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UPDATING POSE OF AN ARTICULATED
OBJECT

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is a continuation-in-part applica-
tion of and claims priority to U.S. patent application Ser. No.
18/164,391, entitled “PREDICTING BODY MOTION,”
filed on Feb. 3, 2023, the disclosure of which is incorporated
herein by reference in its entirety.

BACKGROUND

[0002] Articulated objects such as the human body, motor
vehicles, laptop computers, animals and other articulated
objects are often represented in computer processes by
storing poses of joints of a kinematic tree. A kinematic tree
is a plurality of joints connected together by rigid bodies
such as bones of a skeleton or parts of a motor vehicle. A
pose of the articulated entity may be recorded by recoding
a pose (position and orientation) of each of the joints of the
kinematic tree. Updating the pose in the light of sensor data
about the articulated object is not straightforward.

[0003] The embodiments described below are not limited
to implementations which solve any or all of the disadvan-
tages of known ways of updating pose of an articulated
object.

SUMMARY

[0004] The following presents a simplified summary of the
disclosure in order to provide a basic understanding to the
reader. This summary is not intended to identify key features
or essential features of the claimed subject matter nor is it
intended to be used to limit the scope of the claimed subject
matter. Its sole purpose is to present a selection of concepts
disclosed herein in a simplified form as a prelude to the more
detailed description that is presented later.

[0005] Updating a pose of an articulated object using a
kinematic tree is useful for a variety of purposes including
but not limited to: animating avatars, completing the pose of
a full human body when only part of the pose is visible, full
body pose estimation using signals from inertial measure-
ment units worn only on wrists and ankles.

[0006] A method of updating a pose of a plurality of joints
of a kinematic tree of an articulated object is described. The
method comprises receiving, for each of the joints in the
kinematic tree, an initial pose. A single first embedding
vector is computed by encoding the initial poses in an
embedding space. For each of some but not all of the joints
in the kinematic tree, a target pose is received. A single
second embedding vector representing the target poses is
computed in the embedding space. The first embedding
vector is modified using the second embedding vector to
form a third embedding vector. Decoding the third embed-
ding vector produces the updated pose of the articulated
object.

[0007] Many ofthe attendant features will be more readily
appreciated as the same becomes better understood by
reference to the following detailed description considered in
connection with the accompanying drawings.
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DESCRIPTION OF THE DRAWINGS

[0008] The present description will be better understood
from the following detailed description read in light of the
accompanying drawings, wherein:

[0009] FIG. 1 shows a pose manipulator deployed as a
cloud service:
[0010] FIG. 2 shows an initial pose of a kinematic tree,

target poses of four joints, and an updated pose of the
kinematic tree:

[0011] FIG. 3 shows an architecture of an example inverse
kinematics neural network:

[0012] FIG. 4 is a flow diagram of a method of updating
a pose using a pose manipulator such as that of FIG. 1 or 3:
[0013] FIG. 5 is a flow diagram of a method of creating
training data to train a pose manipulator:

[0014] FIG. 6 is a flow diagram of a method of training a
pose manipulator;

[0015] FIG. 7 illustrates an exemplary computing-based
device in which examples of a pose manipulator are imple-
mented.

[0016] Like reference numerals are used to designate like
parts in the accompanying drawings.

DETAILED DESCRIPTION

[0017] The detailed description provided below in con-
nection with the appended drawings is intended as a descrip-
tion of the present examples and is not intended to represent
the only forms in which the present examples are con-
structed or utilized. The description sets forth the functions
of the examples and the sequence of operations for con-
structing and operating the examples. However, the same or
equivalent functions and sequences may be accomplished by
different examples.

[0018] As mentioned above, updating the pose of an
articulated object in the light of sensor data about the object
(which may be sparse) is difficult. One approach is to use
inverse kinematics. Inverse kinematics is where the pose of
one or more end effectors of a kinematic tree are known, and
it is desired to update the rest of the kinematic tree to be
consistent with the pose of the end effectors. An end effector
is a leaf node of a kinematic tree, such as an ankle or wrist
in the case of a human skeleton. One of the reasons that
inverse kinematics is difficult is that there are constraints on
how the articulated entity can be arranged and these con-
straints are difficult and complex to express mathematically
using rules. In an example, where the kinematic tree is a
human skeleton, the constraints include things like, the foot
cannot go behind the back. Traditional methods for solving
inverse kinematics problems often involve complex math-
ematical formulations or require artists and specialized
riggers involvement to create rigs (where a rig is a set of
constraints and relationships between different parts of an
object, such as wrist can only bend in particular ways and
palm cannot intersect with fingers) that inverse kinematics
can work on to achieve natural looking and plausible poses,
and may not always guarantee optimal or real-time solu-
tions.

