(19) United States ### (12) Patent Application Publication (10) Pub. No.: US 2024/0238296 A1 Bruno et al. Jul. 18, 2024 (43) Pub. Date: #### (54) METHODS OF REGULATING BCL11A EXPRESSION AND TREATMENT OF **BCL11A-MEDIATED DISORDERS** (71) Applicant: Fulcrum Therapeutics, Inc., Cambridge, MA (US) Inventors: Paul Bruno, Cambridge, MA (US); Christopher Moxham, Cambridge, MA (US); Billy Stuart, Cambridge, MA (21) Appl. No.: 18/557,694 (22) PCT Filed: Apr. 28, 2022 (86) PCT No.: PCT/US2022/026795 § 371 (c)(1), (2) Date: Oct. 27, 2023 #### Related U.S. Application Data (60) Provisional application No. 63/313,968, filed on Feb. 25, 2022, provisional application No. 63/181,747, filed on Apr. 29, 2021. #### **Publication Classification** (51) Int. Cl. (2006.01)A61K 31/519 A61K 31/437 (2006.01)A61K 31/472 (2006.01)A61P 7/00 (2006.01)C12Q 1/6883 (2006.01)G01N 33/68 (2006.01) (52) U.S. Cl. (2013.01); A61K 31/472 (2013.01); A61P 7/00 (2018.01); C12Q 1/6883 (2013.01); G01N 33/6893 (2013.01); C12Q 2600/158 (2013.01) (57)ABSTRACT Provided herein, in part, are methods of downregulating BCL11A expression and treatment of BCL11A mediated disorders. The methods may comprise the use of inhibitors such as EED, EHZ2, and/or PRC2 inhibitors. # Compound 1 CRC: BCL11A FIG. 1 FIG. 2 FIG. 3 FIG. 4A FIG. 4B FIG. 4C FIG. 5A HBG1 Compound 1 Compound 2 Compound 3 Compound 4 Compound 4 Compound 4 FIG. 5B FIG. 5C FIG. 6 **FIG.** 7 ## Target Engagement ## Bone marrow erythroid cells (Ter119*) FIG. 8A ## %F-cells FIG. 8B # HbF HPLC levels # **Day 21 Terminal** FIG. 8C FIG. 8D FIG. 8E #### METHODS OF REGULATING BCL11A EXPRESSION AND TREATMENT OF BCL11A-MEDIATED DISORDERS #### **CROSS-REFERENCE** [0001] This application claims priority to U.S. Provisional Application No. 63/181,747 filed Apr. 29, 2021, and U.S. Provisional Application No. 63/313,968 filed Feb. 25, 2022, the contents of each of which are incorporated herein by reference in their entireties. #### BACKGROUND [0002] Polycomb group (PcG) proteins are a family of chromatin modifying enzymes that play a key role in gene expression and are dysregulated in many human diseases. The PcG family includes two classes of Polycomb Repressive Complexes (PRCs), namely Polycomb Repressive Complex 1 (PRC1) and Polycomb Repressive Complex 2 (PRC2). PRC2 includes SUZ12 (suppressor of zeste 12), EED (embryonic ectoderm development) and the catalytic subunit, EZH2 (enhancer of zeste homolog 2), and represses genes by methylating histone H3 lysine 27 (H3K27me3) at and around the promoter regions of genes. This critical component of chromatin regulation is involved in modulation of gene transcription and plays crucial function in development, differentiation, and regeneration. Although EZH2 is the catalytic subunit, PRC2 minimally requires EED and SUZ12 for its methyltransferase activity. EED, SUZ12 and EZH2 have been found to be overexpressed in many cancers, which include but are not limited to hepatocellular carcinoma, breast cancer, prostate cancer, etc. Activating mutations in EZH2 have been found in FL (follicular lymphoma) and DLBCL (diffuse large B cell lymphoma) patients. EED normally mediates repression of gene activity by binding to di- and trimethylated lysine 27 of histone 3 where it allosterically activates EZH2 activity of PRC2. EED has also been reported to recruit PRC1 to H3K27me3 loci and to enhance PRC1 mediated H2A ubiquitin E3 ligase [0003] Taken together, EED is a critical regulator of PRC2 in the silencing of expression of genes and gene clusters involved in development including but not limited to fetal orthologues (i.e. gamma globin), Hox genes, X chromosome inactivation, etc. Thus, EED provides a pharmacologic target for the treatment of diseases or disorders to impact transcription of specific target genes in blood and other tissues. [0004] A need exists for small molecules that modulate EED, EHZ2, and/or PRC2. #### **SUMMARY** [0005] Provided herein, in part, are methods of downregulating BCL11A expression and treatment of BCL11A mediated disorders. [0006] Described herein, in one embodiment, is a method of downregulating BCL11A in a cell comprising: contacting the cell sample with an EED, EHZ2, and/or PRC2 inhibitor in amount sufficient to decrease expression of BCL11A. [0007] In another embodiment, provided herein is a method of identifying a patient having a BCL11A mediated disorder who may benefit from treatment comprising one or more inhibitors of EED, EHZ2, and/or PRC2, comprising determining an expression level of BCL11A in a sample obtained from the patient, wherein an increased expression level of BCL11A in the sample as compared to a reference expression level identifies the patient as one who may benefit from the EED, EHZ2, and/or PRC2 inhibitor treatment. [0008] In another embodiment, provided herein is a method of treating a patient having a BCL11A mediated disorder, comprising administering to the patient a therapeutically effective amount of a EED, EHZ2, and/or PRC2 inhibitor, wherein the expression level of BCL11A in a sample obtained from the patient has been determined to be decreased after the administration as compared to a reference expression level. [0009] In another embodiment, provided herein is a method of treatment of a hemoglobinopathy in a subject comprising administering an effective amount of a composition comprising an inhibitor of EED, EHZ2, and/or PRC2, wherein the inhibitor of EED, EHZ2, and/or PRC2 downregulates the expression of BCL11A and whereby fetal hemoglobin expression is increased in the subject relative to prior to the administration. [0010] In another embodiment, provided herein is a genetically modified cell comprising an insertion and/or deletion in a gene loci that encodes a protein selected from the group consisting of EED, EHZ2, and PRC2, wherein the insertion and/or deletion is capable of downregulating expression of BCL11A in the cell. #### BRIEF DESCRIPTION OF THE DRAWINGS [0011] FIG. 1 depicts changes in the mRNA expression levels of BCL11A upon treatment with Compound 1 at various concentrations. [0012] FIG. 2 depicts fold changes in BCL11A, HBG1, and HBG2 expression in exemplary CD34+ donor cells upon treatment with 100 nM Compound 1 or 100 nM Compound 2. [0013] FIG. 3 depicts 4-point concentration response curves of fold changes in BCL11A expression, HBG1 expression, and HBG2 expression, and percentage HbF levels, in a CD34+ donor cell (D069) upon treatment with Compound 1 at various concentrations. [0014] FIG. 4A, FIG. 4B, and FIG. 4C depict aggregate data on the effect of HBG1 mRNA expression level (FIG. 4A), HBG2 mRNA expression level (FIG. 4B), and percentage HbF protein (FIG. 4C) from two different CD34+ donors upon treatment with multiple compounds (Compound 1, Compound 2, Compound 3, and Compound 4 as described herein) that inhibit PRC2. [0015] FIG. 5A, FIG. 5B, and FIG. 5C depict 4-point concentration response curves of the effect of PRC2 inhibitors Compound 1, Compound 2, Compound 3, and Compound 4 on BCL11A expression (FIG. 5A), HBG1 expression (FIG. 5B), and HBG2 expression (FIG. 5C). [0016] FIG. 6 depicts BCL11A mRNA transcript levels by qRT-PCR in wild-type CD-1 mice and in the Townes sickle cell disease (SCD) mouse model upon treatment with Compound 1. [0017] FIG. 7 depicts BCL11A mRNA transcript levels by qRT-PCR in CD34+ cells with CRISPR knockout of EED and BCL11A with corresponding HbF levels by HPLC. [0018] FIG. 8A depicts flow cytometry results of H3K27me3 for Compound 1 or