US 20240272945A1

a9 United States
a2y Patent Application Publication o) Pub. No.: US 2024/0272945 A1l

Campbell et al. 43) Pub. Date: Aug. 15, 2024
(54) DYNAMIC RESOURCE ALLOCATION FOR Publication Classification
COMPUTATIONAL SIMULATION
(51) Imt. CL
S . GO6F 9/50 (2006.01)
(71) Applicant: OnScale, Inc., Redwood City, CA (US) GOGF 30/20 (2006.01)
(72) Inventors: Ian Campbell, San Jose, CA (US); GOGF 30/23 (2006.01)
Ryan Diestelhorst, Atlanta, GA (US); GOGF 111/10 (2006.01)
Joshua Oster-Morris, Atlanta, GA (52) US. ClL
(US); David M. Freed, Burlingame, CPC ... GO6F 9/50 (2013.01); GO6F 30/20
CA (US); Scott McClennan, (2020.01); GOGF 30/23 (2020.01); GO6F
Sunnyvale, CA (US) 2111/10 (2020.01); GO6F 2209/505 (2013.01)
(21) Appl. No.: 18/644,766 (57 ABSTRACT
. Systems and methods for automated resource allocation
(22) Filed: Apr. 24, 2024 during a computational simulation are described herein. An
s example method includes performing a simulation with a
Related U.S. Application Data first set of computing resources. The method also includes
ontinuation of application No. ,321, filed on ynamically analyzing at least one attribute ot the simula-
63) Continuati f application No. 18/332,321, filed d icall lyzi 1 ib f the simul

Jun. 9, 2023, now Pat. No. 12,001,883, which is a tion to determine a second set of computing resources for
continuation of application No. 17/557,488, filed on performing the simulation, and performing the simulation
Dec. 21, 2021, now Pat. No. 11,714,680, which is a with the second set of computing resources. The second set
continuation of application No. 17/030,991, filed on of computing resources is different than the first set of
Sep. 24, 2020, now Pat. No. 11,210,138. computing resources.

Analyze a set of simulation inputs to determine s first set of computing resources for
performing a simulation
202

Start the simulation with the first set of computing rescurces
204

Bynamically analyze at least one sttribute of the simulation to determing 2 second
set of computing resources for performing the simulation, where the secand set of
computing resources is different than the first set of computing resources
206

Perform the simulation with the second set of computing resources
208

Patent Application Publication Aug. 15, 2024 Sheet 1 of 8 US 2024/0272945 A1

Simulation
Device 110

Node 115A

N

Mode 1158 Node 115C

Resource Allocator 120
. Network
Application interface Observer 150
i22 1% .. NRtWOork
! Application
152 Interface
154
Metwork 130
Originating Device 140
Application Network
e 147 Interface
144

FIG. 1

Patent Application Publication Aug. 15, 2024 Sheet 2 of 8 US 2024/0272945 A1

Analyze a set of simulation inputs o determine a first set of computing resources for
performing a simuiation
202

|

Start the simulation with the first set of computing resources
204

|

Dynamically analyze at least one attribute of the simulation to determine a second
set of computing resources for performing the simulation, where the second set of
computing resources is different than the first set of computing resources
206

|

Perform the simulation with the second set of computing resources
208

FiG. 2

US 2024/0272945 Al

Aug. 15, 2024 Sheet 3 of 8

Patent Application Publication

£ 'Did

wiR3sAs ajid

Y adning
S1dD # |aning

bog
g JBUIBINGT

VY WaLnD
SNdD # W8N

P41}
Y IBUIBINTT

IBUIEIIOD
M3 O3 WIBISAS B{13 SACKY

21els 24ninyg

D1L1S JUaLND

SRIINOEIY JUBIDLUC
UM ISUIRIUOT MBN 318340

/

30t

US 2024/0272945 Al

v "Dld

A4

Aug. 15,2024 Sheet 4 of 8

$824N053Y

ON

nipy Ajjesiueudg S3A

¢ SaUNO0SY

UND ey | 1U1311g
$2INOSY painbay

Patent Application Publication

5324n053y pasinbay ssossy
‘Uolielsl] SN 2ZAjRUY

UoneIal]
UOIIRINLIG
$62304d

Patent Application Publication Aug. 15, 2024 Sheet 5 of 8 US 2024/0272945 A1

FiG. 5A

Patent Application Publication

Bt

3

Aug. 15, 2024 Sheet 6 of 8

US 2024/0272945 Al

FiG. 5B

US 2024/0272945 Al

Aug. 15,2024 Sheet 7 of 8

Patent Application Publication

25 "Bid

acepiazu) Suissey s8essopy

WYY 82 v9

53407 8T
¢ iandwio

WYY 89 87T

$3300) 7€
7 Jo3ndiney

AYYE 82 9T
$2403 ¥

T 3o

US 2024/0272945 Al

Aug. 15, 2024 Sheet 8 of 8

Patent Application Publication

9 "Bl

b 52
{sjucnIzsuuny

HAOMIBAL

AN
{s}osinag nduy

[A%:
{sissiasqg 1nding

ULy
38e4038

BIYRAODY-UON

209
2901018 BjgervLUSY

209
Hun
Buissannid

09
Aiowsapwy

Wayshs

09

0039

US 2024/0272945 Al

DYNAMIC RESOURCE ALLOCATION FOR
COMPUTATIONAL SIMULATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser. No. 18/332,321, filed on Jun. 9, 2023, which
is a continuation of U.S. patent application Ser. No. 17/557,
488, filed on Dec. 21, 2021 (now U.S. Pat. No. 11,714,860),
which is a continuation of U.S. patent application Ser. No.
17/030,991, filed on Sep. 24, 2020 (now U.S. Pat. No.
11,210,138), and titled “DYNAMIC RESOURCE ALLO-
CATION FOR COMPUTATIONAL SIMULATION,” the
disclosures of which are expressly incorporated herein by
reference in their entireties.

BACKGROUND

[0002] Computer-aided engineering (CAE) is the practice
of simulating representations of physical objects using com-
putational methods including, but not limited to, finite
element method (FEM) and finite difference method (FDM).
To perform simulations using FEM and/or FDM, the domain
must be discretized into a finite number of elements called
a mesh. FEM and FDM are techniques for converting
differential equations (e.g., partial differential equations
(PDEs)) into a system of equations that can be solved
numerically.

SUMMARY

[0003] An example computer-implemented method for
automated resource allocation during a computational simu-
lation is described herein. The method includes analyzing a
set of simulation inputs to determine a first set of computing
resources for performing a simulation, and starting the
simulation with the first set of computing resources. The
method also includes dynamically analyzing at least one
attribute of the simulation to determine a second set of
computing resources for performing the simulation, and
performing the simulation with the second set of computing
resources. The second set of computing resources is different
than the first set of computing resources.

[0004] Additionally, in some implementations, the step of
dynamically analyzing the at least one attribute of the
simulation further determines that the simulation requires
more computing resources than included in the first set of
computing resources.

[0005] Alternatively or additionally, the set of simulation
inputs includes at least one of a geometry representation, a
material property, a boundary condition, a loading condition,
a mesh parameter, a solver option, a simulation output
request, or a time parameter.