[0019] The present technology presents an innovative
deep learning based approach to approximating inverse
kinematics for real time and accurate pose manipulation. By
harnessing the power of a neural network with attention
mechanism, neural networks can efficiently and accurately
estimate joint angles given an arbitrary number of target
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joint positions and rotations. A novel data augmentation
regime is described to create training data for training the
neural network. The resulting system can seamlessly be
utilized as a real time inverse kinematics solution that
enables non-artists to be able to manipulate poses. It also
enables other tasks such as motion generation driven by
wearable devices.

[0020] FIG. 1 is a schematic diagram of a pose manipu-
lator 100 deployed in the cloud. The pose manipulator is for
use with one class or type of kinematic tree, such as a human
body, or a motor vehicle. It is computer implemented and
comprises an inverse kinematics neural network 102, a
processor 104, a memory 106, and an initial pose and
optional reference shape 108. The pose manipulator 100
receives as input one or more target joint poses. It returns an
updated pose 116 of all the joints in the kinematic tree.
[0021] The pose manipulator 100 receives the target poses
via communications network 124 from a client device. A
non-exhaustive list of types of client device which may be
used is: game console 110, smart phone 122, head worn
computer 114, file creation tool 120. Each target pose is a 3D
position and 3D orientation (6 degree of freedom pose). The
updated pose is a 3D position and 3D orientation for each
joint of the kinematic tree. In some examples the updated
pose of the articulated object is an approximation of inverse
kinematics applied to the kinematic tree using the target
poses.

[0022] Itis not essential for the pose manipulator 100 to be
deployed as a cloud service. In some cases the pose manipu-
lator is functionality deployed in an end user computing
device such as a smart phone, laptop computer, wearable
computer or desktop computer. The functionality of the pose
manipulator 100 is distributed between more than one entity
in some cases.

[0023] The pose manipulator updates a pose of a plurality
of joints of a kinematic tree of an articulated object. This is
useful for a variety of purposes such as film creation, avatar
manipulation, full body pose estimation from sparse sensor
data and more. The method comprises receiving, for each of
the joints in the kinematic tree, an initial pose. Having an
initial pose gives the method something to start from. The
initial pose is not only to have a place to start from (e.g. the
method could start from fully neutral standing pose with
arms down by the hips), but also to constrain the end
outcome. In some examples it is desired for the end pose to
be like the start pose with exception that a joint position is
changed, such as a hand is raised for example. The method
computes a single first embedding vector by encoding the
initial poses in an embedding space. The first embedding
vector is a concise and hence efficient way to represent the
initial poses. For each of some but not all of the joints in the
kinematic tree, a target pose is received. The method is able
to receive the target pose from user input or from sensor data
or from another computing process. The method computes a
single second embedding vector representing the target
poses in the embedding space. The second embedding vector
is a concise representation which improves efficiency. The
process comprises modifying the first embedding vector
using the second embedding vector to form a third embed-
ding vector. Because the first and second embedding vectors
are in the same space it is possible to modify the first
embedding vector (representing the initial poses) in the light
of'the target poses (second embedding vector). This provides
a convenient and effective way to update the pose that gives
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accurate results which are plausible (agree with ways the
articulated entity can be manipulated naturally). There is no
need to use complex rules to express constraints. The
method decodes the third embedding vector to produce the
updated pose of the articulated object. The third embedding
vector is a concise representation that can be sent with low
bandwidth. It can be decoded to produce the position and
orientation values for each of the joints in the kinematic tree.
[0024] Being able to encode the initial poses and the target
poses into the same embedding space enables the target
poses to be used to update the initial poses in an efficient and
effective manner.

[0025] The inverse kinematics neural network improves
the functioning of the underlying computing device by
enabling target poses to be used to update initial poses in an
efficient and effective manner.

