
US 20220214876A1
INI

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0214876 A1

Zhang et al . (43) Pub . Date : Jul . 7 , 2022
)

(54) METHOD , DEVICE AND COMPUTER
PROGRAM PRODUCT FOR THREAD
MANAGEMENT

(52) U.S. CI .
CPC GO6F 9/3009 (2013.01) ; GO6F 9/524

(2013.01) ; G06F 9/4486 (2018.02)
(71) Applicant : EMC IP Holding Company LLC ,

Hopkinton , MA (US) (57) ABSTRACT

(72) Inventors : Ming Zhang , Beijing (CN) ; Huan
Chen , Beijing (CN) ; Shuo Lv , Beijing
(CN)

(21) Appl . No .: 17 / 207,806
(22) Filed : Mar. 22 , 2021

(30) Foreign Application Priority Data

Techniques for managing threads involve acquiring respec
tive runtime addresses and call information of a plurality of
lock objects in a plurality of threads , and determining , from
the plurality of lock objects , a first group of lock objects
associated with first call information and a second group of
lock objects associated with second call information differ
ent from the first call information . The techniques further
involve providing an indication that a deadlock exists in the
plurality of threads if it is determined that a first group of
runtime addresses of the first group of lock objects overlaps
with a second group of runtime addresses of the second
group of lock objects . Accordingly , potential deadlocks in a
plurality of threads can be analyzed , thereby avoiding the
inability of the threads to proceed normally due to the
deadlocks .

Jan. 6 , 2021 (CN) 202110014400.8

Publication Classification

(51) Int . Ci .
G06F 9/30
G06F 9/448
G06F 9/52

(2006.01)
(2006.01)
(2006.01)

Acquire respective suntime addresses and
call information of a plurality of lock objects

320

Determine , from the plurality of lock objects , a first group of
lock objects associated with 1st call information and a second
group of lock objects associated with second call information

Does a irst group of runtime
addresses of the first group of lock objects overlap with

a second group of runtime addresses of the
second group of lock objects ?

Provide 30 indication hal there is a deadlock

Patent Application Publication Jul . 7 , 2022 Sheet 1 of 7 US 2022/0214876 A1

€ 871

peau Lock ZA LOCK 78

allun Thread LOCKYA
7361 128-2

FIG , 1

Static code Class

Patent Application Publication

210

-250

Runtime

Static Code

205

Thread

Cass LOCKA

lockXA.locko
rockXB lock () lockYB.lock lockXB.unlock - lockYB.unlock

LOCKXA unlock (lockYA unlock ()

Thread lockZB.locko TOCKZA . lock) ockZA unlocko ockZB unlocko

Jul . 7 , 2022 Sheet 2 of 7

220-1

220-2

FIG . 2

US 2022/0214876 A1

Patent Application Publication Jul . 7 , 2022 Sheet 3 of 7 US 2022/0214876 A1

Acquire espective suotime addresses and
call information of a plurality of lock objects

Determine , from the plurality of lock objects , a first group or
ock objects associated with first call information and a second
group of lock objects associated with second call infornation

Does a first group of runtime
addresses of the first group of lock objects overlap with

a second group of contine addresses of the
second group of lock objects ?

Provide an indication that there is a deadlock

FIG . 3

Patent Application Publication Jul . 7 , 2022 Sheet 4 of 7 US 2022/0214876 A1

Sort the first group of lock objects and the second group of
ock objects according to the first group of runtime addresses

and the second group of runtime addresses

420

is a first lock object in the first group of lock
objects ranked lower than a second lack object in

the second group or lock objects ?

Provide an indication that there is a deadlock

FIG . 4

Patent Application Publication

wym www.www /

Static code

1111111111

Lock object antime address

Cal information

-524

Sorted call information

Class

ddress oflockX

534

Cai information ack B

first ca informatica

504 508

Address of lock YA

Jul . 7 , 2022 Sheet 5 of 7

Cas informator afico

Address of lock YB

538

528

510

105

FIG . 5

US 2022/0214876 A1

Patent Application Publication Jul . 7 , 2022 Sheet 6 of 7 US 2022/0214876 A1

gdb) disassemble test test
Dump of assembler code for function test testi) :

push Srbp
0x000071de89bf2043 < +1 > mov hrsp % rop
0x00007fde 89bf2046 +4 > push rbx
0x0000 7tde89bf2047 < +5 > $ 0x18 . % rsp
Ox000071de89bf2d4b (+9 > mov Srdi -0x180rbo)
Ox000071de89bf2041 < +13 > mov -Ox18 " rop) rax
0x000071de89bf2d53 < +17 >
Ox00007fde89bf2d56 +20 > callo 0x7fde88e1b482 < RWlockRT :: RWlockRT () >
0x000071de89bf2d5b < +25 > . MOV -OX18 Xitp) . Srax
Ox000071de89bf2d51 < +29 >

callo Ox7fde88e1b482 < RWlockRT :: RWIOCKRTO
imp 0x7fde89bl2089 < test test () + 71 >

Fax , ch?

Ox000071de89bf2d68 < +38 >
0x00007ide89b12d6d +43 >
0x000071de89b2061 < +46 >
0x000071de89bf2072 (+ 48 %
0x0000710e89bf2d76 (+52 :
0x000071de89b12d79 < +55 >
0x00007fde89bf287e < +60 >
0x000074de89bf2d81 < +63 >
0x000077de89bf2d84 < +66 > calla 0x7Ideg 8d93ce0 < _Unwind_Resume @ pt >

pop Osrbo
0x00007fde89b12d8f < +77 >

FIG . 6

Patent Application Publication Jul . 7 , 2022 Sheet 7 of 7 US 2022/0214876 A1

Communication
705

Nun abeois

VO interface
FIG . 7

Output unit

loput unit

US 2022/0214876 A1 Jul . 7. 2022
1

METHOD , DEVICE AND COMPUTER
PROGRAM PRODUCT FOR THREAD

MANAGEMENT

CROSS - REFERENCE TO RELATED
APPLICATION

a

[0001] This application claims priority to Chinese Patent
Application No. CN202110014400.8 , on file at the China
National Intellectual Property Administration (CNIPA) , hav
ing a filing date of Jan. 6 , 2021 and having “ METHOD ,
DEVICE AND COMPUTER PROGRAM PRODUCT FOR
THREAD MANAGEMENT ” as a title , the contents and
teachings of which are herein incorporated by reference in
their entirety .