[0006] Alternatively or additionally, the at least one attri-
bute of the simulation is a simulation requirement, a simu-
lation performance characteristic, or a compute capacity
indicator. The compute capacity indicator includes at least
one of a usage level of computing capacity, a memory
bandwidth, a network bandwidth, or a network latency.
[0007] Optionally, in some implementations, respective
simulation inputs for each of a plurality of simulations are
analyzed.

[0008] In some implementations, the step of performing
the simulation with the second set of computing resources
includes automatically restarting the simulation with the

Aug. 15,2024

second set of computing resources. Alternatively, the step of
performing the simulation with the second set of computing
resources includes automatically continuing the simulation
with the second set of computing resources.

[0009] Alternatively or additionally, in some implementa-
tions, the method optionally includes adaptively refining a
mesh during the simulation. The adaptive refinement of the
mesh includes changing a mesh density and/or an order of
mesh elements.

[0010] Alternatively or additionally, in some implementa-
tions, the set of simulation inputs is analyzed to determine
the first set of computing resources for performing the
simulation while achieving a target value for a simulation
metric. Alternatively or additionally, in some implementa-
tions, the at least one attribute of the simulation is dynami-
cally analyzed to determine the second set of computing
resources for performing the simulation while achieving a
target value for a simulation metric. The simulation metric
is core hour cost, a memory requirement, simulation run
time, efficiency of hardware configuration, or energy cost.
Additionally, the target value for the simulation metric is an
optimal value for the simulation metric.

[0011] Alternatively or additionally, each of the first and
second sets of computing resources includes at least one of
a number of cores, an amount of memory, a number of
virtual machines, or a hardware configuration.

[0012] Alternatively or additionally, in some implementa-
tions, the method optionally includes transferring a state of
the simulation from the first set of computing resources to
the second set of computing resources. The state of the
simulation includes at least one of mesh information, con-
straint and loading conditions, derived quantities, factorized
matrices, primary solution and secondary field variables,
history variables, or stored results.

[0013] Alternatively or additionally, in some implementa-
tions, the at least one attribute of the simulation is periodi-
cally analyzed to determine the second set of computing
resources for performing the simulation.

[0014] Alternatively or additionally, the simulation is rep-
resented by a set of equations. Optionally, the set of equa-
tions represents partial differential equations (PDEs).

[0015] Alternatively or additionally, in some implementa-
tions, the dynamic analysis optionally includes comparing
the at least one attribute of the simulation to a threshold.

[0016] Alternatively or additionally, in some implementa-
tions, the first and second sets of computing resources are
part of a computing cluster.

[0017] An example system for automated resource allo-
cation during a computational simulation is described
herein. The system includes a computing cluster, and a
resource allocator operably coupled to the computing clus-
ter. The resource allocator includes a processor and a
memory operably coupled to the processor, where the
memory has computer-executable instructions stored
thereon. The resource allocator is configured to analyze a set
of simulation inputs to determine a first set of computing
resources in the computing cluster for performing a simu-
lation. The first set of computing resources is configured to
start the simulation. Additionally, the resource allocator is
configured to dynamically analyze at least one attribute of
the simulation to determine a second set of computing
resources in the computing cluster for performing the simu-
lation. The second set of computing resources is configured

US 2024/0272945 Al

to perform the simulation. The second set of computing
resources is different than the first set of computing
resources.

[0018] Additionally, in some implementations, the step of
dynamically analyzing the at least one attribute of the
simulation further determines that the simulation requires
more computing resources than included in the first set of
computing resources.

[0019] Alternatively or additionally, the set of simulation
inputs includes at least one of a geometry representation, a
material property, a boundary condition, a loading condition,
a mesh parameter, a solver option, a simulation output
request, or a time parameter.

[0020] Alternatively or additionally, the at least one attri-
bute of the simulation is a simulation requirement, a simu-
lation performance characteristic, or compute capacity indi-
cator. The compute capacity indicator includes at least one
of a usage level of computing capacity, a memory band-
width, a network bandwidth, or a network latency.

[0021] Optionally, in some implementations, respective
simulation inputs for each of a plurality of simulations are
analyzed.

[0022] In some implementations, the step of performing
the simulation with the second set of computing resources
includes automatically restarting the simulation with the
second set of computing resources. Alternatively, the step of
performing the simulation with the second set of computing
resources includes automatically continuing the simulation
with the second set of computing resources.

[0023] Alternatively or additionally, in some implementa-
tions, the resource allocator is optionally configured to
adaptively refine a mesh during the simulation. The adaptive
refinement of the mesh includes changing a mesh density
and/or an order of mesh elements.

[0024] Alternatively or additionally, in some implementa-
tions, the set of simulation inputs is analyzed to determine
the first set of computing resources for performing the
simulation while achieving a target value for a simulation
metric. Alternatively or additionally, in some implementa-
tions, the at least one attribute of the simulation is dynami-
cally analyzed to determine the second set of computing
resources for performing the simulation while achieving a
target value for a simulation metric. The simulation metric
is core hour cost, a memory requirement, simulation run
time, efficiency of hardware configuration, or energy cost.
Additionally, the target value for the simulation metric is an
optimal value for the simulation metric.

[0025] Alternatively or additionally, each of the first and
second sets of computing resources includes at least one of
a number of cores, an amount of memory, a number of
virtual machines, or a hardware configuration.

[0026] Alternatively or additionally, in some implementa-
tions, the resource allocator is optionally configured to
transfer a state of the simulation from the first set of
computing resources to the second set of computing
resources. The state of the simulation includes at least one of
mesh information, constraint and loading conditions,
derived quantities, factorized matrices, primary solution and
secondary field variables, history variables, or stored results.
[0027] Alternatively or additionally, in some implementa-
tions, the at least one attribute of the simulation is periodi-
cally analyzed to determine the second set of computing
resources for performing the simulation.

Aug. 15,2024

[0028] Alternatively or additionally, the simulation is rep-
resented by a set of equations. Optionally, the set of equa-
tions represents partial differential equations (PDEs).
[0029] Alternatively or additionally, in some implementa-
tions, the dynamic analysis optionally includes comparing
the at least one attribute of the simulation to a threshold.
[0030] Alternatively or additionally, in some implementa-
tions, the first and second sets of computing resources are
part of a computing cluster.

[0031] It should be understood that the above-described
subject matter may also be implemented as a computer-
controlled apparatus, a computer process, a computing sys-
tem, or an article of manufacture, such as a computer-
readable storage medium.

[0032] Other systems, methods, features and/or advan-
tages will be or may become apparent to one with skill in the
art upon examination of the following drawings and detailed
description. It is intended that all such additional systems,
methods, features and/or advantages be included within this
description and be protected by the accompanying claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] The components in the drawings are not necessar-
ily to scale relative to each other. Like reference numerals
designate corresponding parts throughout the several views.
[0034] FIG. 1is a block diagram of an example computing
environment according to an implementation described
herein.

