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ULTRASONIC COMPUTATION HARDWARE
FOR CONVOLUTIONAL NEURAL
NETWORK COMPUTING AND OTHER
COMPUTATION APPLICATIONS

RELATED APPLICATION

[0001] The present application claims priority to U.S.
Provisional Patent Application Ser. No. 63/177,220, filed
Apr. 20, 2021, which is incorporated by reference herein in
its entirety.

STATEMENT OF GOVERNMENT SUPPORT

[0002] This invention was made with U.S. government
support under Grant No. HR00117298430001 of the
Defense Advanced Research Projects Agency (DARPA)—
Defense Sciences Office (DSO). The U.S. government has
certain rights in the invention.

FIELD

[0003] The field relates generally to ultrasonic devices,
and more particularly to ultrasonic computation hardware,
which can be utilized to perform computations in informa-
tion processing systems.

BACKGROUND

[0004] As the amounts of data created in a wide variety of
different applications continue to grow exponentially, there
is need to process such data more efficiently, such as with
enhanced processing speed but with lower power consump-
tion. For example, cameras with ever-increasing pixel
counts and continuous sensor data collection have created
vast amounts of visual data, which needs to be processed
quickly to be useful in applications such as driverless cars,
drones and autonomous robots. However, conventional cir-
cuit-based approaches are running up against the limits of
Moore’s law as well as associated thermal limitations of
integrated circuits. Accordingly, improved computational
arrangements are needed to more efficiently process data in
these and numerous other contexts.

SUMMARY

[0005] Illustrative embodiments disclosed herein provide
ultrasonic computation hardware that can, for example,
perform highly efficient convolution operations in neural
network computing applications, such as those involving
driverless cars, drones and autonomous robots. Such ultra-
sonic computation hardware can similarly provide efficient
computation in a wide variety of other computation appli-
cations.

[0006] In one embodiment, an ultrasonic computation
apparatus includes first and second ultrasonic transducer
arrays arranged on opposing ends thereof, and further com-
prises first and second ultrasonic propagation regions
arranged between the first and second ultrasonic transducer
arrays and proximate respective ones of the first and second
ultrasonic transducer arrays, and an intermediate computa-
tional structure arranged between the first and second ultra-
sonic propagation regions. Respective first and second input
signals applied to respective ones of the first and second
ultrasonic transducer arrays cause propagation of corre-
sponding ultrasonic waves through the respective first and
second ultrasonic propagation regions towards the interme-
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diate computational structure. The intermediate computa-
tional structure is configured to receive the propagating
ultrasonic waves from the respective first and second ultra-
sonic propagation regions and to generate from the received
propagating ultrasonic waves an additional signal that is a
function of the first and second signals.

[0007] In some embodiments, the ultrasonic computation
apparatus is configured to perform high-efficiency convolu-
tions of an input image with kernel images in a convolu-
tional neural network (CNN), deep neural network (DNN) or
other type of neural network or machine learning system.
Under conventional circuit-based approaches, the math-
ematical complexity of such convolution operations is very
high and can limit the speed at which the CNN or DNN can
perform image recognition.

[0008] Some embodiments disclosed herein advanta-
geously provide an ultrasonic computation apparatus con-
figured to generate respective Fourier transforms of the input
image and a given one of the kernels, to multiply the
resulting Fourier transforms in the analog domain, and to
perform an inverse Fourier transform to obtain the convo-
Iution of the input image and the given one of the kernel
images. Such arrangements substantially reduce the com-
plexity of the convolution operations, allowing the opera-
tions to be performed at high speed and with low power
consumption, thereby significantly enhancing the overall
performance of the CNN or DNN in its image processing
tasks.

[0009] As noted above, a wide variety of other types of
computations can be efficiently performed in other applica-
tions using ultrasonic computation hardware as disclosed
herein. Accordingly, it should be understood that the fore-
going arrangements are only examples, and numerous alter-
native arrangements are possible.

[0010] These and other illustrative embodiments include
but are not limited to systems, methods, apparatus, process-
ing devices, integrated circuits, and computer program prod-
ucts comprising processor-readable storage media having
software program code embodied therein.

BRIEF DESCRIPTION OF THE FIGURES

[0011] FIG. 1 shows an ultrasonic computation engine in
an illustrative embodiment.

[0012] FIG. 2 illustrates the manner in which the ultra-
sonic computation engine of FIG. 1 performs a convolution
of an input image with one or more kernel images in an
illustrative embodiment.

[0013] FIGS. 3 and 4 show additional examples of ultra-
sonic computation engines performing convolution opera-
tions in illustrative embodiments.

[0014] FIG. 5 in part (a) thereof shows a more detailed
view of a portion of an ultrasonic computation engine and in
part (b) thereof a corresponding block diagram, in illustra-
tive embodiments.

[0015] FIG. 6 is a schematic diagram of a multiplier circuit
implemented in an ultrasonic computation engine in an
illustrative embodiment.

[0016] FIGS. 7 and 8 are schematic diagrams of respective
in-phase (I) and quadrature-phase (Q) implementations of
mixer and DC converter circuits for converting output of the
multiplier circuit of FIG. 6 to respective I and Q compo-
nents.
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[0017] FIG. 9 is a schematic diagram of a product trans-
mission circuit implemented in an ultrasonic computation
engine in an illustrative embodiment.

[0018] FIG. 10 is a schematic diagram showing an
example of intermediate multiplication circuitry that incor-
porates a multiplier circuit, [ and Q mixer and DC converter
circuits, and a product transmission circuit, all implemented
in an ultrasonic computation engine in an illustrative
embodiment.

[0019] FIG. 11 is a block diagram of an information
processing system that incorporates a neural network having
as a component thereof an ultrasonic computation engine in
an illustrative embodiment.

[0020] FIG. 12 shows a more detailed view of an example
implementation of the neural network of FIG. 11 that has as
a component thereof an ultrasonic computation engine in an
illustrative embodiment.

DETAILED DESCRIPTION

[0021] Illustrative embodiments include ultrasonic com-
putation engines and other types of ultrasonic computation
hardware. Such ultrasonic computation hardware in some
embodiments can be implemented, for example, in informa-
tion processing systems comprising one or more processing
platforms each having at least one computer, server or other
processing device. For example, a given such processing
platform implementing a neural network or other type of
machine learning system can incorporate one or more ultra-
sonic computation engines that are utilized by the machine
learning system to perform various types of computations,
such as convolutions of input images with kernel images in
a CNN, DNN or other type of neural network or machine
learning system. A number of examples of such systems will
be described in detail herein. It should be understood,
however, that the disclosed embodiments are more generally
applicable to a wide variety of other computation contexts,
illustratively involving other arrangements of ultrasonic
computation hardware and associated processing devices,
memories and additional or alternative components. Accord-
ingly, the term “information processing system” as used
herein is intended to be broadly construed so as to encom-
pass these and other arrangements.

[0022] Some illustrative embodiments provide methods
and systems for a computing architecture configured to
perform neural network operations.

[0023] There are significant problems with and limitations
in current neural networks, which restrict their performance
and functionality. For example, a common feature of CNNs
is to perform the convolution of a set of kernel images with
an input image. The convolutions are then weighted to
estimate if the image contains the feature image. The math-
ematical complexity of the convolution operation is very
high and can limit the speed at which image recognition can
occur. It is also known that the Fourier transform of a
convolution of two functions is the product of the Fourier
transforms of the two functions.

[0024] Some embodiments disclosed herein recognize that
there are potential problems, limitations, and/or disadvan-
tages with conventional neural networks and associated
computational arrangements as discussed herein. Various
embodiments may be advantageous in that they may solve or
reduce one or more of the potential problems, limitations,
and/or disadvantages discussed herein.
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[0025] For example, some embodiments provide ultra-
sonic computation hardware that can provide significantly
enhanced computational efficiency in applications such as
driverless cars, drones, and autonomous robots. In these and
other applications, cameras and other types of sensors trans-
mit data to an edge device of an information processing
system configured in accordance with a core-edge architec-
ture.

