US 20240256597A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2024/0256597 A1

ZHANG 43) Pub. Date: Aug. 1, 2024
(54) MACHINE LEARNING SELECTION OF (52) US. CL
IMAGES CPC ... GO6F 16/583 (2019.01); GOG6F 16/951
(2019.01); GO6F 40/40 (2020.01)
(71) Applicant: Intuit Inc., Mountain View, CA (US)
(72) Inventor: .(I[(}sss)lca ZHANG, Los Angeles, CA 7) ABSTRACT
(73) Assignee: Intuit Inc., Mountain View, CA (US) . . o . .
A method including receiving an input and embedding the
(21) Appl. No.: 18/103,476 input into a first data structure that defines first relationships
among images and texts. The method also includes compar-
(22) Filed: Jan. 30, 2023 ing the first data structure to an index including a second
A . . data structure that defines second relationships among pre-
Publication Classification determined texts and pre-determined images. The method
(51) Int. CL also includes returning a subset of images from the pre-
GO6F 16/583 (2006.01) determined images. The subset includes those images in the
GO6F 16/951 (2006.01) pre-determined images for which matches exist between the
GO6F 40/40 (2006.01) first relationships and the second relationships.

{ START)

/—— 200
RECEIVE AN INPUT

¥

202
EMBED THE INPUT INTO A FIRST DATA STRUCTURE THAT DEFINES FIRST RELATIONSHIPS AMONG /—
IMAGES AND TEXTS

COMPARE THE FIRST DATA STRUCTURE TO AN INDEX INCLUDING A SECOND DATA STRUCTURE /— 204
THAT DEFINES SECOND RELATIONSHIPS AMONG PRE-DETERMINED TEXTS AND PRE-DETERMINED

MAGES
/—- 206
RETURN A SUBSET OF IMAGES FROM THE PRE-DETERMINED IMAGES,
/—— 208
RECEIVE A USER SELECTION OF A SELECTED IMAGE FROM THE SUBSET OF IMAGES
/— 210
INSERT THE SELECTED IMAGE INTO AN ELECTRONIC DOCUMENT

{ END }

Patent Application Publication Aug. 1,2024 Sheet 1 of 7 US 2024/0256597 A1
e SERVER
USER DEVICES 136
120 PROCESSOR
138
USER INPUT DEVICE
e > SERVER CONTROLLER
148
DISPLAY DEVICE
154 NEAREST NEIGHBOR MLM
— 142
T
NATURAL LANGUAGE MLM
THIRD PARTY WEBSITE 144
156
THIRD PARTY IMAGES MAGE PROCESSING HLM
3—5_& Rieits
THIRD PARTY TEXT TRAINING CONTROLLER
160 148
DATA REPOSITORY
100
INPUT INDEX ELECTRONIC DOCUMENT
102 112 128
FIRST DATA STRUCTURE SECOND DATA STRUCTURE
4 114 FORMAT
IMAGE PRE-DETERMINED TEXT 130
106 116
TEXT PRE-DETERMINED IMAGES SELECTED IMAGE
108 118 132
FIRST RELATIONSHIPS SECOND RELATIONSHIPS {FROM AMONG THE
110 120 SUBSET OF IMAGES)
SUBSET OF IMAGES
SELECTED TEXT
134
IMAGE RANKING
“_———_M/,/

FIG. 1A

Patent Application Publication

Aug. 1,2024 Sheet 2 of 7

US 2024/0256597 Al

TRAINING CONTROLLER
148

PARAMETER
180

MACHINE LEARNING MODEL
178

UPDATED
PARAMETER
190

P&

KNOWN
RESULT
186

QUTPUT
182

CONVERGENCE?

LOSS
FUNCTION
188

184

YES

TRAINED MACHINE LEARNING MODEL

192

TRAINED
PARAMETER
194

FIG. 1B

Patent Application Publication Aug. 1,2024 Sheet 3 of 7 US 2024/0256597 A1
{ START)
200
RECEIVE AN INPUT ’/—

202
EMBED THE INPUT INTO A FIRST DATA STRUCTURE THAT DEFINES FIRST RELATIONSHIPS AMONG |/
IMAGES AND TEXTS

COMPARE THE FIRST DATA STRUCTURE TO AN INDEX INCLUDING A SECOND DATA STRUCTURE /_ 204
THAT DEFINES SECOND RELATIONSHIPS AMONG PRE-DETERMINED TEXTS AND PRE-DETERMINED

IMAGES
/—— 206
RETURN A SUBSET OF IMAGES FROM THE PRE-DETERMINED IMAGES,
/—— 208
RECEIVE A USER SELECTION OF A SELECTED IMAGE FROM THE SUBSET OF IMAGES
/— 210

INSERT THE SELECTED IMAGE INTO AN ELECTRONIC DOCUMENT

END

FIG. 2

Patent Application Publication Aug. 1,2024 Sheet 4 of 7 US 2024/0256597 A1

{ START)

22 ~ 300
INPUT, TO AN IMAGE PROCESSING MACHINE LEARNING MODEL, A NUMBER OF IMAGES

302
OUTPUT, BY THE IMAGE PROCESSING MACHINE LEARNING MODEL, AN IMAGE VECTOR THAT 4
REPRESENTS THE IMAGES

304

X
BUILD AN INDEX FROM THE IMAGE VECTOR

— 306
RETURN THE INDEX

END

FIG. 3

gy
N

BETAN SN

sppreTng BARAS Y
s 18 .

US 2024/0256597 Al

’ 00V

jopowW buuIes| sulgoel
di'1D e Buisn sebewy paquiy

Aug. 1,2024 Sheet 5 of 7

YOy v

1424

Patent Application Publication

Patent Application Publication Aug. 1,2024 Sheet 6 of 7 US 2024/0256597 A1

TEXT INPUT NATURAL LANGUAGE PROCESSING KEYWORDS
434 MACHINE LEARNING MODEL 440
438

IMAGE INPUT CLIP
436 MACHINE LEARNING MODEL

442

INDEX EMBEDDED INPUT
446 444
SERVER CONTROLLER
» 448 «
TOP IMAGES
450

FIG. 4C

Patent Application Publication

Aug. 1,2024 Sheet 7 of 7

OUTPUT DEVICE(S)

512

504 502
NON-PERSISTENT —1 COMP_UTER
STORAGE DEVICE(S) | PROCESSOR(S)

506 508
PERSISTENT STORAGE COMMLNCAT[ON
DEVICE(S) INTERFACE

510
INPUT DEVICE(S)

FIG. 5A

520
NETWORK

US 2024/0256597 Al

500
/_

524
NODEY

526
CLIENT DEVICE

FIG. 5B

US 2024/0256597 Al

MACHINE LEARNING SELECTION OF
IMAGES

BACKGROUND

[0001] Digital images are frequently used in many com-
puting activities. In some cases, particularly when multiple
disparate databases of images are accessible, thousands,
millions, or more digital images may be available for
selection. However, due to the large number of digital
images, manually searching for and finding a particular
digital image or type of digital image in the database(s) is
impractical or impossible. Thus, improvements are sought
for the automatic search and selection of digital images.

