
US 20220121519A1
MIMI IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0121519 A1 .

Bharara et al . (43) Pub . Date : Apr. 21 , 2022

(54) FAILOVER SYSTEM FOR DATABASE
UNAVAILABILITY

(71) Applicant : SAP SE , Walldorf (DE)

(72) Inventors : Aavishkar Bharara , Bangalore (IN) ;
Ankita Prabhu , Kumta (IN) ; Bhavneet
Kaur , Ludhiana (IN)

(21) Appl . No .: 17 / 074,904

(52) U.S. Cl .
CPC G06F 11/142 (2013.01) ; G06F 7/08

(2013.01) ; G06F 2201/82 (2013.01) ; G06F
2201/80 (2013.01) ; G06F 16/2379 (2019.01)

(57) ABSTRACT
Systems and methods include receiving an exception raised
by a database storage system in response to a database
operation requested by an application , providing , in
response to the exception , the application with a pointer to
a failover framework comprising a memory store , receiving ,
from the application and at the failover framework , a request
to write first data , storing , in response to the request to write
first data , the first data in a tree structure of the memory store
in chronological order , receiving , from the application and at
the failover framework , a request to read second data , and ,
in response to the request to read second data , sorting the
tree structure primarily by user and secondarily by chrono
logical order and reading the second data from the sorted
tree structure .

(22) Filed : Oct. 20 , 2020

Publication Classification
(51) Int . Ci .

G06F 11/14 (2006.01)
GO6F 708 (2006.01)
G06F 16/23 (2019.01)

120

CLIENT
APPLICATION 100

OR
110

APPLICATION SERVER
130

APPLICATION
113 132

114 112

DATA FAILOVER FRAMEWORK 134
R

DB SYNC THREAD 116

MEMORY STORE 118

Patent Application Publication Apr. 21 , 2022 Sheet 1 of 9 US 2022/0121519 A1

120

CLIENT
APPLICATION 100

R

110

APPLICATION SERVER

APPLICATION $ 130
113 132

1143 112

FAILOVER FRAMEWORK OA DATA 134

DB SYNC THREAD 116

MEMORY STORE 118

FIG . 1

Patent Application Publication Apr. 21 , 2022 Sheet 2 of 9 US 2022/0121519 A1

200

S210

EXECUTE APPLICATION USING
DATABASE STORAGE

S220

REPLICATE USER INTERACTION DATA IN
MEMORY STORE

S230

DB STORAGE
ERROR ? No

Yes
S240

CONTINUE TO EXECUTE APPLICATION
USING MEMORY STORE

S250

DB STORAGE
RESOLVED ? No

Yes
$ 260

MERGE MEMORY STORE WITH
DATABASE STORAGE

S270

CLEAR MEMORY STORE

FIG . 2

Patent Application Publication Apr. 21 , 2022 Sheet 3 of 9 US 2022/0121519 A1

120

CLIENT
APPLICATION 100

R

110

APPLICATION SERVER

APPLICATION $ 130
113 132

114 112

FAILOVER FRAMEWORK DATA Error 134

DB SYNC THREAD 116

MEMORY STORE 118

FIG . 3

$ 120

CLIENT
APPLICATION 100

110

APPLICATION SERVER

APPLICATION $ 130
113 -132

114 112

FAILOVER FRAMEWORK DATA 134

DB SYNC THREAD 116

MEMORY STORE 118

FIG . 4

Patent Application Publication Apr. 21 , 2022 Sheet 4 of 9 US 2022/0121519 A1

120

CLIENT
APPLICATION 100

R

110

APPLICATION SERVER

APPLICATION $ 130
113 132

114 112

FAILOVER FRAMEWORK DATA Data merge 134

DB SYNC THREAD 116

MEMORY STORE 118

FIG . 5

Patent Application Publication Apr. 21 , 2022 Sheet 5 of 9 US 2022/0121519 A1

600

$ 610

Write Read
READ OR WRITE ?

