
US 20210406022A1 
MO MUT IN 

( 19 ) United States 
( 12 ) Patent Application Publication ( 10 ) Pub . No .: US 2021/0406022 A1 . 

KAKAIYA et al . ( 43 ) Pub . Date : Dec. 30 , 2021 9 

( 54 ) SYSTEM , APPARATUS AND METHOD FOR 
FINE - GRAIN ADDRESS SPACE SELECTION 
IN A PROCESSOR 

( 52 ) U.S. CI . 
CPC G06F 9/34 ( 2013.01 ) ; G06F 9/30098 

( 2013.01 ) 

( 71 ) Applicant : Intel Corporation , Santa Clara , CA 
( US ) ( 57 ) ABSTRACT 

( 72 ) Inventors : UTKARSH Y. KAKAIYA , Folsom , 
CA ( US ) ; RAJESH SANKARAN , 
Portland , OR ( US ) ; GILBERT 
NEIGER , Portland , OR ( US ) ; PHILIP 
LANTZ , Cornelius , OR ( US ) ; SANJAY 
K. KUMAR , Hillsboro , OR ( US ) 

a ( 21 ) Appl . No .: 16 / 911,441 

In one embodiment , a processor comprises : a first configu 
ration register to store a pointer to a process address space 
identifier ( PASID ) table ; and an execution circuit coupled to 
the first configuration register . The execution circuit , in 
response to a first instruction , is to obtain command data 
from a first location identified in a source operand of the first 
instruction , obtain a PASID table handle from the command 
data , access a first entry of the PASID table using the pointer 
from the first configuration register and the PASID table 
handle to obtain a PASID value , insert the PASID value into 
the command data , and send the command data to a device 
coupled to the processor . Other embodiments are described 
and claimed . 

a 

( 22 ) Filed : Jun . 25 , 2020 
Publication Classification 

( 51 ) Int . Ci . 
GO6F 9/34 
G06F 9/30 

( 2006.01 ) 
( 2006.01 ) 

10 Address 
Space NIC 

120 Process 
110 

Thread 1 
1121 

Thread 2 
112 , 

10 Address 
Space QAT 

130 

Process Address 
Space 
140 



100 

10 Address Space NIC 120 

Process 110 

Patent Application Publication 

Thread 1 1121 

Thread 2 112 

10 Address Space QAT 130 

Dec. 30 , 2021 Sheet 1 of 14 

Process Address Space 140 

US 2021/0406022 A1 

FIG . 1 



200 

VMO 2300 Guest OS 

VMn 230n 

SoC 210 

VMCS 268 

Patent Application Publication 

Guest OS 

232 

232 

App 234 

App 234 

DMA Remapping Structure 266 

PASID Translation Structure 

Guest Driver 

Guest Driver 

236 

236 

Memory Controller 245 

PASID Table 264 

VMM 240 
Execution Circuit 

215n 

Core 2150 

Address Spaces 262 System Memory 260 

Dec. 30 , 2021 Sheet 2 of 14 

MSRS 

218 

10 MMU 220 

2540 

Front End Circuit 252 

10 Device 250 

Function Engine 254 , 

Enqueue Registers 

US 2021/0406022 A1 

255 

FIG . 2 



300 
511 

32 

30 

20 19 

Patent Application Publication 

Device Specific Command 

PRIV 334 

Reserved 336 

PTH 338 

PASID Table 320 

322 

V 

Rsyd 325 

PASID 326 

Dec. 30 , 2021 Sheet 3 of 14 

324 

RsVd 312 

PASID Table Pointer 314 

Rsyd 316 

US 2021/0406022 A1 

318 

PASIDX MSR 310 

FIG . 3A 



32 

30 

20 19 

Device Specific Command 332 

PRIV 334 

Reserved 336 

Patent Application Publication 

PASID Table 320 
Rsvo 325 

PASID 326 

322 

324 

Dec. 30 , 2021 Sheet 4 of 14 

341 
Rsyd 342 

PASID Table Pointer 344 

Rsvd 346 

A 

348 

PASID MSR 340 

M 

Rysd 342 

Rosa 346 

PASID 349 

A 

348 

US 2021/0406022 A1 

341 

PASID MSR 340 ' 

FIG . 3B 



340n " 

Patent Application Publication 

3400 

Rsyd 343 

Rsyd 

PASID 319 

315 

317 PASID MSRS FIG . 3C 

Dec. 30 , 2021 Sheet 5 of 14 

A 

Rvsd 354 

356 

352 

PASID TID MSR 350 

US 2021/0406022 A1 

FIG . 3D 



Patent Application Publication Dec. 30 , 2021 Sheet 6 of 14 US 2021/0406022 A1 

400 
Start 

Receive Enqueue Command Instruction In Execution Circuit 
410 

Read Command Data From Location Of Source Operand 
420 

Obtain PASID Table Handle From Command Data 
430 

Obtain PASID Table Pointer From Model Specific Register 

Valid indicator 
In Model 

Specific Register 
Set ? 

450 

Y 

Access PASID Table 
Using PASID Table Pointer 

460 

Index Into PASID Table Using PASID 
Table Handle To Obtain PASID OF 

Indexed Entry 465 
Raise 

Exception 
458 

Valid Indicator of 
Indexed Entry 

Set ? 470 

Y 

Format Command Data To include PASID 
480 

Write Command Data To Location in Device Of Destination Operand 
490 

FIG . 4 



Patent Application Publication Dec. 30 , 2021 Sheet 7 of 14 US 2021/0406022 A1 

500 

Start 

Receive Enqueue Command Instruction in Execution Circuit 
510 

Read Command Data From Location of Source Operand 
520 

Obtain PASID Table Handle From Command Data 
530 

is 
PASID Table Handle 

Associated With One Of A 
Plurality of Model Specific 

Registers ? 
540 

Y 

Obtain PASID From Model Specific Register 
Associated With PASID Table Handle 

560 

Format Command Data To Include PASID 
570 

Raise 
Exception Write Command Data To Location in Device 

Of Destination Operand 
550 580 

FIG . 5 



Patent Application Publication Dec. 30 , 2021 Sheet 8 of 14 US 2021/0406022 A1 

600 

Start 

Receive Enqueue Command Instruction In Execution Circuit 
610 

Read Command Data From Location Of Source Operand 
620 

Obtain PASD Table Pointer From 
First Model Specific Register 

630 

Obtain Thread ID From Second Model Specific Register 

Access PASD Table 
Using PASID Table Pointer 

650 

Index Into PASID Table Using Thread 
ID TO Obtain PASID Of Indexed Entry 

660 
Raise 

Exception 
675 

N 
is 

Valid Indicator of 
Indexed Entry 

Set ? 670 

Y 

Format Command Data To Include PASID 
680 

Write Command Data To Location in Device Of Destination Operand 
690 

FIG . 6 



Patent Application Publication 

PIPELINE 700 

| 

FETCH 702 

REGISTER 

LENGTH 

DECODE ALLOC . IRENAMING SCHEDULE READI 

DECODING 

706 708 710 

712 MEMORY READ 

704 

714 

EXECUTE STAGE 716 

WRITE BACKI 
EXCEPTIONI 

MEMORY 

COMMIT 
HANDLING 

WRITE 

724 

722 

| 

718 

Dec. 30 , 2021 Sheet 9 of 14 

FIG . 7A 

US 2021/0406022 A1 



INSTRUCTION CACHE UNIT 734 

BRANCH PREDICTION UNIT 732 

INSTRUCTION TLB UNIT 736 

CORE 790 

INSTRUCTION FETCH 738 

Patent Application Publication 

FRONT END UNIT 730 

DECODE UNIT 740 

EXECUTION ENGINE UNIT 750 

RENAME / ALLOCATOR UNIT 752 1 

- 

RETIREMENT UNIT 754 

I 1 

SCHEDULER UNIT ( S ) 756 

- 

PHYSICAL REGISTER FILES UNIT ( S ) 758 

Dec. 30 , 2021 Sheet 10 of 14 

- 
| 

- 

EXECUTION UNIT ( S ) 762 

MEMORY ACCESS UNIT ( S ) 764 

EXECUTION CLUSTER ( S ) 760 

DATA TLB UNIT 772 

MEMORY UNIT 770 

DATA CACHE UNIT 774 

L2 CACHE UNIT 776 

US 2021/0406022 A1 

FIG . 7B 



Patent Application Publication 

PROCESSOR 800 

CORE 802N 

SYSTEM AGENT UNIT 810 

i SPECIAL PURPOSE 
LOGIC 808 

CORE 802A 
CACHE UNIT ( S ) 804A 

CACHE UNIT ( S ) 804N 

| 

BUS CONTROLLER UNIT ( S ) 816 

T 

SHARED CACHE UNIT ( S ) 806 

INTEGRATED MEMORY ! CONTROLLER UNIT ( S ) 
814 

RING 812 

Dec. 30 , 2021 Sheet 11 of 14 

1 

FIG . 8 

US 2021/0406022 A1 



900 

PROCESSOR 

PROCESSORI COPROCESSOR 

MEMORY 932 

MEMORY 934 

Patent Application Publication 

IMC 

IMC 

982 

972 

950 

978 

976 

988 

986 

970 

P - P 

P - P 

P - P 

P - P 

980 954 

952 994 

939 

P - P 

CHIPSET 990 

P - P 

998 

| COPROCESSOR 
938 

VF 

992 

I / F 

996 

Dec. 30 , 2021 Sheet 12 of 14 

916 

BUS BRIDGE 918 

I / O DEVICES 
914 

AUDIO I / O 
924 

PROCESSOR 915 
920 

DATA STORAGE 

KEYBOARD / MOUSE 

922 

COMM DEVICES 

927 

CODE AND DATA 

US 2021/0406022 A1 

930 

928 

FIG . 9 



SYSTEM ON A CHIP 1000 

Patent Application Publication 

APPLICATION PROCESSOR 1010 

SYSTEM AGENT UNIT 1010 

CORE 1002A 
CACHE UNIT ( S ) 1004A 

CORE 1002N 1 CACHE UNIT ( S ) 
! 

