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ARRAY-BASED TARGETED COPY NUMBER
DETECTION

BACKGROUND

[0001] Copy number detection can be performed with
multiple types of arrays for genotyping, cytogenetics, or
methylation. The Infinium BeadArray technology, as one
example, offered by Illumina, Inc., San Diego, California,
supports copy number detection in two modes: a discovery
mode and a targeted mode. For the discovery mode, copy
number variation/variant (CNV) events can be detected in an
unbiased way in unknown regions of the genome, while in
the targeted mode copy number change (i.e., CNV) detection
is focused on specific genomic regions of interest.

[0002] CNVs are involved in many types of human dis-
eases, such as neuropsychiatric disorders, developmental
disorders, cardiovascular diseases, autoimmune diseases,
and cancer, as examples. As a result, copy number detection
assays have been useful in clinical applications, such as
cytogenetics, carrier screening, pharmacogenomics, and
precision medicine. Copy number detection also proves
useful in veterinary genetics and other non-human genetics
applications.

SUMMARY

[0003] Shortcomings of the prior art are overcome and
additional advantages are provided through the provision of
a computer-implemented method. The method includes
obtaining a collection of intensity signals from assays of a
set of input samples including genetic material, and per-
forming a cross-sample calibration on the intensity signals
of the collection of intensity signals based on one or more
reference samples. The performing the cross-sample cali-
bration includes: constructing a reference signal distribution
based on intensity signals of the one or more reference
samples; and for one or more input samples of the set of
input samples: obtaining a respective set of intensity signals,
of the collection of intensity signals, corresponding to that
input sample, the set of intensity signals corresponding to
the input sample including (i) a first subset, C, of intensity
signals from one or more targeted genomic regions of
interest and (ii) a second subset, B, of intensity signals from
at least one genomic regions outside the one or more
targeted genomic regions of interest, and calibrating the
intensity signals in C based on the reference signal distri-
bution, to produce a respective calibrated set of intensity
signals corresponding to the input sample. The method
additionally includes determining, for the one or more input
samples, and from a respective one or more calibrated sets
of intensity signals corresponding to the one or more input
samples, a respective at least one aggregated calibrated
signal from the one or more targeted genomic regions of
interest, wherein the determining produces a collection of
aggregated calibrated signals, and detecting one or more
variants in the one or more targeted genomic regions of
interest based on the collection of aggregated calibrated
signals.

[0004] Further, a computer system is provided that
includes a memory and a processor in communication with
the memory, wherein the computer system is configured to
perform a method for improved calling of copy number
variants in a genomic sequence. The method includes
obtaining a collection of intensity signals from assays of a
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set of input samples including genetic material, and per-
forming a cross-sample calibration on the intensity signals
of the collection of intensity signals based on one or more
reference samples. The performing the cross-sample cali-
bration includes: constructing a reference signal distribution
based on intensity signals of the one or more reference
samples; and for one or more input samples of the set of
input samples: obtaining a respective set of intensity signals,
of the collection of intensity signals, corresponding to that
input sample, the set of intensity signals corresponding to
the input sample including (i) a first subset, C, of intensity
signals from one or more targeted genomic regions of
interest and (ii) a second subset, B, of intensity signals from
at least one genomic regions outside the one or more
targeted genomic regions of interest, and calibrating the
intensity signals in C based on the reference signal distri-
bution, to produce a respective calibrated set of intensity
signals corresponding to the input sample. The method
additionally includes determining, for the one or more input
samples, and from a respective one or more calibrated sets
of intensity signals corresponding to the one or more input
samples, a respective at least one aggregated calibrated
signal from the one or more targeted genomic regions of
interest, wherein the determining produces a collection of
aggregated calibrated signals, and detecting one or more
variants in the one or more targeted genomic regions of
interest based on the collection of aggregated calibrated
signals.

[0005] Yet further, a computer program product including
a computer readable storage medium readable by a process-
ing circuit and storing instructions for execution by the
processing circuit is provided for performing a method for
improved calling of copy number variants in a genomic
sequence. The method includes obtaining a collection of
intensity signals from assays of a set of input samples
including genetic material, and performing a cross-sample
calibration on the intensity signals of the collection of
intensity signals based on one or more reference samples.
The performing the cross-sample calibration includes: con-
structing a reference signal distribution based on intensity
signals of the one or more reference samples; and for one or
more input samples of the set of input samples: obtaining a
respective set of intensity signals, of the collection of
intensity signals, corresponding to that input sample, the set
of intensity signals corresponding to the input sample
including (i) a first subset, C, of intensity signals from one
or more targeted genomic regions of interest and (ii) a
second subset, B, of intensity signals from at least one
genomic regions outside the one or more targeted genomic
regions of interest, and calibrating the intensity signals in C
based on the reference signal distribution, to produce a
respective calibrated set of intensity signals corresponding
to the input sample. The method additionally includes deter-
mining, for the one or more input samples, and from a
respective one or more calibrated sets of intensity signals
corresponding to the one or more input samples, a respective
at least one aggregated calibrated signal from the one or
more targeted genomic regions of interest, wherein the
determining produces a collection of aggregated calibrated
signals, and detecting one or more variants in the one or
more targeted genomic regions of interest based on the
collection of aggregated calibrated signals.

[0006] In one or more embodiments, the calibrating of the
intensity signals in C, of the set of intensity signals corre-



US 2024/0282406 Al

sponding to the input sample, includes building a mapping
for that input sample based on relations between (i) the
intensity signals in B and (i) the reference signal distribu-
tion.

[0007] In one or more embodiments, the building the
mapping includes defining a mapping function M(x) such
that M(x) maps intensity signal x as: for x existing in B,
M(x)=a matching intensity signal from a vector, A, of
reference signal intensities, from the reference signal distri-
bution, corresponding to the at least one genomic regions
outside the one or more targeted genomic regions of interest;
for x not existing in B but falling between multiple intensity
signals in B, M(x)=a linear interpolation based on the M(x)
mappings of the multiple intensity signals in B; and for x not
existing in B and not falling within a range of the intensity
signals in B, M(X)=an extrapolation based on mappings of
highest and lowest quantiles in B.

[0008] In one or more embodiments, the constructing the
reference signal distribution computes the vector A as cross-
sample medians of autosomal array probes that are outside
the one or more targeted genomic regions of interest.
[0009] In one or more embodiments, the calibrating the
intensity signals in C further includes using the mapping
function to map the intensity signals in C to produce the
calibrated set of intensity signals corresponding to the input
sample.

[0010] In one or more embodiments, the obtaining the
collection of intensity signals includes, for the set of input
samples, using a set of array hybridization control probes to
identify probe hybridization biases by aggregating row-
based normalized raw intensity values from the control
probes into an aggregated value c,, aggregating row-based
normalized intensity values from assays targeting human
genomic material into an aggregated value x,, and deter-
mining a contamination factor £ as a function of x; and c_,
where f, x; and c; are determined per input sample.

[0011] In one or more embodiments, the function for
contamination factor f, is: f=x/c,.

[0012] In one or more embodiments, the determining, for
the one or more input samples, and from the respective one
or more calibrated sets of intensity signals corresponding to
the one or more input samples, the respective at least one
aggregated calibrated signal includes, for an aggregated
calibrated signal of the at least one aggregated calibrated
signal: determining a first aggregated signal from a cali-
brated set of intensity signals corresponding to a targeted
region of the input sample, and using the contamination
factor to correct the first aggregated signal and produce a
second aggregated signal, wherein the second aggregated
signal is output as the aggregated calibrated signal for the
targeted region of the input sample.

[0013] In one or more embodiments, the using the con-
tamination factor and producing the second aggregated
signal includes (i) using a regression-based model to predict
contribution of contamination based on the contamination
factor, (ii) determining a residue as a function of the first
aggregated signal and the contribution of contamination
predicted by the model, and (iii) determining the second
aggregated signal as a function of the residue and a com-
posite contamination factor from across the input samples.
[0014] In one or more embodiments, the one or more
variants are one or more copy number variants.

[0015] In one or more embodiments, none of (i) deoxyri-
bonucleic acid (DNA) quantification of the input samples,
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(i1) normalization of the input samples, and (iii) prior
measurements of fraction or amount of DNA contaminant in
the input samples is known or required in performing the
method.

[0016] In one or more embodiments, the input samples of
the set of input samples contains at least one of (i) variable
amounts or concentrations of deoxyribonucleic acid (DNA)
relative to each other or (ii) different fractions of contami-
nant DNA relative to each other.

[0017] In one or more embodiments, the collection of
intensity signals is from a high-throughput genotyping plat-
form genotyping the input samples using a microarray-based
genotyping platform.