a

processing unit . The instructions , when executed by at least
one processing unit , cause the electronic device to perform
actions . The actions include acquiring respective runtime
addresses and call information of a plurality of lock objects
in a plurality of threads , and determining , from the plurality
of lock objects , a first group of lock objects associated with
first call information and a second group of lock objects
associated with second call information different from the
first call information . The actions further include providing
an indication that a deadlock exists in the plurality of threads
if it is determined that a first group of runtime addresses of
the first group of lock objects overlaps with a second group
of runtime addresses of the second group of lock objects .
[0008] In a third aspect of the present disclosure , a com
puter program product is provided . The computer program
product is tangibly stored in a non - transitory computer
storage medium and includes machine - executable instruc
tions . The machine - executable instructions , when executed
by a device , cause this device to implement any step of the
method described according to the first aspect of the present
disclosure .

[0009] The Summary of the Invention section is provided
to introduce the selection of concepts in a simplified form ,
which will be further described in the Detailed Description
below . The Summary of the Invention is neither intended to
identify key features or essential features of the present
disclosure , nor intended to limit the scope of the present
disclosure .

TECHNICAL FIELD

[0002] Embodiments of the present disclosure generally
relate to the field of thread management , and in particular , to
a method , a device , and a computer program product for
managing locks in threads .

BACKGROUND

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] Multithreading refers to a technology that realizes
concurrent execution of a plurality of threads on software or
hardware . The use of multithreading improves the utilization
of system resources and improves the processing capacity of
a system . In multithreading , by using a lock , it can be
ensured that only one thread enters the code of a critical
section at a certain time point . Thus , the consistency of
operating data in the critical section can be guaranteed .
[0004] However , currently in multi - threaded systems ,
there is a deadlock problem . A deadlock is usually a block
ing phenomenon caused by a plurality of threads in the
execution process due to competition for resources or due to
communication with each other . In the case of deadlocks in
a plurality of threads , the plurality of threads want to obtain
resources of other threads , and are unwilling to release their
own resources . This will cause the plurality of threads to
wait . If there is no action by an external factor , none of these
threads will be able to proceed .

SUMMARY OF THE INVENTION

[0005] Embodiments of the present disclosure provide a
method , a device , and a computer program product for
managing threads .
[0006] In a first aspect of the present disclosure , a method
for managing threads is provided . The method includes
acquiring respective runtime addresses and call information
of a plurality of lock objects in a plurality of threads , and
determining , from the plurality of lock objects , a first group
of lock objects associated with first call information and a
second group of lock objects associated with second call
information different from the first call information . The
method further includes providing an indication that a
deadlock exists in the plurality of threads if it is determined
that a first group of runtime addresses of the first group of
lock objects overlaps with a second group of runtime
addresses of the second group of lock objects .
[0007] In a second aspect of the present disclosure , an
electronic device is provided . The electronic device includes
at least one processing unit and at least one memory . The at
least one memory is coupled to the at least one processing
unit and stores instructions for execution by the at least one

[0010] The above and other objectives , features , and
advantages of the present disclosure will become more
apparent by describing example embodiments of the present
disclosure in further detail with reference to the accompa
nying drawings , and in the example embodiments of the
present disclosure , the same reference numerals generally
represent the same components .
[0011] FIG . 1 shows a schematic diagram of an example
system in which some embodiments of the present disclo
sure can be implemented ;
[0012] FIG . 2 shows a schematic diagram of an example
of a potential deadlock in a plurality of threads ;
[0013] FIG . 3 shows a flowchart of an example method for
managing threads according to some embodiments of the
present disclosure ;
[0014] FIG . 4 shows a schematic diagram of an example
method for analyzing a potential deadlock in threads accord
ing to some embodiments of the present disclosure ;
[0015] FIG . 5 shows a schematic block diagram for ana
lyzing a potential deadlock in threads according to some
embodiments of the present disclosure ;
[0016] FIG . 6 shows a schematic diagram of a result of
disassembling a constructor function of a lock according to
some embodiments of the present disclosure ; and
[0017] FIG . 7 shows a schematic block diagram of an
example device that can be used to implement an embodi
ment of the present disclosure .
[0018] In the accompanying drawings , identical or corre
sponding reference numerals represent identical or corre
sponding parts .

a
a

US 2022/0214876 A1 Jul . 7. 2022
2

DETAILED DESCRIPTION

2

[0019] The individual features of the various embodi
ments , examples , and implementations disclosed within this
document can be combined in any desired manner that
makes technological sense . Furthermore , the individual fea
tures are hereby combined in this manner to form all
possible combinations , permutations and variants except to
the extent that such combinations , permutations and / or
variants have been explicitly excluded or are impractical .
Support for such combinations , permutations and variants is
considered to exist within this document .
[0020] It should be understood that the specialized cir
cuitry that performs one or more of the various operations
disclosed herein may be formed by one or more processors
operating in accordance with specialized instructions per
sistently stored in memory . Such components may be
arranged in a variety of ways such as tightly coupled with
each other (e.g. , where the components electronically com
municate over a computer bus) , distributed among different
locations (e.g. , where the components electronically com
municate over a computer network) , combinations thereof ,
and so on .
[0021] Preferred embodiments of the present disclosure
will be described in more detail below with reference to the
accompanying drawings . Although the preferred embodi
ments of the present disclosure are shown in the accompa
nying drawings , it should be understood that the present
disclosure can be implemented in various forms and should
not be limited by the embodiments set forth herein . Instead ,
the embodiments are provided to make the present disclo
sure more thorough and complete and to fully convey the
scope of the present disclosure to those skilled in the art .
[0022] The term “ include ” and variants thereof as used
herein indicate open - ended inclusion , i.e. , “ including but not
limited to . ” Unless specifically stated , the term “ or ” means
" and / or . ” The term “ based on ” means “ based at least in part
on . ” The terms an example embodiment ” and “ an embodi
ment ” indicate “ at least one example embodiment . ” The
term “ another embodiment ” indicates “ at least one addi
tional embodiment . ” The terms “ first , " " second , ” and the
like may refer to different objects or the same object . Other
explicit and implicit definitions may also be included below .
[0023] In a program , program fragments that run indepen
dently can be called “ threads . ” Multithreading refers to
dividing an originally linearly executed task into several
subtasks for synchronous execution , and is a technology that
realizes the concurrent execution of multiple threads . The
use of multithreading improves the utilization of system
resources and improves the processing capacity of a system .
In multithreading , by using a lock , it can be ensured that
only one thread enters the code of a critical section at a
certain time point , thereby ensuring the consistency of
operation data in the critical section .
[0024] FIG . 1 shows . System 100 is a system that can
implement the multithreading technology . Static code 110 is
stored in system 100 , and static code 110 includes class 105 .
In class 105 , two different locks , lock A 114 and lock B 118 ,
are defined . The above - mentioned two different locks , lock
A 114 and lock B 118 , are respectively located at unique
static addresses in a code segment of system 100. It should
be understood that although two different locks (lock A 114
and lock B 118) in class 105 of static code 110 are shown in
FIG . 1 , this is only illustrative , and different classes of static
code 110 of system 100 may include any number of locks .