1004N 

SHARED CACHE UNIT ( S ) 1006 

Dec. 30 , 2021 Sheet 13 of 14 

COPROCESSOR ( S ) 1020 

INTERCONNECT UNIT ( S ) 1002 

BUS CONTROLLER UNIT ( S ) 1016 

INTEGRATED MEMORY CONTROLLER UNIT ( S ) 1014 

SRAM UNT 1030 

OMA UNIT 1032 

DISPLAY UNIT 1040 

FIG . 10 

US 2021/0406022 A1 



PROCESSOR WITHOUT AN X86 INSTRUCTION SET CORE 1114 

PROCESSOR WITH AT LEAST ONE X86 INSTRUCTION SET CORE 1111 

Patent Application Publication 

HARDWARE SOFTWARE 

ALTERNATIVE INSTRUCTION SET BINARY CODE 1110 

INSTRUCTION CONVERTER 1112 

X86 BINARY CODE 1106 

Dec. 30 , 2021 Sheet 14 of 14 

ALTERNATIVE INSTRUCTION SET COMPILER 1108 

X86 COMPILER 1104 

HIGH LEVEL LANGUAGE 1102 

FIG . 11 

US 2021/0406022 A1 



US 2021/0406022 A1 Dec. 30 , 2021 
1 

SYSTEM , APPARATUS AND METHOD FOR 
FINE - GRAIN ADDRESS SPACE SELECTION 

IN A PROCESSOR 

TECHNICAL FIELD 

[ 0001 ] Embodiments relate to execution of instructions in 
processors . 

BACKGROUND 

[ 0002 ] In computing systems , system software allocates a 
unique process address space identifier ( PASID ) for each 
process , to allow for ready identification . While this may 
work well when accessing one address space , when a given 
process or other entity seeks access to different address 
spaces associated with different PASIDs , there can be inef 
ficiencies . This is so , as certain context switches may occur , 
and permissions are checked . One such instruction that uses 
PASIDs is an enqueue command instruction that allows 
software to write commands to enqueue registers , which are 
special device registers accessed using memory - mapped I / O 
( MMIO ) . Execution of this instruction may suffer from the 
above considerations . 

BRIEF DESCRIPTION OF THE DRAWINGS 

a 

[ 0003 ] FIG . 1 is a block diagram of a process interaction a 
with multiple address spaces in accordance with an embodi 
ment . 
[ 0004 ] FIG . 2 is a block diagram of a system in accordance 
with an embodiment . 
[ 0005 ] FIG . 3A is a block diagram of a portion of a 
processor in accordance with an embodiment . 
[ 0006 ] FIG . 3B is a block diagram of a portion of a 
processor in accordance with another embodiment 
[ 0007 ] FIG . 3C is a block diagram of model specific 
registers in accordance with an embodiment . 
[ 0008 ] FIG . 3D is a block diagram of a model specific 
register in accordance with another embodiment . 
[ 0009 ] FIG . 4 is a flow diagram of a method in accordance 
with one embodiment . 
[ 0010 ] FIG . 5 is a flow diagram of a method in accordance 
with another embodiment . 
[ 0011 ] FIG . 6 is a flow diagram of a method in accordance 
with yet another embodiment . 
[ 0012 ] FIGS . 7A and 7B illustrate a block diagram of a 
more specific exemplary in - order core architecture . 
[ 0013 ] FIG . 8 is a block diagram of a processor that may 
have more than one core , may have an integrated memory 
controller , and may have integrated graphics according to 
embodiments of the invention . 
[ 0014 ] FIG . 9 is a block diagram of a first more specific 
exemplary system in accordance with an embodiment of the 
present invention 
[ 0015 ] FIG . 10 is a block diagram of a SoC in accordance 
with an embodiment of the present invention . 
[ 0016 ] FIG . 11 is a block diagram contrasting the use of a 
software instruction converter to convert binary instructions 
in a source instruction set to binary instructions in a target 
instruction set according to embodiments of the invention . 

one or more processors of the system . Such requests may be 
issued to one or more devices via a common or shared 
hardware interface . As examples , the software clients may 
include drivers , applications , containers , or virtual machines 
( VMs ) that may share the same hardware interface . In this 
model , a process space address identifier ( PASID ) is used to 
identify an address space associated when a given work 
request . For enabling direct ring - 3 submission , system soft 
ware may allocate a unique PASID for each process , which 
may be stored in a configuration register such as a given 
model specific register ( MSR ) , e.g. , a PASID MSR . 
[ 0018 ] This programming enables a given software client 
to issue requests , including work requests that may include 
an enqueue command instruction , details of which are 
described herein , to write command data to a destination 
location within the device . To enable the software client to 
access shared virtual memory of multiple address spaces 
associated with different PASIDs , embodiments provide 
processor - internal hardware structures , user - level instruc 
tions of an instruction set architecture , and techniques to 
enable more efficient issuance of work requests including 
register writes to particular device registers as described 
herein . 
[ 0019 ] When a client is interacting with multiple non 
SVM capable devices , it uses a different PASID for each 
device , signifying an input / output ( 1/0 ) virtual address space 
associated with the device . Furthermore , if the application is 
interacting with a mixture of SVM and non - SVM capable 
devices , different PASIDs are used to identify I / O vs. 
process address space . Embodiments enable such usage . In 
addition , for situations where there is not a SVM , e.g. , a 
network interface controller ( NIC ) , non - volatile memory 
express ( NVMe ) or so forth , or where a cloud services 
provider does not enable SVM , embodiments enable use of 
enqueue command instructions described herein by non 
privileged clients using sub - process address spaces . 
[ 0020 ] Referring now to FIG . 1 , shown is a block diagram 
of a process interaction with multiple address spaces in 
accordance with an embodiment . As shown in FIG . 1 , within 
a computing system 100 , a process 110 is in execution . In 
embodiments herein , assume that process 110 is a non 
privileged client software such as application , driver , VM or 
so forth . As illustrated , process 110 itself includes multiple 
threads , namely a first thread 112 , and a second thread 1122 . 
Process 110 interacts with a NIC 120 using PASID X , and 
interacts with an Intel® Quick Assist Technology ( QAT ) 
device 130 using PASID Y. And as further illustrated , 
process 110 ( and its included threads 112 ) also may seek to 
access an SVM - capable Data Streaming Accelerator ) ( DSA ) 
device 140 with PASID Z. 
[ 0021 ] With embodiments herein , enqueue command 
based instructions and hardware structures may be used to 
enable efficient access to multiple address spaces , leveraging 
PASID information of the different address spaces . If thread 
112 , is receiving a packet from NIC 120 , and copying it 
using DSA device 140 , without an embodiment an MSR 
switch of the PASID from X to Z would occur . Since a 
PASID MSR is only controlled / managed by the operating 
system ( OS ) , such operation becomes difficult . 
[ 0022 ] Instead with embodiments , more ready access to 
different address spaces with different PASIDs may occur 
without switching a PASID stored in a PASID MSR . To this 
end , a PASID handle may be used to address these limita 
tions and enable the use cases stated above . 

a 

a 

DETAILED DESCRIPTION 

[ 0017 ] In various embodiments , a processor - based system 
may enable multiple non - privileged software clients to issue 
work requests to shared work queues in devices coupled to 



US 2021/0406022 A1 Dec. 30 , 2021 
2 

one or more address spaces . With embodiments herein 
PASID information may be used in connection with these 
I / O write requests , such that a request ( e.g. , from a given 
application 234 ) of a first address space may write informa 
tion to another address space . And with multiple such write 
requests , this first address space may issue write requests to 
multiple address spaces . 
[ 0029 ] To enable interaction with system memory 260 , a 
memory controller 245 is provided . In the high level view 
shown in FIG . 2 , various components of system memory 
260 relevant herein are shown . As seen , system memory 260 
may include a plurality of address spaces 262. Each address 
space 262 may be associated with a given process or 
sub - process such as a thread , I / O device or so forth . As will 
be described herein , to enable a request associated with one 
address space to access another address space , information 
in a PASID table 264 may be used . Still further , to provide 
address translations , e.g. , between virtual addresses , physi 
cal addresses , guest virtual addresses and host physical 
addresses , one or more PASID translation structures 265 and 
one or more DMA remapping structures 266 also may be 
present . In addition , each virtualization environment 230 
may be associated with a corresponding virtual machine 
control structure ( VMCS ) 268 , also present in system 
memory 260 . 

