US 20240264657A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2024/0264657 A1l

Koker et al. 43) Pub. Date: Aug. 8, 2024
(54) SYSTEM, APPARATUS AND METHOD FOR GOG6F 1/324 (2006.01)
INCREASING PERFORMANCE IN A GO6F 1/3296 (2006.01)
PROCESSOR DURING A VOLTAGE RAMP G09G 5/36 (2006.01)
(52) US. CL
(71) Applicant: Intel Corporation, Santa Clara, CA CPC ... GOGF 1/3234 (2013.01); GOG6F 1/3237
us) (2013.01); GOGF 1/324 (2013.01); GO6F
. 1/3296 (2013.01); GO9G 5/363 (2013.01);
(72) Inventors: Altllg Koker, El Dorado HIHS, CA G09G 5/366 (201301), GO9G 2310/066
(US); Abhishek R. Appu, El Dorado (2013.01); GOIG 2310/08 (2013.01); GOIG
Hills, CA (US); Bhushan M. Borole, 2340/02 (2013.01); GO9G 2360/06 (2013.01);
Rancho Cordova, CA (US); Wenyin Fu, G09G 2360/08 (2013.01); GO9G 2370/022
Folsom, CA (US); Kamal Sinha, (2013.01); GO9G 2370/16 (2013.01)
Rancho Cordova, CA (US); Joydeep
Ray, Folsom, CA (US)
(21) Appl. No.: 18/601,001 7 ABSTRACT
(22) Filed: Mar. 11, 2024 In one embodiment, a processor includes: a graphics pro-
Related U.S. Application Data cessor to execute a workload; and a power controller
coupled to the graphics processor. The power controller may
(63) Continuation of application No. 17/517,090, filed on include a voltage ramp circuit to receive a request for the
Nov. 2, 2021, now Pat. No. 12,007,824, which is a graphics processor to operate at a first performance state
continuation of application No. 16/595,543, filed on having a first operating voltage and a first operating fre-
Oct. 8, 2019, now Pat. No. 11,175,719, which is a quency and cause an output voltage of a voltage regulator to
continuation of application No. 15/488,662, filed on increase to the first operating voltage. The voltage ramp
Apr. 17, 2017, now Pat. No. 10,444,817. circuit may be configured to enable the graphics processor to
A . . execute the workload at an interim performance state having
Publication Classification S . S .
an interim operating voltage and an interim operating fre-
(51) Int. CL quency when the output voltage reaches a minimum oper-
GOG6F 1/3234 (2006.01) ating voltage. Other embodiments are described and
GO6F 1/3237 (2006.01) claimed.

Pariition
Einit

2208

Memory Tnterface

Menory Crossbar 216

Host Interface

Y
Linit

2064

206

Parallel Provessng Unit 202

Maemory Hob

203

Aug. 8,2024 Sheet 1 of 37 US 2024/0264657 Al

Patent Application Publication

SIS i,
s rtter,,

N
Y
Y

8

SRR

s,

e, ot
otttectnnerercrsgpt it
H

“corrrerrerreereereerreerid

granassssnsaaasssinsaaaassssaaaaan,

| EECEUIUEENREIUER e eetnroeeeaety

o
7,

tosns

—
.

;
P |

L CEERRLELELR

i\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"

SN AN AR A AR A s e

wanand anana sasane Ay

s

Aasans

Feeces]

7
P RS V T

o

rrr. tre, teR, e wes wrd wrs owes oore 8

]

%
‘s..\\\\.,
7
%

",

?
$\\\

P

N

¥ o
“\.\\v\\\A

Aug. 8,2024 Sheet 2 of 37 US 2024/0264657 Al

Patent Application Publication

cored
Lk
-)
= [}
pad o3
ot R,
e s,
e, o,
prc o,
s o tees
h s e,
o o SR
7 e
7 vonst
[“ .
Y
H
I
g
7
H
H Joy i
Py :
sy it
el y
t s
o
o}
o e 7
4
H %
4 %
Y
%
\ % [k <
% P b ey
7 % 78 5
“ = ey
[[K]
g toded
4
£
g P
a b
7
5 rrrrres 7 (]
%
. >
. P
“ P
can wa o fn “\ A
. P
1
g
M
g
7
H
g
%
g
%
i Sy
5 o
; -
w oy
3
. fet
) [%
s crs oen fpo
Y
H
I
g
7
H
g
4
H 5)
H “ %
7 H H
] m i
7 %
[# i

Aug. 8,2024 Sheet 3 of 37 US 2024/0264657 Al

Patent Application Publication

[y B

e

rosnd

brnnd

Y

y
o
grors,

P

%

g,
i/
i,

N

afons

~y

“
%,
e&\\\

P
]

‘
m\..“.)
b

Vo

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

Ao

e

srrsrrrrl

O e A e e EELEE,
R PRI PE R PP Er PRI EE PRI PRI P PRI rr P,

US 2024/0264657 Al

i “e,,
e 7

i
K

i
iy,

Aug. 8,2024 Sheet 4 of 37

Patent Application Publication

Aug. 8,2024 Sheet S of 37 US 2024/0264657 Al

Patent Application Publication

‘

o,

, s
:

44
o]
&3
=
weeeq

crr, n aes wr e wr ers ors g

]
53

&
%

s

s

B
b unee o s rs vns ers ons vrn \\\n
¢ 8

i,

58

54

2y

5

4t

)

4t

4y

PE el
i 3t
Z - §
<, e |
1 et
5 [a]
46

“y

Y

se

o

%

e, s Wb R Wk ORE S gy

%
“,
I

5
G ren snn caes inrs nes ars ss snn dogy
it

i

55

H

i

b

4,

4

3

J% et
4 o
i e
44 G,
“y b,
P ;
i e
+4

i

1

nv

1

B

>

e

[
7]

\\\WEE!..N\ b

ke

US 2024/0264657 Al

Aug. 8,2024 Sheet 6 of 37

o
;
.
;
4

. Yyt

Gas

7
% bt

et
0y
feq 0
HEER
Ledt O3
o
Tni, enst
Fia)
Serd

P
e T

[o]
i

Patent Application Publication

US 2024/0264657 Al

Aug. 8,2024 Sheet 7 of 37

Patent Application Publication

i,

77y

L3
i

i

W\\\v.\\\.“

Iy
o

Patent Application Publication

Aug. 8,2024 Sheet 8 of 37

: p)
o e 1Y
= i

N

US 2024/0264657 Al

$
\\\\\\:‘\\\
Sl
~

oo
W

®

P

)
S’

i
Posnoony
Poooony

‘\\E o
i <
. H e
ST ARy >
H AN
N AY
ot N
oy
\ ™
Y
\ O
Y= N
. e &
S I
e R
ey n
o5
H
: H
H H
H H
H H
H H
i i
H ¥
H
H
H
H
Y
Sl
1
S
\\. o \\\\\
o
T
R . s ol -
& \‘\ § A
$
a4
N
H
H
§
8
o~
e
JRRNRREREN
AN
-
L
ey
—
3 X
b s\t
N
\\ Ay
\ - <\
N - o s“\a\\
o e i el Q S
N N [\\t‘“‘\'\v'&
A P i N
\ IREE
. b &
At oy
o Y
. e
& ey
et =
) &S
= Vg
{) o~ H
S e I
oy o P
3 i
i =M P R
~ N H R
- Pod = g
of N T
At ey e
e N
<
oy
\\\\‘..\\
. ‘ k P
o~ b T et
- . P -
o [et H
aal N N
< .
i H e
3 Sey -
N
.
S MRS,
: \\0 A ‘\\\

Patent Application Publication Aug. 8,2024 Sheet 9 of 37 US 2024/0264657 A1

A e G e Lan S S A AR AW A ARe a8 S S AR A e e

3
8 g
§ §
H §
3 N ¥
M ot > .. N
H A el \§, 3
LSRG 3
N B B O7) '
$ 7 ke ey B
§ == :
} §
! o g
! ' . §
i + . o -]
H t 3
§ }
§ - g
i W §
! e g
3 ot Y 3
! 2 :
N " faa] W §
§ el el ERRY Qy Ll =T §
3 ¢ Rdad LB Pees RN H
N ot Ty N b I .
¥ TR e e o b
H oo ey (G 3
< b N TR e :
§ TN o §
N oot o H
= It N
H et §
N S §
N N
H H H e H
{ A e
N el i i 3
3 a8 o s‘ y
H -y + '
H &]
§ H 8
§ I
i , i
i o 53 i
N i i
: - I
§ - e W A 3
; o W N
§ & R 3
§ = IS vt AN
) = 5w S 3
$ - Y IS o Nt
§ - e X Th e T
M B N R Géd Mt i o ¥
} i 2y) o
N 2 v 2] 3
3 ' s o ¥ §
R [25 i
§ ; > H I Nt
Iy i
H pa i s .
N o . L8 9\\0\\\
§ = 3 ¥
; . [l H .
< LA N S
¥ o E \\\Q“*\
i P At ARt At Gan ae A% AR AR AN At ot axt e s an F 3
H § ~§‘ “AT LA Lh L% RS AR AR AR ARG AR LRR LA A 8 AR AR 4R 48 SRR iRY 8 A8 A
k! ansandins dr an ae an an an eas s cen s an an as A s
T e an e e 13 R
i
H -
o, i S e :\\x\\
Sew e ““‘“: ¥ H $
TRt N
? §
- i X ;
N 5% - i
& . -
E t T AR AR W AR AL ARA LRT LA AR AR WE AR AR AR LT LAT AR AR LA AR AL KL LRI RS AR AR AR A SR, { 5‘) : ¥ .
e e 2w a2 2 e A S A e A S A e \ W Rebuog
N . 3 - :
e
: : L
H g
! 3
H H
§ §
H ¥
i H
i 3
: > ;
: i g
' < 5 §
3 \ & e i
H & A P fan) §
§ [onp fows H
¥ T e - EREEY N
i P st ot . (_,§ §
! o A = 5
§ =Ny ! :
: oo 3
ol
3 A 3
: o :
: [f
§ 5 8
¢ £ & §
§ [$ ¥
§ s § 8w A1
: R S PN
3 H
H

el

TR
)

pé

o \\.f
; i -
N § "\ IS) 5
§ N NP Py §
3
N - &
3 o i
\ §
§ Q\ < !
) ey
: . [RG] ¥
i . g o (1 :
§ VRN e ‘ g ;
N N

; ; ;o p ! 8 :
? 3 i i : :
3 ¥ i ; ' H g
! ! = § H : 4 s i .
§ oo 2 LN -~ : i o~ \\.‘.& ; !
N 5 o et 3 oy H Ay Wil Py \ N !
H N &y i b} o NN T e} H Sk §
i § =i Myl §d ol O T ; s T ! = :
3 i NS $ 8 o NSy £ L2 o
; ! s ey bt g P N @ §
i H TN § . L AT i ! 5 ‘
! s 2 [i} L R ¥ N @ 5
§ N T ¢! 3 i ; @ :
' L. 3 [' : & - :
: & H P H) -
H I N : H 3 ;

§ M N & 3
3 H § 3 8 : oo !
H H] LN) S ¢
s 3 i L o s e cr e e wx o v o o TAN U0 5 A8 A A AR K G S B9 W A% AN A i
¥ S N I S :
¥

Patent Application Publication Aug. 8,2024 Sheet 10 of 37 US 2024/0264657 Al

Q
e A .
o) o > [y
[N T Py Ny
i o0 & o RN
by o o] o =
st * S *
=
24
L
e o
o T S Y R
R
o i ot o
Q2
—o
5
L
)
¢
L
o=
o
O
el s E e =
gl ~
R
H 3
X b
[EELYN -as.a .vsv
S H
= H H
o
e
e
FAN
i3
- §
s i
T o Bt
s §
~ H i
N
P
P SN
Ei 73
H i &
1] s
i
PR . wpondhe
\ > o ‘ N
N
E »
i E
i ?‘. bewy
H L
§ «
i S’
.
i PSSt
i } ¥
s g
H g
H ockeond
§
i
i
N
.
- o s o) Wi e
- o Y P
+ e oy A
@3 o L Yeesw
] o & ERERE e}
p b X e
] e Rl
[\‘\\-'
3
S
5N
a2
tos
a3 X &
3 e N
R F-N &
< N R
o & e < S
L N
SN,
&
43
Noon
& i 3
S 3
R ——— N - o g § e [N
N N ¥ N W
i \ §
3 i3 N 3
¥ § 8 Yo N
§ § P ey §
e 8 el o1) N
¥y £l — e §
g e § 1 A I
ool " §1 \::§ i SO LR N
13 X RS 1 >, I R T i i} RSN
o R £l R MR el 0 '
By s} HESR] 3o SOoeNgEE Y N
§ o~ 3) e R T A) !
oy N i A oy NCHE Y M - :
o e PO RS NOHE YK N H
[]) I v
P2 i “oopre £
LR i3 R H
§ §s PN '
§ it i '
. i 3
D T ey

US 2024/0264657 Al

Aug. 8,2024 Sheet 11 of 37

] i
H i 7
2 H H
‘ : %, w57
: : i ¢4
y rs tss 1on mm 2 2o mne nrs w22 sns inn n ;
H s
s ! [H
H .
; : i :
H . 4
. ‘ H H
7 H : 5 4
M H 3 sl H
H 3 M ay P
: i ; d }
H 3 : sz .
; : ; iz :
H ; ; 151 i
H] L, M o
i : feec 3 .,
i ' H N ' 7
y ‘ H H
H .
; : [wn i
H . wn 4
: : H A e .
: H P e P
: : P . %
H 3 : o ,
H H s 4
3 i H] p
: H ; [3
H P 4 (]
: : H # H
H i Pt ; 7,
. ‘)
H s nmnd M H %
H : i = ‘]
] P : w3 : F]
g H P H P
i 3 K I H gl
P ; [jd i ot
i ; : - :
H H 7 o H
H 3 ; - 3
[H 2 3
H P e H k3
H P "
P ‘ H - ¥ P
3 ; 2 : 7 e,
: : T4 : il)
! i ;O y st
! e 2
e o 0t 22 s i s o8 : : N
[P R R R R N R R R R LR R e e W.\§
”
o
b
. i s s wr wos s vs ven mm ma mm mm. ws wws vms ma m
' i i H
\ H 4 H
H 4 M .
3 1 i p
H ‘ M .
i ; i H]
c P ‘
4 o i 1 3
i .] 5 . .
Py o i :
H A . 4 ?]
H wran) P H H H 3
o & ¢ it ¢
s : H H
' L% ¢] i ¢
s 3 H :
‘ nl] H 4 H oo
s i ; 5 P
‘ 5 H ,, H 4)
H o4 o M M -, wed Lp T o,
‘ "~y H P . g . oot
i 1% : : : Z fa Al 7
i - M M ° oy T
: o : [7
) 5 . o :
8 s P "
b d i b7 H
i y B ;
i serd . s G2 B ‘¢
i -, 1 H (& i 1
fles p : g oo
: e H H o e H
: e i H - g H
[s
£ i H [0
H M , F “
‘ i H]
¢ i 1 f
1 H 3 7
Bo s oo oo ok vt ot e o oo oo ot [R

Patent Application Publication

Patent Application Publication Aug. 8,2024 Sheet 12 of 37 US 2024/0264657 Al

32
j]
g
W
2
fY
LLd
%
H
H
3
A% A% A% AR AN RS KRB RS B A% TR A% ARS KBS BN WA B9 B8 A% P ey
H]
§ 3
N
3 ' H
o
O fose P H
I G g N
sl g O o . H
e} S5 ot =3 X i W
RO 2y N o8 3 W &
o3 Pt
R :
N e ~
o 3 p = H
g N &y 3
3 = g o
;‘: 8 R 0 o H
[W L Oy i
oy @ s N
L% W B et OWY B
=g [AT AS W el K
PN oW 2 Y 3
P = a3 QR ¥
LT Q % ~
oy F (= E 5 ool
D T o~ H e .
o —— P M L= S
* ot b e -
1oy wa® : Te et !
taey ¥) ftd *
) 4
o 3 B 42
W& N St
H H el
[U —— &
H -
N Hy T
ot v Soo
Q H
& H
ool H
N N
e H
e . H
5OGRE % s e e e ae an e an b s s
43 S N N H
R s b
¢ N
S ¢ ¢
o N
> § .
P . ¥
: i Yo
N 4 S
3 H oot
H H ol
3 N
¢ X i
3 &
H ' -
K] ¥ e .
N H hevy 2
s ¢ = 5
8 $ Jy, el
N : Sy . Th
H § iy amy W
N N o3 Bt
¥ § = o0
¥ B el 2] g
§ e 55
¥ ¢ 3 je 2 5
: ; g - St
He L. N ¢ P
= i s s e = d
St e > Yo
v) H) et oaatonad
{ [3 : ety
i B R
H N N =
¥ ‘ é 3
N * eacin
H L] H B
H Y4 §
H L
i O I
R e geege gty Y1
§ ¥ I
N N L
$ N oy
§ H
i ¥y
$ 3y 0§
H N 118
N £ Y14
N H Yig
N 3 g
$ S ¥
N ¥ i
B p F
i 3 Wi
3 3 3
o 5 s
-~ 3 ¥
g § e N
Faed Vo N
b H PN i
QS5 N §
RaRH o R
P ' §]
kg P & o~ <
s [el N 3
pon oIy H s
- LIS N 23
=t : 3
T N
@ ¥
s 43 &
g % §
Py :
PO §
R N
1A i
je ™ :
N N
: H
§]
N i
N 3
3 N
§ 3
B s v o o en e A W ww e o

Patent Application Publication Aug. 8,2024 Sheet 13 of 37 US 2024/0264657 Al

3% A% A% A aar aas tas iaa A ax A% A% A% As tas an
8 H
% H
¥ b
N 3
§ H
N
N 3
3 H
2 v i H
. 2 i 3
el . L
o 3 e H
A N
] : N
. N Lt B §
i 3 Sl 3
? R §
§ 3 5
3 H M
¥ N ¥
§ H N
M 3 H
3
N H N
2 H 3
R o v e o s s s e v v e :
8
H
§
R OGS LT LR EREERR AR)
H
¥
R ey
: 8 H
. 3 H
¥ a i 2 i
LN ! oy 8
N ot} 3 R
i i oy od
8 o} 3 ! 1
8 H N AR
- ; N i ! i
0N ; H : §
G H § § ¥ M
AN N i .
[¥ H 3 §
~ ¥ H hasasssssssssssssssssssssaaaaes
: : ¥
Ky N ¥
N H L}
3 5 3
N N
¥ § i
o A o o o .
I
-
.
H
-
' X
N A% A AR An tae ian an A% AR AR AN G s A ! ooty
* \ N <
3 H 3 \\\\\\\v
H rsssssssssssss s s s s s nanns N
H H S 3
3 - H X 3
ooy 3 ?
3 oo 3 v N =
N et 3 8
i £ 3 3 Y
N e — N — N K
Y PN =. ; ;
S N =i < 3 o’ 3 N
= i H o8 . ~ § X :
[2 i Ca ¥ P § Dosssend
[N i a— 3 Flat ? -
(GRS i H AN \ Nt 3 iy
s N H H A
H R q
; i 1 : Py
H H :
3 3
H N 3
i i :
! S ——
. 3 3
: :
P S R

P :
H §

H 2

H o §

M a0 N

ook §

H LN §

P N S ——
A i

oo PR

F - 3

3 said H

S §

T 8

3 = :

! < §

3 H

R H

3 '

Aav o s n s an an an o oo s an an 2

s s wr g vr ves vea es wa g ww vr eds ws s ww vE eE vEs oE) TR w8 4P EE

4% A% 9 A A AN A% AR 4N a0 S AR A A A Ay

§
: ?
N 8
.
: i §
2 H N
3 i :
N i W§d
§ E ‘ s §
H Y
N HE
i
- i
J y
N i e
H H 3 .
L H N
N
3 i $
:
2 H N
§ i ;
! §
! §
B ane a0 00 a9 a0 an an A A e e an e s A

rtrs,

%

S
e

a0 o-frerenn

US 2024/0264657 Al

\\{\\\\w
S

Aug. 8, 2024 Sheet 14 of 37

\\A\\\E fpenrec’ \\A\\\S \\\~ — \\\A\\\\\\ % \\A\\\\t \\A\\\E \\A\\\E ijpenred %

<t

e

o

1

@
\:,.
oredd

o

P
e

% 4
g

_u.\\\\\\\&u

LN

Pk S

fa>) I n\\\\‘\\\A
7

Wy

Patent Application Publication

Patent Application Publication

Aug. 8,2024 Sheet 15 of 37

)

-~
g

pd

AN
Y

-~

e
.

-

US 2024/0264657 Al

£
Ao

N
.
8
$83
Do’
s

3N
I
NN
Sobons

&

US 2024/0264657 Al

Aug. 8,2024 Sheet 16 of 37

Patent Application Publication

w3

P’ .. ooy

fren [el 7} fo

: e e Py ooy
Pon foone o hed

@ &
st s
& =
i o
7 B2
iy o
i s
WA [
, (9]
7L
]
(s
w3 i
d @
T3 o
& .
o4 7 o
K % / 4
7 o‘ ~_~\ H s
A 3 / "
H ‘ . o
i = / = il
¢ Y fovh H o,
‘\ ‘“ D \\ Tl e, % i
ol o / | <L \ §rena
F--)] H 5 ., ;) :
P b “ L P %
‘“ 5 m::\\\» :::.\\\\ e R ::w:\\\\\ \. :::.V\\\ :::.V\\\ ::.:V\\\m \.um
b A u
o % H s, o
Lo oo
H H st
% \\ pIIrrx
} :
WS i
) b

US 2024/0264657 Al

Aug. 8,2024 Sheet 17 of 37

Patent Application Publication

P o

o s
froen [l
fro for

vons
i

o

Noon gt

r
ri
e, /
e 5 /
a

<

:!.W:..&%\»

%,
%

TN

——

¥

-~

..:.i\\ ..,v

R

D

_

s

&Y

orernence e i

2.

S

e e’

US 2024/0264657 Al

Aug. 8,2024 Sheet 18 of 37

Patent Application Publication

3
o2 . -
o o 2 o< o
st e g €y
Pon) % o0 o
e
jox}
P
e
921
s
%2
.]
7
7 ae
[< i
i [5 el
H * 54 eny
H i o s,
i 1 I 7,
L) ““ e ", Yodec?
L g [%
o 1,) P . , %

Y] v % e enssnssll onssnnsdl . SO 2]
DG L W o 2 i o ; P,
] i ~
LU % J '
4 i e i i
m “ R LI
v Y
Y7 G

US 2024/0264657 Al

Aug. 8,2024 Sheet 19 of 37

Patent Application Publication

p

[EETT——

-

S

N
hi

P
H %
H :
Pt
e~
A
' {
y H

<

%

2}5.\%;&55\3,.\%\

e

0
psid

o

sennens;

%z
bodies

Patent Application Publication Aug. 8,2024 Sheet 20 of 37 US 2024/0264657 Al

™
£ &
& fox
N L
o8 »{\4; s
e
AR s
fe]
& &
A
&
.
e o peecs
i}«- '\.‘3,
= K
&0
< s T N
Q & o] SN
S s o $ & L]
b o
fax)
M
<. < a“ﬁs
P
is
e
o
1
o2
o
{3
&
fwd
=
R w3 ~3
S X
pad [
I :
o e
5 . :
= o fead
T de W
o N)
\\ n \:‘
~ : —
= & &
p &~ &
& &
oy
bl o o
-~ (AN N
o - ')
o} — *
{3
i, W3
peie
)
§ 8 s &
N § F
N >
<& fexd {
- o N s
& o] &G
B
=
oo
w T
ol
A C’_
et BN
=0
a4 o
£ ¥ o
o oy o e
;;‘ } P
A
!n'
N

&

Nowar®
L)

US 2024/0264657 Al

Aug. 8, 2024 Sheet 21 of 37

Patent Application Publication

P

e

& gy, %
% % .

il % v

£ -

{
v

&‘:

AR RRARAY

.

vz

oy

A

SRR

H

5
A

US 2024/0264657 Al

Aug. 8, 2024 Sheet 22 of 37

Patent Application Publication

Q&M\\\\s

”@h\\‘g

N

]
R ; ”
S Sl

Y,

US 2024/0264657 Al

Aug. 8,2024 Sheet 23 of 37

Patent Application Publication

R

W A SR W

w°w

A RN R AN R AR

T O S AR A W

L

payae

g
Y

US 2024/0264657 Al

Aug. 8, 2024 Sheet 24 of 37

Patent Application Publication

; .
Y H H
b1l “] 2
< : £ [rdl
e H % (5]
cries ceres wres core venes wese wece | e o i -
) erced?, i ¥
wrer. cre reeed rece vree, cece y i n H k| o Py
i L H iy \m %\\w\w
' i [y ¢ Lo v
: i sl H PO) o 2
fnd o e o £ “ii g o g
ot “ o7y e Py] i e)
Pt = i 7R i ik i @
et}) ’ oA =) § g oy
et sl i L o i H ey § M,..,., m\ m\\w
_ . el e . ;
o . [SE 4 i P, 4 Y
T f fese gy i et f [P
5% = ” P e “ il
e oy A,M. 5 et ¥ i - . - % 7
[N e s o H Ry [Gz
i]) o ‘. i - o
o Lo from oy H 5 eed
Lod OO i Fy . : H <
e foee L Z B ¢
i iy e i £
ol i P br rrre eered v
o R |
proy oy .«.\f \ \
é %
i A4 3 v,
I3 G .\\ . 5 &1 g4 ST
o [7e) dy g L i i
o P H [7% i
b % i o oL &4 b
i jiosed \m % A.... \ ‘.\.4.
ﬁ\m Y ", o
L.
5 L
faal X3 et i)
' ” }
) o £, i ..Lw o el
Ry 1 - _ oy b
L t o T P N e R RS
wnd IR PP L3 hed UL pryh rrennerd G v e
Ty L By i, G med g Z # o
Sobs i e) P g " foomn
it e S ot e el o0
B s % el o P M 4 B4
e T e \
L leny Lo foe
- L 2
K
i
ey
7
el Vs
s *
“hy geed] \. K s muv
] s, ‘
[de o []
T f Pof
¢ % Pk
i w DY
KN
4
I g
H :
: H (S
]) i
p ; 13, T
H ot baet Lik
) H P A
F 4 ol P)
g e 5] b s
fdea “ *
< H 75 wpd “Lowd
I ot I ™ e ey
§ s v .»m H wa I3 .\m al, A (hf
> P H el - - P b
PR s s o Tppe e 0Ty
e, g " pih (o5 % ATy i
- i el oy o A
o £ oh i ' i e e
", 3 L B “3. [AR
", PR . Ber pussiuy
%, i A H £ A
K> YR frdms e
ev g ded * aUW.
7 i 3
% H :
.l\” K %
kit . H
jas] m) s
o rewce even wevec veves reeve w4

Patent Application Publication

Aug. 8, 2024

Sheet 25 of 37

WY e N
WY PRSCERERWH =i
hd ! =i
et T eeld asted
AN - S R
0 o N ot
o e} el
~
.
N
R s b at
Ld e ~ <3
pewy S)
[el senst
S = ot
Nt i . 34
(G i i
N
el 3 waaan awaan aaaan
o
§ o=hi H
oy H
N I 3
a1
N
PR i B 4
Poadl L H
Pl H
3 aeedd Yt * N
N ; o
. o= H Ty
oy 8N H ~ad
e H R
an o™) <
s o= A N o
o 3 N i}
A faan e s o H
Yoy N
N4
H o
H N
Yasaan ssans assaa asaas assas o
) b T
i~
Rt
i

e

£

7
/,',..//4.