SUMMARY

[0002] The one or more embodiments provide for a
method. The method includes receiving an input. The
method also includes embedding the input into a first data
structure that defines first relationships among images and
texts. The method also includes comparing the first data
structure to an index including a second data structure that
defines second relationships among pre-determined texts
and pre-determined images. The method also includes
returning a subset of images from the pre-determined
images. The subset includes those images in the pre-deter-
mined images for which matches exist between the first
relationships and the second relationships.

[0003] The one or more embodiments provide for another
method. The method includes inputting, to an image pro-
cessing machine learning model, images. The method also
includes outputting, by the image processing machine learn-
ing model, an image vector that represents the images. The
method also includes building an index from the image
vector. Building includes inputting the image vector to a
nearest neighbor machine learning model. Building also
includes outputting, by the nearest neighbor machine learn-
ing model, the index. The method also includes returning the
index.

[0004] The one or more embodiments also provide for a
system. The system includes a processor and a data reposi-
tory in communication with the processor. The data reposi-
tory stores an input including both images and texts. The
data repository also stores a first data structure that embeds
the input. The first data structure defines first relationships
among the images and the texts. The data repository also
stores an index including a second data structure that defines
second relationships among pre-determined texts and pre-
determined images. The data repository also stores a subset
of images. The subset includes those images in the pre-
determined images for which matches exist between the first
relationships and the second relationships. The system also
includes a server controller which, when executed by the
processor, embed the input into the first data structure;
compares the first data structure to the second data structure;
and returns the subset of images from the pre-determined
images.

[0005] Other aspects will be apparent from the following
description and the appended claims.

BRIEF DESCRIPTION OF DRAWINGS

[0006] FIG. 1A shows a computing system, in accordance
with one or more embodiments.

Aug. 1,2024

[0007] FIG. 1B shows details of the training controller
shown in FIG. 1A, in accordance with one or more embodi-
ments.

[0008] FIG. 2 and FIG. 3 show flowcharts of methods, in
accordance with one or more embodiments.

[0009] FIG. 4A, FIG. 4B, and FIG. 4C show specific
examples of the computing system of FIG. 1A and FIG. 1B,
and the methods of FIG. 2 and FIG. 3, in accordance with
one or more embodiments.

[0010] FIG. 5A and FIG. 5B show a computing system
and network environment, in accordance with one or more
embodiments.

[0011] Like elements in the various figures are denoted by
like reference numerals for consistency.

DETAILED DESCRIPTION

[0012] In general, embodiments are directed to methods
for using machine learning to select desired images from
among a large pool of available images. The one or more
embodiments may be particularly useful, for example, with
respect to the automatic generation of emails which contain
images that are relevant to the textual content of the email.
[0013] A technical problem arises when the pool of avail-
able images is large, e.g., on the order of millions of stock
images. Current machine learning techniques use an unde-
sirable amount of time to identify relevant images when
starting from a large pool of images (e.g., ten seconds or
longer, which some users may not tolerate).

[0014] Furthermore, the accuracy of current machine
learning image searches may be reduced when a large pool
of available images is processed. For example, using a
Contrastive Language-Image Pre-training (CLIP) machine
learning model, without more, is too generic to identify
relevant images or to narrow the number of potentially
relevant images to a number manageable for a user. For
example, if the content does not align with the literal
meaning of text, then the CLIP machine learning model may
not identify relevant images or sufficiently narrow the num-
ber of potentially relevant images. In a specific example,
assume that the term “big year end sale” is associated with
an image of a clock, or an image of an hourglass about to run
out of sand. The literal meaning of the text does not align
with the image, so a generic CLIP machine learning model
may not be able to output relevant images.

[0015] Thus, in summary, the technical problem is to
search through a large pool of images (e.g., millions of
images or more) and identify relevant images within a short
time period (e.g. a few seconds or less). Briefly, the one or
more embodiments solve the above-identified technical
problem by using multiple machine learning models to 1)
build a context-specific index, 2) identify keywords in
available text and 3) compare embedded versions of the
keywords and/or input images to the index. Stated differ-
ently, the one or more embodiments use a topic extraction
machine learning model executing on available input text or
images (or both), which then feed into the search index in
order to return results from the pool of images.

[0016] The one or more embodiments return relevant
images more quickly than pre-existing image search algo-
rithms. In particular, because the index is pre-built for the
existing pool, and further may be tailored to a specific user,
images may be searched and identified more quickly and
accurately. Specifically, rather than searching through the
pool images, a comparison is made between the index and

US 2024/0256597 Al

the embedded version of the keywords and/or images speci-
fied for the query. Thus, the amount of data that is to be
searched may be reduced by using a nearest algorithm, such
as a k-nearest neighbor machine learning model. Further, the
type of data processing being performed (e.g., the compari-
son of matrices, rather than the direct comparison of images
by a single machine learning model) is easier and faster for
a computer to process. Thus, the image identification
method of the one or more embodiments is both significantly
faster and more accurate than using the direct approach
using a single machine learning model to identify images in
a pool of images.

[0017] Images returned by the one or more embodiments
may be returned by a number of different methods. Returned
images may be ranked and then displayed to the user, for
user selection. Returned images may be automatically
placed in documents, such as emails. Other examples are
provided below.

[0018] Specific details regarding the arrangement and use
of the machine learning models is shown in FIG. 1A through
FIG. 3. A specific example is shown in FIG. 4A through FIG.
4C.

[0019] Attention is now turned to the figures. FIG. 1A
shows a computing system with which the one or more
embodiments may be implemented. The computing system
shown in FIG. 1A includes a variety of components, as
described below.

[0020] In one or more embodiments, the data repository
(100) is a storage unit and/or device (e.g., a file system,
database, data structure, or any other storage mechanism) for
storing data. The data repository (100) may include multiple
different, potentially heterogeneous, storage units and/or
devices.

[0021] The data repository (100) stores an input (102). The
input (102) is data in the form of a data structure that serves
as input to one or more machine learning models. In
particular, the 102 is one or more images, one or more texts,
or both, that will be used to select images of interest using
an index, as explained with respect to FIG. 2.

[0022] The input (102) may take the form of a first data
structure (104). The first data structure (104) is a vector. A
vector is a type of data structure that a machine learning
model may take as input when a processor executes the
machine learning model. A vector may take form of a matrix,
such as but not limited to a 1xN (i.e., one-dimensional)
matrix where each value of the matrix represents the value
of a specific feature within a total of “N” features. A feature
is a type of information of interest, such as a pre-specified
type of image, or an indication of whether a particular object
is included in an image. In this example, if the value of the
feature is “1,” then the associated image is of the pre-
specified type or contains the particular object. If the value
of the feature is “0,” then the associated images is not of the
pre-specified type or does not contain the particular object.
Many different types of features are possible.