[0035] FIG. 2 a flowchart illustrating example operations
for automated resource allocation for computational simu-
lation according to an implementation described herein.
[0036] FIG. 3 is a diagram illustrating containerization
according to an implementation described herein.

[0037] FIG. 4 is a flowchart illustrating example opera-
tions for dynamic analysis of the simulation at each iterative
time step according to an implementation described herein.
[0038] FIG. 5A illustrates an example simulation model
where Regions 1, 2, and 3 are meshed with a uniform
structured grid. FIG. 5B illustrates an example simulation
model where Regions 1, 2, and 3 are meshed with structured
grid having different mesh densities. FIG. 5C is a diagram
illustrating containerization for solving the simulation
model of FIG. 5B.

[0039] FIG. 6 is a block diagram of an example computing
device.

DETAILED DESCRIPTION
[0040] Unless defined otherwise, all technical and scien-

tific terms used herein have the same meaning as commonly
understood by one of ordinary skill in the art. Methods and
materials similar or equivalent to those described herein can
be used in the practice or testing of the present disclosure.
As used in the specification, and in the appended claims, the
singular forms “a,” “an,” “the” include plural referents
unless the context clearly dictates otherwise. The term
“comprising” and variations thereof as used herein is used
synonymously with the term “including” and variations
thereof and are open, non-limiting terms. The terms
“optional” or “optionally” used herein mean that the subse-
quently described feature, event or circumstance may or may
not occur, and that the description includes instances where
said feature, event or circumstance occurs and instances
where it does not. Ranges may be expressed herein as from

US 2024/0272945 Al

“about” one particular value, and/or to “about” another
particular value. When such a range is expressed, an aspect
includes from the one particular value and/or to the other
particular value. Similarly, when values are expressed as
approximations, by use of the antecedent “about,” it will be
understood that the particular value forms another aspect. It
will be further understood that the endpoints of each of the
ranges are significant both in relation to the other endpoint,
and independently of the other endpoint.

[0041] Described herein are systems and methods for
automated resource allocation during a computational simu-
lation (also referred to herein as “numerical simulation” or
“simulation”). As described herein, the systems and methods
improve the robustness and efficiency of simulation when
using parallel computing resources to calculate a solution for
a virtual model of a physical object or phenomenon. Using
conventional techniques, it is difficult to determine a priori
the required set of computing resources for a simulation, and
particularly an optimal and/or minimal set of computing
resources. In other words, a priori knowledge of the simu-
lation alone may be insufficient to accurately determine the
required computing resources for the simulation. Once the
simulation is started, additional information, which is
unknown at the start, is collected during the simulation. For
example, using conventional techniques, a user may esti-
mate that “X” gigabytes (GB) of memory are required for a
simulation. The simulation is started with “X” GB of
memory available, but due to unknown or unknowable
factors at start time, the simulation will actually require
more than “X” GB of memory to reach completion. This this
will cause the simulation to fail before it is finished. Alter-
natively, the simulation may actually require less than “X”
GB of memory, which needlessly ties up computing
resources. Conventional techniques do not automatically
detect and respond to such simulation states.

[0042] The systems and methods described herein address
the problems above, for example by automating resource
allocation. For example, the systems and methods described
herein improve robustness by avoiding simulation failure
due to inadequate resource allocation. By performing a
dynamic analysis while the simulation is running, the com-
puting resource determination is updated using a posteriori
knowledge of the simulation. As a result, the systems and
method described herein are capable of preventing simula-
tion failure before it occurs (i.e., the systems and methods
described herein are proactive, not simply reactive to a
detected failure). The systems and methods described herein
also improve efficiency by correcting over-allocation of
computing resources. The systems and methods described
herein also account for changes to the required resources
during the simulation. These capabilities represent an
improvement over manually determining the resource
requirements, reallocating resources and restarting a simu-
lation.

[0043] Simulation methods include, but are not limited to,
FEM and FDM. For example, the concept of finite element
analysis (FEA) is generally well-understood in the art and
involves the discretization of a virtual model into nodes,
each node containing spatial information as well as connec-
tion to the surrounding nodes through differential equations
(e.g., partial differential equations (PDEs)) that represent the
physics being calculated for that node. These nodes, and the
differential equations describing them, form a matrix that is
representative of the virtual model, and the matrix is trans-

Aug. 15,2024

mitted in whole or in part to a processing unit or group of
processing units for calculation of a solution at a given time
or frequency (or time range or set of frequencies).

[0044] Optionally, in an elastic cloud computing system
(e.g., the computing environment shown in FIG. 1), the
optimal amount of computational resources (e.g. number of
computational cores, amount of memory, type of hardware,
etc.) can be dynamically determined and chosen to optimally
solve either the single simulation or several separate simu-
lations. In a cloud computing environment, the optimal
amount of computing resources to assign to a single simu-
lation or a set of simulations can be chosen to optimize based
on different criteria, e.g.:

[0045] minimize core hour cost;
[0046] minimize total simulation time;
[0047] maximize packing efficiency for a given hard-

ware configuration; and/or
[0048] minimize energy used.

[0049] As described below, dynamically changing the
resources used for a simulation in a cloud computing envi-
ronment may include increasing or reducing the resources
(cores, RAM, etc.) allocated to a single container or starting
a new container of different size and mapping the simulation
state from the original container into the new container,
where the simulation is either continued or restarted with the
new container.

[0050] Referring now to FIG. 1, an example computing
environment is shown. The methods for dynamic resource
allocation for computational simulation described herein can
be performed using the computing environment shown in
FIG. 1. The environment includes a simulation device 110,
a resource allocator 120, an originating device 140, and an
observer 150. It should be understood that the environment
shown in FIG. 1 is provided only as an example. This
disclosure contemplates that the methods for dynamic
resource allocation for computational simulation described
herein may be performed using a computing environment
having more or less components and/or with components
arranged differently than shown in FIG. 1. It should be
understood that the logical operations described herein can
be performed by one or more of the devices shown in FIG.
1, which is provided only as an example computing envi-
ronment.

[0051] The simulation device 110, the resource allocator
120, the originating device 140, and the observer 150 are
operably coupled to one or more networks 130. This dis-
closure contemplates that the networks 130 are any suitable
communication network. The networks 130 can be similar to
each other in one or more respects. Alternatively or addi-
tionally, the networks 130 can be different from each other
in one or more respects. The networks 130 can include a
local area network (LAN), a wireless local area network
(WLAN), a wide area network (WAN), a metropolitan area
network (MAN), a virtual private network (VPN), etc.,
including portions or combinations of any of the above
networks. Additionally, each of the simulation device 110,
the resource allocator 120, the originating device 140, and
the observer 150 are coupled to the one or more networks
130 through one or more communication links. This disclo-
sure contemplates the communication links are any suitable
communication link. For example, a communication link
may be implemented by any medium that facilitates data
exchange including, but not limited to, wired, wireless and
optical links. Example communication links include, but are

US 2024/0272945 Al

not limited to, a LAN, a WAN, a MAN, Ethernet, the
Internet, or any other wired or wireless link such as WiFi,
WiMax, 3G, 4G, or 5G.