[0026] Alternatively, or in addition, the functionality of
the pose manipulator described herein is performed, at least
in part, by one or more hardware logic components. For
example, and without limitation, illustrative types of hard-
ware logic components that are optionally used include
Field-programmable Gate Arrays (FPGAs), Application-
specific Integrated Circuits (ASICs), Application-specific
Standard Products (ASSPs), System-on-a-chip systems
(SOCs), Complex Programmable Logic Devices (CPLDs),
Graphics Processing Units (GPUs).

[0027] The task of the pose manipulator 100 is to generate
a novel pose y given an initial pose x and an arbitrary
number of targets T=[j1, j2 . . . ] such that the novel pose is
a modified version of the initial pose that closely matches the
targets. The poses x and y are defined with joint rotations of
joints in the body kinematic tree. Each target is a 6-DoF
representation of an end-effector joint (i.e., the leaves of the
kinematic tree).

[0028] FIG. 2 shows an initial pose 200 of a kinematic tree
(also referred to as a reference pose), target poses of four
joints 204, 206, and an updated pose 208 of the kinematic
tree. The initial pose is a standing human body. The target
poses are poses of ankle joints and wrist joints of the human
body where only the right wrist has moved as compared to
the initial pose 200. The updated pose 208 shows the
standing human body with the right hand raised and the right
arm and shoulder pose adjusted to agree and where the rest
of the joints of the body are unchanged.

[0029] FIG. 3 shows an architecture of an example inverse
kinematics neural network 102. It comprises a first encoder
302, a second encoder 312, a decoder 306 and a transformer
comprising a transformer encoder 314 and a transformer
decoder 304. In this example the architecture comprises five
components, all trained end-to-end: an initial pose embed-
ding module (the first encoder 302), a target embedding
module (the second encoder 312), a self-attention mecha-
nism (the transformer encoder 314) to learn the relation
between various components of the target signal, a cross-
attention module (the transformer decoder 304) to learn how
to manipulate the initial pose given the target signal, and
finally a pose decoder (decoder 306) to generate the result-
ing pose.

[0030] The first encoder 302 computes an embedding
representation of the initial pose that is then consumable by
the transformer decoder 304 (cross-attention module). The
first encoder receives as input the initial pose 300, where the
pose global orientation is considered fixed. The pose is
defined as the local rotation of all joints in the body, each
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represented relative to its parent according to the kinematic
tree of human skeleton. This is a standard representation of
the human pose. For a pose of N joints, each joint is
represented with the 6D rotation representation, resulting a
Nx6 tensor. Along with this representation, additionally
provide the global rotation and position of each joint. This
is achieved by computing the forward kinematics (FK) on
the given pose. Similar to local pose, the global rotation of
each joint is also represented in 6D and the positions are
represented in 3D coordinate system, where the root join is
positioned at the center of coordinate system facing forward.
Combined together, the input to the first encoder 302 is a
tensor of Nx(6+6+3) for a single input pose. The first
encoder is based on a multi-layer perceptron (MLP), acting
on each joint’s representation independently and in parallel.
It aims at computing the embedding representation in a d
dimensional embedding space.

[0031] The second encoder 312 computes an embedding
representation of the target poses that is then consumable by
the transformer encoder 314. The second encoder 312
receives as input the 6-DoF representation (position and
rotation) of an arbitrary number of target joints 310. The
number of target joints could be between 1 and the number
of'end effector joints (NEE). Similar to the first encoder, here
the rotations are represented in 6D and positions are in 3D.
Thus each target 6-DoF is represented as a 9D input. The
second encoder is based on a multi-layer perceptron (MLP),
acting on each joint’s representation independently and in
parallel. It aims at computing the embedding representation
in a d dimensional embedding space. Note that, the model is
trained only once and can be used for any subset of target
joints.

[0032] The transformer encoder 314 learn the relation
between different target poses. Unlike the initial pose rep-
resentation in which each joint is represented relative to its
parent in the body kinematic tree, and thus are strongly
related to each other, target joints are represented globally
and independently. Thus, it is of crucial importance to learn
how they correlate and what potential poses they may
represent. To this end, explicitly learn the relation between
different target signals. For this purpose, use a transformer
encoder 314 which utilizes a self-attention mechanism. The
benefit of such design choice is two-fold: (1) to effectively
transform each joint’s embedding such that the resulting
feature vector contains information about all other joints in
relation to it, and (2) to effectively handle arbitrary number
of input target joints by design. The resulting features are
more expressive representation of target joints in an embed-
ding space of similar dimension.