S630 S620

STORE DATA IN MEMORY
STORE CHRONOLOGICALLY

READ MEMORY STORE DATA
PRIMARILY BY USER AND

SECONDARILY BY TIMESTAMP

FIG . 6

Patent Application Publication Apr. 21 , 2022 Sheet 6 of 9 US 2022/0121519 A1

700

t

Business Objectiu Business Object Business Object3 Business Object4

Technical Object Technical Object
Technical Object Technical Object

User A User B User A User B

FIG . 7

Patent Application Publication Apr. 21 , 2022 Sheet 7 of 9 US 2022/0121519 A1

700

Business Object3 Business Object11
User A

Technical Object Technical Object

Business Object Business Object2
User B

Technical Object Technical Object

FIG . 8

Patent Application Publication Apr. 21 , 2022 Sheet 8 of 9 US 2022/0121519 A1

700

Technical Objects Technical Objects Technical Objects Technical Objects

Business Objects Business Objects Business Objects Business Objects

User A User B User C User D

FIG . 9

Patent Application Publication Apr. 21 , 2022 Sheet 9 of 9 US 2022/0121519 A1

1000

INPUT
DEVICE (S)

1040

COMMUNICATION
DEVICE

1020

OUTPUT
DEVICE (S)

1030

PROCESSING
UNIT (S)

1010

MEMORY

1160

1030

APPLICATION SERVER
1031

APPLICATION 1032

DB SYNC THREAD
1033

MEMORY STORE 1034

FIG . 10

US 2022/0121519 Al Apr. 21 , 2022
1

FAILOVER SYSTEM FOR DATABASE
UNAVAILABILITY

BACKGROUND

a

[0001] Modern software architectures use database sys
tems to provide low - latency structured data storage . In one
example , a user interacts with a software application to
access data stored within a database system . In response , the
software application instructs the database system to create ,
read , update and / or delete the data . The software application
and / or the database system may be implemented on - premise
or in the cloud .
[0002] The software application may be unable to perform
its desired functions if the database system crashes or is
otherwise unavailable . In such a case , the software applica
tion may present the user with an error message (e.g.
“ System not responding , please retry . ”) or may simply pause
until the database system becomes available . Either scenario
is inefficient for the user , and may reduce the user's confi
dence in and satisfaction with the software application .
[0003] A software application might be customized to
cope with database unavailability . This customization is
challenging , at least because an application developer is
typically not familiar with storage - related concepts . More
over , it would be inefficient to independently customize each
user - desired software application in this manner .
[0004] An efficient framework for providing data services
to an application in the event of database unavailability is
desired . Such a framework may preferably be transparent to
a user of the application , as well as to a developer of the
application

a

some embodiments . Various modifications , however , will be
readily - apparent to those in the art .
[0016] Some embodiments provide a runtime database
error handling mechanism for applications . According to
some embodiments , an alternate data store is created and
used by an application in a case that a primary database is
unavailable . Upon resolution of the error condition , the
contents of the alternate data store are merged into the
primary database and the next - received read operation is
handled by the primary database .
[0017] The use of the alternate data store may be trans
parent to a user of the application . That is , from the user's
perspective , the application behaves in the same manner
whether or not the database system is operational (in which
case reads are serviced by the database system) or in an error
state (in which case reads are serviced by the alternate data
store) .
[0018] The use of the alternate data store may also be
transparent to the application . In other words , the application
is not aware as to whether its CRUD operations are being
handled by the database system or whether the database
system is down and the CRUD operations are being handled
by the alternate data store . Accordingly , a developer may
code the application without any consideration of the alter
nate data store .
[0019] In some examples , an application may include
functionality for handling database unavailability errors .
This functionality may be used for error handling if the
application is deployed without a framework as presented
herein . If the application is deployed in conjunction with a
framework as described herein , and a database unavailabil
ity error arises , the application is not notified of the error and
may therefore continue normal execution without invoking
its own error handling .
[0020] FIG . 1 is a block diagram of system 100 according
to some embodiments . The illustrated elements of system
100 may be implemented using any suitable combination of
computing hardware and / or software that is or becomes
known . In some embodiments , two or more elements of
system 100 are implemented by a single computing device .
One or more elements of system 100 may be implemented
as a cloud service (e.g. , Software - as - a - Service , Platform - as
a - Service)
[0021] Generally , platform 110 receives queries from cli
ent applications 120 and returns results thereto based on data
134 stored within storage system 132 of database system
130. Database system 130 may implement any database
technology that is or becomes known , and storage system
132 may comprise any combination of volatile memory
(e.g. , Random Access Memory (RAM)) and non - volatile
memory (e.g. , fixed disk , Flash memory , non - volatile
(RAM)) .
[0022] Platform 110 executes program code to provide
application server 112. Application server 112 provides
services for executing server applications such as applica
tion 113. For example , a Web application executing on
application server 112 may receive HyperText Transfer
Protocol (HTTP) requests from client applications 120 and
return data 134 from storage 132 in response thereto . Client
applications 120 may , for example , comprise front - end Web
applications downloaded from application server 110 and
executing within a Web browser of a user device .
[0023] Failover framework 114 may operate as described
herein to execute CRUD operations issued by application

