcgg tagccggcca gcctcgcaga	240		
gcaggattcc cgttgagcac cgccaggtgc gaataaggga cagtgaagaa ggaacacccg	300		
ctcgcgggtg ggcctacttc acctatectg ceeegetgae geegttggat acaeeaagga	360		
aagtetaeac gaaceetttg geaaaateet gtatategtg egaaaaagga tggatataee	420		
gaaaaaatcg ctataatgac cccgaagcag ggttatgcag cggaaaagcg ctgcttccct	480		

		-continued	d	
gctgttttgt ggaatatcta	ccgactggaa acaggcaaat	gcaggaaatt acto	gaactga	540
ggggacaggc gagagacgat	gccaaagagc tcctgaaaat	ctcgataact caaa	aaaatac	600
geeeggtagt gatettattt	cattatggtg aaagttggaa	cctcttacgt gcc	gatcaac	660
gtctcatttt cgccaaaagt	tggcccaggg cttcccggta	tcaacaggga caco	caggatt	720
tatttattct gcgaagtgat	cttccgtcac aggtatttat	tcggcgcaaa gtg	cgtcggg	780
tgatgctgcc aacttactga	tttagtgtat gatggtgttt	ttgaggtgct cca	gtggctt	840
ctgtttctat cagctcctga	aaatctcgat aactcaaaaa	atacgcccgg tag	tgatctt	900
atttcattat ggtgaaagtt	ggaacctctt acgtgccgat	caacgtctca ttt!	tcgccaa	960
aagttggccc agggcttccc	ggtatcaaca gggacaccag	gatttattta ttc1	tgcgaag	1020
tgatcttccg tcacaggtat	ttattcggcg caaagtgcgt	cgggtgatgc tgc	caactta	1080
ctgatttagt gtatgatggt	gtttttgagg tgctccagtg	gcttctgttt ctai	tcagggg	1140
atccatgccg tatttgcagt	accagcgtac ggcccacaga	atgatgtcac gct	gaaaatg	1200
ccggcctttg aatgggttca	tgtgcagctc catcagcaaa	aggggatgat aagi	tttatca	1260
ccaccgacta tttgcaacag	tgccgttgat cgtgctatga	tcgactgatg tca	tcagcgg	1320
tggagtgcaa tgtcgtgcaa	tacgaatggc gaaaagccga	gctcatcggt cage	cttctca	1380
accttggggt tacccccggc	ggtgtgctgc tggtccacag	ctccttccgt age	gtccggc	1440
ccctcgaaga tgggccactt	ggactgatcg aggccctgcg	tgetgegetg ggto	ccgggag	1500
ggacgctcgt catgccctcg	tggtcaggtc tggacgacga	gccgttcgat cct	gccacgt	1560
cgcccgttac accggacctt	ggagttgtct ctgacacatt	ctggcgcctg ccaa	aatgtaa	1620
agcgcagcgc ccatccattt	gcctttgcgg cagcggggcc	acaggcagag caga	atcatct	1680
ctgatccatt gcccctgcca	cctcactcgc ctgcaagccc	ggtcgcccgt gtco	catgaac	1740
tcgatgggca ggtacttctc	ctcggcgtgg gacacgatgc	caacacgacg ctg	catcttg	1800
ccgagttgat ggcaaaggtt	ccctatgggg tgccgagaca	ctgcaccatt ctto	caggatg	1860
gcaagttggt acgcgtcgat	tatctcgaga atgaccactg	ctgtgagcgc ttte	gccttgg	1920
cggacaggtg gctcaaggag	aagagcette agaaggaagg	tccagtcggt cate	gcctttg	1980
ctcggttgat ccgctcccgc	gacattgtgg cgacagccct	gggtcaactg ggco	cgagatc	2040
cgttgatctt cctgcatccg	ccagaggcgg gatgcgaaga	atgegatgee gete	cgccagt	2100
cgattggctg agctcatgag	cggagaacga gatgacgttg	gagggggcaag gtc	gcgctga	2160
ttgctggggc aacacgtgga	gcggatcggg gattgtcttt	cttcagctcg ctga	atgatat	2220
gctgacgctc aatgccgttt	ggcctccgac taacgaaaat	cccgcatttg gac	ggctgat	2280
ccgattggca cggcggacgg	cgaatggcgg agcagacgct	cgtccgggggg caat	tgagata	2340
tgaaaaagcc tgaactcacc	gcgacgtaag ctttaagcag	cttgagtatt ctai	tagtgtc	2400
acctaaatag cttggcgtaa	tcatggtcat agctgtttcc	tgtgtgaaat tgt1	tatccgc	2460
tcacaattcc acacaacata	cgagccggaa gcataaagtg	taaagcctgg ggtg	gcctaat	2520
gagtgagcta actcacatta	attgcgttgc gctcactgcc	cgctttccag tcg	ggaaacc	2580
tgtcgtgcca gctgcattaa	tgaatcggcc aacgcgcggg	gagaggcggt ttg	cgtattg	2640
ggcgctcttc cgcttcctcg	ctcactgact cgctgcgctc	ggtcgttcgg ctg	cggcgag	2700
cggtatcagc tcactcaaag	gcggtaatac ggttatccac	agaatcaggg gata	aacgcag	2760