[0033] The transformer decoder 304 learns the cross-
attention between the target joints’ representations and that
of the initial pose. Once expressive representation of the
target joints are achieved, it is possible to learn how to
modify the initial pose such that the resulting pose matches
the target. This requires learning to attend to different parts
of the initial pose to be able to change the pose of different
body parts. This is achieved by explicitly learning the
cross-attention between the target joints’ representations and
that of the initial pose. A transformer decoder 304 layer
(which inherently utilizes cross-attention), learn how to
translate the initial pose to a novel pose such that (1) if the
target joint indicates changing a body part of the initial pose,
it is reflected in the resulting representation, and (2) if it does
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not indicate a change in the initial pose, the initial pose
representation remains unchanged.

[0034] In an example, modifying the first embedding
vector using the second embedding vector comprises con-
catenating the first embedding vector and the second embed-
ding vector to form a concatenated embedding vector and
decoding the concatenated embedding vector using a
decoder neural network.

[0035] The decoder 306 is used to decode the transformed
embedding vector into the updated pose. Once the trans-
former decoder 304 computes the features, they serve as the
input to a multi-layer perceptron (MLP) 306 that transforms
the d dimensional feature representation of each joint to a 6D
rotation representation, constructing a novel pose.

[0036] The architecture of FIG. 3 is modified in some
examples as now explained.

[0037] In some cases shape parameters are used in addi-
tion to poses of the joints of the kinematic tree. The shape
parameters are shape parameters of body parts of the kine-
matic tree. The shape parameters are concatenated to the
inputs to the encoders and the architecture is the same except
that the sizes of the embedding vectors may be larger since
shape also has to be taken into account. Using shape
parameters is particularly beneficial for human body pose
estimation where body shape influences poses which are
plausible.

[0038] The first embedding vector is in a multi-dimen-
sional space and the second embedding vector is in the same
multi-dimensional space. This is achieved either by end-to-
end training of the neural network or by using the same
encoder to produce the first and second embedding vectors.
[0039] FIG. 4 is a flow diagram of a method of updating
a pose using a pose manipulator such as that of FIG. 1 or 3.
An initial pose and optional shape parameter values of an
articulated body is received 400. Target joint poses are
received 402. Optionally the target joint poses are received
from a wearable inertial measurement unit IMU signal. In
some examples the target joint poses are received 402 from
a graphical user interface where a user drags and drops an
icon or uses another user interface tool to specify the target
joint poses.

[0040] The target joint poses and the initial poses are input
404 to the model (the inverse kinematics neural network of
FIG. 3) which outputs 406 an update pose of the articulated
body. The process optionally repeats from operation 400.
The updated pose is provided 408 to a downstream process
such as a film or video game 410, a telepresence application
412, a full body pose from wearable head mounted display
HMD application.

[0041] FIG. 5 is a flow diagram of a method of creating
training data to train a pose manipulator such as that of FIG.
1. A library 500 of poses of the type of articulated entity is
available. In the case of human body pose this is a library of
human body poses. In the case of a motor vehicle this is a
library of poses of motor vehicles. To prepare a sample to
train the inverse kinematics neural network, two poses are
sampled from the library 500, such as by random sampling
or other sampling methods. This gives sample pose x 502
and sample pose z 504. Then normalize each pose such that
(1) the root appears in the center of the coordinate system,
and (2) the root of the pose, (i.e., the pelvis in the case of a
human body), is facing forward. With that, the two poses are
globally originated similarly. Since the pose constructed as
a kinematic tree, once can replace part of the kinematic tree



US 2024/0265659 Al

of a pose that leads to a leaf node with that of another pose.
For instance, if one defines the left arm as left shoulder,
elbow; and wrist, it is possible to replace these joints’
rotations with same joints rotations of another pose, result-
ing in a new pose where everything except for the left arm
is identical to the original pose. The same process is possible
for any part of the kinematic tree. As illustrated in FIG. 5
randomly sample a pose from pose library 500 to serve as x.
Randomly sample another pose z that is different from x.
Randomly select 508 one or more body parts leading to a
subset of leaf joints. Create a new pose y by copying 506 x
and replacing the sampled body part from z. Compute 510
forward kinematics to come up with the 6-DoF of the
modified leaf joints, resulting in the target T.