[0023] The input may be related to one or more images,
one or more texts, or both. Thus, the first data structure (104)
may include features which describe the one or more
images, the one or more texts, or both. In an embodiment,
the process of converting an image or an instance of text into
the first data structure (104) may be referred-to as “embed-
ding.” Thus, because the first data structure (104) describes

Aug. 1,2024

the input (102) in a format which a machine learning model
can use, it can be said that the machine learning model
embeds the input (102).

[0024] For the sake of convenient reference, the one or
more embodiments refers to the first data structure (104) as
containing information which describe an image (106) and
a text (108). The image (106) is a digital image that
represents at least a portion of the input (102). The text (108)
is one or more keywords (including a phrase) that represent
at least a portion of the input (102). The image (106), the text
(108), or both, may be represented as a vector, as described
above with respect to the first data structure (104).

[0025] While reference to one image is made (e.g., the
image (106)), the one or more embodiments contemplate
that the first data structure (104) may contain features
describing many different images. [.ikewise, while reference
to one instance of text is made (e.g., the text (108)), the one
or more embodiments contemplate that the first data struc-
ture (104) may contain features describing many different
instances of text. Note that the term “first” is a nonce word
used to distinguish the first data structure (104) from a
second data structure (114) described further below. Like-
wise, the term “second” is a nonce term used to distinguish
the first data structure (104) from the second data structure
(114). While the first data structure (104) and the second data
structure (114) are different and distinct, they have similar
structures, again as described below.

[0026] The first data structure (104) also describes first
relationships (110) among the image (106) and the text
(108). The first relationships (110) take the form of data that
describes how the image (106) and the text (108) are related.
The data that defines the first relationships (110) may be
implicit in the structure of the first data structure (104) itself.
[0027] For example, the first data structure (104) may be
an M by N matrix, where each instance of text is a feature
that is described by rows of the matrix, and each instance of
an image is a feature that is described by columns of the
matrix. Thus, each cell in the matrix is a pair of values, such
as “I,” representing the value of the corresponding image
feature, and ““T,” representing the value of the corresponding
text feature. In this specific example, the relationship
between I and T in the cell is not defined explicitly. How-
ever, because every image feature in the matrix is associated
with every text feature in the matrix, the matrix can still be
used to identify the relationships of texts to images when
compared to another matrix that also relates texts to images.
An example of this process is shown in FIG. 4A through
FIG. 4C.

[0028] Nevertheless, it is possible that the explicit rela-
tionship between a given image and a given text is stored in
the first data structure (104). For example, each cell of the
M by N matrix described above may include a third entry
describing a degree of match. In yet another alternative, the
matrix may be a M by N by O matrix, where the third
dimension of “O” values define the relationships between
the images in row M and the texts in column N. There are
other techniques, implicit or explicit, for quantifying the first
relationships (110) between the images and text of the first
data structure (104).

[0029] The data repository (100) also store an index (112).
The index (112) is similar to the input (102), in that the index
(112) is a second data structure (114) that defines the
relationships between pre-determined text (116) and pre-
determined images (118). The second data structure (114)

US 2024/0256597 Al

may have a similar structure as the first data structure (104).
For example, while the dimensionality (e.g., a 2x2 matrix
has a dimension of 2 and a 3x3 matrix has a dimension of
3) of the first data structure (104) and the second data
structure (114) may be different, both may be matrixes
which store information that relates images to text.

[0030] However, a difference between the first data struc-
ture (104) and the second data structure (114) is the specific
information stored. In particular, with respect to the index
(112), the pre-determined text (116) has known relationships
to the pre-determined images (118). In other words, each
pre-determined image in the pre-determined images (118) is
related to one or more instances of pre-determined text (118)
that describes the corresponding pre-determined image
(118). More specifically, the index (118) stores the embed-
dings of the pre-determined images and the pre-determined
text (118).

[0031] In an example, the pre-determined images (118)
may be the pool of images described above. Stated differ-
ently, the pre-determined image (118) a million pre-deter-
mined images, a few of which may be of interest to a user.
The method of FIG. 2 may be used to identify which of the
million pre-determined images should be returned to the
user.

[0032] The second data structure (114) also stores second
relationships (120) between the pre-determined text (116)
and the pre-determined images (118). The second relation-
ships (120) define implicit or explicit relationships between
the pre-determined text (116) and the pre-determined images
(118). Thus, the second relationships (120) may be similar in
nature to the first relationships (110).

[0033] Use of the index (112) is described with respect to
FIG. 2. Generation of the index (112) is described with
respect to FIG. 3

[0034] The data repository (100) also stores a subset of
images (122). The subset of images (122) is one or more
images returned from the pre-determined images (118). In an
example, the subset of images (122) is those images from the
pre-determined images (118) that are of interest to the user.
The subset of images (122) may be those images in the
pre-determined images (118) for which matches exist
between the first relationships (110) and the second rela-
tionships (120), as described with respect to FIG. 2.
[0035] The subset of images (122) may be organized by an
image ranking (124). The image ranking (124) is a predicted
value that represents the predicted relevance of a returned
image to the user. In an example, the subset of images (122)
may be organized by the image ranking (124), from highest
predicted relevance to lowest predicted relevance. The
image ranking (124) may be determined by the output of a
machine learning model, as described with respect to FIG. 2
and FIG. 3.

[0036] The data repository (100) also may store an elec-
tronic document (128). The electronic document (128) is a
data file which a computer processor may use to generate a
graphical user interface. The electronic document (128) may
be an email, a word processing document, a portable docu-
ment file (PDF), a presentation document, an image manipu-
lation document, etc.

[0037] The electronic document (128) may have a format
(130). The format (130) is data or metadata that defines how
text, images, or other document elements are arranged when
the electronic document (128) is displayed on a display
device.

Aug. 1,2024

[0038] The electronic document (128) may include a
selected image (132). The selected image (132) is one of the
images from the pre-determined image (118). The selected
image (132), specifically, is an image selected for inclusion
in the electronic document (128). Selection of the image is
described with respect to FIG. 2.

[0039] The electronic document (128) also may include
selected text (134). The selected text (134) is text selected
for inclusion in the electronic document (128). Selection of
the selected text (134) is described with respect to FIG. 2.
[0040] The system shown in FIG. 1A may include other
components. For example, the system may include a server
(136). The server (136) is one or more computers, possibly
operating in a distributed computing environment. An
example of the server (136) is described with respect to FIG.
5A.

[0041] The server (136) may include a processor (138).
The processor (138) is one or more hardware processors or
virtual processors, possibly operating in a distributed com-
puting environment. An example of the processor (138) is
described with respect to FIG. 5A.

[0042] The server (136) also may include a server con-
troller (140). The server controller (140) is computer read-
able code or application specific hardware which, when
executed, controls the execution of one or more instances of
computer readable program code. Thus, the server controller
(140) may be computer readable program code which, when
execute, performs the method of FIG. 2, the method of FIG.
3, the examples of FIG. 4A through FIG. 4C, or a combi-
nation thereof.