		-continued	
gaaagaacat gtgagcaa	aa ggccagcaaa aggccaggaa	a ccgtaaaaag gccgcgttgc	2820
tggcgttttt cgataggc	c cgccccctg acgagcatca	a caaaaatcga cgctcaagtc	2880
agaggtggcg aaacccga	ca ggactataaa gataccaggo	gtttccccct ggaagctccc	2940
tegtgegete teetgtte	cg accctgccgc ttaccggata	a cetgteegee ttteteeett	3000
cgggaagcgt ggcgcttt	et catageteac getgtaggta	a teteagtteg gtgtaggteg	3060
ttcgctccaa gctgggct	gt gtgcacgaac cccccgttca	a geeegaeege tgegeettat	3120
ccggtaacta tcgtcttg	ag tecaaceegg taagacaega	a cttatcgcca ctggcagcag	3180
ccactggtaa caggatta	gc agagcgaggt atgtaggcgg	y tgctacagag ttcttgaagt	3240
ggtggcctaa ctacggcta	ac actagaagga cagtatttgg	g tatctgcgct ctgctgaagc	3300
cagttacctt cggaaaaaa	ya gttggtaget ettgateege	y caaacaaacc accgctggta	3360
gcggtggttt ttttgttt	gc aagcagcaga ttacgcgcag	y aaaaaaagga tctcaagaag	3420
atcetttgat etttteta	eg gggtetgaeg etcagtggaa	a cgaaaactca cgttaaggga	3480
ttttggggta cctagagt	cc cgctgaggcg gcgtagcagg	y tcagccgccc cagcggtggt	3540
caccaaccgg ggtggaac	gg cgccggtatc gggtgtgtcc	gtggcgctca ttccaacctc	3600
cgtgtgtttg tgcaggtt	cc gcgtgttgca gtccctcgca	a ccggcacccg cagcgagggg	3660
ctcacgggtg ccggtggg	c gactagteta etegaegaeg	g cgtaccgcgc cggacgggca	3720
cagegegeeg gettegag	ig degeegeaeg geeggeetee	g cogggttoog oggocagoac	3780
cgtcaccaca ccgtcgtc	yt cctggtcgaa gacctccggc	geegteaagg egeaeaggee	3840
cgctcccacg cagacete	cc ggtcggccgt cacacgcatg	g getgeteett tegeegeggt	3900
caccaggtga ccgggagti	ce gtteaegeee tggategtee	g tgeeegggeg cagggteage	3960
cggtccaccg gcaccgcc	ag cegeagaeeg ggeageeget	: cgaacagcgc cgtgaggatg	4020
acctccagtt cgaggcgg	ge caggttetgg eegaggeaet	gatgcacccc gtagccgaac	4080
gccaggtggt ggcgggcc	c gegeegeaeg tegaaggegt	: ccgggtcggc gaagacggag	4140
ccgtcgcggt tggcgatc	ya gttggtgacg atgaccccct	: cccccgcccg gatgcgctgc	4200
ccgtcgatct cgatgtcc	ge egtegegate egeeegeege	y cgatgtcggc gatggccaga	4260
tagegeagea geteetee	ac cgcgccgggc accagcgacg	g gateggegeg caaegeggeg	4320
tgetggtegg gatgttega	ag gagggtgatg acgctgagco	y acgtcatcga cgccgtcgtc	4380
tegtgteegg egaeeage	ag caggategee gtegaeacea	a gctcctcccg gtcgatcgcg	4440
cccttctcca gctgctcc	et gaegagegtg etcageagge	e ceggeeggga etegeetege	4500
aggetgteea eeagageg	cc cagatagete tecaggtegt	cccgggcggc acgcgcaccc	4560
gccgcgtccg gggactgga	at cagcegtgeg etggegteet	: ggaagaagtc gtggtccgcg	4620
tagggcacac cgagcaga	cg gcagatcacc agggacggga	a cgggcagcgc gaactggctg	4680
accaggtcgg cgggcggg	cc gcctgcgatc atctcgtcca	a ggaagccgtg cacgatctgc	4740
tcgacgtcgg cccgcatg	cc cttgatgcgc cggacggtga	a actcgctgat ggtcatgcgc	4800
cgtttcggcc cgtgctcg	gg cgggtccagg ctgatgaacg	g ccggccggcg gtcccggaag	4860
ctctccaccc gcccggag	gt ggcgggggaag tcggcgtgtg	g teeggtegga egagageegg	4920
gggtcggcca gcagcttg	cg tgeegtgteg taeeeggtea	a ccagccatgc ctgccggccg	4980
tcgtagaggg tgacccgc	cg cagegaaeee teeeggteee	ggaggtegtt gtaeeggteg	5040