hydroxyurea (HU) in bone marrow erythroid progenitors. FIG. 8B depicts flow cytometry results of percent F-cell in terms of percentage of vehicle for Compound 1 or HU. FIG. 8C depicts HbF HPLC from whole blood after 21 days of treatment in studies with Compound 1 or HU. FIG. 8D depicts results of Compound 1 or HU for mouse spleen weight percentage of total body weight. FIG. 8E depicts percent HbF correlations to representative hematological parameters of anemia and inflammation in studies with Compound 1 or HU. #### DETAILED DESCRIPTION [0019] Throughout this disclosure, various patents, patent applications and publications are referenced. The disclosures of these patents, patent applications and publications in their entireties are incorporated into this disclosure by reference in order to more fully describe the state of the art as known to those skilled therein as of the date of this disclosure. This disclosure will govern in the instance that there is any inconsistency between the patents, patent applications and publications and this disclosure. #### **Definitions** [0020] The term "alkyl" as used herein refers to a saturated straight or branched hydrocarbon. Exemplary alkyl groups include, but are not limited to, straight or branched hydrocarbons of 1-6, 1-5, 1-4, 1-3, or 1-2 carbon atoms, referred to herein as $\rm C_1\text{-}C_6$ alkyl, $\rm C_1\text{-}C_5$ alkyl, $\rm C_1\text{-}C_4$ alkyl, $\rm C_1\text{-}C_4$ alkyl, and $\rm C_1\text{-}C_2$ alkyl, respectively. Exemplary alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, 2-methyl-1-butyl, 3-methyl-2-butyl, 2-methyl-1-pentyl, 3-methyl-1-pentyl, 4-methyl-1-pentyl, 2-methyl-2-pentyl, 3-methyl-2-pentyl, 4-methyl-2-pentyl, 2,2-dimethyl-1-butyl, 3,3-dimethyl-1-butyl, 2-ethyl-1-butyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, etc. [0021] The term "alkenyl" as used herein refers to an unsaturated straight or branched hydrocarbon having at least one carbon-carbon double bond. Exemplary alkenyl groups include, but are not limited to, a straight or branched group of 2-6 or 3-4 carbon atoms, referred to herein as $\rm C_2\text{--}C_6$ alkenyl, and $\rm C_3\text{--}C_4$ alkenyl, respectively. Exemplary alkenyl groups include, but are not limited to, vinyl, allyl, butenyl, pentenyl, etc. [0022] The term "alkoxy" as used herein refers to a straight or branched alkyl group attached to oxygen (alkyl-O—). Exemplary alkoxy groups
include, but are not limited to, alkoxy groups of 1-6 or 2-6 carbon atoms, referred to herein as C_1 - C_6 alkoxy, and C_2 - C_6 alkoxy, respectively. Exemplary alkoxy groups include, but are not limited to methoxy, ethoxy, isopropoxy, etc. [0023] The term "alkynyl" as used herein refers to an unsaturated straight or branched hydrocarbon having at least one carbon-carbon triple bond. Exemplary alkynyl groups include, but are not limited to, straight or branched groups of 2-6, or 3-6 carbon atoms, referred to herein as C₂-C₆alkynyl, and C₃-C₆alkynyl, respectively. Exemplary alkynyl groups include, but are not limited to, ethynyl, propynyl, butynyl, pentynyl, hexynyl, methylpropynyl, etc. [0024] Unless otherwise specifically defined, the term "aryl" refers to cyclic, aromatic hydrocarbon groups that have 1 to 2 aromatic rings, including monocyclic or bicyclic groups such as phenyl, biphenyl or naphthyl. Where containing two aromatic rings (bicyclic, etc.), the aromatic rings of the aryl group may be joined at a single point (e.g., biphenyl), or fused (e.g., naphthyl). The aryl group may be optionally substituted by one or more substituents, e.g., 1 to 5 substituents, at any point of attachment. Exemplary substituents include, but are not limited to, —H, —halogen, —O—C₁-C₆ alkyl, C₁-C₆ alkyl, —OC₂-C₆ alkenyl, —OC₂-C₆ alkynyl, —C₂-C₆ alkenyl, —OH, —OP (O)(OH)₂, —OC(O)C₁-C₆ alkyl, —C(O)C₁-C₆ alkyl, —OC (O)OC₁-C₆ alkyl, NH₂, NH(C₁-C₆ alkyl), N(C₁-C₆ alkyl)₂, —S(O)₂-C₁-C₆ alkyl, —S(O)NHC₁-C₆ alkyl, and S(O)N (C₁-C₆ alkyl)₂. The substituents can themselves be optionally substituted. Furthermore when containing two fused rings the aryl groups herein defined may have an unsaturated or partially saturated ring fused with a fully saturated ring. Exemplary ring systems of these aryl groups include indanyl, indenyl, tetrahydronaphthalenyl, and tetrahydrobenzo-annulenyl. **[0025]** The terms "cycloalkyl" or a "carbocyclic group" as used herein refers to a saturated or partially unsaturated hydrocarbon group of, for example, 3-6, or 4-6 carbons, referred to herein as $\rm C_3\text{-}C_6$ cycloalkyl or $\rm C_4\text{-}C_6$ cycloalkyl, respectively. Exemplary cycloalkyl groups include, but are not limited to, cyclohexyl, cyclopentyl, cyclopentenyl, cyclobutyl or cyclopropyl. [0026] The terms "halo" or "halogen" as used herein refer to F, Cl, Br, or I. [0027] The term "heteroaryl" as used herein refers to a monocyclic aromatic 5 or 6 membered ring system containing one or more heteroatoms, for example one to three heteroatoms, such as nitrogen, oxygen, and sulfur. Where possible, said heteroaryl ring may be linked to the adjacent radical though carbon or nitrogen. Examples of heteroaryl rings include but are not limited to furan, thiophene, pyrrole, thiazole, oxazole, isothiazole, isoxazole, imidazole, pyrazole, triazole, pyridine or pyrimidine etc. [0028] The terms "heterocyclyl" or "heterocyclic group" are art-recognized and refer to saturated or partially unsaturated, 4-10 membered ring structures, including monocyclic, bridged or fused rings, and whose ring structures include one to three heteroatoms, such as nitrogen, oxygen, and sulfur. Where possible, heterocyclyl rings may be linked to the adjacent radical through carbon or nitrogen. Examples of heterocyclyl groups include, but are not limited to, pyrrolidine, piperidine, morpholine, thiomorpholine, piperazine, oxetane, azetidine, tetrahydrofuran or dihydrofuran etc. [0029] "Spirocycloalkyl" or "spirocyclyl" means carbogenic bicyclic ring systems with both rings connected through a single atom. The ring can be different in size and nature, or identical in size and nature. Examples include spiropentane, spirohexane, spiroheptane, spirocotane, spirononane, or spirodecane. One or both of the rings in a spirocycle can be fused to another carbocyclic, heterocyclic, aromatic, or heteroaromatic ring. One or more of the carbon atoms in the spirocycle can be substituted with a heteroatom (e.g., O, N, S, or P). A (C_5-C_{12}) spirocycloalkyl is a spirocycle containing between 5 and 12 carbon atoms. One or more of the carbon atoms can be substituted with a heteroatom. [0030] The term "spiroheterocycloalkyl" or "spiroheterocyclyl" is understood to mean a spirocycle wherein at least one of the atoms in one of the rings is a heteroatom. In some embodiments, at least one of the atoms in one of the rings is O, N, S, or P. [0031] The term "oxo" as used herein refers to an "=O" group. [0032] "Individual," "patient," or "subject" are used interchangeably herein and include any animal, including mammals, including mice, rats, other rodents, rabbits, dogs, cats, swine, cattle, sheep, horses, or primates, and humans. The compounds described herein can be administered to a mammal, such as a human, but can also be administered to other mammals such as an animal in need of veterinary treatment, e.g., domestic animals (e.g., dogs, cats, and the like), farm animals (e.g., cows, sheep, pigs, horses, and the like) and laboratory animals (e.g., rats, mice, guinea pigs, and the like). The mammal treated in the methods described herein is desirably a mammal in which treatment of a disorder described herein is desired, such as a human. [0033] As used herein, the term "pharmaceutically acceptable salt" refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge et al., describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 1977, 66, 1-19, incorporated herein by reference. Pharmaceutically acceptable salts of the compounds of this disclosure include those derived from suitable inorganic and organic acids and bases. Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange. Other pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, and the like. [0034] Salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium and $N^+(C_{14}alkyl)_4$ salts. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, lower alkyl sulfonate and aryl sulfonate. [0035] Unless otherwise stated, structures depicted herein are also meant to include all enantiomeric, diastereomeric, and geometric (or conformational) forms of the structure; for example, the R and S configurations for each asymmetric center, Z and E double bond isomers, and Z and E conformational isomers. Therefore, single stereochemical isomers as well as enantiomeric, diastereomeric, and geometric (or conformational) mixtures of the present compounds are within the scope of the present disclosure. Unless otherwise stated, all tautomeric forms of the compounds of the present disclosure are within the scope of the present disclosure. [0036] "Therapeutically effective amount" includes the amount of the subject compound that will elicit the biological or medical response of a tissue, system, animal or human that is being sought by the researcher, veterinarian, medical doctor or other clinician. A compound described herein, e.g., an EED, EHZ2, and/or PRC2 inhibitor, is administered in therapeutically effective amounts to treat a condition, e.g., a condition described herein. Alternatively, a therapeutically effective amount of a compound is the quantity required to achieve a desired therapeutic and/or prophylactic effect, such as an amount which results in the prevention of or a decrease in the symptoms associated with the condition. [0037] A compound described herein, e.g., an EED, EHZ2, and/or PRC2 inhibitor, can be formulated as a pharmaceutical composition using a pharmaceutically acceptable carrier and administered by a variety of routes. In some embodiments, such compositions are for oral administration. In some embodiments, such compositions are for parenteral (by injection) administration. In some embodiments, such compositions are for transdermal administration. In some embodiments, such compositions are for intravenous (IV) administration. In some embodiments, such compositions are for intramuscular (IM) administration. Such pharmaceutical compositions and processes for preparing them are well known in the art. See, e.g., REM-INGTON: THE SCIENCE AND PRACTICE OF PHAR-MACY (A. Gennaro, et al., eds., 19th ed., Mack Publishing Co., 1995). Dosages of compounds described herein in oral compositions include, but are not limited to, 6 mg. [0038] "Compound 1" as described herein, refers to a compound
represented by: [0039] "Compound 2" as described herein, refers to a compound represented by: [0040] "Compound 3" as described herein, refers to a compound represented by: [0041] "Compound 4" as described herein, refers to a compound represented by: #### Downregulation of BCL11A Expression [0042] The present disclosure provides, in an embodiment, methods of downregulating expression of BCL11A. [0043] A method of downregulating BCL11A described herein is, in an embodiment, a method of downregulating BCL11A in a cell comprising: contacting the cell sample with an EED, EHZ2, and/or PRC2 inhibitor in amount sufficient to decrease expression of BCL11A. In some embodiments, the cell is an erythroid cell differentiated from a CD34+ cell. In some embodiments, upon contacting the cell, HBG1 and/or HBG2 expression increases. In some embodiments, upon contacting the cell with the protein inhibitor, the cell does or does not express fetal hemoglobin. In some embodiments, the EED, EHZ2, and/or PRC2 inhibitor is selected from the group consisting of an antibody against EED, EHZ2, and/or PRC2 or an antigen-binding fragment thereof, a small molecule, and a nucleic acid. In some embodiments, the nucleic acid is a EED, EHZ2, and/or PRC2-specific RNA interference agent, a vector encoding a RNA interference agent, or an aptamer that binds EED, EZH2, and/or PRC2. In some embodiments, the expression level of BCL11A is decreased by at least 25% relative to a reference level. In some embodiments, the expression level of BCL11A is decreased by at least 50% relative to a reference level. In some embodiments, the expression level of BCL11A is decreased by at least 75% relative to a reference level. In some embodiments, the expression level of BCL11A is decreased by at least 90% relative to a reference level. In some embodiments, the expression level of BCL11A is decreased by at least 99% relative to a reference level. In some embodiments, the expression level is a protein expression level or a mRNA expression level. In some embodiments, the mRNA expression level is determined by qPCR or RNA-Seq. In some embodiments, the protein expression level is determined using a method selected from the group consisting of high-performance liquid chromatography (HPLC), immunohistochemistry (IHC), immunofluorescence, mass spectrometry, flow cytometry, and Western blot. #### Methods of Treatment [0044] The present disclosure also provides, in another embodiment, methods of treating BCL11A mediated disorders in a patient in need thereof, comprising administering to the patient a therapeutic agent described herein, e.g., an EED, EHZ2, and/or PRC2 inhibitor. Exemplary BCL11A mediated disorders include, but are not limited to, triple negative breast cancer, non-small cell lung cancer, glioblastoma, neuroblastoma, prostate cancer, type 2 diabetes, laryngeal squamous cell carcinoma, and Williams syndrome. [0045] Described herein, in another embodiment, is a method of identifying a patient having a BCL11A mediated disorder who may benefit from treatment comprising one or more inhibitors of EED, EHZ2, and/or PRC2, comprising determining an expression level of BCL11A in a sample obtained from the patient, wherein an increased expression level of BCL11A in the sample as compared to a reference expression level identifies the patient as one who may benefit from the EED, EHZ2, and/or PRC2 inhibitor treatment. In some embodiments, the EED, EHZ2, and/or PRC2 inhibitor is selected from the group consisting of an antibody against EED, EHZ2, and/or PRC2 or an antigen-binding fragment thereof, a small molecule, and a nucleic acid. In some embodiments, the nucleic acid is a EED, EHZ2, and/or PRC2-specific RNA interference agent, a vector encoding a RNA interference agent, or an aptamer that binds EED, EZH2, and/or PRC2. In some embodiments, the BCL11A mediated disorder is selected from the group consisting of triple negative breast cancer, non-small cell lung cancer, glioblastoma, neuroblastoma, prostate cancer, type 2 diabetes, laryngeal squamous cell carcinoma, and Williams syndrome. In some embodiments, the expression level of BCL11A is decreased by at least 25% relative to a reference level. In some embodiments, the expression level of BCL11A is decreased by at least 50% relative to a reference