[0043] The server controller (140) may control the execu-
tion of one or more machine learning models. A machine
learning model (MLLM) is a computer program that has been
trained to recognize certain types of patterns. Training
involves establishing parameters of the MLM using a set of
training data for which the output pattern is already known.
Once the parameters are set, the MLLM may be provided with
new data for which the output pattern is not known. The
output of the trained MLLM operating on new data is one or
more numbers that reflect a prediction of the types of
patterns in the new data.

[0044] The server controller (140) may include a nearest
neighbor MLM (142). The nearest neighbor MLM (142) is
a supervised classification machine learning model. A near-
est neighbor classifies an unlabeled example in two steps.
First, the nearest neighbor MLM (142) sorts labeled
examples from the training set based on their nearness to the
given unlabeled example. The term “near” refers to the
numerical difference between a training set and the unla-
beled example. Second, the nearest neighbor MLM (142)
identifies the majority label among top nearest neighbors.
The majority label is the prediction. This means, the unla-
beled instance is assigned to the class that has the most
representative examples amongst those that are closest to the
given unlabeled example. An example of the nearest neigh-
bor MLLM (142) is a k nearest neighbor machine learning
model. Another example of the nearest neighbor MLM (142)
is a FACEBOOK® Artificial Intelligence Similarity Search
(FAISS) similarity search machine learning model.

[0045] The nearest neighbor MLLM (142) when executed
by the processor, takes as input the embeddings of the
pre-determined texts (116) and the pre-determined images
(118). Again, an embedding is a vector representation of
data. The nearest neighbor MLM (142) generates the index

US 2024/0256597 Al

(112) as output. The process of generating the index (112) is
described with respect to FIG. 3.

[0046] The server controller (140) also includes a natural
language MLM (144). The natural language MLM (144),
when executed, is programmed to analyze language, such as
parts of speech, entities, sentiment, and other aspects of text.
The natural language MLM (144) is a supervised or an
unsupervised machine learning model. Examples of the
natural language MLM (144) include, but are not limited to,
support vector machines, Bayesian networks, maximum
entropy models, conditional random field models, and neural
networks.

[0047] In the one or more embodiments, the natural lan-
guage MLM (144) takes the input (102) and generates the
text (108) as output. Again, the text (108) may be keywords,
as described above. In other words, a corpus of text may
serve as input to the second data structure (114), which
predicts which words in the corpus of text are keywords that
represent the semantic meaning of the corpus of text.
[0048] The server controller (140) also includes the image
processing MLLM (146). The image processing MLM (146),
when executed, is programmed to analyze images for pat-
terns, classification, segmentation, and other image-related
functions. For example, the image processing MLM (146)
may recognize patterns in an image in order to classify the
presence of a certain type of object in the image. In another
example, the image processing MLM (146) may classify the
image, such as in the case of facial recognition machine
learning models. In still another example, the image pro-
cessing MLM (146) may embed an image as a vector.
Examples of the image processing MLLM (146) include, but
are not limited to, OpenCV, Tensorflow, PyTorch, and oth-
ers.

[0049] In the one or more embodiments, the image pro-
cessing MLM (146), when executed, takes the input (102)
and generates the image (106) as output. In other words, the
image processing MLM (146) may take, as input, one or
more images. The output of the image processing MLM
(146) is a vector that may be the first data structure (104) or
part of the first data structure (104) (and specifically the
image (106) within the first data structure (104)).

[0050] The server (136) also may include a training con-
troller (148). The training controller (148) is computer
readable code or application specific hardware which, when
executed, trains one or more of the MLLMs executable by the
server controller (140). Details of the training controller
(148) are shown in FIG. 1B.

[0051] The system of FIG. 1A may include, or interact
with, still other components. For example, the system of
FIG. 1A may include one or more user devices (150). The
user devices (150) are computers remote from the server
(136). In some embodiments, the user devices (150) are not
part of the system shown in FIG. 1A, but rather are accessed
by the server (136) For example, the user devices (150) may
be third-party computing systems which access the server, or
which are accessed by the server during the methods shown
in FIG. 2 or FIG. 3.

[0052] The user devices (150) include a user input device
(152). The user input device (152) is a device a user may use
to provide input to the user devices (150). Examples of the
user input device (152) include, but are not limited to, a
keyboard, a mouse, a touchscreen, and a microphone.
[0053] The user devices (150) also may include a display
device (154). The display device (154) is a projector, screen,

Aug. 1,2024

monitor, television, or other device on which a graphical
user interface may be displayed.

[0054] The system shown in FIG. 1A also may include a
third party website (156). The third party website (156) may
be hosted by one of the user devices (150), or by another
server distinct from and not under the control of the server
(136). The third party website (156) may be associated with
a user, but also may be associated with parties unaffiliated
with the execution of the method of FIG. 2 or FIG. 3.

[0055] The third party website (156) may include third
party images (158). The third party images (158) are images
generated or used by parties other than the entity which
operates the server (136) or the data repository (100). The
third party images (158) may be images which a user selects,
controls, or accesses (e.g., images from the user’s website).
The third party images (158) may form part of the input
(102). The third party images (158) also may be included, or
added to, the predetermined image (118).

[0056] Similarly, the third party website (156) may
include third party text (160). The third party text (160) is
text generated or used by parties other than the entity which
operates the server (136) or the data repository (100). The
third party text (160) may be text which a user selects,
controls, or accesses (e.g., text from the user’s website). The
third party text (160) may form part of the input (102). The
third party text (160) also may be included, or added to, the
pre-determined text (116).

[0057] Attention is turned to FIG. 1B, which shows the
details of the training controller (148). The training control-
ler (148) is a training algorithm, implemented as software or
application specific hardware, that may be used to train one
or more the machine learning models described with respect
to FIG. 1A, including the nearest neighbor MLLM (142), the
natural language MLM (144), and the image processing
MLM (146).

[0058] In general, machine learning models are trained
prior to being deployed. The process of training a model,
briefly, involves iteratively testing a model against test data
for which the final result is known, comparing the test results
against the known result, and using the comparison to adjust
the model. The process is repeated until the results do not
improve more than some predetermined amount, or until
some other termination condition occurs. After training, the
final adjusted model (i.e., the trained machine learning
model (192)) is applied to the unknown input in order to
make predictions. Examples of the unknown input may be
the first data structure (104), the third party images (158), the
third party text (160), and other sources of input of FIG. 1A.

[0059] In more detail, training starts with training data
(176). The training data (176) is data for which the final
result is known with certainty. For example, if the machine
learning task is to predict keywords in a corpus of text (i.e.,
the output of the natural language MLM (144)), then the
training data (176) may be one or more corpuses of text for
which the keywords are already known.

[0060] The training data (176) is provided as input to the
machine learning model (178). The machine learning model
(178), as described before, is an algorithm. However, the
output of the algorithm may be changed by changing one or
more parameters of the algorithm, such as the parameter
(180) of the machine learning model (178). The parameter
(180) may be one or more weights, the application of a
sigmoid function, a hyperparameter, or possibly many dif-

US 2024/0256597 Al

ferent variations that may be used to adjust the output of the
function of the machine learning model (178).