,‘.,,,
e
Y]

"
34

,_,,,,
P b
Uit

T
H

%

AT

»

.
H

P
i
)

4
G4

P
kS

]

o
St

7
/L
147

2.

oo

US 2024/0264657 Al

S
§
L
®
N’
R

38
Bade

Patent Application Publication Aug. 8,2024 Sheet 26 of 37 US 2024/0264657 Al

A B
Fib G \\
oot Ji SSCRRRRRRRNRR N
L & N
3 ™ &
= N ey
el \d S
R Y i

o o o v o e o e o o e e o o 3
§ §
¥ o
8 N N
N - & N N
§ oY A B 3
2 = Lot §i H N
g ey e & Reed \ §
N] ey s N
N £ - §
N L PR N
N o p—_t poaaaaaaaaaaaaay ¥
§ - T A\ 1 N
H ol \g A }
&
] N » §
§]
§ §
p ™ N
8 i i
3 R N
3 o Ry s
3 & ¥
§ p §
H & 3
§ N §
§ §
§ §
o
g <] \ . ¥
N e S N 3 '
3 N &y H 3
5 L & i I
2 Y) breensccoceed P
g & § W
8 3 ey
N < \ N .-;‘1\
§ S AN N
N ey A
3 - <
: O o SN
g ™ PO w8
§ P §
; N A
g < Yo XN
3 AN H <
3 _.s‘ N RS
; & . ®
N Hang g ¥ g oy
8 H S ‘\?}
g : O S
i .4 Pox .
! AN PR 38
§ i < 8 Y Rl
§ = & Ny o=
N o~ L S— \ s o
§ L3 $ A
N W N
! o A \ A
H }:‘\: \ s\\\\\\\\\\\\\\‘s .'“‘ N
§ Q. i i }
} N ¥ !
§ §
N N
& o §

A AN G e A0 AR SR D AN AN AR NG AW A% SR N A A% S R0 AW AN SR a0 A A o

“‘?E

(. eSS
et

o)

{3 FRCCRLILIREREET

{3l

H
I

§
\d
N

Ry

i
i .
AN janly
p N
mg
D]

’{"
s,

Patent Application Publication Aug. 8,2024 Sheet 27 of 37 US 2024/0264657 Al

nnf ~ bl

=™ N o4

WS w W

-

ed 5 v
Wd & §
= § §
e § §
= § N
O3 ¢ ¢
%
L
")
= e P
== 2 N
WY tad e ik
[T] e i ¥
W v o L N ey
Y e . <% % P
4w B 3, s 3 "‘
O = = $
o 3 &l =3
o s 3
Q. = h
W
(-
b
{a. \ Y -
3 N -
e i 1 el
D

FUTTIUTTATTIUTTARTA
£ R Ay & & & & sa\» g
i HH i HH il i
I L I I
il it i ii Jd i
o &y ot Sy o Ay w By ot Ny \t R
X NS AT ONT NS RS
AT A, V. Y $

ool N
= oo RS H § ﬁ
o owy i %}\“)
Q. ¥at sl

N < i

Lt el — e T 3

Rl : e

(S & S Nty

R 0y Oy

[i St A

R e] R L2

pe i S50 e

I S S Y o

S o T ey

UL A S ¥

o
X
-

ra,,
G
b

§ § 3
[b\: s\ Q‘E ? \3 §
H H
i H i
3 F]
H i R [
H 8 38
3 § N $ 3
LR N [
H i H
H i1 N
§ i3 i
3 N 3
i { i
H
RIS R H
3 N X
R H § i
1 H i
i L4 R 8 S,
H H
L § LR H
= : <3 > s N
S N — Sy
N eedd R T N §
L el S T~ I
o WA \Ni [y AR ¥
Q. el i =7 QR et 3
puvee : i P e : i
[. Q. N
s ;
v Base wmeste xanag ansns sasan
X X
§ § 3\
£
& & &2
¥4 N g
HE i
B g
FERS F
RS L
FS FE
H]
N]
H H
Al And
feu
L
S i
E
o S 5
X R
T s
RN e
e oo,
oY ot
b b e
e & -
3 [
T
SR g
>

Patent Application Publication

Aug. 8,2024 Sheet 28 of 37

US 2024/0264657 Al

A A mm AT Gam A aan AN ann e ann e man e men e s o 3
D imn e e o e g g o e o e g e e e oo s g i
N R X B 2 ¥
H H H 3
| ¥ ¥ 3
N R § [P — 3
' ¥ ¥ N H ¥ ¥ N
i : 3 i ;i1 : § i
3 i H N M H 3
H 2) H & s 8
¥ a 8 H a :)
z K N . B a I 3 5
W3 H - N H WY H I . 3 N
N H ey R i 5 N oamnd N §p1 3 N
N T o) N) H LRt B VR et 8 1 ¥
e L N e ™ LRy SR S B
el $oes 3 N i N N [I \. H N
~ g8 O3 Y i H R T T 3 N
wy O ooy g 1 ;i e A IS B S § i
O NECE DI TS T RS I IS *
RS =~ N 3 3 o X 8 ¢
LT oy ") 10t FRE I T S-S R N
W N N A L N Yool ooy YO ty -t §
] R o3 d yoN Tt o} <Y
At Y § LI H . vy W i 8 NN
L,k T o H H i S
Sl N e 3 H Yo A oooe - f a9 8
e 3 Se F i H i >\.= ¥
o s S O R S S UN Y 2t
o - v ¥y [¥ g ¢ gy
b SRS o H i ! i) §
(] R s 3 H H N =iy
R 12O = i i ' il !
3 Sedf e N H H i 8
b V2 ey YL { IR N {
Al =~ i g [) ¢ § i
N = g ot AN $3 H g ot $ 8
¥ YO L N H Yot N) .
[U N 3 N H PRSI ¥ H
18 W i I N H =y 3 H
i X o i 3 il !
8 H N H H 3
N H NI H . H R
g i [H S §
i3 [[§ §
i FE H H 1 B
? H H y
» Yo B 5 3 8
i s 3 5 i N i
Th cow oo oo avas oed B ooeew coe aeee assas b L s oo o asaas ol 3
N aannn aann asaan aaann aninn anmian aninnt o Aniant o aninn o Aamaint o aniit Aanmiann aninn o aannnt o antan aniant annnn awaaes anaay

wn W

g S
N ot
™~ o
- Ny
wei it

H S
- i =
S i oy
o Ly i H W
& ~~ H H .4
L) O3 i H ™
: = H
R \ 5
L > i i i
= H
e
H
N
H
i
g b
=
Py
o
N St
2 Eie]
el Rt
- < '
Fa H - e
fad oy <L o
_— 3 s el
e P o Mgt}
ol ~ & g
PR . e L
- i)
R v
N —~
Y J
3 [
N
TONTTRIATINIIN Y A TE PNR DAL
PUYIANIOYVIMT NI OO I
RIS N e S R A

e
S

L3

¥ IS
R
\\\\\\
E

38
Rl

3
[Je——
[
P

Patent Application Publication Aug. 8,2024 Sheet 29 of 37 US 2024/0264657 Al

o~ e
ol N
el gl
H R
o P s
feN <3 O
o o gt
k! feee SR
<%
g
NN
Ll

o oo e amen s ooy e A Ao aane oo avan onas

§ 5
i . i sy .
3 3 d 3 H
e SR o Fan
i Ll H § Ll :
H N N i
H N
K % B
} Py
Toos xoaan oo aeas o e L ocow e oww s oew s ot

wn we
W

% Yy

N
§ 8

- - R

3 2 §

)) = e

[[RS
58
Rl

,“\. "‘\.

W W u

=

N

e

—— o wdae

Patent Application Publication Aug. 8,2024 Sheet 30 of 37 US 2024/0264657 Al

\;5
et
R
e} o AN g
“ O A o =
o <31 R R W
el H N AR
N fanty f] o
o i i -]
)] ! o4
il . H o
¢ . & .
§ O It o =
. & ot
Bed) 03 st
DY AN 0N AN S o At =y “;:
§ § S o &N
¥ @ s & wl
. & e
H H AN o4 fed] pe
N N ay il o 5
N H & o~ .
§ N e RS o e
N o tig L
i : Y o e N
N s = fhed 3 &
© L % % > &
H !:‘:; B <. L (&N et
o § § N ' '
S N i { i H H
& 3 b N 3 i b
[- H i H { H H
i ¥ 3 i 3 i i
§ o § ¥ ¥ ¥ W ¥
§
s W N
o M
vii 3
i e 8
PR oy
§ ok e
3 bbb L3 £ g Ko
POy o} > % 5 3
o § o 3 (o3
g § g el b S S S
P N i el s A 3
;W § i - g L. X L o
ol . { LN ¥ = oS
s O3 N N L IN ey o Pl
Pl N i noo; 3 RO e
.) o~ et s
i N4 H g W it it i
. S 5 H o N P
§ 3 i N RO
N H H oy e 3 3 T3
H 2 fRE £33 o)
N N ER o fes b
. § e O L N 8
§ N Wy q b Q <
]
H b
%« RS WA A A
N N -
oy s .
NI I
p L9 0 ¥ L YR
P L snh o8 44
S s R Wy < &
[B B 3 o b
N st ¥ @
[S— < s R
e S = S S
e A e o X et e X
R s S & oA i
o0 -l M LG L2 SHyoan il
NPT — Ty . : 2 i
=N e o S Y b i
reed been oY e o N
+ b Y [=W
& o0 ‘,.\} R
s v p -
e o H
> & o™ <3 L2
@&
L4 N
on oY o
ot ot L
o
: o A .
B 00
oo N
il ™ H -
ooy § \;L; o3
0 i D ey
o H o~ o
H Lol i o
N P Y VY
il H @ @ A
~3 } [
o i o
-y W i i3
20w i
LG
L et &%
=
[)
W
W
aed
=
Sl R
[aSR
[
s R
el ;
—
O
&
Lid
=y
St e
Y e
LRI
L3
G e
~ o
L3 R
[D

US 2024/0264657 Al

Aug. 8, 2024 Sheet 31 of 37

Patent Application Publication

s s wn Owp rh

P ki
5 /
= i 4
hresd H o ., PR R A b F S P
G e, [+ i
A T : o § }
ra Vi 5 z 4 H k]
s e H t:.“ { [
.] H oo H]
‘.:u s ; H 33
oY : : i i
A p ¢ H
“i : : ,
= H . i e oy sz,
pan] M H Ere] AT | e e
: [sl e G5 ” i
H M PRI | wf oy - Lo dd oo
F] 2 e} L e COE St
4 e L, el AN
J <R iR G f £,
H u “d, 5 oy G2
1 : i G MR
:
! :
i ¢
¢« 4
“
i .
. “
i :
i H o7y
: 3 i1
H H
H M
et ces st s o s
s e e o e e, Vs -
", { P
g prerceercn, Gl % |20 SN
5 by L d [5 e L
i R R el =it [e
i [T4 ey Y ag e
‘ A s VI
5 o B 1] d # g iy,
? e e vt et
o i B 4 “Ysad
£ [I
3 (I
-4 iL o
Y S %
L UL S Y
M e 49
£ :
i ¢ o %
P e 4
H i Yo e " -
g y 3 f Pl 1
N [7 Wv
Do g e b
Kl I 4 ‘
! Lid i 7
el oo o [) ETILITY E Yl LT £ IS
b o . WE T o ALY Y TS
PR L | “\\ PV 4510 Y AHH L
[e o R I
£ & E 3 %
S :
S S—]
[
. S J
| RS I T PSSR SRS SRR USSP S P
P i g i
: o :
H p o, rnnenbcereese, . H
f H 7 x\\) Vit i 3
Pt { H 4 H P “
[H H Ed ¢ H R
et 4 . H H | P H H P S
gniof b H H it i VI Dol
“1 N " e wiff g je #ofnl :
oy E, Bt (S, 0 e £ O}
G4 % 1] o K3 e N ;
£ ‘ H 1 v B P T Pty ;
: : / ‘N = AN GRTRE
£ H H i = i /i
t i P e’
p) ‘ H Aorirrersernnt? e ereons H
\ ; :] 3
\ % E I | H
7 G s e crlonrs s wws 1w n o i o N P it B B P 8 Rl WA 04 B R R B 0 e RA L P L 580 5B, 80 WD VA Nt B B 8, 8 Rl WL Rk 8B R BB O 50 W S0 e, b b s i it 00 b S

g
it
C3d i 2
€
(e} H
£ e, f
g

US 2024/0264657 Al

Aug. 8, 2024 Sheet 32 of 37

Patent Application Publication

wrrers wrrees, oo

FRSSEEN
1y
Hrd
H

oo ool

ESRERS)

4
%
“
“,

acnona

JESSEEY
ESRERSS

EESEREN

FESEERN
X

.

¥

;
i
ed NG %
et} \\5\\\\\\\
H
i

e gy oreira ey

3

Ty
3
&
L
S
oo

s
N
-
H
)

N
&
Y
X
i
1
-

JESERRRS

S5
fe
oon
oo
SCLCEETIPTTEerrerreerreererereeeee

o
[ESSEEY
e
§
=

Y
EESERES

A
o

o
FRSSEEN

R
¥
RSN
RS
S
Ao
[ESSSY

RS
o
o
o
o

N

e
FECSSE

JRESEEY

B

N
J
~
i
wooons
¥

xssss\\\\ sssﬂ\\\x e @

e
Ao

it

‘
et
E

o
JESERRSY

2

&

&

R

FEEEE
FRCSEN

s
FRCSEN

oo

JESSEY)

R
\\\\

NN
EESERNY

o
acnons
\\\\\\

PR
FECEREN

EE
ESRERN)

ESSY
JESERRRS

P
FESSERY

I errrer, oreee?

oy
23
4

o e

“
34
iy

{
%

¥

H
4

2
&

oo

74
i

e Yo

2
;

@,

%

o

S

o

&
&
oo

»
woy
3
& &

E

%

% % %y
Yudhon Yo

<
I~
w
&
N -
o i
7
o o
g ooy ol
= i
o H 3
:]
(=] Yool] ’
a o
wn
I~
en
S 43
i o
i %
e = 4]
en bid] . ,
e vsnonsn) v
5 7 !
P H
_m i %
£
¥ 5} ot
- o oo
[—3 el “
o~ m:nw = oo
le ¥
& i oo “
& o :
o 23 o i
m..a s o L
= i o &
« 4 o s RG]
ey V5 ey
fnd P ¥al
5 A
g ad
ol O
o

2

Patent Application Publication

Patent Application Publication Aug. 8,2024 Sheet 34 of 37 US 2024/0264657 Al

ok
19

%%

L

AN

S
&

§

i
\ o
X -
W3
. Xy oY
e ¢ ™~

g

L

3

o=t

peey 5“‘

AL e

&~

L3

e

=0

A
&
oW 3
o id
preet] B3 £
o H §
- §
o

S8
=

N
R

38§
Sl

i
o
§
R
ot
a i E
3 W O
] it e,
i ot}
st ot
O o
i i
3 i
3 i

US 2024/0264657 Al

Aug. 8,2024 Sheet 35 of 37

Patent Application Publication

) -
0 S o
s ", it '
. * - i
Foof % P :
y %8 i
pusia H
I ey
£]
o
",
., s
) o
[¥s) oo oo coens nss
[¥a) H H
L
Li. 5 i 4
R H T
PR D el
o e H w H
e [H apd H
(i I ay
et ; iy
: H
4 ¥
4 H
Yrer vrees creee weee b
N\\\\\\s
1
o, %
N
S
a3
340 %
Bhird .
il o,
& 144
et g
‘ Yol
oo
%
4 %
Tnidos
e
e s o
PR beee ot Py]
2 e A t7 i
- e it ‘
LU 4o s o 4
poer g e L [H
H . g B H
fooe Ld PO bk i
7 Gy Ll e
o O o
7 \‘ L8 m o
P B H
T
bt ‘
T, oo e ceeen veees
e er H H
Yedea o ’ H
o
B H H
(s : H H
oy i . :
by H
Wy] H i
iy ' H H
i H p .
H H H
¢ H
H H
H H
brer crens weee wree b
%,
S

US 2024/0264657 Al

Aug. 8, 2024 Sheet 36 of 37

Patent Application Publication

o,
o, Y,
“,
-
rr rrr. [
T i
weer peen g L. p
s rrrs 7 P
P F 5 ‘
won erns nses F ; ; ; ; i
[OOSR 1 P P :
S H £ \
wren seces g ; H £ H \ ;
rrrs e T : : ;
g H L u i 5 i H
H PR} gt H H 4 H
H [5 o i ; 7 ' i . :
H H foos 0 H H s 5
¢ i oy ‘ H H i
§ o % H H P 4 H H H
¥ A i 8 H H g
H 3 o) £l B g i H . .
H H i 7 # P H ¢ H P P
i Pogonid i i 7 H H
vop i ! s, 4 B H ‘
H Py] H I’ 1 H i ‘
H g 8o S il H] [
H 4 § L L t 4 H £ H P]
tog] i H . P Y i H
H S AR i H ; 4
4 H o, 54 g H 4 PV ¥ '
H iy ey Serd ‘o H B . bl 4 H
, b E H i st BRI Y 7
¥ PRIV H oy L # i S8
H [2S5 i . A I ' Hal ; ;
H o -y H s 't ey £ H
fE L. o, P H P . b B f]
: y E ARSI ; W
i] Loee 30 g o b4 H 5 P
! : [ER whg . £] i
srors vrmms rend H 5 g 5 7 £
H (VR R y Praap et P i :
P i i ;
[P, - ' ; ;
~ i 5 H H
% & ‘ 3 i H i H
% ; it Py ; s 7
. % : " Pk £ t B
P’ 2 ¥ i § : -
4 ’ : P © : ¥
4 2 i " - i % 4
w ? F i H H 5 ;
7 ¢
% P H P % [£ H %
e s e H t)
rrrrs eres ery g g s H i H H) H “\\\“
o oo “ H H . g weer. coees z %
L H m P H ‘ P m o o R i \
7 [P P, | A
7 w JEE s
(5 H P . e H rcer e .
i e [0 iz 3 47
L2 - ” [et g H
Tt 7 H ﬂ.f) h A N oo
SR I 199 5 WP telh
d e Lo b A g b b
P i R] HE I ML
[S9 re Iy i, [weih g
e it L i s i #
L R IR R i
Pim (s H d I ol
RN P) 5 ot H
Y “ u it
;o et i o ;
oo H. @ i
5 bhe L L1 ¥
; H i
4 Py))
H N D , <}
‘ o voeaa i H N “
H e s e Py H 11
% e, -y i /
“ H H
e eenes voree - H H
wwres wen i = H ;
azz H H
o H
; 2 H
ol ‘
et ;
ars H
. [9s
.y 8] .
H s ?
H ik ‘
1 P P
4 i 7
H P ’
4 ‘
i o ;
o ‘
[;
H
H s ore oot
% reces cenes
)
¢Q§~
",

US 2024/0264657 Al

Aug. 8,2024 Sheet 37 of 37

Patent Application Publication

E._E:E:.:S ::.:SE._E: I::.:S:EE S:EE:E:. é::_.::,::.
; o : ¢ ioF iF ;
H A i . i i
e P s ’ H H H g
. H i H H 7 1 H 5
. P 5l i . 7 i I]
2T [B R } }
dohEd LA S =] f . . H ; H
I I A I sy i i 7 ;
PRES £ H s T P poof
§ o H R B o ek i i
Poaf | IR wf () Lo b H i g i
PR, I e I H P o 4
[! P
b ke e S E R ke eed et i H H
e iz it ot v] i Y
e H f p H ig H H H
A % P § H 5 5
P [S S | g P P ‘ P ‘
4 H H H 5 H G
; H ? 2 H H H
\\ p Feat] . . it . Pa I
£ ! -t I ;] =
H H £ H H i H [5eT I
H [) £ f 3
4 gt i AN
% Y syl g " i o8 h ok
%" y H A H 7 4 H vl
%, % P H _ H i i H b
“tr g % E L I Por i 2o
e % Pt . ik . ST
w2 % 7 fact H # i 4 [
g 7 g
% @ f [I i
i
p v i, i
% H H 7 H
H 5 H 5
& N g LI] 7]
) 4 - o :
H
H H H 1 H]
£ ;o ?
H H
. PR ; P
i P . ; W5
sorns vasss remss msms. | resss temss smss smmmi d H 4 H s 7 Yt
) H i £ g PR ‘ P ‘ e G
s s i g i P : f : e
d] P P f “ H H L
P S o1 H [ik i 3 : 1 : j
beed gt : P Srces oo woee coee t # rees reees eeee el % veens ceces woee o “
Ll ; . [Y
ra Y] H] P H 2
bk AR g it [H w“\w
s) %
<] ;i .. ;)
e H
kid ! [4 s
o , . . s
[i ;4 ;) \“
e Ywrs were wwee ceees f eeee ceee ceees reeee b b
b
frer \rssn ssn, sssni venes wrrn sssm vosss ronn
. [P P
s H ik 4
974] y RPN i
H 'R i
ah H Bii Al ;
A M
s H T eedf 54 H ; ” ”
H RPN E t i | §
d ipni : ; ; ;
] [Mt B P ¥ ; ;
H R I £ j ; ;
H : :
J : :
H ik % H i i
H ;o4 H H “ “
USSR SUSE H ; ;
; o,
£
. LI t
[l . . L -
il [23]]
o : . o [
L4 : ; 55 i
< A b g f
P . 4 H
i [L. {4
- ¢ 1 L]
(V8] R
i H
brver woees cenes vevee §

US 2024/0264657 Al

SYSTEM, APPARATUS AND METHOD FOR
INCREASING PERFORMANCE IN A
PROCESSOR DURING A VOLTAGE RAMP

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application is a continuation of U.S.
patent application Ser. No. 17/517,090, filed on Nov. 2,
2021, which is a continuation of U.S. patent application Ser.
No. 16/595,543, filed Oct. 8, 2019, now U.S. Pat. No.
11,175,719, issued Nov. 16, 2021, which is a continuation of
U.S. patent application Ser. No. 15/488,817, filed Apr. 17,
2017, now U.S. Pat. No. 10,444,817, issued Oct. 15, 2019,
the content of which is hereby incorporated by reference.

TECHNICAL FIELD

[0002] Embodiments relate generally to data processing
and more particularly to data processing via a general-
purpose graphics processing unit.

BACKGROUND

[0003] Current parallel graphics data processing includes
systems and methods developed to perform specific opera-
tions on graphics data such as, for example, linear interpo-
lation, tessellation, rasterization, texture mapping, depth
testing, etc. Traditionally, graphics processors used fixed
function computational units to process graphics data; how-
ever, more recently, portions of graphics processors have
been made programmable, enabling such processors to sup-
port a wider variety of operations for processing vertex and
fragment data.

[0004] To further increase performance, graphics proces-
sors typically implement processing techniques such as
pipelining that attempt to process, in parallel, as much
graphics data as possible throughout the different parts of the
graphics pipeline. Parallel graphics processors with single
instruction, multiple thread (SIMT) architectures are
designed to maximize the amount of parallel processing in
the graphics pipeline. In an SIMT architecture, groups of
parallel threads attempt to execute program instructions
synchronously together as often as possible to increase
processing efficiency. A general overview of software and
hardware for SIMT architectures can be found in Shane
Cook, CUDA Programming, Chapter 3, pages 37-51 (2013)
and/or Nicholas Wilt, CUDA Handbook, 4 Comprehensive
Guide to GPU Programming, Sections 2.6.2 to 3.1.2 (June
2013).

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 is a block diagram illustrating a computer
system configured to implement one or more aspects of the
embodiments described herein.

[0006] FIG. 2A-2D illustrate a parallel processor compo-
nents, according to an embodiment.

[0007] FIGS. 3A-3B are block diagrams of graphics mul-
tiprocessors, according to embodiments.

[0008] FIG. 4A-4F illustrate an exemplary architecture in
which a plurality of GPUs are communicatively coupled to
a plurality of multi-core processors.

[0009] FIG. 5 illustrates a graphics processing pipeline,
according to an embodiment.

Aug. 8,2024

[0010] FIG. 6 is a graphical illustration of a timing dia-
gram of an increase in performance state of a graphics
processor in accordance with an embodiment.

[0011] FIGS.7A and 7B are flow diagrams of a method for
increasing performance of a graphics processor in accor-
dance with an embodiment.

[0012] FIGS. 8A and 8B are flow diagram of a method for
decreasing performance of a graphics processor in accor-
dance with an embodiment.

[0013] FIG. 9 is a block diagram of a processor in accor-
dance with an embodiment of the present invention.
[0014] FIG. 10 illustrates a block diagram of a switching
regulator according to an embodiment.

[0015] FIG. 11 is a block diagram of a system including a
streaming multiprocessor in accordance with one or more
embodiments.

[0016] FIG. 12 illustrates a block diagram of a parallel
processing system according to one embodiment.

[0017] FIG. 13 is a block diagram of a processing system
according to an embodiment.

[0018] FIG. 14 is a block diagram of an embodiment of a
processor having one or more processor cores, an integrated
memory controller, and an integrated graphics processor.
[0019] FIG. 15 is a block diagram of a graphics processor,
which may be a discrete graphics processing unit, or may be
a graphics processor integrated with a plurality of processing
cores.

[0020] FIG. 16 is a block diagram of a graphics processing
engine of a graphics processor in accordance with some
embodiments.

[0021] FIG. 17 is a block diagram of another embodiment
of a graphics processor.

[0022] FIG. 18 illustrates thread execution logic including
an array of processing elements employed in some embodi-
ments of a GPE.

[0023] FIG. 19 is a block diagram illustrating a graphics
processor instruction formats according to some embodi-
ments.

[0024] FIG. 20 is a block diagram of another embodiment
of a graphics processor.

[0025] FIG. 21A is a block diagram illustrating a graphics
processor command format according to some embodi-
ments.

[0026] FIG. 21B is a block diagram illustrating a graphics
processor command sequence according to an embodiment.
[0027] FIG. 22 illustrates exemplary graphics software
architecture for a data processing system according to some
embodiments.

[0028] FIG. 23 is a block diagram illustrating an IP core
development system that may be used to manufacture an
integrated circuit to perform operations according to an
embodiment.

[0029] FIG. 24 is a block diagram illustrating an exem-
plary system on a chip integrated circuit that may be
fabricated using one or more IP cores, according to an
embodiment.

[0030] FIG. 25 is a block diagram illustrating an exem-
plary graphics processor of a system on a chip integrated
circuit that may be fabricated using one or more IP cores,
according to an embodiment.

[0031] FIG. 26 is a block diagram illustrating an addi-
tional exemplary graphics processor of a system on a chip
integrated circuit that may be fabricated using one or more
IP cores, according to an embodiment.