[0025] FIG . 1 shows runtime information 150 of system
100. At runtime , system 100 may include multiple simulta
neous threads , for example , thread 120-1 , thread 120-2 , and
thread 120-3 as shown in FIG . 1 (individually referred to as
thread 120 or collectively referred to as thread 120) . It
should be understood that although 3 simultaneous threads
120 are shown in FIG . 1 , this is merely illustrative , and
system 100 may include any number of simultaneous
threads 120 at runtime .
[0026] Each thread 120 may include objects of lock A 114
and lock B 118. For example , as shown in FIG . 1 , thread
120-1 includes object lock XA 124-1 of lock A 114 and
object lock XB 128-1 of lock B 118. Thread 120-2 includes
object lock YA 124-2 of lock A 114 and object lock YB
128-2 of lock B 118. Thread 120-3 includes object lock ZA
124-3 of lock A 114 and object lock ZB 128-3 of lock B 118 .
Different object locks of lock A 114 in different threads 120 ,
lock XA 124-1 , lock YA 124-2 , and lock ZA 124-3 , have
different runtime addresses at runtime , and the runtime
addresses of each run are not necessarily the same . Different
object locks of lock B 118 in different threads 120 , lock XB
128-1 , lock YB 128-2 , and lock ZB 128-3 , have different
runtime addresses at runtime , and the runtime addresses of
each run are not necessarily the same .
[0027] It should be understood that example system 100 in
FIG . 1 is only illustrative and not restrictive . According to
the embodiments of the present disclosure , system 100 may
be implemented in any suitable manner . For example ,
examples of system 100 may include , but are not limited to ,
a symmetric multi - processor , a multi - core processor , and a
chip - level multi - processing or simultaneous multithreading
processor .
[0028] At present , there is a deadlock problem in a mul
tithreading system . A deadlock is usually a blocking phe
nomenon caused by a plurality of threads in the execution
process due to competition for resources or due to commu
nication with each other . In the case of deadlocks in a
plurality of threads , the plurality of threads want to obtain
resources of other threads , and are unwilling to release their
own resources . This will cause the plurality of threads to
wait . If there is no action by an external factor , none of these
threads will be able to proceed .
[0029] FIG . 2 shows a schematic diagram of an example
of a potential deadlock in a plurality of threads . As shown in
FIG . 2 , in static code 210 of example system 200 , class 205
is included , which includes two different locks , lock A 214
and lock B 218. At runtime , system 200 includes 3 simul
taneous different threads 220-1 , 220-2 , and 220-3 (individu
ally referred to as thread 120 or collectively referred to as
thread 220) . Thread 220-1 , thread 220-2 , and thread 220-3
respectively include different objects of lock A 214 : lock
XA , lock YA , and lock ZA . Thread 220-1 , thread 220-2 , and
thread 220-3 respectively include different objects of lock B
218 : lock XB , lock YB , and lock ZB .
[0030] As shown in FIG . 2 , in thread 220-1 , lock XA is
locked first , then lock XB is locked , and then lock XB and
lock XA are unlocked in sequence . In thread 220-2 , lock YA
is first locked , then lock YB is locked , and then lock YB and
lock YA are sequentially unlocked . In thread 220-3 , lock ZB
is locked first , then lock ZA is locked , and then lock ZA and
lock ZB are unlocked in sequence . When these three differ
ent threads 220 run independently , there is no deadlock
problem . However , when they are running at the same time ,
there may be a potential deadlock problem . For example ,