level. In some embodiments, the expression level of BCL11A is decreased by at least 75% relative to a reference level. In some embodiments, the expression level of BCL11A is decreased by at least 90% relative to a reference level. In some embodiments, the expression level of BCL11A is decreased by at least 99% relative to a reference level. In some embodiments, the expression level is a protein expression level or a mRNA expression level. In some embodiments, the mRNA expression level is determined by qPCR or RNA-Seq. In some embodiments, the protein expression level is determined using a method selected from the group consisting of high-performance liquid chromatography (HPLC), immunohistochemistry (IHC), immunofluorescence, mass spectrometry, flow cytometry, and Western blot. [0046] Also described herein, in another embodiment, is a method of treating a patient having a BCL11A mediated disorder, comprising administering to the patient a therapeutically effective amount of a EED, EHZ2, and/or PRC2 inhibitor, wherein the expression level of BCL11A in a sample obtained from the patient has been determined to be decreased after the administration as compared to a reference expression level. In some embodiments, the EED, EHZ2, and/or PRC2 inhibitor is selected from the group consisting of an antibody against EED, EHZ2, and/or PRC2 or an antigen-binding fragment thereof, a small molecule, and a nucleic acid. In some embodiments, the nucleic acid is a EED, EHZ2, and/or PRC2-specific RNA interference agent, a vector encoding a RNA interference agent, or an aptamer that binds EED, EZH2, and/or PRC2. In some embodiments, the BCL11A mediated disorder is selected from the group consisting of triple negative breast cancer, non-small cell lung cancer, glioblastoma, neuroblastoma, prostate cancer, type 2 diabetes, laryngeal squamous cell carcinoma, and Williams syndrome. In some embodiments, the expression level of BCL11A is decreased by at least 25% relative to a reference level. In some embodiments, the expression level of BCL11A is decreased by at least 50% relative to a reference level. In some embodiments, the expression level of BCL11A is decreased by at least 75% relative to a reference level. In some embodiments, the expression level of BCL11A is decreased by at least 90% relative to a reference level. In some embodiments, the expression level of BCL11A is decreased by at least 99% relative to a reference level. In some embodiments, the expression level is a protein expression level or a mRNA expression level. In some embodiments, the mRNA expression level is determined by qPCR or RNA-Seq. In some embodiments, the protein expression level is determined using a method selected from the group consisting of high-performance liquid chromatography (HPLC), immunohistochemistry (IHC), immunofluorescence, mass spectrometry, flow cytometry, and Western blot. [0047] Further described herein, in another embodiment, is a method of treatment of a hemoglobinopathy in a subject comprising administering an effective amount of a composition comprising an inhibitor of EED, EHZ2, and/or PRC2, wherein the inhibitor of EED, EHZ2, and/or PRC2 downregulates the expression of BCL11A and whereby fetal hemoglobin expression is increased in the subject relative to prior to the administration. In some embodiments, the hemoglobinopathy is selected from the group consisting of sickle cell disease (SCD), α-thalassemia, and β-thalassemia. In some embodiments, the β-thalassemia is selected from the group consisting of sickle β-thalassemia, hemoglobin C β-thalassemia, and hemoglobin E β-thalassemia. In some embodiments, the sickle β-thalassemia is selected from sickle BO thalassemia and sickle β+ thalassemia. In some embodiments, the EED, EHZ2, and/or PRC2 inhibitor is selected from the group consisting of an antibody against EED, EHZ2, and/or PRC2 or an antigen-binding fragment thereof, a small molecule, and a nucleic acid. In some embodiments, the nucleic acid is a EED, EHZ2, and/or PRC2-specific RNA interference agent, a vector encoding a RNA interference agent, or an aptamer that binds EED, EZH2, and/or PRC2. In some embodiments, the expression level of BCL11A is decreased by at least 25% relative to a reference level. In some embodiments, the expression level of BCL11A is decreased by at least 50% relative to a reference level. In some embodiments, the expression level of BCL11A is decreased by at least 75% relative to a reference level. In some embodiments, the expression level of BCL11A is decreased by at least 90% relative to a reference level. In some embodiments, the expression level of BCL11A is decreased by at least 99% relative to a reference level. In some embodiments, the expression level is a protein expression level or a mRNA expression level. In some embodiments, the mRNA expression level is determined by qPCR or RNA-Seq. In some embodiments, the protein expression level is determined using a method selected from the group consisting of high-performance liquid chromatography (HPLC), immunohistochemistry (IHC), immunofluorescence, mass spectrometry, flow cytometry, and Western blot. #### Genetically Modified Cells [0048] The present disclosure additionally provides, in another embodiment, a genetically modified cell comprising an insertion and/or deletion in a gene loci that encodes a protein selected from the group consisting of EED, EHZ2, and PRC2, wherein the insertion and/or deletion is capable of downregulating expression of BCL11A in the cell. In some embodiments, the expression level of BCL11A is decreased by at least 25% relative to a reference level. In some embodiments, the expression
level of BCL11A is decreased by at least 50% relative to a reference level. In some embodiments, the expression level of BCL11A is decreased by at least 75% relative to a reference level. In some embodiments, the expression level of BCL11A is decreased by at least 90% relative to a reference level. In some embodiments, the expression level of BCL11A is decreased by at least 99% relative to a reference level. In some embodiments, the expression level is a protein expression level or a mRNA expression level. In some embodiments, the mRNA expression level is determined by qPCR or RNA-Seq. In some embodiments, the protein expression level is determined using a method selected from the group consisting of high-performance liquid chromatography (HPLC), immunohistochemistry (IHC), immunofluorescence, mass spectrometry, flow cytometry, and Western blot. #### Inhibitors [0049] The present disclosure also provides, in some embodiments, inhibitors useful in the methods described herein. Such inhibitors may include EED, EHZ2, and/or PRC2 inhibitors. [0050] In one embodiment, an inhibitor described herein is represented by a compound of Formula I: $$X_2$$ X_3 X_2 X_1 X_2 X_3 X_4 or a pharmaceutically acceptable salt, prodrug, solvate, hydrate, enantiomer, isomer, or tautomer thereof, wherein: **[0051]** X_1 , X_2 , and X_3 are independently N or $C(R_5)$, provided that X_1 , X_2 , and X_3 are not all N and at least one of X_1 , X_2 , or X_3 is N; [0052] A1 is a bond, $C(R_8)(R_9)$ —, —O—,— NR_8 , —S—,—S(O)—, or — SO_2 —; [0053] A2 and Y are independently at each occurrence — $C(R_8)(R_9)$ —, —O—, — NR_8 , —S—, —S(O)—, or — SO_2 —; **[0054]** R₁ is H, halogen, —NR₈R₉, —P(O)(OR₈)(OR₉), —C(O)R₈, —C(O)NR₈R₉, —CN, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₁₀ cycloalkyl, c₃-C₈ spirocycloalkyl, spiroheterocyclyl, heterocyclyl, aryl, or