[0042] This results in the triplet [x, y, T]. Store 512 the
triplet and check if there are enough triplets in the store. If
the store is not yet full repeat the process. Otherwise end
516.

[0043] FIG. 6 is a flow diagram of a method of training a
pose manipulator. The process comprises accessing training
data 600 where the training data comprises triplets as
explained with reference to FIG. 5. A training example is
accessed 602 and end to end supervised training 604 is
carried out on the inverse kinematics neural network. The
training uses backpropagation with a loss function 606 as
explained below. If convergence is reached (where the
neural network weights change only a very small amount in
a training iteration) the training ends and the model is stored
610. If convergence is not reached at check 608 the process
repeats from operation 602 for another training example.
[0044] To optimize the parameters of the model, the
following loss function may be used, encouraging the model
to predict a pose that is close to y, given x and T.

L = Liocat + Lworia + LEE

[0045] The first term, L., is the reconstruction loss
between the direct prediction of the model and y. The second
term, L., is the reconstruction loss between the predic-
tion of the model and y in the world coordinates after
computing forward kinematics on both poses. Finally, LEE,
is the reconstruction loss between the 6-DoFs of the pre-
dicted end effectors and T. All reconstruction losses are LI
loss.

[0046] The inverse kinematics neural network of FIG. 3
was tested empirically. The Euclidean distance between the
generated poses end effector 6-DoFs and that of the target
signal were computed. For the left wrist the error was 3.2
cm, for the right wrist 3.17 cm for the left ankle 3.15 cm, for
the right ankle 3.16 cm.

[0047] FIG. 7 illustrates various components of an exem-
plary computing-based device 700 which are implemented
as any form of a computing and/or electronic device (such
as a smart phone, HMD, self-driving vehicle, laptop com-
puter, data center compute node), and in which examples of
a pose manipulator are implemented in some examples.
[0048] Computing-based device 700 comprises one or
more processors 714 which are microprocessors, controllers
or any other suitable type of processors for processing
computer executable instructions to control the operation of
the device in order to manipulate the pose of an articulated
entity having a kinematic tree. In some examples, for
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example where a system on a chip architecture is used, the
processors 714 include one or more fixed function blocks
(also referred to as accelerators) which implement a part of
the method of any of FIGS. 4 to 6 in hardware (rather than
software or firmware). A pose manipulator 702 is deployed
in the computing-based device 700 and comprises an inverse
kinematics neural network 704. Platform software compris-
ing an operating system 706 or any other suitable platform
software is provided at the computing-based device to
enable application software 710 to be executed on the
device. Data store 708 holds poses, kinematic trees, shape
parameters or other data.

[0049] The computer executable instructions are provided
using any computer-readable media that is accessible by
computing based device 700. Computer-readable media
includes, for example, computer storage media such as
memory 712 and communications media. Computer storage
media, such as memory 712, includes volatile and non-
volatile, removable and non-removable media implemented
in any method or technology for storage of information such
as computer readable instructions, data structures, program
modules or the like. Computer storage media includes, but
is not limited to, random access memory (RAM), read only
memory (ROM), erasable programmable read only memory
(EPROM), electronic erasable programmable read only
memory (EEPROM), flash memory or other memory tech-
nology, compact disc read only memory (CD-ROM), digital
versatile disks (DVD) or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other non-transmission
medium that is used to store information for access by a
computing device. In contrast, communication media
embody computer readable instructions, data structures,
program modules, or the like in a modulated data signal,
such as a carrier wave, or other transport mechanism. As
defined herein, computer storage media does not include
communication media. Therefore, a computer storage
medium should not be interpreted to be a propagating signal
per se. Although the computer storage media (memory 712)
is shown within the computing-based device 700 it will be
appreciated that the storage is, in some examples, distributed
or located remotely and accessed via a network or other
communication link (e.g. using communication interface
716).
[0050] The computing-based device optionally has a dis-
play device 720. The display information may provide a
graphical user interface. The computing-based device
optionally has a capture device 718 such as for capturing
inertial measurement unit IMU signals or other data.
[0051] Alternatively or in addition to the other examples
described herein, examples include any combination of the
following clauses:
[0052] Clause A. A computer-implemented method of
updating a pose of a plurality of joints of a kinematic tree of
an articulated object, the method comprising:
[0053] receiving, for each of the joints in the kinematic
tree, an initial pose;
[0054] computing a single first embedding vector by
encoding the initial poses in an embedding space;
[0055] for each of some but not all of the joints in the
kinematic tree, receiving a target pose;
[0056] computing a single second embedding vector
representing the target poses in the embedding space;
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[0057] modifying the first embedding vector using the
second embedding vector to form a third embedding
vector;

[0058] decoding the third embedding vector to produce
the updated pose of the articulated object.