[ 0023 ] Embodiments further may be used for software compartmentalization ( e.g. , serverless web - assembly , light 
weight virtualization ) , where a process may have multiple 
address spaces and potentially different page tables for each 
compartment ) that are mapping different set / amount of 
memory . Embodiments may provide an additional level of 
indirection ( e.g. , Thread - ASID , PASID Handle , IO - ASID ) 
to identify sub - process address spaces . 
[ 0024 ] Referring now to FIG . 2 , shown is a block diagram 
of a system in accordance with an embodiment . As shown in 
FIG . 2 , system 200 may be any type of computing system , 
ranging from small portable devices to client - based systems 
or server - based systems . In the high level shown , a system 
on chip ( SoC ) 210 or other such processor couples to a 
system memory 260 and an I / O device 250. While shown 
with only these few components for ease of discussion , 
understand that a given computing system may include 
many more components . Further , while a single I / O device 
250 is shown , understand that in embodiments there may be 
multiple I / O devices coupled to SoC 210. In addition , many 
systems , particularly server - based systems , may include 
multiple SoC's and system memory . 
[ 0025 ] First with reference to SoC 210 , shown are a 
plurality of cores 2150-215m . In different embodiments , 
cores 215 may be homogeneous or heterogeneous cores , 
e.g. , having different capabilities with regard to power 
consumption , instruction set capabilities and so forth . In the 
high level shown in FIG . 2 , each core 215 may include at 
least one execution circuit 216 , which may receive and 
execute instructions . In addition , each core 215 may include 
a plurality of MSRs 218. In embodiments herein , one or 
more MSRs , which may be implemented as configuration 
registers , may be configured to store PASID information for 
use in execution of particular instructions of an instruction 
set architecture as described herein . 
[ 0026 ] To enable communication of requests from I / O 
device 250 to memory controller 245 , an I / O memory 
management unit ( IOMMU ) 220 may be provided . In 
embodiments herein , IOMMU 220 may be configured to 
translate an incoming virtual address using DMA remapping 
structures , e.g. , of a virtual address to a corresponding 
physical address . 
[ 0027 ] In the embodiment of FIG . 2 , SoC 210 is shown to 
include support for virtualization . Specifically , SoC 210 may 
be virtualized under control of a virtual machine monitor 
( VMM ) 240 or other virtualization orchestration layer such 
as a hypervisor or so forth . As is known , VMM 240 may 
instantiate one or more virtual environments . In the embodi 
ment shown in FIG . 2 , VMM 240 may instantiate a plurality 
of virtual environments or guests 230 , -230n . Each virtual 
ization environment 230 may be implemented as a virtual 
machine that includes a guest OS 232 on which one or more 
applications 234 may execute . In addition , a guest driver 236 
may be provided . 
[ 0028 ] In embodiments herein , virtualization environ 
ments 230 may issue requests including I / O write requests to 

[ 0030 ] Still referring to FIG . 2 , I / O device 250 includes a 
front end circuit 252 that is configured to receive incoming 
requests from SoC 210. Such requests may include write 
requests , e.g. , implemented as enqueue command instruc 
tions as described herein . In response to such requests , front 
end circuit 252 may access one of multiple enqueue registers 
255. According to a write request , command data received 
may be written to a given one of a plurality of enqueue 
registers 255 according to a destination operand of an 
enqueue command instruction . In turn , the requests may be 
sent to one of a plurality of function engines 2540 - n within 
I / O device 250 for execution . Understand while shown at 
this high level in the embodiment of FIG . 2 , many variations 
and alternatives are possible . 
[ 0031 ] In an embodiment , multiple flavors of user - level 
ENQCMD instructions may be provided to allow non 
privileged software to write commands to enqueue registers 
located in devices coupled to a processor such as peripheral 
component interconnect express ( PCIe ) devices , single root 
I / O virtualization ( SR - IOV ) devices or scalable I / O virtual 
ization devices . These enqueue device registers may be 
accessed using memory - mapped I / O ( MMIO ) . The 
ENQCMD instruction begins by reading 64 bytes of com 
mand data from its source memory operand . The instruction 
then formats those 64 bytes into command data with a 
format consistent with Table 1 . 
[ 0032 ] Referring now to Table 1 , shown is an example 
arrangement of information stored in an enqueue register in 
accordance with an embodiment . As shown in Table 1 , an 
enqueue register may be 512 - bits and may include com 
mand , privilege , reserved and PASID fields to store infor 
mation shown in Table 1 . 

' 



US 2021/0406022 A1 Dec. 30 , 2021 
3 

Table 1 

20 19 0 

DEVICE SPECIFIC COMMAND PRIV RESERVED PASID 



US 2021/0406022 A1 Dec. 30 , 2021 
4 

a 

a 

a 

a 

[ 0033 ] As shown in Table 1 , the stored information 
includes : Command [ 19 : 0 ] is a PASID . 
[ 0034 ] Command [ 30:20 ] are zero . 
[ 0035 ] Command [ 31 ] is 0 ( indicating user ) . 
[ 0036 ] Command [ 511 : 32 ] is command data obtained from 
a memory read . 
[ 0037 ] To enable access to multiple address space more 
efficiently , embodiments provide additional hardware struc 
tures and instructions . To this end , in one embodiment a 
given MSR may store an address of a PASID table . In one 
embodiment , this address is a physical address , and in other 
embodiments this address is a virtual address . This PASID 
table that is referenced by this MSR stores PASID values 
associated with different handles . In turn , a handle may be 
obtained from command data obtained in response to an 
enqueue command instruction . 
[ 0038 ] In general , in response to a given enqueue com 
mand instruction ( e.g. , ENQCMDX r32 / 64 , m512 or 
ENQCMD r32 / 64 , m512 ) , the following operations may 
proceed : 

[ 0039 ] Read 64 bytes of command data from a source memory operand 
[ 0040 ] Extract a PASID_TABLE_HANDLE ( PTH ) 
from the command data , 

[ 0041 ] Acquire a PASID table address from a PASIDX 
MSR , 

[ 0042 ] Index the PASID table using PTH extracted from 
the command data , and acquire the PASID value , and 

[ 0043 ] Populate this acquired PASID value in the com 
mand data ( Command [ 19 : 0 ] ) . 

[ 0044 ] In certain situations , a fault may result from execu 
tion of such instruction . For example , an instruction may 
return a general - protection exception when a “ V ” ( Valid ) bit 
is 0x0 in an MSR , or a “ V ” ( Valid ) bit in the PASID table 
entry selected based on PTH is 0x0 . In an embodiment 
where the address stored in the MSR is a virtual address , 
there could be an additional fault condition associated with 
the PASID table or the page - tables pointing to the PASID 
table not being present in the physical first memory , result 
ing into a #PF ( page - fault ) exception . 
[ 0045 ] In some embodiments , a hierarchical structure 
( e.g. , PASID directory to PASID table ) is referenced by the 
MSR , and this multi - level structure is indexed / looked - up 
with the use of PTH to acquire the PASID information . And 
in some embodiments , note that when running in a virtual 
ized environment , a PASID value may be translated / con 
verted from a guest PASID value to a host PASID value , e.g. , 
using a PASID translation structure , before command data is 
sent to a destination . 
[ 0046 ] Referring now to FIG . 3A , shown is a block 
diagram of a portion of a processor in accordance with an 
embodiment . As shown in FIG . 3A , a processor 300 may 
include various hardware structures to enable execution of a 
first user - level instruction of an ISA to perform enqueue 
register writes . As illustrated in FIG . 3A , processor 300 
includes a first MSR 310 , referred to herein as a PASIDX 
MSR . As shown , first MSR 310 includes a plurality of fields , 
each to store various information . As shown , a PASID table 
pointer may be stored in a PASID table pointer field 314 and 
a valid indicator may be stored in a valid field 318. As 
further shown , first MSR 310 may also include reserved 
fields 312 , 316 . 
[ 0047 ] As discussed above , the PASID table pointer stored 
in PASID table pointer field 314 may be used to identify an 

address , e.g. , in a system memory of a PASID table 320 . 
Note that in various embodiments , at least a portion of a 
PASID table may be stored within a processor , e.g. , in a 
cache memory . The PASID table pointer may point to a base 
address of PASID table 320. As illustrated , PASID table 320 
may include a plurality of entries 322 , each of which is to 
store various information . In the embodiment shown , each 
entry 322 includes a valid field 324 to store a valid indicator 
and a PASID field 326 store a PASID value . As further 
shown , each entry 322 also may include a reserved field 325 . 
[ 0048 ] To index into PASID table 320 , a PASID table 
handle may be used to identify a given entry . Thus as further 
illustrated in FIG . 3A , a command data 330 , e.g. , obtained 
from a system memory location identified by the source 
operand of the first user - level instruction , may include this 
PASID table handle in a PASID table handle field 338. As 
further illustrated , command data 330 also may include 
device specific command information stored in a command 
field 332 , a privilege indicator stored in a privilege field 334 , 
and a reserved field 336 . 
[ 0049 ] Thus in the embodiment shown in FIG . 3A , in 
response to this first user - level instruction , a PASID table 
pointer may be obtained from first MSR 310 to access 
PASID table 320 and in turn a given entry may be accessed 
via indexing using a PASID table handle received within 
command data 330. Other implementations of course are 
possible . 
[ 0050 ] For example , in another embodiment a second 
user - level instruction of an ISA may be used to access a 
PASID table . In this embodiment , a PASID MSR , which is 
conventionally configured to store a PASID value , may be 
re - purposed to store a PASID table pointer . Referring now to 
FIG . 3B , shown is a block diagram of a portion of a 
processor in accordance with another embodiment . As 
shown in FIG . 3B , a processor 300 ' may be similarly 
configured as processor 300 of FIG . 3A , including a PASID 
table 320 include various hardware structures to enable 
execution of a first user - level instruction of an ISA to 
perform enqueue register writes . As illustrated in FIG . 3B , 
processor 300 ' includes a second MSR 340 , namely a PASID 
MSR . As shown , PASID MSR 340 includes a plurality of 
fields , each to store various information . As shown , a PASID 
table pointer may be stored in a PASID table pointer field 
344 and a valid indicator may be stored in a valid field 348 . 
As further shown , PASID MSR 340 may also include 
reserved fields 342 , 346. In addition , PASID MSR 340 
includes a multiple address space field 341 to store a 
multiple address ( MA ) spaces indicator . The MA spaces 
indicator may be configured by an OS based on whether 
address space selection is allowed for the process or not . 
When the MA bit is 0x0 ( as in PASID MSR 340 ' ) , the MSR 
follows a legacy layout / format that has reserved fields , 342 , 
346 , valid field 348 , and a PASID field 349. When the MA 
bit is 0x0 , an application is not allowed to specify a PTH in 
the command data PTH field ( i.e. , it must be 0x0 ) . To this 
end , a fault condition may cause the instruction to return a 
#GP exception when a non - zero PTH value is provided 
when the MA bit is Ox0 . When the MA bit is Ox1 , PASID 
MSR 340 has a layout as shown in FIG . 3B , and allows 
selection of a PASID from the PASID table based on the 
PTH provided in the command data . 
[ 0051 ] In yet another embodiment , instead of obtaining 
PASID information from the PASID table , PASID values 
may be obtained directly from MSR's . To this end , another 