[0026] Some embodiments disclosed herein can provide
orders of magnitude efficiency gains for performing certain
types of computations in these and numerous other appli-
cations. For example, illustrative embodiments of the pres-
ent disclosure can perform real-time convolutions of an
input image with a kernel image in a highly efficient manner,
leading to substantial improvement in image recognition
speeds. Additional improvements in terms of power con-
sumption as well as weight and cost are also provided in
performing such image-related computations. Moreover,
illustrative embodiments can be readily integrated with
photodiode arrays or other types of image sensor arrays of
optical imagers.

[0027] Illustrative embodiments disclosed herein there-
fore overcome significant drawbacks of conventional
arrangements. Although these illustrative embodiments are
described in conjunction with particular applications, the
disclosed techniques can be adapted in a straightforward
manner to other contexts and use cases.

[0028] In some embodiments, the ultrasonic computation
hardware generates and detects GigaHertz (GHz) ultrasonic
waves in silicon substrates. For example, thin-film piezo-
electric film based transducers are illustratively formed on
top of CMOS wafers, and the embedded CMOS is used to
drive and sense strain waves. An array of two-dimensional
(2D) piezoelectric pixels can launch waves into the bulk
silicon to produce a Fourier transform of the input phase and
magnitude of voltages applied at the input frame. The
CMOS integration utilized in some embodiments allows
very low energy and fast operation. The transducers illus-
tratively include piezoelectric ultrasonic transducers formed
using an Aluminum Nitride (AIN) process on a CMOS
substrate, although other types of transducers can be used.
[0029] FIG. 1 shows an ultrasonic computation engine 100
in an illustrative embodiment. The ultrasonic computation
engine 100 is an example of what is more generally referred
to herein as “ultrasonic computation hardware” or an “ultra-
sonic computation apparatus.” The particular configuration
and functionality of the ultrasonic computation engine 100
is presented by way of illustrative example only, and should
not be construed as limiting in any way.

[0030] The ultrasonic computation engine 100 comprises
GHz CMOS transmitter/receiver arrays 102A, 102B, 102C
and 102D. Different ones of the transmitter/receiver arrays
102 may have different configurations. For example, a given
such array may be transmit only, receive only, or configured
to both transmit and receive. Accordingly, the term “trans-
mitter/receiver” as used herein is intended to be construed as
transmitter and/or receiver. First and second ones of these
ultrasonic transducer arrays 102A and 102B are arranged on
opposing ends of the ultrasonic computation engine 100.
The ultrasonic computation apparatus 100 further comprises
first and second ultrasonic propagation regions 104 and 106
arranged between the first and second ultrasonic transducer
arrays 102A and 102B and proximate respective ones of the
first and second ultrasonic transducer arrays 102A and 102B,



US 2024/0265694 Al

and an intermediate computational structure arranged
between the first and second ultrasonic propagation regions
104 and 106.

[0031] The term “proximate” as used herein is intended to
be broadly construed, so as to encompass, for example,
arrangements in which a transducer array is adjacent to an
ultrasonic propagation region or otherwise arranged relative
to an ultrasonic propagation region in a manner that permits
the transducer array to transmit and/or receive ultrasonic
waves from the ultrasonic propagation region.

[0032] The intermediate computational structure in this
embodiment more particularly comprises ultrasonic trans-
ducer arrays 102C and 102D and an interposer layer 108
arranged between the ultrasonic transducer arrays 102C and
102D. At least the first ultrasonic transducer array 102A of
the first and second ultrasonic transducer arrays 102A and
102B has a photodiode array 110 formed thereon as illus-
trated in the figure. The ultrasonic transducer arrays 102A,
102B, 102C and 102D are supported at least in part by
respective printed circuit boards (PCBs) 112A, 112B, 112C
and 112D within the ultrasonic computation engine 100. As
indicated above, this particular arrangement of components
of ultrasonic computation engine 100 is exemplary only, and
can be varied in other embodiments.

[0033] In the ultrasonic computation engine 100, respec-
tive first and second input signals applied to respective ones
of'the first and second ultrasonic transducer arrays 102A and
102B cause propagation of corresponding ultrasonic waves
through the respective first and second ultrasonic propaga-
tion regions 104 and 106 towards the intermediate compu-
tational structure. The intermediate computational structure
is configured to receive the propagating ultrasonic waves
from the respective first and second ultrasonic propagation
regions 104 and 106 via the respective ultrasonic transducer
arrays 102C and 102D and to generate from the received
propagating ultrasonic waves an additional signal that is a
function of the first and second signals.

[0034] Forexample, the intermediate computational struc-
ture in the ultrasonic computation engine 100 is illustratively
configured to generate the additional signal at least in part as
a product of transformed versions of the respective first and
second signals as represented by the corresponding received
propagating ultrasonic waves.

[0035] More particularly, the first ultrasonic transducer
array 102A and the first ultrasonic propagation region 104
are configured such that the propagation of ultrasonic waves
corresponding to the first signal through the first ultrasonic
propagation region 104 causes a Fourier transform of the
first signal to be received at a first side of the intermediate
computational structure proximate the first ultrasonic propa-
gation region 104.

[0036] Similarly, the second ultrasonic transducer array
102B and the second ultrasonic propagation region 106 are
configured such that the propagation of ultrasonic waves
corresponding to the second signal through the second
ultrasonic propagation region 106 causes a Fourier trans-
form of the second signal to be received at a second side of
the intermediate computational structure proximate the sec-
ond ultrasonic propagation region 106.

[0037] The propagation regions 104 and 106 each com-
prise an ultrasonic lens, illustratively formed in silicon, that
results in production of an equivalent Fourier transform of
the ultrasonic waves at the corresponding receiver array
102C or 102D. The thickness of the two sides of the
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propagation regions are illustratively chosen to be the focal
length of the lens. The transit time of the wavefront from the
transmitter array to the receiver array can be estimated as
Cyansir—2F/Co0.ma Where F is the focal length of the lens and
Csouma 18 the speed of sound in the propagation regions. The
focal length is typically proportional to the aperture size A
of the ultrasonic transducer array by the f,,, number. If N
pixels can fit in the aperture, and each pixel occupies space
proportional to the ultrasonic wavelength (A=c,,,, /1),
where f is the ultrasonic frequency, an NxN pixel Fourier
transform can be obtained in a time t_,,, ..o~ g NA
Coouna=N¥T. Here T is the period of the ultrasonic frequency.
Hence, an NxN pixel Fourier transform can be obtained in
illustrative embodiments in a time proportional to the num-
ber of pixels N. In contrast, digital domain Fourier trans-
forms can require a number of computational operations
given by O(N? Log N).

[0038] The analog computation of a Fourier transform as
disclosed herein can therefore be performed at high speeds,
particularly when N is large, and the ultrasonic frequencies
are comparable to the clock speeds being used in computing
systems. As has been evident in microcontroller develop-
ment over the last decade, clock frequencies have saturated
to a few GHz, owing to the excessive power consumption,
also known as the power-wall. An ultrasonic Fourier trans-
form of the type disclosed herein, if the ultrasonic frequency
is in the Ghz range, can achieve small pixels owing to small
wavelengths, and can provide speed gains over digital
computation. The operation at higher frequency also enables
reduction of the overall length of the ultrasonic travel
distance, enabling small mm-cm scale systems that be
integrated onto common PCB assemblies.

[0039] In some embodiments, the ultrasonic frequencies
utilized in the ultrasonic computation engine 100 are greater
than about 1 GHz, although other ultrasonic frequencies can
be used in other embodiments, and the term “ultrasonic” as
used herein is therefore intended to be broadly construed.
For example, in other embodiments, ultrasonic frequencies
in a range of about 0.5 GHz to 5 GHz can be used, although
this is again just an example and should not be construed as
limiting in any way.