[0061] One or more initial values are set for the parameter
(180). The machine learning model (178) is then executed
on the training data (176). The result is a output (182), which
is a prediction, a classification, a value, or some other output
which the machine learning model (178) has been pro-
grammed to output.

[0062] The output (182) is provided to a convergence
process (184). The convergence process (184) compares the
output (182) to a known result (186). A determination is
made whether the output (182) matches the known result
(186) to a pre-determined degree. The pre-determined
degree may be an exact match, a match to within a pre-
specified percentage, or some other metric for evaluating
how closely the output (182) matches the known result
(186). Convergence occurs when the known result (186)
matches the output (182) to within the pre-determined
degree.

[0063] If convergence has not occurred (a “no” at the
convergence process (184)), then a loss function (188) is
generated. The loss function (188) is a program which
adjusts the parameter (180) in order to generate an updated
parameter (190). The basis for performing the adjustment is
defined by the program that makes up the loss function
(188), but may be a scheme which attempts to guess how the
parameter (180) may be changed so that the next execution
of the machine learning model (178) using the training data
(176) with the updated parameter (190) will have an output
(182) that more closely matches the known result (186).
[0064] In any case, the loss function (188) is used to
specify the updated parameter (190). As indicated, the
machine learning model (178) is executed again on the
training data (176), this time with the updated parameter
(190). The process of execution of the machine learning
model (178), execution of the convergence process (184),
and the execution of the loss function (188) continues to
iterate until convergence.

[0065] Upon convergence (a “yes” result at the conver-
gence process (184)), the machine learning model (178) is
deemed to be a trained machine learning model (192). The
trained machine learning model (192) has a final parameter,
represented by the trained parameter (194).

[0066] During deployment, the trained machine learning
model (192) with the trained parameter (194) is executed
again, but this time on the input described above (e.g., the
first data structure (104), the third party images (158), the
third party text (160), etc. of FIG. 1A) for which the final
result is not known. The output of the trained machine
learning model (192) is then treated as a prediction of the
information of interest relative to the unknown data.
[0067] An example of operation of the training controller
(148) is now provided. In the following example, a Con-
trastive Language-Image Pre-training (CLIP) machine
learning model is trained.

[0068] The training controller (148) receives a set of
emails containing raw images and associated raw text. Not
all raw images need have associated raw text. Some
instances of the raw images may include multiple instances
of associated raw text. Thus, each raw image is associated
with zero or more instances of raw text. However, each raw
image that will be used will be associated with at least one
text instance. Thus, an added text may be associated with a
raw image for those raw images without raw text. The raw

Aug. 1,2024

images and the associated raw text, possibly modified with
such added text, together form training data.

[0069] During training, a training portion of the training
data may be extracted, and a remaining portion of the
training data may be retained. The training portion is used to
train the CLIP model. The remaining portion, for which
output labels are known, is retained in order to test the
operation of machine learning model. Thus, the test portion
includes a subset of the raw images and the associated raw
text. After extracting, the remaining portion of raw images
and associated raw text forms another subset of the raw
images and the associated raw text.

[0070] Prior to training, the training controller may label
data by labeling the raw images as being associated with the
associated raw text. Labeling the data may be optional if the
labeling had already been performed. Labeling the data
generates labeled data.

[0071] Then, the labeled data is embedded into a known
vector. Embedding may be performed by transforming the
data in the original format in which it was extracted into a
vector.

[0072] Finally, the CLIP machine learning model is
trained using the remaining portion as input and the known
vector as the known result. For example, as shown in FIG.
1B, the remaining portion is the “training data (176)” which
is input to the machine learning model (178). The machine
learning model (178) generates a prediction in the form of
the output (182). The output (182) is compared to the known
result (186), which in this example is the known vector. If
convergence (184) has not occurred, then the difference
between the output (182) and the known result (186) is used
to generate a loss function (188). The loss function is used
to update the machine learning model (178). The process
continues until convergence is achieved, at which point the
CLIP machine learning model is considered a trained
machine learning model (192).

[0073] While FIG. 1A and FIG. 1B show a configuration
of components, other configurations may be used without
departing from the scope. For example, various components
may be combined to create a single component. As another
example, the functionality performed by a single component
may be performed by two or more components.

[0074] FIG. 2 and FIG. 3 show methods of machine
learning selection of images, according to the one or more
embodiments. The methods of FIG. 2 and FIG. 3 may be
implemented using the system shown in FIG. 1A and FIG.
1B. The methods of FIG. 2 and FIG. 3 may be executed
using a computing system, such as that shown in FIG. 5A
and FIG. SB.

[0075] Attention is first turned to FIG. 2. FIG. 2 may be
characterized as a method for identifying specific images of
interest from among many different images. The method of
FIG. 2 also may be characterized a method of machine
learning selection of images.

[0076] Step 200 includes receiving an input. The input
may be received in the form of text, images, or both. The
input may be received by user selection of images or text,
such as when the user seeks to find additional images that are
related to images or text.

[0077] The input may be received automatically. For
example, a website may be scraped to generate the text, the
image, or text associated with an image. In another example,
an email may be input to a natural language machine
learning model. The output of the natural language machine

US 2024/0256597 Al

learning model is at least one keyword that represents the
subject or sentiment of the email.

[0078] Step 202 includes embedding the input into a first
data structure that defines first relationships among images
and texts. As described above, embedding is the process of
converting one form of data into a vector suitable for use as
input to a machine learning model. Embedding the input into
the first data structure may be accomplished by a number of
different methods, possibly depending on the type of the
input data.

[0079] For example, when the input is text, the input may
be embedded by entering one or more values in a vector for
a feature that corresponds to the text. In another example,
when the input is an image, the input may be embedded by
means of an image processing machine learning model.
[0080] The resulting first data structure may define the
relationships among images and the text in the manner
described above with respect to FIG. 1. For example, the
images may be represented by features and the text associ-
ated by features, creating implicit or explicit relationships
among the text and images.

[0081] Step 204 includes comparing the first data structure
to an index including a second data structure that defines
second relationships among pre-determined texts and pre-
determined images. The first and second data structures may
be compared by a number of different techniques.

[0082] For example, the embedding of the image and/or
the embedding of the text is input to the nearest neighbor
machine learning model (142). The metric used by the
nearest neighbor machine learning model (142) may be the
cosine function. Image features may encoded by a vision
portion of the CLIP model. The CLIP model may return text
features encoded by a language portion of the CLIP model.
[0083] Step 206 includes returning a subset of images
from the pre-determined images. As described above, the
subset of images are those images in the pre-determined
images for which matches exist between the first relation-
ships and the second relationships.

[0084] Returning the subset of images may be performed
by a variety of different methods, depending on a preferred
output of the method for machine learning selection of
images. For example, the subset of images may be returned
by transmitting the subset of images to a remote user device.
An example of this type of returning of the subset is shown
in FIG. 4A through FIG. 4C.

[0085] In another example, the subset of images may be
returned by displaying the subset of images on a display
device of a remote user device. Again, an example of
displaying images on a remote user device is shown in FIG.
4A through FIG. 4C.