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG . 1 is a block diagram of a three - tier architec
ture including an application platform having a failover
framework according to some embodiments .
[0006] FIG . 2 is a flow diagram of a process to handle
database storage errors according to some embodiments .
[0007] FIG . 3 is a block diagram illustrating a database
storage error according to some embodiments .
[0008] FIG . 4 is a block diagram illustrating usage of a
memory store for create , read , update and delete (CRUD)
operations according to some embodiments .
[0009] FIG . 5 is a block diagram illustrating merging of a
memory store with database data according to some embodi
ments .
[0010] FIG . 6 is a flow diagram of a process to handle read
and write operations to a memory store according to some
embodiments .
[0011] FIG . 7 illustrates storage of data in a memory store
according to some embodiments .
[0012] FIG . 8 illustrates reading of data from a memory
store according to some embodiments .
[0013] FIG . 9 illustrates merging of data from a memory
store with database data according to some embodiments .
[0014] FIG . 10 is a block diagram of a computing system
providing an application platform .

a

DETAILED DESCRIPTION

[0015] The following description is provided to enable any
person in the art to make and use the described embodiments
and sets forth the best mode contemplated for carrying out

US 2022/0121519 Al Apr. 21 , 2022
2

2

113 in response to an error raised by database system 130 .
Failover framework 114 may further operate to detect such
an error condition . Once database system 130 becomes
available , failover framework 114 operates to merge data
changes which occurred during the downtime with data 134 .
[0024] More specifically , database synchronization thread
116 of failover framework 114 may operate to receive an
exception from database system 130 in response to a CRUD
operation initiated by application 113. Database system 130
may throw such an exception , for example , if it is unable to
service the operation . The exception is not passed to appli
cation 113 , which therefore continues to operate as before .
Rather , database synchronization thread 116 operates to
execute the current operation and continues to receive and
execute CRUD operations until database system 130 returns
to an operational state . According to some embodiments , a
user of client application 120 continues to interact with
application 113 during the above sequence without any
interruption in functionality .
[0025] Database synchronization thread 116 executes
CRUD operations with respect to memory store 118 .
Memory store 118 may store a linked list , tree , or other data
structure used to service CRUD operations during unavail
ability of database system 130. According to some embodi
ments , the data structure of memory store 118 is populated
during normal operation of database server 130 (i.e. , prior to
unavailability of database server 130) such that the data
structure is populated with recent data at the time at which
an exception is raised by database system 130 .
[0026] As will be described in detail below , database
synchronization thread 116 may store user actions in a
flexible tree structure which is manipulated in different ways
in response to different CRUD operations . For example , a
user interaction received by application 113 may cause
database synchronization thread 116 to create a business
object and a corresponding technical object in memory store
118 , in which technical objects corresponding to different
business objects are not linked . When reading from memory
store 118 , the objects therein are rearranged by timestamp ,
the technical objects are linked , and desired data is read by
traversing a path through various technical objects .
[0027] Data 134 of database system 130 may comprise
one or more of conventional tabular data , row - based data ,
column - based data , and object - based data . Data 134 may
also include metadata describing the structure and charac
teristics of data stored in storage 132 as is known in the art .
Database system 130 may support multi - tenancy to sepa
rately support multiple unrelated clients by providing mul
tiple logical database systems which are programmatically
isolated from one another .
[0028] Database system 130 may implement an “ in
memory ” database , in which a full database stored in volatile
(e.g. , non - disk - based) memory . The full database may be
persisted in and / or backed up to fixed disks (not shown) .
Embodiments are not limited to an in - memory implemen
tation . For example , data may be stored in RAM (e.g. , cache
memory for storing recently - used data) and one or more
fixed disks (e.g. , persistent memory for storing their respec
tive portions of the full database) .
[0029] FIG . 2 comprises a flow diagram of process 200
according to some embodiments . Process 200 will be
described with respect to the elements of system 100 , but
embodiments are not limited thereto .