a

>

a

2

US 2022/0214876 A1 Jul . 7. 2022
3

9

a

when lock ZA and lock XA or lock YA access the same
resource , thread 220-3 first locks object lock ZB of lock B
218 , and then locks object lock ZA of lock A 214. In
contrast , thread 220-1 or 220-2 first locks the object of lock
A 214 , and then locks the object of lock B 218 , so a deadlock
may occur .
[0031] Regarding the problem of deadlocks described
above , in conventional solutions , it is usually a programmer
who checks system logs to find out a record that a deadlock
occurred . In addition , after the programmer finds the dead
lock record in the system logs , the programmer will look at
program codes to manually look for a code that caused the
deadlock , so as to find the code that caused the deadlock and
correct the code . This manual method of looking for dead
locks is very inefficient , and due to the large number of
codes in the system , it is usually impossible to find as many
potential deadlocks as possible . In addition , because differ
ent programmers in some systems develop different codes ,
and each programmer may use different locks , it is difficult
to find potential deadlock problems in codes developed by
different programmers .
[0032] The embodiments of the present disclosure provide
a solution for managing threads to solve one or more of the
above problems and other potential problems . In the solu
tion , respective runtime addresses and call information of a
plurality of lock objects in a plurality of threads are acquired
at runtime . Through the analysis of the runtime addresses
and the call information , a first group of lock objects
associated with first call information and a second group of
lock objects associated with second call information differ
ent from the first call information are determined from the
plurality of lock objects . In this solution , if it is determined
that a first group of runtime addresses of the first group of
lock objects overlaps with a second group of runtime
addresses of the second group of lock objects , an indication
that deadlocks exist in a plurality of threads is provided .
[0033] The embodiments of the present disclosure can
analyze locks at runtime in a plurality of threads , and
automatically predict potential deadlocks in static codes . In
this way , it is possible to provide an indication of the
existence of the deadlocks in the plurality of threads , thereby
enabling the programmer to perform targeted inspection and
modification of the codes of the locks with deadlocks .
Through the targeted inspection and modification of the
codes by the programmer , the deadlock problem in actual
operation can be further avoided . In this way , operating
errors caused by deadlocks can be avoided , thereby improv
ing the overall performance of the system . In addition , the
programmer does not need to check the logs , nor does the
programmer need to perform aimless checks on a large
number of codes , thereby reducing the programmer's work .
[0034] The embodiments of the present disclosure will be
described in detail below with reference to the accompany
ing drawings . FIG . 3 shows a flowchart of example method
300 for managing multiple threads according to some
embodiments of the present disclosure . Method 300 may be
performed by any suitable devices or apparatuses . Method
300 may include additional actions not shown and / or may
omit actions shown , and the scope of the present disclosure
is not limited in this regard . Method 300 is described in
detail below with reference to FIG . 1 .
[0035] As shown in FIG . 3 , at 310 , respective runtime
addresses and call information of a plurality of lock objects
in a plurality of threads 120 are acquired . For example ,

runtime addresses and call information of a plurality of
objects (lock XA 124-1 , lock XB 128-2 , lock YA 124-2 , lock
YB 128-2 , lock ZA 124-3 and lock ZB 128-3) of lock A 114
and lock B 118 in thread 120-1 , thread 120-2 , and thread
120-3 are acquired . The runtime addresses refer to respec
tive different dynamic addresses of the plurality of objects of
lock A 114 and lock B 118 when thread 120 is running . In
some embodiments , the call information may indicate a call
relationship between lock A 114 and lock B 118 .
[0036] In some embodiments , while creating each object
of lock A 114 and lock B 118 , the runtime addresses of these
objects and the call relationship of these objects may be
saved . For example , the runtime address of lock XA 124-1
refers to the runtime address of object lock XA 124-1 of lock
A 114 in thread 120-1 . Lock XA 124-1 is the object of lock
A 114 , and the call relationship of lock XA 124-1 may refer
to a jump address corresponding to the call of lock A 114 .
The following will describe in more detail the process of
saving the corresponding runtime address and call relation
ship while creating each object of lock A 114 and lock B 118
in conjunction with FIG . 5 .
[0037] In some embodiments , additionally , a constructor
function of class 105 including lock A 114 may be disas
sembled , and information corresponding to lock A 114 in a
result of the disassembly is a jump address (i.e. , the call
relationship of the objects of lock A 114) corresponding to
the call of lock A 114. The call information corresponding to
different locks will be described in more detail below in
conjunction with FIGS . 5-6 .
[0038] At 320 , a first group of lock objects associated with
first call information and a second group of lock objects
associated with second call information are determined from
a plurality of objects (lock XA 124-1 , lock XB 128-2 , lock
YA 124-2 , lock YB 128-2 , lock ZA 124-3 , and lock ZB
128-3) of lock A 114 and lock B 118. For example , the first
call information may include call information of lock A 114 ,
and the second call information may include call informa
tion of lock B 118. In some embodiments , lock A 114 and
lock B 118 are different locks in static code 110 , so the first
call information is different from the second call informa
tion .
[0039] According to different call information , a plurality
of objects of lock A 114 and lock B 118 are determined as
the first group of lock objects (i.e. , lock XA 124-1 , lock YA
124-2 , and lock ZA 124-3) associated with the call infor
mation of lock A 114 and the second group of lock objects
(i.e. , lock XB 128-2 , lock YB 128-2 , and lock ZB 128-3)
associated with the call information of lock B 118. That is ,
the first group of lock objects (i.e. , lock XA 124-1 , lock YA
24-2 , and lock ZA 124-3) corresponds to lock A 114 in

static code 110 , and the second group of lock objects (i.e. ,
lock XB 128-2 , lock YB 128-2 , and lock ZB 128-3) corre
sponds to lock B 118 in static code 110. The process of
determining the first group of lock objects and the second
group of lock objects according to the different call infor
mation will be described in more detail below in conjunction
with FIGS . 5-6 .
[0040] At 330 , whether the first group of runtime
addresses of the first group of lock objects overlaps with the
second group of runtime addresses of the second group of
lock objects is determined . For example , whether overlap
ping addresses exist in the respective runtime addresses of
the first group of lock objects (i.e. , lock XA 124-1 , lock YA
124-2 , and lock ZA 124-3) and the respective runtime