[0018] Additional features and advantages are realized
through the concepts described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] Aspects described herein are particularly pointed
out and distinctly claimed as examples in the claims at the
conclusion of the specification. The foregoing and other
objects, features, and advantages of the disclosure are appar-
ent from the following detailed description taken in con-
junction with the accompanying drawings in which:

[0020] FIG. 1 depicts an example approach for construct-
ing a microarray for targeted copy number detection using a
high-throughput genotyping platform;

[0021] FIGS. 2-3 illustrate example impacts of contami-
nation and total target deoxyribonucleic acid amount on
signal intensity;

[0022] FIGS. 4-6 illustrate example comparisons between
capabilities of aspects described herein and a prior method
for CNV calling;

[0023] FIG. 7A depicts an example process for array-
based targeted copy number variant detection, in accordance
with aspects described herein;

[0024] FIG. 7B depicts an example process for signal
correction based on a contamination factor, in accordance
with aspects described herein; and

[0025] FIG. 8 depicts an example of a computer system
and associated devices to incorporate and/or use aspects
described herein.

DETAILED DESCRIPTION

[0026] Described herein are approaches for array-based
targeted copy number detection, for instance detection on
contaminated and/or variable concentration samples. For
instance, example approaches enable, facilitate, and provide
accurate copy number determinations on samples, including,
for instance, samples with (i) variable amounts of input
deoxyribonucleic acid (DNA), and/or (ii) variable fractions
of contaminant DNA.

[0027] Methods exist for targeted copy number detection
using a high-throughput genotyping platform. In one
example, a microarray-based genotyping platform is used.
FIG. 1 depicts an example approach for constructing a
microarray for targeted copy number detection using a
high-throughput genotyping platform. Referring to FIG. 1, a
silicon wafer 102 is initially obtained and, at 110, a photo
resist 104 is disposed/patterned onto substrate layer 106 of
the wafer. Plasma etching (112) etches microwells into the
substrate 106. This is followed by a cleaning step 114 to
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remove the photo resist 104. A pattern/array of wells is
formed into which beads 108 are disposed to produce (116)
the microarray.

[0028] The BeadArray microarray technology offered by
[Mumina, Inc. of San Diego, California is used by way of
example. The BeadArray microarray technology uses silica
microbeads, in which, on the surface of each array, or
BeadChip, hundreds of thousands to millions of genotypes
for a single individual can be assayed at once. The tiny silica
beads are housed in the carefully etched microwells and
coated with multiple copies of an oligonucleotide probe
targeting a specific locus in the genome. As DNA fragments
pass over the BeadChip, each probe binds to a complemen-
tary sequence in the sample DNA, stopping one base before
the locus of interest. Allele specificity is conferred by a
single base extension that incorporates one of four labeled
nucleotides. When excited by a laser, the nucleotide label
emits a signal. The intensity of that signal conveys infor-
mation about the allelic ratio at that locus.

[0029] Genetic Variant Detection with Contaminated and/
or variable-concentration Saliva DNA Samples: As a non-
invasive source for DNA, saliva is an important sample type
in genomics. Analysis of saliva DNA enables routine direct-
to-consumer (DTC), research, and/or clinical genomics
applications. The saliva sample type, however, poses some
unique challenges for accurate genetic variant detection due
to the presence and variability of non-human contaminant
DNA, as well as the variability in total DNA concentration.
For instance, it has been shown that false positive rate for
SNV detection was slightly higher in saliva and buccal
samples, while the sensitivity of CNV detection was up to
25% lower for saliva samples compare to blood, and it has
been shown that with whole genome sequencing, over 95%
of SNVs found in saliva were concordant with the paired
blood samples, while for CNVs only 75% are concordant. In
general, CNV detection is much more challenging when
dealing with saliva samples as compared to blood samples.

[0030] Aspects described herein present methods to
address the saliva-specific challenges of CNV detection, and
thereby enable more accurate CNV calling for genetic
applications, such as pharmacogenomics and carrier screen-
ing (as examples) on saliva samples as the DNA source. For
instance, aspects enable more accurate saliva DNA-based
CNV detection in situations of unknown/variable DNA
concentration and/or unknown/variable fraction of contami-
nation. It advantageously does not require DNA quantifica-
tion or normalization of the input DNA sample, or prior
measurements on the fraction or amount of DNA contami-
nant. Meanwhile, it supports a set of samples each with (i)
a different amount/concentration of DNA and/or (ii) a dif-
ferent fraction of contaminant DNA. In accordance with
aspects presented herein, CNV detection using a set of saliva
samples can work almost as well as detection using a set of
normalization DNA samples without contamination.

[0031] Signal Aggregation with a Target Genomic Region:
To enable CNV detection for a specific target region in the
genome, and by way of one specific example, a variable
number of target-specific 50-mer DNA probes are designed
to provide complementary assays with 3' DNA ends span-
ning the target region. The intensity signals from all assays
are captured by a scanner (for instance the iScan System
offered by Illumina, Inc.), and then individual assays are
normalized, weighted, and aggregated.
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[0032] Specifically, for a target region t for sample s, the
aggregated signal x,, is given by Eq. 1 as:

(Eq. 1)

_ r
Xis = i—lw”'xﬁs’

where i indicates the assay, w,; is the assay-specific weight-
ing, and x,;, is the intensity or normalized intensity signal
(e.g., R the total intensity from red and green channel, or
LRR the log R ratio) for a specific assay i in sample s.

A. Cross-Sample Calibration of Intensity Signals
Based on Reference Samples

[0033] Contamination leads to differences in the intensity
profiles among samples with different levels of contaminants
and human DNA quality. In a first aspect, an approach is
provided to correct for systematic signal differences by (i)
constructing a reference signal distribution and (ii) perform-
ing reference-based calibration of a sample. A quantile
normalization algorithm can operate across a whole chip
containing multiple samples.

[0034] A reference intensity distribution is constructed by
identifying a set of reference samples, where low quality
samples have been removed. On the reference set, a process
computes a reference intensity vector A, a vector of refer-
ence intensity values, as the cross-sample medians of auto-
somal array probes (e.g., Infinium genotyping assay) that are
outside the target regions of interest in the samples. The
reference intensity values are further sorted to form A as a
reference quantile vector, i.e., as a sorted/ranked list of
intensity values. Missing values may be retained as the
lowest quantiles during the construction of this reference
quantile vector, thus, signal intensities that are low quantile
correspond to missing values.

[0035] The following process can then be used for cali-
bration of new sample(s). For each new sample, the process
splits the array signals for that sample into two subsets: a set
B containing intensity signals from all autosomal array
probes (e.g., Infinium genotyping assay) that are outside the
target region(s) of interest for that sample, and a set C
containing all the remaining intensity signals for that sample
(i.e., that were not included in set B). Then with A and B, the
process defines a mapping M of the signal intensity quan-
tiles, i.e., a function for calibrating any given intensity value
X in that sample, as follows:

[0036] For any intensity value x in B, M(x) is defined as
the matching quantile value in A (as B may be sorted in
the same way as to form quantile vectors);

[0037] For any intensity value x not in B but falling
within the range of intensity values in B (i.e., between
two adjacent values in B), M(x) is defined as the linear
interpolation based on values in B (for instance an
interpolation local to the values in B that are closest to
x); and

[0038] For any intensity value x outside a range of
intensity values in B, M(x) is defined as the extrapo-
lation based on the highest and lowest quantiles (for
instance, the top 100 highest intensities and bottom 100
lowest intensities, as an example) in B.

[0039] Once the mapping M is defined based on A and B,
the process then calibrates every intensity value x in C as
M(c) to produce calibrated individual intensities which may
be used for target copy number detection. Specifically, for
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each CNV target t region of sample s, the aggregated signal
(X,,) is calculated using the individual calibrated intensities,
of C and from that region t, as substituted into Eq. 1 above,
i.e., as shown in Eq. 2 as follows:

Xes = Zilwri - M (xgs) (Eq. 2)

[0040] In Eq. 2, the x,,, term of Eq. 1 (the ‘regular
intensity’) has been replaced with M(x,;.), the calibrated
intensity. x,, of Eq. 2 thereby provides an aggregated cali-
brated signal for that region t of sample s, based on which
copy number can be determined.

[0041] Therefore, the cross-sample calibration of Section
A provides, as a first aspect, cross-sample intensity signal
calibration based on reference sample intensity signals. In
embodiments, this aspect can be used in conjunction with
other aspect(s) described herein, for instance aspects
described below in Section B (control-based sample-specific
contamination adjustment), though such use together is
optional. In other words, each aspect (Section A, Section B)
could be used separate/independent/apart from the other, if
desired.

B. Internal Control-Based Sample Specific
Contamination Adjustment

[0042] Control-based sample-specific  contamination
adjustment is directed to adjustments that address variable
levels of contamination in a given sample. This aspect
attempts to estimate a contamination level, directly, in the
sample, and then adjust an aggregated signal (which may
optionally be an aggregated calibrated signal as discussed in
Section A above) based on the estimated contamination
level.

[0043] For each sample, a set of array hybridization con-
trol probes (e.g., Infinium genotyping assays) are used to
enable the correction of contamination. The controls are
used to access the overall probe hybridization biases coming
from the experiment itself—e.g., reagent and other assay
conditions—rather than from human DNA or non-human
DNA contamination. In other words, the controls enable the
measurement of the assay efficiency in the DNA’s input
independently by measuring the assay itself exclusive of the
amount of DNA put into the assay. The control intensities are
subjected to a normalization procedure, for example a row-
wise normalization procedure in accordance with aspects
presented herein. Specifically, a process normalizes raw
intensities by removing some measure, such as the median,
of samples in the same rows on the arrays, and then adding
back a global measure (e.g., the global median). The process
then aggregates the row-normalized intensities for all
hybridization probes into an aggregated value c,.