[0040] As indicated above, the lenses within the respective
ultrasonic propagation regions 104 and 106 are illustratively
formed in silicon. For example, the lenses can be made in
silicon at least in part by filling silicon cavities with silicon
dioxide (Si0,), although other materials and techniques can
be used. As another example, the lenses can be made in
fused quartz, by etching it in pillars, and filling with silicon.
[0041] The ultrasonic propagation regions 104 and 106 are
illustratively also formed at least in part using silicon, and
may comprise, for example, fused silica, as indicated in the
illustrative embodiment of FIG. 1. Other low-loss materials
such as, for example, sapphire and fused quartz, can addi-
tionally or alternatively be used. It should also be noted, in
some embodiments, a particular substrate may be anisotro-
pic, such that ultrasonic waves propagate at different speeds
in different directions, and transmission compensation may
be used in embodiments that utilize such substrates, as will
be appreciated by those skilled in the art.

[0042] Itis assumed in the FIG. 1 embodiment that at least
the first ultrasonic transducer array 102A comprises a trans-
mit/receive ultrasonic transducer array that is illustratively
configured both to transmit ultrasonic waves to its corre-
sponding ultrasonic propagation region 104, and to receive
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ultrasonic waves from its corresponding ultrasonic propa-
gation region 104. In some embodiments, the second trans-
ducer 102B may be similarly configured. Alternatively, the
second ultrasonic transducer array 102B may be configured
to as transmit only, so as to only transmit ultrasonic waves
to its corresponding ultrasonic propagation region 106.
[0043] The Fourier transforms of the respective first and
second signals are illustratively received by the ultrasonic
transducer arrays 102C and 102D at the respective first and
second sides of the intermediate computational structure.
The intermediate computational structure is illustratively
configured to generate the additional signal as a product of
the Fourier transforms of the respective first and second
signals.

[0044] The generation of the additional signal in the
intermediate computational structure illustratively causes
propagation of additional ultrasonic waves through one of
the first and second ultrasonic propagation regions 104 and
106 towards one of the first and second ultrasonic transducer
arrays 102A and 102B such that a function of the additional
signal is received at that one of the first and second ultra-
sonic transducer arrays 102A and 102B.

[0045] For example, the additional signal generated in the
intermediate computational structure illustratively com-
prises a product of Fourier transforms of respective ones of
the first and second signals and the function of the additional
signal received at one of the first and second ultrasonic
transducer arrays 102A and 102B comprises an inverse
Fourier transform of the product of the Fourier transforms,
where the inverse Fourier transform of the product of the
Fourier transforms is a convolution of the first and second
signals.

[0046] The ultrasonic computation engine 100 therefore
computes the convolution of the first and second signals, in
a highly efficient manner. Other types of computations can
be performed using the ultrasonic computation engine in
other embodiments.

[0047] Insome embodiments, the first signal comprises an
input image applied to the first ultrasonic transducer array
102A and the second signal comprises a kernel image
applied to the second ultrasonic transducer array 102B. The
first signal is illustrated received by the first ultrasonic
transducer array 102A via the photodiode array 110. The
photodiode array 110 is an example of what is more gener-
ally referred to herein as an “image sensor array.” Other
types of image sensor arrays can be used in other embodi-
ments.

[0048] The kernel image is illustratively one of a plurality
of kernel images of a CNN that comprises or otherwise
utilizes the ultrasonic computation engine 100. The ultra-
sonic computation engine 100 in such an arrangement is
configured to generate a plurality of convolutions of the
input image with respective ones of the kernel images as
respective convolution operations of the CNN. The convo-
Iutions in some embodiments are utilized as new images
from which features are extracted, and which can then be
used to train the CNN. Although CNNs are utilized in some
embodiments herein, it is to be appreciated that the disclosed
technique are more generally applicable to performing high-
efficiency computations in DNNs or other types of neural
networks, as well as other types of machine learning sys-
tems.

[0049] As indicated above, the ultrasonic computation
engine 100 performs convolutions using the property that
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the inverse Fourier transform of the product of Fourier
transforms of the input and kernel images is the convolution
of the input and kernel images. The ultrasonic computation
engine 100 may be viewed as comprising stacked upper and
lower block structures that produce Fourier transforms of the
respective input image and kernel image, with multiplication
of those Fourier transforms being performed in the interme-
diate computational structure in the analog domain using
analog multipliers. The product is then transmitted back
through the lower block structure to form the inverse Fourier
transform of the product, which provides the convolution of
the input image and the kernel image.

[0050] The time needed to compute the convolution in
some embodiments is given approximately by 2L./c, where
L is the thickness of each of the upper and lower block
structures, and c is the sound speed. This results in a time of
about 4 microseconds (us) for a large arrays, enabling
convolutions to be performed at speeds on the order of
megaframes per second. The volume of the ultrasonic com-
putation engine 100 in some embodiments is on the order of
about 2-3 cubic centimeters (cc), which is readily compat-
ible with operation in cars, drones and robots, and in
numerous other applications.

[0051] In some embodiments, the ultrasonic transducer
arrays 102 illustratively comprise respective CMOS inte-
grated piezoelectric ultrasonic transducer arrays, imple-
mented in some embodiments as respective 2D AIN arrays.
Typical transducer capacitances are in 10-100 femtoFarad
(fF) range, and can be 1V CMOS compatible, and duty
cycled for low power consumption operation. Phase can be
easily measured using 1Q mixers and row-column based
ADC arrays.

[0052] In the ultrasonic computation engine 100, the first
and second ultrasonic propagation regions 104 and 106 each
include a first sub-region adjacent its corresponding one of
the first and second ultrasonic transducer arrays 102A and
102B, a second sub-region adjacent the intermediate com-
putational structure, and a lens arranged between the first
and second sub-regions, as illustrated.

[0053] The first and second sub-regions in the FIG. 1
embodiment illustratively comprise fused silica, and the lens
comprises a silicon lens, with the height of the correspond-
ing first and second ultrasonic propagation regions 104 and
106 each being approximately 1 centimeter (cm), although
other materials and dimensions may be used.

[0054] The various layers of the ultrasonic transducer
arrays 102 are illustratively interconnected at least in part
using flip-chip bonding arrangements with associated bond
bumps, although alternative techniques can be used.
[0055] As will be described in more detail elsewhere
herein, the intermediate computational structure illustra-
tively comprises intermediate multiplication circuitry
including a plurality of multiplier circuits, a plurality of
in-phase and quadrature-phase mixer and converter circuits
coupled to corresponding outputs of the multiplier circuits,
and a plurality of product transmission circuits coupled to
corresponding outputs of the mixer and converter circuits,
arranged to facilitate the performance of the computations
mentioned above. Additional or alternative circuitry can be
incorporated into the intermediate computational structure
in order to perform other types of computations.