a 

a 

a 

a 

a 



US 2021/0406022 A1 Dec. 30 , 2021 
5 

a 

a 

a 

user - level instruction may cause an execution circuit to 
obtain a PASID value from one of a plurality of PASID 
MSR's . Referring now to FIG . 3C , shown is a block diagram 
of a plurality of PASID MSR's in accordance with an 
embodiment . As shown in FIG . 3C , a plurality of PASID 
MSR's 340 " may be provided . A given one of MSR's 340 " 
may be selected to obtain a valid indicator from valid field 
315 and corresponding PASID value from PASID field 319 
using a PASID table handle . 
[ 0052 ] Each of MSRs 340 " are provided to store a PASID 
value associated with a different handle , and a corresponding a 
MSR is looked - up to determine a PASID value associated 
with the PTH . For example , for a PTH value of n , the nth 
MSR is accessed to determine the PASID value to populate 
in command store data . The instruction may return a #GP 
exception when the PTH value is out - of - bounds ( i.e. , not 
associated MSR with the PTH value provided ) . 
[ 0053 ] In yet another embodiment , another MSR may 
store a thread ID . This MSR may be called a PASID TID 
MSR . On the submission of an ENQCMD instruction , the 
thread ID is picked up from this MSR and used as a handle 
( PTH ) to index the PASID table . In yet another embodiment , 
a thread ID picked up from this MSR is concatenated with 
an original PTH field of command data to create a final 
handle ( a final PTH ) to index the PASID table . In this way , 
different threads of the same process can use different 
address spaces . Referring now to FIG . 3D , shown is a block 
diagram of a PASID thread identifier MSR 350. As shown in 
FIG . 3D , thread identifier MSR 250 include a plurality of 
fields , including a valid field 252 , a reserved field 254 and 
a thread identifier field 256. Understand while FIGS . 3A - 3D 
show particular hardware structures for use in execution of 
various enqueue command instructions , many more hard 
ware components may be involved in such instruction 
execution . 
[ 0054 ] Referring now to FIG . 4 , shown is a flow diagram 
of a method in accordance with one embodiment . As shown 
in FIG . 4 , method 400 is a method for executing a first 
enqueue command instruction . Method 400 may be per 
formed by an execution circuit of a processor , after fetch by 
an instruction fetch circuit and decode in an instruction 
decode circuit . As such , method 400 may be performed by 
hardware circuitry , firmware , microcode , a combination 
thereof or the like . As illustrated , method 400 begins by 
receiving an enqueue command instruction in the execution 
circuit ( block 410 ) . Assume that this enqueue command 
instruction is : ENQCMD r32 / 64 , m512 or ENQCMDX 
r32 / 64 , m512 . Here , m512 is to identify a source operand 
and r32 / 64 identifies a destination operand , which may be 
present in a device , e.g. , an enqueue register ( and the “ X ” 
identifies access to a PASIDX MSR ) . Next in response to 
this instruction the execution circuit may read command 
data , which it obtains from a location identified by a source 
operand of the instruction ( block 420 ) . Although embodi 
ments are not limited in this regard , in one example this 
location may be present in an address space of an issuer of 
the instruction , e.g. , an address space of a process that issued 
the instruction 
[ 0055 ] Still with reference to FIG . 4 next at block 430 a 
PASID table handle may be obtained from the command 
data . As discussed above , in one implementation least sig 
nificant bits of the command data may include this PASID 
table handle . Also in response to this first enqueue command 
instruction , a PASID table pointer may be obtained from a 

MSR ( block 440 ) . In this implementation , this MSR may be 
a PASIDX MSR or a PASID MSR configured for MA 
operation . 
[ 0056 ] Then it may be determined at diamond 450 whether 
a valid indicator in this MSR is set . If not , no further analysis 
occurs , and instead an exception such as a general protection 
exception may be raised ( block 458 ) . Otherwise when it is 
determined that the valid indicator is set , next at block 460 
the PASID table may be accessed using the PASID table 
pointer , which may be used to identify a base address of this 
table . In turn , at block 465 the PASID table handle may be 
used to index into the PASID table to identify an indexed 
entry from which a PASID value may be obtained . Next at 
diamond 470 it is determined whether a valid indicator in 
this entry is set . If not , no further analysis occurs and an 
exception is raised ( block 458 ) . 
[ 0057 ] Otherwise when it is determined that the valid 
indicator is set , the execution circuit may format the com 
mand data to include this PASID value ( block 480 ) . For 
example , the execution circuit may insert this PASID value 
into the least significant bits of the command data ( thus 
overriding the PASID table handle , as it is no longer 
needed ) . Finally , at block 490 this command data may be 
written to a location in a device such as an I / O device . More 
specifically , in response to the instruction the execution 
circuit may cause this command data to be written into a 
particular location in the I / O device identified by a destina 
tion operand of the instruction . In particular embodiments 
herein this location may be a given enqueue register of the 
device . Understand that to effect this write , the execution 
circuit may send the command data through a processor 
hierarchy , including an MMU . Understand while shown at 
this high level in the embodiment of FIG . 4 , many variations 
and alternatives are possible . 
[ 0058 ] Referring now to FIG . 5 , shown is a flow diagram 
of a method in accordance with another embodiment . As 
shown in FIG . 5 , method 500 is a method for executing an 
enqueue command instruction that accesses PASID infor 
mation from one of multiple MSRs . As such , method 500 
may be performed by an execution circuit of a processor , 
and / or other hardware circuitry , firmware , microcode , a 
combination thereof or the like . As illustrated , method 500 
begins by receiving an enqueue command instruction in the 
execution circuit ( block 510 ) . In response to this instruction 
the execution circuit may read command data , which it 
obtains from a location identified by a source operand of the 
instruction ( block 520 ) . Then at block 530 a PASID table 
handle may be obtained from the command data . 
[ 0059 ] Still referring to FIG . 5 , next it may be determined 
whether one of the multiple MSR's is associated with the 
obtained PASID table handle . If so at block 560 , a PASID 
value from this accessed MSR associated with the PASID 
table handle may be obtained . Note that prior to obtaining 
this PASID value , it may first be determined whether a valid 
indicator of the MSR is set . At block 570 the execution 
circuit may format the command data to include this PASID 
value . Finally , at block 580 this command data may be 
written to a location in a device such as a given enqueue 
register identified by a destination operand of the instruc 
tion . Understand while shown at this high level in the 
embodiment of FIG . 5 , many variations and alternatives are 
possible . 
[ 0060 ] Referring now to FIG . 6 , shown is a flow diagram 
of a method in accordance with yet another embodiment . As 

a 

a 

a 

a 



US 2021/0406022 A1 Dec. 30 , 2021 
6 

a 

a 

a 

shown in FIG . 6 , method 600 is a method for executing an 
enqueue command instruction that accesses PASID infor 
mation using sub - process information , namely thread infor 
mation of a given thread of an application . As such , method 
600 may be performed by an execution circuit of a proces 
sor , and / or other hardware circuitry , firmware , microcode , a 
combination thereof or the like . As illustrated , method 600 
begins by receiving an enqueue command instruction in the 
execution circuit ( block 610 ) . Next in response to this 
instruction the execution circuit may read command data , 
which it obtains from a location identified by a source 
operand of the instruction ( block 620 ) . Then at block 630 a 
PASID table pointer may be obtained from a first MSR ( e.g. , 
a PASIDX MSR ) , assuming a valid indicator of the first 
MSR is set . 

[ 0061 ] Still referring to FIG . 6 , next at block 640 a thread 
identifier may be obtained from another MSR ( e.g. , a thread 
ID MSR ) , assuming a valid indicator of this MSR is set . At 
block 650 the PASID table may be accessed using the 
PASID table pointer , which may be used to identify a base 
address of this table . In turn , at block 660 the thread 
identifier may be used to index into the PASID table to 
identify an indexed entry from which a PASID value a may be 
obtained . Next at diamond 670 it is determined whether a 
valid indicator in this entry is set . If not , no further analysis 
occurs and an exception is raised ( block 675 ) . Otherwise at 
block 680 the execution circuit may format the command 
data to include this PASID value . Finally , at block 690 this 
command data may be written to a location in a device such 
as a given enqueue register identified by a destination 
operand of the instruction . Understand while shown at this 
high level in the embodiment of FIG . 6 , many variations and 
alternatives are possible . 
[ 0062 ] As described above , MSRs and other structures to 
implement PASID - based requests may be integrated within 
a processor or other SoC . Such processor may include 
processor cores that may be implemented in different ways , 
for different purposes , and in different processors . For 
instance , implementations of such cores may include : 1 ) a 
general purpose in - order core intended for general - purpose 
computing ; 2 ) a high performance general purpose out - of 
order core intended for general - purpose computing ; 3 ) a 
special purpose core intended primarily for graphics and / or 
scientific ( throughput ) computing . Implementations of dif 
ferent processors may include : 1 ) a CPU including one or 
more general purpose in - order cores intended for general 
purpose computing and / or one or more general purpose 
out - of - order cores intended for general - purpose computing ; 
and 2 ) a coprocessor including one or more special purpose 
cores intended primarily for graphics and / or scientific 
( throughput ) . Such different processors lead to different 
computer system architectures , which may include : 1 ) the 
coprocessor on a separate chip from the CPU ; 2 ) the 
coprocessor on a separate die in the same package as a CPU ; 
3 ) the coprocessor on the same die as a CPU ( in which case , 
such a coprocessor is sometimes referred to as special 
purpose logic , such as integrated graphics and / or scientific 
( throughput ) logic , or as special purpose cores ) ; and 4 ) a 
system on a chip that may include on the same die the 
described CPU ( sometimes referred to as the application 
core ( s ) or application processor ( s ) ) , the above described 
coprocessor , and additional functionality . Exemplary core 
architectures are described next , followed by descriptions of 
exemplary processors and computer architectures . 