[0044] With the same general approach as for the controls,
a process aggregates all assays targeting the human auto-
somes into an aggregated value, x,, as a metric for accessing
the abundance of the overall human DNA. The x measure
therefore provides the intensity from the other (i.e., other
than the control) probes, and therefore the ratio of the x_ and
c, values is used to represent the proportion of human DNA
in the sample. Thus, a Control-adjusted Contamination
(CACQ) factor is determined as f =x/c,.

[0045] A process can then use the CAC factor to adjust a
target-specific array signal x,, in a sample specific manner
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before assigning copy numbers. In embodiments in which
this contamination adjustment is used in conjunction with
the cross-sample calibration approach of Section A above,
the x,, being adjusted may be the x,, of Eq. 2 (the aggregated
calibrated signal). For instance, a cross-sample calibration
on intensity signals based on reference sample(s) is per-
formed in which the reference signal distribution is con-
structed, intensity signals corresponding to an input sample
are obtained and divided into sets B and C, and the intensity
signals in C are calibrated as discussed above. Then, after
performing this cross-sample calibration, the CAC factor
can be used to adjust signal(s), such as individual calibrated
signals and/or an aggregated signal x,,. Alternatively, if the
control-based sample specific contamination adjustment of
Section B is not used conjunction with the cross-sample
calibration approach of Section A, then the x,, being adjusted
may be the x,, of Eq. 1.

[0046] The adjustment of the target-specific array signal
x,, using the CAC factor estimates an impact of contamina-
tion on the observed signal. Specifically, regression-based
model Model, such as a linear or non-linear machine learn-
ing model, or any complex prediction model, is built to
predict the target intensity signals (x,,) from the CAC
metrics f, across all samples in order to determine the
contribution of contamination on the observed signal (x,,) of
the sample. Removal of that contribution from the observed
signal provides a “residual”—adjusted intensity signal-—as
the signal observed and attributable to the copy number,
which may be the primary piece of information of interest.
[0047] Therefore, the process updates the target intensity
signals as the residues of the predictor, i.e., using Eq. 3 as
follows:

ris = Xis—Model(f) (Eq. 3)

[0048] An adjusted/corrected intensity signal (x',) is
obtained as the residue r,, offset by m, the median of Model
(f,), over all samples s, i.e.:

x}s = rs+median{Model( £, )} (Eq. 4)

[0049] The corrected intensity signals (x',) over the
samples are then used to determine copy number. This is in
contrast to using the initial intensity signals over the samples
(i.e., the x,, of Eq. 1 or Eq. 2).

[0050] FIGS. 2-3 illustrate example impacts of contami-
nation and total target DNA amount on signal intensity, and
FIGS. 4-6 illustrate example comparisons between the capa-
bilities of aspects described herein and a prior method for
CNV calling. Specifically, FIG. 2 depicts a graphical rep-
resentation of the impact of contamination on aggregated
intensity signal across target true copy numbers. It is seen
that contamination levels in saliva samples directly impact
the signal range and signal-to-noise ratio (SNR) coming
from the array, and hence adversely affect the copy number
assignment. Artificial saliva samples were used in this
analysis for demonstrative purposes, and the specific target
shown is the CYP2D6 5' flanking region.

[0051] FIG. 3 depicts a graphical representation of the
impact of total target DNA input amount on intensity signal
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variability and biases across three runs. Here the Infinium
assay (by way of example) intensity signal variation
increases with a decreasing amount of human DNA input.
The same set of real saliva samples were run in the three
different conditions. In each such condition, a significant
correlation was observed between total target DNA amount
and signal variability.

[0052] FIG. 4 depicts a graphical representation of a
comparison between (i) CNV detection methods as dis-
closed herein (“Current Method”, encompassing both
aspects Section A and B above) and (ii) a conventional CNV
detection method (“Previous Method”) in terms of CNV
Calling accuracy (represented by F-measure) in both (a) cell
line DNA samples (i.e., without contamination) and (b)
human saliva DNA samples (i.e., with contamination). It is
seen that the Current Method provides equal/improved CNV
Calling accuracy on (a), and significantly improved CNV
calling accuracy on (b). Note that all saliva samples regard-
less of contamination levels were included in the accuracy
evaluation here, however filtering of the saliva sample can
lead to further improved accuracy levels.

[0053] FIG. 5 depicts two graphical representations, 502,
504. First graphical representation (502, on top) provides a
representation of artificial contaminated samples created
with human DNA mixed with varying degrees of contami-
nations (ranging from 10% to 90%, centered around 50%).
Second graphical representation (504, on bottom) provides
a comparison between (i) CNV detection methods as dis-
closed herein (“Current Method”, encompassing both
aspects Section A and B above) and (ii) a conventional CNV
detection method (“Previous Method”) in terms of CNV
Calling accuracy (represented by F-measure) for the artifi-
cial contaminated samples and at three different total DNA
input amounts (in nanograms—ng) subjected to array analy-
sis and CNV detection. The proposed CNV detection
method disclosed herein (“Current Method”, encompassing
both aspects Section A and B above) provided improved
accuracy for these artificial samples at all three input amount
levels. Note that samples at all contamination levels were
included in the accuracy evaluation here, however removal
of samples with highest levels of contamination can lead to
further improved accuracy levels.

[0054] FIG. 6 depicts a graphical representation of a
comparison between (i) CNV detection methods as dis-
closed herein (“Current Method”, encompassing both
aspects Section A and B above) and (ii) a conventional CNV
detection method (“Previous Method”) in terms of CNV
Calling accuracy (represented by F-measure) in structural
variant star allele detection for pharmacogenomics gene
CYP2D6 across six Sets, and demonstrates improved such
detection by the Current Method in comparison to the
Previous Method.

[0055] Accordingly, FIGS. 7A and 7B depict example
processes in accordance with aspects described herein. The
processes may be executed, in one or more examples, by a
processor or processing circuitry of one or more computers/
computer systems, such as those described herein. For
instance, code or instructions implementing the process(es)
of FIGS. 7A and/or 7B may be part of modules of software/
computer program(s).

[0056] FIG. 7A depicts an example process for array-
based targeted copy number variant detection. The process
may be useful in situations of unknown/variable concentra-
tion samples, for example. Referring initially to FIG. 7A, the
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process obtains (702) a collection of intensity signals from
assays of a set of input samples comprising genetic material.
In examples, the collection of intensity signals is from a
high-throughput genotyping platform genotyping the input
samples using a microarray-based genotyping platform. The
process continues by performing (704) a cross-sample cali-
bration on the intensity signals of the collection of intensity
signals based on reference sample(s).

[0057] Performing the cross-sample calibration includes,
for example, constructing a reference signal distribution
based on intensity signals of the reference sample(s), and
also includes, for each of the input sample(s) of the set of
input samples, performing (a) obtaining a respective set of
intensity signals, of the collection of intensity signals, cor-
responding to that input sample (where the set of intensity
signals corresponding to the input sample includes (i) a first
subset, C, of intensity signals from targeted genomic region
(s) of interest and (ii) a second subset, B, of intensity signals
from genomic region(s) outside the targeted genomic region
(s) of interest), and (b) calibrating the intensity signals in C
based on the reference signal distribution, to produce a
respective calibrated set of intensity signals corresponding
to the input sample.

[0058] Calibrating of the intensity signals in C, of the set
of intensity signals corresponding to the input sample, can
include building a mapping for that input sample based on
relations between (i) the intensity signals in B and (ii) the
reference signal distribution. As an example, building the
mapping can include defining a mapping function M(x). By
way of example, M(x) can map intensity signal x as: (i) for
x existing in B, M(x)=a matching intensity signal from a
vector, A, of reference signal intensities, from the reference
signal distribution, corresponding to the genomic region(s)
outside the targeted genomic region(s) of interest; (ii) for x
not existing in B but falling between multiple intensity
signals in B, M(x)=a linear interpolation based on the M(x)
mappings of the multiple intensity signals in B; and (iii) for
X not existing in B and not falling within a range of the
intensity signals in B, M(x)=an extrapolation based on
mappings of highest and lowest quantiles in B.

[0059] In some examples, the constructing the reference
signal distribution computes the vector A as cross-sample
medians of autosomal array probes that are outside the
targeted genomic region(s) of interest.

[0060] In some examples, calibrating the intensity signals
in C further includes using the mapping function to map the
intensity signals in C to produce the calibrated set of
intensity signals corresponding to the input sample.

[0061] Referring back to FIG. 7A, and based on the
cross-sample calibration (704), the process continues by, for
each next input sample (706) of the one or more input
samples, and from a respective one or more calibrated sets
of intensity signals corresponding to the one or more input
samples, determining (708) a respective at least one aggre-
gated calibrated signal from the targeted genomic region(s)
of interest. The determining can thus produce a collection of
aggregated calibrated signals. The process then continues to
detecting (710) variant(s) in the targeted genomic region(s)
of interest based on the collection of aggregated calibrated
signals. In examples, the variant(s) is/are copy number
variant(s).