US 2024/0264657 Al

DETAILED DESCRIPTION

[0032] In some embodiments, a graphics processing unit
(GPU) is communicatively coupled to host/processor cores
to accelerate graphics operations, machine-learning opera-
tions, pattern analysis operations, and various general pur-
pose GPU (GPGPU) functions. The GPU may be commu-
nicatively coupled to the host processor/cores over a bus or
another interconnect (e.g., a high-speed interconnect such as
PCle or NVLink). In other embodiments, the GPU may be
integrated on the same package or chip as the cores and
communicatively coupled to the cores over an internal
processor bus/interconnect (i.e., internal to the package or
chip). Regardless of the manner in which the GPU is
connected, the processor cores may allocate work to the
GPU in the form of sequences of commands/instructions
contained in a work descriptor. The GPU then uses dedicated
circuitry/logic for efficiently processing these commands/
instructions.

[0033] In the following description, numerous specific
details are set forth to provide a more thorough understand-
ing. However, it will be apparent to one of skill in the art that
the embodiments described herein may be practiced without
one or more of these specific details. In other instances,
well-known features have not been described to avoid
obscuring the details of the present embodiments.

System Overview

[0034] FIG. 1 is a block diagram illustrating a computing
system 100 configured to implement one or more aspects of
the embodiments described herein. The computing system
100 includes a processing subsystem 101 having one or
more processor(s) 102 and a system memory 104 commu-
nicating via an interconnection path that may include a
memory hub 105. The memory hub 105 may be a separate
component within a chipset component or may be integrated
within the one or more processor(s) 102. The memory hub
105 couples with an I/O subsystem 111 via a communication
link 106. The I/O subsystem 111 includes an I/O hub 107
that can enable the computing system 100 to receive input
from one or more input device(s) 108. Additionally, the I/O
hub 107 can enable a display controller, which may be
included in the one or more processor(s) 102, to provide
outputs to one or more display device(s) 110A. In one
embodiment the one or more display device(s) 110A coupled
with the I/O hub 107 can include a local, internal, or
embedded display device.

[0035] In one embodiment the processing subsystem 101
includes one or more parallel processor(s) 112 coupled to
memory hub 105 via a bus or other communication link 113.
The communication link 113 may be one of any number of
standards based communication link technologies or proto-
cols, such as, but not limited to PCI Express, or may be a
vendor specific communications interface or communica-
tions fabric. In one embodiment the one or more parallel
processor(s) 112 form a computationally focused parallel or
vector processing system that an include a large number of
processing cores and/or processing clusters, such as a many
integrated core (MIC) processor. In one embodiment the one
or more parallel processor(s) 112 form a graphics processing
subsystem that can output pixels to one of the one or more
display device(s) 110A coupled via the /O Hub 107. The
one or more parallel processor(s) 112 can also include a

Aug. 8,2024

display controller and display interface (not shown) to
enable a direct connection to one or more display device(s)
110B.

[0036] Within the I/O subsystem 111, a system storage
unit 114 can connect to the I/O hub 107 to provide a storage
mechanism for the computing system 100. An I/O switch
116 can be used to provide an interface mechanism to enable
connections between the /O hub 107 and other components,
such as a network adapter 118 and/or wireless network
adapter 119 that may be integrated into the platform, and
various other devices that can be added via one or more
add-in device(s) 120. The network adapter 118 can be an
Ethernet adapter or another wired network adapter. The
wireless network adapter 119 can include one or more of a
Wi-Fi, Bluetooth, near field communication (NFC), or other
network device that includes one or more wireless radios.

[0037] The computing system 100 can include other com-
ponents not explicitly shown, including USB or other port
connections, optical storage drives, video capture devices,
and the like, may also be connected to the I/O hub 107.
Communication paths interconnecting the various compo-
nents in FIG. 1 may be implemented using any suitable
protocols, such as PCI (Peripheral Component Interconnect)
based protocols (e.g., PCI-Express), or any other bus or
point-to-point communication interfaces and/or protocol(s),
such as the NV-Link high-speed interconnect, or intercon-
nect protocols known in the art.

[0038] In one embodiment, the one or more parallel pro-
cessor(s) 112 incorporate circuitry optimized for graphics
and video processing, including, for example, video output
circuitry, and constitutes a graphics processing unit (GPU).
In another embodiment, the one or more parallel processor
(s) 112 incorporate circuitry optimized for general purpose
processing, while preserving the underlying computational
architecture, described in greater detail herein. In yet another
embodiment, components of the computing system 100 may
be integrated with one or more other system elements on a
single integrated circuit. For example, the one or more
parallel processor(s), 112 memory hub 105, processor(s)
102, and I/O hub 107 can be integrated into a system on chip
(SoC) integrated circuit. Alternatively, the components of
the computing system 100 can be integrated into a single
package to form a system in package (SIP) configuration. In
one embodiment at least a portion of the components of the
computing system 100 can be integrated into a multi-chip
module (MCM), which can be interconnected with other
multi-chip modules into a modular computing system.

[0039] It will be appreciated that the computing system
100 shown herein is illustrative and that variations and
modifications are possible. The connection topology, includ-
ing the number and arrangement of bridges, the number of
processor(s) 102, and the number of parallel processor(s)
112, may be modified as desired. For instance, in some
embodiments, system memory 104 is connected to the
processor(s) 102 directly rather than through a bridge, while
other devices communicate with system memory 104 via the
memory hub 105 and the processor(s) 102. In other alter-
native topologies, the parallel processor(s) 112 are con-
nected to the /O hub 107 or directly to one of the one or
more processor(s) 102, rather than to the memory hub 105.
In other embodiments, the I/O hub 107 and memory hub 105
may be integrated into a single chip. Some embodiments
may include two or more sets of processor(s) 102 attached

US 2024/0264657 Al

via multiple sockets, which can couple with two or more
instances of the parallel processor(s) 112.

[0040] Some of the particular components shown herein
are optional and may not be included in all implementations
of the computing system 100. For example, any number of
add-in cards or peripherals may be supported, or some
components may be eliminated. Furthermore, some archi-
tectures may use different terminology for components
similar to those illustrated in FIG. 1. For example, the
memory hub 105 may be referred to as a Northbridge in
some architectures, while the 1/O hub 107 may be referred
to as a Southbridge.

[0041] FIG. 2A illustrates a parallel processor 200, accord-
ing to an embodiment. The various components of the
parallel processor 200 may be implemented using one or
more integrated circuit devices, such as programmable pro-
cessors, application specific integrated circuits (ASICs), or
field programmable gate arrays (FPGA). The illustrated
parallel processor 200 is a variant of the one or more parallel
processor(s) 112 shown in FIG. 1, according to an embodi-
ment.

[0042] In one embodiment the parallel processor 200
includes a parallel processing unit 202. The parallel pro-
cessing unit includes an 1/O unit 204 that enables commu-
nication with other devices, including other instances of the
parallel processing unit 202. The I/O unit 204 may be
directly connected to other devices. In one embodiment the
1/O unit 204 connects with other devices via the use of a hub
or switch interface, such as memory hub 105. The connec-
tions between the memory hub 105 and the /O unit 204
form a communication link 113. Within the parallel process-
ing unit 202, the I/O unit 204 connects with a host interface
206 and a memory crossbar 216, where the host interface
206 receives commands directed to performing processing
operations and the memory crossbar 216 receives commands
directed to performing memory operations.

[0043] When the host interface 206 receives a command
buffer via the 1/O unit 204, the host interface 206 can direct
work operations to perform those commands to a front end
208. In one embodiment the front end 208 couples with a
scheduler 210, which is configured to distribute commands
or other work items to a processing cluster array 212. In one
embodiment the scheduler 210 ensures that the processing
cluster array 212 is properly configured and in a valid state
before tasks are distributed to the processing clusters of the
processing cluster array 212. In one embodiment the sched-
uler 210 is implemented via firmware logic executing on a
microcontroller. The microcontroller implemented sched-
uler 210 is configurable to perform complex scheduling and
work distribution operations at coarse and fine granularity,
enabling rapid preemption and context switching of threads
executing on the processing array 212. In one embodiment,
the host software can prove workloads for scheduling on the
processing array 212 via one of multiple graphics processing
doorbells. The workloads can then be automatically distrib-
uted across the processing array 212 by the scheduler 210
logic within the scheduler microcontroller.

[0044] The processing cluster array 212 can include up to
“N” processing clusters (e.g., cluster 214A, cluster 214B,
through cluster 214N). Each cluster 214A-214N of the
processing cluster array 212 can execute a large number of
concurrent threads. The scheduler 210 can allocate work to
the clusters 214A-214N of the processing cluster array 212
using various scheduling and/or work distribution algo-

Aug. 8,2024

rithms, which may vary depending on the workload arising
for each type of program or computation. The scheduling
can be handled dynamically by the scheduler 210, or can be
assisted in part by compiler logic during compilation of
program logic configured for execution by the processing
cluster array 212. In one embodiment, different clusters
214A-214N of the processing cluster array 212 can be
allocated for processing different types of programs or for
performing different types of computations.

[0045] The processing cluster array 212 can be configured
to perform various types of parallel processing operations.
In one embodiment the processing cluster array 212 is
configured to perform general-purpose parallel compute
operations. For example, the processing cluster array 212
can include logic to execute processing tasks including
filtering of video and/or audio data, performing modeling
operations, including physics operations, and performing
data transformations.

[0046] In one embodiment the processing cluster array
212 is configured to perform parallel graphics processing
operations. In embodiments in which the parallel processor
200 is configured to perform graphics processing operations,
the processing cluster array 212 can include additional logic
to support the execution of such graphics processing opera-
tions, including, but not limited to texture sampling logic to
perform texture operations, as well as tessellation logic and
other vertex processing logic. Additionally, the processing
cluster array 212 can be configured to execute graphics
processing related shader programs such as, but not limited
to vertex shaders, tessellation shaders, geometry shaders,
and pixel shaders. The parallel processing unit 202 can
transfer data from system memory via the 1/O unit 204 for
processing. During processing the transferred data can be
stored to on-chip memory (e.g., parallel processor memory
222) during processing, then written back to system
memory.

[0047] In one embodiment, when the parallel processing
unit 202 is used to perform graphics processing, the sched-
uler 210 can be configured to divide the processing work-
load into approximately equal sized tasks, to better enable
distribution of the graphics processing operations to multiple
clusters 214A-214N of the processing cluster array 212. In
some embodiments, portions of the processing cluster array
212 can be configured to perform different types of process-
ing. For example a first portion may be configured to
perform vertex shading and topology generation, a second
portion may be configured to perform tessellation and geom-
etry shading, and a third portion may be configured to
perform pixel shading or other screen space operations, to
produce a rendered image for display. Intermediate data
produced by one or more of the clusters 214A-214N may be
stored in buffers to allow the intermediate data to be trans-
mitted between clusters 214A-214N for further processing.

[0048] During operation, the processing cluster array 212
can receive processing tasks to be executed via the scheduler
210, which receives commands defining processing tasks
from front end 208. For graphics processing operations,
processing tasks can include indices of data to be processed,
e.g., surface (patch) data, primitive data, vertex data, and/or
pixel data, as well as state parameters and commands
defining how the data is to be processed (e.g., what program
is to be executed). The scheduler 210 may be configured to
fetch the indices corresponding to the tasks or may receive
the indices from the front end 208. The front end 208 can be

US 2024/0264657 Al

configured to ensure the processing cluster array 212 is
configured to a valid state before the workload specified by
incoming command buffers (e.g., batch-buffers, push buf-
fers, etc.) is initiated.

[0049] Each of the one or more instances of the parallel
processing unit 202 can couple with parallel processor
memory 222. The parallel processor memory 222 can be
accessed via the memory crossbar 216, which can receive
memory requests from the processing cluster array 212 as
well as the /O unit 204. The memory crossbar 216 can
access the parallel processor memory 222 via a memory
interface 218. The memory interface 218 can include mul-
tiple partition units (e.g., partition unit 220A, partition unit
220B, through partition unit 220N) that can each couple to
a portion (e.g., memory unit) of parallel processor memory
222. In one implementation the number of partition units
220A-220N is configured to be equal to the number of
memory units, such that a first partition unit 220A has a
corresponding first memory unit 224A, a second partition
unit 220B has a corresponding memory unit 224B, and an
Nth partition unit 220N has a corresponding Nth memory
unit 224N. In other embodiments, the number of partition
units 220A-220N may not be equal to the number of
memory devices.

[0050] In various embodiments, the memory units 224A-
224N can include various types of memory devices, includ-
ing dynamic random access memory (DRAM) or graphics
random access memory, such as synchronous graphics ran-
dom access memory (SGRAM), including graphics double
data rate (GDDR) memory. In one embodiment, the memory
units 224A-224N may also include 3D stacked memory,
including but not limited to high bandwidth memory
(HBM). Persons skilled in the art will appreciate that the
specific implementation of the memory units 224A-224N
can vary, and can be selected from one of various conven-
tional designs. Render targets, such as frame buffers or
texture maps may be stored across the memory units 224 A-
224N, allowing partition units 220A-220N to write portions
of each render target in parallel to efficiently use the avail-
able bandwidth of parallel processor memory 222. In some
embodiments, a local instance of the parallel processor
memory 222 may be excluded in favor of a unified memory
design that utilizes system memory in conjunction with local
cache memory.

[0051] In one embodiment, any one of the clusters 214A-
214N of the processing cluster array 212 can process data
that will be written to any of the memory units 224A-224N
within parallel processor memory 222. The memory cross-
bar 216 can be configured to transfer the output of each
cluster 214A-214N to any partition unit 220A-220N or to
another cluster 214A-214N, which can perform additional
processing operations on the output. Each cluster 214A-
214N can communicate with the memory interface 218
through the memory crossbar 216 to read from or write to
various external memory devices. In one embodiment the
memory crossbar 216 has a connection to the memory
interface 218 to communicate with the I/O unit 204, as well
as a connection to a local instance of the parallel processor
memory 222, enabling the processing units within the dif-
ferent processing clusters 214A-214N to communicate with
system memory or other memory that is not local to the
parallel processing unit 202. In one embodiment the

Aug. 8,2024

memory crossbar 216 can use virtual channels to separate
traffic streams between the clusters 214A-214N and the
partition units 220A-220N.

[0052] While a single instance of the parallel processing
unit 202 is illustrated within the parallel processor 200, any
number of instances of the parallel processing unit 202 can
be included. For example, multiple instances of the parallel
processing unit 202 can be provided on a single add-in card,
or multiple add-in cards can be interconnected. The different
instances of the parallel processing unit 202 can be config-
ured to inter-operate even if the different instances have
different numbers of processing cores, different amounts of
local parallel processor memory, and/or other configuration
differences. For example and in one embodiment, some
instances of the parallel processing unit 202 can include
higher precision floating point units relative to other
instances. Systems incorporating one or more instances of
the parallel processing unit 202 or the parallel processor 200
can be implemented in a variety of configurations and form
factors, including but not limited to desktop, laptop, or
handheld personal computers, servers, workstations, game
consoles, and/or embedded systems.

[0053] FIG. 2B is a block diagram of a partition unit 220,
according to an embodiment. In one embodiment the parti-
tion unit 220 is an instance of one of the partition units
220A-220N of FIG. 2A. As illustrated, the partition unit 220
includes an L2 cache 221, a frame buffer interface 225, and
a ROP 226 (raster operations unit). The [.2 cache 221 is a
read/write cache that is configured to perform load and store
operations received from the memory crossbar 216 and ROP
226. Read misses and urgent write-back requests are output
by L2 cache 221 to frame buffer interface 225 for process-
ing. Updates can also be sent to the frame buffer via the
frame buffer interface 225 for processing. In one embodi-
ment the frame buffer interface 225 interfaces with one of
the memory units in parallel processor memory, such as the
memory units 224A-224N of FIG. 2 (e.g., within parallel
processor memory 222).

[0054] In graphics applications, the ROP 226 is a process-
ing unit that performs raster operations such as stencil, z test,
blending, and the like. The ROP 226 then outputs processed
graphics data that is stored in graphics memory. In some
embodiments the ROP 226 includes compression logic to
compress depth or color data that is written to memory and
decompress depth or color data that is read from memory.
The compression logic can be lossless compression logic
that makes use of one or more of multiple compression
algorithms. The type of compression that is performed by
the ROP 226 can vary based on the statistical characteristics
of the data to be compressed. For example, in one embodi-
ment, delta color compression is performed on depth and
color data on a per-tile basis.

[0055] In some embodiments, the ROP 226 is included
within each processing cluster (e.g., cluster 214A-214N of
FIG. 2) instead of within the partition unit 220. In such
embodiment, read and write requests for pixel data are
transmitted over the memory crossbar 216 instead of pixel
fragment data. The processed graphics data may be dis-
played on a display device, such as one of the one or more
display device(s) 110 of FIG. 1, routed for further processing
by the processor(s) 102, or routed for further processing by
one of the processing entities within the parallel processor
200 of FIG. 2A.

US 2024/0264657 Al

[0056] FIG. 2C is a block diagram of a processing cluster
214 within a parallel processing unit, according to an
embodiment. In one embodiment the processing cluster is an
instance of one of the processing clusters 214A-214N of
FIG. 2. The processing cluster 214 can be configured to
execute many threads in parallel, where the term “thread”
refers to an instance of a particular program executing on a
particular set of input data. In some embodiments, single-
instruction, multiple-data (SIMD) instruction issue tech-
niques are used to support parallel execution of a large
number of threads without providing multiple independent
instruction units. In other embodiments, single-instruction,
multiple-thread (SIMT) techniques are used to support par-
allel execution of a large number of generally synchronized
threads, using a common instruction unit configured to issue
instructions to a set of processing engines within each one of
the processing clusters. Unlike a SIMD execution regime,
where all processing engines typically execute identical
instructions, SIMT execution allows different threads to
more readily follow divergent execution paths through a
given thread program. Persons skilled in the art will under-
stand that a SIMD processing regime represents a functional
subset of a SIMT processing regime.

[0057] Operation of the processing cluster 214 can be
controlled via a pipeline manager 232 that distributes pro-
cessing tasks to SIMT parallel processors. The pipeline
manager 232 receives instructions from the scheduler 210 of
FIG. 2 and manages execution of those instructions via a
graphics multiprocessor 234 and/or a texture unit 236. The
illustrated graphics multiprocessor 234 is an exemplary
instance of a SIMT parallel processor. However, various
types of SIMT parallel processors of differing architectures
may be included within the processing cluster 214. One or
more instances of the graphics multiprocessor 234 can be
included within a processing cluster 214. The graphics
multiprocessor 234 can process data and a data crossbar 240
can be used to distribute the processed data to one of
multiple possible destinations, including other shader units.
The pipeline manager 232 can facilitate the distribution of
processed data by specifying destinations for processed data
to be distributed vis the data crossbar 240.

[0058] Each graphics multiprocessor 234 within the pro-
cessing cluster 214 can include an identical set of functional
execution logic (e.g., arithmetic logic units, load-store units,
etc.). The functional execution logic can be configured in a
pipelined manner in which new instructions can be issued
before previous instructions are complete. The functional
execution logic supports a variety of operations including
integer and floating point arithmetic, comparison operations,
Boolean operations, bit-shifting, and computation of various
algebraic functions. In one embodiment the same functional-
unit hardware can be leveraged to perform different opera-
tions and any combination of functional units may be
present.

[0059] The instructions transmitted to the processing clus-
ter 214 constitutes a thread. A set of threads executing across
the set of parallel processing engines is a thread group. A
thread group executes the same program on different input
data. Each thread within a thread group can be assigned to
a different processing engine within a graphics multiproces-
sor 234. A thread group may include fewer threads than the
number of processing engines within the graphics multipro-
cessor 234. When a thread group includes fewer threads than
the number of processing engines, one or more of the

Aug. 8,2024

processing engines may be idle during cycles in which that
thread group is being processed. A thread group may also
include more threads than the number of processing engines
within the graphics multiprocessor 234. When the thread
group includes more threads than the number of processing
engines within the graphics multiprocessor 234, processing
can be performed over consecutive clock cycles. In one
embodiment multiple thread groups can be executed con-
currently on a graphics multiprocessor 234.

[0060] In one embodiment the graphics multiprocessor
234 includes an internal cache memory to perform load and
store operations. In one embodiment, the graphics multipro-
cessor 234 can forego an internal cache and use a cache
memory (e.g., .1 cache 308) within the processing cluster
214. Each graphics multiprocessor 234 also has access to [.2
caches within the partition units (e.g., partition units 220A-
220N of FIG. 2) that are shared among all processing
clusters 214 and may be used to transfer data between
threads. The graphics multiprocessor 234 may also access
off-chip global memory, which can include one or more of
local parallel processor memory and/or system memory.
Any memory external to the parallel processing unit 202
may be used as global memory. Embodiments in which the
processing cluster 214 includes multiple instances of the
graphics multiprocessor 234 can share common instructions
and data, which may be stored in the L1 cache 308.
[0061] Each processing cluster 214 may include an MMU
245 (memory management unit) that is configured to map
virtual addresses into physical addresses. In other embodi-
ments, one or more instances of the MMU 245 may reside
within the memory interface 218 of FIG. 2. The MMU 245
includes a set of page table entries (PTEs) used to map a
virtual address to a physical address of a tile (talk more
about tiling) and optionally a cache line index. The MMU
245 may include address translation lookaside buffers (TLB)
or caches that may reside within the graphics multiprocessor
234 or the L1 cache or processing cluster 214. The physical
address is processed to distribute surface data access locality
to allow efficient request interleaving among partition units.
The cache line index may be used to determine whether a
request for a cache line is a hit or miss.

[0062] In graphics and computing applications, a process-
ing cluster 214 may be configured such that each graphics
multiprocessor 234 is coupled to a texture unit 236 for
performing texture mapping operations, e.g., determining
texture sample positions, reading texture data, and filtering
the texture data. Texture data is read from an internal texture
L1 cache (not shown) or in some embodiments from the .1
cache within graphics multiprocessor 234 and is fetched
from an [.2 cache, local parallel processor memory, or
system memory, as needed. Each graphics multiprocessor
234 outputs processed tasks to the data crossbar 240 to
provide the processed task to another processing cluster 214
for further processing or to store the processed task in an [.2
cache, local parallel processor memory, or system memory
via the memory crossbar 216. A preROP 242 (pre-raster
operations unit) is configured to receive data from graphics
multiprocessor 234, direct data to ROP units, which may be
located with partition units as described herein (e.g., parti-
tion units 220A-220N of FIG. 2). The preROP 242 unit can
perform optimizations for color blending, organize pixel
color data, and perform address translations.

[0063] It will be appreciated that the core architecture
described herein is illustrative and that variations and modi-

US 2024/0264657 Al

fications are possible. Any number of processing units, e.g.,
graphics multiprocessor 234, texture units 236, preROPs
242, etc., may be included within a processing cluster 214.
Further, while only one processing cluster 214 is shown, a
parallel processing unit as described herein may include any
number of instances of the processing cluster 214. In one
embodiment, each processing cluster 214 can be configured
to operate independently of other processing clusters 214
using separate and distinct processing units, [.1 caches, etc.
[0064] FIG. 2D shows a graphics multiprocessor 234,
according to one embodiment. In such embodiment the
graphics multiprocessor 234 couples with the pipeline man-
ager 232 of the processing cluster 214. The graphics mul-
tiprocessor 234 has an execution pipeline including but not
limited to an instruction cache 252, an instruction unit 254,
an address mapping unit 256, a register file 258, one or more
general purpose graphics processing unit (GPGPU) cores
262, and one or more load/store units 266. The GPGPU
cores 262 and load/store units 266 are coupled with cache
memory 272 and shared memory 270 via a memory and
cache interconnect 268.

[0065] In one embodiment, the instruction cache 252
receives a stream of instructions to execute from the pipeline
manager 232. The instructions are cached in the instruction
cache 252 and dispatched for execution by the instruction
unit 254. The instruction unit 254 can dispatch instructions
as thread groups (e.g., warps), with each thread of the thread
group assigned to a different execution unit within GPGPU
core 262. An instruction can access any of a local, shared, or
global address space by specitying an address within a
unified address space. The address mapping unit 256 can be
used to translate addresses in the unified address space into
a distinct memory address that can be accessed by the
load/store units 266.

[0066] The register file 258 provides a set of registers for
the functional units of the graphics multiprocessor 324. The
register file 258 provides temporary storage for operands
connected to the data paths of the functional units (e.g.,
GPGPU cores 262, load/store units 266) of the graphics
multiprocessor 324. In one embodiment, the register file 258
is divided between each of the functional units such that
each functional unit is allocated a dedicated portion of the
register file 258. In one embodiment, the register file 258 is
divided between the different warps being executed by the
graphics multiprocessor 324.

[0067] The GPGPU cores 262 can each include floating
point units (FPUs) and/or integer arithmetic logic units
(ALUs) that are used to execute instructions of the graphics
multiprocessor 324. The GPGPU cores 262 can be similar in
architecture or can differ in architecture, according to
embodiments. For example and in one embodiment, a first
portion of the GPGPU cores 262 include a single precision
FPU and an integer ALU while a second portion of the
GPGPU cores include a double precision FPU. In one
embodiment the FPUs can implement the IEEE 754-2008
standard for floating point arithmetic or enable variable
precision floating point arithmetic. The graphics multipro-
cessor 324 can additionally include one or more fixed
function or special function units to perform specific func-
tions such as copy rectangle or pixel blending operations. In
one embodiment one or more of the GPGPU cores can also
include fixed or special function logic.

[0068] In one embodiment the GPGPU cores 262 include
SIMD logic capable of performing a single instruction on

Aug. 8,2024

multiple sets of data. In one embodiment GPGPU cores 262
can physically execute SIMD4, SIMDS8, and SIMDI16
instructions and logically execute SIMDI1, SIMD2, and
SIMD32 instructions. The SIMD instructions for the
GPGPU cores can be generated at compile time by a shader
compiler or automatically generated when executing pro-
grams written and compiled for single program multiple data
(SPMD) or SIMT architectures. Multiple threads of a pro-
gram configured for the SIMT execution model can
executed via a single SIMD instruction. For example and in
one embodiment, eight SIMT threads that perform the same
or similar operations can be executed in parallel via a single
SIMDS logic unit.

[0069] The memory and cache interconnect 268 is an
interconnect network that connects each of the functional
units of the graphics multiprocessor 324 to the register file
258 and to the shared memory 270. In one embodiment, the
memory and cache interconnect 268 is a crossbar intercon-
nect that allows the load/store unit 266 to implement load
and store operations between the shared memory 270 and
the register file 258. The register file 258 can operate at the
same frequency as the GPGPU cores 262, thus data transfer
between the GPGPU cores 262 and the register file 258 is
very low latency. The shared memory 270 can be used to
enable communication between threads that execute on the
functional units within the graphics multiprocessor 234. The
cache memory 272 can be used as a data cache for example,
to cache texture data communicated between the functional
units and the texture unit 236. The shared memory 270 can
also be used as a program managed cached. Threads execut-
ing on the GPGPU cores 262 can programmatically store
data within the shared memory in addition to the automati-
cally cached data that is stored within the cache memory
272.

[0070] FIGS. 3A-3B illustrate additional graphics multi-
processors, according to embodiments. The illustrated
graphics multiprocessors 325, 350 are variants of the graph-
ics multiprocessor 234 of FIG. 2C. The illustrated graphics
multiprocessors 325, 350 can be configured as a streaming
multiprocessor (SM) capable of simultaneous execution of a
large number of execution threads.