[0056] FIG. 2 illustrates the manner in which an ultrasonic
computation engine 200, similar to the ultrasonic computa-
tion engine 100 of FIG. 1, performs a convolution of an
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input image with one or more kernel images. The figure
shows three different instances of the ultrasonic computation
engine 200, arranged from left to right, with the left-most
instance illustrating computation of the Fourier transforms
of the respective input image and the kernel image by
projection through the respective upper and lower ultrasonic
propagation regions to the intermediate computational struc-
ture, the middle instance illustrating the multiplication of the
two Fourier transforms in the intermediate computational
structure, and the right-most instance illustrating the com-
putation of the inverse Fourier transform of the product of
the Fourier transforms of the input image and the kernel
image by projection from the intermediate computational
structure through the lower ultrasonic propagation region.
PCBs similar to those utilized in the ultrasonic computation
engine 100 are not shown in this figure for simplicity and
clarity of illustration.
[0057] In the FIG. 2 embodiment, the first and second
transducer layers at the top and bottom of the ultrasonic
computation engine 200 comprise respective GHz ultrasonic
CMOS layers configured to transmit the input image and the
kernel image, respectively. The input image and the kernel
image in this embodiment are more particularly denoted as
u(x, y) and k(x, y), respectively. Projection through the
respective upper and lower ultrasonic propagation regions
results in the transforming of the input image u(x, y) and the
kernel image k(x, y) into their respective Fourier transforms,
which are given by 0(f,, f,) and f((fx, f).
[0058] The intermediate computational structure com-
utes the product of the two Fourier transforms 0(f,, f,) and
k(f,, £), with the resulting product being given by G(f,,
£)QK(f,, f). This product is projected through the lower
ultrasonic propagation region to obtain at the second ultra-
sonic transducer array the convolution u*k.
[0059] The various steps (1), (2) and (3) associated with
the computation of the convolution u*k in FIG. 2 may be
further described as follows, with the Fourier transforms
being more particularly referred to as fast Fourier transforms
(FFTs) generated by respective top and bottom ultrasonic
FFT blocks of the ultrasonic computation engine 200.
[0060] In step (1), the input image collected by a photo-
diode array or data bus is projected into the top ultrasonic
FFT block and the kernel image collected in a similar
manner is projected into the bottom ultrasonic FFT block, to
generate the respective FFTs at the intermediate computa-
tional structure of the ultrasonic computation engine.
[0061] In step (2), the two FFTs are multiplied in the
analog domain in the receive arrays of the intermediate
computational structure.
[0062] Instep (3), the resulting product image is projected
into the bottom ultrasonic FFT block to obtain the convo-
Iution of the input image and the kernel image.
[0063] FIGS. 3 and 4 show additional examples of ultra-
sonic computation engines performing convolution opera-
tions in illustrative embodiments.
[0064] Referring now to FIG. 3, an ultrasonic computation
engine 300, similar to the ultrasonic computation engines
100 and 200 previously described, performs a convolution
of an input image with one or more kernel images. The
figure shows three different instances of the ultrasonic
computation engine 300, arranged from left to right, with the
left-most instance illustrating computation of the Fourier
transforms of the respective input image and the kernel
image by projection through the respective upper and lower
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ultrasonic propagation regions to the intermediate compu-
tational structure, the middle instance illustrating the mul-
tiplication of the two Fourier transforms in the intermediate
computational structure, and the right-most instance illus-
trating the computation of the inverse Fourier transform of
the product of the Fourier transforms of the input image and
the kernel image by projection from the intermediate com-
putational structure through the lower ultrasonic propaga-
tion region. Again, PCBs similar to those utilized in the
ultrasonic computation engine 100 are not shown in this
figure for simplicity and clarity of illustration.

[0065] In the ultrasonic computation engine 300, a first
ultrasonic transducer array at the top of the stacked structure
comprises a transmit AIN ultrasonic transducer array imple-
mented in CMOS combined with a receive AIN ultrasonic
transducer array, also implemented in CMOS. The receive
AIN ultrasonic transducer array can be formed, for example,
by bonding a receive chip to the transmit chip implementing
the transmit AIN ultrasonic transducer array. Alternatively,
the receive AIN ultrasonic transducer array can be integrated
with the transmit AIN ultrasonic transducer array into a
single transmit/receive chip. A second ultrasonic transducer
array at the bottom of the stacked structure comprises a
transmit AIN ultrasonic transducer array implemented in
CMOS. Both the first and second ultrasonic transducer
arrays in this embodiment are associated with respective
absorber layers as shown. The ultrasonic computation
engine 300 further comprises the above-noted upper and
lower ultrasonic propagation regions, each illustratively
comprising a bulk ultrasonic transmission medium such as
fused silica sub-regions and a silicon lens arranged as
shown, and the above-noted intermediate computational
structure which comprises a pair of GHz ultrasonic receiver/
multiplier arrays also implemented in CMOS and an inter-
poser/absorber layer between the receiver/multiplier arrays.
[0066] The ultrasonic computation engine 300 first com-
putes FFTs of respective inputs F and G where F is illus-
tratively an input image and G is a kernel image, as
illustrated in the right-most instance in FIG. 3. The FFTs of
F and G are multiplied in the analog domain in the inter-
mediate computational structure, as shown in the middle
instance, illustratively by pointwise multiplication utilizing
multiplier circuits of a type described elsewhere herein.
[0067] Such analog multiplication advantageously enables
very fast calculations, limited by the speed of the transistor
level current and voltage changes. Direct analog computa-
tion avoids the need for analog-to-digital conversion (ADC)
of the received signals, followed by digital multiplication,
although such digital multiplication can be used in other
embodiments. The use of analog components also enables
miniaturization of each pixel to maximize the number of
pixels for a given chip area.

[0068] The resulting product of the FFTs of F and G is
then transmitted using an ultrasonic transducer array of the
intermediate computational structure, via the upper ultra-
sonic propagation region, to the first ultrasonic transducer
array at the top of the stacked structure, thereby performing
an inverse FFT (IFFT) such that the convolution F*G is
produced at the first ultrasonic transducer array. The product
in other embodiments could instead be transmitted using an
ultrasonic transducer array of the intermediate computa-
tional structure, via the lower ultrasonic propagation region,
to the second ultrasonic transducer array at the bottom of the
stacked structure.
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[0069] FIG. 4 illustrates the operation of another ultra-
sonic computation engine 400, which is similar to that
described above for the ultrasonic computation engine 300.
However, in the ultrasonic computation engine 400, the
second ultrasonic transducer array at the bottom of the
stacked structure comprises a transmit AIN ultrasonic trans-
ducer array that is integrated in CMOS with a photodiode
array. Such an arrangement allows an input image G to be
directly captured by the photodiode array and then trans-
mitted by the transmit AIN ultrasonic transducer array into
the lower ultrasonic propagation region towards the inter-
mediate computational structure. The photodiode collected
photons generate a current which can be used to modulate
the amplitude and phase of each AIN transducer.

[0070] A similar integration with a photodiode array could
additionally or alternatively be implemented for the first
ultrasonic transducer array at the top of the stacked structure,
so0 as to allows an input image F to be directly captured by
the photodiode array and then transmitted by the transmit
AIN ultrasonic transducer array of the first ultrasonic trans-
ducer array into the upper ultrasonic propagation region
towards the intermediate computational structure. The
operation of the ultrasonic computation engine 400 is oth-
erwise similar to that of the ultrasonic computation engine
300 as previously described.

[0071] FIG. 5 in part (a) thereof shows a more detailed
view of a portion of an ultrasonic computation engine 500
and in part (b) thereof a corresponding block diagram, in
illustrative embodiments.

[0072] Referring first to part (a), the portion of the ultra-
sonic computation engine 500 as illustratively comprises an
intermediate computational structure arranged between
respective upper and lower ultrasonic propagation regions
502-1 and 502-2. The intermediate computational structure
comprises first and second receiver layers 504-1 and 504-2
arranged proximate respective ones of the upper and lower
ultrasonic propagation regions 502-1 and 502-2, and an
interposer layer 505 arranged between the first and second
receiver layers 504-1 and 504-2. A plurality of through-
silicon vias (TSVs), such as TSVs 507-1 and 507-2, are
configured to connect the first and second receiver layers
504-1 and 504-2 through respective regions 506-1 and 506-2
to the interposer layer 505. In this embodiment, the receiver
layers 504-1 and 504-2 comprise respective AIN ultrasonic
transducer arrays implemented in CMOS, and the interposer
layer 505 comprises an interposer GHz ultrasonic wave chip
with absorbing layers. The interposer layer 505 may also be
implemented in CMOS to facilitate interconnection with the
receiver layers 504-1 and 504-2. The absorber layers of the
interposer layer 505 illustratively comprise thin film absorb-
ers, such as one or more layers of nickel and copper. The
absorber layers prevent the ultrasonic waves propagating
through the upper and lower ultrasonic propagation regions
502-1 and 502-2 from interfering with each other. In this
embodiment, CMOS circuitry of the type described else-
where herein is utilized to implement the multiplication of
the two FFTs in the intermediate computational structure
between the upper and lower ultrasonic propagation regions
502-1 and 502-2.