		-continued	
gggaggtggt aggggcaggt	gcggtcactg gggaaggcgg	gggcgcctga tgtgggcgtc	5100
gtaacggtct cggtcatcat	atgcgatggt ccttcccgtg	ggggatgtcc gtgggggatg	5160
tccgtggaga tatcactgca	ttgcgcgtga tgccggacac	taggaaggtg ggggttgcac	5220
aggggttgca cgcagatgcg	gaacctgaac ctccggagag	tgccgatccc gcggattcga	5280
ttcaggtaag gctgagctaa	ccatagggtg agtgtcgtga	cgcgtgaacg aggcgggctg	5340
gagegggege gtggegeege	gctgaccggt tcggccgcac	cggaggtgcg cccggagatc	5400
cgggcgtcct gggagcgttc	gctggccgcc gccgtcgatc	cggagcggtc ccggccctcg	5460
cacacctacc agccgggcga	. ggtcgccgag ctgcgcgccg	gacatccgct ggcgcaggtc	5520
ctgccgctgc tgcgggagac	cctcgtcgcc gcggccgagc	aggccaggca cggtaccctc	5580
ccgccgcccc gcacggcacg	ccgtcatgac ggtcaaccgt	cggcgtcgtc ctatcgacga	5640
cagcaccgga tgccggacgg	ggaacaggag caccgcccgt	ctcgaccgct gcccttcctc	5700
gatacaaggc cgcacgagtg	cggggcaggt tcagtcaagg	gtcggcgcag ccgatcgcgt	5760
agcgacgccg caggcgccct	tggcgggttc tgacctgcat	tcgacactta gccgccatcg	5820
aggtagggcc caccgcagca	. cgcgctacag caccggcacc	gagaacaccc tcagctctcg	5880
cgccgcaggc gcgcgcccgg	teeggaeggg eeeggeeege	gggccggagg caggagcggg	5940
ccggagcccg gcccggccgg	gcgccggcca cagcggcccg	atcgctggcg gtgctcgatg	6000
accgccgcgc tgacgcgcgt	cgacgcgggc gtgcccgcgc	ttggtactga cgcgaaaagt	6060
gcggccaccg caggtcaggt	ccccgtgggg gactgggcag	ggagettetg ggageggeag	6120
gaccgcgcct tgcgggagaa	gtaccgggcc cgccgtgagc	tggccaggat cacgacgctg	6180
cgtcgcgttg cacgctgcgg	acgctcctcg atgaacgacg	gcggagacgt cgtcctgcgc	6240
tactcgcccg gcaccgggga	ggacggctcg gcgtcggcgg	gtttcggcgg actggtgacc	6300
tgcggcagcc tgtgggcctg	cccggtctgc tcggccaaga	tcagegeeeg eegggeeegg	6360
gagctggaac acctgatcac	ctggaacgcc gcccgcggcg	gcaccgtcgc gctgctcagc	6420
ctgaccatgc gccaccacag	cggccaccgc ctgcgcgacc	tgcgccgagg gctgagcgcc	6480
gcgtggcgcc acgtcaccag	ctcccgcggg tggaagcgct	ggaagagcgt cttgggaatg	6540
gactacgtcc gcgggattga	ggccacccac ggagcgaacg	gctggcatct gcacatccac	6600
gccctgctga tcttccccgg	cgacgtcacg gaggagatgc	acgccctcac cgccgagatc	6660
tggacccgct ggtcgaccgg	cctgcggcgc aagggcttcg	acgccacgat cgcccacggc	6720
gtcgacgtcc gggtcggcac	cggcgccctc gaacagctcg	gccgctacat ctccaaactg	6780
gccttcgaga cctccggcgg	ccggtggaag ctgggcaaga	acggcagccg taccccgttc	6840
cagatecteg cegaegeeet	ggaccgagcc cgcgaccgag	acctcgcgct ctgggcggag	6900
tgggagcagg ccagccacgg	catgcagcag ctcgtgtggt	ccaacggact caaggcggcc	6960
tgccagctcg acgagatcga	cgacgagacg atcgcggagg	aggacgacgg tggtgagttc	7020
gtcgcccagc tcccccgccg	cacctgggag aaggtctacc	ccgtcgccga agacctgatc	7080
atcgccaccc gcactggtgg	ccccgaagca ggccgcgcct	ggettgaege eegeggeetg	7140
gcctatgacc acgagcgcga	. cacgagcgaa cgagcagtcc	tgetegaega geeggaeeeg	7200
ccgttcgcgt ggctgagggc	cgctctcgcg gccgaagacc	ccgagcagcg ccgggagcga	7260
cgccgccgct actaccgcac	cgcacagacc aactgagctc	gatgaggagc agaaccacga	7320