[0052] The simulation device 110 can be a computing
cluster, for example, made up of a plurality of nodes 115
(e.g., the nodes 115A, 115B, and 115C). As used herein, a
computing cluster is a plurality of inter-connected comput-
ing resources that are accessible over a network and have
resources (e.g., computing power, data storage, etc.) greater
than those found in a typical personal computer. In some
implementations, the computing cluster is a cloud-based
computing cluster. Cloud-based computing is an on-demand
computing environment where tasks are performed by
remote resources (e.g., processing units, storage, databases,
software, etc.) that are linked to a user (e.g., the originating
device 140) through a communication network (e.g., the
Internet) or other data transmission medium. Cloud-based
computing is well known in the art and is therefore not
described in further detail herein. In other implementations,
the computing cluster is a local computing cluster (e.g.,
computing assets linked via a LAN), where resources are
linked to a user (e.g., the originating device 140) through a
communication network (e.g., the LAN) or other data trans-
mission medium. Fach node 115 can be made up of one or
more computing devices such as the computing device 600
shown in FIG. 6. It should be understood that the number of
nodes 115 (i.e., three) in FIG. 1 is provided for illustrative
purposes only. There is no limit to the number of nodes 115
that can be supported by the simulation device 110. The
simulation device 110 can be configured to perform the
computational simulation (e.g., FEM, FDM, or other com-
putational simulation technique). Example systems and
methods for running a simulation using a cloud-based com-
puting cluster are described in U.S. patent application Ser.
No. 16/856,222, filed Apr. 23, 2020 by OnScale, Inc., and
titled “SYSTEMS AND METHODS FOR RUNNING A
SIMULATION.”

[0053] The resource allocator 120 can be a computing
device such as the computing device 600 shown in FIG. 6.
The resource allocator 120 can be configured to execute an
application 122. The application 122 may include instruc-
tions for executing one or more of the operations for
automated resource allocation for computational simulation
as described with regard to FIG. 2. For example, the
resource allocator 120 can be configured to receive and/or
access information associated with the simulation(s) (e.g.,
information including, but not limited to, the simulation
inputs, simulation attributes, and/or compute capacity indi-
cators described herein), analyze such information associ-
ated with the simulation(s), and/or allocate computing
resources based on such analysis. Such information associ-
ated with the simulation(s) can be received from a monitor-
ing device or process. Optionally, the resource allocator 120
can be configured to monitor information associated with the
simulation(s) (e.g., information including, but not limited to,
the simulation inputs, simulation attributes, and/or compute
capacity indicators described herein). The resource allocator
120 can communicate with the networks 130 through a
network interface 124. Optionally, the network interface 124
may encrypt data prior to transmitting such data via the
networks 130. This disclosure contemplates that any type of
encryption may be used.

[0054] The originating device 140 can be a computing
device such as the computing device 600 shown in FIG. 6.

Aug. 15,2024

The originating device 140 may be a computing device
associated with a user such as a personal computer, desktop
computer, laptop, tablet, etc. The originating device 140 can
be configured to execute an application 142. The application
142 may be an engineering application (e.g., CAD applica-
tion) or any other type of application that incorporates
modelling, modelling data, simulations, and/or simulation
data. The originating device 140 can request that a compu-
tational simulation be performed by the simulation device
110. The originating device 140 can communicate with the
networks 130 through a network interface 144. Optionally,
the network interface 144 may encrypt data prior to trans-
mitting such data via the networks 130. This disclosure
contemplates that any type of encryption may be used.

[0055] The observer 150 can be a computing device such
as the computing device 600 shown in FIG. 6. The observer
150 can be configured to execute an application 152. The
application 152 may include instructions for executing one
or more of the operations for automated resource allocation
for computational simulation as described with regard to
FIG. 2. For example, the observer 150 can be configured to
execute a process monitoring application. In other words,
the observer 150 can be configured to monitor information
associated with the simulation(s) (e.g., information includ-
ing, but not limited to, the simulation attributes and/or
compute capacity indicators described herein). The observer
150 can communicate with the networks 130 through a
network interface 154. Optionally, the network interface 154
may encrypt data prior to transmitting such data via the
networks 130. This includes, but is not limited to, transmit-
ting monitored information to the resource allocator 120,
which can be configured to analyze the monitored informa-
tion. This disclosure contemplates that any type of encryp-
tion may be used.

[0056] Referring now to FIG. 2, a flowchart illustrating
example operations for automated resource allocation for
computational simulation is shown. The example operations
shown in FIG. 2 can be performed in the computing envi-
ronment shown in FIG. 1. For example, in some implemen-
tations, the example operations can be performed by the
resource allocator 120 and/or the simulation device 110
shown in FIG. 1. Optionally, in some implementations, the
example operations can be performed by the resource allo-
cator 120, the observer 130, and/or the simulation device
110 shown in FIG. 1. As described below, one or more of the
operations shown in FIG. 2 can be performed automatically,
e.g., without user input and/or intervention. For example,
once the simulation begins (e.g., step 204 of FIG. 2), a
dynamic analysis is performed (e.g., step 206 of FIG. 2) and
the computing resources are adjusted (e.g., step 208 of FIG.
2) in dependence on the results of the dynamic analysis. In
other words, no user input or intervention is required to
adjust the computing resources. Optionally, in some imple-
mentations, all of the operations shown in FIG. 2 can be
performed automatically, e.g., without user input and/or
intervention.

[0057] At step 202, a set of simulation inputs is analyzed
to determine a first set of computing resources for perform-
ing a simulation. The analysis of step 202 is based on a priori
knowledge of the simulation. As described herein, the simu-
lation provides a numerical solution for a simulation model,
which is a representation of a physical object. The simula-
tion model is a two-dimensional (2D) model or a three-
dimensional (3D) model. For example, the simulation model

US 2024/0272945 Al

may be used to simulate various mechanical, thermal, ther-
momechanical, electromechanical, fluid flow dynamics,
and/or magnetomechanical aspects of the physical object. As
described herein, the simulation may be performed using the
simulation device 110 shown in FIG. 1, which is a comput-
ing cluster. Additionally, the simulation is represented by a
set of element equations. The element equations may be
differential equations such as PDEs. Computation simula-
tion techniques such as FEM and FDM may be used to
obtain a numerical solution for a set of differential equations.
As used herein, a set of simulation inputs includes one or
more simulation inputs. Simulation inputs can include, but
are not limited to, geometry representations (e.g., CAD files,
image files), material properties (e.g., density, heat capacity,
Young’s modulus), boundary conditions (e.g., fluid velocity,
solid wall of fluid channel, pressure, displacement), loading
conditions (e.g., force, pressure, heat flux, temperature),
mesh parameters (e.g., mesh cell size, mesh cell element
type), solver options (e.g., steady state, transient), output
requests and/or time parameters. It should be understood
that the simulation inputs (and examples thereof) provided
above are only examples. This disclosure contemplates that
the simulation inputs analyzed at step 202 may include any
information, data, etc. needed and/or desired to run a simu-
lation.