[0059] Clause B. The method of clause A wherein the
updated pose of the articulated object is an approximation of
inverse kinematics applied to the kinematic tree using the
target poses.

[0060] Clause C. The method of clause A or clause B
wherein computing the first embedding vector comprises:

[0061] concatenating the initial poses; and

[0062] wusing a first encoder neural network to encode
the concatenated initial poses producing the first
embedding vector.

[0063] Clause D. The method of any preceding clause
wherein computing the second embedding vector comprises
concatenating the target poses and using a second encoder
neural network to encode the concatenated target poses.
[0064] Clause E. The method of clause D wherein the
second encoder neural network is different from the first
encoder neural network.

[0065] Clause F. The method of clause C wherein the first
encoder neural network is a multi-layer perceptron.

[0066] Clause G. The method of clause D wherein the
second encoder neural network is a multi-layer perceptron.
[0067] Clause H. The method of any preceding clause
wherein the first embedding vector is in a multi-dimensional
space and the second embedding vector is in the same
multi-dimensional space.

[0068] Clause 1. The method of any preceding clause
wherein modifying the first embedding vector using the
second embedding vector comprises concatenating the first
embedding vector and the second embedding vector to form
a concatenated embedding vector and decoding the concat-
enated embedding vector using a decoder neural network.
[0069] Clause J. The method of clause I wherein the
decoder neural network comprises a transformer neural
network.

[0070] Clause K. The method of clause 1 wherein the
decoder neural network comprises a transformer neural
network and a decoder neural network.

[0071] Clause L. The method of any preceding clause
comprising applying self-attention to the first embedding
vector using a transformer neural network prior to using the
first embedding vector to modify the second embedding
vector.

[0072] Clause M. The method of any preceding clause
comprising applying cross attention to the first embedding
vector and the second embedding vector using a transformer
neural network.

[0073] Clause N. The method of any preceding clause
comprising receiving values of shape parameters of the
articulated object and computing the first embedding vector
by encoding both the initial poses and the shape parameter
values such that the updated pose of the articulated object
takes into account the shape parameter values.

[0074] Clause O. The method of any preceding clause
comprising using neural networks to compute the first
embedding vector, the second embedding vector and the
third embedding vector and to decode the third embedding
vector, where the neural networks are trained end-to-end
using supervised learning.
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[0075] Clause P. The method of clause O comprising
carrying out the supervised learning using training
examples, each training example comprising a triplet X, Y,
T where X is first pose of the kinematic tree of the articulated
object, Y is a second pose of the kinematic tree of the
articulated object created by copying X and replacing one or
more leaf joints of X using Z, where Z is another pose of the
kinematic tree of the articulated object, and where T is the
pose of the replaced leaf joints computed using forward
kinematics.
[0076] Clause Q. The method of any preceding clause
comprising presenting the kinematic tree of the initial pose
in a graphical user interface and receiving user input moving
a leaf joint to specify a target pose.
[0077] Clause R. The method of any preceding clause
comprising using the updated pose of the articulated object
for any of: enabling a non-artist to update pose of an avatar,
task-specific pose augmentation, augmenting an upper body
motion by modifying lower body pose or vice versa, full
body pose estimation given signals from a wearable device,
full body pose estimation from inertial measurement unit
sensors worn only on wrists and ankles.
[0078] Clause S. A computer storage medium having
computer-executable instructions that, when executed by a
computing system, direct the computing system to perform
operations comprising:
[0079] receiving, for each of the joints in the kinematic
tree, an initial pose;
[0080] computing a single first embedding vector by
encoding the initial poses in an embedding space;
[0081] for each of some but not all of the joints in the
kinematic tree, receiving a target pose;
[0082] computing a single second embedding vector
representing the target poses in the embedding space;
[0083] modifying the first embedding vector using the
second embedding vector to form a third embedding
vector, by using a transformer neural network;
[0084] decoding the third embedding vector to produce
the updated pose of the articulated object.