-continued	
tggccgacac ctggacgatc agcccgctga tccgccccct gctgcgcaag ctcgatgagc	7380
geggaggetg egectaeeeg eaggaettee egeaetgeea eggegeegag atceageaea	7440
ccgacggcac cgccgaatgc ttcaaccccg gccagccctg cccctaccca cgacccggcg	7500
cgcacgcett cgtecacaee tgegetgaeg teacecaeeg geteaceeae egetgeaeee	7560
gctgccgctg attcaccaca ggccatgcac ctatgcattg cccaatgatg atcttcggct	7620
gctgacgtcg tcgatacgac gacattactc aattctgttg tcccataaag catctggcct	7680
ctaat	7685
<210> SEQ ID NO 47 <211> LENGTH: 390 <212> TYPE: PRT <213> ORGANISM: Pseudonocardia autotrophica	
<400> SEQUENCE: 47	
Met Met Ile Val Thr Asp Glu Arg Gly His Ile Leu Trp Arg Glu Gly 1 5 10 15	
Ala Arg Glu Val Leu Arg Arg Ala Glu Arg Val Glu Leu Val Glu Gly 20 25 30	
Thr Arg Trp Ser Glu Asp Ser Val Gly Thr Asn Ala Met Gly Thr Ala 35 40 45	
Leu Ser Asp Asp Arg Pro Val Arg Ile His Ser Ala Glu His Leu Val 50 55 60	
Ser Ala Tyr His Pro Trp Thr Cys Ala Ala Ala Pro Val His Asp Pro 65 70 75 80	
Glu Thr Gly Arg Gln Ile Gly Ala Val Asp Val Thr Gly Pro Glu Glu 85 90 95	
Ser Phe His Pro Met Thr Leu Ser Leu Val Thr Ala Ala Ala Arg Leu 100 105 110	
Ala Glu His Arg Leu Ala Ala Leu Leu Glu Asp Arg Asp Arg Arg Leu 115 120 125	
Arg Asp Thr Asn Leu Pro His Leu Ser Arg Leu Gly Asp Val Pro Gly130135140	
Ala Leu Leu Ser Pro His Gly Arg Val Leu Ala Ala Thr Pro Ala His 145 150 155 160	
Arg Phe Pro Val Arg Val Thr Leu Pro Glu Arg Gly Asp Arg Ile Leu 165 170 175	
Leu Asp Gly Gly Ala Glu Ala Val Leu Glu Pro Leu Gly Glu Gly Trp 180 185 190	
Leu Leu Arg Val Pro Thr Pro Ser Gly Pro Val Leu Pro Ala Leu Thr 195 200 205	
Leu Pro Phe Leu Gly Ala Arg Ala Pro Val Ala Arg Arg Asp Gly Arg 210 215 220	
Pro Leu Arg Leu Gly Leu Arg His Ala Glu Val Leu Thr Leu Leu Ala 225 230 235 240	
Leu His Pro Glu Gly Leu Thr Ala Asp Gln Leu Ala Gly Ala Leu Tyr 245 250 255	
Gly Asp Glu Gly Arg Pro Ile Thr Val Arg Ala Glu Met His Arg Leu 260 265 270	
Arg Arg Cys Val Gly Glu Asp Thr Val Arg Thr Gln Pro Tyr Arg Leu275280285	