[0071] FIG. 3A shows a graphics multiprocessor 325
according to an additional embodiment. The graphics mul-
tiprocessor 325 includes multiple additional instances of
execution resource units relative to the graphics multipro-
cessor 234 of FIG. 2D. For example, the graphics multipro-
cessor 325 can include multiple instances of the instruction
unit 332A-332B, register file 334A-334B, and texture unit(s)
344 A-344B. The graphics multiprocessor 325 also includes
multiple sets of graphics or compute execution units (e.g.,
GPGPU core 336A-336B, GPGPU core 337A-337B,
GPGPU core 338A-338B) and multiple sets of load/store
units 340A-340B. In one embodiment the execution
resource units have a common instruction cache 330, texture
and/or data cache memory 342, and shared memory 346.
[0072] The various components can communicate via an
interconnect fabric 327. In one embodiment the interconnect
fabric 327 includes one or more crossbar switches to enable
communication between the various components of the
graphics multiprocessor 325. In one embodiment the inter-
connect fabric 327 is a separate, high-speed network fabric
layer upon which each component of the graphics multipro-
cessor 325 is stacked. The components of the graphics
multiprocessor 325 communicate with remote components

US 2024/0264657 Al

via the interconnect fabric 327. For example, the GPGPU
cores 336A-336B, 337A-337B, and 3378A-338B can each
communicate with shared memory 346 via the interconnect
fabric 327. The interconnect fabric 327 can arbitrate com-
munication within the graphics multiprocessor 325 to ensure
a fair bandwidth allocation between components.

[0073] FIG. 3B shows a graphics multiprocessor 350
according to an additional embodiment. The graphics pro-
cessor includes multiple sets of execution resources 356 A-
356D, where each set of execution resource includes mul-
tiple instruction units, register files, GPGPU cores, and load
store units, as illustrated in FIG. 2D and FIG. 3A. The
execution resources 356A-356D can work in concert with
texture unit(s) 360A-360D for texture operations, while
sharing an instruction cache 354, and shared memory 362. In
one embodiment the execution resources 356A-356D can
share an instruction cache 354 and shared memory 362, as
well as multiple instances of a texture and/or data cache
memory 358A-358B. The various components can commu-
nicate via an interconnect fabric 352 similar to the intercon-
nect fabric 327 of FIG. 3A.

[0074] Persons skilled in the art will understand that the
architecture described in FIGS. 1, 2A-2D, and 3A-3B are
descriptive and not limiting as to the scope of the present
embodiments. Thus, the techniques described herein may be
implemented on any properly configured processing unit,
including, without limitation, one or more mobile applica-
tion processors, one or more desktop or server central
processing units (CPUs) including multi-core CPUs, one or
more parallel processing units, such as the parallel process-
ing unit 202 of FIG. 2, as well as one or more graphics
processors or special purpose processing units, without
departure from the scope of the embodiments described
herein.

[0075] In some embodiments a parallel processor or
GPGPU as described herein is communicatively coupled to
host/processor cores to accelerate graphics operations,
machine-learning operations, pattern analysis operations,
and various general purpose GPU (GPGPU) functions. The
GPU may be communicatively coupled to the host proces-
sor/cores over a bus or other interconnect (e.g., a high speed
interconnect such as PCle or NVLink). In other embodi-
ments, the GPU may be integrated on the same package or
chip as the cores and communicatively coupled to the cores
over an internal processor bus/interconnect (i.e., internal to
the package or chip). Regardless of the manner in which the
GPU is connected, the processor cores may allocate work to
the GPU in the form of sequences of commands/instructions
contained in a work descriptor. The GPU then uses dedicated
circuitry/logic for efficiently processing these commands/
instructions.

Techniques for GPU to Host Processor Interconnection

[0076] FIG. 4A illustrates an exemplary architecture in
which a plurality of GPUs 410-413 are communicatively
coupled to a plurality of multi-core processors 405-406 over
high-speed links 440-443 (e.g., buses, point-to-point inter-
connects, etc.). In one embodiment, the high-speed links
440-443 support a communication throughput of 4 GB/s, 30
GB/s, 80 GB/s or higher, depending on the implementation.
Various interconnect protocols may be used including, but
not limited to, PCle 4.0 or 5.0 and NVLink 2.0. However,
the underlying principles of the invention are not limited to
any particular communication protocol or throughput.

Aug. 8,2024

[0077] Inaddition, in one embodiment, two or more of the
GPUs 410-413 are interconnected over high-speed links
444-445, which may be implemented using the same or
different protocols/links than those used for high-speed links
440-443. Similarly, two or more of the multi-core processors
405-406 may be connected over high speed link 433 which
may be symmetric multi-processor (SMP) buses operating at
20 GB/s, 30 GB/s, 120 GB/s or higher. Alternatively, all
communication between the various system components
shown in FIG. 4A may be accomplished using the same
protocols/links (e.g., over a common interconnection fab-
ric). As mentioned, however, the underlying principles of the
invention are not limited to any particular type of intercon-
nect technology.

[0078] In one embodiment, each multi-core processor
405-406 is communicatively coupled to a processor memory
401-402, via memory interconnects 430-431, respectively,
and each GPU 410-413 is communicatively coupled to GPU
memory 420-423 over GPU memory interconnects 450-453,
respectively. The memory interconnects 430-431 and 450-
453 may utilize the same or different memory access tech-
nologies. By way of example, and not limitation, the pro-
cessor memories 401-402 and GPU memories 420-423 may
be volatile memories such as dynamic random access
memories (DRAMs) (including stacked DRAMs), Graphics
DDR SDRAM (GDDR) (e.g., GDDRS5, GDDR6), or High
Bandwidth Memory (HBM) and/or may be non-volatile
memories such as 3D XPoint or Nano-Ram. In one embodi-
ment, some portion of the memories may be volatile
memory and another portion may be non-volatile memory
(e.g., using a two-level memory (2LLM) hierarchy).

[0079] As described below, although the various proces-
sors 405-406 and GPUs 410-413 may be physically coupled
to a particular memory 401-402, 420-423, respectively, a
unified memory architecture may be implemented in which
the same virtual system address space (also referred to as the
“effective address” space) is distributed among all of the
various physical memories. For example, processor memo-
ries 401-402 may each comprise 64 GB of the system
memory address space and GPU memories 420-423 may
each comprise 32 GB of the system memory address space
(resulting in a total of 256 GB addressable memory in this
example).

[0080] FIG. 4B illustrates additional details for an inter-
connection between a multi-core processor 407 and a graph-
ics acceleration module 446 in accordance with one embodi-
ment. The graphics acceleration module 446 may include
one or more GPU chips integrated on a line card which is
coupled to the processor 407 via the high-speed link 440.
Alternatively, the graphics acceleration module 446 may be
integrated on the same package or chip as the processor 407.
[0081] The illustrated processor 407 includes a plurality of
cores 460A-460D, each with a translation lookaside buffer
461A-461D and one or more caches 462A-462D. The cores
may include various other components for executing instruc-
tions and processing data which are not illustrated to avoid
obscuring the underlying principles of the invention (e.g.,
instruction fetch units, branch prediction units, decoders,
execution units, reorder buffers, etc.). The caches 462A-
462D may comprise level 1 (L.1) and level 2 (L.2) caches. In
addition, one or more shared caches 426 may be included in
the caching hierarchy and shared by sets of the cores
460A-460D. For example, one embodiment of the processor
407 includes 24 cores, each with its own L1 cache, twelve

US 2024/0264657 Al

shared L2 caches, and twelve shared L3 caches. In this
embodiment, one of the [.2 and L3 caches are shared by two
adjacent cores. The processor 407 and the graphics accel-
erator integration module 446 connect with system memory
441, which may include processor memories 401-402
[0082] Coherency is maintained for data and instructions
stored in the various caches 462A-462D, 456 and system
memory 441 via inter-core communication over a coherence
bus 464. For example, each cache may have cache coher-
ency logic/circuitry associated therewith to communicate to
over the coherence bus 464 in response to detected reads or
writes to particular cache lines. In one implementation, a
cache snooping protocol is implemented over the coherence
bus 464 to snoop cache accesses. Cache snooping/coherency
techniques are well understood by those of skill in the art
and will not be described in detail here to avoid obscuring
the underlying principles of the invention.

[0083] In one embodiment, a proxy circuit 425 commu-
nicatively couples the graphics acceleration module 446 to
the coherence bus 464, allowing the graphics acceleration
module 446 to participate in the cache coherence protocol as
a peer of the cores. In particular, an interface 435 provides
connectivity to the proxy circuit 425 over high-speed link
440 (e.g., a PCle bus, NVLink, etc.) and an interface 437
connects the graphics acceleration module 446 to the link
440.

[0084] In one implementation, an accelerator integration
circuit 436 provides cache management, memory access,
context management, and interrupt management services on
behalf of a plurality of graphics processing engines 431,
432, N of the graphics acceleration module 446. The graph-
ics processing engines 431, 432, N may each comprise a
separate graphics processing unit (GPU). Alternatively, the
graphics processing engines 431, 432, N may comprise
different types of graphics processing engines within a GPU
such as graphics execution units, media processing engines
(e.g., video encoders/decoders), samplers, and blit engines.
In other words, the graphics acceleration module may be a
GPU with a plurality of graphics processing engines 431-
432, N or the graphics processing engines 431-432, N may
be individual GPUs integrated on a common package, line
card, or chip.

[0085] In one embodiment, the accelerator integration
circuit 436 includes a memory management unit (MMU)
439 for performing various memory management functions
such as virtual-to-physical memory translations (also
referred to as effective-to-real memory translations) and
memory access protocols for accessing system memory 441.
The MMU 439 may also include a translation lookaside
buffer (TLB) (not shown) for caching the virtual/effective to
physical/real address translations. In one implementation, a
cache 438 stores commands and data for efficient access by
the graphics processing engines 431-432, N. In one embodi-
ment, the data stored in cache 438 and graphics memories
433-434, N is kept coherent with the core caches 462A-
462D, 456 and system memory 411. As mentioned, this may
be accomplished via proxy circuit 425 which takes part in
the cache coherency mechanism on behalf of cache 438 and
memories 433-434, N (e.g., sending updates to the cache
438 related to modifications/accesses of cache lines on
processor caches 462A-462D, 456 and receiving updates
from the cache 438).

[0086] A set of registers 445 store context data for threads
executed by the graphics processing engines 431-432, N and

Aug. 8,2024

a context management circuit 448 manages the thread con-
texts. For example, the context management circuit 448 may
perform save and restore operations to save and restore
contexts of the various threads during contexts switches
(e.g., where a first thread is saved and a second thread is
stored so that the second thread can be execute by a graphics
processing engine). For example, on a context switch, the
context management circuit 448 may store current register
values to a designated region in memory (e.g., identified by
a context pointer). It may then restore the register values
when returning to the context. In one embodiment, an
interrupt management circuit 447 receives and processes
interrupts received from system devices.

[0087] In one implementation, virtual/effective addresses
from a graphics processing engine 431 are translated to
real/physical addresses in system memory 411 by the MMU
439. One embodiment of the accelerator integration circuit
436 supports multiple (e.g., 4, 8, 16) graphics accelerator
modules 446 and/or other accelerator devices. The graphics
accelerator module 446 may be dedicated to a single appli-
cation executed on the processor 407 or may be shared
between multiple applications. In one embodiment, a virtu-
alized graphics execution environment is presented in which
the resources of the graphics processing engines 431-432, N
are shared with multiple applications or virtual machines
(VMs). The resources may be subdivided into “slices” which
are allocated to different VMs and/or applications based on
the processing requirements and priorities associated with
the VM and/or applications.

[0088] Thus, the accelerator integration circuit acts as a
bridge to the system for the graphics acceleration module
446 and provides address translation and system memory
cache services. In addition, the accelerator integration circuit
436 may provide virtualization facilities for the host pro-
cessor to manage virtualization of the graphics processing
engines, interrupts, and memory management.

[0089] Because hardware resources of the graphics pro-
cessing engines 431-432, N are mapped explicitly to the real
address space seen by the host processor 407, any host
processor can address these resources directly using an
effective address value. One function of the accelerator
integration circuit 436, in one embodiment, is the physical
separation of the graphics processing engines 431-432, N so
that they appear to the system as independent units.

[0090] As mentioned, in the illustrated embodiment, one
or more graphics memories 433-434, M are coupled to each
of'the graphics processing engines 431-432, N, respectively.
The graphics memories 433-434, M store instructions and
data being processed by each of the graphics processing
engines 431-432, N. The graphics memories 433-434, M
may be volatile memories such as DRAMs (including
stacked DRAMs), GDDR memory (e.g., GDDRS, GDDR6),
or HBM, and/or may be non-volatile memories such as 3D
XPoint or Nano-Ram.

[0091] In one embodiment, to reduce data traffic over link
440, biasing techniques are used to ensure that the data
stored in graphics memories 433-434, M is data which will
be used most frequently by the graphics processing engines
431-432, N and preferably not used by the cores 460A-460D
(at least not frequently). Similarly, the biasing mechanism
attempts to keep data needed by the cores (and preferably
not the graphics processing engines 431-432, N) within the
caches 462A-462D, 456 of the cores and system memory
411.

US 2024/0264657 Al

[0092] FIG. 4C illustrates another embodiment in which
the accelerator integration circuit 436 is integrated within
the processor 407. In this embodiment, the graphics pro-
cessing engines 431-432, N communicate directly over the
high-speed link 440 to the accelerator integration circuit 436
via interface 437 and interface 435 (which, again, may be
utilize any form of bus or interface protocol). The accelera-
tor integration circuit 436 may perform the same operations
as those described with respect to FIG. 4B, but potentially at
a higher throughput given its close proximity to the coher-
ency bus 462 and caches 462A-462D, 426.

[0093] One embodiment supports different programming
models including a dedicated-process programming model
(no graphics acceleration module virtualization) and shared
programming models (with virtualization). The latter may
include programming models which are controlled by the
accelerator integration circuit 436 and programming models
which are controlled by the graphics acceleration module
446.

[0094] Inone embodiment of the dedicated process model,
graphics processing engines 431-432, N are dedicated to a
single application or process under a single operating sys-
tem. The single application can funnel other application
requests to the graphics engines 431-432, N, providing
virtualization within a VM/partition.

[0095] In the dedicated-process programming models, the
graphics processing engines 431-432, N, may be shared by
multiple VM/application partitions. The shared models
require a system hypervisor to virtualize the graphics pro-
cessing engines 431-432, N to allow access by each oper-
ating system. For single-partition systems without a hyper-
visor, the graphics processing engines 431-432, N are owned
by the operating system. In both cases, the operating system
can virtualize the graphics processing engines 431-432, N to
provide access to each process or application.

[0096] For the shared programming model, the graphics
acceleration module 446 or an individual graphics process-
ing engine 431-432, N selects a process element using a
process handle. In one embodiment, process elements are
stored in system memory 411 and are addressable using the
effective address to real address translation techniques
described herein. The process handle may be an implemen-
tation-specific value provided to the host process when
registering its context with the graphics processing engine
431-432, N (that is, calling system software to add the
process element to the process element linked list). The
lower 16-bits of the process handle may be the offset of the
process element within the process element linked list.
[0097] FIG. 4D illustrates an exemplary accelerator inte-
gration slice 490. As used herein, a “slice” comprises a
specified portion of the processing resources of the accel-
erator integration circuit 436. Application effective address
space 482 within system memory 411 stores process ele-
ments 483. In one embodiment, the process elements 483 are
stored in response to GPU invocations 481 from applications
480 executed on the processor 407. A process element 483
contains the process state for the corresponding application
480. A work descriptor (WD) 484 contained in the process
element 483 can be a single job requested by an application
or may contain a pointer to a queue of jobs. In the latter case,
the WD 484 is a pointer to the job request queue in the
application’s address space 482.

[0098] The graphics acceleration module 446 and/or the
individual graphics processing engines 431-432, N can be

Aug. 8,2024

shared by all or a subset of the processes in the system.
Embodiments of the invention include an infrastructure for
setting up the process state and sending a WD 484 to a
graphics acceleration module 446 to start a job in a virtu-
alized environment.

[0099] In one implementation, the dedicated-process pro-
gramming model is implementation-specific. In this model,
a single process owns the graphics acceleration module 446
or an individual graphics processing engine 431. Because
the graphics acceleration module 446 is owned by a single
process, the hypervisor initializes the accelerator integration
circuit 436 for the owning partition and the operating system
initializes the accelerator integration circuit 436 for the
owning process at the time when the graphics acceleration
module 446 is assigned.

[0100] Inoperation, a WD fetch unit 491 in the accelerator
integration slice 490 fetches the next WD 484 which
includes an indication of the work to be done by one of the
graphics processing engines of the graphics acceleration
module 446. Data from the WD 484 may be stored in
registers 445 and used by the MMU 439, interrupt manage-
ment circuit 447 and/or context management circuit 446 as
illustrated. For example, one embodiment of the MMU 439
includes segment/page walk circuitry for accessing segment/
page tables 486 within the OS virtual address space 485. The
interrupt management circuit 447 may process interrupt
events 492 received from the graphics acceleration module
446. When performing graphics operations, an effective
address 493 generated by a graphics processing engine
431-432, N is translated to a real address by the MMU 439.
[0101] In one embodiment, the same set of registers 445
are duplicated for each graphics processing engine 431-432,
N and/or graphics acceleration module 446 and may be
initialized by the hypervisor or operating system. Each of
these duplicated registers may be included in an accelerator
integration slice 490. Exemplary registers that may be
initialized by the hypervisor are shown in Table 1.

TABLE 1

Hypervisor Initialized Registers

Slice Control Register

Real Address (RA) Scheduled Processes Area Pointer

Authority Mask Override Register

Interrupt Vector Table Entry Offset

Interrupt Vector Table Entry Limit

State Register

Logical Partition ID

Real address (RA) Hypervisor Accelerator Utilization Record Pointer
Storage Description Register

Nl R R N N T

[0102] Exemplary registers that may be initialized by the
operating system are shown in Table 2.

TABLE 2

Operating System Initialized Registers

1 Process and Thread Identification
2 Effective Address (EA) Context Save/Restore Pointer
3 Virtual Address (VA) Accelerator Utilization Record Pointer
4 Virtual Address (VA) Storage Segment Table Pointer
5 Authority Mask
6 Work descriptor
[0103] In one embodiment, each WD 484 is specific to a

particular graphics acceleration module 446 and/or graphics

US 2024/0264657 Al

processing engine 431-432, N. It contains all the information
a graphics processing engine 431-432, N requires to do its
work or it can be a pointer to a memory location where the
application has set up a command queue of work to be
completed.

[0104] FIG. 4E illustrates additional details for one
embodiment of a shared model. This embodiment includes
a hypervisor real address space 498 in which a process
element list 499 is stored. The hypervisor real address space
498 is accessible via a hypervisor 496 which virtualizes the
graphics acceleration module engines for the operating
system 495.

[0105] The shared programming models allow for all or a
subset of processes from all or a subset of partitions in the
system to use a graphics acceleration module 446. There are
two programming models where the graphics acceleration
module 446 is shared by multiple processes and partitions:
time-sliced shared and graphics directed shared.

[0106] In this model, the system hypervisor 496 owns the
graphics acceleration module 446 and makes its function
available to all operating systems 495. For a graphics
acceleration module 446 to support virtualization by the
system hypervisor 496, the graphics acceleration module
446 may adhere to the following requirements: 1) An
application’s job request must be autonomous (that is, the
state does not need to be maintained between jobs), or the
graphics acceleration module 446 must provide a context
save and restore mechanism. 2) An application’s job request
is guaranteed by the graphics acceleration module 446 to
complete in a specified amount of time, including any
translation faults, or the graphics acceleration module 446
provides the ability to preempt the processing of the job. 3)
The graphics acceleration module 446 must be guaranteed
fairness between processes when operating in the directed
shared programming model.

[0107] In one embodiment, for the shared model, the
application 480 is required to make an operating system 495
system call with a graphics acceleration module 446 type, a
work descriptor (WD), an authority mask register (AMR)
value, and a context save/restore area pointer (CSRP). The
graphics acceleration module 446 type describes the targeted
acceleration function for the system call. The graphics
acceleration module 446 type may be a system-specific
value. The WD is formatted specifically for the graphics
acceleration module 446 and can be in the form of a graphics
acceleration module 446 command, an effective address
pointer to a user-defined structure, an effective address
pointer to a queue of commands, or any other data structure
to describe the work to be done by the graphics acceleration
module 446. In one embodiment, the AMR value is the AMR
state to use for the current process. The value passed to the
operating system is similar to an application setting the
AMR. If the accelerator integration circuit 436 and graphics
acceleration module 446 implementations do not support a
User Authority Mask Override Register (UAMOR), the
operating system may apply the current UAMOR value to
the AMR value before passing the AMR in the hypervisor
call. The hypervisor 496 may optionally apply the current
Authority Mask Override Register (AMOR) value before
placing the AMR into the process element 483. In one
embodiment, the CSRP is one of the registers 445 containing
the effective address of an area in the application’s address
space 482 for the graphics acceleration module 446 to save
and restore the context state. This pointer is optional if no

Aug. 8,2024

state is required to be saved between jobs or when a job is
preempted. The context save/restore area may be pinned
system memory.

[0108] Upon receiving the system call, the operating sys-
tem 495 may verify that the application 480 has registered
and been given the authority to use the graphics acceleration
module 446. The operating system 495 then calls the hyper-
visor 496 with the information shown in Table 3.

TABLE 3

OS to Hypervisor Call Parameters

A work descriptor (WD)

An Authority Mask Register (AMR) value (potentially masked).

An effective address (EA) Context Save/Restore Area Pointer (CSRP)
A process ID (PID) and optional thread ID (TID)

A virtual address (VA) accelerator utilization record pointer (AURP)
The virtual address of the storage segment table pointer (SSTP)

A logical interrupt service number (LISN)

R R N

[0109] Upon receiving the hypervisor call, the hypervisor
496 verifies that the operating system 495 has registered and
been given the authority to use the graphics acceleration
module 446. The hypervisor 496 then puts the process
element 483 into the process element linked list for the
corresponding graphics acceleration module 446 type. The
process element may include the information shown in Table
4.

TABLE 4

Process Element Information

A work descriptor (WD)

An Authority Mask Register (AMR) value (potentially masked).

An effective address (EA) Context Save/Restore Area Pointer (CSRP)

A process ID (PID) and optional thread ID (TID)

A virtual address (VA) accelerator utilization record pointer (AURP)
The virtual address of the storage segment table pointer (SSTP)

A logical interrupt service number (LISN)

Interrupt vector table, derived from the hypervisor call parameters.
9 A state register (SR) value

10 A logical partition ID (LPID)

11 A real address (RA) hypervisor accelerator utilization record pointer

12 The Storage Descriptor Register (SDR)

[0110] In one embodiment, the hypervisor initializes a
plurality of accelerator integration slice 490 registers 445.
[0111] As illustrated in FIG. 4F, one embodiment of the
invention employs a unified memory addressable via a
common virtual memory address space used to access the
physical processor memories 401-402 and GPU memories
420-423. In this implementation, operations executed on the
GPUs 410-413 utilize the same virtual/effective memory
address space to access the processors memories 401-402
and vice versa, thereby simplifying programmability. In one
embodiment, a first portion of the virtual/effective address
space is allocated to the processor memory 401, a second
portion to the second processor memory 402, a third portion
to the GPU memory 420, and so on. The entire virtual/
effective memory space (sometimes referred to as the effec-
tive address space) is thereby distributed across each of the
processor memories 401-402 and GPU memories 420-423,
allowing any processor or GPU to access any physical
memory with a virtual address mapped to that memory.

[0112] In one embodiment, bias/coherence management
circuitry 494A-494F within one or more of the MMUs

US 2024/0264657 Al

439A-439E ensures cache coherence between the caches of
the host processors (e.g., 405) and the GPUs 410-413 and
implements biasing techniques indicating the physical
memories in which certain types of data should be stored.
While multiple instances of bias/coherence management
circuitry 494A-494E are illustrated in FIG. 4F, the bias/
coherence circuitry may be implemented within the MMU
of one or more host processors 405 and/or within the
accelerator integration circuit 436.

[0113] One embodiment allows GPU-attached memory
420-423 to be mapped as part of system memory, and
accessed using shared virtual memory (SVM) technology,
but without suffering the typical performance drawbacks
associated with full system cache coherence. The ability to
GPU-attached memory 420-423 to be accessed as system
memory without onerous cache coherence overhead pro-
vides a beneficial operating environment for GPU offload.
This arrangement allows the host processor 405 software to
setup operands and access computation results, without the
overhead of tradition /O DMA data copies. Such traditional
copies involve driver calls, interrupts and memory mapped
1/0 (MMIO) accesses that are all inefficient relative to
simple memory accesses. At the same time, the ability to
access GPU attached memory 420-423 without cache coher-
ence overheads can be critical to the execution time of an
offloaded computation. In cases with substantial streaming
write memory traffic, for example, cache coherence over-
head can significantly reduce the effective write bandwidth
seen by a GPU 410-413. The efficiency of operand setup, the
efficiency of results access, and the efficiency of GPU
computation all play a role in determining the effectiveness
of GPU offload.

[0114] In one implementation, the selection of between
GPU bias and host processor bias is driven by a bias tracker
data structure. A bias table may be used, for example, which
may be a page-granular structure (i.e., controlled at the
granularity of a memory page) that includes 1 or 2 bits per
GPU-attached memory page. The bias table may be imple-
mented in a stolen memory range of one or more GPU-
attached memories 420-423, with or without a bias cache in
the GPU 410-413 (e.g., to cache frequently/recently used
entries of the bias table). Alternatively, the entire bias table
may be maintained within the GPU.

[0115] In one implementation, the bias table entry associ-
ated with each access to the GPU-attached memory 420-423
is accessed prior the actual access to the GPU memory,
causing the following operations. First, local requests from
the GPU 410-413 that find their page in GPU bias are
forwarded directly to a corresponding GPU memory 420-
423. Local requests from the GPU that find their page in host
bias are forwarded to the processor 405 (e.g., over a high-
speed link as discussed above). In one embodiment, requests
from the processor 405 that find the requested page in host
processor bias complete the request like a normal memory
read. Alternatively, requests directed to a GPU-biased page
may be forwarded to the GPU 410-413. The GPU may then
transition the page to a host processor bias if it is not
currently using the page.

[0116] The bias state of a page can be changed either by
a software-based mechanism, a hardware-assisted software-
based mechanism, or, for a limited set of cases, a purely
hardware-based mechanism.

[0117] One mechanism for changing the bias state
employs an API call (e.g. OpenCL), which, in turn, calls the

Aug. 8,2024

GPU’s device driver which, in turn, sends a message (or
enqueues a command descriptor) to the GPU directing it to
change the bias state and, for some transitions, perform a
cache flushing operation in the host. The cache flushing
operation is required for a transition from host processor 405
bias to GPU bias, but is not required for the opposite
transition.