heteroaryl, wherein the alkyl, alkoxy, alkenyl, alkynyl, cycloalkyl, spirocycloalkyl, spiroheterocyclyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with one or more R₆; **[0055]** R₂ and R₃ are independently at each occurrence H, halogen, —OH, —NH₂, —CN, C1-C6 alkyl, C1-C6 alkoxy, C₂-C₆ alkenyl, or C₂-C₆ alkynyl, wherein the alkyl, alkoxy, alkenyl, or alkynyl is optionally substituted with one or more R₇: **[0056]** R_4 is H, halogen, —OH, —NH $_2$, —CN, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_6 alkenyl, or C_2 - C_6 alkynyl, wherein the alkyl, alkoxy, alkenyl, or alkynyl is optionally substituted with one or more R_7 , [0057] or R_4 and R_9 when taken together can form $C_3\hbox{-}C_{10}$ cycloalkyl, heterocyclyl, aryl, or heteroaryl, wherein the cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with one or more $R_{\rm 10};\,$ $\begin{array}{ll} \textbf{[0058]} & R_5 \text{ is H, halogen, } --\text{CN, } --\text{OR}_8, \\ --\text{NR}_8\text{R}_9, \\ --\text{C(O)}\text{OR}_8, \\ --\text{C(O)}\text{OR}_8, \\ --\text{C(O)}\text{OR}_8, \\ --\text{S(O)}_2\text{R}_8, \\ --\text{NR}_8\text{S(O)}_2\text{R}_9, \\ --\text{S(O)}_2\text{NR}_8\text{R}_9, \\ C_1\text{-}C_6 \\ \text{alkenyl, } C_2\text{-}C_6 \\ \text{alkenyl, } C_2\text{-}C_6 \\ \text{alkynyl, } C_3\text{-}C_{10} \\ \text{cycloalkyl, heterocyclyl, aryl, or heteroaryl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with one or more R_7;} \end{array}$ [0060] two R_6 can combine to form C_3 - C_{10} cycloalkyl, heterocyclyl, aryl, or heteroaryl, wherein the cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with one or more R_{10} ; $\begin{array}{lll} \textbf{[0061]} & R_7 \text{ is independently at each occurrence oxo, halogen,} & -- \text{CN,} & -- \text{OR}_8, & -- \text{C(O)} \text{OR}_8, & -- \text{C(O)} \text{OR}_8, & -- \text{C(O)} \text{NR}_8 \text{R}_9, \\ & -- \text{NR}_8 \text{C(O)} \text{R}_9, & -- \text{S(O)}_2 \text{R}_8, & -- \text{NR}_8 \text{S(O)}_2 \text{R}_9, \\ & -- \text{S(O)}_2 \text{NR}_8 \text{R}_9, & C_1 \text{--} \text{C}_6 \text{ alkyl, } C_1 \text{--} \text{C}_6 \text{ haloalkyl, } \text{C}_2 \text{--} \text{C}_6 \text{ alkenyl, } \text{C}_2 \text{--} \text{C}_6 \text{ alkynyl, } \text{C}_3 \text{--} \text{C}_8 \text{ cycloalkyl, heterocyclyl, aryl, or heteroaryl;} \end{array}$ **[0062]** R₈ is independently at each occurrence H, OH, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl, wherein each alkyl, alkoxy, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with one or more R_{10} ; [0063] R_9 is independently at each occurrence H, halogen, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ alkoxy, $C_2\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ alkynyl, $C_3\text{-}C_8$ cycloalkyl, heterocyclyl, aryl, or heteroaryl, wherein each alkyl, alkoxy, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with one or more $R_{10};$ [0064] or R_8 and R_9 when taken together form a C_3 - C_6 cycloalkyl or heterocyclyl, wherein the cycloalkyl or heterocyclyl is optionally substituted with R_{10} ; and $\begin{tabular}{ll} \begin{tabular}{ll} \beg$ [0066] R_{11} and R_{12} are independently H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl. **[0067]** In some embodiments, X_1 is N or $C(R_5)$. In some embodiments, X_1 is N. In some embodiments, X_1 is $C(R_5)$. In some embodiments, X_2 is N. In some embodiments, X_2 is $C(R_5)$. In some embodiments, X_3 is N. In some embodiments, X_3 is $C(R_5)$. [0068] In some embodiments, A_1 is a bond, $-C(R_8)(R_9)$, -O, $-NR_8$, -S, -S, -S(O), or $-SO_2$. [0069] In some embodiments, A_2 and Y are independently at each occurrence $-C(R_8)(R_9)$, -O, $-NR_8$, or $-SO_2$. **[0070]** In some embodiments, A_1 is $-C(R_8)(R_9)$ —, -O—, $-NR_8$ —, -S—, -S(O)—, or $-SO_2$ —. In some embodiments, A_1 is a bond. In some embodiments, A_1 is —C(R₈)(R₉)— or —O—. In some embodiments, A₁ is —C(R₈)(R₉)—. In some embodiments, A₁ is—O—. In some embodiments, A₁ is—NR₈—. In some embodiments, A₁ is —S—. In some embodiments, A₁ is —S—. In some embodiments, A₁ is —S(O)—. In some embodiments, A₁ is —SO₂—. **[0071]** In some embodiments, A_2 is $-C(R_8)(R_9)$ —, -O—, $-NR_8$ —, or $-SO_2$ —. In some embodiments, A_2 is $-C(R_8)(R_9)$ — or -O—. In some embodiments, A_2 is $-C(R_8)(R_9)$ —. In some embodiments, A_2 is -O—. In some embodiments, A_2 is -S—. In some embodiments, A_2 is -S—. In some embodiments, A_2 is -S0.—. In some embodiments, A_2 is -S0.—. In some embodiments, A_2 is -S0.—. **[0072]** In some embodiments, Y is $-C(R_8)(R_9)$ —, -O—, $-NR_8$ —, or $-SO_2$ —. In some embodiments, Y is $-C(R_8)(R_9)$ — or -O—. In some embodiments, Y is $-C(R_8)(R_9)$ —. In some embodiments, Y is -O—. In some embodiments, Y is -S—. In some embodiments, Y is -S—. In some embodiments, Y is -S—. In some embodiments, Y is -S0—. In some embodiments, Y is -S0—. [0073] In some embodiments, R_1 is H, halogen, $-NR_8R_9$, $-P(O)(OR_8)(OR_9), -C(O)R_8, -C(O)NR_8R_9, -CN,$ C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C₃-C₁₀ cycloalkyl, C₃-C₈ spirocycloalkyl, spiroheterocyclyl, heterocyclyl, aryl, or heteroaryl. In some embodiments, R_1 is H. In some embodiments, R_1 is $-NR_8R_9$. In some embodiments, R_1 is $-P(OR_8)(OR_9)$. In some embodiments, R_1 is $-C(O)R_8$. In some embodiments, R_1 is -C(O)NR₈R₉. In some embodiments, R₁ is —CN. In some embodiments, R₁ is C₁-C₆ alkyl. In some embodiments, R₁ is C_1 - C_6 alkoxy. In some embodiments, R_1 is C_2 - C_6 alkenyl. In some embodiments, R_1 is C_2 - C_6 alkynyl. In some embodiments, R₁ is C₃-C₁₀ cycloalkyl. In some embodiments, R₁ is C₃-C₈ spirocycloalkyl. In some embodiments, R₁ is spiroheterocyclyl. In some embodiments, R₁ is heterocyclyl. In some embodiments, R_1 is aryl. In some embodiments, R_1 is heteroaryl. [0074] In some embodiments, R_1 is C_1 - C_6 alkyl is optionally substituted with one or more R₆. In some embodiments, R_1 is C_1 - C_6 alkoxy is optionally substituted with one or more R_6 . In some embodiments, R_1 is C_2 - C_6 alkenyl is optionally substituted with one or more R_6 . In some embodiments, R_1 is C₂-C₆ alkynyl is optionally substituted with one or more R_6 . In some embodiments, R_1 is C_3 - C_{10} cycloalkyl is optionally substituted with one or more R_6 . In some embodiments, R₁ is C₃-C₈ spirocycloalkyl is optionally substituted with one or more R₆. In some embodiments, R₁ is spiroheterocyclyl is optionally substituted with one or more R₆. In some embodiments, R₁ is heterocyclyl is optionally substituted with one or more R₆. In some embodiments, R₁ is aryl is optionally substituted with one or more R₆. In some embodiments, R₁ is heteroaryl is optionally substituted with one or more R₆. -continued [0075] In another embodiment, R_1 is or [0076] In another embodiment, R_1 is [0077] In another embodiment, R_1 is [0078] In another embodiment, R_1 is [0079] In another embodiment, R_1 is $\begin{tabular}{ll} \textbf{[0080]} & In some embodiments, R_1 is \\ \textbf{[0081]} & In some embodiments, R_2 is independently at each occurrence H, halogen, $$-OH, $-NH_2$, $-CN, C_1-C_6 alkyl, $$$ $C_1\text{-}C_6$ alkoxy, $C_2\text{-}C_6$ alkenyl, or $C_2\text{-}C_6$ alkynyl. In some embodiments, R_2 is H. In some embodiments, R_2 is halogen. In some embodiments, R_2 is —OH. In some embodiments, R_2 is —NH $_2$. In some embodiments, R_2 is —CN. In some embodiments, R_2 is $C_1\text{-}C_6$ alkyl. In some embodiments, R_2 is $C_1\text{-}C_6$ alkoxy. In some