[0062] In some examples, obtaining the collection of
intensity signals includes correcting for contamination, for
instance as described herein above and with reference to
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FIG. 7B below. For instance, in the context of the process of
FIG. 7A, obtaining the collection of intensity signals (702)
can include, for the set of input samples, using a set of array
hybridization control probes to identify probe hybridization
biases by (i) aggregating row-based normalized raw inten-
sity values from the control probes into an aggregated value
c,, (i) aggregating row-based normalized intensity values
from assays targeting human genomic material into an
aggregated value x, and (iii) determining a contamination
factor {; as a function of x, and c,, where {, x; and c, are
determined per input sample. In examples, the function for
contamination factor {; is: f=x/c.. Then, in embodiments,
the determining (708), for the one or more input samples,
and from the respective one or more calibrated sets of
intensity signals corresponding to the one or more input
samples, the respective at least one aggregated calibrated
signal (for instance one per targeted region of the targeted
region(s) of the sample) includes, for an aggregated cali-
brated signal of the at least one aggregated calibrated signal:
(1) determining a first aggregated signal from a calibrated set
of intensity signals corresponding to a targeted region of the
input sample; and using the contamination factor to correct
the first aggregated signal and produce a second aggregated
signal, where the second aggregated signal is output as the
aggregated calibrated signal for the targeted region of the
input sample.

[0063] In examples, using the contamination factor and
producing the second aggregated signal includes using a
regression-based model to predict contribution of contami-
nation based on the contamination factor, determining a
residue as a function of the first aggregated signal and the
contribution of contamination predicted by the model, and
determining the second aggregated signal as a function of
the residue and a composite contamination factor from
across the input samples.

[0064] Accordingly, the input samples of the set of input
samples can contain at least one of (i) variable amounts or
concentrations of DN A relative to each other, or (ii) different
fractions of contaminant DNA relative to each other, and,
additionally, none of (i) DNA quantification of the input
samples, (ii) normalization of the input samples, and (iii)
prior measurements of fraction or amount of DNA contami-
nant in the input samples is known or required, in order to
perform processes described herein and arrive at accurate
variant detection results.

[0065] FIG. 7B depicts an example process for signal
correction based on a contamination factor, in accordance
with aspects described herein. The signal correction can be
performed as part of a process, such as described above with
reference to FIG. 7A, or as a standalone correction, as an
example. Referring to FIG. 7B, the process obtains (720) a
collection of intensity signals from assays of a set of input
samples comprising genetic material. The collection of
intensity signals is from a high-throughput genotyping plat-
form genotyping the input samples using a microarray-based
genotyping platform, for example. The process continues by
using (722) a set of array hybridization control probes to
identify probe hybridization biases by aggregating row-
based normalized raw intensity values from the control
probes into an aggregated value c,, aggregating row-based
normalized intensity values from assays targeting human
genomic material into an aggregated value x,, and deter-
mining a contamination factor f; as a function of x; and c,,
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where f, x; and c; are determined per input sample of the set
of input samples. In examples, the function for contamina-
tion factor f; is: f=xJc..

[0066] Using the contamination factor, the process cor-
rects (724) a first signal obtained based on intensity signals
of the collection of intensity signals and produces a cor-
rected signal. In examples, using the contamination factor
and producing the corrected signal includes (i) using a
regression-based model to predict contribution of contami-
nation based on the contamination factor, (ii) determining a
residue as a function of the first signal and the contribution
of contamination predicted by the model, and (iii) determin-
ing the corrected signal as a function of the residue and a
composite contamination factor from across the input
samples. The first signal may be a first aggregated signal
from a set of the intensity signals of the collection of
intensity signals, with the first aggregated signal correspond-
ing to a target region of an input sample of the set of input
samples, and the corrected signal may be a corrected aggre-
gated signal, for instance for that target region of the input
sample.

[0067] A sampling of aspects described herein is as fol-
lows:
[0068] Al.A computer-implemented method comprising:

obtaining a collection of intensity signals from assays of a
set of input samples comprising genetic material; perform-
ing a cross-sample calibration on the intensity signals of the
collection of intensity signals based on one or more refer-
ence samples, the performing the cross-sample calibration
comprising: constructing a reference signal distribution
based on intensity signals of the one or more reference
samples; and for one or more input samples of the set of
input samples: obtaining a respective set of intensity signals,
of the collection of intensity signals, corresponding to that
input sample, the set of intensity signals corresponding to
the input sample comprising (i) a first subset, C, of intensity
signals from one or more targeted genomic regions of
interest and (ii) a second subset, B, of intensity signals from
at least one genomic regions outside the one or more
targeted genomic regions of interest; and calibrating the
intensity signals in C based on the reference signal distri-
bution, to produce a respective calibrated set of intensity
signals corresponding to the input sample; determining, for
the one or more input samples, and from a respective one or
more calibrated sets of intensity signals corresponding to the
one or more input samples, a respective at least one aggre-
gated calibrated signal from the one or more targeted
genomic regions of interest, wherein the determining pro-
duces a collection of aggregated calibrated signals; and
detecting one or more variants in the one or more targeted
genomic regions of interest based on the collection of
aggregated calibrated signals.

[0069] A2. The method of A1, wherein the calibrating of
the intensity signals in C, of the set of intensity signals
corresponding to the input sample, comprises building a
mapping for that input sample based on relations between (i)
the intensity signals in B and (ii) the reference signal
distribution.

[0070] A3. The method of A2, wherein the building the
mapping comprises defining a mapping function M(x) such
that M(x) maps intensity signal x as: for x existing in B,
M(x)=a matching intensity signal from a vector, A, of
reference signal intensities, from the reference signal distri-
bution, corresponding to the at least one genomic regions
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outside the one or more targeted genomic regions of interest;
for x not existing in B but falling between multiple intensity
signals in B, M(x)=a linear interpolation based on the M(x)
mappings of the multiple intensity signals in B; and for x not
existing in B and not falling within a range of the intensity
signals in B, M(x)=an extrapolation based on mappings of
highest and lowest quantiles in B.

[0071] Ad4. The method of A3, wherein the constructing
the reference signal distribution computes the vector A as
cross-sample medians of autosomal array probes that are
outside the one or more targeted genomic regions of interest.
[0072] AS5. The method of A3 or A4, wherein the calibrat-
ing the intensity signals in C further comprises using the
mapping function to map the intensity signals in C to
produce the calibrated set of intensity signals corresponding
to the input sample.

[0073] A6. The method of Al, A2, A3, Ad, or A5, wherein
the obtaining the collection of intensity signals comprises,
for the set of input samples, using a set of array hybridization
control probes to identify probe hybridization biases by
aggregating row-based normalized raw intensity values
from the control probes into an aggregated value c,, aggre-
gating row-based normalized intensity values from assays
targeting human genomic material into an aggregated value
X,, and determining a contamination factor f_ as a function of
x,and c,, where f, x_and c_are determined per input sample.
[0074] A7. The method of A6, wherein the function for
contamination factor f, is:

Jo = xs/cs.

[0075] AS8. The method of A6 or A7, wherein the deter-
mining, for the one or more input samples, and from the
respective one or more calibrated sets of intensity signals
corresponding to the one or more input samples, the respec-
tive at least one aggregated calibrated signal comprises, for
an aggregated calibrated signal of the at least one aggregated
calibrated signal: determining a first aggregated signal from
a calibrated set of intensity signals corresponding to a
targeted region of the input sample; and using the contami-
nation factor to correct the first aggregated signal and
produce a second aggregated signal, wherein the second
aggregated signal is output as the aggregated calibrated
signal for the targeted region of the input sample.

[0076] A9. The method of A8, wherein the using the
contamination factor and producing the second aggregated
signal comprises (i) using a regression-based model to
predict contribution of contamination based on the contami-
nation factor, (ii) determining a residue as a function of the
first aggregated signal and the contribution of contamination
predicted by the model, and (iii) determining the second
aggregated signal as a function of the residue and a com-
posite contamination factor from across the input samples.
[0077] A10. The method of A1, A2, A3, A4, A5, A6, A7,
AR8, or A9, wherein the one or more variants are one or more
copy number variants.

[0078] All. The method of Al, A2, A3, A4, A5, A6, A7,
A8, A9, or A10, wherein none of (i) deoxyribonucleic acid
(DNA) quantification of the input samples, (ii) normaliza-
tion of the input samples, and (iii) prior measurements of
fraction or amount of DNA contaminant in the input samples
is known or required in performing the method.
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[0079] A12. The method of Al, A2, A3, A4, A5, A6, A7,
A8, A9, A10, or All, wherein the input samples of the set
of input samples contains at least one of (i) variable amounts
or concentrations of deoxyribonucleic acid (DNA) relative
to each other or (ii) different fractions of contaminant DNA
relative to each other.