[0118] In one embodiment, cache coherency is maintained
by temporarily rendering GPU-biased pages uncacheable by
the host processor 405. To access these pages, the processor
405 may request access from the GPU 410 which may or
may not grant access right away, depending on the imple-
mentation. Thus, to reduce communication between the
processor 405 and GPU 410 it is beneficial to ensure that
GPU-biased pages are those which are required by the GPU
but not the host processor 405 and vice versa.

Graphics Processing Pipeline

[0119] FIG. 5 illustrates a graphics processing pipeline
500, according to an embodiment. In one embodiment a
graphics processor can implement the illustrated graphics
processing pipeline 500. The graphics processor can be
included within the parallel processing subsystems as
described herein, such as the parallel processor 200 of FIG.
2, which, in one embodiment, is a variant of the parallel
processor(s) 112 of FIG. 1. The various parallel processing
systems can implement the graphics processing pipeline 500
via one or more instances of the parallel processing unit
(e.g., parallel processing unit 202 of FIG. 2) as described
herein. For example, a shader unit (e.g., graphics multipro-
cessor 234 of FIG. 3) may be configured to perform the
functions of one or more of a vertex processing unit 504, a
tessellation control processing unit 508, a tessellation evalu-
ation processing unit 512, a geometry processing unit 516,
and a fragment/pixel processing unit 524. The functions of
data assembler 502, primitive assemblers 506, 514, 518,
tessellation unit 510, rasterizer 522, and raster operations
unit 526 may also be performed by other processing engines
within a processing cluster (e.g., processing cluster 214 of
FIG. 3) and a corresponding partition unit (e.g., partition
unit 220A-220N of FIG. 2). The graphics processing pipe-
line 500 may also be implemented using dedicated process-
ing units for one or more functions. In one embodiment, one
or more portions of the graphics processing pipeline 500 can
be performed by parallel processing logic within a general
purpose processor (e.g., CPU). In one embodiment, one or
more portions of the graphics processing pipeline 500 can
access on-chip memory (e.g., parallel processor memory
222 as in FIG. 2) via a memory interface 528, which may be
an instance of the memory interface 218 of FIG. 2.

[0120] In one embodiment the data assembler 502 is a
processing unit that collects vertex data for surfaces and
primitives. The data assembler 502 then outputs the vertex
data, including the vertex attributes, to the vertex processing
unit 504. The vertex processing unit 504 is a programmable
execution unit that executes vertex shader programs, light-
ing and transforming vertex data as specified by the vertex
shader programs. The vertex processing unit 504 reads data
that is stored in cache, local or system memory for use in
processing the vertex data and may be programmed to
transform the vertex data from an object-based coordinate
representation to a world space coordinate space or a nor-
malized device coordinate space.

US 2024/0264657 Al

[0121] A first instance of a primitive assembler 506
receives vertex attributes from the vertex processing unit 50.
The primitive assembler 506 readings stored vertex attri-
butes as needed and constructs graphics primitives for
processing by tessellation control processing unit 508. The
graphics primitives include triangles, line segments, points,
patches, and so forth, as supported by various graphics
processing application programming interfaces (APIs).
[0122] The tessellation control processing unit 508 treats
the input vertices as control points for a geometric patch.
The control points are transformed from an input represen-
tation from the patch (e.g., the patch’s bases) to a represen-
tation that is suitable for use in surface evaluation by the
tessellation evaluation processing unit 512. The tessellation
control processing unit 508 can also compute tessellation
factors for edges of geometric patches. A tessellation factor
applies to a single edge and quantifies a view-dependent
level of detail associated with the edge. A tessellation unit
510 is configured to receive the tessellation factors for edges
of'a patch and to tessellate the patch into multiple geometric
primitives such as line, triangle, or quadrilateral primitives,
which are transmitted to a tessellation evaluation processing
unit 512. The tessellation evaluation processing unit 512
operates on parameterized coordinates of the subdivided
patch to generate a surface representation and vertex attri-
butes for each vertex associated with the geometric primi-
tives.

[0123] A second instance of a primitive assembler 514
receives vertex attributes from the tessellation evaluation
processing unit 512, reading stored vertex attributes as
needed, and constructs graphics primitives for processing by
the geometry processing unit 516. The geometry processing
unit 516 is a programmable execution unit that executes
geometry shader programs to transform graphics primitives
received from primitive assembler 514 as specified by the
geometry shader programs. In one embodiment the geom-
etry processing unit 516 is programmed to subdivide the
graphics primitives into one or more new graphics primi-
tives and calculate parameters used to rasterize the new
graphics primitives.

[0124] In some embodiments the geometry processing
unit 516 can add or delete elements in the geometry stream.
The geometry processing unit 516 outputs the parameters
and vertices specifying new graphics primitives to primitive
assembler 518. The primitive assembler 518 receives the
parameters and vertices from the geometry processing unit
516 and constructs graphics primitives for processing by a
viewport scale, cull, and clip unit 520. The geometry pro-
cessing unit 516 reads data that is stored in parallel processor
memory or system memory for use in processing the geom-
etry data. The viewport scale, cull, and clip unit 520 per-
forms clipping, culling, and viewport scaling and outputs
processed graphics primitives to a rasterizer 522.

[0125] The rasterizer 522 can perform depth culling and
other depth-based optimizations. The rasterizer 522 also
performs scan conversion on the new graphics primitives to
generate fragments and output those fragments and associ-
ated coverage data to the fragment/pixel processing unit
524. The fragment/pixel processing unit 524 is a program-
mable execution unit that is configured to execute fragment
shader programs or pixel shader programs. The fragment/
pixel processing unit 524 transforming fragments or pixels
received from rasterizer 522, as specified by the fragment or
pixel shader programs. For example, the fragment/pixel

Aug. 8,2024

processing unit 524 may be programmed to perform opera-
tions included but not limited to texture mapping, shading,
blending, texture correction and perspective correction to
produce shaded fragments or pixels that are output to a raster
operations unit 526. The fragment/pixel processing unit 524
can read data that is stored in either the parallel processor
memory or the system memory for use when processing the
fragment data. Fragment or pixel shader programs may be
configured to shade at sample, pixel, tile, or other granu-
larities depending on the sampling rate configured for the
processing units.

[0126] The raster operations unit 526 is a processing unit
that performs raster operations including, but not limited to
stencil, z test, blending, and the like, and outputs pixel data
as processed graphics data to be stored in graphics memory
(e.g., parallel processor memory 222 as in FIG. 2, and/or
system memory 104 as in FIG. 1, to be displayed on the one
or more display device(s) 110 or for further processing by
one of the one or more processor(s) 102 or parallel processor
(s) 112. In some embodiments the raster operations unit 526
is configured to compress z or color data that is written to
memory and decompress z or color data that is read from
memory.

System, Apparatus and Method for Increasing Performance
in a Processor During a Voltage Ramp

[0127] In various embodiments, a processor including a
graphics processing unit (GPU), such as a multicore pro-
cessor including multiple general-purpose processing cores
and one or more graphics processors of a GPU may be
controlled to enable operation of processing circuitry during
voltage ramp operations to improve performance. More
specifically as described herein, embodiments provide
power management techniques that may be executed by one
or more power controllers within a processor to enable
graphics processors of a GPU (as well as potentially general-
purpose processing cores of a CPU of the processor) to exit
a low power state with reduced latency and/or to dynami-
cally increase performance states through one or more
interim performance levels before a requested performance
state can be realized, due to voltage ramp operations. Note
that at least some of these interim performance states are
different from, and in addition, to available performance
states of a given operating system power management
scheme such as the PO-Pn performance states of an
Advanced Configuration and Platform Interface (ACPI)
standard (e.g., Rev. 3.0b, published Oct. 10, 2006). And
further note that some or all of these interim performance
states may be transparent to and not visible to an operating
system and/or graphics driver.

[0128] As described herein, a voltage regulator that pro-
vides an operating voltage to such processing circuitry may
take some amount of time to update its output voltage to a
requested level (either by way of an operating voltage
increase or by way of an operating voltage decrease). With
the techniques described herein, improved performance may
be realized during these voltage ramp activities.

[0129] As such, embodiments bridge a gap between an
initial voltage, e.g., at a minimum voltage level (Vmin) and
an operating voltage for a requested performance state. Note
that this minimum voltage level is an operating voltage at
which a given processing circuit can operate at a lowest
operating frequency. In embodiments, a GPU may be con-
trolled to start operating when this minimum voltage is

US 2024/0264657 Al

reached, rather than waiting until a target operating voltage
is attained. While the GPU is operational, the voltage ramp
continues to the desired level and the GPU transitions to a
target operating frequency when the target operating voltage
is achieved. Although the scope of the present invention is
not limited in this regard, in embodiments a power controller
may cause the GPU to proceed through a plurality of interim
performance states or operating points according to a step
function until a target performance state is attained. As such,
rather than waiting for a target operating point to be reached
before beginning operation, a GPU or other processor can
begin operation earlier, reducing wasted time in application
response.

[0130] In many processors, there may a significant latency
or delay for a full voltage ramp to occur. In some embodi-
ments, a power controller may determine or obtain time
intervals between different interim operating voltages within
a voltage ramp. In some cases, this information may be
obtained by a graphics driver (which may execute on one or
more general-purpose processing cores). In other examples,
the power controller may determine ramp times based on the
application characteristics. In embodiments, the tracking of
voltage level during a ramp phase can be either done by
measuring an on-die voltage using a voltage monitor circuit
or by obtaining table-based information. Such information
may be generated, e.g., via a static characterization of
voltage ramp versus time for a given power delivery solution
and platform. In such cases, this ramp-time curve may be
programmed and stored in a table in a non-volatile storage
of a processor.

[0131] Whether the ramp time is incurred when exiting a
lower power state (when the GPU is powered down) or
between applications via a context switch, a target operating
frequency point has a corresponding operating voltage. In
embodiments, this ramp time can be correlated to size of the
GPU. Embodiments enable a GPU or other processor to
become operational (or to keep operating) while a voltage
ramp proceeds via a step function to an operational point,
rather than waiting for the voltage ramp to complete. In this
way, the GPU or other processor can realize a reduced idle
time.

[0132] Note that when moving from a lower voltage/lower
frequency operating point to a higher voltage/higher fre-
quency operating point, the power controller may cause the
GPU or other processor to first increase operating voltage,
e.g., by a given step value, and then increase the operating
frequency by a corresponding step. Note that when moving
from a higher voltage/higher frequency operating point to a
lower voltage/lower frequency operating point, the power
controller may cause the GPU or other processor to first
lower operating frequency, e.g., by a given step value, and
then lower the operating voltage by a corresponding step. To
absorb the small additional jitter in dynamically changing
operating frequencies, logic paths of the GPU may be
provided with some extra timing slack.

[0133] Referring now to FIG. 6, shown is a graphical
illustration of a timing diagram of an increase in perfor-
mance state of a graphics processor in accordance with an
embodiment. More specifically, in FIG. 6, illustration 600
shows, over time, an increase from a starting performance
state 610 associated with a first or starting operating point to
a requested, higher performance state 630 associated with a
second or target operating point. Understand that with the
graphical illustration in FIG. 6, each of these performance

Aug. 8,2024

states 610, 630 is associated with a corresponding operating
voltage and operating frequency.

[0134] To enable improved performance while the oper-
ating voltage increases from a first operating voltage at
performance state 610 to a second operating voltage at
performance state 630, a plurality of intermediate or interim
performance states 620,-620, are possible. That is, as
described herein embodiments enable a graphics processor
or other processing circuitry to operate at one or more
interim performance states between an original performance
state and a requested performance state.

[0135] Illustration 600 in FIG. 6 is thus a curve of voltage
versus frequency. Understand that the various performance
states shown (namely performance states 610, 620,-620,
and 630) may be identified by a combination of a given
operating voltage and operating frequency. To perform
power control as described herein, a table stored, e.g., in a
non-volatile storage, may store a plurality of entries each
associated with a given performance state and including
fields for operating voltage and corresponding operating
frequency. Furthermore, understand while the various per-
formance states shown in FIG. 6 may be included in such
table, many more additional performance states with corre-
sponding operating voltages and frequencies also may be
present in the table.

[0136] Note that as used herein, the terms “performance
state” and “operating point” are used interchangeably to
identify a particular performance level at which a graphics
processor or other processing circuitry is to operate. In many
cases, the identification of a given operating point or per-
formance state is by way of a combination of a given
operating frequency and a given operating voltage. Under-
stand that while in the embodiment of FIG. 6 increasing
performance states are shown, embodiments apply equally
to reductions in performance state, to enable additional
workload to be executed while a graphics processor or other
processing circuitry decreases its performance state.
[0137] In cases where a graphics processor is in a low
power state, processing may begin at an earlier time respon-
sive to a request to exit the low power state (which may
include a request for a particular performance state) using an
embodiment. This is so, as workload execution may begin
before an operating voltage has fully ramped to a requested
level. As such, embodiments enable a technique to improve
performance and begin workload execution while ramping
to a given operating voltage. Understand that while a par-
ticular number of interim performance states are shown for
case of illustration in FIG. 6, the scope of the present
invention is not limited in this regard and in different
embodiments more or fewer interim performance states are
possible.

[0138] Referring now to FIGS. 7A and 7B, shown is a flow
diagram of a method for increasing performance of a graph-
ics processor in accordance with an embodiment. As illus-
trated, method 700 may be performed by hardware circuitry,
software, firmware and/or combinations thereof. In one
particular embodiment, method 700 may be performed by a
power controller of a processor. In some cases, such power
controller may be implemented as one or more dedicated
on-die microcontrollers, while in other cases, the power
controller may be implemented using one or more general-
purpose processing cores.

[0139] As illustrated, method 700 begins by receiving a
request for an increased performance state of a graphics

US 2024/0264657 Al

processor (block 705). In embodiments, this request may be
received from, e.g., a graphics driver. In some cases, this
request may be a request for the graphics processor to exit
a low power state. In other cases, the request may be for an
increased operating performance state for a thread undergo-
ing execution. Or the increased performance request may be
associated with a context switch from a first thread to a
second thread.

[0140] In any event, control passes to block 710 where a
target operating point for the increased performance state
can be identified. As an example, the power controller may
access a table having a plurality of entries, each associated
with a given performance state. In turn, each entry may
include fields to identify a corresponding operating fre-
quency and operating voltage for the given performance
state.

[0141] Next, control passes to block 715 where the power
controller can issue a command to a voltage regulator to
increase its voltage to the operating voltage of the target
operating point. For example, the power controller may send
a digital code such as a voltage identification (VID) code to
the voltage regulator that in turn causes the voltage regulator
to begin ramping its voltage to the target level. Understand
that in different embodiments, this voltage regulator may be
an on-chip voltage regulator or an off-chip voltage regulator.
Control thereafter passes to diamond 720 to determine
whether the voltage level output by this voltage regulator
has reached a minimum voltage. Understand that this mini-
mum voltage is a smallest operating voltage at which the
graphics processor can properly operate (at a minimum
operating frequency). Different manners of determining
whether this voltage level has been reached can be used in
different embodiments. For example, the power controller
may include or be coupled to a voltage monitor that monitors
the output voltage of the voltage regulator. In other cases,
another table (or the same table discussed above) may be
present that includes multiple entries, where each entry is
associated with a given voltage ramp (or portion thereof)
and includes a field to indicate a time duration for the
voltage regulator to ramp to the requested voltage.

[0142] Inany event, when it is determined that the voltage
level has reached the minimum voltage, control passes to
block 725. There, the power controller may issue a drift
signal to a phase locked loop (PLL) or other clock generator
to update a clock signal. That is in some embodiments,
operating frequency transitions can be realized seamlessly
via drifting, as a PLL or other clock generator can dynami-
cally shift frequency as a voltage/frequency ramp happens,
while the GPU or other processor remains in operation. With
continuous operating conditions, a voltage ramp is achieved
while the GPU is functional at a certain operating frequency.
The power controller may track multiple interim operating
points on a voltage-frequency curve. When a given interim
operating voltage is achieved, the power controller may
cause the operating frequency to drift to the corresponding
operating frequency of that interim point voltage level while
maintaining functionality at the GPU level.

[0143] Note in this case of increasing voltage, the power
controller first issues a request for an increased voltage to the
voltage regulator, and only when the output voltage has
attained a given interim level does the power controller issue
this request to increase the operating frequency by way of
the drift signal. Note that in embodiments, this drift signal
may cause the PLL to slowly change or drift its operating

Aug. 8,2024

frequency. At this point, the power controller may cause the
graphics processor to execute a graphics workload at an
interim operating point (block 730). As such, using an
embodiment a workload may begin execution at this interim
performance state so that useful work can begin during a
voltage ramp to a final operating voltage.

[0144] Referring now to FIG. 7B, continued execution of
method 700 begins by determining whether the voltage level
has reached a target operating point (diamond 740). This
determination may be made as described above. Note that
this target operating point is the operating voltage for the
requested performance state. If it is determined that the
voltage level has reached the target operating point, control
passes to block 750 where execution of the graphics work-
load may continue at the target operating point.

[0145] Otherwise, if it is determined that the voltage level
has not yet reached the target operating point, control passes
to diamond 760 to determine whether the voltage has
reached a next interim operating point. That is as described
herein there may be multiple interim operating points before
a target operating point is reached. When it is determined
that the next interim operating point is reached, the power
controller can issue a drift signal to the phase locked loop to
update the operating frequency of the clock signal to the
corresponding interim operating frequency (block 770).
Thereafter, the graphics workload may continue execution at
this next interim operating point (block 780). Method 700
proceeds until the voltage has ramped to the target operating
point (as determined at diamond 740). Understand while
shown at this high level in the embodiment of FIGS. 7A-7B,
the scope of the present invention is not limited in this
regard. For example, while the techniques described in
FIGS. 7A and 7B are in the context of a graphics processor,
embodiments apply equally to controlling power consump-
tion during voltage ramps in other types of processors, such
as general-purpose processing cores.

[0146] Referring now to FIGS. 8A and 8B, shown is a flow
diagram of a method for decreasing performance of a
graphics processor in accordance with an embodiment. As
illustrated, method 800 may be performed by hardware
circuitry, software, firmware and/or combinations thereof. In
one particular embodiment, method 800 may be performed
by a processor-included power controller.

[0147] As illustrated, method 800 begins by receiving a
request for a decreased performance state of a graphics
processor (block 805), which may be received from, e.g., a
graphics driver. In some cases, this request may be a request
for the graphics processor to enter into a low power state. In
other cases, the request may be for a decreased performance
state.

[0148] In any event, control passes to block 810 where a
target operating point for the decreased performance state
can be identified, such as discussed above. Next, control
passes to block 815 where the power controller can issue a
command to a voltage regulator to decrease its voltage to the
operating voltage of the target operating point. Control
thereafter passes to block 820 where the power controller
may issue a drift signal to a PLL or other clock generator to
update a clock signal, e.g., to a lower operating frequency.
Next it is determined whether the voltage level output by the
voltage regulator has reached a next interim level (diamond
825).

[0149] Understand that this minimum voltage is a smallest
operating voltage at which the graphics processor can prop-

US 2024/0264657 Al

erly operate. Different manners of determining whether this
voltage level has been reached can be used in different
embodiments. For example, the power controller may
include or be coupled to a voltage monitor that monitors the
output voltage of the voltage regulator. In other cases,
another table (or the same table discussed above) may be
present that includes multiple entries, where each entry is
associated with a given voltage ramp (or portion thereof)
and includes a field to indicate a time duration for the
voltage regulator to ramp to the requested voltage.

[0150] At this point, the power controller may cause the
graphics processor to execute a graphics workload at an
interim operating point (block 830). As such, using an
embodiment a workload may continue execution at this
interim performance state so that useful work can begin
during a voltage ramp to a final operating voltage.

[0151] Referring now to FIG. 8B, continued execution of
method 800 begins by determining whether the voltage level
has reached a target operating point for the requested per-
formance state (diamond 840). If it is determined that the
voltage level has reached the target operating point, control
passes to block 850 where execution of the graphics work-
load may continue at the target operating point.

[0152] Otherwise if it is determined that the voltage level
has not yet reached the target operating point, control passes
to block 860 where the power controller can issue a drift
signal to the phase locked loop to update the operating
frequency of the clock signal to a next lower interim
operating frequency. When it is determined that the next
interim operating voltage point is reached (diamond 870),
the graphics workload may continue execution at this next
interim operating point (block 880). Method 800 proceeds
until the voltage has ramped to the target operating point (as
determined at diamond 840). Understand while shown at
this high level in the embodiment of FIGS. 8 A-8B, the scope
of the present invention is not limited in this regard.

[0153] Referring now to FIG. 9, shown is a block diagram
of a processor in accordance with an embodiment of the
present invention. More specifically, processor 900 is a
multicore processor that further includes a graphics proces-
sor that can operate at one or more interim operating points
to enable greater performance during voltage ramp opera-
tions as described herein. In the particular embodiment of
FIG. 9, processor 900 includes a central processing unit
(CPU) domain 910 including a plurality of cores 912,-912,,.
In the embodiment of FIG. 9, these cores may be powered
by way of corresponding integrated voltage regulators
(IVRs) 914,-914,,. Understand that such integrated voltage
regulators are optional, and in other cases, cores 912 may be
directly powered by way of voltages received from off-chip
voltage regulators. Furthermore, cores 912 may receive
clock signals having operating frequencies generated by
corresponding clock generators 916,-916,,. In embodiments,
such clock generators 916 may include PLLs that operate as
described herein. As further shown, CPU domain 910 further
includes a local power controller 918 that may be imple-
mented as a microcontroller or other programmable control-
ler to perform local power management operations, such as
the local power control of one or more cores 912, such as by
way of power gating, clock gating and so forth.

[0154] As further illustrated, processor 900 also includes
a graphics domain 920 including a plurality of graphics
engines 922,-922,. In the embodiment of FIG. 9, these
engines may be powered by way of corresponding integrated

Aug. 8,2024

voltage regulators (IVRs) 924,-924 . Understand that such
integrated voltage regulators are optional, and in other cases,
engines 922 may be directly powered by way of voltages
received from off-chip voltage regulators. Furthermore,
engines 922 may receive clock signals having operating
frequencies generated by corresponding clock generators
926,-926,. As further shown, graphics domain 920 further
includes a local power controller 928 that may be imple-
mented as a microcontroller or other programmable control-
ler to perform local power management operations, such as
the local power control of one or more engines 922, such as
by way of power gating, clock gating and so forth.

[0155] Still with reference to FIG. 9, a shared cache
memory 930 couples to CPU domain 910 and graphics
domain 920. In different embodiments, shared cache
memory 930 may be implemented in a partitioned manner,
with different portions allocated to the cores and graphics
engine of domains 910 and 920.

[0156] Processor 900 further includes a power control unit
(PCU) 940. In various embodiments, PCU 940 may be
implemented as a dedicated microcontroller to perform
processor-wide power management operations. As illus-
trated, PCU 940 may include constituent control circuitry,
including a power budget controller 942, a voltage ramp
circuit 944 and a performance state controller 946. Still
further, PCU 940 includes an interim P-state table 945.
Power budget controller 942 is configured to allocate por-
tions of an overall processor power budget (which may be
set based at least in part on a maximum power budget
available to the processor, a cooling solution of a given
platform and so forth) to CPU domain 910 and graphics
domain 920, e.g., based on requests for particular perfor-
mance states, environmental conditions such as processor
temperature, and so forth. Voltage ramp circuit 944 is
configured, in response to a request for a change in perfor-
mance state of one or more graphics engines 922, to enable
the corresponding graphics engine(s) to operate at one or
more interim performance states while an operating voltage
is ramped up to or down to a target operating voltage for the
requested performance state. To this end, voltage ramp
circuit 944 may access information in table 945 to aid in
determining what interim performance states are available
and when a given interim operating voltage is present so that
a corresponding change in operating frequency can be
performed. PCU 940 further includes performance state
controller 946 that is configured to receive incoming per-
formance state request for the various cores 912 and graph-
ics engines 922, and to allow such performance state
changes to occur, when power budget is available.

[0157] Processor 900 further includes a memory controller
950 that may act as an interface between processor 900 and
a system memory, such as a dynamic random access
memory (DRAM) coupled to the processor (not shown for
ease of illustration in FIG. 9). Still further, processor 900
includes one or more interfaces 960 to act as an interface to
other components of a platform. Understand while shown at
this high level in the embodiment of FIG. 9, many variations
and alternatives are possible.

Power Components

[0158] FIG. 10 illustrates a block diagram of a switching
regulator according to an embodiment. One or more switch-
ing regulators shown in FIG. 10 may be incorporated in
various systems discussed herein to provide power to one or

US 2024/0264657 Al

more Integrated Circuit (IC) chips. While a single phase of
the current-parking switching regulator with a single induc-
tor may be discussed with reference to FIG. 10, one or more
of the multiple phases of the current-parking switching
regulator may be implemented with a split inductor. Fur-
thermore, a combination of one or more current-parking
switching regulators (with or without a split inductor) may
be used with one or more conventional electric power
conversion devices to provide power to the load (e.g., logic
circuitry 1014).

[0159] More particularly, FIG. 10 illustrates a system 1000
that includes a switching regulator (sometimes referred to as
a current-parking switching regulator). The current-parking
switching regulator may be a multi-phase switching regu-
lator in various embodiments. The multi-phase control unit
1002 is coupled to multiple phases, where each phase may
include one or more upstream phases 1004 and one or more
downstream phases 1006. As shown, an electrical power
source 1008 is coupled to upstream control logic 1010
(which provides a current control mechanisms in each
upstream phase). More than one upstream control logic may
be used in various implementations. Each upstream phase
may include an inductor (not shown) that is coupled to a
respective downstream phase. In an embodiment, the
upstream phases may each include one or more inductors.
The multi-phase control unit 1002 may configure any active
upstream control logic 1010, e.g., to generate a current
through an inductor coupled between the upstream phases
and the downstream phases. The downstream control logic
1012 may be configured by the multi-phase control unit
1002 to be ON, OFF, or switching to regulate the voltage
level at the load (e.g., logic circuitry 1014). In turn, the
downstream control logic 1012 may be configured by the
multi-phase control unit 1002 to maintain the voltage level
at the load within a range based at least in part on Vmin
(minimum voltage) and Vmax (maximum voltage) values.

[0160] In one embodiment, an inductor (coupled between
a downstream phase and a respective upstream phase) may
be positioned outside of a semiconductor package 1016 that
includes the load 1014. Another inductor (not shown) may
be positioned inside of the package 1016, e.g., to reduce
parasitic capacitance. In one embodiment, the inductor
inside the package 1016 may be a planar air-core inductor
that is coupled to the logic circuitry 1014 via one or more
switching logic which include planar Metal-Oxide Semicon-
ductor Field-Effect Transistors (MOSFETs). Furthermore,
one or more of the components discussed herein (e.g., with
reference to FIGS. 10, 11 and 12, including, for example, L3
cache, upstream control logic, and/or downstream control
logic) may be provided in substrate layer(s) (e.g., between
semiconductor packages), on an integrated circuit die, or
outside of a semiconductor package (e.g., on a Printed
Circuit Board (PCB)) in various embodiments.