embodiments, R_2 is $C_2\text{-}C_6$ alkenyl. In some embodiments, R_2 is $C_2\text{-}C_6$ alkenyl. **[0082]** In some embodiments, R_2 is C_1 - C_6 alkyl optionally substituted with one or more R_7 . In some embodiments, R_2 is C_1 - C_6 alkoxy optionally substituted with one or more R_7 . In some embodiments, R_2 is C_2 - C_6 alkenyl optionally substituted with one or more R_7 . In some embodiments, R_2 is C_2 - C_6 alkynyl optionally substituted with one or more R_7 . **[0083]** In some embodiments, R_3 is independently at each occurrence H, halogen, —OH, —NH $_2$, —CN, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_6 alkenyl, or C_2 - C_6 alkynyl. In some embodiments, R_3 is H. In some embodiments, R_3 is halogen. In some embodiments, R_3 is —OH. In some embodiments, R_3 is —CN. In some embodiments, R_3 is C_1 - C_6 alkoxy. In some embodiments, R_3 is C_2 - C_6 alkenyl. In some embodiments, R_3 is C_2 - C_6 alkoxyl. In some embodiments, R_3 is C_2 - C_6 alkenyl. In some embodiments, R_3 is C_2 - C_6 alkenyl. In some embodiments, R_3 is C_2 - C_6 alkenyl. In some embodiments, R_3 is C_2 - C_6 alkenyl. [0084] In some embodiments, R_3 is C_1 - C_6 alkyl optionally substituted with one or more R_7 . In some embodiments, R_3 is C_1 - C_6 alkoxy optionally substituted with one or more R_7 . In some embodiments, R_3 is C_2 - C_6 alkenyl optionally substituted with one or more R_7 . In some embodiments, R_3 is C_2 - C_6 alkynyl optionally substituted with one or more R_7 . [0085] In some embodiments, R_3 is independently at each occurrence H, halogen, —OH, —NH $_2$, —CN, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_6 alkenyl, or C_2 - C_6 alkynyl. In some embodiments, R_4 is H. In some embodiments, R_4 is halogen. In some embodiments, R_4 is —OH. In some embodiments, R_4 is —CN. In some embodiments, R_4 is C_1 - C_6 alkoxy. In some embodiments, R_4 is C_2 - C_6 alkenyl. In some embodiments, R_4 is C_2 - C_6 alkenyl. In some embodiments, R_4 is C_2 - C_6 alkenyl. In some embodiments, R_4 is C_2 - C_6 alkenyl. In some embodiments, R_4 is C_2 - C_6 alkenyl. In some embodiments, R_4 is C_2 - C_6 alkenyl. [0086] In some embodiments, R_4 is C_1 - C_6 alkyl optionally substituted with one or more R_7 . In some embodiments, R_4 is C_1 - C_6 alkoxy optionally substituted with one or more R_7 . In some embodiments, R_4 is C_2 - C_6 alkenyl optionally substituted with one or more R_7 . In some embodiments, R_4 is C_2 - C_6 alkynyl optionally substituted with one or more R_7 . [0087] In some embodiments, R_4 and R_9 can form C_3 - C_{10} cycloalkyl, heterocyclyl, aryl, or heteroaryl. In some embodiments, R_4 and R_9 can form C_3 - C_{10} cycloalkyl, heterocyclyl, aryl, or heteroaryl, wherein the cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with one or more R_{10} . [0088] In some embodiments, R_4 and R_9 can form C_3 - C_{10} cycloalkyl. In some embodiments, R_4 and R_9 can form heterocyclyl. In some embodiments, R_4 and R_9 can form aryl. In some embodiments, R_4 and R_9 can form heteroaryl. [0089] In some embodiments, R_4 and R_9 can form C_3 - C_{10} cycloalkyl optionally substituted with one or more R_{10} . In some embodiments, R_4 and R_9 can form heterocyclyl optionally substituted with one or more R_{10} . In some embodiments, R_4 and R_9 can form aryl optionally substituted with one or more R_{10} . In some embodiments, R_4 and R_9 can form heteroaryl optionally substituted with one or more R_{10} . [0090] In some embodiments, R_5 is H, halogen, —CN, —OR₈, —NR₈R₉, —C(O)R₈, —C(O)OR₈, —C(O)NR₈R₉, —NR₈C(O)R₉, —S(O)₂R₈, —NR₈S(O)₂R₉, —S(O)₂NR₈R₉, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₂-C₆ alk- enyl, C_2 - C_6 alkynyl, C_3 - C_{10} cycloalkyl, heterocyclyl, aryl, or heteroaryl, wherein alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with one or more R_7 . [0091] In some embodiments, R_5 is H, halogen, —CN, $-OR_8$, $-NR_8R_9$, $-C(O)R_8$, $-C(O)OR_8$, $-C(O)NR_8R_9$, $-NR_8C(O)R_9$, $-S(O)R_8$, $-S(O)_2R_8$, $-NR_8S(O)_2R_9$, $-S(O)_2NR_8R_9$, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_{10} cycloalkyl, heterocyclyl, aryl, or heteroaryl. In some embodiments, R₅ is H. In some embodiments, R_5 is halogen. In some embodiments, R_5 is CN. In some embodiments, R₅ is —OR₈. In some embodiments, R_5 is $-NR_8R_9$. In some embodiments, R_5 is -C(O) R_8 . In some embodiments, R_5 is $-C(O)OR_8$. In some embodiments, R_5 is $-C(O)NR_8R_9$. In some embodiments, R_5 is $-NR_8C(O)R_9$. In some embodiments, R_5 is $-S(O)R_8$. In some embodiments, R_5 is $-S(O)_2R_8$. In some embodiments, R_5 is $-NR_8S(O)_2R_9$. In some embodiments, R_5 is $--S(O)_2NR_8R_9$. In some embodiments, R_5 is C_1 - C_6 alkyl. In some embodiments, R_5 is C_1 - C_6 haloalkyl. In some embodiments, R_5 is C_2 - C_6 alkenyl. In some embodiments, R_5 is C_2 - C_6 alkynyl. In some embodiments, R_5 is C_3 - C_{10} cycloalkyl. In some embodiments, R₅ is heterocyclyl. In some embodiments, R5 is aryl. In some embodiments, R5 is heteroarv1. **[0092]** In some embodiments, R_5 is C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, or C_2 - C_6 alkynyl. **[0093]** In some embodiments, R_5 is C_1 - C_6 alkyl. In some embodiments, R_5 is methyl. In some embodiments, R_5 is ethyl. In some embodiments, R_5 is propyl. In some embodiments, R_5 is butyl. In some embodiments, R_5 is pentyl. In some embodiments, R_5 is hexyl. **[0094]** In some embodiments, R_5 is C_1 - C_6 alkyl optionally substituted with one or more R_7 . In some embodiments, R_5 is methyl optionally substituted with one or more R_7 . In some embodiments, R_5 is ethyl optionally substituted with one or more R_7 . In some embodiments, R_5 is propyl optionally substituted with one or more R_7 . In some embodiments, R_5 is butyl optionally substituted with one or more R_7 . In some embodiments, R_5 is pentyl optionally substituted with one or more R_7 . In some embodiments, R_5 is hexyl optionally substituted with one or more R_7 . [0095] In some embodiments, R_5 is C_1 - C_6 haloalkyl. In some embodiments, R_5 is halomethyl. In some embodiments, R_5 is haloethyl. In some embodiments, R_5 is halopropyl. In some embodiments, R_5 is halobutyl. In some embodiments, R_5 is halohexyl. **[0096]** In some embodiments, R_5 is C_2 - C_6 alkenyl. In some embodiments, R_5 is C_2 - C_6 alkynyl. **[0097]** In some embodiments, R_5 is C_2 - C_6 alkenyl optionally substituted with one or more R_7 . In some embodiments, R_5 is C_2 - C_6 alkynyl optionally substituted with one or more R_7 . [0098] In some embodiments, R_5 is C_3 - C_{10} cycloalkyl. **[0099]** In some embodiments, R_5 is C_3 - C_{10} cycloalkyl, wherein the cycloalkyl is optionally substituted with one or more R_7 . **[0100]** In some embodiments, R_5 is C_3 - C_{10} cycloalkyl. In some embodiments, R_5 is monocylic C_3 - C_{10} cycloalkyl. In some embodiments, R_5 is bicyclic C_3 - C_{10} cycloalkyl. In some embodiments, R_5 is polycyclic C_3 - C_{10} cycloalkyl. **[0101]** In some embodiments, R_5 is C_3 - C_{10} cycloalkyl optionally substituted with one or more R_7 . In some embodi- ments, R_5 is monocylic C_3 - C_{10} cycloalkyl optionally substituted with one or more R_7 . In some embodiments, R_5 is bicyclic C_3 - C_{10} cycloalkyl optionally substituted with one or more R_7 . In some embodiments, R_5 is polycyclic C_3 - C_{10} cycloalkyl optionally substituted with one or more R_7 . **[0102]** In some embodiments, R_5 is heterocyclyl, aryl, or heteroaryl. In some embodiments, R_5 is heterocyclyl. In