a

2

a

US 2022/0214876 A1 Jul . 7. 2022
4

a

a

addresses of the second group of lock objects (i.e. , lock XB
128-2 , lock YB 128-2 , and lock ZB 128-3) is determined .
For example , if the runtime address of lock XA 124-1 is
before the runtime address of lock XB 128-1 , the runtime
address of lock YA 124-2 is before the runtime address of
lock YB 128-2 , but the runtime address of lock ZB 124-3 is
before the runtime address of lock ZA 124-1 , it is indicated
that there are overlapping addresses .
[0041] In some embodiments , each runtime address in the
first group of runtime addresses may be compared with each
runtime address in the second group of runtime addresses to
find whether there is an overlap of the addresses . It should
be understood that other methods may also be used to
determine whether there is an address overlap .
[0042] If it is determined at 330 that there are overlapping
addresses , then method 300 proceeds to 340. At 340 , an
indication that there is a deadlock in the plurality of threads
120 is provided . In some embodiments , an indication of a
deadlock between lock A 114 and lock B 118 of a plurality
of threads 120 may be provided .
[0043] Through the above method , the potential deadlock
in the static code can be predicted by analyzing the runtime
information , and an indication of the deadlock can be
provided to the programmer . The programmer can perform
targeted inspection and modification on the code to avoid the
deadlock during the running of the plurality of threads . In
addition , due to the analysis of the runtime address and call
information at runtime , the potential deadlock is automati
cally predicted offline , which prevents the programmer from
looking for the deadlock by checking the system logs after
the deadlock occurs and searching errors in the code sen
tence by sentence . In this way , it can also reduce a lot of
programmer's work .
[0044] In some embodiments , method 400 shown in FIG .
4 may be used to determine that there is an address overlap
and provide an indication of a deadlock in a plurality of
threads 120. Several embodiments for determining the dead
lock in a plurality of threads 120 will be described in more
detail below in conjunction with FIG . 4 .
[0045] FIG . 4 shows a schematic diagram of example
method 400 for analyzing potential deadlocks in threads
according to some embodiments of the present disclosure .
Method 400 may be regarded as an example implementation
of blocks 330 and 340 in method 300 .
[0046] As shown in FIG . 4 , at 410 , the first group of lock
objects and the second group of lock objects are sorted
according to the first group of runtime addresses and the
second group of runtime addresses . In some embodiments ,
the first group of runtime addresses of the first group of lock
objects (i.e. , lock XA 124-1 , lock YA 124-2 , and lock ZA
124-3) and the second group of runtime addresses of the
second group of lock objects (i.e. , lock XB 128-2 , lock YB
128-2 , and lock ZB 128-3) may be sorted from small to
large . It should be understood that in some other embodi
ments , the first group of runtime addresses of the first group
of lock objects (i.e. , lock XA 124-1 , lock YA 124-2 , and lock
ZA 124-3) and the second group of runtime addresses of the
second group of lock objects (i.e. , lock XB 128-2 , lock YB
128-2 , and lock ZB 128-3) may be sorted from large to
small . It should be understood that any suitable sorting
method may be used for the sorting , for example , a bubbling
method is used for the sorting .
[0047] At 420 , whether first lock object in the first group
of lock objects is ranked lower than a second lock object in

the second group of lock objects is determined . In some
embodiments , whether a first lock object in the first group of
lock objects is ranked lower than a second lock object in the
second group of lock objects may be determined by deter
mining whether a maximum address in the first group of
runtime addresses of the first group of lock object (i.e. , lock
XA 124-1 , lock YA 124-2 , and lock ZA 124-3) is ranked
lower than a minimum address in the second group of
runtime addresses of the second group of lock objects (i.e. ,
lock XB 128-2 , lock YB 128-2 , and lock ZB 128-3) .
[0048] In this way , it is possible to determine whether
there is an overlap between the first group of runtime
addresses and the second group of runtime addresses
through only one comparison , without the need to compare
each of the two groups of runtime addresses separately . The
calculation is simpler .
[0049] In some embodiments , a first static address of lock
A 114 in the code segment may be located before a second
static address of lock B 118 in the code segment . In this way ,
the sequence of the addresses of lock A 114 and lock B 118
in the code segment is kept consistent with the sequence of
the addresses of the first group of lock objects and the
second group of lock objects at runtime . This makes it easy
for the programmer to check for errors in the code .
[0050] Returning to FIG . 4 , if it is determined at 420 that
a first lock object in the first group of lock objects is ranked
lower than a second lock object in the second group of lock
objects , then method 400 proceeds to 430. At 430 , an
indication that there is a deadlock in a plurality of threads
120 is provided . In some embodiments , an indication of a
deadlock between lock A 114 and lock B 118 of a plurality
of threads 120 may be provided .
[0051] In some embodiments , additionally , an indication
regarding the names of lock A 114 and lock B 118 may also
be provided . In this way , the programmer can know the
name of the lock where the deadlock will occur , so that
he / she can check the errors in the code in a targeted manner ,
and then find the errors in the code more quickly and
accurately . It should be understood that an indication includ
ing other information may also be provided . For example ,
information including class 105 with a deadlock may be
provided , so that the programmer can locate the positions of
lock A 114 and lock B 118 more quickly . In some other
embodiments , the provided indications may also include
other appropriate information about the deadlock .
[0052] The foregoing describes an example implementa
tion of determining existence of an address overlap and
providing the indication of a deadlock in conjunction with
FIG . 4 , but this is only illustrative . Other methods may also
be used to determine a cause of a fault .
[0053] Through the above method , can easily find out the
overlapping addresses between the runtime addresses ,
thereby helping to find the deadlocks . In addition , by pro
viding the indication regarding the names of lock A 114 and
lock B 118 with potential deadlocks , it can help the pro
grammer to find and modify errors in codes in a targeted
manner , thereby avoiding deadlocks at runtime , and reduc
ing the workload of the programmer .
[0054] FIG . 5 shows a schematic block diagram for ana
lyzing a potential deadlock in threads according to some
embodiments of the present disclosure . In FIG . 5 , runtime
information 150 is shown , including runtime addresses 510
and call information 530 of the lock objects . FIG . 5 also

a

US 2022/0214876 A1 Jul . 7. 2022
5

shows static code 110 , and static code 110 shows sorted call
information 550 and class 105 .
[0055] In some embodiments , class 105 may be class test
as shown below :

class test {
public :
RWlockRT lockA ;
RWlockRT lockB ;

}

[0056] As shown above , class 105 (i.e. , the class test)
includes two public members of the RWlockRT type , lock A
and lock B. It should be understood that the example class
test of class 105 shown above is only illustrative , and class
105 may also be a suitable class including other different
numbers of different locks .
[0057] In some embodiments , a constructor function
RWlockRT :: RWlockRT () of RWlockRT may be utilized to
acquire respective runtime addresses and call information of
a plurality of lock objects of a plurality of threads 120. The
constructor function RWlockRT :: RWlockRT () of
RWlockRT as shown below may be regarded as an example
implementation of block 310 in method 300 .
[0058] For example , the constructor function RWlockRT ::
RWlockRT () of RWlockRT may be as follows :

RWlockRT :: RWlockRT () {
// Acquire a static address of a caller
void * caller [TRS_CALLER_FETCH_LEVEL] ;
TRSGetcallerFetch (caller , TRS_CALLER_FETCH_LEVEL) ;
// Save runtime addresses and caller information of locks
saveInfo2Bin (this , caller) ;