[0073] Referring now to part (b), the block diagram illus-
trates the computations performed in the intermediate com-
putational structure in the portion of the ultrasonic compu-
tation engine 500 shown in part (a). As shown, an analog
multiplier 510 of the interposer layer 505 receives the
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Fourier transforms, which are illustratively denoted G(f,, f,)
and k(f,, 1), and multiplies the Fourier transforms to gen-
erate the product 0(f,, £)®K(f,, f). The product is provided
by the analog multiplier 510 to drive circuitry 512 of the
interposer layer 505 for driving an AIN ultrasonic transducer
array to propagate the product back through one of the upper
or lower ultrasonic propagation regions 502-1 and 502-2 to
compute the inverse Fourier transform of the product, which
provides the convolution u*k.

[0074] The particular arrangement illustrated in FIG. 5 for
the intermediate computational structure of the ultrasonic
computation engine 500 can be similarly implemented in
one or more of the other ultrasonic computation engines 100,
200, 300 and 400 as previously described. Additional or
alternative structures and components can be utilized in
implementing the intermediate computational structure in
other embodiments.

[0075] The particular arrangements of ultrasonic compu-
tation engines illustrated in FIGS. 1 through 5 are presented
by way of illustrative example only, and alternative stacked
structures with other arrangements of components can be
used in other embodiments.

[0076] For example, in some embodiments, ultrasonic
waves from a first image can be transmitted from a front-side
ultrasonic transducer array and then reflected back from a
back-side component to be received and stored by the
front-side ultrasonic transducer array. A first set of received
signals, illustratively corresponding to the Fourier transform
of the first image, can then be stored in the analog domain
using a first set of storage capacitors to store received signal
values for each pixel. A second image is then similarly
transmitted from the front-side ultrasonic transducer array
and then reflected back from the back-side component, with
a second set of received signals, illustratively corresponding
to the Fourier transform of the second image, being stored
in the analog domain using a second set of storage capacitors
to store received signal values for each pixel. The two
Fourier transforms are then multiplied in the analog domain
as previously described and the resulting product is then
transmitted through the medium and received by the front-
side ultrasonic transducer array. In such an embodiment, the
opposite side of the device corresponding to the back-side
component may comprise one or more layers with varying
ultrasonic impedance elements for lensing of the received
ultrasonic signals.

[0077] These and numerous other variants of ultrasonic
computation engines can be implemented in accordance
with the present disclosure. For example, some embodi-
ments disclosed herein can incorporate components, mate-
rials, parameters or other aspects of one or more of the
ultrasonic devices disclosed in U.S. patent application Ser.
No. 17/057,868, entitled “Ultrasonic Fourier Transform
Analog Computing Apparatus, Method and Applications,”
which is commonly assigned herewith and incorporated by
reference herein in its entirety.

[0078] As indicated previously, the intermediate compu-
tational structure of a given ultrasonic computation engine
illustratively comprises intermediate multiplication circuitry
including a plurality of multiplier circuits, a plurality of
in-phase and quadrature-phase mixer and converter circuits
coupled to corresponding outputs of the multiplier circuits,
and a plurality of product transmission circuits coupled to
corresponding outputs of the mixer and converter circuits,
arranged to facilitate the performance of the computations
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mentioned above. Examples of such circuitry will now be
described with reference to FIGS. 6 through 10, although as
noted above, additional or alternative circuitry can be incor-
porated into the intermediate computational structure in
order to perform other types of computations.

[0079] FIG. 6 shows an example multiplier circuit 600
implemented to perform multiplications at a pixel level in an
ultrasonic computation engine in an illustrative embodi-
ment. The multiplier circuit 600 includes transistors M, M,
and M, resistors Rz, and R,, two instances of resistor R ;,
and first and second bias voltage sources Vg, o, and Vi, , o,
arranged as shown. Ultrasonic transducer components cor-
responding to respective top and bottom AIN receiver layers
are denoted AIN, , and AIN .

[0080] A received input signal from pixel transducer AIN-
7p Of the top AIN receiver layer is denoted V ;. and is
gated through two transmit/receive switches dnven by the
control signal T/R. If the control signal T/R is “on” (e.g., at
a logic high level), its corresponding switches are closed,
and the multiplier circuit 600 operates in a mode in which
the received input signal V ;. is applied to the multiplier
portion of the multiplier circuit 600 to generate a product of
that signal and a received input signal V ;5 from the pixel
transducer AIN,_, of the bottom AIN receiver layer. If T/R is
“off” (e.g., at a logic low level), its corresponding switches
are open, and the switches driven by the complementary
control signal T/R are closed, such that the multiplier circuit
600 operates in a mode in which an output signal from the
driver circuitry of FIG. 9 is applied to transducer AlNTop
drive the product out through the top ultrasonic propagation
region to obtain the inverse Fourier transform.

[0081] In the multiplier circuit 600, the voltages of the
applied signal V NG, modulate the current through transis-
tors M, and M, dlfferentlally to generate a differential output
across the terminals V, , and V, . A current tail transistor M
is driven by bias Voltage source V., and the 51gna1 AT
from the transducer AIN_, of the bottom AIN receiver layef.
The output impedance of the bias voltage source Vg, can
be high such that the capacitive output of the AIN receiver
layer directly effects the voltage at the M, gate. Alterna-
tively, another differential amplifier can be used to drive the
gate of M5, with the differential amplifier being driven by
the AIN receiver layer signal and a DC bias.

[0082] The current control in the current tail transistor M
and the differential M,/M, control generate the product of
the input voltages as the output is proportional to the
transconductance g,, which is controlled by the tail current.
Other embodiments can utilize alternative multiplier circuits
such as, for example, quadrant multipliers, balanced multi-
pliers or other types of multipliers, as will be appreciated by
those skilled in the art.

[0083] FIGS. 7 and 8 show respective example in-phase
(D and quadrature-phase (Q) implementations of mixer and
DC converter circuits 700 and 800 for converting an output
of the multiplier circuit 600 of FIG. 6 to respective I and Q
components. The mixer and DC converter circuit 700 of
FIG. 7 includes transistors M, through M, resistor Ry, first
and second capacitors, amplifier A, bias voltage sources
Visrass and Vg, ... and a signal source V,, ., arranged as
shown. The mixer and DC converter circuit 800 of FIG. 8 is
configured in a similar manner, but with transistors Mio
through M, ;, and a signal source V___ -

[0084] In FIG. 7, a sin(wt) component from signal source
Vi o 18 multiplied with the input voltage from the multi-
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plier circuit 600 and then rectified using transistor M, and
averaged using the output capacitor, and then amplified
using amplifier A, to produce the output in-phase or I
component V, .

[0085] Similarly, in FIG. 8, a cos(wt) component from
signal source V_,, ., is multiplied with the input voltage
from the multiplier circuit 600 and then rectified using
transistor M, 5 and averaged using the output capacitor, and
then amplified using amplifier A, to produce the output
quadrature-phase or Q component V ;. The circuits 700 and
800 therefore generate I and Q components of the product
from the multiplier circuit 600.

[0086] Once the I and Q components of the product are
generated, and the initial ultrasonic energy from propagation
of the input image and kernel image through the respective
upper and lower ultrasonic propagation regions is absorbed
in the absorber layers, the product is transmitted through one
of the upper and lower ultrasonic propagation regions to
obtain the inverse Fourier transform as previously described.
[0087] FIG. 9 shows an example product transmission
circuit 900 implemented in an ultrasonic computation engine
in an illustrative embodiment. The product transmission
circuit 900 includes transistors M, through M,;, two
instances of resistor R, ,, and amplifiers A, and A, arranged
as shown, and utilizes bias signals Vz;,os and Vg, . The
amplifiers A, and A, receive at inverting inputs thereof the
signals V, , and VoA from the respective circuits 700 and
800 of FIGS. 7 and 8. The amplifiers A, and A, receive at
non-inverting inputs thereof the bias signal Vg, .