[0030] Process 200 and all other processes mentioned
herein may be embodied in computer - executable program
code read from one or more of non - transitory computer
readable media , such as a hard disk drive , a volatile or
non - volatile random access memory , a DVD - ROM , a Flash
drive , and a magnetic tape , and then stored in a compressed ,
uncompiled and / or encrypted format . In some embodiments ,
hard - wired circuitry may be used in place of , or in combi
nation with , program code for implementation of processes
according to some embodiments . Embodiments are there
fore not limited to any specific combination of hardware and
software .
[0031] Initially , at S210 , an application is executed using
database storage . The application may comprise a “ middle
ware ” application such as a server application executing on
an application server of a platform such as platform 110. A
server application executing at S210 may communicate with
a front - end application , such as an application executing
within a virtual machine of a Web browser executing on a
user computing system . Embodiments are not limited to
such a server application .
[0032] During execution at S210 , the application reads
from and writes to data stored in database storage of a
database system such as database system 130 of FIG . 1. The
database storage may comprise one or more cloud storage
services , may be provided by a same platform as used to
execute the application server , or may be implemented in
any other manner .
[0033] User interaction data resulting from execution of
the application at S210 is replicated in a memory store at
S220 . According to some embodiments , the user interaction
data comprises data which is passed between the front - end
application and the server application during execution of
the server application , and semantic information describing
the data . The data and semantic information may be format
ted as object instances as is known in the art . As will be
described in detail below , the memory store may store the
object instances in a chronological tree format .
[0034] Flow then proceeds to S230 and , if no database
sto error has been raised , flow returns to S210 and S220
to continue execution as described above . Accordingly , the
application executes and the user interaction data is repli
cated until a database storage error is detected at S230 . FIG .
3 illustrates system 100 of FIG . 1 , showing transmission of
an indication of an error condition from database system 130
to application server 120 at S230 according to some embodi
ments .
[0035] The database storage error may comprise an excep
tion in a case that the database system has not yet initialized .
For example , in a case that the database system crashes
before a database connection pointer is established , the
database connection pointer would return the error condition
itself . According to some embodiments , the error condition
is returned to framework 114 rather than to application 113 ,
and , in response , framework 114 returns a virtual database
pointer representing framework 114 to application 113 .
Accordingly , application 113 is unaware of the error and
treats framework 114 as its database storage system .
[0036] In another example of S230 , the database system
crashes after the database connection pointer has been
established . The database storage error may comprise an
indication that the current the database connection pointer is
invalid . Rather than being returned to application 113 , the
error is returned to framework 114 , which provides