[0161] FIG. 11 is a block diagram of a system 1100
including a streaming multiprocessor 1102, in accordance
with one or more embodiments. The streaming multiproces-
sor may include 32 Single-Instruction, Multiple Thread
(SIMT) lanes 1104 that are capable of collectively issuing up
to 32 instructions per clock cycle, e.g., one from each of 32
threads. More or less lanes may be present depending on the
implementation such as 64, 128, 256, etc. The SIMT lanes
1104 may in turn include one or more: Arithmetic Logic

Aug. 8,2024

Units (ALUs) 1106, Special Function Units (SFUs) 1108,
memory units (MEM) 1110, and/or texture units (TEX)
1112.

[0162] In some embodiments, one or more of ALU(s)
1106 and/or TEX unit(s) 1112 may be low energy or high
capacity, e.g., such as discussed with reference to items 1120
and 1122. For example, the system may map 100% of the
register addresses for threads 0-30 to the low energy portion
and 100% of the register addresses for threads 31-127 to the
high capacity portion. As another example, the system may
map 20% of each thread’s registers to the low energy portion
and to map 80% of each thread’s registers to the high
capacity portion. Moreover, the system may determine the
number of entries allocated per thread based on runtime
information.

[0163] As illustrated in FIG. 11, the streaming multipro-
cessor 1102 also include a register file 1114, a scheduler
logic 1116 (e.g., for scheduling threads or thread groups, or
both), and shared memory 1118, e.g., local scratch storage.
As discussed herein, a “thread group” refers to a plurality of
threads that are grouped with ordered (e.g., sequential or
consecutive) thread indexes. Generally, a register file refers
to an array of registers accessed by components of a pro-
cessor (including a graphics processor) such as those dis-
cussed herein. The register file 1114 includes a low energy
portion or structure 1120 and a high capacity portion or
structure 1122. The streaming multiprocessor 1102 may be
configured to address the register file 1114 using a single
logical namespace for both the low energy portion and the
high capacity portion.

[0164] In some embodiments, the system may include a
number of physical registers which can be shared by the
simultaneously running threads on the system. This allows
the system to use a single namespace to implement a flexible
register mapping scheme. A compiler may then allocate
register live ranges to register addresses, and the compiler
may use a register allocation mechanism to minimize or
reduce the number of registers used per thread. Multiple live
ranges can be allocated to the same register address as long
as the live ranges do not overlap in an embodiment. This
allows for determination, e.g., at runtime and after instruc-
tions have been compiled, of how many entries per thread
will be allocated in the low energy portion versus the high
capacity portion. For example, the system may map 100% of
the register addresses for threads 0-30 to the low energy
portion and 100% of the register addresses for threads
31-127 to the high capacity portion. As another example, the
system may map 20% of each thread’s registers to the low
energy portion and to map 80% of each thread’s registers to
the high capacity portion. The system may determine the
number of entries allocated per thread based on runtime
information, e.g., regarding the number of thread groups
executing and the marginal benefit from launching more
thread groups or allocating a smaller number of thread
groups more space in the low energy portion.

[0165] FIG. 12 illustrates a block diagram of a parallel
processing system 1200, according to one embodiment.
System 1200 includes a Parallel Processing (Previously
Presented) subsystem 1202 which in turn includes one or
more Parallel Processing Units (PPUs) PPU-0 through PPU-
P. Each PPU is coupled to a local Parallel Processing (PP)
memory (e.g., Mem-0 through MEM-P, respectively). In
some embodiments, the PP subsystem system 1202 may
include P number of PPUs. PPU-0 1204 and parallel pro-

US 2024/0264657 Al

cessing memories 1206 may be implemented using one or
more integrated circuit devices, such as programmable pro-
cessors, Application Specific Integrated Circuits (ASICs), or
memory devices.

[0166] Referring to FIG. 12, several optional switch or
connections 1207 are shown that may be used in system
1200 to manage power. While several switches 1207 are
shown, embodiments are not limited to the specifically
shown switches and more or less switches may be utilized
depending on the implementation. These connections/
switches 1207 may be utilized for clock gating or general
power gating. Hence, items 1207 may include one or more
of a power transistor, on-die switch, power plane connec-
tions, or the like. In an embodiment, prior to shutting power
to a portion of system 1200 via switches/connections 1207,
logic (e.g., a microcontroller, digital signal processor, firm-
ware, etc.) may ensure the results of operation are commit-
ted (e.g., to memory) or finalized to maintain correctness.
[0167] Further, in some embodiments, one or more of
PPUs in parallel processing subsystem 1202 are graphics
processors with rendering pipelines that may be configured
to perform various tasks such as those discussed herein with
respect to other figures. The graphics information/data may
be communicated via memory bridge 1208 with other com-
ponents of a computing system (including components of
system 1200). The data may be communicated via a shared
bus and/or one or more interconnect(s) 1210 (including, for
example, one or more direct or point-to-point links). PPU-0
1204 may access its local parallel processing memory 1214
(which may be used as graphics memory including, e.g., a
frame buffer) to store and update pixel data, delivering pixel
data to a display device (such as those discussed herein), etc.
In some embodiments, the parallel processing subsystem
1202 may include one or more PPUs that operate as graphics
processors and one or more other PPUs that operate to
perform general-purpose computations. The PPUs may be
identical or different, and each PPU may have access to its
own dedicated parallel processing memory device(s), no
dedicated parallel processing memory device(s), or a shared
memory device or cache.

[0168] In an embodiment, operations performed by PPUs
may be controlled by another processor (or one of the PPUs)
generally referred to as a master processor or processor core.
In one embodiment, the master processor/core may write a
stream of commands for each PPU to a push buffer in
various locations such as a main system memory, a cache, or
other memory such as those discussed herein with reference
to other figures. The written commands may then be read by
each PPU and executed asynchronously relative to the
operation of master processor/core.

[0169] Furthermore, as shown in FIG. 12, PPU-0 includes
a front end logic 1220 which may include an Input/Output
(I/O or 10) unit (e.g., to communicate with other compo-
nents of system 1200 through the memory bridge 3x08)
and/or a host interface (e.g., which receives commands
related to processing tasks). The front end 1220 may receive
commands read by the host interface (for example from the
push buffer)). The front end 1220 in turn provides the
commands to a work scheduling unit 1222 that schedules
and allocates operation(s)/task(s) associated with the com-
mands to a processing cluster array or arithmetic subsystem
1224 for execution.

[0170] As shown in FIG. 12, the processing cluster array
1224 may include one or more General Processing Cluster

Aug. 8,2024

(GPC) units (e.g., GPC-0 3x26, GPC-1 1228, through
GPC-M 1230). Each GPC may be capable of executing a
large number (e.g., hundreds or thousands) of threads con-
currently, where each thread is an instance of a program. In
various applications, different GPCs may be allocated for
processing different types of programs or for performing
different types of computations. For example, in a graphics
application, a first set of GPCs (e.g., including one or more
GPC units) may be allocated to perform tessellation opera-
tions and to produce primitive topologies for patches, and a
second set of GPCs (e.g., including one or more GPC units)
may be allocated to perform tessellation shading to evaluate
patch parameters for the primitive topologies and to deter-
mine vertex positions and other per-vertex attributes. The
allocation of GPCs may vary depending on the workload
arising for each type of program or computation.

[0171] Additionally, processing tasks that are assigned by
the work scheduling unit 1222 may include indices of data
to be processed, such surface/patch data, primitive data,
vertex data, pixel data, and/or state parameters and com-
mands defining how the data is to be processed (e.g., what
program is to be executed). The work scheduling unit 1222
may be configured to fetch the indices corresponding to the
tasks, or may receive the indices from front end 1220. Front
end 1220 may also ensure that GPCs are configured to a
valid state before the processing specified by the push
buffers is initiated.

[0172] In one embodiment, the communication path 1212
is a Peripheral Component Interface (PCI) express (or
PCI-e) link, in which dedicated lanes may be allocated to
each PPU. Other communication paths may also be used.
For example, commands related to processing tasks may be
directed to the host interface 1218, while commands related
to memory operations (e.g., reading from or writing to
parallel processing memory 1214) may be directed to a
memory crossbar unit 1232.

[0173] In some embodiments, parallel processing subsys-
tem 1202 may be implemented as an add-in card that is
inserted into an expansion slot of computer system or server
(such as a blade server). In other embodiments, a PPU may
be integrated on a single chip with a bus bridge, such as
memory bridge 1208, an /O bridge, etc. In still other
embodiments, some or all components of PPU may be
integrated on a single integrated circuit chip with one or
more other processor cores, memory devices, caches, etc.
[0174] Furthermore, one of the major problems with
today’s modern processors is they have hit a clock rate limit
at around 4 GHz. At this point they just generate too much
heat for the current technology and require special and
expensive cooling solutions. This is because as we increase
the clock rate, the power consumption rises. In fact, the
power consumption of a CPU, if you fix the voltage, is
approximately the cube of its clock rate. To make this worse,
as you increase the heat generated by the CPU, for the same
clock rate, the power consumption also increases due to the
properties of the silicon. This conversion of power into heat
is a complete waste of energy. This increasingly inefficient
use of power eventually means you are unable to either
power or cool the processor sufficiently and you reach the
thermal limits of the device or its housing, the so-called
power wall.

[0175] Faced with not being able to increase the clock rate,
making forever-faster processors, the processor manufactur-
ers had to come up with another game plan. They have been

US 2024/0264657 Al

forced down the route of adding more cores to processors,
rather than continuously trying to increase CPU clock rates
and/or extract more instructions per clock through instruc-
tion-level parallelism.

[0176] Moreover, power usage is a big consideration when
designing machines that constantly run. Often the operating
costs of running a supercomputer over just a few years can
equate to the cost of installing it in the first place. Certainly,
the cost of running such a machine over its lifetime will
easily exceed the original installation costs. Power usage
comes from the components themselves, but also from the
cooling necessary to allow such computers to operate. Even
one high-end workstation with four GPUs requires some
planning on how to keep it cool. Unless you live in a cold
climate and can banish the computer to somewhere cold, it
will do a nice job of heating up the office for you. Put a
number of such machines into one room, and very rapidly
the air temperature in that room will start to rise to quite
unacceptable levels.

[0177] A significant amount of power is therefore
expended on installing air conditioning systems to ensure
computers remain cool and can operate without producing
errors. This is especially so where summer temperatures can
reach 85 F/30 C or higher. Air conditioning is expensive to
run. Significant thought should be given to how best to cool
such a system and if the heat energy can in some way be
reused. Liquid-cooled systems are very efficient in this way
in that the liquid can be circulated through a heat exchanger
and into a conventional heating system without any chance
of the two liquids ever mixing. With the ever-increasing
costs of natural resources, and the increasing pressures on
companies to be seen as green, simply pumping the heat out
the window is no longer economically or socially accept-
able.

[0178] Liquid-cooled systems provide an interesting
option in terms of recycling the waste heat energy. While an
air-cooled system can only be used to heat the immediate
area it is located in, heat from liquid-based coolants can be
pumped elsewhere. By using a heat exchanger, the coolant
can be cooled using conventional water. This can then be
pumped into a heating system or even used to heat an
outdoor swimming pool or other large body of water. Where
anumber of such systems are installed, such as in a company
or university computer center, it can really make sense to use
this waste heat energy to reduce the heating bill elsewhere
in the organization.

[0179] Many supercomputer installations site themselves
next to a major river precisely because they need a ready
supply of cold water. Others use large cooling towers to
dissipate the waste heat energy. Neither solution is particu-
larly green. Having paid for the energy already it makes little
sense to simply throw it away when it could so easily be used
for heating. When considering power usage, we must also
remember that program design actually plays a very big role
in power consumption. The most expensive operation,
power wise, is moving data on and off chip. Thus, simply
making efficient use of the registers and shared memory
within the device vastly reduces power usage. If you also
consider that the total execution time for well-written pro-
grams is much smaller than for poorly written ones, you can
see that rewriting old programs to make use of new features
such as larger shared memory can even reduce operating
costs in a large data center.

Aug. 8,2024

[0180] Referring to FIG. 12, memory interface 1214
includes N partition units (e.g., Unit-0 1234, Unit-1 1236,
through Unit-N 1238) that are each directly coupled to a
corresponding portion of parallel processing memory 1206
(such as Mem-0 1240, Mem-1 1242, through Mem-N 1244).
The number of partition units may generally be equal to the
number of Previously Presented memory (or N as shown).
The Previously Presented memory may be implemented
with volatile memory such as Dynamic Random Access
Memory (DRAM) or other types of volatile memory such as
those discussed herein. In other embodiments, the number of
partition units may not equal the number of memory devices.
Graphics data (such as render targets, frame buffers, or
texture maps) may be stored across Previously Presented
memory devices, allowing partition units to write portions of
graphics data in parallel to efficiently use the available
bandwidth of the parallel processing memory 1206.

[0181] Furthermore, any one of GPCs may process data to
be written to any of the partition units within the parallel
processing memory. Crossbar unit 1232 may be imple-
mented as an interconnect that is configured to route the
output of each GPC to the input of any partition unit or to
another GPC for further processing. Hence, GPCs 1226 to
1230 may communicate with memory interface 3x14
through crossbar unit 1232 to read from or write to various
other (or external) memory devices. As shown, crossbar unit
1232 may directly communicate with the front end 1220, as
well as having a coupling (direct or indirect) to local
memory 1206, to allow the processing cores within the
different GPCs to communicate with system memory and/or
other memory that is not local to PPU. Furthermore, the
crossbar unit 1232 may utilize virtual channels to organize
traffic streams between the GPCs and partition units.

System Overview

[0182] FIG. 13 is a block diagram of a processing system
1300, according to an embodiment. In various embodiments
the system 1300 includes one or more processors 1302 and
one or more graphics processors 1308, and may be a single
processor desktop system, a multiprocessor workstation
system, or a server system having a large number of pro-
cessors 1302 or processor cores 1307. In one embodiment,
the system 1300 is a processing platform incorporated
within a system-on-a-chip (SoC) integrated circuit for use in
mobile, handheld, or embedded devices.

[0183] An embodiment of system 1300 can include, or be
incorporated within a server-based gaming platform, a game
console, including a game and media console, a mobile
gaming console, a handheld game console, or an online
game console. In some embodiments system 1300 is a
mobile phone, smart phone, tablet computing device or
mobile Internet device. Data processing system 1300 can
also include, couple with, or be integrated within a wearable
device, such as a smart watch wearable device, smart
eyewear device, augmented reality device, or virtual reality
device. In some embodiments, data processing system 1300
is a television or set top box device having one or more
processors 1302 and a graphical interface generated by one
or more graphics processors 1308.

[0184] In some embodiments, the one or more processors
1302 each include one or more processor cores 1307 to
process instructions which, when executed, perform opera-
tions for system and user software. In some embodiments,
each of the one or more processor cores 1307 is configured

US 2024/0264657 Al

to process a specific instruction set 1309. In some embodi-
ments, instruction set 1309 may facilitate Complex Instruc-
tion Set Computing (CISC), Reduced Instruction Set Com-
puting (RISC), or computing via a Very Long Instruction
Word (VLIW). Multiple processor cores 1307 may each
process a different instruction set 1309, which may include
instructions to facilitate the emulation of other instruction
sets. Processor core 1307 may also include other processing
devices, such a Digital Signal Processor (DSP).

[0185] Insome embodiments, the processor 1302 includes
cache memory 1304. Depending on the architecture, the
processor 1302 can have a single internal cache or multiple
levels of internal cache. In some embodiments, the cache
memory is shared among various components of the pro-
cessor 1302. In some embodiments, the processor 1302 also
uses an external cache (e.g., a Level-3 (L3) cache or Last
Level Cache (LLC)) (not shown), which may be shared
among processor cores 1307 using known cache coherency
techniques. A register file 1306 is additionally included in
processor 1302 which may include different types of regis-
ters for storing different types of data (e.g., integer registers,
floating point registers, status registers, and an instruction
pointer register). Some registers may be general-purpose
registers, while other registers may be specific to the design
of the processor 1302.

[0186] In some embodiments, processor 1302 is coupled
with a processor bus 1310 to transmit communication sig-
nals such as address, data, or control signals between
processor 1302 and other components in system 1300. In
one embodiment the system 1300 uses an exemplary ‘hub’
system architecture, including a memory controller hub
1316 and an Input Output (I/O) controller hub 1330. A
memory controller hub 1316 facilitates communication
between a memory device and other components of system
1300, while an 1/0 Controller Hub (ICH) 1330 provides
connections to 1/O devices via a local I/O bus. In one
embodiment, the logic of the memory controller hub 1316 is
integrated within the processor.

[0187] Memory device 1320 can be a dynamic random
access memory (DRAM) device, a static random access
memory (SRAM) device, flash memory device, phase-
change memory device, or some other memory device
having suitable performance to serve as process memory. In
one embodiment the memory device 1320 can operate as
system memory for the system 1300, to store data 1322 and
instructions 1321 for use when the one or more processors
1302 executes an application or process. Memory controller
hub 1316 also couples with an optional external graphics
processor 1312, which may communicate with the one or
more graphics processors 1308 in processors 1302 to per-
form graphics and media operations.

[0188] In some embodiments, ICH 1330 enables periph-
erals to connect to memory device 1320 and processor 1302
via a high-speed 1/O bus. The 1/O peripherals include, but
are not limited to, an audio controller 1346, a firmware
interface 1328, a wireless transceiver 1326 (e.g., Wi-Fi,
Bluetooth), a data storage device 1324 (e.g., hard disk drive,
flash memory, etc.), and a legacy 1/O controller 1340 for
coupling legacy (e.g., Personal System 2 (PS/2)) devices to
the system. One or more Universal Serial Bus (USB) con-
trollers 1342 connect input devices, such as keyboard and
mouse 1344 combinations. A network controller 1334 may
also couple with ICH 1330. In some embodiments, a high-
performance network controller (not shown) couples with

Aug. 8,2024

processor bus 1310. It will be appreciated that the system
1300 shown is exemplary and not limiting, as other types of
data processing systems that are differently configured may
also be used. For example, the I/O controller hub 1330 may
be integrated within the one or more processor 1302, or the
memory controller hub 1316 and I/O controller hub 1330
may be integrated into a discreet external graphics proces-
sor, such as the external graphics processor 1312.

[0189] FIG. 14 is a block diagram of an embodiment of a
processor 1400 having one or more processor cores 1402 A-
1402N, an integrated memory controller 1414, and an inte-
grated graphics processor 1408. Those elements of FIG. 14
having the same reference numbers (or names) as the
elements of any other figure herein can operate or function
in any manner similar to that described elsewhere herein, but
are not limited to such. Processor 1400 can include addi-
tional cores up to and including additional core 1402N
represented by the dashed lined boxes. Each of processor
cores 1402A-1402N includes one or more internal cache
units 1404A-1404N. In some embodiments each processor
core also has access to one or more shared cached units
1406.

[0190] The internal cache units 1404A-1404N and shared
cache units 1406 represent a cache memory hierarchy within
the processor 1400. The cache memory hierarchy may
include at least one level of instruction and data cache within
each processor core and one or more levels of shared
mid-level cache, such as a Level 2 (L.2), Level 3 (L3), Level
4 (L4), or other levels of cache, where the highest level of
cache before external memory is classified as the LLC. In
some embodiments, cache coherency logic maintains coher-
ency between the various cache units 1406 and 1404A-
1404N.

[0191] In some embodiments, processor 1400 may also
include a set of one or more bus controller units 1416 and a
system agent core 1410. The one or more bus controller units
1416 manage a set of peripheral buses, such as one or more
Peripheral Component Interconnect buses (e.g., PCI, PCI
Express). System agent core 1410 provides management
functionality for the various processor components. In some
embodiments, system agent core 1410 includes one or more
integrated memory controllers 1414 to manage access to
various external memory devices (not shown).

[0192] In some embodiments, one or more of the proces-
sor cores 1402A-1402N include support for simultaneous
multi-threading. In such embodiment, the system agent core
1410 includes components for coordinating and operating
cores 1402A-1402N during multi-threaded processing. Sys-
tem agent core 1410 may additionally include a power
control unit (PCU), which includes logic and components to
regulate the power state of processor cores 1402A-1402N
and graphics processor 1408.

[0193] Insome embodiments, processor 1400 additionally
includes graphics processor 1408 to execute graphics pro-
cessing operations. In some embodiments, the graphics
processor 1408 couples with the set of shared cache units
1406, and the system agent core 1410, including the one or
more integrated memory controllers 1414. In some embodi-
ments, a display controller 1411 is coupled with the graphics
processor 1408 to drive graphics processor output to one or
more coupled displays. In some embodiments, display con-
troller 1411 may be a separate module coupled with the

US 2024/0264657 Al

graphics processor via at least one interconnect, or may be
integrated within the graphics processor 1408 or system
agent core 1410.

[0194] In some embodiments, a ring based interconnect
unit 1412 is used to couple the internal components of the
processor 1400. However, an alternative interconnect unit
may be used, such as a point-to-point interconnect, a
switched interconnect, or other techniques, including tech-
niques well known in the art. In some embodiments, graph-
ics processor 1408 couples with the ring interconnect 1412
via an I/O link 1413.

[0195] The exemplary I/O link 1413 represents at least one
of multiple varieties of /O interconnects, including an on
package 1/O interconnect which facilitates communication
between various processor components and a high-perfor-
mance embedded memory module 1418, such as an eDRAM
module. In some embodiments, each of the processor cores
1402A-1402N and graphics processor 1408 use embedded
memory modules 1418 as a shared Last Level Cache.
[0196] In some embodiments, processor cores 1402A-
1402N are homogenous cores executing the same instruction
set architecture. In another embodiment, processor cores
1402A-1402N are heterogeneous in terms of instruction set
architecture (ISA), where one or more of processor cores
1402A-1402N execute a first instruction set, while at least
one of the other cores executes a subset of the first instruc-
tion set or a different instruction set. In one embodiment
processor cores 1402A-1402N are heterogeneous in terms of
microarchitecture, where one or more cores having a rela-
tively higher power consumption couple with one or more
power cores having a lower power consumption. Addition-
ally, processor 1400 can be implemented on one or more
chips or as an SoC integrated circuit having the illustrated
components, in addition to other components.

[0197] FIG. 15 is a block diagram of a graphics processor
1500, which may be a discrete graphics processing unit, or
may be a graphics processor integrated with a plurality of
processing cores. In some embodiments, the graphics pro-
cessor communicates via a memory mapped /O interface to
registers on the graphics processor and with commands
placed into the processor memory. In some embodiments,
graphics processor 1500 includes a memory interface 1514
to access memory. Memory interface 1514 can be an inter-
face to local memory, one or more internal caches, one or
more shared external caches, and/or to system memory.
[0198] In some embodiments, graphics processor 1500
also includes a display controller 1502 to drive display
output data to a display device 1520. Display controller 1502
includes hardware for one or more overlay planes for the
display and composition of multiple layers of video or user
interface elements. In some embodiments, graphics proces-
sor 1500 includes a video codec engine 1506 to encode,
decode, or transcode media to, from, or between one or more
media encoding formats, including, but not limited to Mov-
ing Picture Experts Group (MPEG) formats such as MPEG-
2, Advanced Video Coding (AVC) formats such as H.264/
MPEG-4 AVC, as well as the Society of Motion Picture &
Television Engineers (SMPTE) 421M/VC-1, and Joint Pho-
tographic Experts Group (JPEG) formats such as JPEG, and
Motion JPEG (MJPEG) formats.

[0199] In some embodiments, graphics processor 1500
includes a block image transfer (BLIT) engine 1504 to
perform two-dimensional (2D) rasterizer operations includ-
ing, for example, bit-boundary block transfers. However, in

Aug. 8,2024

one embodiment, 2D graphics operations are performed
using one or more components of graphics processing
engine (GPE) 1510. In some embodiments, GPE 1510 is a
compute engine for performing graphics operations, includ-
ing three-dimensional (3D) graphics operations and media
operations.

[0200] In some embodiments, GPE 1510 includes a 3D
pipeline 1512 for performing 3D operations, such as ren-
dering three-dimensional images and scenes using process-
ing functions that act upon 3D primitive shapes (e.g.,
rectangle, triangle, etc.). The 3D pipeline 1512 includes
programmable and fixed function elements that perform
various tasks within the element and/or spawn execution
threads to a 3D/Media sub-system 1515. While 3D pipeline
1512 can be used to perform media operations, an embodi-
ment of GPE 1510 also includes a media pipeline 1516 that
is specifically used to perform media operations, such as
video post-processing and image enhancement.

[0201] In some embodiments, media pipeline 1516
includes fixed function or programmable logic units to
perform one or more specialized media operations, such as
video decode acceleration, video de-interlacing, and video
encode acceleration in place of, or on behalf of video codec
engine 1506. In some embodiments, media pipeline 1516
additionally includes a thread spawning unit to spawn
threads for execution on 3D/Media sub-system 1515. The
spawned threads perform computations for the media opera-
tions on one or more graphics execution units included in
3D/Media sub-system 1515.

[0202] In some embodiments, 3D/Media subsystem 1515
includes logic for executing threads spawned by 3D pipeline
1512 and media pipeline 1516. In one embodiment, the
pipelines send thread execution requests to 3D/Media sub-
system 1515, which includes thread dispatch logic for arbi-
trating and dispatching the various requests to available
thread execution resources. The execution resources include
an array of graphics execution units to process the 3D and
media threads. In some embodiments, 3D/Media subsystem
1515 includes one or more internal caches for thread instruc-
tions and data. In some embodiments, the subsystem also
includes shared memory, including registers and addressable
memory, to share data between threads and to store output
data.

Graphics Processing Engine

[0203] FIG. 16 is a block diagram of a graphics processing
engine 1610 of a graphics processor in accordance with
some embodiments. In one embodiment, the graphics pro-
cessing engine (GPE) 1610 is a version of the GPE 1610
shown in FIG. 15. Elements of FIG. 16 having the same
reference numbers (or names) as the elements of any other
figure herein can operate or function in any manner similar
to that described elsewhere herein, but are not limited to
such. For example, the 3D pipeline 1612 and media pipeline
1516 of FIG. 15 are illustrated. The media pipeline 1616 is
optional in some embodiments of the GPE 1610 and may not
be explicitly included within the GPE 1610. For example
and in at least one embodiment, a separate media and/or
image processor is coupled to the GPE 1610.

[0204] In some embodiments, GPE 1610 couples with or
includes a command streamer 1603, which provides a com-
mand stream to the 3D pipeline 1612 and/or media pipelines
1616. In some embodiments, command streamer 1603 is
coupled with memory, which can be system memory, or one

US 2024/0264657 Al

or more of internal cache memory and shared cache
memory. In some embodiments, command streamer 1603
receives commands from the memory and sends the com-
mands to 3D pipeline 1612 and/or media pipeline 1616. The
commands are directives fetched from a ring buffer, which
stores commands for the 3D pipeline 1612 and media
pipeline 1616. In one embodiment, the ring buffer can
additionally include batch command buffers storing batches
of multiple commands. The commands for the 3D pipeline
1612 can also include references to data stored in memory,
such as but not limited to vertex and geometry data for the
3D pipeline 1612 and/or image data and memory objects for
the media pipeline 1616. The 3D pipeline 1612 and media
pipeline 1616 process the commands and data by performing
operations via logic within the respective pipelines or by
dispatching one or more execution threads to a graphics core
array 1614.