[0088] The product transmission circuit 900 drives a trans-
ducer 902 for transmitting the product signal. This trans-
ducer illustratively corresponds to the above-noted trans-
ducer AINy,,,. The transducer 902 is connected across the
output of two common-source amplifiers comprising respec-
tive transistors M, and M, such that the difference of the
I and Q input signal voltages appears across the transducer
902. For example, if the input on the left side is given by V;
sin(wt), and the input on the right side is given by —Vp,
cos(wt), then the voltage across the transducer 902 is given
by Vp; sin(wt)+Vp, cos(wt). This phase shifts the output to
generate via the transducer 902 a corresponding acoustic
wave with the phase and amplitude information. Transistors
M, and M, control the amplitude of the two components
and their polarity can be reversed using a variety of circuits
that effectively subtract and level shift, as will be appreci-
ated by those skilled in the art.

[0089] FIG. 10 shows example intermediate multiplica-
tion circuitry 1000 that incorporates a multiplier circuit such
as multiplier circuit 600, I and Q mixer and DC converter
circuits such as circuits 700 and 800, and a product trans-
mission circuit such as circuit 900, all implemented in an
ultrasonic computation engine in an illustrative embodi-
ment. The intermediate multiplication circuitry 1000 gener-
ally operates in a manner similar to that previously described
in conjunction with the circuits 600, 700, 800 and 900 of
FIGS. 6 through 9. This circuitry is part of what is generally
referred to herein as an intermediate computational structure
of an ultrasonic computation engine.

[0090] In the circuitry 1000, received input signals
denoted FT(f) and FT(g) from the respective top and bottom
AIN receiver layer pixel transducers AIN,, and AIN,, are
multiplied in multiplier 1002, and the I and Q components
of the product are extracted, and then stored on two capaci-
tors. The stored components are amplified in respective
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amplifiers, each denoted A, and then mixed again with sin
and cos terms and summed in signal combiner 1004 to
provide the product that is transmitted via the transducer
AlNy,, in ultrasonic waves through the top ultrasonic propa-
gation region to obtain the inverse Fourier transform.
[0091] As indicated previously, in other embodiments, the
circuitry can be configured such that the product is trans-
mitted via the transducer AIN_, in ultrasonic waves through
the bottom propagation region to obtain the inverse Fourier
transform. Numerous other circuitry arrangements are pos-
sible in other embodiments.

[0092] Ultrasonic computation engines of the type
described above can be implemented in a processing plat-
form that integrates such components with a CNN, DNN or
other type of machine learning system to provide significant
improvements in computational efficiency and associated
classification performance.

[0093] FIG. 11 shows an example of an information pro-
cessing system 1100 that incorporates a processing platform
1102. The processing platform 1102 illustratively interacts
with input data sources 1105 and controlled devices 1106.
The processing platform 1102 comprises a CNN 1110 that
includes an ultrasonic computation engine 1112 and a plu-
rality of stored kernels 1114. Also included in the processing
platform 1102 is control circuitry 1115, which illustratively
utilizes classification outputs of the CNN 1110 to control one
or more of the controlled devices 1106. The processing
platform 1102 in some embodiments may be part of a larger
device, such as a car, drone or robot, each of which may be
considered an “information processing system” as that term
is broadly used herein. The processing platform 1102 further
comprises a processor 1120, a memory 1122 and a network
interface 1124.

[0094] The processing platform 1102 in this embodiment
implements a computing architecture that utilizes ultrasonic
computation engine 1112 to improve the computational
efficiency of the CNN 1110. Although shown as a compo-
nent of the CNN 1110 in this embodiment, the ultrasonic
computation engine 1112 can in other embodiments be
implemented at least in part externally to the CNN 1110.
Also, there may be multiple ultrasonic computation engines,
rather than a single ultrasonic computation engine as illus-
trated.

[0095] The CNN 1110 illustratively processes input
images which may be received from one or more of the input
data sources 1105. Additionally or alternatively, input
images may be generated from a pixel array or other image
sensor array integrated with the ultrasonic computation
engine in the manner described elsewhere herein. The pro-
cessing of these and other input images in CNN 1110
illustratively includes various types of image classification
operations which classify a particular received image as
being an image of a particular type of object or arrangement
of multiple objects. In performing such operations, the CNN
1110 applies an input image and a particular kernel image
from the stored kernels 1114 to the ultrasonic computation
engine 1112 to generate a convolution of the input image and
the kernel image in the manner previously described herein.
The CNN 1110 similarly utilizes the ultrasonic computation
engine 1112 to generate a plurality of convolutions of the
input image with respective different ones of a plurality of
kernel images from the stored kernels 1114 as respective
ones of a plurality of convolution operations of the CNN
1110.
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[0096] The processor 1120 may comprise, for example, a
microprocessor, an application-specific integrated circuit
(ASIC), a field-programmable gate array (FPGA), a central
processing unit (CPU), a tensor processing unit (TPU), a
graphics processing unit (GPU), an arithmetic logic unit
(ALU), a digital signal processor (DSP), or other similar
processing device component, as well as other types and
arrangements of processing circuitry, in any combination. At
least a portion of the functionality of a computing architec-
ture provided by one or more processing devices as dis-
closed herein can be implemented using such circuitry.
[0097] In some embodiments, the processor 1120 com-
prises one or more graphics processor integrated circuits of
the processing platform 1102. Such graphics processor inte-
grated circuits are illustratively implemented in the form of
one or more GPUs. Accordingly, in some embodiments, an
information processing system implementing a CNN or
other type of machine learning system is configured to
include a GPU-based processing platform. Such a GPU-
based processing platform can be cloud-based and config-
ured to implement a CNN or other type of machine learning
system as disclosed herein. Other embodiments can be
implemented using similar arrangements of one or more
TPUs.

[0098] Numerous other arrangements are possible. For
example, in some embodiments, one or more computing
architectures and associated neural networks can be imple-
mented on a single device, such as a car, drone or robot,
utilizing one or more processors and one or more ultrasonic
computation engines of that device. Such embodiments are
examples of “on-device” implementations of computing
architectures.

[0099] The memory 1122 stores software program code
for execution by the processor 1120 in implementing por-
tions of the functionality of the processing platform 1102.
For example, at least portions of the functionality of a
computing architecture or other machine learning system
component can be implemented using program code stored
in memory.

[0100] A given such memory that stores such program
code for execution by a corresponding processor is an
example of what is more generally referred to herein as a
processor-readable storage medium having program code
embodied therein, and may comprise, for example, elec-
tronic memory such as SRAM, DRAM or other types of
random access memory, flash memory, read-only memory
(ROM), magnetic memory, optical memory, or other types
of storage devices in any combination.

[0101] Articles of manufacture comprising such proces-
sor-readable storage media are considered embodiments of
the invention. The term “article of manufacture” as used
herein should be understood to exclude transitory, propa-
gating signals.

[0102] Other types of computer program products com-
prising processor-readable storage media can be imple-
mented in other embodiments.

[0103] In addition, illustrative embodiments may be
implemented in the form of integrated circuits comprising
processing circuitry configured to implement processing
operations associated with a computing architecture or its
associated machine learning system. For example, at least a
portion of a computing architecture as disclosed herein is
illustratively implemented in at least one neural network
integrated circuit of a processing device of the processing
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platform. Such a neural network integrated circuit can be at
least partially integrated with one or more ultrasonic com-
putation engines as disclosed herein.

[0104] The network interface 1124 is configured to allow
the processing platform 1102 to communicate over one or
more networks with other system elements, and may com-
prise one or more conventional transceivers.

[0105] FIG. 12 shows a more detailed view of an example
implementation 1200 of the CNN 1110 of FIG. 11. It is
assumed that the CNN 1110 comprises or is otherwise
associated with at least one ultrasonic computation engine
1112 that is configured to perform high-efficiency convolu-
tion operations for the CNN 1110 in conjunction with feature
learning and associated image classification.