-continued

												con	tın	ued	
Ala A 2	Ala 290	Arg	Val	Asp	Ala	Asp 295	Phe	Leu	Arg	Leu	Arg 300	Glu	Ala	Leu	Arg
His G 305	Jly	Arg	Val	Arg	Asp 310	Ala	Ala	Ala	Glu	Ala 315	Ala	Arg	Gly	Pro	Leu 320
Leu P	?ro	Thr	Ser	Glu 325	Ser	Pro	Gly	Val	Arg 330	Ala	Glu	Arg	Glu	His 335	Leu
Val A	Ala	Ser	Thr 340	Arg	Thr	Ala	Val	Leu 345	Arg	Ser	Gly	Asp	Pro 350		Ala
Leu L	Jeu	Ala 355	Leu	Leu	Arg	Ala	Asp 360	Pro	Asp	Ser	Asp	Pro 365	Aap	Thr	Glu
Leu A 3	Arg 370	Asp	Arg	Leu	Arg	Arg 375	Ala	Leu	Pro	Asp	Gly 380	Asp	His	Arg	Asp
Leu A 385	_	Leu	Pro	Asp	Gly 390										
505					550										
<210> <211>	> LE	INGTH	ł: 5												
<212> <213>				Pse	udon	ocar	dia a	auto	tropl	hica					
<400>	> SE	QUE	ICE :	48											
Met A 1	Ala	Thr	Tyr	Ala 5	Ala	Pro	Gly	Gln	Pro 10	Asp	Ser	Val	Val	Ser 15	Phe
Lys P	?ro	Arg	Tyr 20	Asp	His	Phe	Ile	Gly 25	Gly	Glu	Tyr	Ile	Ala 30	Pro	Ala
Lys G	Jly	Gln 35	Tyr	Phe	Glu	Asn	Pro 40	Thr	Pro	Ile	Thr	Gly 45	Glu	Asn	Phe
Thr G 5	3lu 50	Val	Ala	Arg	Gly	Thr 55	Ala	Asp	Asp	Val	Glu 60	Lys	Ala	Leu	Asp
Ala A 65	Ala	His	Gly	Ala	Ala 70	Pro	Ala	Trp	Gly	Lys 75	Thr	Ser	Pro	Thr	Glu 80
Arg A	Ala	Asn	Ile	Leu 85	Asn	Lys	Met	Ala	Asp 90	Arg	Ile	Glu	Ala	Asn 95	Leu
Glu A	Ala	Val	Ala 100	Ile	Ala	Glu	Ser	Trp 105	Glu	Asn	Gly	Lys	Ala 110	Суз	Arg
Glu T	「hr	Leu 115	Ala	Ala	Asp	Ile	Pro 120	Leu	Ala	Ile	Asp	His 125	Leu	Arg	Tyr
Phe A 1	Ala L30	Gly			-			Glu	-	-			Gln	Ile	Asp
Asp A 145	/ab	Thr	Val	Ala	Tyr 150		Phe	His	Glu	Pro 155		Gly	Val	Val	Gly 160
Gln I	[le	Ile	Pro	Trp 165		Phe	Pro	Ile	Leu 170	Met	Ala	Ile	Trp	Lys 175	Leu
Ala P	?ro	Ala	Leu 180	Ala	Ala	Gly	Asn	Ala 185	Ile	Val	Leu	Lys	Pro 190		Glu
Gln T	Thr	Pro 195	Val	Ser	Ile	His	Val 200	Leu	Leu	Asp	Leu	Val 205	Ala	Asp	Leu
Leu P 2	?ro 210	Pro	Gly	Val	Leu	Asn 215	Ile	Val	Asn	Gly	Phe 220	Gly	Val	Glu	Ala
Gly L 225	Jya	Pro	Leu	Ala	Ser 230		Lys	Arg	Ile	Ser 235		Ile	Ala	Phe	Thr 240
Gly G	Jlu	Thr	Thr	Thr 245	Gly	Arg	Leu	Ile	Met 250	Gln	Tyr	Ala	Ser	Glu 255	Asn