some embodiments, R_5 is aryl. In some embodiments, R_5 is phenyl. **[0103]** In some embodiments, R_5 is heterocyclyl, aryl, or heteroaryl, wherein the heterocyclyl, aryl, or heteroaryl is optionally substituted with one or more R_7 . In some embodiments, R_5 is heterocyclyl optionally substituted with one or more R_7 . In some embodiments, R_5 is aryl optionally substituted with one or more R_7 . In some embodiments, R_5 is phenyl optionally substituted with one or more R_7 . **[0104]** In some embodiments, R_5 is heteroaryl. In some embodiments, R_5 is pyridine. In some embodiments, R_5 is imidazolyl. In some embodiments, R_5 is pyrazolyl. In some embodiments, R_5 is pyrimidinyl. **[0105]** In some embodiments, R_5 is heteroaryl optionally substituted with one or more R_7 . In some embodiments, R_5 is pyridine optionally substituted with one or more R_7 . In some embodiments, R_5 is imidazelyl optionally substituted with one or more R_7 . In some embodiments, R_5 is pyrazelyl optionally substituted with one or more R_7 . In some embodiments, R_5 is pyrimidinyl optionally substituted with one or more R_7 . **[0106]** In some embodiments, R_5 is —CF₃. In some embodiments, R_5 is —CHF₂. In some embodiments, R_5 is —CH₂F. [0107] In some embodiments, R₆ is independently at each occurrence oxo, halogen, -CN, OH, -NR₈R₉, -OR₈, $-C(O)R_8$, $-C(O)OR_8$, $-C(O)NR_8R_9$, $-NR_8C(O)R_9$, $-S(O)R_8$, $-S(O)_2R_8$, $-NR_8S(O)_2R_9$, $-S(O)_2NR_8R_9$, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₈ cycloalkyl, heterocyclyl, aryl, or heteroaryl. In some embodiments, R₆ is oxo. In some embodiments, R₆ is halogen. In some embodiments, R₆ is CN. In some embodiments, R₆ is OH. In some embodiments, R₆ is —NR₈R₉. In some
embodiments, R_6 is $-OR_8$. In some embodiments, R_6 is $-NR_8R_9$. In some embodiments, R_6 is $-C(O)R_8$. In some embodiments, R_6 is — $C(O)OR_8$. In some embodiments, R_6 is — $C(O)NR_8R_9$. In some embodiments, R_6 is $-NR_8C(O)R_9$. In some embodiments, R_6 is $-S(O)R_8$. In some embodiments, R_6 is -S(O) $_{2}R_{8}$. In some embodiments, R_{6} is $-NR_{8}S(O)_{2}R_{9}$. In some embodiments, R₆ is —S(O)₂NR₈R₉. In some embodiments, R₆ is C₁-C₆ alkyl. In some embodiments, R₆ is C₁-C₆ haloalkyl. In some embodiments, R_6 is C_2 - C_6 alkenyl. In some embodiments, R₆ is C₂-C₆ alkynyl. In some embodiments, R₆ is C₃-C₁₀ cycloalkyl. In some embodiments, R₆ is heterocyclyl. In some embodiments, R₆ is aryl. In some embodiments, R_6 is heteroaryl. **[0108]** In some embodiments, R_6 is C_1 - C_6 alkyl optionally substituted with one or more R_{10} . In some embodiments, R_6 is C_1 - C_6 haloalkyl optionally substituted with one or more R_{10} . In some embodiments, R_6 is C_2 - C_6 alkenyl optionally substituted with one or more R_{10} . In some embodiments, R_6 is C_2 - C_6 alkynyl optionally substituted with one or more R_{10} . In some embodiments, R_6 is C_3 - C_{10} cycloalkyl optionally substituted with one or more R_{10} . In some embodiments, R_6 is heterocyclyl optionally substituted with one or more R_{10} . In some embodiments, R_6 is aryl optionally **[0109]** In another embodiment, two R_6 may combine to form C_3 - C_{10} cycloalkyl, heterocyclyl, aryl, or heteroaryl. In another embodiment, two R_6 may combine to form C_3 - C_{10} cycloalkyl. In another embodiment, two R_6 may combine to form a heteroaryl. In another embodiment, two R_6 may combine to form a heterocyclyl. In another embodiment, two R_6 may combine to form an aryl. In another embodiment, two R_6 may combine to form C_3 - C_{10} cycloalkyl, wherein the substituted with one or more R₁₀. In some embodiments, R₆ is heteroaryl optionally substituted with one or more R_{10} . combine to form a heterocyclyl. In another embodiment, two R_6 may combine to form an aryl. In another embodiment, two R_6 may combine to form $C_3\text{-}C_{10}$ cycloalkyl, wherein the cycloalkyl is optionally substituted with one or more R_{10} . In another embodiment, two R_6 may combine to form a heteroaryl, wherein the heteroaryl is optionally substituted with one or more R_{10} . In another embodiment, two R_6 may combine to form a heterocyclyl, wherein the heterocyclyl is optionally substituted with one or more R_{10} . In another embodiment, two R_6 may combine to form an aryl wherein the aryl is optionally substituted with one or more R_{10} . **[0110]** In some embodiments, R_7 is independently at each occurrence oxo, halogen, —CN, OR_8 , —C(O) R_8 , —C(O) OR_8 , —C(O) NR_8R_9 , — $NR_8C(O)R_9$, —S(O) R_8 , —S(O) R_8 , —S(O) R_8 , —NR $R_8S(O)_2R_9$, —S(O) R_8R_9 , C1-C6 alkyl, C1-C6 haloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C8 cycloalkyl, heterocyclyl, aryl, or heteroaryl. **[0111]** In some embodiments, R_7 is independently at each occurrence oxo, halogen, or —CN. In some embodiments, R_7 is oxo. In some embodiments, R_7 is halogen. In some embodiments, R_7 is F, Cl, Br, or I. In some embodiments, R_7 is F or Cl. In some embodiments, R_7 is F. In some embodiments, R_7 is Cl. In some embodiments, R_7 is —CN. **[0112]** In some embodiments, R_7 is independently at each occurrence $-OR_8$, $-C(O)R_8$, $-C(O)OR_8$, $-C(O)NR_8R_9$, $-NR_8C(O)R_9$, $-S(O)R_8$, $-S(O)_2R_8$, $-NR_8S(O)_2R_9$, or $-S(O)_2NR_8R_9$. In some embodiments, R_7 is $-OR_8$. In some embodiments, R_7 is $-C(O)R_8$. In some embodiments, R_7 is $-C(O)R_8$. In some embodiments, R_7 is $-C(O)R_8$. In some embodiments, R_7 is $-NR_8C(O)R_9$ **[0113]** In some embodiments, R_7 is independently at each occurrence C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, or C_2 - C_6 alkynyl. **[0114]** In some embodiments, R_7 is C_1 - C_6 alkyl. In some embodiments, R_7 is methyl. In some embodiments, R_7 is ethyl. In some embodiments, R_7 is propyl. In some embodiments, R_7 is butyl. In some embodiments, R_7 is pentyl. In some embodiments, R_7 is hexyl. **[0115]** In some embodiments, R_7 is C_1 - C_6 haloalkyl. In some embodiments, R_7 is halomethyl. In some embodiments, R_7 is haloethyl. In some embodiments, R_7 is halopropyl. In some embodiments, R_7 is halobutyl. In some embodiments, R_7 is halohexyl. **[0116]** In some embodiments, R_7 is C_2 - C_6 alkenyl. In some embodiments, R_7 is C_2 - C_6 alkynyl. **[0117]** In some embodiments, R_7 is independently at each occurrence C_3 - C_8 cycloalkyl or heterocyclyl. In some embodiments, R_7 is C_3 - C_8 cycloalkyl. In some embodiments, R_7 is heterocyclyl. **[0118]** In some embodiments, R_7 is independently at each occurrence aryl or heteroaryl. In some embodiments, R_7 is aryl. In some embodiments, R_7 is heteroaryl. **[0119]** In some embodiments, R_8 is independently at each occurrence H, OH, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl, wherein each alkyl, alkoxy, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with one or more R_{10} . **[0120]** In some embodiments, R_9 is independently at each occurrence H, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl, wherein each alkyl, alkoxy, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with one or more R_{10} . **[0121]** In some embodiments, R_8 and R_9 are independently at each occurrence H, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl. [0122] In some embodiments, $R_{\rm 8}$ and $R_{\rm 9}$ are independently at each occurrence H. **[0123]** In some embodiments, R_8 and R_9 are independently at each occurrence C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl. **[0124]** In some embodiments, R_8 and R_9 are