[0062] As shown in FIG . 6 , the call information corre
sponding to lock A 114 is represented at 605 , which may be
an example of the first call information at block 320 in
method 300 of FIG . 3. Ox00007fde89bf2d56 < +20 > indicates
jump address information corresponding to lock A 114 , and
< +20 > indicates that an offset of the jump address of lock A
114 relative to class 105 is +20 .
0x7fde88e1b482 < RWlockRT :: RWlockRTO > indicates that
at the jump address 0x00007fde89bf2d56 < +20 > , the pro
gram will jump to the address Ox7fde88e1b482 to execute
the constructor function RWlockRT :: RWlockRT () of
RWlockRT to initialize the object of lock A 114 .
[0063] Similarly , the call information corresponding to
lock B 118 is indicated at 610 , which may be an example of
the second call information at block 320 in method 300 of
FIG . 3. 0x00007fde89bf2d68 < +38 > indicates jump address
information corresponding to lock B 118 , and < +38 > indi
cates that the offset of the jump address of lock B 118
relative to class 105 is +38 . Ox7fde88e1b482 < RWlockRT ::
RWlockRT () > indicates that at the jump address
0x00007fde89bf2d68 < +38 > , the program will jump to the
address Ox7fde88e1b482 to execute the constructor function
RWlockRT :: RWlockRT () of RWlockRT to initialize the
object of lock B 118 .
[0064] It should be understood that a compiler can ensure
that offsets of jump addresses for different locks in class 105
are specified . For example , for lock A 114 , the jump address
offset +20 is specified , and for lock B 118 , the jump address
offset +38 is specified . In addition , which of the offsets of
lock A 114 and lock B 118 is smaller or larger is consistent
with the sequence of lock A 114 and lock B 118 in the code
segment . Therefore , by saving the runtime addresses and
call information of different lock objects (for example ,
offsets of jump addresses corresponding to different locks , or
jump addresses themselves corresponding to different locks)
in the constructor function RWlockRT :: RWlockRT () as
described above , the runtime addresses of different lock
objects can be mapped to different call information respec
tively , thereby grouping the runtime addresses into runtime
addresses corresponding to different locks .
[0065] Returning to FIG . 5 , in runtime information 150 ,
address 504 of lock object XA and address 514 of lock
object YA in runtime address 510 of the lock objects are
mapped to call information 528 of lock A (i.e. ,
0x00007fde89bf2d56 < +20 > as shown in 605 of FIG . 6) , and
address 508 of lock object XB and address 518 of lock
object YB are mapped to call information 524 of lock B (i.e. ,
0x00007fde89bf2d68 < +38 > in 610 of FIG . 6) . The above
description may be an example implementation of block 320
in FIG . 3 .

[0066] In static code 110 , the call information of lock A
114 and the call information of lock B 118 are sorted
according to the sequence of lock A 114 and lock B 118 in
static code 110. For example , since lock A 114 is located
before lock B 118 in static code 110 , first call information
534 corresponding to lock A 114 is also located before
second call information 538 corresponding to lock B 118 .
[0067] By arranging call information 528 of lock A and
call information 524 of lock B from small to large , they are
associated with first call information 534 and second call
information 538 arranged from small to large in static code
110. In this way , runtime information 150 and static code
110 are associated via the call information .

}

[0059] As shown above , the statement saveInfo2Bin (this ,
caller) in the constructor function RWlockRT :: RWlockRT ()
can save the runtime address (this) of the lock constructed by
the constructor function RWlockRT :: RWlockRT () this time
and save the information of the caller of the constructor
function RWlockRT :: RWlockRT () . It should be understood
that every time an object of lock A 114 or lock B 118 is
created , the constructor function RWlockRT :: RWlockRT ()
needs to be called . Therefore , the information of the caller
of the constructor function RWlockRT :: RWlockRT () cor
responds to lock A 114 or lock B 118 .
[0060] In some embodiments , the information of the caller
of the constructor function RWlockRT :: RWlockRT () cor
responds to a jump address of the constructor function of
lock A 114 or lock B 118 (i.e. , the constructor function
test :: test () of the class test corresponds to lock A 114 or lock
B 118) . It should be understood that in other embodiments ,
other appropriate constructor functions or other separate
functions may also be used to acquire respective runtime
addresses and call information of the plurality of lock
objects in a plurality of threads 120 .
[0061] In some embodiments , the constructor function of
class 105 can be disassembled to obtain the jump addresses
corresponding to lock A 114 and lock B 118 in the construc
tor function . FIG . 6 shows a schematic diagram of result 601
of disassembling a constructor function (for example , test ::
test ()) of class 105 (for example , class test) including a lock
according to some embodiments of the present disclosure .

US 2022/0214876 A1 Jul . 7. 2022
6

may be

[0068] As mentioned earlier , if a group of runtime
addresses (for example , address 504 of lock object XA and
address 514 of lock object YA in FIG . 5) corresponding to
the call information with the addresses in static code 110
ranked higher are all located before a group of runtime
addresses (for example , address 508 of lock object XB and
address 518 of lock object YB in FIG . 5) corresponding to
the call information with the addresses in static code 110
ranked lower , it means that no deadlock is found .
[0069] In contrast , if in a group of runtime addresses (for
example , address 504 of lock object XA and address 514 of
lock object YA in FIG . 5) corresponding to the call infor
mation with the addresses in static code 110 ranked higher ,
exists a runtime address located after a group of runtime
addresses (for example , address 508 of lock object XB and
address 518 of lock object YB in FIG . 5) corresponding to
the call information with the addresses in static code 110
ranked lower , it means that a deadlock exists .
[0070] In this way , since the runtime information is asso
ciated with static code 110 , the potential deadlock in static
code 110 can be analyzed by analyzing the runtime infor
mation . In addition , because the runtime information can be
automatically analyzed to obtain the potential deadlock , the
programmer does not need to manually check the code
sentence by sentence , thereby reducing the programmer's
work . In addition , compared with the programmer checking
the code to look for the deadlock , this method can find the
deadlock more quickly and accurately .
[0071] It should be understood that although only three
threads 120 are shown in FIG . 1 herein , this is only sche
matic . In practical applications , in a testing phase before
official release of a product , by running as many threads as
possible or running a combination of more types of different
threads , more potential deadlocks can be found as complete
as possible . In this way , it is possible to avoid usage errors
that customers encounter when using the product after the
product is officially released , thereby improving customer
satisfaction with the product .
[0072] The thread management method described in this
article is applicable to threads compiled using various pro
gramming languages , including but not limited to object
oriented programming languages (such as C ++ , JAVA ,
Python , etc.) and conventional procedural programming
languages (such as “ C ” language or similar programming
languages) . The thread management method described
herein is applicable to a variety of different programming
languages , so it is highly versatile . In addition , the method
described herein is a cornerstone for designing a lock
sequence analysis program . It provides a correlation
between “ runtime data ” and “ code - level meaning , " so that
finding problems in static codes by analyzing runtime data
becomes possible .
[0073] FIG . 7 shows a schematic block diagram of
example device 700 that can be configured to implement an
embodiment of the present disclosure . For example , storage
system 100 as shown in FIG . 1 may be implemented by
device 700. As shown in FIG . 7 , device 700 includes central
processing unit (CPU) 701 that may perform various appro
priate actions and processing according to computer pro
gram instructions stored in read - only memory (ROM) 702 or
computer program instructions loaded from storage unit 708
to random access memory (RAM) 703. In RAM 703 ,
various programs and data required for the operation of
device 700 may also be stored . CPU 701 , ROM 702 , and