[0080] A13. The method of Al, A2, A3, A4, A5, A6, A7,
A8, A9, A10, All, or Al2, wherein the collection of
intensity signals is from a high-throughput genotyping plat-
form genotyping the input samples using a microarray-based
genotyping platform.

[0081] B1.A computer system comprising: a memory; and
a processor in communication with the memory, wherein the
computer system is configured to perform a method com-
prising: obtaining a collection of intensity signals from
assays of a set of input samples comprising genetic material;
performing a cross-sample calibration on the intensity sig-
nals of the collection of intensity signals based on one or
more reference samples, the performing the cross-sample
calibration comprising: constructing a reference signal dis-
tribution based on intensity signals of the one or more
reference samples; and for one or more input samples of the
set of input samples: obtaining a respective set of intensity
signals, of the collection of intensity signals, corresponding
to that input sample, the set of intensity signals correspond-
ing to the input sample comprising (i) a first subset, C, of
intensity signals from one or more targeted genomic regions
of interest and (ii) a second subset, B, of intensity signals
from at least one genomic regions outside the one or more
targeted genomic regions of interest; and calibrating the
intensity signals in C based on the reference signal distri-
bution, to produce a respective calibrated set of intensity
signals corresponding to the input sample; determining, for
the one or more input samples, and from a respective one or
more calibrated sets of intensity signals corresponding to the
one or more input samples, a respective at least one aggre-
gated calibrated signal from the one or more targeted
genomic regions of interest, wherein the determining pro-
duces a collection of aggregated calibrated signals; and
detecting one or more variants in the one or more targeted
genomic regions of interest based on the collection of
aggregated calibrated signals.

[0082] B2. The computer system of Bl, wherein the
calibrating of the intensity signals in C, of the set of intensity
signals corresponding to the input sample, comprises build-
ing a mapping for that input sample based on relations
between (i) the intensity signals in B and (ii) the reference
signal distribution.

[0083] B3. The computer system of B2, wherein the
building the mapping comprises defining a mapping func-
tion M(x) such that M(x) maps intensity signal x as: for x
existing in B, M(x)=a matching intensity signal from a
vector, A, of reference signal intensities, from the reference
signal distribution, corresponding to the at least one
genomiic regions outside the one or more targeted genomic
regions of interest; for X not existing in B but falling between
multiple intensity signals in B, M(x)=a linear interpolation
based on the M(x) mappings of the multiple intensity signals
in B; and for x not existing in B and not falling within a
range of the intensity signals in B, M(x)=an extrapolation
based on mappings of highest and lowest quantiles in B.

[0084] B4. The computer system of B3, wherein the
constructing the reference signal distribution computes the
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vector A as cross-sample medians of autosomal array probes
that are outside the one or more targeted genomic regions of
interest.

[0085] BS. The computer system of B3 or B4, wherein the
calibrating the intensity signals in C further comprises using
the mapping function to map the intensity signals in C to
produce the calibrated set of intensity signals corresponding
to the input sample.

[0086] B6. The computer system of B1, B2, B3, B4, or BS,
wherein the obtaining the collection of intensity signals
comprises, for the set of input samples, using a set of array
hybridization control probes to identify probe hybridization
biases by aggregating row-based normalized raw intensity
values from the control probes into an aggregated value c,,
aggregating row-based normalized intensity values from
assays targeting human genomic material into an aggregated
value x,, and determining a contamination factor f; as a
function of x, and c,, where f, x, and c, are determined per
input sample.

[0087] B7. The computer system of B6, wherein the
function for contamination factor £, is: f=x/c,.

[0088] B8. The computer system of B6 or B7, wherein the
determining, for the one or more input samples, and from the
respective one or more calibrated sets of intensity signals
corresponding to the one or more input samples, the respec-
tive at least one aggregated calibrated signal comprises, for
an aggregated calibrated signal of the at least one aggregated
calibrated signal: determining a first aggregated signal from
a calibrated set of intensity signals corresponding to a
targeted region of the input sample; and using the contami-
nation factor to correct the first aggregated signal and
produce a second aggregated signal, wherein the second
aggregated signal is output as the aggregated calibrated
signal for the targeted region of the input sample.

[0089] BY. The computer system of B8, wherein the using
the contamination factor and producing the second aggre-
gated signal comprises (i) using a regression-based model to
predict contribution of contamination based on the contami-
nation factor, (ii) determining a residue as a function of the
first aggregated signal and the contribution of contamination
predicted by the model, and (iii) determining the second
aggregated signal as a function of the residue and a com-
posite contamination factor from across the input samples.
[0090] B10. The computer system of B1, B2, B3, B4, B5,
B6, B7, B8, or B9, wherein the one or more variants are one
or more copy number variants.

[0091] B11. The computer system of B1, B2, B3, B4, B5,
B6, B7, B8, B9, or B10, wherein none of (i) deoxyribo-
nucleic acid (DNA) quantification of the input samples, (ii)
normalization of the input samples, and (iii) prior measure-
ments of fraction or amount of DNA contaminant in the
input samples is known or required in performing the
method.

[0092] B12. The computer system of B1, B2, B3, B4, B5,
B6, B7, B8, B9, B10, or B11, wherein the input samples of
the set of input samples contains at least one of (i) variable
amounts or concentrations of deoxyribonucleic acid (DNA)
relative to each other or (ii) different fractions of contami-
nant DNA relative to each other.

[0093] B13. The computer system of B1, B2, B3, B4, B5,
B6,B7, B8, B9, B10, B11, or B12, wherein the collection of
intensity signals is from a high-throughput genotyping plat-
form genotyping the input samples using a microarray-based
genotyping platform.
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[0094] C1. A computer program product comprising: a
computer readable storage medium readable by a processing
circuit and storing instructions for execution by the process-
ing circuit for performing a method comprising: obtaining a
collection of intensity signals from assays of a set of input
samples comprising genetic material; performing a cross-
sample calibration on the intensity signals of the collection
of intensity signals based on one or more reference samples,
the performing the cross-sample calibration comprising:
constructing a reference signal distribution based on inten-
sity signals of the one or more reference samples; and for
one or more input samples of the set of input samples:
obtaining a respective set of intensity signals, of the collec-
tion of intensity signals, corresponding to that input sample,
the set of intensity signals corresponding to the input sample
comprising (i) a first subset, C, of intensity signals from one
or more targeted genomic regions of interest and (ii) a
second subset, B, of intensity signals from at least one
genomic regions outside the one or more targeted genomic
regions of interest; and calibrating the intensity signals in C
based on the reference signal distribution, to produce a
respective calibrated set of intensity signals corresponding
to the input sample; determining, for the one or more input
samples, and from a respective one or more calibrated sets
of intensity signals corresponding to the one or more input
samples, a respective at least one aggregated calibrated
signal from the one or more targeted genomic regions of
interest, wherein the determining produces a collection of
aggregated calibrated signals; and detecting one or more
variants in the one or more targeted genomic regions of
interest based on the collection of aggregated calibrated
signals.

[0095] C2. The computer program product of C1, wherein
the calibrating of the intensity signals in C, of the set of
intensity signals corresponding to the input sample, com-
prises building a mapping for that input sample based on
relations between (i) the intensity signals in B and (ii) the
reference signal distribution.

[0096] C3. The computer program product of C2, wherein
the building the mapping comprises defining a mapping
function M(x) such that M(x) maps intensity signal x as: for
x existing in B, M(x)=a matching intensity signal from a
vector, A, of reference signal intensities, from the reference
signal distribution, corresponding to the at least one
genomic regions outside the one or more targeted genomic
regions of interest; for X not existing in B but falling between
multiple intensity signals in B, M(x)=a linear interpolation
based on the M(x) mappings of the multiple intensity signals
in B; and for x not existing in B and not falling within a
range of the intensity signals in B, M(x)=an extrapolation
based on mappings of highest and lowest quantiles in B.
[0097] C4. The computer program product of C3, wherein
the constructing the reference signal distribution computes
the vector A as cross-sample medians of autosomal array
probes that are outside the one or more targeted genomic
regions of interest.

[0098] CS5. The computer program product of C3 or C4,
wherein the calibrating the intensity signals in C further
comprises using the mapping function to map the intensity
signals in C to produce the calibrated set of intensity signals
corresponding to the input sample.

[0099] C6. The computer program product of C1, C2, C3,
C4, or C5, wherein the obtaining the collection of intensity
signals comprises, for the set of input samples, using a set of
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array hybridization control probes to identify probe hybrid-
ization biases by aggregating row-based normalized raw
intensity values from the control probes into an aggregated
value c, aggregating row-based normalized intensity values
from assays targeting human genomic material into an
aggregated value x,, and determining a contamination factor
f, as a function of x, and ¢, where f_, x and c, are determined
per input sample.

[0100] C7. The computer program product of C6, wherein
the function for contamination factor f, is: f=x/c..