[0086] In yet another example, the subset of images may
be returned by storing the identities of the returned images
(e.g., returning an identifier number associated with a cor-
responding pre-determined image in the set of pre-deter-
mined images). The stored identities of the returned images
then may be used in further automatic processing. For
example, the returned images may be embedded (i.e., con-
verted into a vector by an image processing machine learn-
ing model) and then used to classify the returned image,
search for other images in a different database of images, etc.
Other examples of returning the subset of images is possible.
[0087] In an embodiment, the method of FIG. 2 may
terminate after step 206. However, the method may also be
continued. For example, step 208 includes receiving a user

Aug. 1,2024

selection of a selected image from the subset of images. In
this case, the subset of images is displayed on a display
device of a user device. The user may use an input device of
the user device to select one of the images presented to the
user. The selection of the image is transmitted to the server
controller, or is used for some other process on the user
device, or both.

[0088] Step 210 then includes inserting the selected image
into an electronic document. The electronic document may
be inserted by the server controller, by the local user device,
or some combination thereof. The file associated with the
selected image may be added to, or referenced in, the
electronic document. Thus, for example, the selected image
may be added automatically to an email document being
generated by the local user device or the server controller. In
one embodiment, the method of FIG. 2 may terminate
thereafter.

[0089] The method of FIG. 2 may be varied. More or
fewer steps may be present, or some of the steps may be
modified. In an example, the method of FIG. 2 also may
include ranking the subset of images according to a ranking
criterion. The ranking criterion may be the degree of rel-
evance or match predicted between the first data structure
and the second data structure. In this case, a ranked subset
of' images may be returned to the user in order to show those
pre-determined images predicted to be most likely to be
similar to the input. Still other variations are possible.

[0090] Attention is now turned to FIG. 3. FIG. 3 is a
method for building the index model that is used at runtime,
as described with respect to FIG. 2.

[0091] Step 300 includes inputting, to an image processing
machine learning model, a number of images. The images
may be the pre-determined images described above. The
images may be retrieved from local or remote databases,
scraped from websites, retrieved from documents, etc. The
images may be stored as one or more data files used for
storing image data (jpg, .png, etc.). The images may be
converted to a specific data format and then input to the
image processing machine learning model.

[0092] Step 302 includes outputting, by the image pro-
cessing machine learning model, an image vector that rep-
resents the images. The image vector is stored for later use
in step 304.

[0093] Step 304 includes building an index from the image
vector. The process of building the index includes inputting
the image vector to a nearest neighbor machine learning
model. The nearest neighbor model indexes the image
embeddings (i.e., the image vector) so that the images may
be searched more easily. The function of the nearest neigh-
bor machine learning model is to act as a search algorithm
so that relevant results of images may be returned quickly,
relative to other search techniques. Thus, the output of the
execution of the nearest neighbor machine learning model is
the index.

[0094] Step 306 includes returning the index. The index
may be returned by storing the index for future use, such as
during the method of FIG. 2 as described above. The index
also may be returned by providing the index to some other
automated process. In one embodiment, the method of FIG.
3 may terminate thereafter.

[0095] The method of FIG. 3 may be varied by adding
steps, removing steps, or modifying steps. For example, the
method of FIG. 3 may be extended by receiving an input,

US 2024/0256597 Al

which may be an image, text, or both. The input may be
scraped from a website of a third party.

[0096] In this case, the method also includes using the
index. Using the index includes converting a raw input to a
first data structure that defines relationships among input
images and input texts. The resulting data structure is
compared to the index. Then, a subset of the images is
returned. The subset is those images of the images that
correspond to first entries in the index which satisfy a
matching criterion when compared to second entries in the
index, as described above.

[0097] While the various steps in the flowcharts of FIG. 2
and FIG. 3 are presented and described sequentially, at least
some of the steps may be executed in different orders, may
be combined or omitted, and at least some of the steps may
be executed in parallel. Furthermore, the steps may be
performed actively or passively.

[0098] FIG. 4A through FIG. 4C show an example of
machine learning selection of images, according to the one
or more embodiments. The following example is for
explanatory purposes only and not intended to limit the
scope of the one or more embodiments.

[0099] FIG. 4A shows a pictorial representation of build-
ing the index. As shown at step (400), image (402) and
image (404) are embedded into a vector format using a CLIP
machine learning model. At step (412) a FACEBOOK®
Artificial Intelligence Similarity Search (FAISS) similarity
search machine learning model takes the embedded images
as input. The output of the FAISS machine learning model
is an index (414). The index (414) is a data structure as
described above with respect to FIG. 1.

[0100] FIG. 4B shows a specific, exemplary use case of
the index (414). The text input (416) is shown in comment
box (418). The comment box (418) states as follows: “Cats
can be scary in a variety of ways on Halloween. Some cats
can be witches and others can be ghosts.” The text input
(416) is the corpus. The corpus is provided as input to a
KeyBERT natural language processing (NLP) machine
learning model at step (420). The output of the NLP machine
learning model is a series of keywords (422), including
“Halloween cats witches ghosts”, “Halloween cats,” and
“ways Halloween cats witches.”

[0101] Note that in this example, text alone is the input.
However, the input may be both text and images, as shown
in FIG. 4C.

[0102] Step 420 also includes embedding the keywords
using a CLIP machine learning model. The output of the
CLIP machine learning model is a vector which may be
compared to the index (414) shown in FIG. 4A.

[0103] Next, at step (424), a search is performed of the
index (414) using the embedded version of the keywords
(422) obtained at step (420). The search identifies those
images in the pre-determined images (of which image (402)
and image (404) were only two) which are related to the
keywords (422).

[0104] The output (426) of the search at step (424) is the
top results. In the example, output image A (428) shows a
person pretending to be a ghost by wearing a sheet, with a
cat standing nearby. Output image B (430) shows two
jack-o-lanterns with a cat sitting atop one of the jack-o-
lanterns. Output image C (432) shows two other jack-o-
lanterns with a cat standing to one side. As can be seen, each
of the output images appears to relate both to the Halloween
holiday and cats. The user may then select one or more of the

Aug. 1,2024

images for use, such as to insert the selected image or images
into an email template for use in generating emails.

[0105] Due to the number of images in the pre-determined
image pool, it would have been impractical or impossible for
the user to have searched through all of the images to find
the three output images shown. However, using the one or
more embodiments the user may input text, and in turn the
user will rapidly see a selection of images from the pre-
determined image pool that are relevant to the input text.

[0106] FIG. 4C shows another example of the one or more
embodiments. In particular, FIG. 4C illustrates that the one
or more embodiments may be used with multiple input
types. In the example of FIG. 4C, the user owns a business
and a website. The website describes the user’s business and
allows the user’s customers to conduct electronic commerce
at the website. The user, in the example, seeks to find
pictures relevant to his business from among a large pool of
pre-determined stock images. The user intends to insert the
images into an email template that the user will send to
targeted customers.

[0107] Thus, the input includes both text input (434) and
image input (436). The text input (434) is text automatically
scraped from the user’s website. The image input (436) is
also scraped from the user’s website by capturing image files
of images on the website.