[ 0063 ] FIG . 7A is a block diagram illustrating both an 
exemplary in - order pipeline and an exemplary register 
renaming , out - of - order issue / execution pipeline according 
to embodiments of the invention . FIG . 7B is a block diagram 
illustrating both an exemplary embodiment of an in - order 
architecture core and an exemplary register renaming , out 
of - order issue / execution architecture core to be included in 
a processor according to embodiments of the invention . The 
solid lined boxes in FIGS . 7A and 7B illustrate the in - order 
pipeline and in - order core , while the optional addition of the 
dashed lined boxes illustrates the register renaming , out - of 
order issue / execution pipeline and core . Given that the 
in - order aspect is a subset of the out - of - order aspect , the 
out - of - order aspect will be described . 
[ 0064 ] In FIG . 7A , a processor pipeline 700 includes a 
fetch stage 702 , a length decode stage 704 , a decode stage 
706 , an allocation stage 708 , a renaming stage 710 , a 
scheduling ( also known as a dispatch or issue ) stage 712 , a 
register read / memory read stage 714 , an execute stage 716 , 
a write back / memory write stage 718 , an exception handling 
stage 722 , and a commit stage 724. Note that as described 
herein , in a given embodiment a core may include multiple 
processing pipelines such as pipeline 700 . 
[ 0065 ] FIG . 7B shows processor core 790 including a 
front end unit 730 coupled to an execution engine unit 750 , 
and both are coupled to a memory unit 770. The core 790 
may be a reduced instruction set computing ( RISC ) core , a 
complex instruction set computing ( CISC ) core , a very long 
instruction word ( VLIW ) core , or a hybrid or alternative 
core type . As yet another option , the core 790 may be a 
special - purpose core , such as , for example , a network or 
communication core , compression engine , coprocessor core , 
general purpose computing graphics processing unit 
( GPGPU ) core , graphics core , or the like . 
[ 006 ] The front end unit 730 includes a branch prediction 
unit 732 coupled to an instruction cache unit 734 , which is 
coupled to an instruction translation lookaside buffer ( TLB ) 
736 , which is coupled to an instruction fetch unit 738 , which 
is coupled to a decode unit 740. The decode unit 740 ( or 
decoder ) may decode instructions , and generate as an output 
one or more micro - operations , micro - code entry points , 
microinstructions , other instructions , or other control sig 
nals , which are decoded from , or which otherwise reflect , or 
are derived from , the original instructions . The decode unit 
740 may be implemented using various different mecha 
nisms . Examples of suitable mechanisms include , but are not 
limited to , look - up tables , hardware implementations , pro 
grammable logic arrays ( PLAs ) , microcode read only 
memories ( ROMs ) , etc. In one embodiment , the core 790 
includes a microcode ROM or other medium that stores 
microcode for certain macroinstructions ( e.g. , in decode unit 
740 or otherwise within the front end unit 730 ) . The decode 
unit 740 is coupled to a rename / allocator unit 752 in the 
execution engine unit 750 . 
[ 0067 ] The execution engine unit 750 includes the rename / 
allocator unit 752 coupled to a retirement unit 754 and a set 
of one or more scheduler unit ( s ) 756. The scheduler unit ( s ) 
756 represents any number of different schedulers , including 
reservations stations , central instruction window , etc. The 
scheduler unit ( s ) 756 is coupled to the physical register 
file ( s ) unit ( s ) 758. Each of the physical register file ( s ) units 
758 represents one or more physical register files , different 
ones of which store one or more different data types , such as 
scalar integer , scalar floating point , packed integer , packed 



US 2021/0406022 A1 Dec. 30 , 2021 
7 

a 

involved in the exception handling stage 722 ; and 8 ) the 
retirement unit 754 and the physical register file ( s ) unit ( s ) 
758 perform the commit stage 724 . 
[ 0070 ] The core 790 may support one or more instructions 
sets ( e.g. , the x86 instruction set ( with some extensions that 
have been added with newer versions ) ; the MIPS instruction 
set of MIPS Technologies of Sunnyvale , Calif .; the ARM 
instruction set ( with optional additional extensions such as 
NEON ) of ARM Holdings of Sunnyvale , Calif . ) , including 
the instruction ( s ) described herein . In one embodiment , the 
core 790 includes logic to support a packed data instruction 
set extension ( e.g. , AVX1 , AVX2 ) , thereby allowing the 
operations used by many multimedia applications to be 
performed using packed data . 
[ 0071 ] It should be understood that the core may support 
multithreading ( executing two or more parallel sets of 
operations or threads ) , and may do so in a variety of ways 
including time sliced multithreading , simultaneous multi 
threading ( where a single physical core provides a logical 
core for each of the threads that physical core is simultane 
ously multithreading ) , or a combination thereof ( e.g. , time 
sliced fetching and decoding and simultaneous multithread 
ing thereafter such as in the Intel® Hyperthreading technol 
ogy ) . 

floating point , vector integer , vector floating point , status 
( e.g. , an instruction pointer that is the address of the next 
instruction to be executed ) , etc. In one embodiment , the 
physical register file ( s ) unit 758 comprises a vector registers 
unit , a write mask registers unit , and a scalar registers unit . 
These register units may provide architectural vector regis 
ters , vector mask registers , and general purpose registers . 
The physical register file ( s ) unit ( s ) 758 is overlapped by the 
retirement unit 754 to illustrate various ways in which 
register renaming and out - of - order execution may be imple 
mented ( e.g. , using a reorder buffer ( s ) and a retirement 
register file ( s ) ; using a future file ( s ) , a history buffer ( s ) , and 
a retirement register file ( s ) ; using a register maps and a pool 
of registers ; etc. ) . The retirement unit 754 and the physical 
register file ( s ) unit ( s ) 758 are coupled to the execution 
cluster ( s ) 760. The execution cluster ( s ) 760 includes a set of 
one or more execution units 762 and a set of one or more 
memory access units 764. The execution units 762 may 
perform various operations ( e.g. , shifts , addition , subtrac 
tion , multiplication ) and on various types of data ( e.g. , scalar 
floating point , packed integer , packed floating point , vector 
integer , vector floating point ) . While some embodiments 
may include a number of execution units dedicated to 
specific functions or sets of functions , other embodiments 
may include only one execution unit or multiple execution 
units that all perform all functions . The scheduler unit ( s ) 
756 , physical register file ( s ) unit ( s ) 758 , and execution 
cluster ( s ) 760 are shown as being possibly plural because 
certain embodiments create separate pipelines for certain 
types of data / operations ( e.g. , a scalar integer pipeline , a 
scalar floating point / packed integer / packed floating point / 
vector integer / vector floating point pipeline , and / or a 
memory access pipeline that each have their own scheduler 
unit , physical register file ( s ) unit , and / or execution cluster 
and in the case of a separate memory access pipeline , certain 
embodiments are implemented in which only the execution 
cluster of this pipeline has the memory access unit ( s ) 764 ) . 
It should also be understood that where separate pipelines 
are used , one or more of these pipelines may be out - of - order 
issue / execution and the rest in - order . 
[ 0068 ] The set of memory access units 764 is coupled to 
the memory unit 770 , which includes a data TLB unit 772 
coupled to a data cache unit 774 coupled to a level 2 ( L2 ) 
cache unit 776. In one exemplary embodiment , the memory 
access units 764 may include a load unit , a store address 
unit , and a store data unit , each of which is coupled to the 
data TLB unit 772 in the memory unit 770. The instruction 
cache unit 734 is further coupled to a level 2 ( L2 ) cache unit 
776 in the memory unit 770. The L2 cache unit 776 is 
coupled to one or more other levels of cache and eventually 
to a main memory . 
[ 0069 ] By way of example , the exemplary register renam 
ing , out - of - order issue / execution core architecture may 
implement the pipeline 700 as follows : 1 ) the instruction 
fetch 738 performs the fetch and length decoding stages 702 
and 704 ; 2 ) the decode unit 740 performs the decode stage 
706 ; 3 ) the rename / allocator unit 752 performs the allocation 
stage 708 and renaming stage 710 ; 4 ) the scheduler unit ( s ) 
756 performs the schedule stage 712 ; 5 ) the physical register 
file ( s ) unit ( s ) 758 and the memory unit 770 perform the 
register read / memory read stage 714 ; the execution cluster 
760 perform the execute stage 716 ; 6 ) the memory unit 770 
and the physical register file ( s ) unit ( s ) 758 perform the write 
back / memory write stage 718 ; 7 ) various units may be 