[0106] In the example implementation 1200, the CNN
1110 receives input 1201, illustratively a series of input
images, and performs feature learning 1202 followed by
classification 1204. In feature learning 1202, the CNN 1110
includes a first convolution plus rectified linear unit (ReL.U)
layer 1210 followed by a first pooling layer 1211, and a
second convolution plus Rel.U layer 1212 followed by a
second pooling layer 1213, and may include one or more
additional layers of similar type, as indicated in the figure.
In classification 1204, the CNN 1110 includes a flatten layer
1214, a fully-connected layer 1215, and a softmax layer
1216. The CNN 1110 in this embodiment is more particu-
larly configured to learn features of input images by per-
forming convolutions with kernel images, and then to utilize
those learned features to perform image classification. For
example, as illustrated in the figure, the CNN 1110 can learn
features of various types of vehicles, so as to be able to
classify additional images as each corresponding to a par-
ticular type of vehicle, such as a car, truck, van, bicycle, etc.
[0107] It is to be appreciated that the particular arrange-
ment of components and other system elements described
above is presented by way of illustrative example only, and
numerous alternative embodiments are possible. For
example, other embodiments of information processing sys-
tems can be configured to implement computing architec-
tures and associated machine learning functionality of the
type disclosed herein.

[0108] In other embodiments, different types of neural
networks can be used. For example, although some embodi-
ments are implemented using CNNs, other embodiments can
comprise additional or alternative neural networks, such as
DNNs configured for deep learning, or other types of neural
networks implementing other types of machine learning or
artificial intelligence algorithms.

[0109] Also, the particular process operations described in
illustrative embodiments herein, although illustrated as
being performed sequentially, can in other embodiments be
performed at least in part in parallel with one another, or in
different orders. Also, additional or alternative processing
operations can be used in other embodiments.

[0110] As indicated previously, embodiments disclosed
herein provide significant advantages over conventional
approaches.

[0111] These and other advantages referred to herein are
illustratively present in some embodiments, but need not be
present in all embodiments. Other embodiments can provide
different arrangements of advantages, depending upon their
particular implementations.

[0112] The particular configurations as shown in the fig-
ures are non-limiting and should be considered illustrative
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examples only. Numerous other types of ultrasonic compu-
tation engines and associated computing architectures can be
used in other embodiments. Also, other types of machine
learning and/or artificial intelligence arrangements, illustra-
tively implementing other types of neural networks, can be
used in other embodiments. Accordingly, illustrative
embodiments herein are not limited to use with particular
ultrasonic computation engine implementations, or to use
with CNNs, DNNs or other particular types of neural
networks or machine learning systems.

[0113] An information processing system comprising one
or more ultrasonic computation engines as disclosed herein
can be configured to support a wide variety of distinct
applications, in numerous diverse contexts.

[0114] It is therefore to be appreciated that the particular
use cases described herein are examples only, intended to
demonstrate utility of illustrative embodiments, and should
not be viewed as limiting in any way.

[0115] Automated actions taken based on outputs gener-
ated by a machine learning system of the type disclosed
herein can include particular actions involving interaction
between a processing platform and other related equipment
utilized in one or more of the use cases described herein. For
example, control signals or other outputs generated by a
machine learning system can control one or more compo-
nents of a related system. In some embodiments, the
machine learning system and the components in the related
system are implemented on the same processing platform,
which may comprise, for example, a car, a drone, a robot or
another type of system or device, and in other embodiments
the machine learning system and the components of the
related system are implemented on separate processing
platforms, illustratively interconnected by one or more net-
works.

[0116] As indicated above, the particular arrangements
shown and described in conjunction with the figures are
presented by way of illustrative example only, and numerous
alternative embodiments are possible. The various embodi-
ments disclosed herein should therefore not be construed as
limiting in any way. Numerous alternative arrangements of
computing architectures comprising one or more ultrasonic
computation engines can be utilized in other embodiments.
Those skilled in the art will also recognize that alternative
processing operations and associated system configurations
can be used in other embodiments.

[0117] Itis therefore possible that other embodiments may
include additional or alternative system elements, relative to
the entities of the illustrative embodiments. Accordingly, the
particular system configurations and associated computation
implementations can be varied in other embodiments.
[0118] A given processing device or other component of
an information processing system as described herein is
illustratively configured utilizing a corresponding process-
ing device comprising a processor coupled to a memory. The
processor executes software program code stored in the
memory in order to control the performance of processing
operations and other functionality. The processing device
also comprises a network interface that supports communi-
cation over one or more networks.

[0119] The processor may comprise, for example, a micro-
processor, an ASIC, an FPGA, a CPU, a TPU, a GPU, an
ALU, a DSP, or other similar processing device component,
as well as other types and arrangements of processing
circuitry, in any combination. For example, at least a portion
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of the functionality of a computing architecture and/or an
associated machine learning system provided by one or
more processing devices as disclosed herein can be imple-
mented using such circuitry.

[0120] The memory stores software program code for
execution by the processor in implementing portions of the
functionality of the processing device. A given such memory
that stores such program code for execution by a corre-
sponding processor is an example of what is more generally
referred to herein as a processor-readable storage medium
having program code embodied therein, and may comprise,
for example, electronic memory such as SRAM, DRAM or
other types of random access memory, ROM, flash memory,
magnetic memory, optical memory, or other types of storage
devices in any combination.

[0121] As mentioned previously, articles of manufacture
comprising such processor-readable storage media are con-
sidered embodiments of the invention. The term “article of
manufacture” as used herein should be understood to
exclude transitory, propagating signals. Other types of com-
puter program products comprising processor-readable stor-
age media can be implemented in other embodiments.
[0122] In addition, embodiments of the invention may be
implemented in the form of integrated circuits comprising
processing circuitry configured to implement processing
operations associated with implementation of a computing
architecture and/or associated machine learning system as
disclosed.

[0123] An information processing system as disclosed
herein may be implemented using one or more processing
platforms, or portions thereof.

[0124] For example, one illustrative embodiment of a
processing platform that may be used to implement at least
a portion of an information processing system comprises
cloud infrastructure including virtual machines implemented
using a hypervisor that runs on physical infrastructure. Such
virtual machines may comprise respective processing
devices that communicate with one another over one or
more networks.

[0125] The cloud infrastructure in such an embodiment
may further comprise one or more sets of applications
running on respective ones of the virtual machines under the
control of the hypervisor. It is also possible to use multiple
hypervisors each providing a set of virtual machines using at
least one underlying physical machine. Different sets of
virtual machines provided by one or more hypervisors may
be utilized in configuring multiple instances of various
components of the information processing system.

[0126] Another illustrative embodiment of a processing
platform that may be used to implement at least a portion of
an information processing system as disclosed herein com-
prises a plurality of processing devices which communicate
with one another over at least one network. Each processing
device of the processing platform is assumed to comprise a
processor coupled to a memory. A given such network can
illustratively include, for example, a global computer net-
work such as the Internet, a WAN, a LAN, a satellite
network, a telephone or cable network, a cellular network
such as a 4G or 5G network, a wireless network imple-
mented using a wireless protocol such as Bluetooth, WiFi or
WIiMAX, or various portions or combinations of these and
other types of communication networks.