[0058] Optionally, in some implementations, respective
simulation inputs for each of a plurality of simulations are
analyzed at step 202. In these implementations, each of the
simulations provides a numerical solution for a respective
simulation model, which is represented by a respective set of
element equations. For example, the simulation model may
optionally be partitioned into multiple windows (e.g., by
physics, solve method, and/or time step size), each window
being represented by a different set of element equations. In
these implementations, the analysis at step 202 can be used
to determine a respective set of computing resources for
solving a respective simulation to arrive at its numerical
solution.

[0059] As described above, step 202, which can be per-
formed by the resource allocator 120 shown in FIG. 1,
analyzes the simulation inputs to determine a set of com-
puting resources (e.g., a number of cores, amount of RAM,
etc.) needed to perform the simulation. It should be under-
stood that the resource allocator 120 shown in FIG. 1 can be
configured to receive and/or access the simulation inputs.
Optionally, the set of simulation inputs is analyzed to
determine the set of computing resources for performing the
simulation while achieving a target value for a simulation
metric. Optionally, the target value is an optimal value for
the simulation metric. In other words, the resource allocator
120 can, in some implementations, determine the set of
computing resources needed to optimize the simulation, for
example, to minimize one or more of the cost, time, and/or
resources used for the simulation. In other implementations,
the target value is a desired value for the simulation metric
(i.e., not optimal but desired). For example, the user may
provide a desired cost limitation and/or desired run time
requirement. This disclosure contemplates that a simulation
metric can include, but is not limited to, core hour cost,
simulation run time, efficiency of hardware configuration, or
energy cost. It should be understood that these are only
example simulation metrics. This disclosure contemplates
determining a set of computing resources needed to achieve
a target value for other simulation metrics. Optionally, in

Aug. 15,2024

some implementations, the objective is to solve multiple sets
of element equations in about the same amount of time (e.g.,
achieve the same or similar simulation run time for multiple
simulations). As described herein, the simulation is per-
formed by a computing cluster, and the computing resources
for performing the simulation can be assigned and/or
adjusted to achieve the simulation metric. This adjustment
can occur dynamically, e.g., during the simulation as
described below. In other words, the number of processing
units and/or memory assigned from the computing cluster
can be increased or decreased to achieve the simulation
metric.

[0060] This disclosure contemplates that the analysis of
step 202 of FIG. 2 can be performed using a model for
estimating the required computing resources based on one or
more known simulation inputs. Such models include, but are
not limited to, machine learning models, empirical models,
and analytical models. An example method for analyzing a
simulation to estimate the computational cost of simulation
using machine learning is described in in U.S. Provisional
Patent App. No. 62/931,299, filed Nov. 6, 2019 by OnScale,
Inc., and titled “METHODS FOR THE ESTIMATION OF
THE COMPUTATIONAL COST OF SIMULATION.” It
should be understood that the machine learning-based
method described in U.S. Provisional Patent App. No.
62/931,299 is provided only as an example technique for
performing the analysis of step 202 of FIG. 2. This disclo-
sure contemplates using other techniques for analyzing the
set of simulation inputs to determine a set of computing
resources needed to perform the simulation. For example,
empirical, semi-empirical or analytical models can be used
to estimate the resources (e.g., cores, memory, time, etc.)
needed by an algorithm to solve a given computational
problem. This disclosure contemplates using empirical,
semi-empirical or analytical models known in the art to
estimate the resources. As a non-limiting example, the
model may be a best fit regression model. A regression
model may be linear or non-linear. An example regression
model can estimate computational cost based on the simu-
lation inputs, e.g., the mesh size (e.g., number of cells and/or
vertices) and the geometric parameters (e.g., surface-to-
volume ratio). It should be understood that the simulation
inputs upon which the example regression model is based
are provided only as an example.

[0061] A set of computing resources can include, but is not
limited to, a number of cores, an amount of memory (e.g.,
RAM), a number of virtual machines, and/or a hardware
configuration. For example, the first set of computing
resources may be the computing resources of Container A
302 shown in FIG. 3. Container A 302 includes a given
number of cores and amount of memory needed to solve a
simulation model. This disclosure contemplates that com-
puting resources from the computing cluster shown in FIG.
1 can be used to create Container A 302. Optionally, the first
set of computing resources is an optimal set of computing
resources for solving the set of element equations to arrive
at the numerical solution for the simulation while achieving
a target value for a simulation metric (e.g., cost, run time,
energy, etc.).

[0062] Referring again to FIG. 2, at step 204, the simula-
tion model is started with the first set of computing
resources. For example, the first set of computing resources
may be the computing resources of Container A 302 shown
in FIG. 3. As described herein, the simulation is performed

US 2024/0272945 Al

by a computing cluster such as the simulation device 110
shown in FIG. 1. In some implementations, performance of
the simulation at step 204 is started automatically, e.g.,
without user input and/or intervention and in response to
completion of step 202. Alternatively, in other implementa-
tions, performance of the simulation at step 204 is started
manually, e.g., with user input and/or intervention following
completion of step 202.

[0063] Referring again to FIG. 2, at step 206, at least one
attribute of the simulation is dynamically analyzed to deter-
mine a second set of computing resources for performing the
simulation. The analysis of step 206 can use a posteriori
knowledge of the simulation. Additionally, as described
herein, the dynamic analysis of step 206 makes the auto-
mated process proactive, not reactive. In other words, the
objective of step 206 is to dynamically analyze the simula-
tion attribute(s) while the simulation is running and proac-
tively determine a set of computing resources for performing
the simulation. This set of computing resources may be more
or less than those currently running the simulation. The
dynamic analysis of step 206 can therefore be used to make
adjustments. It should be understood that the simulation may
end up requiring more or less computing resources than
determined at step 202. For example, the simulation may be
more or less computationally intense than expected. This
may not be determined until the simulation is already
running. For example, the dynamic analysis at step 206
considers attributes of the simulation, which is running,
while the analysis at step 202 considers simulation inputs. In
some implementations, a single attribute of the simulation is
analyzed at step 206. Alternatively, in other implementa-
tions, multiple attributes of the simulation are analyzed at
step 206. As used herein, a dynamic analysis is performed
during performance of the simulation. For example, the
dynamic analysis of step 206 can be performed during
performance of the simulation with the first set of computing
resources, i.e., while the simulation is running. Dynamic
analysis of the attribute(s) of the simulation at step 206 can
occur automatically, e.g., without user input and/or inter-
vention and while the simulation is running.

[0064] As described above, the dynamic analysis of step
206 can be performed by the resource allocator 120 shown
in FIG. 1. It should be understood that the resource allocator
120 shown in FIG. 1 can also be configured to receive,
access, and/or monitor the at least one attribute of the
simulation. Additionally, as used herein, an attribute of the
simulation can include, but is not limited to, simulation
requirements (e.g., amount of memory), simulation perfor-
mance characteristics (e.g., memory or processor usage),
and compute capacity indicators. Compute capacity indica-
tors can include, but are not limited to, usage levels of
processor capacity, memory bandwidth, network bandwidth,
and/or level of network latency and may optionally be
related to an expected quality of service. This disclosure
contemplates monitoring one or more attributes of the
simulation using the computing environment shown in FIG.
1. For example, this disclosure contemplates that the
resource allocator 120 and/or the observer 150 shown in
FIG. 1 can be configured to monitor attributes of the
simulation such as compute capacity indicators, for
example, by running a process monitoring application. Pro-
cess monitoring applications are known in the art and are
therefore not described in further detail herein. Alternatively,
compute capacity indicators such as usage levels can be

Aug. 15,2024

monitored by measurements within the simulation program
such as through operating system function calls.