a 

[ 0072 ] While register renaming is described in the context 
of out - of - order execution , it should be understood that 
register renaming may be used in an in - order architecture . 
While the illustrated embodiment of the processor also 
includes separate instruction and data cache units 734/774 
and a shared L2 cache unit 776 , alternative embodiments 
may have a single internal cache for both instructions and 
data , such as , for example , a Level 1 ( L1 ) internal cache , or 
multiple levels of internal cache . In some embodiments , the 
system may include a combination of an internal cache and 
an external cache that is external to the core and / or the 
processor . Alternatively , all of the cache may be external to 
the core and / or the processor . 
[ 0073 ] FIG . 8 is a block diagram of a processor 800 that 
may have more than one core , may have an integrated 
memory controller , and may have integrated graphics 
according to embodiments of the invention . The solid lined 
boxes in FIG . 8 illustrate a processor 800 with a single core 
802A , a system agent 810 , a set of one or more bus controller 
units 816 , while the optional addition of the dashed lined 
boxes illustrates an alternative processor 800 with multiple 
cores 802A - N , a set of one or more integrated memory 
controller unit ( s ) in the system agent unit 910 , and special 
purpose logic 808 . 
[ 0074 ] Thus , different implementations of the processor 
800 may include : 1 ) a CPU with the special purpose logic 
808 being integrated graphics and / or scientific ( throughput ) 
logic ( which may include one or more cores ) , and the cores 
802A - N being one or more general purpose cores ( e.g. , 
general purpose in - order cores , general purpose out - of - order 
cores , a combination of the two ) ; 2 ) a coprocessor with the 
cores 802A - N being a large number of special purpose cores 
intended primarily for graphics and / or scientific ( through 
put ) ; and 3 ) a coprocessor with the cores 802A - N being a 
large number of general purpose in - order cores . Thus , the 
processor 800 may be a general - purpose processor , copro 
cessor or special - purpose processor , such as , for example , a 
network or communication processor , compression engine , 
graphics processor , GPGPU ( general purpose graphics pro 
cessing unit ) , a high - throughput many integrated core ( MIC ) 

. 



US 2021/0406022 A1 Dec. 30 , 2021 
8 

as 

coprocessor ( including 30 or more cores ) , embedded pro 
cessor , or the like . The processor may be implemented on 
one or more chips . The processor 800 may be a part of 
and / or may be implemented on one or more substrates using 
any of a number of process technologies , such as , for 
example , BiCMOS , CMOS , or NMOS . 
[ 0075 ] The memory hierarchy includes one or more levels 
of cache units 804A - N within the cores , a set or one or more 
shared cache units 806 , and external memory ( not shown ) 
coupled to the set of integrated memory controller units 814 . 
The set of shared cache units 806 may include one or more 
mid - level caches , such as level 2 ( L2 ) , level 3 ( L3 ) , level 4 
( L4 ) , or other levels of cache , a last level cache ( LLC ) , 
and / or combinations thereof . While in one embodiment a 
ring based interconnect unit 812 interconnects the special 
purpose logic 808 , the set of shared cache units 806 , and the 
system agent unit 810 / integrated memory controller unit ( s ) 
814 , alternative embodiments may use any number of well 
known techniques for interconnecting such units . In one 
embodiment , coherency is maintained between one or more 
cache units 806 and cores 802 A - N . 
[ 0076 ] The system agent unit 810 includes those compo 
nents coordinating and operating cores 802A - N . The system 
agent unit 810 may include for example a power control unit 
( PCU ) and a display unit . The PCU may be or include logic 
and components needed for regulating the power state of the 
cores 802A - N and the special purpose logic 808. The display 
unit is for driving one or more externally connected displays . 
[ 0077 ] The cores 802A - N may be homogenous or hetero 
geneous in terms of architecture instruction set ; that is , two 
or more of the cores 802A - N may be capable of execution 
the same instruction set , while others may be capable of 
executing only a subset of that instruction set or a different 
instruction set . 
[ 0078 ] FIGS . 9-10 are block diagrams of exemplary com 
puter architectures . Other system designs and configurations 
known in the arts for laptops , desktops , handheld PCs , 
personal digital assistants , engineering workstations , serv 
ers , network devices , network hubs , switches , embedded 
processors , digital signal processors ( DSPs ) , graphics 
devices , video game devices , set - top boxes , micro control 
lers , cell phones , portable media players , hand held devices , 
and various other electronic devices , are also suitable . In 
general , a huge variety of systems or electronic devices 
capable of incorporating a processor and / or other execution 
logic as disclosed herein are generally suitable . 
[ 0079 ] Referring now to FIG . 9 , shown is a block diagram 
of a first more specific exemplary system 900 in accordance 
with an embodiment of the present invention . As shown in 
FIG . 9 , multiprocessor system 900 is a point - to - point inter 
connect system , and includes a first processor 970 and a 
second processor 980 coupled via a point - to - point intercon 
nect 950. Each of processors 970 and 980 may be some 
version of the processor 900 . 
[ 0080 ] Processors 970 and 980 are shown including inte 
grated memory controller ( IMC ) units 972 and 982 , respec 
tively . Processor 970 also includes as part of its bus con 
troller units point - to - point ( PPP ) interfaces 976 and 978 ; 
similarly , second processor 980 includes P - P interfaces 986 
and 988. Processors 970 , 980 may exchange information via 
a point - to - point ( P - P ) interface 950 using P - P interface 
circuits 978 , 988. As shown in FIG . 9 , IMCs 972 and 982 
couple the processors to respective memories , namely a 

memory 932 and a memory 934 , which may be portions of 
main memory locally attached to the respective processors . 
[ 0081 ] Processors 970 , 980 may each exchange informa 
tion with a chipset 990 via individual P - P interfaces 952 , 954 
using point to point interface circuits 976 , 994 , 986 , 998 . 
Chipset 990 may optionally exchange information with the 
coprocessor 938 via a high - performance interface 939. In 
one embodiment , the coprocessor 938 is a special - purpose 
processor , such as , for example , a high - throughput MIC 
processor , a network or communication processor , compres 
sion engine , graphics processor , GPGPU , embedded proces 
sor , or the like . 
[ 0082 ] A shared cache ( not shown ) may be included in 
either processor or outside of both processors , yet connected 
with the processors via P - P interconnect , such that either or 
both processors ' local cache information may be stored in 
the shared cache if a processor is placed into a low power 
mode . 
[ 0083 ] Chipset 990 may be coupled to a first bus 916 via 
an interface 996. In one embodiment , first bus 916 may be 
a Peripheral Component Interconnect ( PCI ) bus , or a bus 
such as a PCI Express bus or another third generation I / O 
interconnect bus , although the scope of the present invention 
is not so limited . 
[ 0084 ] As shown in FIG . 9 , various I / O devices 914 may 
be coupled to first bus 916 , along with a bus bridge 918 
which couples first bus 916 to a second bus 920. In one 
embodiment , one or more additional processor ( s ) 915 , such 

coprocessors , high - throughput MIC processors , 
GPGPU's , accelerators ( such as , e.g. , graphics accelerators 
or digital signal processing ( DSP ) units ) , field program 
mable gate arrays , or any other processor , are coupled to first 
bus 916. In one embodiment , second bus 920 may be a low 
pin count ( LPC ) bus . Various devices may be coupled to a 
second bus 920 including , for example , a keyboard and / or 
mouse 922 , communication devices 927 and a storage unit 
928 such as a disk drive or other mass storage device which 
may include instructions / code and data 930 , in one embodi 
ment . Further , an audio I / O 924 may be coupled to the 
second bus 920. Note that other architectures are possible . 
For example , instead of the point - to - point architecture of 
FIG . 9 , a system may implement a multi - drop bus or other 
such architecture . 
[ 0085 ] Referring now to FIG . 10 , shown is a block dia 
gram of a SoC 1000 in accordance with an embodiment of 
the present invention . Dashed lined boxes are optional 
features on more advanced SoCs . In FIG . 10 , an interconnect 
unit ( s ) 1002 is coupled to : an application processor 1010 
which includes a set of one or more cores 1002A - N ( includ 
ing constituent cache units 1004A - N ) and shared cache 
unit ( s ) 1006 ; a system agent unit 1010 ; a bus controller 
unit ( s ) 1016 ; an integrated memory controller unit ( s ) 1014 ; 
a set or one or more coprocessors 1020 which may include 
integrated graphics logic , an image processor , an audio 
processor , and a video processor ; a static random access 
memory ( SRAM ) unit 1030 ; a direct memory access ( DMA ) 
unit 1032 ; and a display unit 1040 for coupling to one or 
more external displays . In one embodiment , the coprocessor 
( s ) 1020 include a special - purpose processor , such as , for 
example , a network or communication processor , compres 
sion engine , GPGPU , a high - throughput MIC processor , 
embedded processor , or the like . 
[ 0086 ] Embodiments of the mechanisms disclosed herein 
may be implemented in hardware , software , firmware , or a 