RAM 703 are connected to each other through bus 704 .
Input / output (I / O) interface 705 is also connected to bus 704 .
[0074] Multiple components in device 700 are connected
to I / O interface 705 , including : input unit 706 , such as a
keyboard and a mouse ; output unit 707 , such as various
types of displays and speakers ; storage unit 708 , such as a
magnetic disk and an optical disk ; and communication unit
709 , such as a network card , a modem , and a wireless
communication transceiver . Communication unit 709 allows
device 700 to exchange information / data with other devices
via a computer network such as the Internet and / or various
telecommunication networks .
[0075] The various processes and processing described
above , such as method 300 and / or method 400 ,
performed by processing unit 701. For example , in some
embodiments , methods 300 and / or 400 may be implemented
as a computer software program that is tangibly included in
a machine - readable medium such as storage unit 708. In
some embodiments , part or all of the computer program may
be loaded and / or installed on device 700 via ROM 702
and / or communication unit 709. When the computer pro
gram is loaded into RAM 703 and executed by CPU 701 ,
one or more actions of methods 300 and / or 400 described
above can be implemented .
[0076] The present disclosure may be a method , an appa
ratus , a system , and / or a computer program product . The
computer program product may include a computer - readable
storage medium on which computer - readable program
instructions for performing various aspects of the present
disclosure are loaded .
[0077] The computer - readable storage medium may be a
tangible device that can hold and store instructions used by
an instruction execution device . For example , the computer
readable storage medium may be , but is not limited to , an
electric storage device , a magnetic storage device , an optical
storage device , an electromagnetic storage device , a semi
conductor storage device , or any suitable combination of the
foregoing . More specific examples (a non - exhaustive list) of
the computer - readable storage medium include : a portable
computer disk , a hard disk , RAM , a ROM , an erasable
programmable read - only memory (EPROM or flash
memory) , a static random access memory (SRAM) , por
table compact disk read - only memory (CD - ROM) , a digital
versatile disk (DVD) , a memory stick , a floppy disk , a
mechanical encoding device such as a punch card or a raised
structure in a groove having instructions stored thereon , and
any suitable combination thereof . Computer - readable stor
age media used herein are not to be interpreted as transient
signals per se , such as radio waves or other freely propa
gating electromagnetic waves , electromagnetic waves
propagating through waveguides or other transmission
media (for example , light pulses through fiber optic cables) ,
or electrical signals transmitted via electrical wires .
[0078] The computer - readable program instructions
described herein may be downloaded from a computer
readable storage medium to various computing / processing
devices or downloaded to an external computer or external
storage device via a network , such as the Internet , a local
area network , a wide area network , and / or a wireless net
work . The network may include copper transmission cables ,
fiber optic transmission , wireless transmission , routers , fire
walls , switches , gateway computers , and / or edge servers . A
network adapter card or network interface in each comput
ing / processing device receives computer - readable program

a

US 2022/0214876 A1 Jul . 7. 2022
7

instructions from the network and forwards the computer
readable program instructions for storage in a computer
readable storage medium in each computing / processing
device .
[0079] Computer program instructions for performing the
operations of the present disclosure may be assembly
instructions , instruction set architecture (ISA) instructions ,
machine instructions , machine - related instructions , micro
code , firmware instructions , state setting data , or source
code or object code written in any combination of one or
more programming languages , wherein the programming
languages include object - oriented programming languages ,
such as Smalltalk and C ++ , and conventional procedural
programming languages , such as the C language or similar
programming languages . The computer - readable program
instructions may be executed entirely on a user's computer ,
partly on a user's computer , as a stand - alone software
package , partly on a user's computer and partly on a remote
computer , or entirely on a remote computer or server . In the
case where a remote computer is involved , the remote
computer can be connected to a user computer over any kind
of networks , including a local area network (LAN) or a wide
area network (WAN) , or can be connected to an external
computer (e.g. , connected over the Internet using an Internet
service provider) . In some embodiments , an electronic cir
cuit , for example , a programmable logic circuit , a field
programmable gate array (FPGA) , or a programmable logic
array (PLA) , is personalized by utilizing state information of
the computer - readable program instructions , wherein the
electronic circuit may execute computer - readable program
instructions so as to implement various aspects of the
present disclosure .
[0080] Various aspects of the present disclosure are
described herein with reference to flowcharts and / or block
diagrams of the method , the apparatus (system) , and the
computer program product according to the embodiments of
the present disclosure . It should be understood that each
block in the flowcharts and / or block diagrams as well as a
combination of blocks in the flowcharts and / or block dia
grams may be implemented using computer - readable pro
gram instructions .
[0081] The computer - readable program instructions may
be provided to a processing unit of a general purpose
computer , a special purpose computer , or other program
mable data processing apparatuses to produce a machine ,
such that the instructions , when executed by the processing
unit of the computer or other programmable data processing
apparatuses , generate an apparatus for implementing the
functions / actions specified in one or more blocks in the
flowcharts and / or block diagrams . These computer - readable
program instructions may also be stored in a computer
readable storage medium , and these instructions cause a
computer , a programmable data processing apparatus , and /
or other devices to work in a specific manner ; and thus the
computer - readable medium having stored instructions
includes an article of manufacture including instructions that
implement various aspects of the functions / actions specified
in one or more blocks in the flowcharts and / or block
diagrams .
[0082] The computer - readable program instructions may
also be loaded to a computer , a further programmable data
processing apparatus , or a further device , so that a series of
operating steps may be performed on the computer , the
further programmable data processing apparatus , or the