[0101] C8. The computer program product of C6 or C7,
wherein the determining, for the one or more input samples,
and from the respective one or more calibrated sets of
intensity signals corresponding to the one or more input
samples, the respective at least one aggregated calibrated
signal comprises, for an aggregated calibrated signal of the
at least one aggregated calibrated signal: determining a first
aggregated signal from a calibrated set of intensity signals
corresponding to a targeted region of the input sample; and
using the contamination factor to correct the first aggregated
signal and produce a second aggregated signal, wherein the
second aggregated signal is output as the aggregated cali-
brated signal for the targeted region of the input sample.
[0102] C9. The computer program product of C8, wherein
the using the contamination factor and producing the second
aggregated signal comprises (i) using a regression-based
model to predict contribution of contamination based on the
contamination factor, (ii) determining a residue as a function
of the first aggregated signal and the contribution of con-
tamination predicted by the model, and (iii) determining the
second aggregated signal as a function of the residue and a
composite contamination factor from across the input
samples.

[0103] C10. The computer program product of C1, C2,
C3, C4, C5, C6, C7, C8, or C9, wherein the one or more
variants are one or more copy number variants.

[0104] C11. The computer program product of C1, C2, C3,
C4, C5, C6, C7, C8, C9, or C10, wherein none of (i)
deoxyribonucleic acid (DNA) quantification of the input
samples, (ii) normalization of the input samples, and (iii)
prior measurements of fraction or amount of DNA contami-
nant in the input samples is known or required in performing
the method.

[0105] C12. The computer program product of C1, C2,
C3, C4, C5, C6, C7, C8, C9, C10, or C11, wherein the input
samples of the set of input samples contains at least one of
(1) variable amounts or concentrations of deoxyribonucleic
acid (DNA) relative to each other or (ii) different fractions
of contaminant DNA relative to each other.

[0106] C13. The computer program product of C1, C2,
C3, C4, C5, C6, C7, C8, C9, C10, C11, or C12, wherein the
collection of intensity signals is from a high-throughput
genotyping platform genotyping the input samples using a
microarray-based genotyping platform.

[0107] DI1.A computer-implemented method comprising:
obtaining a collection of intensity signals from assays of a
set of input samples comprising genetic material; using a set
of array hybridization control probes to identify probe
hybridization biases by aggregating row-based normalized
raw intensity values from the control probes into an aggre-
gated value c,, aggregating row-based normalized intensity
values from assays targeting human genomic material into
an aggregated value x,, and determining a contamination
factor {; as a function of x, and c,, where {, x; and c, are
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determined per input sample of the set of input samples; and
using the contamination factor to correct a first signal
obtained based on intensity signals of the collection of
intensity signals and produce a corrected signal.

[0108] D2. The method of D1, wherein using the contami-
nation factor and producing the corrected signal comprises
(1) using a regression-based model to predict contribution of
contamination based on the contamination factor, (ii) deter-
mining a residue as a function of the first signal and the
contribution of contamination predicted by the model, and
(iii) determining the corrected signal as a function of the
residue and a composite contamination factor from across
the input samples.

[0109] D3. The method of D1 or D2, wherein the function
for contamination factor f, is: f=x/c..

[0110] D4. The method of D1, D2, or D3, wherein the first
signal is a first aggregated signal from a set of the intensity
signals of the collection of intensity signals, the first aggre-
gated signal corresponding to a target region of an input
sample of the set of input samples, and wherein the corrected
signal is a corrected aggregated signal.

[0111] DS. The method of D1, D2, D3, or D4, wherein the
collection of intensity signals is from a high-throughput
genotyping platform genotyping the input samples using a
microarray-based genotyping platform.

[0112] E1. A computer system comprising: a memory; and
a processor in communication with the memory, wherein the
computer system is configured to perform a method com-
prising: obtaining a collection of intensity signals from
assays of a set of input samples comprising genetic material;
using a set of array hybridization control probes to identify
probe hybridization biases by aggregating row-based nor-
malized raw intensity values from the control probes into an
aggregated value c,, aggregating row-based normalized
intensity values from assays targeting human genomic mate-
rial into an aggregated value x, and determining a contami-
nation factor f as a function of x; and ¢, where {,, x; and c,
are determined per input sample of the set of input samples;
and using the contamination factor to correct a first signal
obtained based on intensity signals of the collection of
intensity signals and produce a corrected signal.

[0113] E2. The computer system of E1, wherein using the
contamination factor and producing the corrected signal
comprises (i) using a regression-based model to predict
contribution of contamination based on the contamination
factor, (ii) determining a residue as a function of the first
signal and the contribution of contamination predicted by
the model, and (iii) determining the corrected signal as a
function of the residue and a composite contamination factor
from across the input samples.

[0114] E3. The computer system of E1 or E2, wherein the
function for contamination factor £ is: f=x/c,.

[0115] E4. The computer system of E1, E2, or E3, wherein
the first signal is a first aggregated signal from a set of the
intensity signals of the collection of intensity signals, the
first aggregated signal corresponding to a target region of an
input sample of the set of input samples, and wherein the
corrected signal is a corrected aggregated signal.

[0116] ES. The computer system of El, E2, E3, or E4,
wherein the collection of intensity signals is from a high-
throughput genotyping platform genotyping the input
samples using a microarray-based genotyping platform.
[0117] F1. A computer program product comprising: a
computer readable storage medium readable by a processing
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circuit and storing instructions for execution by the process-
ing circuit for performing a method comprising: obtaining a
collection of intensity signals from assays of a set of input
samples comprising genetic material; using a set of array
hybridization control probes to identify probe hybridization
biases by aggregating row-based normalized raw intensity
values from the control probes into an aggregated value c,,
aggregating row-based normalized intensity values from
assays targeting human genomic material into an aggregated
value x,, and determining a contamination factor f; as a
function of x, and ¢, where f, x, and c, are determined per
input sample of the set of input samples; and using the
contamination factor to correct a first signal obtained based
on intensity signals of the collection of intensity signals and
produce a corrected signal.

[0118] F2. The computer program product of F1, wherein
using the contamination factor and producing the corrected
signal comprises (i) using a regression-based model to
predict contribution of contamination based on the contami-
nation factor, (ii) determining a residue as a function of the
first signal and the contribution of contamination predicted
by the model, and (iii) determining the corrected signal as a
function of the residue and a composite contamination factor
from across the input samples.

[0119] F3. The computer program product of F1 or F2,
wherein the function for contamination factor £ is: f=x/c,.
[0120] F4. The computer program product of F1, F2, or
F3, wherein the first signal is a first aggregated signal from
a set of the intensity signals of the collection of intensity
signals, the first aggregated signal corresponding to a target
region of an input sample of the set of input samples, and
wherein the corrected signal is a corrected aggregated signal.
[0121] FS5. The computer program product of F1, F2, F3,
or F4, wherein the collection of intensity signals is from a
high-throughput genotyping platform genotyping the input
samples using a microarray-based genotyping platform.
[0122] Processes described herein may be performed sin-
gly or collectively by one or more computer systems, such
as one or more computer system(s) executing genomic
analysis software to perform aspects described herein. FIG.
8 depicts an example of a computer system and associated
devices to incorporate and/or use aspects described herein.
A computer system may also be referred to herein as a data
processing device/system, computing device/system/node,
or simply a computer. The computer system may be based on
one or more of various system architectures and/or instruc-
tion set architectures, such as those offered by Intel Corpo-
ration (Santa Clara, California, USA) as an example. FIG. 8
shows a computer system 800 in communication with exter-
nal device(s) 812. Computer system 800 includes one or
more processor(s) 802, for instance central processing unit
(s) (CPUs). A processor can include functional components
used in the execution of instructions, such as functional
components to fetch program instructions from locations
such as cache or main memory, decode program instruc-
tions, and execute program instructions, access memory for
instruction execution, and write results of the executed
instructions. A processor 802 can also include register(s) to
be used by one or more of the functional components.
Computer system 800 also includes memory 804, input/
output (I/O) devices 808, and /O interfaces 810, which may
be coupled to processor(s) 802 and each other via one or
more buses and/or other connections. Bus connections rep-
resent one or more of any of several types of bus structures,
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including a memory bus or memory controller, a peripheral
bus, an accelerated graphics port, and a processor or local
bus using any of a variety of bus architectures. By way of
example, and not limitation, such architectures include the
Industry Standard Architecture (ISA), the Micro Channel
Architecture (MCA), the Enhanced ISA (EISA), the Video
Electronics Standards Association (VESA) local bus, and
the Peripheral Component Interconnect (PCI).

[0123] Memory 804 can be or include main or system
memory (e.g. Random Access Memory) used in the execu-
tion of program instructions, storage device(s) such as hard
drive(s), flash media, or optical media as examples, and/or
cache memory, as examples. Memory 804 can include, for
instance, a cache, such as a shared cache, which may be
coupled to local caches (examples include L1 cache, [.2
cache, etc.) of processor(s) 802. Additionally, memory 804
may be or include at least one computer program product
having a set (e.g., at least one) of program modules, instruc-
tions, code or the like that is/are configured to carry out
functions of embodiments described herein when executed
by one or more processors.

[0124] Memory 804 can store an operating system 805 and
other computer programs 806, such as one or more computer
programs/applications that execute to perform aspects
described herein. Specifically, programs/applications can
include computer readable program instructions that may be
configured to carry out functions of embodiments of aspects
described herein.