[0065] Additionally, in some implementations, the
dynamic analysis of step 206 includes determining a differ-
ence between a required computing resource and an avail-
able computing resource. This can be accomplished, for
example, by determining a difference between an attribute of
the simulation (e.g., a monitored simulation requirement,
simulation performance characteristic, or compute capacity
indicator), which may represents the required computing
resource, and the first set of computing resources, which
may represent the available computing resources. If the
required computing resources exceed or are less than the
available computing resources, then the computing
resources (e.g., the first set of computing resources) can be
modified accordingly. For example, a number of cores, an
amount of memory (e.g., RAM), a number of virtual
machines, and/or a hardware configuration can be deter-
mined as the second set of computing resources for per-
forming the simulation. Optionally, a number of cores, an
amount of memory (e.g., RAM), a number of virtual
machines, and/or a hardware configuration can be assigned
or removed from the first set of computing resources. In
other words, the change (e.g., increase, decrease) in com-
puting resources may be triggered in response to dynamic
analysis of the at least one simulation attribute, for example,
in order to meet demand and/or respond to existing condi-
tions. Alternatively or additionally, the dynamic analysis of
step 206 optionally includes comparing an attribute of the
simulation to a threshold. It should be understood that this
may not involve determining a difference between required
and available computing resources. If the attribute of the
simulation exceeds or is less than the threshold, then the
computing resources (e.g., the first set of computing
resources) can be modified accordingly. Resource modifi-
cation can occur automatically, e.g., without user input
and/or intervention. It should be understood that the attri-
butes of the simulation (and examples thereof) provided
above are only examples. This disclosure contemplates that
the attributes of the simulation analyzed at step 206 may
include any information, data, etc. associated with the run-
ning simulation.

[0066] The second set of computing resources is different
than the first set of computing resources. The second set of
computing resources may contain a different number of
cores, amount of memory (e.g., RAM), number of virtual
machines, and/or a hardware configuration than the first set
of computing resources. It should be understood that the first
and second set of computing resources may have specific
cores, memory, virtual machines, etc. in common. In some
implementations, the second set of computing resources is
greater than (e.g., more computing power and/or more
memory) the first set of computing resources. For example,
in some implementations, the dynamic analysis further
determines that the simulation requires more computing
resources than included in the set of computing resources
currently performing the simulation (e.g., the first set of
computing resources determined at step 202). In this sce-
nario, the current set of computing resources are insufficient,
i.e., the current set of computing resources cannot complete
the simulation. Without intervention, the simulation will fail.
To avoid this outcome before it occurs, additional computing
resources (e.g., the second set of computing resources deter-
mined at step 206) can therefore be used to perform the

US 2024/0272945 Al

simulation. In other implementations, the second set of
computing resources is less than (e.g., less computing power
and/or less memory) the first set of computing resources. For
example, in some implementations, the dynamic analysis
further determines that the simulation requires less comput-
ing resources than included in the set of computing
resources currently performing the simulation (e.g., the first
set of computing resources determined at step 202). In this
scenario, the current set of computing resources are suffi-
cient, i.e., the current set of computing resources can com-
plete the simulation, but the current set of resources may be
more expensive (e.g., too many, too much computing power
and/or memory, too fast, etc.) than desired. Fewer comput-
ing resources (e.g., the second set of computing resources
determined at step 206) can therefore be used to perform the
simulation.

[0067] Optionally, the dynamic analysis of the attribute(s)
of the simulation determines the set of computing resources
for performing the simulation while achieving a target value
for a simulation metric. As described above, the target value
is optionally an optimal value for the simulation metric.
Alternatively, the target value is optionally a desired value
for the simulation metric. This disclosure contemplates that
a simulation metric can include, but is not limited to, core
hour cost, simulation run time, efficiency of hardware con-
figuration, or energy cost. It should be understood that these
are only example simulation metrics.

[0068] Example analysis methods are described above
with regard to step 202. Analysis method include, but are not
limited to, machine learning models, empirical models, and
analytical models. This disclosure contemplates that the
same and/or different analysis methods can be used at step
206. Optionally, in step 206, the analysis method can include
the current and historical attributes of the simulation (e.g., a
posteriori knowledge of the simulation), which may be in
addition to the simulation inputs analyzed at step 202 (e.g.,
a priori knowledge of the simulation). In other words, the
analysis of step 206 can optionally account for data obtained
from running the simulation. As described above, the current
and historical attributes of the simulation, which are
obtained by running the simulation, can provide additional
data that may be useful in determining the set of computing
resources. Such additional information is unknown before
beginning of the simulation. Optionally, the attribute(s) of
the simulation are periodically analyzed to determine the
second set of computing resources. For example, the
dynamic analysis of the attribute(s) of the simulation can be
performed between time iterations. Such a process is shown,
for example, in the flowchart of FIG. 4. Alternatively, the
dynamic analysis of the attribute(s) of the simulation can be
performed in the frequency domain or on a quasi-static
process.

[0069] The second set of computing resources may be the
computing resources of Container B 304 shown in FIG. 3.
Container B 304 includes a given number of cores and
amount of memory needed to solve the simulation model.
This disclosure contemplates that computing resources from
the computing cluster shown in FIG. 1 can be used to create
Container B 304. Optionally, the second set of computing
resources is an optimal set of computing resources for
solving the set of element equations to arrive at the numeri-
cal solution for the simulation while achieving a target value
for a simulation metric (e.g., cost, run time, energy, etc.).

Aug. 15,2024

[0070] Referring again to FIG. 3, two different contain-
ers—Container A 302 and Container B 304—are shown.
Container A 302 may be the first set of computing resources
described herein, e.g., the set of computing resources per-
forming the simulation at step 204. This represents the
current state of the simulation. Container B 304 may be the
second set of computing resources described herein, e.g., the
set of computing resources performing the simulation at step
208. This represents the future state of the simulation. As
shown by reference number 306 in FIG. 3, a new container
(e.g., Container B 304) can be created. This container can
include the second set of computing resources described
herein, which is different than the first set of computing
resources. The simulation state can be transferred from the
first set of computing resources (e.g., Container A 302) to the
second set of computing resources (e.g., Container B 304)
by moving or copying the simulation data from program
memory to persistent memory in Container A 302. The
persistent memory representation of the simulation data can
be connected to or parsed by Container B 304. For example,
as shown in FIG. 3, Container A 302 and Container B 304
have access to a file system. The file system is used to
temporarily store the contents of Container A 302 until such
contents can be transferred to Container B 304. It should be
understood that a file system is provided only as an example
means for moving or transferring simulation data from
Container A 302 to Container B 304. The simulation state
can include, but is not limited to, mesh information, con-
straint and loading conditions, derived quantities, factorized
matrices, primary solution and secondary field variables,
history variables and stored results.