-cont	ın	110	a

Leu	Ile	Pro	Val 260	Thr	Leu	Glu	Leu	Gly 265	Gly	Lys	Ser	Pro	Asn 270	Ile	Phe	
Phe	Asp	Asp 275	Val	Ala	Ser	Gln	Gln 280	Asp	Ala	Phe	Tyr	Asp 285	Гла	Ala	Leu	
Glu	Gly 290	Phe	Ala	Met	Phe	Ala 295	Leu	Asn	Gln	Gly	Glu 300	Val	Сув	Thr	Суз	
Pro 305	Ser	Arg	Ala	Leu	Ile 310	Gln	Gly	Gly	Ile	Tyr 315	Gln	Glu	Phe	Leu	Glu 320	
Gln	Ala	Val	Lys	Arg 325	Thr	Glu	Gln	Ile	Lys 330	Gln	Gly	Asn	Pro	Leu 335	Asp	
Thr	Asp	Thr	Gln 340	Ile	Gly	Ala	Gln	Ala 345	Ser	Asn	Asp	Gln	Phe 350	Glu	Lys	
Ile	Leu	Ser 355	Tyr	Ile	Asp	Ile	Gly 360	Arg	Gln	Glu	Gly	Ala 365	Lys	Val	Leu	
Thr	Gly 370	Gly	Glu	Lys	Ala	Asp 375	Leu	Gly	Gly	Asp	Leu 380	Ser	Gly	Gly	Tyr	
Tyr 385	Ile	Lys	Pro	Thr	Val 390	Phe	Glu	Gly	Asn	Asn 395	Gln	Met	Arg	Ile	Phe 400	
Gln	Glu	Glu	Ile	Phe 405	Gly	Pro	Val	Val	Ser 410	Val	Ala	Arg	Phe	Ser 415	Asp	
Tyr	Asp	Asp	Ala 420	Ile	Arg	Thr	Ala	Asn 425	Asp	Thr	Leu	Tyr	Gly 430	Leu	Gly	
Ala	Gly	Val 435	Trp	Ser	Arg	Asp	Thr 440	Asn	Thr	Ala	Tyr	Arg 445	Ala	Gly	Arg	
Asp	Ile 450	Gln	Ala	Gly	Arg	Val 455	Trp	Val	Asn	Asn	Tyr 460	His	Ala	Tyr	Pro	
Ala 465	His	Ala	Ala	Phe	Gly 470	Gly	Tyr	Lys	Gln	Ser 475	Gly	Ile	Gly	Arg	Glu 480	
Asn	His	Lys	Gln	Met 485	Leu	Asp	His	Tyr	Gln 490	Gln	Thr	Lys	Asn	Val 495	Leu	
Gln	Ser	Tyr	Ser 500	Pro	Asn	Ala	Leu	Gly 505	Phe	Phe						
<211 <212 <213	<210> SEQ ID NO 49 <211> LENGTH: 2100 <212> TYPE: DNA <213> ORGANISM: Pseudonocardia autotrophica <400> SEQUENCE: 49															
		~			gc ad	geeg	gtcat	: gad	cggto	caac	cgt	cggc	gtc ç	gteet	atcga	60
															ccttc	120
ctcg	jatad	caa g	ggcc	gcaco	ga gt	gegę	gggca	a ggt	tcag	gtca	aggo	gtcg	geg d	cageo	gatcg	180
cgta	ıgoga	acg o	ccgca	aggc	ge e	cttg	gcggg	g tto	ctgad	cctg	cati	ccga	cac t	tago	ccgcca	240
tcga	ıggta	agg g	geeea	accgo	ca go	cacgo	cgcta	a caç	gcaco	cggc	acco	gagaa	aca d	cccto	agctc	300
tcgc	geeg	gca g	ggcgo	cgcgo	cc cá	ggtco	cggad	g gg	gaaaq	ggcc	cgcé	gggc	cgg a	aggca	aggagc	360
gggo	cgga	agc (ccgg	cccg	ge cá	gggcá	gaago	g cca	acago	egge	ccga	atcg	ctg g	geggt	gctcg	420
atga	iccgo	ccg (cgct	gacgo	cg cá	gtcga	acgco	a aa	cgtgo	cccg	cgct	tggi	cac t	gaco	JCGAAA	480
agto	lcggo	cca d	ccgca	aggt	ca go	gtcco	ccgto	g gg	ggact	ggg	cago	ggago	ctt d	ctggg	Jagcgg	540
cago	Jacco	gcg (cctt	gcggé	ga ga	aagta	accgo	g gco	ccgco	gtg	agct	ggc	cag g	gatca	acgacg	600