a 



US 2021/0406022 A1 Dec. 30 , 2021 
9 

combination of such implementation approaches . Embodi 
ments of the invention may be implemented as computer 
programs or program code executing on programmable 
systems comprising at least one processor , a storage system 
( including volatile and non - volatile memory and / or storage 
elements ) , at least one input device , and at least one output 
device . 
[ 0087 ] Program code , such as code 930 illustrated in FIG . 
9 , may be applied to input instructions to perform the 
functions described herein and generate output information . 
The output information may be applied to one or more 
output devices , in known fashion . For purposes of this 
application , a processing system includes any system that 
has a processor , such as , for example ; a digital signal 
processor ( DSP ) , a microcontroller , an application specific 
integrated circuit ( ASIC ) , or a microprocessor . 
[ 0088 ] The program code may be implemented in a high 
level procedural or object oriented programming language to 
communicate with a processing system . The program code 
may also be implemented in assembly or machine language , 
if desired . In fact , the mechanisms described herein are not 
limited in scope to any particular programming language . In 
any case , the language may be a compiled or interpreted 
language . 
[ 0089 ] One or more aspects of at least one embodiment 
may be implemented by representative instructions stored on 
a machine - readable medium which represents various logic 
within the processor , which when read by a machine causes 
the machine to fabricate logic to perform the techniques 
described herein . Such representations , known as “ IP cores ” 
may be stored on a tangible , machine readable medium and 
supplied to various customers or manufacturing facilities to 
load into the fabrication machines that actually make the 
logic or processor . 
[ 0090 ] Such machine - readable storage media may 
include , without limitation , non - transitory , tangible arrange 
ments of articles manufactured or formed by a machine or 
device , including storage media such as hard disks , any 
other type of disk including floppy disks , optical disks , 
compact disk read - only memories ( CD - ROMs ) , compac 
disk rewritable’s ( CD - RWs ) , and magneto - optical disks , 
semiconductor devices such as read - only memories 
( ROMs ) , random access memories ( RAMs ) such as dynamic 
random access memories ( DRAMs ) , static random access 
memories ( SRAMs ) , erasable programmable read - only 
memories ( EPROMs ) , flash memories , electrically erasable 
programmable read - only memories ( EEPROMs ) , phase 
change memory ( PCM ) , magnetic or optical cards , or any 
other type of media suitable for storing electronic instruc 
tions . 
[ 0091 ] Accordingly , embodiments of the invention also 
include non - transitory , tangible machine - readable media 
containing instructions or containing design data , such as 
Hardware Description Language ( HDL ) , which defines 
structures , circuits , apparatuses , processors and / or system 
features described herein . Such embodiments may also be 
referred to as program products . 
[ 0092 ] In some cases , an instruction converter may be 
used to convert an instruction from a source instruction set 
to a target instruction set . For example , the instruction 
converter may translate ( e.g. , using static binary translation , 
dynamic binary translation including dynamic compilation ) , 
morph , emulate , or otherwise convert an instruction to one 
or more other instructions to be processed by the core . The 

instruction converter may be implemented in software , hard 
ware , firmware , or a combination thereof . The instruction 
converter may be on processor , off processor , or part on and 
part off processor . 
[ 0093 ] FIG . 11 is a block diagram contrasting the use of a 
software instruction converter to convert binary instructions 
in a source instruction set to binary instructions in a target 
instruction set according to embodiments of the invention . 
In the illustrated embodiment , the instruction converter is a 
software instruction converter , although alternatively the 
instruction converter may be implemented in software , firm 
ware , hardware , or various combinations thereof . FIG . 11 
shows a program in a high level language 1102 may be 
compiled using an x86 compiler 1104 to generate x86 binary 
code 1106 that may be natively executed by a processor with 
at least one x86 instruction set core 1116. The processor with 
at least one x86 instruction set core 1116 represents any 
processor that can perform substantially the same functions 
as an Intel processor with at least one x86 instruction set 
core by compatibly executing or otherwise processing ( 1 ) a 
substantial portion of the instruction set of the Intel x86 
instruction set core or ( 2 ) object code versions of applica 
tions or other software targeted to run on an Intel processor 
with at least one x86 instruction set core , in order to achieve 
substantially the same result as an Intel processor with at 
least one x86 instruction set core . The x86 compiler 1104 
represents a compiler that is operable to generate x86 binary 
code 1106 ( e.g. , object code ) that can , with or without 
additional linkage processing , be executed on the processor 
with at least one x186 instruction set core 1116. Similarly , 
FIG . 11 shows the program in the high level language 1102 
may be compiled using an alternative instruction set com 
piler 1108 to generate alternative instruction set binary code 
1110 that may be natively executed by a processor without 
at least one x86 instruction set core 1114 ( e.g. , a processor 
with cores that execute the MIPS instruction set of MIPS 
Technologies of Sunnyvale , Calif . and / or that execute the 
ARM instruction set of ARM Holdings of Sunnyvale , 
Calif . ) . The instruction converter 1112 is used to convert the 
x86 binary code 1106 into code that may be natively 
executed by the processor without an x86 instruction set 
core 1114. This converted code is not likely to be the same 
as the alternative instruction set binary code 1110 because an 
instruction converter capable of this is difficult to make ; 
however , the converted code will accomplish the general 
operation and be made up of instructions from the alterna 
tive instruction set . Thus , the instruction converter 1112 
represents software , firmware , hardware , or a combination 
thereof that , through emulation , simulation or any other 
process , allows a processor or other electronic device that 
does not have an x86 instruction set processor or core to 
execute the x86 binary code 1106 . 
( 0094 ] The following examples pertain to further embodi 
ments . 

[ 0095 ] In one example , a processor includes : a first con 
figuration register to store a pointer to a PASID table ; and an 
execution circuit coupled to the first configuration register , 
where the execution circuit , in response to a first instruction , 
is to obtain command data from a first location identified in 
a source operand of the first instruction , obtain a PASID 
table handle from the command data , access a first entry of 
the PASID table using the pointer from the first configura 
tion register and the PASID table handle to obtain a PASID 



US 2021/0406022 A1 Dec. 30 , 2021 
10 

a 

a 

value , insert the PASID value into the command data , and 
send the command data to a device coupled to the processor . 
[ 0096 ] In an example , the execution circuit is to send the 
command data to a register of the device identified in a 
destination operand of the first instruction . 
[ 0097 ] In an example , the device comprises an I / O device 
having a first I / O address space associated with the PASID 
value , and where the execution circuit is to receive the first 
instruction from a first application having a second address 
space associated with a second PASID value . 
[ 0098 ] In an example , responsive to a second instruction 
from the first application , the execution circuit is to send 
second command data to a second device coupled to the 
processor , the second device having a third address space 
associated with a third PASID value . 
[ 0099 ] In an example , if a valid indicator of the first 
configuration register is not set , the execution circuit is to 
raise an exception and not access the PASID table . 
[ 0100 ] In an example , if a valid indicator of the first entry 
of the PASID table is not set , the execution circuit is to raise 
an exception and not insert the PASID value into the 
command data . 
[ 0101 ] In an example , the first configuration register com 
prises a PASID model specific register , the PASID model 
specific register comprising a first field to store a multiple 
address indicator which , when set , indicates that the PASID 
model specific register includes the pointer to the PASID 
table . 
( 0102 ] In an example , when the multiple address space 
indicator is reset , the PASID model specific register is to 
store the PASID value , and the execution circuit is not to 
access the PASID table , and when the multiple address space 
indicator is reset , the command data does not include the 
PASID table handle . 
[ 0103 ] In an example , the processor is to convert the 
PASID value obtained from the PASID table to a second 
PASID value using a PASID translation structure , and send 
the command data with the second PASID value to the 
device . 
[ 0104 ] In an example , the processor further comprises 
plurality of configuration registers , each of the plurality of 
configuration registers to store a PASID value , and the 
execution circuit is to access the first configuration register 
of the plurality of registers to obtain the PASID value using 
the PASID table handle and not access the PASID table . 
[ 0105 ] In another example , a method comprises : receiv 
ing , in an execution circuit of a processor , a first instruction 
having a source operand and a destination operand ; obtain 
ing command data from a first location identified in the 
source operand and extracting a PASID table handle from 
the command data ; accessing a PASID table using a pointer 
from a first configuration register ; indexing into a first entry 
of the PASID table using the PASID table handle to obtain 
a PASID value ; and inserting the PASID value into the 
command data and sending the command data to a device 
coupled to the processor . 
[ 0106 ] In an example , the method further comprises , in 
response to the first instruction , obtaining the pointer from 
the first configuration register comprising a PASIDX model 
specific register , the first instruction comprising a user - level 
enqueue command X instruction . 
[ 0107 ] In an example , the method further comprises , in 
response to the first instruction , obtaining the pointer from 
the first configuration register comprising a PASID model 

specific register when a multiple address indicator stored in 
the PASID model specific register is set , the first instruction 
comprising a user - level enqueue command instruction . 
[ 0108 ] In an example , the method further comprises send 
ing the command data to an enqueue register of the device 
identified in the destination operand . 
[ 0109 ] In an example , the method further comprises not 
inserting the PASID value into the command data and 
raising an exception when a valid indicator of the first entry 
of the PASID table is reset . 
[ 0110 ] In an example , the method further comprises send 
ing the command data to the device having a different 
address space than an address space of an agent that issued 
the first instruction without changing a PASID value asso 
ciated with the address space of the agent stored in a second 
configuration register . 
[ 0111 ] In an example , the method further comprises , in 
response to a reset valid indicator of the first configuration 
register or a reset valid indicator of the first entry of the 
PASID table , raising an exception . 
[ 0112 ] In another example , a computer readable medium 
including instructions is to perform the method of any of the 
above examples . 
[ 0113 ] In a further example , a computer readable medium 
including data is to be used by at least one machine to 
fabricate at least one integrated circuit to perform the 
method of any one of the above examples . 
[ 0114 ] In a still further example , an apparatus comprises 
means for performing the method of any one of the above 
examples . 
[ 0115 ] In yet another example , a system includes a pro 
cessor , a device and a system memory . The processor may 
include : a first configuration register to store a pointer to a 
PASID table ; a second configuration register to store a 
thread identifier associated with a thread of an application ; 
and an execution circuit coupled to the first and second 
configuration registers , where the execution circuit , in 
response to a first instruction , is to obtain command data 
from a first location identified in a source operand of the first 
instruction , access an try of the PASID table using the 
pointer and the thread identifier to obtain a PASID value , 
insert the PASID value into the command data and send the 
command data to the device . 
[ 0116 ] The device may include a front end circuit to 
receive incoming write requests from the processor , the front 
end circuit comprising a plurality of registers , where in 
response to a first incoming write request comprising the 
command data , the front end circuit is to store the command 
data in a first register of the plurality of registers . 
[ 0117 ] In an example , the execution circuit is to receive 
the first instruction from the thread of the application , the 
application having an address space associated with a sec 
ond PASID value different from the PASID value obtained 
from the PASID table , while maintaining the second PASID value in another configuration register of the processor . 
[ 0118 ] In an example , the system memory comprises the 
PASID table , and the execution circuit , in response to the 
first instruction , is to obtain a PASID table handle from the 
command data , concatenate the thread identifier and the 
PASID table handle into a concatenated value and use the 
concatenated value to index into the entry of the PASID 
table . 
[ 0119 ] Understand that various combinations of the above 
examples are possible . 