[0108] The text input (434) is provided as input to a
natural language machine learning model (438). The output
of the natural language machine learning model (438) is
keywords (440).

[0109] The image input (436) and the keywords (440) are
fed as input to a CLIP machine learning model (442). The
CLIP machine learning model generates, as output, an
embedded input (444). The embedded input (444) is a vector
representation of the combined input of the image input
(436) and the keywords (440). The CLIP machine learning
model (442) effectively embeds both the keywords (440)
and the image input (436) into a single data representation
space.

[0110] In FIG. 4C, it is assumed that the index (446) has
already been built. The index (446) may be the index (414)
described with respect to FIG. 4A or the index (112) of FIG.
1A.

[0111] Next, the index (446) and the embedded input (444)
are compared. A server controller (448), or some other
software, may be used to compare the index (446) to the
embedded input (444). The server controller (448) may be
the server controller (140) described with respect to FIG.
1A. The server controller (448) may compare the index
(446) to the embedded input (444) using a number of
methods. In this example, the index (446) and the embedded
input (446) are compared using a K-nearest neighbor
machine learning model (i.e., the server controller (448)
executes a K-nearest neighbor machine learning model,
which takes as input the index (446) and the embedded input
(444)).

[0112] The output of the server controller (448) is a list of
images, represented by the index (446), which match (within
a threshold degree) the embedded input (444). In other
words, the output of the server controller (448) are the
identities of the top images (450) from the pool of available
stock images. The identified stock images may then be
retrieved and presented to the user. The top images (450)
may be ranked, according to the degree of match between an

US 2024/0256597 Al

entry in the embedded input (444) and the corresponding
entry in the index (446), and presented in a ranked order.
[0113] After viewing the top images (450), the user selects
one or more of the top images (450). The one or more
selected images are automatically inserted into an email
template.

[0114] Suggestions for automatically formatting the
images, together with text supplied by the user, is suggested
to the user. The suggestions may take the form of suggested
sample email templates that include selected images and the
text provided by the user. Each of the suggested sample
emails represents a different formatting and arrangement of
the selected images and the text.

[0115] The user selects one of the formatted email tem-
plates. The user may then use the selected formatted email
template to generate one or more emails to be sent to
targeted customers.

[0116] Note that the CLIP machine learning model (442)
may be trained using a custom training data set from images
that also have associated text. For example, past email
advertising emails from a wide variety of different business
may be consolidated into a raw training data pool. Each of
the past advertising emails includes images and text. The
text may be text in the email, or may be text contained in an
image in an email. Text in an image may be identified using
optical character recognition, or other techniques, and
included in the corpus of raw text. The raw training data
(text and associated images) may then serve as a labeled data
set. The labeled data set may then be used to train the CLIP
machine learning model. The process of training a machine
learning model, including the CLIP machine learning model,
is described with respect to FIG. 1B.

[0117] Embodiments may be implemented on a computing
system specifically designed to achieve an improved tech-
nological result. When implemented in a computing system,
the features and elements of the disclosure provide a sig-
nificant technological advancement over computing systems
that do not implement the features and elements of the
disclosure. Any combination of mobile, desktop, server,
router, switch, embedded device, or other types of hardware
may be improved by including the features and elements
described in the disclosure. For example, as shown in FIG.
5A, the computing system (500) may include one or more
computer processors (502), non-persistent storage (504),
persistent storage (506), a communication interface (508)
(e.g., Bluetooth interface, infrared interface, network inter-
face, optical interface, etc.), and numerous other elements
and functionalities that implement the features and elements
of the disclosure. The computer processor(s) (502) may be
an integrated circuit for processing instructions. The com-
puter processor(s) may be one or more cores or micro-cores
of a processor. The computer processor(s) (502) includes
one or more processors. The one or more processors may
include a central processing unit (CPU), a graphics process-
ing unit (GPU), a tensor processing units (TPU), combina-
tions thereof, etc.

[0118] The input devices (510) may include a touchscreen,
keyboard, mouse, microphone, touchpad, electronic pen, or
any other type of input device. The input devices (510) may
receive inputs from a user that are responsive to data and
messages presented by the output devices (512). The inputs
may include text input, audio input, video input, etc., which
may be processed and transmitted by the computing system
(500) in accordance with the disclosure. The communication

Aug. 1,2024

interface (508) may include an integrated circuit for con-
necting the computing system (500) to a network (not
shown) (e.g., a local area network (LAN), a wide area
network (WAN) such as the Internet, mobile network, or any
other type of network) and/or to another device, such as
another computing device.

[0119] Further, the output devices (512) may include a
display device, a printer, external storage, or any other
output device. One or more of the output devices may be the
same or different from the input device(s). The input and
output device(s) may be locally or remotely connected to the
computer processor(s) (502). Many different types of com-
puting systems exist, and the aforementioned input and
output device(s) may take other forms. The output devices
(512) may display data and messages that are transmitted
and received by the computing system (500). The data and
messages may include text, audio, video, etc., and include
the data and messages described above in the other figures
of the disclosure.

[0120] Software instructions in the form of computer
readable program code to perform embodiments may be
stored, in whole or in part, temporarily or permanently, on
a non-transitory computer readable medium such as a CD,
DVD, storage device, a diskette, a tape, flash memory,
physical memory, or any other computer readable storage
medium. Specifically, the software instructions may corre-
spond to computer readable program code that, when
executed by a processor(s), is configured to perform one or
more embodiments, which may include transmitting, receiv-
ing, presenting, and displaying data and messages described
in the other figures of the disclosure.

[0121] The computing system (500) in FIG. SA may be
connected to or be a part of a network. For example, as
shown in FIG. 5B, the network (520) may include multiple
nodes (e.g., node X (522), node Y (524)). Each node may
correspond to a computing system, such as the computing
system shown in FIG. 5A, or a group of nodes combined
may correspond to the computing system shown in FIG. 5A.
By way of an example, embodiments may be implemented
on a node of a distributed system that is connected to other
nodes. By way of another example, embodiments may be
implemented on a distributed computing system having
multiple nodes, where each portion may be located on a
different node within the distributed computing system.
Further, one or more elements of the aforementioned com-
puting system (500) may be located at a remote location and
connected to the other elements over a network.

[0122] The nodes (e.g., node X (522), node Y (524)) in the
network (520) may be configured to provide services for a
client device (526), including receiving requests and trans-
mitting responses to the client device (526). For example,
the nodes may be part of a cloud computing system. The
client device (526) may be a computing system, such as the
computing system shown in FIG. 5A. Further, the client
device (526) may include and/or perform all or a portion of
one or more embodiments.

[0123] The computing system of FIG. 5A may include
functionality to present raw and/or processed data, such as
results of comparisons and other processing. For example,
presenting data may be accomplished through various pre-
senting methods. Specifically, data may be presented by
being displayed in a user interface, transmitted to a different
computing system, and stored. The user interface may
include a GUI that displays information on a display device.