ctgcgtcgcg	ttgcacgctg	cggacgctcc	tcgatgaac	g acggcggaga	cgtcgtcctg	660
cgctactcgc	ccggcaccgg	ggaggacggc	tcggcgtcg	g cgggtttcgg	cggactggtg	720
acctgcggca	gcctgtgggc	ctgcccggtc	tgctcggcca	a agatcagcgc	ccgccgggcc	780
cgggagctgg	aacacctgat	cacctggaac	gccgcccgc	g geggeaeegt	cgcgctgctc	840
agcctgacca	tgcgccacca	cagcggccac	cgcctgcgc	g acctgcgccg	agggctgagc	900
gccgcgtggc	gccacgtcac	cageteeege	gggtggaag	c gctggaagag	cgtcttggga	960
atggactacg	tccgcgggat	tgaggccacc	cacggagcga	a acggctggca	tctgcacatc	1020
cacgccctgc	tgatcttccc	cggcgacgtc	acggaggaga	a tgcacgccct	caccgccgag	1080
atctggaccc	gctggtcgac	cggcctgcgg	cgcaagggc	tcgacgccac	gatcgcccac	1140
ggcgtcgacg	tccgggtcgg	caccggcgcc	ctcgaacag	c teggeegeta	catctccaaa	1200
ctggccttcg	agacctccgg	cggccggtgg	aagetgggea	a agaacggcag	ccgtaccccg	1260
ttccagatcc	tcgccgacgc	cctggaccga	gcccgcgac	c gagacetege	gctctgggcg	1320
gagtgggagc	aggccagcca	cggcatgcag	cagetegtg	ggtccaacgg	actcaaggcg	1380
gcctgccagc	tcgacgagat	cgacgacgag	acgatcgcg	g aggaggacga	cggtggtgag	1440
ttcgtcgccc	agctcccccg	ccgcacctgg	gagaaggtc	accccgtcgc	cgaagacctg	1500
atcatcgcca	cccgcactgg	tggccccgaa	gcaggccgc	g cctggcttga	cgcccgcggc	1560
ctggcctatg	accacgagcg	cgacacgagc	gaacgagcag	g teetgetega	cgagccggac	1620
ccgccgttcg	cgtggctgag	ggccgctctc	gcggccgaa	g accccgagca	gcgccgggag	1680
cgacgccgcc	gctactaccg	caccgcacag	accaactga	g ctcgatgagg	agcagaacca	1740
cgatggccga	cacctggacg	atcagcccgc	tgatccgcc	e eetgetgege	aagctcgatg	1800
agcgcggagg	ctgcgcctac	ccgcaggact	tecegeact	g ccacggcgcc	gagatccagc	1860
				ctgcccctac		1920
				a ccggctcacc		1980
				a ttgcccaatg		2040
gctgctgacg	tcgtcgatac	gacgacatta	ctcaattct	g ttgtcccata	aagcatctgg	2100
<210> SEQ <211> LENG <212> TYPE <213> ORGA	TH: 432 : PRT	onocardia a	utotrophica	a		
<400> SEQU	ENCE: 50					
Met Thr Al 1	a Ala Leu T 5	hr Arg Val .	Asp Ala Gly 10	y Val Pro Ala	a Leu Gly 15	
Thr Asp Al	a Lys Ser A 20		Ala Gly Glı 25	n Val Pro Va 30	l Gly Asp	
Trp Ala Gl 35	y Ser Phe T	rp Glu Arg 40	Gln Asp Arg	g Ala Leu Arg 45	g Glu Lys	
Tyr Arg Al 50	a Arg Arg G	lu Leu Ala . 55	Arg Ile Th	r Thr Leu Arg 60	g Arg Val	
Ala Arg Cy 65		er Ser Met . O	Asn Asp Gly 75	y Gly Asp Val	l Val Leu 80	
Arg Tyr Se	r Pro Gly T 85	hr Gly Glu	Asp Gly Se: 90	r Ala Ser Ala	a Gly Phe 95	