[0127] Again, these particular processing platforms are
presented by way of example only, and an information
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processing system may include additional or alternative
processing platforms, as well as numerous distinct process-
ing platforms in any combination, with each such platform
comprising one or more computers, servers, storage devices
or other processing devices.
[0128] A given processing platform implementing a com-
puting architecture comprising at least one ultrasonic com-
putation engine as disclosed herein can be implemented or
otherwise supported by cloud infrastructure or other types of
virtualization infrastructure.
[0129] It should therefore be understood that in other
embodiments different arrangements of additional or alter-
native elements may be used. At least a subset of these
elements may be collectively implemented on a common
processing platform, or each such element may be imple-
mented on a separate processing platform.
[0130] Also, numerous other arrangements of computers,
servers, storage devices or other components are possible in
an information processing system. Such components can
communicate with other elements of the information pro-
cessing system over any type of network or other commu-
nication media.
[0131] It should again be emphasized that the embodi-
ments of the invention as described herein are intended to be
illustrative only. Other embodiments of the invention can be
implemented utilizing a wide variety of different types and
arrangements of ultrasonic computation engines, computing
architectures, information processing systems, processing
devices, machine learning systems and additional or alter-
native components, than those utilized in the particular
illustrative embodiments described herein, and in numerous
alternative processing contexts. In addition, the particular
assumptions made herein in the context of describing certain
embodiments need not apply in other embodiments. These
and numerous other alternative embodiments will be readily
apparent to those skilled in the art.
What is claimed is:
1. An ultrasonic computation apparatus comprising:
first and second ultrasonic transducer arrays arranged on
opposing ends of the ultrasonic computation apparatus;

first and second ultrasonic propagation regions arranged
between the first and second ultrasonic transducer
arrays and proximate respective ones of the first and
second ultrasonic transducer arrays; and
an intermediate computational structure arranged between
the first and second ultrasonic propagation regions;

wherein respective first and second input signals applied
to respective ones of the first and second ultrasonic
transducer arrays cause propagation of corresponding
ultrasonic waves through the respective first and second
ultrasonic propagation regions towards the intermedi-
ate computational structure; and

wherein the intermediate computational structure is con-

figured to receive the propagating ultrasonic waves
from the respective first and second ultrasonic propa-
gation regions and to generate from the received propa-
gating ultrasonic waves an additional signal that is a
function of the first and second signals.

2. The apparatus of claim 1 wherein the intermediate
computational structure is configured to generate the addi-
tional signal at least in part as a product of transformed
versions of the respective first and second signals as repre-
sented by the corresponding received propagating ultrasonic
waves.
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3. The apparatus of claim 1 wherein the first ultrasonic
transducer array and the first ultrasonic propagation region
are configured such that the propagation of ultrasonic waves
corresponding to the first signal through the first ultrasonic
propagation region causes a Fourier transform of the first
signal to be received at a first side of the intermediate
computational structure proximate the first ultrasonic propa-
gation region.

4. The apparatus of claim 3 wherein the second ultrasonic
transducer array and the second ultrasonic propagation
region are configured such that the propagation of ultrasonic
waves corresponding to the second signal through the sec-
ond ultrasonic propagation region causes a Fourier trans-
form of the second signal to be received at a second side of
the intermediate computational structure proximate the sec-
ond ultrasonic propagation region.

5. The apparatus of claim 4 wherein the intermediate
computational structure is configured to generate the addi-
tional signal as a product of the Fourier transforms of the
respective first and second signals.

6. The apparatus of claim 1 wherein the generation of the
additional signal in the intermediate computational structure
causes propagation of additional ultrasonic waves through
one of the first and second ultrasonic propagation regions
towards one of the first and second ultrasonic transducer
arrays such that a function of the additional signal is
received at said one of the first and second ultrasonic
transducer arrays.

7. The apparatus of claim 6 wherein the additional signal
generated in the intermediate computational structure com-
prises a product of Fourier transforms of respective ones of
the first and second signals and the function of the additional
signal received at said one of the first and second ultrasonic
transducer arrays comprises an inverse Fourier transform of
the product of the Fourier transforms, the inverse Fourier
transform of the product of the Fourier transforms being a
convolution of the first and second signals.

8. The apparatus of claim 1 wherein the first signal
comprises an input image applied to the first ultrasonic
transducer array and the second signal comprises a kernel
image applied to the second ultrasonic transducer array.

9. The apparatus of claim 8 wherein the kernel image is
one of a plurality of kernel images of a convolutional neural
network and the apparatus is configured to generate a
plurality of convolutions of the input image with respective
ones of the kernel images as respective convolution opera-
tions of the convolutional neural network.

10. The apparatus of claim 1 wherein at least one of the
first and second ultrasonic transducer arrays comprises a
transmit/receive ultrasonic transducer array that is config-
ured to transmit ultrasonic waves to its corresponding ultra-
sonic propagation region and to receive ultrasonic waves
from its corresponding ultrasonic propagation region.

11. The apparatus of claim 1 wherein at least one of the
first and second ultrasonic transducer arrays is adapted to
receive a corresponding one of the first and second signals
via an image sensor array that is coupled to the ultrasonic
transducer array and is configured to generate the corre-
sponding one of the first and second signals as an image
signal that is applied from the image sensor array to the
ultrasonic transducer array.

12. The apparatus of claim 1 wherein at least one of the
ultrasonic propagation regions comprises:

Aug. 8,2024

a first sub-region adjacent its corresponding one of the
first and second ultrasonic transducer arrays;

a second sub-region adjacent the intermediate computa-
tional structure; and

at least one lens arranged between the first and second
sub-regions.

13. The apparatus of claim 1 wherein the intermediate
computational structure comprises intermediate multiplica-
tion circuitry comprising:

a plurality of multiplier circuits;

a plurality of in-phase and quadrature-phase mixer and
converter circuits coupled to corresponding outputs of
the multiplier circuits; and

a plurality of product transmission circuits coupled to
corresponding outputs of the mixer and converter cir-
cuits.

14. The apparatus of claim 1 wherein the intermediate

computational structure comprises:

first and second receiver layers arranged proximate
respective ones of the first and second ultrasonic propa-
gation regions; and

an interposer layer arranged between the first and second
receiver layers;

wherein a plurality of vias are configured to connect the
first and second receiver layers through the interposer
layer.

15. An apparatus comprising:

at least one processing device comprising a processor
coupled to a memory; and

one or more ultrasonic computation engines each coupled
to the at least one processing device;

the at least one processing device being configured to
implement a machine learning system;

the one or more ultrasonic computation engines each
being configured to perform computations for the
machine learning system;

wherein each of the one or more ultrasonic computation
engines comprises:

first and second ultrasonic transducer arrays arranged on
opposing ends of the ultrasonic computation engine
and adapted to receive respective first and second
signals;

first and second ultrasonic propagation regions arranged
between the first and second ultrasonic transducer
arrays and proximate respective ones of the first and
second ultrasonic transducer arrays; and

an intermediate computational structure arranged between
the first and second ultrasonic propagation regions;

wherein the intermediate computational structure is con-
figured to perform at least a portion of the computations
for the machine learning system, including generating
an additional signal that is a function of the first and
second signals.

16. The apparatus of claim 15 wherein the machine
learning system comprises a convolutional neural network
and one or more of the computations each comprise a
convolution operation of the convolutional neural network.

17. The apparatus of claim 16 wherein the first signal
comprises an input image applied to the first ultrasonic
transducer array and the second signal comprises a kernel
image applied to the second ultrasonic transducer array.

18. The apparatus of claim 17 wherein the kernel image
is one of a plurality of kernel images of the convolutional
neural network and a given one of the one or more ultrasonic
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computation engines is configured to generate a plurality of
convolutions of the input image with respective different
ones of the kernel images as respective ones of a plurality of
convolution operations of the convolutional neural network.
19. A method comprising:
applying first and second input signals to respective first
and second ultrasonic transducer arrays arranged on
opposing ends of an ultrasonic computation engine, the
ultrasonic computation engine further comprising first
and second ultrasonic propagation regions arranged
between the first and second ultrasonic transducer
arrays and proximate respective ones of the first and
second ultrasonic transducer arrays, and an intermedi-
ate computational structure arranged between the first
and second ultrasonic propagation regions;
propagating ultrasonic waves corresponding to respective
ones of the first and second input signals from respec-
tive ones of the first and second ultrasonic transducer
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arrays through the respective first and second ultrasonic
propagation regions towards the intermediate compu-
tational structure;
receiving in the intermediate computational structure the
propagating ultrasonic waves from the respective first
and second ultrasonic propagation regions; and

generating in the intermediate computational structure,
based at least in part on the received propagating
ultrasonic waves, an additional signal that is a function
of the first and second signals.

20. The method of claim 19 wherein generating the
additional signal in the intermediate computational structure
comprises generating the additional signal at least in part as
a product of transformed versions of the respective first and
second signals as represented by the corresponding received
propagating ultrasonic waves.
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