US 2024/0256597 Al

The GUI may include various GUI widgets that organize
what data is shown as well as how data is presented to a user.
Furthermore, the GUI may present data directly to the user,
e.g., data presented as actual data values through text, or
rendered by the computing device into a visual representa-
tion of the data, such as through visualizing a data model.
[0124] As used herein, the term “connected to” contem-
plates multiple meanings. A connection may be direct or
indirect (e.g., through another component or network). A
connection may be wired or wireless. A connection may be
temporary, permanent, or semi-permanent communication
channel between two entities.

[0125] The various descriptions of the figures may be
combined and may include or be included within the fea-
tures described in the other figures of the application. The
various elements, systems, components, and steps shown in
the figures may be omitted, repeated, combined, and/or
altered as shown from the figures. Accordingly, the scope of
the present disclosure should not be considered limited to
the specific arrangements shown in the figures.

[0126] In the application, ordinal numbers (e.g., first,
second, third, etc.) may be used as an adjective for an
element (i.e., any noun in the application). The use of ordinal
numbers is not to imply or create any particular ordering of
the elements nor to limit any element to being only a single
element unless expressly disclosed, such as by the use of the
terms “before”, “after”, “single”, and other such terminol-
ogy. Rather, the use of ordinal numbers is to distinguish
between the elements. By way of an example, a first element
is distinct from a second element, and the first element may
encompass more than one element and succeed (or precede)
the second element in an ordering of elements.

[0127] Further, unless expressly stated otherwise, or is an
“inclusive or” and, as such includes “and.” Further, items
joined by an or may include any combination of the items
with any number of each item unless expressly stated
otherwise.

[0128] In the above description, numerous specific details
are set forth in order to provide a more thorough under-
standing of the disclosure. However, it will be apparent to
one of ordinary skill in the art that the technology may be
practiced without these specific details. In other instances,
well-known features have not been described in detail to
avoid unnecessarily complicating the description. Further,
other embodiments not explicitly described above can be
devised which do not depart from the scope of the claims as
disclosed herein. Accordingly, the scope should be limited
only by the attached claims.

1. A method comprising:

receiving an input comprising a plurality of texts from a
source of text and a plurality of images from a source
of images, wherein the plurality of texts is separate
from the plurality of images;

embedding the input into a first data structure that defines
first relationships among the plurality of images from
the source of images and the plurality of texts from the
source of text;

comparing the first data structure to an index comprising
a second data structure that defines second relationships
among a plurality of pre-determined texts and a plu-
rality of pre-determined images, wherein:
the plurality of pre-determined texts have known rela-

tionships to the plurality of pre-determined images,

Aug. 1,2024

each pre-determined image in the plurality of pre-
determined images is related to one or more
instances of the plurality of pre-determined texts,
and

the plurality of pre-determined texts is separate from
the plurality of texts; and

returning a subset of images from the plurality of pre-

determined images, wherein the subset comprises those

images in the plurality of pre-determined images for
which matches exist between the first relationships and
the second relationships.

2. The method of claim 1, further comprising:

receiving a user selection of a selected image from the

subset of images; and

inserting the selected image into an electronic document.

3. The method of claim 2, wherein the electronic docu-
ment is selected from the group consisting of: an email
document, a word processing document, a presentation
building document, a portable document format (PDF)
document, and an image manipulation document.

4. The method of claim 1, further comprising, prior to
receiving the input:

scraping a website to generate a text associated with a

scraped image; and

generating the input from the text and the scraped image.

5. The method of claim 1, further comprising, prior to
receiving the input:

inputting an email to a natural language processing

machine learning model;

outputting, from the natural language processing machine

learning model, at least one keyword; and

generating the input from the at least one keyword.

6. The method of claim 1, wherein the input comprises at
least one of a text and an image.

7. The method of claim 1, wherein comparing comprises
performing a nearest neighbor comparison between the first
data structure and the second data structure.

8. The method of claim 1, wherein returning the subset of
images comprises:

transmitting the subset of images to a remote user device;

and

displaying the subset of images on a display device of the

remote user device.

9. The method of claim 1, further comprising:

ranking the subset of images according to a ranking

criterion.

10.-13. (canceled)

14. A system comprising:

a processor;

a data repository, in communication with the processor,

and storing:

an input comprising a plurality of texts from a source
of text and a plurality of images from a source of
images, wherein the plurality of texts is separate
from the plurality of images;

a first data structure that embeds the input, wherein the
first data structure defines first relationships among
the plurality of images from the source of images and
the plurality of texts from the source of text;

an index comprising a second data structure that defines
second relationships among a plurality of pre-deter-
mined texts and a plurality of pre-determined
images, wherein:

US 2024/0256597 Al

the plurality of pre-determined texts have known
relationships to the plurality of pre-determined
images,

each pre-determined image in the plurality of pre-
determined images is related to one or more
instances of the plurality of pre-determined texts,
and

the plurality of pre-determined texts is separate from
the plurality of texts, and

a subset of images, wherein the subset comprises those

images in the plurality of pre-determined images for

which matches exist between the first relationships

and the second relationships; and

a server controller which, when executed by the proces-
sor:
embed the input into the first data structure;
compares the first data structure to the second data

structure; and
returns the subset of images from the plurality of
pre-determined images.

15. The system of claim 14, further comprising:

a nearest neighbor machine learning model which, when
executed by the processor, takes as input the plurality
of pre-determined texts and the plurality of pre-deter-
mined images, and which generates the index as output.

16. The system of claim 14, further comprising:

a natural language machine learning model which, when
executed by the processor, takes the input and generates
the plurality of texts as output, wherein the plurality of
texts comprises keywords that represent at least a
portion of the input, and wherein the plurality of texts
is represented as a vector.

17. The system of claim 14, wherein the server controller

is further configured to:

generate the input by scraping a third party website;

receive a user selection of a selected image from the
subset of images; and

insert the selected image into an electronic document.

Aug. 1,2024

18. The system of claim 17, wherein the electronic
document comprises an email, and wherein the server con-
troller is further configured to:

format the selected image together with pre-determined
email text into a plurality of different formatted emails;

receive, from a user, a selected email format from the
plurality of different formatted emails; and

return the selected email format.

19. The system of claim 14, wherein the server controller
further comprises a Contrastive Language-Image Pre-train-
ing (CLIP) machine learning model, and wherein the server
controller embeds the input into the first data structure by
being programmed to:

receive, as input to the CLIP machine learning model, the
plurality of images and the plurality of texts, and to
generate, as output, the first data structure.

20. The system of claim 19, further comprising:

a training controller which, when executed by the pro-
cessor, is configured to:

receive a plurality of emails containing a plurality of
raw images and a plurality of associated raw text
associated with the plurality of raw images;

extract a training portion of the plurality of raw images
and the plurality of associated raw text, wherein,
after extracting, a remaining portion of raw images
and associated raw text remains;

generate, for the training portion, labeled data by
labeling the plurality of raw images as being asso-
ciated with the associated raw text;

embed the labeled data into a known vector; and

train the CLIP machine learning model using the
remaining portion as input and the known vector as
a known result.

#* #* #* #* #*