[0085] Clause T. An apparatus comprising:

[0086] a processor;

[0087] a memory storing instructions that, when
executed by the processor, perform a method, compris-
ing:

[0088] receiving, for each of the joints in the kinematic

tree, an initial pose;

[0089] computing a single first embedding vector by
encoding the initial poses;

[0090] for each of some but not all of the joints in the
kinematic tree, receiving a target pose;

[0091] computing a single second embedding vector
representing the target poses;

[0092] modifying the first embedding vector using the
second embedding vector to form a third embedding
vector;

[0093] decoding the third embedding vector to produce
the updated pose of the articulated object.

[0094] The term ‘computer’ or ‘computing-based device’
is used herein to refer to any device with processing capa-
bility such that it executes instructions. Those skilled in the
art will realize that such processing capabilities are incor-
porated into many different devices and therefore the terms
‘computer’ and ‘computing-based device’ each include per-
sonal computers (PCs), servers, mobile telephones (includ-
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ing smart phones), tablet computers, set-top boxes, media
players, games consoles, personal digital assistants, wear-
able computers, and many other devices.

[0095] The methods described herein are performed, in
some examples, by software in machine readable form on a
tangible storage medium e.g. in the form of a computer
program comprising computer program code means adapted
to perform all the operations of one or more of the methods
described herein when the program is run on a computer and
where the computer program may be embodied on a com-
puter readable medium. The software is suitable for execu-
tion on a parallel processor or a serial processor such that the
method operations may be carried out in any suitable order,
or simultaneously.

[0096] Those skilled in the art will realize that storage
devices utilized to store program instructions are optionally
distributed across a network. For example, a remote com-
puter is able to store an example of the process described as
software. A local or terminal computer is able to access the
remote computer and download a part or all of the software
to run the program. Alternatively, the local computer may
download pieces of the software as needed, or execute some
software instructions at the local terminal and some at the
remote computer (or computer network). Those skilled in
the art will also realize that by utilizing conventional tech-
niques known to those skilled in the art that all, or a portion
of the software instructions may be carried out by a dedi-
cated circuit, such as a digital signal processor (DSP),
programmable logic array, or the like.

[0097] Any range or device value given herein may be
extended or altered without losing the effect sought, as will
be apparent to the skilled person.

[0098] Although the subject matter has been described in
language specific to structural features and/or methodologi-
cal acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the
specific features or acts described above. Rather, the specific
features and acts described above are disclosed as example
forms of implementing the claims.

[0099] It will be understood that the benefits and advan-
tages described above may relate to one embodiment or may
relate to several embodiments. The embodiments are not
limited to those that solve any or all of the stated problems
or those that have any or all of the stated benefits and
advantages. It will further be understood that reference to
‘an’ item refers to one or more of those items.

[0100] The operations of the methods described herein
may be carried out in any suitable order, or simultaneously
where appropriate. Additionally, individual blocks may be
deleted from any of the methods without departing from the
scope of the subject matter described herein. Aspects of any
of the examples described above may be combined with
aspects of any of the other examples described to form
further examples without losing the effect sought.

[0101] The term ‘comprising’ is used herein to mean
including the method blocks or elements identified, but that
such blocks or elements do not comprise an exclusive list
and a method or apparatus may contain additional blocks or
elements.

[0102] It will be understood that the above description is
given by way of example only and that various modifica-
tions may be made by those skilled in the art. The above
specification, examples and data provide a complete descrip-
tion of the structure and use of exemplary embodiments.
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Although various embodiments have been described above
with a certain degree of particularity, or with reference to
one or more individual embodiments, those skilled in the art
could make numerous alterations to the disclosed embodi-
ments without departing from the scope of this specification.

What is claimed is:

1. A computer-implemented method of updating a pose of
a plurality of joints of a kinematic tree of an articulated
object, the method comprising:

receiving, for each of the joints in the kinematic tree, an

initial pose;

computing a single first embedding vector by encoding

the initial poses in an embedding space;

for each of some but not all of the joints in the kinematic

tree, receiving a target pose;

computing a single second embedding vector representing

the target poses in the embedding space;

modifying the first embedding vector using the second

embedding vector to form a third embedding vector;
decoding the third embedding vector to produce the
updated pose of the articulated object.