a

a

a

new

US 2022/0121519 A1 Apr. 21 , 2022
3

a

a

database connection pointer to application 113. Again , appli
cation 113 is unaware of the error and beings to treats
framework 114 as its database storage system .
[0037] Accordingly , once an error is detected at $ 230 ,
flow proceeds to S240 to continue to execute the application
using a memory store for CRUD operations as described
herein . FIG . 4 illustrates communication between applica
tion server 112 and framework 114 during execution of
application 113 at S240 according to some embodiments .
During such execution , data may be stored in and read from
memory store 118 in a manner which is transparent to the
user and to application 113 .
[0038] The application continues to execute using the
memory store at S240 until it is determined at S250 that the
database storage error is resolved and the database system is
available to service CRUD operations . After such a deter
mination , flow proceeds to S260 to merge the current
memory store with application data stored in the database
storage . The merge is intended to bring the database storage
up - to - date with respect to transactions which may have
occurred during execution of the application at S240 . FIG .
6 illustrates transmission of memory store 118 for merging
with data 134 according to some embodiments of S240 .
Further details of the data merge at S260 are provided below .
[0039] The memory store is cleared at $ 270 and flow then
returns to S210 . Prior to returning to S210 , the database
connection pointer is updated to reflect the now - available
database storage .
[0040] FIG . 6 shows process steps 600 for handling read
and write operations using a memory store at S240 accord
ing to some embodiments . Process steps 600 may be per
formed by database synchronization thread 116 of frame
work 114 according to some embodiments . Database
synchronization thread 116 may also execute the data merge
at S260 according to some embodiments .
[0041] It will be assumed that , during S240 , framework
114 receives an operation to write data from application 113
at S610 . Flow therefore proceeds to S620 . At S620 , the data
is stored chronologically in memory store 118 .
[0042] FIG . 7 illustrates storage of data in a memory store
700 according to some embodiments . The data is stored as
object instances associated with a given user .
[0043] More particularly , each user interaction may be
stored in memory store 700 as a business object instance
associated with one or more technical object instances . The
technical object instances store the data of the user interac
tion and the associated business object stores data semantics
such as , but not limited to , data types and data variable
positions in a corresponding API call .
[0044] Memory store 700 stores the object instances as a
tree of linked nodes ordered chronologically . Each user
interaction represented by a business object and one or more
technical objects is associated with a timestamp representing
a time t at which the object instance was stored , a user
executing the corresponding CRUD command , and the
CRUD command type . By storing the data chronologically ,
memory store 700 supports efficient addition of new nodes .
That is , the new nodes representing a new user interaction
(regardless of the user's identity) may simply be appended
to an end of the tree .
[0045] S630 is executed if a read operation is received at
S610 . At 5630 , the memory store is sorted primarily by user ,
secondarily by time series (e.g. , in reverse - chronological

order) and then read . FIG . 8 illustrates sorting of memory
store 700 for reading data therefrom at S630 .
[0046] As shown in FIG . 8 , the two user interactions
associated with user A are sorted together and arranged
reverse - chronologically . Similarly , the two user interactions
associated with user B are sorted together and arranged
reverse - chronologically . Accordingly , a user interaction
associated with user A may be read without traversing any
of the user interactions associated with user B. That is , the
search for desired data may quickly be narrowed to only data
associated with user A and then further refined based on
timestamp . Assuming that more - recent data is of greater
relevance than less - recent data , the reverse - chronological
ordering further facilitates fast retrieval of desired data .
[0047] FIG . 9 illustrates another arrangement of memory
store 700 which occurs prior to merging memory store data
with database data at S260 . The FIG . 9 arrangement pro
vides a view based on technical object instances and sorted
by user , thereby facilitating merger with the database data .
In more detail , the FIG . 9 arrangement allows efficient
collection of all technical objects associated with user inter
actions of each user , for merging with stored data associated
with each user in the database storage system . Moreover , the
technical object instances may be stored in a standard object
notation , such as JavaScript Object Notation , enabling
interoperability with many types of database storage sys
tems .
[0048] FIG . 10 is a block diagram of computing system
1000 providing an application platform according to some
embodiments . Computing system 1000 may comprise one or
more general - purpose computing apparatuses and may
execute program code to perform any of the functions
described herein . Computing system 1000 may comprise an
implementation of platform 110 in some embodiments .
Computing system 1000 may include other unshown ele
ments according to some embodiments .
[0049) Computing system 1000 includes processing unit
(s) 1010 operatively coupled to communication device 1020 ,
data storage device 1030 , one or more input devices 1040 ,
one or more output devices 1050 and memory 1060. Com
munication device 1020 may facilitate communication with
external devices , such as an external network , the cloud , or
a data storage device . Input device (s) 1040 may comprise ,
for example , a keyboard , a keypad , a mouse or other
pointing device , a microphone , knob or a switch , an infra
red (IR) port , a docking station , and / or a touch screen . Input
device (s) 1040 may be used , for example , to enter informa
tion into apparatus 1000. Output device (s) 1050 may com
prise , for example , a display (e.g. , a display screen) a
speaker , and / or a printer .
[0050] Data storage device 1030 may comprise any appro
priate persistent storage device , including combinations of
magnetic storage devices (e.g. , magnetic tape , hard disk
drives and flash memory) , optical storage devices , Read
Only Memory (ROM) devices , and RAM devices , while
memory 1060 may comprise a RAM device .
[0051] Application server 1031 , application 1032 , and
database synchronization thread 1033 may each comprise
program code executed by processing unit (s) 710 to cause
server 700 to perform any one or more of the processes
described herein . Embodiments are not limited to execution
of these processes by a single computing device . Memory
store 1034 comprises data created and read during database
unavailability as described herein . Data storage device 1034