[0071] Referring again to FIG. 2, at step 208, the simula-
tion is performed with the second set of computing
resources. For example, the second set of computing
resources may be the computing resources of Container B
304 shown in FIG. 3. As described herein, the simulation is
performed by a computing cluster such as the simulation
device 110 shown in FIG. 1. In some implementations, the
simulation is restarted using the second set of computing
resources. In other words, the simulation is restarted from
the beginning using the second set of computing resources.
Alternatively, in other implementations, performance of the
simulation is continued using the second set of computing
resources. In other words, the simulation is continued begin-
ning at the point where the first set of computing resources
stopped the simulation, e.g., the next time iteration or
frequency. In either case, the simulation with the first set of
computing resources can be terminated in favor of the
simulation with the second set of computing resources.
Performance of the simulation at step 208 occurs automati-
cally, e.g., without user input and/or intervention and in
response to completion of step 206.

[0072] Optionally, in some implementations, the mesh is
adaptively refined during performance of the simulation. As
described herein, the domain of the simulation model is
discretized into a finite number of elements (or points, cells)
called a mesh. Adaptive refinement of the mesh includes
changing a mesh density or an order of mesh elements.
Alternatively or additionally, adaptive refinement of the
mesh includes changing both the mesh density and the order
of mesh elements. Adaptive mesh refinement techniques are
known in the art and include, but are not limited to,
h-adaptivity, p-adaptivity, and hp-adaptivity. It should be
understood that at least one of a domain size, a number of

US 2024/0272945 Al

degrees of freedom (DoF), or a constraint condition is
changed as a result of the adaptive refinement of the mesh.
And as a result, dynamic resource allocation for computa-
tional simulation described with regard to FIG. 2 may be
advantageous.

[0073] FIG. 5A illustrates an example where Regions 1, 2,
and 3 of a simulation model are meshed with a uniform
structured grid. This disclosure contemplates that the simu-
lation model of FIG. 5A can be performed using one or more
simulation devices such as simulation device 110 shown in
FIG. 1. For example, a uniform structured grid uses a
standard cell size and shape (known as a voxel) to allow for
efficient indexing of elements in order to reduce the required
memory and compute time. This approach is limited, how-
ever, in that it complicates spatial refinement of the mesh to
improve accuracy and/or necessitates numerical techniques
that may themselves be computationally expensive. Accord-
ingly, it may be desirable in some implementations to use
different mesh densities for Regions 1, 2, and 3. This is
shown, for example, in FIG. 5B, where the simulation model
is decomposed into constituent parts and a structured grid
mesh with different mesh refinements for each of Regions 1,
2, and 3 is applied. It should be understood that information
on the region boundaries can be coupled for the purposes of
the simulation. Using the techniques described herein, dif-
ferent containers can be created to perform simulations for
Regions 1, 2, and 3 shown in FIG. 5B. This is shown in FIG.
5C, where simulations for Regions 1, 2, and 3 are assigned
to Computers 1, 2, and 3, respectively, each of which is
made up of different computing resources. The respective
containers can be created and assigned based on the analysis
to determine a set of computing resources for solving each
respective simulation model to arrive at the numerical
solution while achieving a simulation metric (e.g., core hour
cost, simulation run time, efficiency of hardware configura-
tion, or energy cost). It should be understood that discretiz-
ing the simulation model domain spatially as shown in
FIGS. 6A-6C is provided only as an example. This disclo-
sure contemplates discretizing the simulation model domain
by physics, solve type, time step, etc.

[0074] It should be appreciated that the logical operations
described herein with respect to the various figures may be
implemented (1) as a sequence of computer implemented
acts or program modules (i.e., software) running on a
computing device (e.g., the computing device described in
FIG. 6), (2) as interconnected machine logic circuits or
circuit modules (i.e., hardware) within the computing device
and/or (3) a combination of software and hardware of the
computing device. Thus, the logical operations discussed
herein are not limited to any specific combination of hard-
ware and software. The implementation is a matter of choice
dependent on the performance and other requirements of the
computing device. Accordingly, the logical operations
described herein are referred to variously as operations,
structural devices, acts, or modules. These operations, struc-
tural devices, acts and modules may be implemented in
software, in firmware, in special purpose digital logic, and
any combination thereof. It should also be appreciated that
more or fewer operations may be performed than shown in
the figures and described herein. These operations may also
be performed in a different order than those described
herein.

[0075] Referring to FIG. 6, an example computing device
600 upon which the methods described herein may be

Aug. 15,2024

implemented is illustrated. It should be understood that the
example computing device 600 is only one example of a
suitable computing environment upon which the methods
described herein may be implemented. Optionally, the com-
puting device 600 can be a well-known computing system
including, but not limited to, personal computers, servers,
handheld or laptop devices, multiprocessor systems, micro-
processor-based systems, network personal computers
(PCs), minicomputers, mainframe computers, embedded
systems, and/or distributed computing environments includ-
ing a plurality of any of the above systems or devices.
Distributed computing environments enable remote comput-
ing devices, which are connected to a communication net-
work or other data transmission medium, to perform various
tasks. In the distributed computing environment, the pro-
gram modules, applications, and other data may be stored on
local and/or remote computer storage media.

[0076] In its most basic configuration, computing device
600 typically includes at least one processing unit 606 and
system memory 604. Depending on the exact configuration
and type of computing device, system memory 604 may be
volatile (such as random access memory (RAM)), non-
volatile (such as read-only memory (ROM), flash memory,
etc.), or some combination of the two. This most basic
configuration is illustrated in FIG. 6 by dashed line 602. The
processing unit 606 may be a standard programmable pro-
cessor that performs arithmetic and logic operations neces-
sary for operation of the computing device 600. The com-
puting device 600 may also include a bus or other
communication mechanism for communicating information
among various components of the computing device 600.

[0077] Computing device 600 may have additional fea-
tures/functionality. For example, computing device 600 may
include additional storage such as removable storage 608
and non-removable storage 610 including, but not limited to,
magnetic or optical disks or tapes. Computing device 600
may also contain network connection(s) 616 that allow the
device to communicate with other devices. Computing
device 600 may also have input device(s) 614 such as a
keyboard, mouse, touch screen, etc. Output device(s) 612
such as a display, speakers, printer, etc. may also be
included. The additional devices may be connected to the
bus in order to facilitate communication of data among the
components of the computing device 600. All these devices
are well known in the art and need not be discussed at length
here.

[0078] The processing unit 606 may be configured to
execute program code encoded in tangible, computer-read-
able media. Tangible, computer-readable media refers to any
media that is capable of providing data that causes the
computing device 600 (i.e., a machine) to operate in a
particular fashion. Various computer-readable media may be
utilized to provide instructions to the processing unit 606 for
execution. Example tangible, computer-readable media may
include, but is not limited to, volatile media, non-volatile
media, removable media and non-removable media imple-
mented in any method or technology for storage of infor-
mation such as computer readable instructions, data struc-
tures, program modules or other data. System memory 604,
removable storage 608, and non-removable storage 610 are
all examples of tangible, computer storage media. Example
tangible, computer-readable recording media include, but
are not limited to, an integrated circuit (e.g., field-program-
mable gate array or application-specific IC), a hard disk, an

US 2024/0272945 Al

optical disk, a magneto-optical disk, a floppy disk, a mag-
netic tape, a holographic storage medium, a solid-state
device, RAM, ROM, electrically erasable program read-
only memory (EEPROM), flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices.