[0205] In various embodiments the 3D pipeline 1612 can
execute one or more shader programs, such as vertex shad-
ers, geometry shaders, pixel shaders, fragment shaders,
compute shaders, or other shader programs, by processing
the instructions and dispatching execution threads to the
graphics core array 1614. The graphics core array 1614
provides a unified block of execution resources. Multi-
purpose execution logic (e.g., execution units) within the
graphic core array 1614 includes support for various 3D API
shader languages and can execute multiple simultaneous
execution threads associated with multiple shaders.

[0206] Insome embodiments the graphics core array 1614
also includes execution logic to perform media functions,
such as video and/or image processing. In one embodiment,
the execution units additionally include general-purpose
logic that is programmable to perform parallel general
purpose computational operations, in addition to graphics
processing operations. The general purpose logic can per-
form processing operations in parallel or in conjunction with
general purpose logic within the processor core(s) 1307 of
FIG. 13 or core 1402A-1402N as in FIG. 14.

[0207] Output data generated by threads executing on the
graphics core array 1614 can output data to memory in a
unified return buffer (URB) 1618. The URB 1618 can store
data for multiple threads. In some embodiments the URB
1618 may be used to send data between different threads
executing on the graphics core array 1614. In some embodi-
ments the URB 1618 may additionally be used for synchro-
nization between threads on the graphics core array and
fixed function logic within the shared function logic 1620.
[0208] In some embodiments, graphics core array 1614 is
scalable, such that the array includes a variable number of
graphics cores, each having a variable number of execution
units based on the target power and performance level of
GPE 1610. In one embodiment the execution resources are
dynamically scalable, such that execution resources may be
enabled or disabled as needed.

[0209] The graphics core array 1614 couples with shared
function logic 1620 that includes multiple resources that are
shared between the graphics cores in the graphics core array.
The shared functions within the shared function logic 1620
are hardware logic units that provide specialized supple-
mental functionality to the graphics core array 1614. In
various embodiments, shared function logic 1620 includes
but is not limited to sampler 1621, math 1622, and inter-
thread communication (ITC) 1623 logic. Additionally, some
embodiments implement one or more cache(s) 1625 within

Aug. 8,2024

the shared function logic 1620. A shared function is imple-
mented where the demand for a given specialized function
is insufficient for inclusion within the graphics core array
1614. Instead a single instantiation of that specialized func-
tion is implemented as a stand-alone entity in the shared
function logic 1620 and shared among the execution
resources within the graphics core array 1614. The precise
set of functions that are shared between the graphics core
array 1614 and included within the graphics core array 1614
varies between embodiments.

[0210] FIG. 17 is a block diagram of another embodiment
of a graphics processor 1700. Elements of FIG. 17 having
the same reference numbers (or names) as the elements of
any other figure herein can operate or function in any
manner similar to that described elsewhere herein, but are
not limited to such.

[0211] In some embodiments, graphics processor 1700
includes a ring interconnect 1702, a pipeline front-end 1704,
a media engine 1737, and graphics cores 1780A-1780N. In
some embodiments, ring interconnect 1702 couples the
graphics processor to other processing units, including other
graphics processors or one or more general-purpose proces-
sor cores. In some embodiments, the graphics processor is
one of many processors integrated within a multi-core
processing system.

[0212] In some embodiments, graphics processor 1700
receives batches of commands via ring interconnect 1702.
The incoming commands are interpreted by a command
streamer 1703 in the pipeline front-end 1704. In some
embodiments, graphics processor 1700 includes scalable
execution logic to perform 3D geometry processing and
media processing via the graphics core(s) 1780A-1780N.
For 3D geometry processing commands, command streamer
1703 supplies commands to geometry pipeline 1736. For at
least some media processing commands, command streamer
1703 supplies the commands to a video front end 1734,
which couples with a media engine 1737. In some embodi-
ments, media engine 1737 includes a Video Quality Engine
(VQE) 1730 for video and image post-processing and a
multi-format encode/decode (MFX) 1733 engine to provide
hardware-accelerated media data encode and decode. In
some embodiments, geometry pipeline 1736 and media
engine 1737 each generate execution threads for the thread
execution resources provided by at least one graphics core
1780A.

[0213] In some embodiments, graphics processor 1700
includes scalable thread execution resources featuring
modular cores 1780A-1780N (sometimes referred to as core
slices), each having multiple sub-cores 1750A-1750N,
1760A-1760N (sometimes referred to as core sub-slices). In
some embodiments, graphics processor 1700 can have any
number of graphics cores 1780A through 1780N. In some
embodiments, graphics processor 1700 includes a graphics
core 1780A having at least a first sub-core 1750A and a
second sub-core 1760A. In other embodiments, the graphics
processor is a low power processor with a single sub-core
(e.g., 1750A). In some embodiments, graphics processor
1700 includes multiple graphics cores 1780A-1780N, each
including a set of first sub-cores 1750A-1750N and a set of
second sub-cores 1760A-1760N. Each sub-core in the set of
first sub-cores 1750A-1750N includes at least a first set of
execution units 1752A-1752N and media/texture samplers
1754 A-1754N. Each sub-core in the set of second sub-cores
1760A-1760N includes at least a second set of execution

US 2024/0264657 Al

units 1762A-1762N and samplers 1764A-1764N. In some
embodiments, each sub-core 1750A-1750N, 1760A-1760N
shares a set of shared resources 1770A-1770N. In some
embodiments, the shared resources include shared cache
memory and pixel operation logic. Other shared resources
may also be included in the various embodiments of the
graphics processor.

Execution Units

[0214] FIG. 18 illustrates thread execution logic 1800
including an array of processing elements employed in some
embodiments of a GPE. Elements of FIG. 18 having the
same reference numbers (or names) as the elements of any
other figure herein can operate or function in any manner
similar to that described elsewhere herein, but are not
limited to such.

[0215] Insome embodiments, thread execution logic 1800
includes a shader processor 1802, a thread dispatcher 1804,
instruction cache 1806, a scalable execution unit array
including a plurality of execution units 1808A-1808N, a
sampler 1810, a data cache 1812, and a data port 1814. In
one embodiment the scalable execution unit array can
dynamically scale by enabling or disabling one or more
execution units (e.g., any of execution unit 1808A, 1808B,
1808C, 1808D, through 1808N-1 and 1808N) based on the
computational requirements of a workload. In one embodi-
ment the included components are interconnected via an
interconnect fabric that links to each of the components. In
some embodiments, thread execution logic 1800 includes
one or more connections to memory, such as system memory
or cache memory, through one or more of instruction cache
1806, data port 1814, sampler 1810, and execution units
1808A-1808N. In some embodiments, each execution unit
(e.g. 1808A) is a stand-alone programmable general purpose
computational unit that is capable of executing multiple
simultaneous hardware threads while processing multiple
data elements in parallel for each thread. In various embodi-
ments, the array of execution units 1808 A-1808N is scalable
to include any number individual execution units.

[0216] In some embodiments, the execution units 1808 A-
1808N are primarily used to execute shader programs. A
shader processor 1802 can process the various shader pro-
grams and dispatch execution threads associated with the
shader programs via a thread dispatcher 1804. In one
embodiment the thread dispatcher includes logic to arbitrate
thread initiation requests from the graphics and media
pipelines and instantiate the requested threads on one or
more execution unit in the execution units 1808A-1808N.
For example, the geometry pipeline (e.g., 1736 of FIG. 17)
can dispatch vertex, tessellation, or geometry shaders to the
thread execution logic 1800 (FIG. 18) for processing. In
some embodiments, thread dispatcher 1804 can also process
runtime thread spawning requests from the executing shader
programs.

[0217] In some embodiments, the execution units 1808 A-
1808N support an instruction set that includes native support
for many standard 3D graphics shader instructions, such that
shader programs from graphics libraries (e.g., Direct 3D and
OpenGL) are executed with a minimal translation. The
execution units support vertex and geometry processing
(e.g., vertex programs, geometry programs, vertex shaders),
pixel processing (e.g., pixel shaders, fragment shaders) and
general-purpose processing (e.g., compute and media shad-
ers). Each of the execution units 1808 A-1808N is capable of

Aug. 8,2024

multi-issue single instruction multiple data (SIMD) execu-
tion and multi-threaded operation enables an efficient execu-
tion environment in the face of higher latency memory
accesses. Each hardware thread within each execution unit
has a dedicated high-bandwidth register file and associated
independent thread-state. Execution is multi-issue per clock
to pipelines capable of integer, single and double precision
floating point operations, SIMD branch capability, logical
operations, transcendental operations, and other miscella-
neous operations. While waiting for data from memory or
one of the shared functions, dependency logic within the
execution units 1808A-1808N causes a waiting thread to
sleep until the requested data has been returned. While the
waiting thread is sleeping, hardware resources may be
devoted to processing other threads. For example, during a
delay associated with a vertex shader operation, an execu-
tion unit can perform operations for a pixel shader, fragment
shader, or another type of shader program, including a
different vertex shader.

[0218] Each execution unit in execution units 1808A-
1808N operates on arrays of data elements. The number of
data elements is the “execution size,” or the number of
channels for the instruction. An execution channel is a
logical unit of execution for data element access, masking,
and flow control within instructions. The number of chan-
nels may be independent of the number of physical Arith-
metic Logic Units (ALUs) or Floating Point Units (FPUs)
for a particular graphics processor. In some embodiments,
execution units 1808A-1808N support integer and floating-
point data types.

[0219] The execution unit instruction set includes SIMD
instructions. The various data elements can be stored as a
packed data type in a register and the execution unit will
process the various elements based on the data size of the
elements. For example, when operating on a 256-bit wide
vector, the 256 bits of the vector are stored in a register and
the execution unit operates on the vector as four separate
64-bit packed data elements (Quad-Word (QW) size data
elements), eight separate 32-bit packed data elements
(Double Word (DW) size data elements), sixteen separate
16-bit packed data elements (Word (W) size data elements),
or thirty-two separate 8-bit data elements (byte (B) size data
elements). However, different vector widths and register
sizes are possible.

[0220] One or more internal instruction caches (e.g., 1806)
are included in the thread execution logic 1800 to cache
thread instructions for the execution units. In some embodi-
ments, one or more data caches (e.g., 1812) are included to
cache thread data during thread execution. In some embodi-
ments, a sampler 610 is included to provide texture sampling
for 3D operations and media sampling for media operations.
In some embodiments, sampler 1810 includes specialized
texture or media sampling functionality to process texture or
media data during the sampling process before providing the
sampled data to an execution unit.

[0221] During execution, the graphics and media pipelines
send thread initiation requests to thread execution logic 1800
via thread spawning and dispatch logic. Once a group of
geometric objects has been processed and rasterized into
pixel data, pixel processor logic (e.g., pixel shader logic,
fragment shader logic, etc.) within the shader processor
1802 is invoked to further compute output information and
cause results to be written to output surfaces (e.g., color
buffers, depth buffers, stencil buffers, etc.). In some embodi-

US 2024/0264657 Al

ments, a pixel shader or fragment shader calculates the
values of the various vertex attributes that are to be inter-
polated across the rasterized object. In some embodiments,
pixel processor logic within the shader processor 1802 then
executes an application programming interface (API)-sup-
plied pixel or fragment shader program. To execute the
shader program, the shader processor 1802 dispatches
threads to an execution unit (e.g., 1808A) via thread dis-
patcher 1804. In some embodiments, pixel shader 1802 uses
texture sampling logic in the sampler 1810 to access texture
data in texture maps stored in memory. Arithmetic opera-
tions on the texture data and the input geometry data
compute pixel color data for each geometric fragment, or
discards one or more pixels from further processing.

[0222] In some embodiments, the data port 1814 provides
a memory access mechanism for the thread execution logic
1800 output processed data to memory for processing on a
graphics processor output pipeline. In some embodiments,
the data port 1814 includes or couples to one or more cache
memories (e.g., data cache 1812) to cache data for memory
access via the data port.

[0223] FIG. 19 is a block diagram illustrating a graphics
processor instruction formats 1900 according to some
embodiments. In one or more embodiment, the graphics
processor execution units support an instruction set having
instructions in multiple formats. The solid lined boxes
illustrate the components that are generally included in an
execution unit instruction, while the dashed lines include
components that are optional or that are only included in a
sub-set of the instructions. In some embodiments, instruc-
tion format 1900 described and illustrated are macro-instruc-
tions, in that they are instructions supplied to the execution
unit, as opposed to micro-operations resulting from instruc-
tion decode once the instruction is processed.

[0224] In some embodiments, the graphics processor
execution units natively support instructions in a 128-bit
instruction format 1910. A 64-bit compacted instruction
format 1930 is available for some instructions based on the
selected instruction, instruction options, and number of
operands. The native 128-bit instruction format 1910 pro-
vides access to all instruction options, while some options
and operations are restricted in the 64-bit format 1930. The
native instructions available in the 64-bit format 1930 vary
by embodiment. In some embodiments, the instruction is
compacted in part using a set of index values in an index
field 1913. The execution unit hardware references a set of
compaction tables based on the index values and uses the
compaction table outputs to reconstruct a native instruction
in the 128-bit instruction format 1910.

[0225] For each format, instruction opcode 1912 defines
the operation that the execution unit is to perform. The
execution units execute each instruction in parallel across
the multiple data elements of each operand. For example, in
response to an add instruction the execution unit performs a
simultaneous add operation across each color channel rep-
resenting a texture element or picture element. By default,
the execution unit performs each instruction across all data
channels of the operands. In some embodiments, instruction
control field 1914 enables control over certain execution
options, such as channels selection (e.g., predication) and
data channel order (e.g., swizzle). For instructions in the
128-bit instruction format 1910 an exec-size field 1916
limits the number of data channels that will be executed in

Aug. 8,2024

parallel. In some embodiments, exec-size field 1916 is not
available for use in the 64-bit compact instruction format
1930.

[0226] Some execution unit instructions have up to three
operands including two source operands, src0 1920, srcl
1922, and one destination 1918. In some embodiments, the
execution units support dual destination instructions, where
one of the destinations is implied. Data manipulation
instructions can have a third source operand (e.g., SRC2
1924), where the instruction opcode 1912 determines the
number of source operands. An instruction’s last source
operand can be an immediate (e.g., hard-coded) value passed
with the instruction.

[0227] In some embodiments, the 128-bit instruction for-
mat 1910 includes an access/address mode field 1926 speci-
fying, for example, whether direct register addressing mode
or indirect register addressing mode is used. When direct
register addressing mode is used, the register address of one
or more operands is directly provided by bits in the instruc-
tion.

[0228] In some embodiments, the 128-bit instruction for-
mat 1910 includes an access/address mode field 1926, which
specifies an address mode and/or an access mode for the
instruction. In one embodiment the access mode is used to
define a data access alignment for the instruction. Some
embodiments support access modes including a 16-byte
aligned access mode and a 1-byte aligned access mode,
where the byte alignment of the access mode determines the
access alignment of the instruction operands. For example,
when in a first mode, the instruction may use byte-aligned
addressing for source and destination operands and when in
a second mode, the instruction may use 16-byte-aligned
addressing for all source and destination operands.

[0229] In one embodiment, the address mode portion of
the access/address mode field 1926 determines whether the
instruction is to use direct or indirect addressing. When
direct register addressing mode is used bits in the instruction
directly provide the register address of one or more oper-
ands. When indirect register addressing mode is used, the
register address of one or more operands may be computed
based on an address register value and an address immediate
field in the instruction.

[0230] In some embodiments instructions are grouped
based on opcode 1912 bit-fields to simplify Opcode decode
1940. For an 8-bit opcode, bits 4, 5, and 6 allow the
execution unit to determine the type of opcode. The precise
opcode grouping shown is merely an example. In some
embodiments, a move and logic opcode group 1942 includes
data movement and logic instructions (e.g., move (mov),
compare (cmp)). In some embodiments, move and logic
group 1942 shares the five most significant bits (MSB),
where move (mov) instructions are in the form of
0000xxxxb and logic instructions are in the form of
0001xxxxb. A flow control instruction group 1944 (e.g., call,
jump (jmp)) includes instructions in the form of 0010xxxxb
(e.g., 0x20). A miscellaneous instruction group 1946
includes a mix of instructions, including synchronization
instructions (e.g., wait, send) in the form of 0011xxxxb (e.g.,
0x30). A parallel math instruction group 1948 includes
component-wise arithmetic instructions (e.g., add, multiply
(mul)) in the form of 0100xxxxb (e.g., 0x40). The parallel
math group 1948 performs the arithmetic operations in
parallel across data channels. The vector math group 1950
includes arithmetic instructions (e.g., dp4) in the form of

US 2024/0264657 Al

0101xxxxb (e.g., 0x50). The vector math group performs
arithmetic such as dot product calculations on vector oper-
ands.

Graphics Pipeline

[0231] FIG. 20 is a block diagram of another embodiment
of a graphics processor 2000. Elements of FIG. 20 having
the same reference numbers (or names) as the elements of
any other figure herein can operate or function in any
manner similar to that described elsewhere herein, but are
not limited to such.

[0232] In some embodiments, graphics processor 2000
includes a graphics pipeline 2020, a media pipeline 2030, a
display engine 2040, thread execution logic 2050, and a
render output pipeline 2070. In some embodiments, graphics
processor 2000 is a graphics processor within a multi-core
processing system that includes one or more general purpose
processing cores. The graphics processor is controlled by
register writes to one or more control registers (not shown)
or via commands issued to graphics processor 2000 via a
ring interconnect 2002. In some embodiments, ring inter-
connect 2002 couples graphics processor 2000 to other
processing components, such as other graphics processors or
general-purpose processors. Commands from ring intercon-
nect 2002 are interpreted by a command streamer 2003,
which supplies instructions to individual components of
graphics pipeline 2020 or media pipeline 2030.

[0233] In some embodiments, command streamer 2003
directs the operation of a vertex fetcher 2005 that reads
vertex data from memory and executes vertex-processing
commands provided by command streamer 2003. In some
embodiments, vertex fetcher 2005 provides vertex data to a
vertex shader 2007, which performs coordinate space trans-
formation and lighting operations to each vertex. In some
embodiments, vertex fetcher 2005 and vertex shader 2007
execute vertex-processing instructions by dispatching
execution threads to execution units 2052A-2052B via a
thread dispatcher 2031.

[0234] In some embodiments, execution units 2052A-
2052B are an array of vector processors having an instruc-
tion set for performing graphics and media operations. In
some embodiments, execution units 2052A-2052B have an
attached L1 cache 2051 that is specific for each array or
shared between the arrays. The cache can be configured as
a data cache, an instruction cache, or a single cache that is
partitioned to contain data and instructions in different
partitions.

[0235] In some embodiments, graphics pipeline 2020
includes tessellation components to perform hardware-ac-
celerated tessellation of 3D objects. In some embodiments,
a programmable hull shader 2011 configures the tessellation
operations. A programmable domain shader 2017 provides
back-end evaluation of tessellation output. A tessellator
2013 operates at the direction of hull shader 2011 and
contains special purpose logic to generate a set of detailed
geometric objects based on a coarse geometric model that is
provided as input to graphics pipeline 2020. In some
embodiments, if tessellation is not used, tessellation com-
ponents (e.g., hull shader 2011, tessellator 2013, and domain
shader 2017) can be bypassed.

[0236] In some embodiments, complete geometric objects
can be processed by a geometry shader 2019 via one or more
threads dispatched to execution units 2052A-2052B, or can
proceed directly to the clipper 2029. In some embodiments,

Aug. 8,2024

the geometry shader operates on entire geometric objects,
rather than vertices or patches of vertices as in previous
stages of the graphics pipeline. If the tessellation is disabled
the geometry shader 2019 receives input from the vertex
shader 2007. In some embodiments, geometry shader 2019
is programmable by a geometry shader program to perform
geometry tessellation if the tessellation units are disabled.
[0237] Before rasterization, a clipper 2029 processes ver-
tex data. The clipper 2029 may be a fixed function clipper or
a programmable clipper having clipping and geometry
shader functions. In some embodiments, a rasterizer and
depth test component 2073 in the render output pipeline
2070 dispatches pixel shaders to convert the geometric
objects into their per pixel representations. In some embodi-
ments, pixel shader logic is included in thread execution
logic 2050. In some embodiments, an application can bypass
the rasterizer and depth test component 2073 and access
un-rasterized vertex data via a stream out unit 2023.
[0238] The graphics processor 2000 has an interconnect
bus, interconnect fabric, or some other interconnect mecha-
nism that allows data and message passing amongst the
major components of the processor. In some embodiments,
execution units 2052A-2052B and associated cache(s) 2051,
texture and media sampler 2054, and texture/sampler cache
2058 interconnect via a data port 2056 to perform memory
access and communicate with render output pipeline com-
ponents of the processor. In some embodiments, sampler
2054, caches 2051, 2058 and execution units 2052A-2052B
each have separate memory access paths.

[0239] In some embodiments, render output pipeline 2070
contains a rasterizer and depth test component 2073 that
converts vertex-based objects into an associated pixel-based
representation. In some embodiments, the rasterizer logic
includes a windower/masker unit to perform fixed function
triangle and line rasterization. An associated render cache
2078 and depth cache 2079 are also available in some
embodiments. A pixel operations component 2077 performs
pixel-based operations on the data, though in some
instances, pixel operations associated with 2D operations
(e.g. bit block image transfers with blending) are performed
by the 2D engine 2041, or substituted at display time by the
display controller 2043 using overlay display planes. In
some embodiments, a shared L3 cache 2075 is available to
all graphics components, allowing the sharing of data with-
out the use of main system memory.

[0240] In some embodiments, graphics processor media
pipeline 2030 includes a media engine 2037 and a video
front end 2034. In some embodiments, video front end 2034
receives pipeline commands from the command streamer
2003. In some embodiments, media pipeline 2030 includes
a separate command streamer. In some embodiments, video
front-end 2034 processes media commands before sending
the command to the media engine 2037. In some embodi-
ments, media engine 2037 includes thread spawning func-
tionality to spawn threads for dispatch to thread execution
logic 2050 via thread dispatcher 2031.

[0241] In some embodiments, graphics processor 2000
includes a display engine 2040. In some embodiments,
display engine 2040 is external to processor 2000 and
couples with the graphics processor via the ring interconnect
2002, or some other interconnect bus or fabric. In some
embodiments, display engine 2040 includes a 2D engine
2041 and a display controller 2043. In some embodiments,
display engine 2040 contains special purpose logic capable

US 2024/0264657 Al

of operating independently of the 3D pipeline. In some
embodiments, display controller 2043 couples with a display
device (not shown), which may be a system integrated
display device, as in a laptop computer, or an external
display device attached via a display device connector.
[0242] In some embodiments, graphics pipeline 2020 and
media pipeline 2030 are configurable to perform operations
based on multiple graphics and media programming inter-
faces and are not specific to any one application program-
ming interface (API). In some embodiments, driver software
for the graphics processor translates API calls that are
specific to a particular graphics or media library into com-
mands that can be processed by the graphics processor. In
some embodiments, support is provided for the Open Graph-
ics Library (OpenGL), Open Computing Language
(OpenCL), and/or Vulkan graphics and compute API, all
from the Khronos Group. In some embodiments, support
may also be provided for the Direct3D library from the
Microsoft Corporation. In some embodiments, a combina-
tion of these libraries may be supported. Support may also
be provided for the Open Source Computer Vision Library
(OpenCV). A future API with a compatible 3D pipeline
would also be supported if a mapping can be made from the
pipeline of the future API to the pipeline of the graphics
processor.

Graphics Pipeline Programming

[0243] FIG. 21Ais a block diagram illustrating a graphics
processor command format 2100 according to some embodi-
ments. FIG. 21B is a block diagram illustrating a graphics
processor command sequence 2110 according to an embodi-
ment. The solid lined boxes in FIG. 21A illustrate the
components that are generally included in a graphics com-
mand while the dashed lines include components that are
optional or that are only included in a sub-set of the graphics
commands. The exemplary graphics processor command
format 2100 of FIG. 21A includes data fields to identify a
target client 2102 of the command, a command operation
code (opcode) 2104, and the relevant data 2106 for the
command. A sub-opcode 2105 and a command size 2108 are
also included in some commands.

[0244] In some embodiments, client 2102 specifies the
client unit of the graphics device that processes the com-
mand data. In some embodiments, a graphics processor
command parser examines the client field of each command
to condition the further processing of the command and
route the command data to the appropriate client unit. In
some embodiments, the graphics processor client units
include a memory interface unit, a render unit, a 2D unit, a
3D unit, and a media unit. Each client unit has a correspond-
ing processing pipeline that processes the commands. Once
the command is received by the client unit, the client unit
reads the opcode 2104 and, if present, sub-opcode 2105 to
determine the operation to perform. The client unit performs
the command using information in data field 2106. For some
commands an explicit command size 2108 is expected to
specify the size of the command. In some embodiments, the
command parser automatically determines the size of at least
some of the commands based on the command opcode. In
some embodiments commands are aligned via multiples of
a double word.

[0245] The flow diagram in FIG. 21B shows an exemplary
graphics processor command sequence 2110. In some
embodiments, software or firmware of a data processing

Aug. 8,2024

system that features an embodiment of a graphics processor
uses a version of the command sequence shown to set up,
execute, and terminate a set of graphics operations. A sample
command sequence is shown and described for purposes of
example only as embodiments are not limited to these
specific commands or to this command sequence. Moreover,
the commands may be issued as batch of commands in a
command sequence, such that the graphics processor will
process the sequence of commands in at least partially
concurrence.

[0246] Insome embodiments, the graphics processor com-
mand sequence 2110 may begin with a pipeline flush com-
mand 2112 to cause any active graphics pipeline to complete
the currently pending commands for the pipeline. In some
embodiments, the 3D pipeline 2122 and the media pipeline
2124 do not operate concurrently. The pipeline flush is
performed to cause the active graphics pipeline to complete
any pending commands. In response to a pipeline flush, the
command parser for the graphics processor will pause
command processing until the active drawing engines com-
plete pending operations and the relevant read caches are
invalidated. Optionally, any data in the render cache that is
marked ‘dirty’ can be flushed to memory. In some embodi-
ments, pipeline flush command 2112 can be used for pipe-
line synchronization or before placing the graphics proces-
sor into a low power state.

[0247] In some embodiments, a pipeline select command
2113 is used when a command sequence requires the graph-
ics processor to explicitly switch between pipelines. In some
embodiments, a pipeline select command 2113 is required
only once within an execution context before issuing pipe-
line commands unless the context is to issue commands for
both pipelines. In some embodiments, a pipeline flush
command 2112 is required immediately before a pipeline
switch via the pipeline select command 2113.

[0248] Insome embodiments, a pipeline control command
2114 configures a graphics pipeline for operation and is used
to program the 3D pipeline 2122 and the media pipeline
2124. In some embodiments, pipeline control command
2114 configures the pipeline state for the active pipeline. In
one embodiment, the pipeline control command 2114 is used
for pipeline synchronization and to clear data from one or
more cache memories within the active pipeline before
processing a batch of commands.

[0249] In some embodiments, return buffer state com-
mands 2116 are used to configure a set of return buffers for
the respective pipelines to write data. Some pipeline opera-
tions require the allocation, selection, or configuration of
one or more return buffers into which the operations write
intermediate data during processing. In some embodiments,
the graphics processor also uses one or more return buffers
to store output data and to perform cross thread communi-
cation. In some embodiments, the return buffer state 2116
includes selecting the size and number of return buffers to
use for a set of pipeline operations.