US 2022/0121519 A1 Apr. 21 , 2022
4

may also store data and other program code for providing
additional functionality and / or which are necessary for
operation of computing system 1000 , such as device drivers ,
operating system files , etc.
[0052] The foregoing diagrams represent logical architec
tures for describing processes according to some embodi
ments , and actual implementations may include more or
different components arranged in other manners . Other
topologies may be used in conjunction with other embodi
ments . Moreover , each component or device described
herein may be implemented by any number of devices in
communication via any number of other public and / or
private networks . Two or more of such computing devices
may be located remote from one another and may commu
nicate with one another via any known manner of network (s)
and / or a dedicated connection . Each component or device
may comprise any number of hardware and / or software
elements suitable to provide the functions described herein
as well as any other functions . For example , any computing
device used in an implementation some embodiments may
include a processor to execute program code such that the
computing device operates as described herein .
[0053] Embodiments described herein are solely for the
purpose of illustration . Those in the art will recognize other
embodiments may be practiced with modifications and
alterations to that described above .
What is claimed is :
1. A system comprising :
a memory storing processor - executable program code ;
a processing unit to execute the processor - executable
program code to cause the system to :

identify a database storage error associated with a data
base operation requested by an application ;

in response to the identification , provide the application
with a pointer to a failover framework comprising a
memory store ;

receive , from the application and at the failover frame
work , a request to write first data ;

in response to the request to write first data , store the first
data in a tree structure of the memory store in chrono
logical order ;

receive , from the application and at the failover frame
work , a request to read second data ; and

in response to the request to read second data :
sort the tree structure primarily by user and secondarily
by chronological order ; and

read the second data from the sorted tree structure .
2. A system according to claim 1 , wherein data associated

with a user is stored in the tree structure as a business object
and one or more associated technical objects , the processing
unit to execute the processor - executable program code to
cause the system to :

determine the database storage error has been resolved ;
and

in response to the determination that the database storage
error has been resolved :

group the data of the tree structure by user and logically
link the technical objects of each user ; and

merge the grouped and linked data with data of the
database storage .

3. A system according to claim 2 , wherein storage of the
first data in the tree structure of the memory store in
chronological order comprises :

logically linking a business object of the first data with a
business object of data immediately preceding the first
data in the chronological order .

4. A system according to claim 3 ,
wherein sorting of the tree structure primarily by user and

secondarily by chronological order comprises :
grouping business objects of the tree structure by user ;

and
for each user , sorting the grouped business objects in

chronological order and logically linking the sorted and
grouped business objects .

5. A system according to claim 1 , wherein data associated
with a user is stored in the tree structure as a business object
and one or more associated technical objects , and

wherein storage of the first data in the tree structure of the
memory store in chronological order comprises :

logically linking a business object of the first data with a
business object of data immediately preceding the first
data in the chronological order .

6. A system according to claim 1 , wherein data associated
with a user is stored in the tree structure as a business object
and one or more associated technical objects , and

wherein sorting of the tree structure primarily by user and
secondarily by chronological order comprises :

grouping business objects of the tree structure by user ;
and

for each user , sorting the grouped business objects in
chronological order and logically linking the sorted and
grouped business objects .