36

Gly	Gly	Leu	Val 100	Thr	Сүз	Gly	Ser	Leu 105	Trp	Ala	САа	Pro	Val 110	Суз	Ser
Ala	Lys	Ile 115	Ser	Ala	Arg	Arg	Ala 120	Arg	Glu	Leu	Glu	His 125	Leu	Ile	Thr
Trp	Asn 130	Ala	Ala	Arg	Gly	Gly 135	Thr	Val	Ala	Leu	Leu 140	Ser	Leu	Thr	Met
Arg 145	His	His	Ser	Gly	His 150	Arg	Leu	Arg	Asp	Leu 155	Arg	Arg	Gly	Leu	Ser 160
Ala	Ala	Trp	Arg	His 165	Val	Thr	Ser	Ser	Arg 170	Gly	Trp	Lys	Arg	Trp 175	Гла
Ser	Val	Leu	Gly 180	Met	Asp	Tyr	Val	Arg 185	Gly	Ile	Glu	Ala	Thr 190	His	Gly
Ala	Asn	Gly 195	Trp	His	Leu	His	Ile 200	His	Ala	Leu	Leu	Ile 205	Phe	Pro	Gly
Asp	Val 210	Thr	Glu	Glu	Met	His 215	Ala	Leu	Thr	Ala	Glu 220	Ile	Trp	Thr	Arg
Trp 225	Ser	Thr	Gly	Leu	Arg 230	Arg	Lys	Gly	Phe	Asp 235	Ala	Thr	Ile	Ala	His 240
Gly	Val	Asp	Val	Arg 245	Val	Gly	Thr	Gly	Ala 250	Leu	Glu	Gln	Leu	Gly 255	Arg
Tyr	Ile	Ser	Lys 260	Leu	Ala	Phe	Glu	Thr 265	Ser	Gly	Gly	Arg	Trp 270	Lys	Leu
Gly	Lys	Asn 275	Gly	Ser	Arg	Thr	Pro 280	Phe	Gln	Ile	Leu	Ala 285	Asp	Ala	Leu
Aab	Arg 290	Ala	Arg	Asp	Arg	Asp 295	Leu	Ala	Leu	Trp	Ala 300	Glu	Trp	Glu	Gln
Ala 305	Ser	His	Gly	Met	Gln 310	Gln	Leu	Val	Trp	Ser 315	Asn	Gly	Leu	Lya	Ala 320
Ala	Суз	Gln	Leu	Asp 325	Glu	Ile	Asp	Asp	Glu 330	Thr	Ile	Ala	Glu	Glu 335	Asp
Asp	Gly	Gly	Glu 340	Phe	Val	Ala	Gln	Leu 345	Pro	Arg	Arg	Thr	Trp 350	Glu	Гла
Val	Tyr	Pro 355	Val	Ala	Glu	Asp	Leu 360	Ile	Ile	Ala	Thr	Arg 365	Thr	Gly	Gly
Pro	Glu 370	Ala	Gly	Arg	Ala	Trp 375	Leu	Asp	Ala	Arg	Gly 380	Leu	Ala	Tyr	Asp
His 385	Glu	Arg	Asp	Thr	Ser 390	Glu	Arg	Ala	Val	Leu 395	Leu	Asp	Glu	Pro	Asp 400
Pro	Pro	Phe	Ala	Trp 405	Leu	Arg	Ala	Ala	Leu 410	Ala	Ala	Glu	Asp	Pro 415	Glu
Gln	Arg	Arg	Glu 420	Arg	Arg	Arg	Arg	Tyr 425	Tyr	Arg	Thr	Ala	Gln 430	Thr	Asn
<213 <212 <213	<pre>420 425 430 <210> SEQ ID NO 51 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Pseudonocardia autotrophica <400> SEQUENCE: 51</pre>														
ccqt	cate	gac d	ggtca	aacco	gt co	ggcgt	cgt	c cta	a						

ccgtcatgac ggtcaaccgt cggcgtcgtc cta

1. An expression vector, including a replication initiation region derived from *Pseudonocardia autotrophica*, a multicloning site for introducing an exogenous gene, an exogenous gene introduced into the multicloning site, a promoter, a terminator, and a defective selection marker, which autonomously replicates in cells of *Pseudonocardia autotrophica* to enable expression of the exogenous gene introduced.

2. The expression vector according to claim 1, in which the replication initiation region comprises a base sequence represented by SEQ ID NO: 49 or a complementary sequence thereof, or a base sequence having 80% or more homology to the above base sequence or a complementary sequence thereof.

3. The expression vector according to claim **1**, in which the promoter is induced by acetone to express the exogenous gene.

4. The expression vector according to claim **3**, in which the promoter region comprises a base sequence represented by SEQ ID NO: 26 or a complementary sequence thereof, or a base sequence having 80% or more homology to the above base sequence or a complementary sequence thereof.

5. The expression vector according to claim **1**, further including a replication initiation region derived from *Escherichia coli*, and being autonomously replicable in both *Pseudonocardia autotrophica* and *Escherichia coli*, and can be used as a shuttle vector.

6. The expression vector according to claim 5, having an oriT region and can perform transformation by conjugation of *Escherichia coli* S17-1 and *Pseudonocardia autotrophica*.

7. The expression vector according to claim 1, in which the exogenous gene is a gene encoding vitamin D hydroxylase or a gene encoding compactin hydroxylase.

8. A transformant of *Pseudonocardia autotrophica* having introduced thereinto the expression vector according to claim **1**.

9. A method of producing a protein comprising: introducing the expression vector according to claim **1** into *Pseudonocardia autotrophica* to be transformed; and expressing the exogenous gene in the resultant transformant to produce a protein.

10. A method of producing an active form of vitamin D including: transforming *Pseudonocardia autotrophica* with the expression vector according to claim **1**, having introduced thereinto a vitamin D hydroxylase gene as an exogenous gene; and using the resultant transformant.

11. The method of producing an active form of vitamin D according to claim 10, in which the active form of vitamin D is 25-hydroxyvitamin D2, 25-hydroxyvitamin D3, or 1α , 25-dihydroxyvitamin D3.

12. A method of producing pravastatin including: transforming *Pseudonocardia autotrophica* with the expression vector according to claim **1**, having introduced thereinto a compactin hydroxylase gene as an exogenous gene; and using the resultant transformant to produce pravastatin from compactin.

* * * * *