a 

a 



US 2021/0406022 A1 Dec. 30 , 2021 
11 

address space 

[ 0120 ] Note that the terms “ circuit ” and “ circuitry ” are 
used interchangeably herein . As used herein , these terms and 
the term “ logic ” are used to refer to alone or in any 
combination , analog circuitry , digital circuitry , hard wired 
circuitry , programmable circuitry , processor circuitry , 
microcontroller circuitry , hardware logic circuitry , state 
machine circuitry and / or any other type of physical hard 
ware component . Embodiments may be used in many dif 
ferent types of systems . For example , in one embodiment a 
communication device can be arranged to perform the 
various methods and techniques described herein . Of course , 
the scope of the present invention is not limited to a 
communication device , and instead other embodiments can 
be directed to other types of apparatus for processing 
instructions , or one or more machine readable media includ 
ing instructions that in response to being executed on a 
computing device , cause the device carry out one or more 
of the methods and techniques described herein . 
[ 0121 ] Embodiments may be implemented in code and 
may be stored on a non - transitory storage medium having 
stored thereon instructions which can be used to program a 
system to perform the instructions . Embodiments also may 
be implemented in data and may be stored on a non 
transitory storage medium , which used by at least one 
machine , causes the at least one machine to fabricate at least 
one integrated circuit to perform one or more operations . 
Still further embodiments may be implemented in a com 
puter readable storage medium including information that , 
when manufactured into a SoC or other processor , is to 
configure the SoC or other processor to perform one or more 
operations . The storage medium may include , but is not 
limited to , any type of disk including floppy disks , optical 
disks , solid state drives ( SSDs ) , compact disk read - only 
memories ( CD - ROMs ) , compact disk rewritables ( CD 
RWs ) , and magneto - optical disks , semiconductor devices 
such as read - only memories ( ROMs ) , random access memo 
ries ( RAM ) such as dynamic random access memories 
( DRAMs ) , static random access memories ( SRAMs ) , eras 
able programmable read - only memories ( EPROMs ) , flash 
memories , electrically erasable programmable read - only 
memories ( EEPROMs ) , magnetic or optical cards , or any 
other type of media suitable for storing electronic instruc 
tions . 
[ 0122 ] While the present invention has been described 
with respect to a limited number of embodiments , those 
skilled in the art will appreciate numerous modifications and 
variations therefrom . It is intended that the appended claims 
cover all such modifications and variations as fall within the 
true spirit and scope of this present invention . 
What is claimed is : 
1. A processor comprising : 
a first configuration register to store a pointer to a process 

address space identifier ( PASID ) table ; and 
an execution circuit coupled to the first configuration 

register , wherein the execution circuit , in response to a 
first instruction , is to obtain command data from a first 
location identified in a source operand of the first 
instruction , obtain a PASID table handle from the 
command data , access a first entry of the PASID table 
using the pointer from the first configuration register 
and the PASID table handle to obtain a PASID value , 
insert the PASID value into the command data , and 
send the command data to a device coupled to the 
processor . 

2. The processor of claim 1 , wherein the execution circuit 
is to send the command data to a register of the device 
identified in a destination operand of the first instruction . 

3. The processor of claim 1 , wherein the device comprises 
an input / output ( I / O ) device having a first I / O address space 
associated with the PASID value , and wherein the execution 
circuit is to receive the first instruction from a first applica 
tion having a second address space associated with a second 
PASID value . 

4. The processor of claim 3 , wherein responsive to a 
second instruction from the first application , the execution 
circuit is to send second command data to a second device 
coupled to the processor , the second device having a third 
address space associated with a third PASID value . 

5. The processor of claim 1 , wherein , if a valid indicator 
of the first configuration register is not set , the execution 
circuit is to raise an exception and not access the PASID 
table . 

6. The processor of claim 1 , wherein , if a valid indicator 
of the first entry of the PASID table is not set , the execution 
circuit is to raise an exception and not insert the PASID 
value into the command data . 

7. The processor of claim 1 , wherein the first configura 
tion register comprises a PASID model specific register , the 
PASID model specific register comprising a first field to 
store a multiple address indicator which , when set , indicates 
that the PASID model specific register includes the pointer 
to the PASID table . 

8. The processor of claim 7 , wherein when the multiple 
indicator is reset , the PASID model specific 

register is to store the PASID value , and the execution circuit 
is not to access the PASID table , and when the multiple 
address space indicator is reset , the command data does not 
include the PASID table handle . 

9. The processor of claim 1 , wherein the processor is to 
convert the PASID value obtained from the PASID table to 
a second PASID value using a PASID translation structure , 
and send the command data with the second PASID value to 
the device . 

10. The processor of claim 1 , further comprising a plu 
rality of configuration registers , each of the plurality of 
configuration registers to store a PASID value , wherein the 
execution circuit is to access the first configuration register 
of the plurality of registers to obtain the PASID value using 
the PASID table handle and not access the PASID table . 

11. At least one computer readable storage medium hav 
ing stored thereon instructions , which if performed by a 
machine cause the machine to perform a method compris 
ing : 

receiving , in an execution circuit of a processor , a first 
instruction having a source operand and a destination 
operand ; 

obtaining command data from a first location identified in 
the source operand and extracting a process address 
space identifier ( PASID ) table handle from the com 
mand data ; 

accessing a PASID table using a pointer from a first 
configuration register ; 

indexing into a first entry of the PASID table using the 
PASID table handle to obtain a PASID value ; and 

inserting the PASID value into the command data and 
sending the command data to a device coupled to the 
processor . 

a 

a 



US 2021/0406022 A1 Dec. 30 , 2021 
12 

12. The at least one computer readable storage medium of 
claim 11 , wherein the method further comprises , in response 
to the first instruction , obtaining the pointer from the first 
configuration register comprising a PASIDX model specific 
register , the first instruction comprising a user - level enqueue 
command X instruction . 

13. The at least one computer readable storage medium of 
claim 11 , wherein the method further comprises , in response 
to the first instruction , obtaining the pointer from the first 
configuration register comprising a PASID model specific 
register when a multiple address indicator stored in the 
PASID model specific register is set , the first instruction 
comprising a user - level enqueue command instruction . 

14. The at least one computer readable storage medium of 
claim 11 , wherein the method further comprises sending the 
command data to an enqueue register of the device identified 
in the destination operand . 

15. The at least one computer readable storage medium of 
claim 11 , wherein the method further comprises not insert 
ing the PASID value into the command data and raising an 
exception when a valid indicator of the first entry of the 
PASID table is reset . 

16. The at least one computer readable storage medium of 
claim 11 , wherein the method further comprises sending the 
command data to the device having a different address space 
than an address space of an agent that issued the first 
instruction without changing a PASID value associated with 
the address space of the agent stored in a second configu 
ration register . 

17. The at least one computer readable storage medium of 
claim 11 , wherein the method further comprises , in response 
to a reset valid indicator of the first configuration register or 
a reset valid indicator of the first entry of the PASID table , 
raising an exception . 

18. A system comprising : 
a processor comprising : 

a first configuration register to store a pointer to a 
process address space identifier ( PASID ) table ; 

a second configuration register to store a thread iden 
tifier associated with a thread of an application ; and 

an execution circuit coupled to the first and second 
configuration registers , wherein the execution cir 
cuit , in response to a first instruction , is to obtain 
command data from a first location identified in a 
source operand of the first instruction , access an 
entry of the PASID table using the pointer and the 
thread identifier to obtain a PASID value , insert the 
PASID value into the command data and send the 
command data to a device ; 

the device coupled to the processor , wherein the device 
comprises : 
a front end circuit to receive incoming write requests 

from the processor , the front end circuit comprising 
a plurality of registers , wherein in response to a first 
incoming write request comprising the command 
data , the front end circuit is to store the command 
data in a first register of the plurality of registers ; and 

a system memory coupled to the processor . 
19. The system of claim 18 , wherein the execution circuit 

is to receive the first instruction from the thread of the 
application , the application having an address space associ 
ated with a second PASID value different from the PASID 
value obtained from the PASID table , while maintaining the 
second PASID value in another configuration register of the 
processor . 

20. The system of claim 18 , wherein the system memory 
comprises the PASID table , and the execution circuit , in 
response to the first instruction , is to obtain a PASID table 
handle from the command data , concatenate the thread 
identifier and the PASID table handle into a concatenated 
value and use the concatenated value to index into the entry 
of the PASID table . 

a 