[0250] The remaining commands in the command
sequence differ based on the active pipeline for operations.
Based on a pipeline determination 2120, the command
sequence is tailored to the 3D pipeline 2122 beginning with
the 3D pipeline state 2130 or the media pipeline 2124
beginning at the media pipeline state 2140.

[0251] The commands to configure the 3D pipeline state
2130 include 3D state setting commands for vertex buffer
state, vertex element state, constant color state, depth buffer

US 2024/0264657 Al

state, and other state variables that are to be configured
before 3D primitive commands are processed. The values of
these commands are determined at least in part based on the
particular 3D API in use. In some embodiments, 3D pipeline
state 2130 commands are also able to selectively disable or
bypass certain pipeline elements if those elements will not
be used.

[0252] In some embodiments, 3D primitive 2132 com-
mand is used to submit 3D primitives to be processed by the
3D pipeline. Commands and associated parameters that are
passed to the graphics processor via the 3D primitive 2132
command are forwarded to the vertex fetch function in the
graphics pipeline. The vertex fetch function uses the 3D
primitive 2132 command data to generate vertex data struc-
tures. The vertex data structures are stored in one or more
return buffers. In some embodiments, 3D primitive 2132
command is used to perform vertex operations on 3D
primitives via vertex shaders. To process vertex shaders, 3D
pipeline 2122 dispatches shader execution threads to graph-
ics processor execution units.

[0253] In some embodiments, 3D pipeline 2122 is trig-
gered via an execute 2134 command or event. In some
embodiments, a register write triggers command execution.
In some embodiments execution is triggered via a ‘go’ or
‘kick’ command in the command sequence. In one embodi-
ment, command execution is triggered using a pipeline
synchronization command to flush the command sequence
through the graphics pipeline. The 3D pipeline will perform
geometry processing for the 3D primitives. Once operations
are complete, the resulting geometric objects are rasterized
and the pixel engine colors the resulting pixels. Additional
commands to control pixel shading and pixel back end
operations may also be included for those operations.
[0254] Insome embodiments, the graphics processor com-
mand sequence 2110 follows the media pipeline 2124 path
when performing media operations. In general, the specific
use and manner of programming for the media pipeline 2124
depends on the media or compute operations to be per-
formed. Specific media decode operations may be offloaded
to the media pipeline during media decode. In some embodi-
ments, the media pipeline can also be bypassed and media
decode can be performed in whole or in part using resources
provided by one or more general purpose processing cores.
In one embodiment, the media pipeline also includes ele-
ments for general-purpose graphics processor unit (GPGPU)
operations, where the graphics processor is used to perform
SIMD vector operations using computational shader pro-
grams that are not explicitly related to the rendering of
graphics primitives.

[0255] In some embodiments, media pipeline 2124 is
configured in a similar manner as the 3D pipeline 2122. A
set of commands to configure the media pipeline state 2140
are dispatched or placed into a command queue before the
media object commands 2142. In some embodiments, media
pipeline state commands 2140 include data to configure the
media pipeline elements that will be used to process the
media objects. This includes data to configure the video
decode and video encode logic within the media pipeline,
such as encode or decode format. In some embodiments,
media pipeline state commands 2140 also support the use of
one or more pointers to “indirect” state elements that contain
a batch of state settings.

[0256] In some embodiments, media object commands
2142 supply pointers to media objects for processing by the

Aug. 8,2024

media pipeline. The media objects include memory buffers
containing video data to be processed. In some embodi-
ments, all media pipeline states must be valid before issuing
a media object command 2142. Once the pipeline state is
configured and media object commands 2142 are queued,
the media pipeline 2124 is triggered via an execute com-
mand 2144 or an equivalent execute event (e.g., register
write). Output from media pipeline 2124 may then be post
processed by operations provided by the 3D pipeline 2122 or
the media pipeline 2124. In some embodiments, GPGPU
operations are configured and executed in a similar manner
as media operations.

Graphics Software Architecture

[0257] FIG. 22 illustrates exemplary graphics software
architecture for a data processing system 2200 according to
some embodiments. In some embodiments, software archi-
tecture includes a 3D graphics application 2210, an operat-
ing system 2220, and at least one processor 2230. In some
embodiments, processor 2230 includes a graphics processor
2232 and one or more general-purpose processor core(s)
2234. The graphics application 2210 and operating system
2220 each execute in the system memory 2250 of the data
processing system.

[0258] In some embodiments, 3D graphics application
2210 contains one or more shader programs including
shader instructions 2212. The shader language instructions
may be in a high-level shader language, such as the High
Level Shader Language (HLSL) or the OpenGL Shader
Language (GLSL). The application also includes executable
instructions 2214 in a machine language suitable for execu-
tion by the general-purpose processor core 2234. The appli-
cation also includes graphics objects 2216 defined by vertex
data.

[0259] In some embodiments, operating system 2220 is a
Microsoft® Windows® operating system from the
Microsoft Corporation, a proprietary UNIX-like operating
system, or an open source UNIX-like operating system
using a variant of the Linux kernel. The operating system
2220 can support a graphics API 2222 such as the Direct3D
API, the OpenGL API, or the Vulkan API. When the
Direct3D API is in use, the operating system 2220 uses a
front-end shader compiler 2224 to compile any shader
instructions 2212 in HLSL into a lower-level shader lan-
guage. The compilation may be a just-in-time (JIT) compi-
lation or the application can perform shader pre-compila-
tion. In some embodiments, high-level shaders are compiled
into low-level shaders during the compilation of the 3D
graphics application 2210. In some embodiments, the shader
instructions 2212 are provided in an intermediate form, such
as a version of the Standard Portable Intermediate Repre-
sentation (SPIR) used by the Vulkan API.

[0260] In some embodiments, user mode graphics driver
2226 contains a back-end shader compiler 2227 to convert
the shader instructions 2212 into a hardware specific repre-
sentation. When the OpenGL API is in use, shader instruc-
tions 2212 in the GLSL high-level language are passed to a
user mode graphics driver 2226 for compilation. In some
embodiments, user mode graphics driver 2226 uses operat-
ing system kernel mode functions 2228 to communicate
with a kernel mode graphics driver 2229. In some embodi-
ments, kernel mode graphics driver 2229 communicates
with graphics processor 2232 to dispatch commands and
instructions.

US 2024/0264657 Al

1P Core Implementations

[0261] One or more aspects of at least one embodiment
may be implemented by representative code stored on a
machine-readable medium which represents and/or defines
logic within an integrated circuit such as a processor. For
example, the machine-readable medium may include
instructions which represent various logic within the pro-
cessor. When read by a machine, the instructions may cause
the machine to fabricate the logic to perform the techniques
described herein. Such representations, known as “IP cores,”
are reusable units of logic for an integrated circuit that may
be stored on a tangible, machine-readable medium as a
hardware model that describes the structure of the integrated
circuit. The hardware model may be supplied to various
customers or manufacturing facilities, which load the hard-
ware model on fabrication machines that manufacture the
integrated circuit. The integrated circuit may be fabricated
such that the circuit performs operations described in asso-
ciation with any of the embodiments described herein.
[0262] FIG. 23 is a block diagram illustrating an IP core
development system 2300 that may be used to manufacture
an integrated circuit to perform operations according to an
embodiment. The IP core development system 2300 may be
used to generate modular, re-usable designs that can be
incorporated into a larger design or used to construct an
entire integrated circuit (e.g., an SOC integrated circuit). A
design facility 2330 can generate a software simulation 2310
of an IP core design in a high level programming language
(e.g., C/C++). The software simulation 2310 can be used to
design, test, and verify the behavior of the IP core using a
simulation model 2312. The simulation model 2312 may
include functional, behavioral, and/or timing simulations. A
register transfer level (RTL) design 2315 can then be created
or synthesized from the simulation model 2312. The RTL
design 2315 is an abstraction of the behavior of the inte-
grated circuit that models the flow of digital signals between
hardware registers, including the associated logic performed
using the modeled digital signals. In addition to an RTL
design 2315, lower-level designs at the logic level or tran-
sistor level may also be created, designed, or synthesized.
Thus, the particular details of the initial design and simula-
tion may vary.

[0263] The RTL design 2315 or equivalent may be further
synthesized by the design facility into a hardware model
2320, which may be in a hardware description language
(HDL), or some other representation of physical design data.
The HDL may be further simulated or tested to verify the IP
core design. The IP core design can be stored for delivery to
a 3rd party fabrication facility 2365 using non-volatile
memory 2340 (e.g., hard disk, flash memory, or any non-
volatile storage medium). Alternatively, the IP core design
may be transmitted (e.g., via the Internet) over a wired
connection 2350 or wireless connection 2360. The fabrica-
tion facility 2365 may then fabricate an integrated circuit
that is based at least in part on the IP core design. The
fabricated integrated circuit can be configured to perform
operations in accordance with at least one embodiment
described herein.

Exemplary System on a Chip Integrated Circuit

[0264] FIGS. 24-26 illustrated exemplary integrated cir-
cuits and associated graphics processors that may be fabri-
cated using one or more IP cores, according to various

Aug. 8,2024

embodiments described herein. In addition to what is illus-
trated, other logic and circuits may be included, including
additional graphics processors/cores, peripheral interface
controllers, or general purpose processor cores.

[0265] FIG. 24 is a block diagram illustrating an exem-
plary system on a chip integrated circuit 2400 that may be
fabricated using one or more IP cores, according to an
embodiment. Exemplary integrated circuit 2400 includes
one or more application processor(s) 2405 (e.g., CPUs), at
least one graphics processor 2410, and may additionally
include an image processor 2415 and/or a video processor
2420, any of which may be a modular IP core from the same
or multiple different design facilities. Integrated circuit 2400
includes peripheral or bus logic including a USB controller
2425, UART controller 2430, an SPI/SDIO controller 2435,
and an 12S/12C controller 2440. Additionally, the integrated
circuit can include a display device 2445 coupled to one or
more of a high-definition multimedia interface (HDMI)
controller 2450 and a mobile industry processor interface
(MIP]) display interface 2455. Storage may be provided by
a flash memory subsystem 2460 including flash memory and
a flash memory controller. Memory interface may be pro-
vided via a memory controller 2465 for access to SDRAM
or SRAM memory devices. Some integrated circuits addi-
tionally include an embedded security engine 2470.

[0266] FIG. 25 is a block diagram illustrating an exem-
plary graphics processor 2510 of a system on a chip inte-
grated circuit that may be fabricated using one or more IP
cores, according to an embodiment. Graphics processor
2510 can be a variant of the graphics processor 2410 of FIG.
24. Graphics processor 2510 includes a vertex processor
2505 and one or more fragment processor(s) 2515A-2515N
(e.g., 2515A, 2515B, 2515C, 2515D, through 2515N-1, and
2515N). Graphics processor 2510 can execute different
shader programs via separate logic, such that the vertex
processor 2505 is optimized to execute operations for vertex
shader programs, while the one or more fragment processor
(s) 2515A-2515N execute fragment (e.g., pixel) shading
operations for fragment or pixel shader programs. The
vertex processor 2505 performs the vertex processing stage
of the 3D graphics pipeline and generates primitives and
vertex data. The fragment processor(s) 2515A-2515N use
the primitive and vertex data generated by the vertex pro-
cessor 2505 to produce a framebuffer that is displayed on a
display device. In one embodiment, the fragment processor
(s) 2515A-2515N are optimized to execute fragment shader
programs as provided for in the OpenGL API, which may be
used to perform similar operations as a pixel shader program
as provided for in the Direct 3D APL

[0267] Graphics processor 2510 additionally includes one
or more memory management units (MMUs) 2520A-25208,
cache(s) 2525A-2525B, and circuit interconnect(s) 2530A-
2530B. The one or more MMU(s) 2520A-2520B provide for
virtual to physical address mapping for integrated circuit
2510, including for the vertex processor 2505 and/or frag-
ment processor(s) 2515A-2515N, which may reference ver-
tex or image/texture data stored in memory, in addition to
vertex or image/texture data stored in the one or more
cache(s) 2525A-2525B. In one embodiment the one or more
MMU(s) 2525A-2525B may be synchronized with other
MMUs within the system, including one or more MMUSs
associated with the one or more application processor(s)
2405, image processor 2415, and/or video processor 2420 of
FIG. 24, such that each processor 2405-2420 can participate

US 2024/0264657 Al

in a shared or unified virtual memory system. The one or
more circuit interconnect(s) 2530A-2530B enable graphics
processor 2510 to interface with other IP cores within the
SoC, either via an internal bus of the SoC or via a direct
connection, according to embodiments.

[0268] FIG. 26 is a block diagram illustrating an addi-
tional exemplary graphics processor 2610 of a system on a
chip integrated circuit that may be fabricated using one or
more IP cores, according to an embodiment. Graphics pro-
cessor 2610 can be a variant of the graphics processor 2410
of FIG. 24. Graphics processor 2610 includes the one or
more MMU(s) 2620A-2620B, caches 2625A-2625B, and
circuit interconnects 2630A-2630B of the integrated circuit
2600 of FIG. 25.

[0269] Graphics processor 2610 includes one or more
shader core(s) 2615A-2615N (e.g., 2615A, 26158, 2615C,
2615D, 2615E, 2615F, through 2615N-1, and 2615N),
which provides for a unified shader core architecture in
which a single core or type or core can execute all types of
programmable shader code, including shader program code
to implement vertex shaders, fragment shaders, and/or com-
pute shaders. The exact number of shader cores present can
vary among embodiments and implementations. Addition-
ally, graphics processor 2610 includes an inter-core task
manager 2605, which acts as a thread dispatcher to dispatch
execution threads to one or more shader cores 2615A-2615N
and a tiling unit 2618 to accelerate tiling operations for
tile-based rendering, in which rendering operations for a
scene are subdivided in image space, for example to exploit
local spatial coherence within a scene or to optimize use of
internal caches.

[0270] The following examples pertain to further embodi-
ments.
[0271] In one example, a processor comprises a graphics

processor to execute a workload and a power controller
coupled to the graphics processor. The power controller may
include a voltage ramp circuit to receive a request for the
graphics processor to operate at a first performance state
having a first operating voltage and a first operating fre-
quency and cause an output voltage of a voltage regulator to
increase to the first operating voltage, where the voltage
ramp circuit is to enable the graphics processor to execute
the workload at an interim performance state having an
interim operating voltage and an interim operating fre-
quency when the output voltage reaches a minimum oper-
ating voltage.

[0272] Inan example, the voltage ramp circuit is to enable
the graphics processor to execute at a plurality of interim
performance states before the output voltage reaches the first
operating voltage.

[0273] In an example, the processor further comprises a
clock generator to generate a clock signal having the first
operating frequency, where the clock generator comprises at
least one phase locked loop to generate the clock signal
having the first operating frequency.

[0274] In an example, the power controller is to cause the
at least one phase locked loop to dynamically drift output of
the clock signal from a first interim operating frequency to
a second interim operating frequency while the graphics
processor is to execute the workload.

[0275] In an example, the voltage ramp circuit is to issue
a voltage increase request to the voltage regulator and issue
a clock increase request to the clock generator after the
output voltage has reached the minimum operating voltage.

Aug. 8,2024

[0276] Inan example, the voltage ramp circuit is to receive
a second request for the graphics processor to operate at a
second performance state having a second operating voltage
and a second operating frequency, the second performance
state lower than the first performance state, where the
voltage ramp circuit is to enable the graphics processor to
execute the workload at one or more interim performance
states between the first performance state and the second
performance state, while the output voltage is reduced from
the first operating voltage to the second operating voltage.

[0277] In an example, in response to the second request,
the voltage ramp circuit is to issue a voltage decrease request
to the voltage regulator and issue one or more clock decrease
requests to the clock generator, to enable the graphics
processor to execute the workload at the one or more interim
performance states.

[0278] In an example, the processor further comprises a
table to store a plurality of entries, each of the plurality of
entries to associate a voltage ramp value with a time
duration.

[0279] Inan example, the power controller is to enable the
graphics processor to execute the workload at the interim
performance state after the time duration of an entry of the
table associated with the interim operating voltage.

[0280] Inan example, the voltage ramp circuit is to receive
the request for the graphics processor to operate at the first
performance state when the graphics processor is in a low
power state and enable the graphics processor to exit the low
power state when the output voltage reaches the minimum
operating voltage.

[0281] In another example, a method includes: receiving,
in a power controller of a processor, a request for an
increased performance state of a GPU of the processor;
issuing a command to a voltage regulator coupled to the
processor to increase an output voltage of the voltage
regulator to a target operating point, to enable the GPU to
operate at the increased performance state; and in response
to the output voltage reaching a first interim operating
voltage, enabling the GPU to execute a graphics workload at
an interim performance state, the interim performance state
less than the increased performance state.

[0282] In an example, the method further comprises in
response to the output voltage reaching the first interim
operating voltage, issuing a drift signal to a clock generator
of the processor to enable the clock generator to output a
clock signal to the GPU at an interim operating frequency of
the interim performance state.

[0283] In an example, the method further comprises
enabling the GPU to operate at a plurality of interim
performance states before enabling the GPU to operate at the
increased performance state.

[0284] In an example, the method further comprises
receiving the request for the increased performance state
when the GPU is in a low power state, where the first interim
operating voltage comprises a minimum operating voltage.

[0285] In another example, a computer readable medium
including instructions is to perform the method of any of the
above examples.

[0286] In another example, a computer readable medium
including data is to be used by at least one machine to
fabricate at least one integrated circuit to perform the
method of any one of the above examples.

US 2024/0264657 Al

[0287] In another example, an apparatus comprises means
for performing the method of any one of the above
examples.

[0288] In a still further example, a system includes a
processor and a system memory coupled to the processor. In
one example, the processor comprises: a plurality of cores;
a plurality of graphics engines; and a power controller
including a voltage ramp circuit to receive a request for an
increased performance state of at least one of the plurality of
graphics engines and issue a voltage increase command to a
voltage regulator to output a first operating voltage for the
increased performance state and, prior to the first operating
voltage being attained, enable the at least one graphics
engine to execute a workload at an interim performance state
having an interim operating voltage and an interim operating
frequency.

[0289] Inan example, the voltage ramp circuit is to enable
the at least one graphics engine to execute the workload at
the interim performance state when an output voltage of the
voltage regulator reaches a minimum operating voltage.
[0290] Inan example, the voltage ramp circuit is to enable
the at least one graphics engine to execute at a plurality of
interim performance states before the voltage regulator is to
output the first operating voltage.

[0291] In an example, the processor further comprises a
clock generator to generate a clock signal having the interim
operating frequency, where the clock generator comprises at
least one phase locked loop to generate the clock signal
having the interim operating frequency.

[0292] In an example, the voltage ramp circuit is to cause
the at least one phase locked loop to dynamically drift output
of'the clock signal from the first interim operating frequency
to a second interim operating frequency while the at least
one graphics engine is to execute the workload, the second
interim operating frequency less than an operating frequency
of the increased performance state.

[0293] In an example, the voltage ramp circuit is to issue
a clock increase request to the clock generator after an
output voltage of the voltage regulator has reached the
interim operating voltage.

[0294] In yet another example, an apparatus comprises:
means for receiving, in a power control means of a proces-
sor, a request for an increased performance state of a
graphics processing means; means for issuing a command to
a voltage regulator means for increasing an output voltage of
the voltage regulator means to a target operating point, to
enable the graphics processing means for operating at the
increased performance state; and means for enabling the
graphics processing means for executing a graphics work-
load at an interim performance state in response to the output
voltage reaching a first interim operating voltage, the interim
performance state less than the increased performance state.
[0295] In an example, the apparatus further comprises
means for issuing a drift signal to a clock generator means
for enabling the clock generator means for outputting a
clock signal to the graphics processing means at an interim
operating frequency of the interim performance state.
[0296] In an example, the apparatus further comprises
means for enabling the graphics processing means for oper-
ating at a plurality of interim performance states before
enabling the graphics processing means for operating at the
increased performance state.

[0297] In an example, the apparatus further comprises
means for receiving the request for the increased perfor-

Aug. 8,2024

mance state when the graphics processing means is in a low
power state, the first interim operating voltage comprising a
minimum operating voltage.
[0298] Understand that various combinations of the above
examples are possible.
[0299] Note that the terms “circuit” and “circuitry” are
used interchangeably herein. As used herein, these terms and
the term “logic” are used to refer to alone or in any
combination, analog circuitry, digital circuitry, hard wired
circuitry, programmable circuitry, processor circuitry,
microcontroller circuitry, hardware logic circuitry, state
machine circuitry and/or any other type of physical hard-
ware component. Embodiments may be used in many dif-
ferent types of systems. For example, in one embodiment a
communication device can be arranged to perform the
various methods and techniques described herein. Of course,
the scope of the present invention is not limited to a
communication device, and instead other embodiments can
be directed to other types of apparatus for processing
instructions, or one or more machine readable media includ-
ing instructions that in response to being executed on a
computing device, cause the device to carry out one or more
of the methods and techniques described herein.
[0300] Embodiments may be implemented in code and
may be stored on a non-transitory storage medium having
stored thereon instructions which can be used to program a
system to perform the instructions. Embodiments also may
be implemented in data and may be stored on a non-
transitory storage medium, which if used by at least one
machine, causes the at least one machine to fabricate at least
one integrated circuit to perform one or more operations.
Still further embodiments may be implemented in a com-
puter readable storage medium including information that,
when manufactured into a SoC or other processor, is to
configure the SoC or other processor to perform one or more
operations. The storage medium may include, but is not
limited to, any type of disk including floppy disks, optical
disks, solid state drives (SSDs), compact disk read-only
memories (CD-ROMs), compact disk rewritables (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMs) such as dynamic random access memories
(DRAMs), static random access memories (SRAMs), eras-
able programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only
memories (EEPROMs), magnetic or optical cards, or any
other type of media suitable for storing electronic instruc-
tions.
[0301] While the present invention has been described
with respect to a limited number of embodiments, those
skilled in the art will appreciate numerous modifications and
variations therefrom. It is intended that the appended claims
cover all such modifications and variations as fall within the
true spirit and scope of this present invention.

1. (canceled)

2. An apparatus comprising:

a graphics processing unit (GPU) comprising:

a plurality of texture units;
a shared memory coupled to the plurality of texture

units;

a plurality of register files coupled to the shared
memory;

a plurality of load/store units coupled to the shared
memory;

US 2024/0264657 Al

a security engine;

a compression circuit to compress and decompress
data;

a plurality of graphics processing cores coupled to the
shared memory;

a plurality of clock generators, each of the plurality of
clock generators to provide a clock signal to at least
one of the plurality of graphics processing cores; and

a power controller to control power consumption of the
plurality of graphics processing cores, wherein the
power controller, in response to a request for the
GPU to exit a low power state in which the GPU is
powered down and operate at a first performance
state having a first operating voltage and a first
operating frequency, is to cause an output voltage of
a voltage regulator to increase to the first operating
voltage,

wherein the GPU is to exit the low power state and
execute a workload at a plurality of interim perfor-
mance states before the output voltage reaches the
first operating voltage, wherein each of the plurality
of interim performance states has an operating volt-
age less than the first operating voltage and an
operating frequency less than the first operating
frequency.

3. The apparatus of claim 2, further comprising the
voltage regulator comprising at least one integrated voltage
regulator.

4. The apparatus of claim 2, wherein the plurality of clock
generators comprises at least one phase locked loop to
generate the clock signal.

5. The apparatus of claim 4, wherein the at least one phase
locked loop is to dynamically drift output of the clock signal
from a first interim operating frequency less than the first
operating frequency to another interim operating frequency
less than the first operating frequency during the execution
of the workload.

6. The apparatus of claim 2, wherein the GPU is to exit the
low power state and execute the workload at a first interim
performance state having a second operating voltage, the
second operating voltage sufficient to enable the GPU to
operate at a second operating frequency comprising a mini-
mum operating frequency.

7. The apparatus of claim 6, further comprising storage to
store a table having a plurality of entries, each of the
plurality of entries to associate a voltage ramp value with a
time duration.

8. The apparatus of claim 7, wherein the GPU is to
execute the workload at the first interim performance state
after the time duration of an entry of the table associated
with the second operating voltage.

9. The apparatus of claim 7, wherein the storage com-
prises a non-volatile memory.

10. The apparatus of claim 2, wherein the power control-
ler is to cause a first graphics processing core to operate at
a higher performance state based on availability of a power
budget.

11. The apparatus of claim 2, further comprising at least
one special function unit.

12. The apparatus of claim 2, wherein the GPU is to
couple to a central processing unit (CPU) via a high speed
interconnect.

30

Aug. 8,2024

13. The apparatus of claim 12, further comprising:

a CPU domain comprising the CPU, at least one first
integrated voltage regulator, and a first power control-
ler; and

a GPU domain comprising the GPU, at least one second
integrated voltage regulator, and a second power con-
troller.

14. The apparatus of claim 2, wherein the GPU is to
execute the workload at the plurality of interim performance
states according to a step function.

15. A graphics processing unit comprising:

a security engine;

a compression circuit to compress and decompress data;

a plurality of texture units;

a shared memory coupled to the plurality of texture units;

a plurality of register files coupled to the shared memory;

a plurality of load/store units coupled to the shared
memory;

a plurality of graphics processing cores coupled to the
plurality of register files; and

a power controller to cause an output voltage of a voltage
regulator to increase to a first operating voltage of a first
performance state at which a workload is to be
executed, the first performance state comprising the
first operating voltage and a first operating frequency,
wherein the graphics processing unit is to exit a low
power state and execute the workload at a plurality of
interim performance states before the output voltage
reaches the first operating voltage, wherein each of the
plurality of interim performance states has an operating
voltage less than the first operating voltage and an
operating frequency less than the first operating fre-
quency.

16. The graphics processing unit of claim 15, wherein the
power controller is to cause the graphics processing unit to
exit the low power state in response to a request for the
execution of the workload.

17. The graphics processing unit of claim 15, further
comprising a plurality of clock generators comprising at
least one phase locked loop to generate a clock signal and
dynamically drift output of the clock signal from a first
interim operating frequency less than the first operating
frequency to another interim operating frequency less than
the first operating frequency during the execution of the
workload.

18. A non-transitory storage medium comprising instruc-
tions that when executed cause a power controller to:

receive a request for request for a graphics processing unit
to exit a low power state in which the graphics pro-
cessing unit is powered down and operate at a first
performance state comprising a first operating voltage
and a first operating frequency;

in response to the request, issue a command to a voltage
regulator to increase an output voltage to the first
operating voltage; and

cause the graphics processing unit to exit the low power
state and execute a workload at a plurality of interim
performance states, each of the plurality of interim
performance states comprising an interim operating
voltage and an interim operating frequency, before the
output voltage reaches the first operating voltage, the
plurality of interim performance states less than the first
performance state.

US 2024/0264657 Al Aug. 8, 2024
31

19. The non-transitory storage medium of claim 18,
wherein the instructions further cause the power controller
to allocate a power budget between the graphics processing
unit and a central processing unit coupled to the graphics
processing unit.

20. The non-transitory storage medium of claim 19,
wherein the instructions further cause the power controller
to cause a first core of the central processing unit to operate
at a higher performance state when there is available power
budget.