7. A computer - implemented method comprising :
receiving an exception raised by a database storage sys

tem in response to a database operation requested by an
application ;

in response to the exception , providing the application
with a pointer to a failover framework comprising a
memory store ;

receiving , from the application and at the failover frame
work , a request to write first data ;

in response to the request to write first data , storing the
first data in a tree structure of the memory store in
chronological order ;

receiving , from the application and at the failover frame
work , a request to read second data ; and

in response to the request to read second data :
sorting the tree structure primarily by user and second

arily by chronological order ; and
reading the second data from the sorted tree structure .

8. A method according to claim 7 , wherein data associated
with a user is stored in the tree structure as a business object
and one or more associated technical objects , the method
further comprising :

determining the database storage error has been resolved ;
and

in response to the determination that the database storage
error has been resolved :

grouping the data of the tree structure by user and
logically link the technical objects of each user ; and

merging the grouped and linked data with data of the
database storage .

9. A method according to claim 8 , wherein storing the first
data in the tree structure of the memory store in chronologi
cal order comprises :

2

US 2022/0121519 Al Apr. 21 , 2022
5

logically linking a business object of the first data with a
business object of data immediately preceding the first
data in the chronological order .

10. A method according to claim 9 ,
wherein sorting of the tree structure primarily by user and

secondarily by chronological order comprises :
grouping business objects of the tree structure by user ;

and
for each user , sorting the grouped business objects in

chronological order and logically linking the sorted and
grouped business objects .

11. A method according to claim 7 , wherein data associ
ated with a user is stored in the tree structure as a business
object and one or more associated technical objects , and

wherein storing the first data in the tree structure of the
memory store in chronological order comprises :

logically linking a business object of the first data with a
business object of data immediately preceding the first
data in the chronological order .

12. A method according to claim 7 , wherein data associ
ated with a user is stored in the tree structure as a business
object and one or more associated technical objects , and

wherein sorting of the tree structure primarily by user and
secondarily by chronological order comprises :

grouping business objects of the tree structure by user ;
and

for each user , sorting the grouped business objects in
chronological order and logically linking the sorted and
grouped business objects .

13. A computer - readable medium storing processor - ex
ecutable program code , the program code executable to
cause a computing system to :

provide a failover framework , the failover framework to :
identify a database storage error associated with a data

base operation requested by an application ;
in response to the identification , provide the application

with a pointer to the failover framework ;
receive , from the application , a request to write first data ;
in response to the request to write first data , store the first

data in a tree structure of a memory store in chrono
logical order ;

receive , from the application , a request to read second
data ; and

in response to the request to read second data :
sort the tree structure primarily by user and secondarily by

chronological order , and
read the second data from the sorted tree structure .

14. A medium according to claim 13 , wherein data
associated with a user is stored in the tree structure as a
business object and one or more associated technical
objects , the failover framework to :

determine the database storage error has been resolved ;
and

in response to the determination that the database storage
error has been resolved :

group the data of the tree structure by user and logically
link the technical objects of each user ; and

merge the grouped and linked data with data of the
database storage .

15. A medium according to claim 14 , wherein storage of
the first data in the tree structure of the memory store in
chronological order comprises :

logically linking a business object of the first data with a
business object of data immediately preceding the first
data in the chronological order .

16. A medium according to claim 15 ,
wherein sorting of the tree structure primarily by user and secondarily by chronological order comprises :
grouping business objects of the tree structure by user ;
and

for each user , sorting the grouped business objects in
chronological order and logically linking the sorted and
grouped business objects .

17. A medium according to claim 13 , wherein data
associated with a user is stored in the tree structure as a
business object and one or more associated technical
objects , and

wherein storage of the first data in the tree structure of the
memory store in chronological order comprises :

logically linking a business object of the first data with a
business object of data immediately preceding the first
data in the chronological order .

18. A medium according to claim 13 , wherein data
associated with a user is stored in the tree structure as a
business object and one or more associated technical
objects , and

wherein sorting of the tree structure primarily by user and
secondarily by chronological order comprises :

grouping business objects of the tree structure by user ;
and

for each user , sorting the grouped business objects in
chronological order and logically linking the sorted and
grouped business objects .