2. The method of claim 1 wherein the updated pose of the
articulated object is an approximation of inverse kinematics
applied to the kinematic tree using the target poses.

3. The method of claim 1 wherein computing the first
embedding vector comprises:

concatenating the initial poses; and

using a first encoder neural network to encode the con-

catenated initial poses producing the first embedding
vector.

4. The method of claim 3 wherein the first encoder neural
network is a multi-layer perceptron.

5. The method of claim 1 wherein computing the second
embedding vector comprises concatenating the target poses
and using a second encoder neural network to encode the
concatenated target poses.

6. The method of claim 5 wherein the second encoder
neural network is different from the first encoder neural
network.

7. The method of claim 5 wherein the second encoder
neural network is a multi-layer perceptron.

8. The method of claim 1 wherein the first embedding
vector is in a multi-dimensional space and the second
embedding vector is in the same multi-dimensional space.

9. The method of claim 1 wherein modifying the first
embedding vector using the second embedding vector com-
prises concatenating the first embedding vector and the
second embedding vector to form a concatenated embedding
vector and decoding the concatenated embedding vector
using a decoder neural network.

10. The method of claim 9 wherein the decoder neural
network comprises a transformer neural network.

11. The method of claim 9 wherein the decoder neural
network comprises a transformer neural network and a
decoder neural network.

12. The method of claim 1 comprising applying self-
attention to the first embedding vector using a transformer
neural network prior to using the first embedding vector to
modify the second embedding vector.

13. The method of claim 1 comprising applying cross
attention to the first embedding vector and the second
embedding vector using a transformer neural network.

14. The method of claim 1 comprising receiving values of
shape parameters of the articulated object and computing the
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first embedding vector by encoding both the initial poses and
the shape parameter values such that the updated pose of the
articulated object takes into account the shape parameter
values.

15. The method of claim 1 comprising using neural
networks to compute the first embedding vector, the second
embedding vector and the third embedding vector and to
decode the third embedding vector, where the neural net-
works are trained end-to-end using supervised learning.

16. The method of claim 15 comprising carrying out the
supervised learning using training examples, each training
example comprising a triplet X, Y, T where X is first pose of
the kinematic tree of the articulated object, Y is a second
pose of the kinematic tree of the articulated object created by
copying X and replacing one or more leaf joints of X using
Z, where Z is another pose of the kinematic tree of the
articulated object, and where T is the pose of the replaced
leaf joints computed using forward kinematics.

17. The method of claim 1 comprising presenting the
kinematic tree of the initial pose in a graphical user interface
and receiving user input moving a leaf joint to specify a
target pose.

18. The method of claim 1 comprising using the updated
pose of the articulated object for any of: enabling a non-artist
to update pose of an avatar, task-specific pose augmentation,
augmenting an upper body motion by modifying lower body
pose or vice versa, full body pose estimation given signals
from a wearable device, full body pose estimation from
inertial measurement unit sensors worn only on wrists and
ankles.

19. A computer storage medium having computer-execut-
able instructions that, when executed by a computing sys-
tem, direct the computing system to perform operations
comprising:
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receiving, for each of the joints in the kinematic tree, an
initial pose;

computing a single first embedding vector by encoding
the initial poses in an embedding space;

for each of some but not all of the joints in the kinematic
tree, receiving a target pose;

computing a single second embedding vector representing
the target poses in the embedding space;

modifying the first embedding vector using the second
embedding vector to form a third embedding vector, by
using a transformer neural network;

decoding the third embedding vector to produce the
updated pose of the articulated object.

20. An apparatus comprising:
a processor;

a memory storing instructions that, when executed by the
processor, perform a method, comprising:

receiving, for each of the joints in the kinematic tree, an
initial pose;

computing a single first embedding vector by encoding
the initial poses;

for each of some but not all of the joints in the kinematic
tree, receiving a target pose;

computing a single second embedding vector representing
the target poses;

modifying the first embedding vector using the second
embedding vector to form a third embedding vector;

decoding the third embedding vector to produce the
updated pose of the articulated object.
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