[0125] Examples of I/O devices 808 include but are not
limited to microphones, speakers, Global Positioning Sys-
tem (GPS) devices, cameras, lights, accelerometers, gyro-
scopes, magnetometers, sensor devices configured to sense
light, proximity, heart rate, body and/or ambient tempera-
ture, blood pressure, and/or skin resistance, and activity
monitors. An /O device may be incorporated into the
computer system as shown, though in some embodiments an
1/O device may be regarded as an external device (812)
coupled to the computer system through one or more /O
interfaces 810.

[0126] Computer system 800 may communicate with one
or more external devices 812 via one or more I/O interfaces
810. Example external devices include a keyboard, a point-
ing device, a display, and/or any other devices that enable a
user to interact with computer system 800. Other example
external devices include any device that enables computer
system 800 to communicate with one or more other com-
puting systems or peripheral devices such as a printer. A
network interface/adapter is an example I/O interface that
enables computer system 800 to communicate with one or
more networks, such as a local area network (LAN), a
general wide area network (WAN), and/or a public network
(e.g., the Internet), providing communication with other
computing devices or systems, storage devices, or the like.
Ethernet-based (such as Wi-Fi) interfaces and Bluetooth®
adapters are just examples of the currently available types of
network adapters used in computer systems (BLUETOOTH
is a registered trademark of Bluetooth SIG, Inc., Kirkland,
Washington, U.S.A.).

[0127] The communication between I/O interfaces 810
and external devices 812 can occur across wired and/or
wireless communications link(s) 811, such as Ethernet-
based wired or wireless connections. Example wireless
connections include cellular, Wi-Fi, Bluetooth®, proximity-
based, near-field, or other types of wireless connections.
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More generally, communications link(s) 811 may be any
appropriate wireless and/or wired communication link(s) for
communicating data.

[0128] Particular external device(s) 812 may include one
or more data storage devices, which may store one or more
programs, one or more computer readable program instruc-
tions, and/or data, etc. Computer system 800 may include
and/or be coupled to and in communication with (e.g. as an
external device of the computer system) removable/non-
removable, volatile/non-volatile computer system storage
media. For example, it may include and/or be coupled to a
non-removable, non-volatile magnetic media (typically
called a “hard drive”), a magnetic disk drive for reading
from and writing to a removable, non-volatile magnetic disk
(e.g., a “floppy disk™), and/or an optical disk drive for
reading from or writing to a removable, non-volatile optical
disk, such as a CD-ROM, DVD-ROM or other optical
media.

[0129] Computer system 800 may be operational with
numerous other general purpose or special purpose comput-
ing system environments or configurations. Computer sys-
tem 800 may take any of various forms, well-known
examples of which include, but are not limited to, personal
computer (PC) system(s), server computer system(s), such
as messaging server(s), thin client(s), thick client(s), work-
station(s), laptop(s), handheld device(s), mobile device(s)/
computer(s) such as smartphone(s), tablet(s), and wearable
device(s), multiprocessor system(s), microprocessor-based
system(s), telephony device(s), network appliance(s) (such
as edge appliance(s)), virtualization device(s), storage con-
troller(s), set top box(es), programmable consumer electron-
ic(s), network PC(s), minicomputer system(s), mainframe
computer system(s), and distributed cloud computing envi-
ronment(s) that include any of the above systems or devices,
and the like.

[0130] Aspects of the present invention may be a system,
a method, and/or a computer program product, any of which
may be configured to perform or facilitate aspects described
herein.

[0131] In some embodiments, aspects of the present
invention may take the form of a computer program product,
which may be embodied as computer readable medium(s). A
computer readable medium may be a tangible storage
device/medium having computer readable program code/
instructions stored thereon. Example computer readable
medium(s) include, but are not limited to, electronic, mag-
netic, optical, or semiconductor storage devices or systems,
or any combination of the foregoing. Example embodiments
of'a computer readable medium include a hard drive or other
mass-storage device, an electrical connection having wires,
random access memory (RAM), read-only memory (ROM),
erasable-programmable read-only memory such as EPROM
or flash memory, an optical fiber, a portable computer
disk/diskette, such as a compact disc read-only memory
(CD-ROM) or Digital Versatile Disc (DVD), an optical
storage device, a magnetic storage device, or any combina-
tion of the foregoing. The computer readable medium may
be readable by a processor, processing unit, or the like, to
obtain data (e.g. instructions) from the medium for execu-
tion. In a particular example, a computer program product is
or includes one or more computer readable media that
includes/stores computer readable program code to provide
and facilitate one or more aspects described herein.
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[0132] As noted, program instruction contained or stored
in/on a computer readable medium can be obtained and
executed by any of various suitable components such as a
processor of a computer system to cause the computer
system to behave and function in a particular manner. Such
program instructions for carrying out operations to perform,
achieve, or facilitate aspects described herein may be written
in, or compiled from code written in, any desired program-
ming language. In some embodiments, such programming
language includes object-oriented and/or procedural pro-
gramming languages such as C, C++, C #, Java, etc.
[0133] Program code can include one or more program
instructions obtained for execution by one or more proces-
sors. Computer program instructions may be provided to one
or more processors of, e.g., one or more computer systems,
to produce a machine, such that the program instructions,
when executed by the one or more processors, perform,
achieve, or facilitate aspects of the present invention, such as
actions or functions described in flowcharts and/or block
diagrams described herein. Thus, each block, or combina-
tions of blocks, of the flowchart illustrations and/or block
diagrams depicted and described herein can be imple-
mented, in some embodiments, by computer program
instructions.

[0134] Although various embodiments are described
above, these are only examples.

[0135] The terminology used herein is for the purpose of
describing particular embodiments only and is not intended
to be limiting. As used herein, the singular forms “a”, “an”
and “the” are intended to include the plural forms as well,
unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising”, when used in this specification, specify the pres-
ence of stated features, integers, steps, operations, elements,
and/or components, but do not preclude the presence or
addition of one or more other features, integers, steps,
operations, elements, components and/or groups thereof.
[0136] The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements in the
claims below, if any, are intended to include any structure,
material, or act for performing the function in combination
with other claimed elements as specifically claimed. The
description of one or more embodiments has been presented
for purposes of illustration and description, but is not
intended to be exhaustive or limited to in the form disclosed.
Many modifications and variations will be apparent to those
of ordinary skill in the art. The embodiment was chosen and
described in order to best explain various aspects and the
practical application, and to enable others of ordinary skill
in the art to understand various embodiments with various
modifications as are suited to the particular use contem-
plated.

What is claimed is:

1. A computer-implemented method comprising:
obtaining a collection of intensity signals from assays of
a set of input samples comprising genetic material;
performing a cross-sample calibration on the intensity
signals of the collection of intensity signals based on
one or more reference samples, the performing the

cross-sample calibration comprising:

constructing a reference signal distribution based on
intensity signals of the one or more reference
samples; and
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for one or more input samples of the set of input
samples:
obtaining a respective set of intensity signals, of the
collection of intensity signals, corresponding to
that input sample, the set of intensity signals
corresponding to the input sample comprising (i)
a first subset, C, of intensity signals from one or
more targeted genomic regions of interest and (ii)
a second subset, B, of intensity signals from at
least one genomic regions outside the one or more
targeted genomic regions of interest; and
calibrating the intensity signals in C based on the
reference signal distribution, to produce a respec-
tive calibrated set of intensity signals correspond-
ing to the input sample;
determining, for the one or more input samples, and
from a respective one or more calibrated sets of
intensity signals corresponding to the one or more
input samples, a respective at least one aggregated
calibrated signal from the one or more targeted
genomiic regions of interest, wherein the determining
produces a collection of aggregated calibrated sig-
nals; and
detecting one or more variants in the one or more
targeted genomic regions of interest based on the
collection of aggregated calibrated signals.

2. The method of claim 1, wherein the calibrating of the
intensity signals in C, of the set of intensity signals corre-
sponding to the input sample, comprises building a mapping
for that input sample based on relations between (i) the
intensity signals in B and (ii) the reference signal distribu-
tion.

3. The method of claim 2, wherein the building the
mapping comprises defining a mapping function M(x) such
that M(x) maps intensity signal x as:

for x existing in B, M(x)=a matching intensity signal from

a vector, A, of reference signal intensities, from the
reference signal distribution, corresponding to the at
least one genomic regions outside the one or more
targeted genomic regions of interest;

for x not existing in B but falling between multiple

intensity signals in B, M(x)=a linear interpolation
based on the M(x) mappings of the multiple intensity
signals in B; and

for X not existing in B and not falling within a range of the

intensity signals in B, M(x)=an extrapolation based on
mappings of highest and lowest quantiles in B.

4. The method of claim 3, wherein the constructing the
reference signal distribution computes the vector A as cross-
sample medians of autosomal array probes that are outside
the one or more targeted genomic regions of interest.

5. The method of claim 3, wherein the calibrating the
intensity signals in C further comprises using the mapping
function to map the intensity signals in C to produce the
calibrated set of intensity signals corresponding to the input
sample.