[0079] In an example implementation, the processing unit
606 may execute program code stored in the system memory
604. For example, the bus may carry data to the system
memory 604, from which the processing unit 606 receives
and executes instructions. The data received by the system
memory 604 may optionally be stored on the removable
storage 608 or the non-removable storage 610 before or after
execution by the processing unit 606.

[0080] It should be understood that the various techniques
described herein may be implemented in connection with
hardware or software or, where appropriate, with a combi-
nation thereof. Thus, the methods and apparatuses of the
presently disclosed subject matter, or certain aspects or
portions thereof, may take the form of program code (i.e.,
instructions) embodied in tangible media, such as floppy
diskettes, CD-ROMs, hard drives, or any other machine-
readable storage medium wherein, when the program code
is loaded into and executed by a machine, such as a
computing device, the machine becomes an apparatus for
practicing the presently disclosed subject matter. In the case
of program code execution on programmable computers, the
computing device generally includes a processor, a storage
medium readable by the processor (including volatile and
non-volatile memory and/or storage elements), at least one
input device, and at least one output device. One or more
programs may implement or utilize the processes described
in connection with the presently disclosed subject matter,
e.g., through the use of an application programming inter-
face (API), reusable controls, or the like. Such programs
may be implemented in a high level procedural or object-
oriented programming language to communicate with a
computer system. However, the program(s) can be imple-
mented in assembly or machine language, if desired. In any
case, the language may be a compiled or interpreted lan-
guage and it may be combined with hardware implementa-
tions.

[0081] Although the subject matter has been described in
language specific to structural features and/or methodologi-
cal acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the
specific features or acts described above. Rather, the specific
features and acts described above are disclosed as example
forms of implementing the claims.

1. (canceled)

2. A computer-implemented method for automated
resource allocation during a computational simulation, com-
prising:

performing a simulation with a first set of computing

resources in a computing cluster;
dynamically analyzing at least one attribute of the simu-
lation to determine a second set of computing resources
in the computing cluster for performing the simulation,
wherein the second set of computing resources is
different than the first set of computing resources; and

performing the simulation with the second set of com-
puting resources.

Aug. 15,2024

3. The computer-implemented method of claim 2,
wherein dynamically analyzing the at least one attribute of
the simulation further determines that the simulation
requires more computing resources than included in the first
set of computing resources.

4. The computer-implemented method of claim 2, further
comprising analyzing a set of simulation inputs to determine
the first set of computing resources in the computing cluster
for performing the simulation.

5. The computer-implemented method of claim 4,
wherein the set of simulation inputs comprises at least one
of a geometry representation, a material property, a bound-
ary condition, a loading condition, a mesh parameter, a
solver option, a simulation output request, or a time param-
eter.

6. The computer-implemented method of claim 4,
wherein respective simulation inputs for each of a plurality
of simulations are analyzed.

7. The computer-implemented method of claim 4,
wherein the set of simulation inputs is analyzed to determine
the first set of computing resources for performing the
simulation while achieving a target value for a simulation
metric.

8. The computer-implemented method of claim 2,
wherein the at least one attribute of the simulation comprises
a simulation requirement, a simulation performance charac-
teristic, or a compute capacity indicator.

9. The computer-implemented method of claim 2,
wherein performing the simulation with the second set of
computing resources comprises automatically restarting the
simulation with the second set of computing resources.

10. The computer-implemented method of claim 2,
wherein performing the simulation with the second set of
computing resources comprises automatically continuing
the simulation with the second set of computing resources.

11. The computer-implemented method of claim 2,
wherein the at least one attribute of the simulation is
dynamically analyzed to determine the second set of com-
puting resources for performing the simulation while achiev-
ing a target value for a simulation metric.

12. The computer-implemented method of claim 11,
wherein the simulation metric is core hour cost, a memory
requirement, simulation run time, efficiency of hardware
configuration, or energy cost.

13. The computer-implemented method of claim 2,
wherein each of the first and second sets of computing
resources comprises at least one of a number of cores, an
amount of memory, a number of virtual machines, or a
hardware configuration.

14. The computer-implemented method of claim 2, fur-
ther comprising transferring a state of the simulation from
the first set of computing resources to the second set of
computing resources.

15. The computer-implemented method of claim 14,
wherein the state of the simulation comprises at least one of
mesh information, constraint and loading conditions,
derived quantities, factorized matrices, primary solution and
secondary field variables, history variables, or stored results.

16. The computer-implemented method of claim 2,
wherein the at least one attribute of the simulation is
periodically analyzed to determine the second set of com-
puting resources for performing the simulation.

17. The computer-implemented method of claim 2,
wherein dynamically analyzing at least one attribute of the

US 2024/0272945 Al

simulation to determine a second set of computing resources
for performing the simulation comprises comparing the at
least one attribute of the simulation to a threshold.

18. A system for automated resource allocation during a
computational simulation, comprising:

a computing cluster; and

a resource allocator operably coupled to the computing

cluster, the resource allocator comprising a processor
and a memory operably coupled to the processor,
wherein the memory has computer-executable instruc-
tions stored thereon that, when executed by the pro-
cessor, cause the processor to:

dynamically analyze at least one attribute of a simulation

being performed with a first set of computing resources
in a computing cluster to determine a second set of
computing resources in the computing cluster for per-
forming the simulation, wherein the second set of
computing resources is different than the first set of
computing resources.

19. A computer-implemented method for automated
resource allocation during a computational simulation, com-
prising:

receiving a computing environment dataset that describes

aplurality of computing environments, wherein each of
the plurality of computing environments is associated
with a distinct set of computing resources;
performing a simulation with a first computing environ-
ment of the plurality of computing environments;
before completing performance of the simulation with the
first computing environment, dynamically analyzing at
least one attribute of the simulation to determine a

Aug. 15,2024

second computing environment of the plurality of com-
puting environments for performing the simulation;
and

performing the simulation with the second computing

environment.

20. The computer-implemented method of claim 19, fur-
ther comprising ceasing performance of the simulation with
the first computing environment before completion as a
result of starting performance of the simulation with the
second computing environment.

21. The computer-implemented method of claim 19,
wherein performing the simulation with the first computing
environment comprises initiating a first instance of the
simulation based on a set of simulation inputs, and perform-
ing the simulation with the second computing environment
comprises initiating a second instance of the simulation
based on the set of simulation inputs.

22. The computer-implemented method of claim 19,
wherein performing the simulation with the first computing
environment comprises initiating a first instance of the
simulation based on a set of simulation inputs, and perform-
ing the simulation with the second computing environment
comprises:

receiving a simulation state from the first computing

environment, wherein the simulation state is based on
the first instance’s current state; and

initiating a second instance of the simulation with the

second computing environment based on the simula-
tion state.