further device to produce a computer - implemented process ,
such that the instructions executed on the computer , the
further programmable data processing apparatus , or the
further device may implement the functions / actions speci
fied in one or more blocks in the flowcharts and / or block
diagrams .
[0083] The flowcharts and block diagrams in the drawings
illustrate the architectures , functions , and operations of
possible implementations of the systems , methods , and
computer program products according to various embodi
ments of the present disclosure . In this regard , each block in
the flowcharts or block diagrams may represent a module , a
program segment , or part of an instruction , the module ,
program segment , or part of an instruction including one or
more executable instructions for implementing specified
logical functions . In some alternative implementations ,
functions marked in the blocks may also occur in an order
different from that marked in the accompanying drawings .
For example , two successive blocks may actually be
executed in parallel substantially , or they may be executed
in an opposite order sometimes , depending on the functions
involved . It should be further noted that each block in the
block diagrams and / or flowcharts as well as a combination
of blocks in the block diagrams and / or flowcharts may be
implemented by using a special hardware - based system for
executing specified functions or actions or by a combination
of special hardware and computer instructions .
[0084] Various embodiments of the present disclosure
have been described above . The foregoing description is
illustrative rather than exhaustive , and is not limited to the
disclosed embodiments . Numerous modifications and altera
tions are apparent to those of ordinary skill in the art without
departing from the scope and spirit of the illustrated embodi
ments . The selection of terms used herein is intended to best
explain the principles and practical applications of the
embodiments or the improvements to technologies on the
market , or to enable other persons of ordinary skill in the art
to understand the embodiments disclosed herein .

1. A method for managing threads , comprising :
acquiring respective runtime addresses and call informa

tion of a plurality of lock objects in a plurality of
threads ;

determining , from the plurality of lock objects , a first
group of lock objects associated with first call infor
mation and a second group of lock objects associated
with second call information different from the first call
information ; and

providing an indication that a deadlock exists in the
plurality of threads if it is determined that a first group
of runtime addresses of the first group of lock objects
overlaps with a second group of runtime addresses of
the second group of lock objects .

2. The method according to claim 1 , wherein providing
the indication comprises :

sorting the first group of lock objects and the second
group of lock objects according to the first group of
runtime addresses and the second group of runtime
addresses ; and

providing the indication if it is determined that a first lock
object in the first group of lock objects is ranked lower
than a second lock object in the second group of lock
objects .

3. The method according to claim 1 , wherein the first
group of lock objects corresponds to a first lock in a static

a

a

US 2022/0214876 A1 Jul . 7. 2022
8

a

a

a

a

code , and the second group of lock objects corresponds to a
second lock in the static code and different from the first
lock .

4. The method according to claim 3 , wherein a first static
address of the first lock in a code segment is located before
a second static address of the second lock in the code
segment .

5. The method according to claim 3 , wherein the indica
tion comprises a name of the first lock and a name of the
second lock .

6. The method according to claim 3 , wherein the first call
information comprises a first jump address corresponding to
the first lock , and the second call information comprises a
second jump address corresponding to the second lock .

7. The method according to claim 6 , further comprising :
disassembling constructor functions of the first lock and

the second lock to determine the first jump address and
the second jump address .

8. An electronic device , comprising :
at least one processor ; and
at least one memory storing computer program instruc

tions , the at least one memory and the computer pro
gram instructions being configured to cause , together
with the at least one processor , the electronic device to
perform actions comprising :
acquiring respective runtime addresses and call infor

mation of a plurality of lock objects in a plurality of
threads ;

determining , from the plurality of lock objects , a first
group of lock objects associated with first call infor
mation and a second group of lock objects associated
with second call information different from the first
call information ; and

providing an indication that a deadlock exists in the
plurality of threads if it is determined that a first
group of runtime addresses of the first group of lock
objects overlaps with a second group of runtime
addresses of the second group of lock objects .

9. The electronic device according to claim 8 , wherein
providing the indication comprises :

sorting the first group of lock objects and the second
group of lock objects according to the first group of
runtime addresses and the second group of runtime
addresses ; and

providing the indication if it is determined that a first lock
object in the first group of lock objects is ranked lower
than a second lock object in the second group of lock objects .

10. The electronic device according to claim 8 , wherein
the first group of lock objects corresponds to a first lock in
a static code , and the second group of lock objects corre
sponds to a second lock in the static code and different from
the first lock .

11. The electronic device according to claim 10 , wherein
a first static address of the first lock in a code segment is
located before a second static address of the second lock in
the code segment .

12. The electronic device according to claim 10 , wherein
the indication comprises a name of the first lock and a name
of the second lock .

13. The electronic device according to claim 10 , wherein
the first call information comprises a first jump address
corresponding to the first lock , and the second call infor
mation comprises a second jump address corresponding to
the second lock .

14. The electronic device according to claim 13 , wherein
the actions further comprise :

disassembling constructor functions of the first lock and
the second lock to determine the first jump address and
the second jump address .

15. A computer program product having a non - transitory
computer readable medium which stores a set of instructions
to manage threads ; the set of instructions , when carried out
by computerized circuitry , causing the computerized cir
cuitry to perform a method of :

acquiring respective runtime addresses and call informa
tion of a plurality of lock objects in a plurality of
threads ;

determining , from the plurality of lock objects , a first
group of lock objects associated with first call infor
mation and a second group of lock objects associated
with second call information different from the first call
information ; and

providing an indication that a deadlock exists in the
plurality of threads if it is determined that a first group
of runtime addresses of the first group of lock objects
overlaps with a second group of runtime addresses of
the second group of lock objects .

a