6. The method of claim 1, wherein the obtaining the
collection of intensity signals comprises, for the set of input
samples, using a set of array hybridization control probes to
identify probe hybridization biases by aggregating row-
based normalized raw intensity values from the control
probes into an aggregated value c,, aggregating row-based
normalized intensity values from assays targeting human
genomic material into an aggregated value x,, and deter-
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mining a contamination factor f_ as a function of x_ and c,,
where f, x_ and c, are determined per input sample.

7. The method of claim 6, wherein the function for
contamination factor f, is:

Js = xsfes.

8. The method of claim 6, wherein the determining, for the
one or more input samples, and from the respective one or
more calibrated sets of intensity signals corresponding to the
one or more input samples, the respective at least one
aggregated calibrated signal comprises, for an aggregated
calibrated signal of the at least one aggregated calibrated
signal:

determining a first aggregated signal from a calibrated set

of intensity signals corresponding to a targeted region
of the input sample; and

using the contamination factor to correct the first aggre-
gated signal and produce a second aggregated signal,
wherein the second aggregated signal is output as the
aggregated calibrated signal for the targeted region of
the input sample.

9. The method of claim 8, wherein the using the contami-
nation factor and producing the second aggregated signal
comprises (i) using a regression-based model to predict
contribution of contamination based on the contamination
factor, (ii) determining a residue as a function of the first
aggregated signal and the contribution of contamination
predicted by the model, and (iii) determining the second
aggregated signal as a function of the residue and a com-
posite contamination factor from across the input samples.

10. The method of claim 1, wherein the one or more
variants are one or more copy number variants.

11. The method of claim 1, wherein none of (i) deoxyri-
bonucleic acid (DNA) quantification of the input samples,
(ii) normalization of the input samples, and (iii) prior
measurements of fraction or amount of DNA contaminant in
the input samples is known or required in performing the
method.

12. The method of claim 1, wherein the input samples of
the set of input samples contains at least one of (i) variable
amounts or concentrations of deoxyribonucleic acid (DNA)
relative to each other or (ii) different fractions of contami-
nant DNA relative to each other.

13. The method of claim 1, wherein the collection of
intensity signals is from a high-throughput genotyping plat-
form genotyping the input samples using a microarray-based
genotyping platform.

14. A computer system comprising:

a memory; and

a processor in communication with the memory, wherein

the computer system is configured to perform a method

comprising:

obtaining a collection of intensity signals from assays
of a set of input samples comprising genetic mate-
rial;

performing a cross-sample calibration on the intensity
signals of the collection of intensity signals based on
one or more reference samples, the performing the
cross-sample calibration comprising:
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constructing a reference signal distribution based on
intensity signals of the one or more reference
samples; and
for one or more input samples of the set of input
samples:
obtaining a respective set of intensity signals, of
the collection of intensity signals, correspond-
ing to that input sample, the set of intensity
signals corresponding to the input sample com-
prising (i) a first subset, C, of intensity signals
from one or more targeted genomic regions of
interest and (ii) a second subset, B, of intensity
signals from at least one genomic regions out-
side the one or more targeted genomic regions
of interest; and
calibrating the intensity signals in C based on the
reference signal distribution, to produce a
respective calibrated set of intensity signals
corresponding to the input sample;
determining, for the one or more input samples, and
from a respective one or more calibrated sets of
intensity signals corresponding to the one or more
input samples, a respective at least one aggregated
calibrated signal from the one or more targeted
genomic regions of interest, wherein the determining
produces a collection of aggregated calibrated sig-
nals; and
detecting one or more variants in the one or more
targeted genomic regions of interest based on the
collection of aggregated calibrated signals.

15. The computer system of claim 14, wherein the cali-
brating of the intensity signals in C, of the set of intensity
signals corresponding to the input sample, comprises build-
ing a mapping for that input sample based on relations
between (i) the intensity signals in B and (ii) the reference
signal distribution, wherein the building the mapping com-
prises defining a mapping function M(x) such that M(x)
maps intensity signal x as:

for x existing in B, M(x)=a matching intensity signal from

a vector, A, of reference signal intensities, from the
reference signal distribution, corresponding to the at
least one genomic regions outside the one or more
targeted genomic regions of interest;

for x not existing in B but falling between multiple

intensity signals in B, M(x)=a linear interpolation
based on the M(x) mappings of the multiple intensity
signals in B; and
for x not existing in B and not falling within a range of the
intensity signals in B, M(x)=an extrapolation based on
mappings of highest and lowest quantiles in B.

and wherein the calibrating the intensity signals in C
further comprises using the mapping function to map
the intensity signals in C to produce the calibrated set
of intensity signals corresponding to the input sample.

16. The computer system of claim 14, wherein the obtain-
ing the collection of intensity signals comprises, for the set
of input samples, using a set of array hybridization control
probes to identify probe hybridization biases by aggregating
row-based normalized raw intensity values from the control
probes into an aggregated value c,, aggregating row-based
normalized intensity values from assays targeting human
genomic material into an aggregated value x,, and deter-
mining a contamination factor f; as a function of x; and c,,
where f, x; and c; are determined per input sample.
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17. The computer system of claim 16, wherein the deter-
mining, for the one or more input samples, and from the
respective one or more calibrated sets of intensity signals
corresponding to the one or more input samples, the respec-
tive at least one aggregated calibrated signal comprises, for
an aggregated calibrated signal of the at least one aggregated
calibrated signal:

determining a first aggregated signal from a calibrated set
of intensity signals corresponding to a targeted region
of the input sample; and

using the contamination factor to correct the first aggre-
gated signal and produce a second aggregated signal,
wherein the second aggregated signal is output as the
aggregated calibrated signal for the targeted region of
the input sample.

18. A computer program product comprising:

a computer readable storage medium readable by a pro-
cessing circuit and storing instructions for execution by
the processing circuit for performing a method com-
prising:
obtaining a collection of intensity signals from assays

of a set of input samples comprising genetic mate-
rial;
performing a cross-sample calibration on the intensity
signals of the collection of intensity signals based on
one or more reference samples, the performing the
cross-sample calibration comprising:
constructing a reference signal distribution based on
intensity signals of the one or more reference
samples; and
for one or more input samples of the set of input
samples:
obtaining a respective set of intensity signals, of
the collection of intensity signals, correspond-
ing to that input sample, the set of intensity
signals corresponding to the input sample com-
prising (1) a first subset, C, of intensity signals
from one or more targeted genomic regions of
interest and (ii) a second subset, B, of intensity
signals from at least one genomic regions out-
side the one or more targeted genomic regions
of interest; and
calibrating the intensity signals in C based on the
reference signal distribution, to produce a
respective calibrated set of intensity signals
corresponding to the input sample;
determining, for the one or more input samples, and
from a respective one or more calibrated sets of
intensity signals corresponding to the one or more
input samples, a respective at least one aggregated
calibrated signal from the one or more targeted
genomic regions of interest, wherein the determining
produces a collection of aggregated calibrated sig-
nals; and
detecting one or more variants in the one or more
targeted genomic regions of interest based on the
collection of aggregated calibrated signals.

19. The computer program product of claim 18, wherein
the calibrating of the intensity signals in C, of the set of
intensity signals corresponding to the input sample, com-
prises building a mapping for that input sample based on
relations between (i) the intensity signals in B and (ii) the
reference signal distribution, wherein the building the map-
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ping comprises defining a mapping function M(x) such that
M(x) maps intensity signal x as:
for x existing in B, M(x)=a matching intensity signal from
a vector, A, of reference signal intensities, from the
reference signal distribution, corresponding to the at
least one genomic regions outside the one or more
targeted genomic regions of interest;
for x not existing in B but falling between multiple
intensity signals in B, M(x)=a linear interpolation
based on the M(x) mappings of the multiple intensity
signals in B; and
for x not existing in B and not falling within a range of the
intensity signals in B, M(x)=an extrapolation based on
mappings of highest and lowest quantiles in B.
and wherein the calibrating the intensity signals in C
further comprises using the mapping function to map
the intensity signals in C to produce the calibrated set
of intensity signals corresponding to the input sample.
20. The computer program product of claim 18, wherein
the obtaining the collection of intensity signals comprises,
for the set of input samples, using a set of array hybridization
control probes to identify probe hybridization biases by

Aug. 22, 2024

aggregating row-based normalized raw intensity values
from the control probes into an aggregated value c,, aggre-
gating row-based normalized intensity values from assays
targeting human genomic material into an aggregated value
X,, and determining a contamination factor f, as a function of
x,and ¢, wheref,, x_and c, are determined per input sample,
and wherein the determining, for the one or more input
samples, and from the respective one or more calibrated sets
of intensity signals corresponding to the one or more input
samples, the respective at least one aggregated calibrated
signal comprises, for an aggregated calibrated signal of the
at least one aggregated calibrated signal:

determining a first aggregated signal from a calibrated set
of intensity signals corresponding to a targeted region
of the input sample; and

using the contamination factor to correct the first aggre-
gated signal and produce a second aggregated signal,
wherein the second aggregated signal is output as the
aggregated calibrated signal for the targeted region of
the input sample.
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