independently at each occurrence C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl, wherein each alkyl, alkoxy, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with one or more R_{10} . **[0125]** In some embodiments, R_8 is independently at each occurrence H, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl, wherein each alkyl, alkoxy, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with one or more R_{10} . **[0126]** In some embodiments, R_8 is independently at each occurrence H, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl. [0127] In some embodiments, R_8 is H. [0128] In some embodiments, R_8 is halogen. [0129] In some embodiments, R_8 is independently at each occurrence C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl. [0130] In some embodiments, R_8 is independently at each occurrence C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl, wherein each alkyl, alkoxy, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with one or more R_{10} . **[0131]** In some embodiments, R_8 is independently at each occurrence C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_6 alkenyl or C_2 - C_6 alkynyl. **[0132]** In some embodiments, R_8 is independently at each occurrence C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_6 alkenyl or C_2 - C_6 alkynyl, wherein each alkyl, alkoxy, alkenyl or alkynyl is optionally substituted with one or more R_{10} . **[0133]** In some embodiments, R_8 is C_1 - C_6 alkyl. In some embodiments, R_8 is methyl. In some embodiments, R_8 is ethyl. In some embodiments, R_8 is propyl. In some embodiments, R_8 is butyl. In some embodiments, R_8 is pentyl. In some embodiments, R_8 is hexyl. **[0134]** In some embodiments, R_8 is C_1 - C_6 alkyl optionally substituted with one or more R_{10} . In some embodiments, R_8 is methyl optionally substituted with one or more R_{10} . In some embodiments, R_8 is ethyl optionally substituted with one or more $R_{10}.$ In some embodiments, R_8 is propyl optionally substituted with one or more $R_{10}.$ In some embodiments, R_8 is butyl optionally substituted with one or more $R_{10}.$ In some embodiments, R_8 is pentyl optionally substituted with one or more $R_{10}.$ In some embodiments, R_8 is hexyl optionally substituted with one or more $R_{10}.$ **[0135]** In some embodiments, R_8 is C_1 - C_6 alkoxy. In some embodiments, R_8 is ethoxy. In some embodiments, R_8 is ethoxy. In some embodiments, R_8 is propoxy. In some embodiments, R_8 is pentoxy. In some embodiments, R_8 is pentoxy. In some embodiments, R_8 is hexoxy. **[0136]** In some embodiments, R_8 is C_1 - C_6 alkoxy optionally substituted with one or more R_{10} . In some embodiments, R_8 is methoxy optionally substituted with one or
more R_{10} . In some embodiments, R_8 is ethoxy optionally substituted with one or more R_{10} . In some embodiments, R_8 is propoxy optionally substituted with one or more R_{10} . In some embodiments, R_8 is butoxy optionally substituted with one or more R_{10} . In some embodiments, R_8 is pentoxy optionally substituted with one or more R_{10} . In some embodiments, R_8 is hexoxy optionally substituted with one or more R_{10} . [0137] In some embodiments, R_8 is C_2 - C_6 alkenyl. In some embodiments, R_8 is C_2 - C_6 alkynyl. **[0138]** In some embodiments, R_8 is C_2 - C_6 alkenyl optionally substituted with one or more R_{10} . In some embodiments, R_8 is C_2 - C_6 alkynyl optionally substituted with one or more R_{10} . [0139] In some embodiments, R_8 is independently at each occurrence C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl. **[0140]** In some embodiments, R_8 is independently at each occurrence C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl, wherein each C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with one or more R_{10} . **[0141]** In some embodiments, R_8 is C_3 - C_8 cycloalkyl. In some embodiments, R_8 is heterocyclyl. In some embodiments, R_8 is aryl. In some embodiments, R_8 is heterocyclyl. **[0142]** In some embodiments, R_8 is C_3 - C_8 cycloalkyl optionally substituted with one or more R_{10} . In some embodiments, R_8 is heterocyclyl optionally substituted with one or more R_{10} . In some embodiments, R_8 is aryl optionally substituted with one or more R_{10} . In some embodiments, R_8 is heteroaryl optionally substituted with one or more R_{10} . **[0143]** In some embodiments, R_9 is independently at each occurrence H, halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl, wherein each alkyl, alkoxy, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with one or more R_{10} . **[0144]** In some embodiments, R_9 is independently at each occurrence H, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl. [0145] In some embodiments, R₉ is H. [0146] In some embodiments, R₉ is halogen. [0147] In some embodiments, R_9 is independently at each occurrence C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl. **[0148]** In some embodiments, R_9 is independently at each occurrence C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl, wherein each alkyl, alkoxy, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with one or more $R_{\rm 10}$. **[0149]** In some embodiments, R_9 is independently at each occurrence C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_6 alkenyl or C_2 - C_6 alkynyl. **[0150]** In some embodiments, R_9 is independently at each occurrence C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_6 alkenyl or C_2 - C_6 alkynyl, wherein each alkyl, alkoxy, alkenyl, or alkynyl is optionally substituted with one or more R_{10} . **[0151]** In some embodiments, R_9 is C_1 - C_6 alkyl. In some embodiments, R_9 is methyl. In some embodiments, R_9 is ethyl. In some embodiments, R_9 is propyl. In some embodiments, R_9 is butyl. In some embodiments, R_9 is pentyl. In some embodiments, R_9 is hexyl. **[0152]** In some embodiments, R_9 is C_1 - C_6 alkyl optionally substituted with one or more R_{10} . In some embodiments, R_9 is methyl optionally substituted with one or more R_{10} . In some embodiments, R_9 is ethyl optionally substituted with one or more R_{10} . In some embodiments, R_9 is propyl optionally substituted with one or more R_{10} . In some embodiments, R_9 is butyl optionally substituted with one or more R_{10} . In some embodiments, R_9 is pentyl optionally substituted with one or more R_{10} . In some embodiments, R_9 is hexyl optionally substituted with one or more R_{10} . **[0153]** In some embodiments, R_9 is C_1 - C_6 alkoxy. In some embodiments, R_9 is methoxy. In some embodiments, R_9 is ethoxy. In some embodiments, R_9 is propoxy. In some embodiments, R_9 is butoxy. In some embodiments, R_9 is pentoxy. In some embodiments, R_9 is hexoxy. [0154] In some embodiments, R_9 is C_1 - C_6 alkoxy optionally substituted with one or more R_{10} . In some embodiments, R_9 is methoxy optionally substituted with one or more R_{10} . In some embodiments, R_9 is ethoxy optionally substituted with one or more R_{10} . In some embodiments, R_9 is propoxy optionally substituted with one or more R_{10} . In some embodiments, R_9 is butoxy optionally substituted with one or more R_{10} . In some embodiments, R_9 is pentoxy optionally substituted with one or more R_{10} . In some embodiments, R_9 is hexoxy optionally substituted with one or more R_{10} . **[0155]** In some embodiments, R_9 is C_2 - C_6 alkenyl. In some embodiments, R_9 is C_2 - C_6 alkynyl. **[0156]** In some embodiments, R_9 is C_2 - C_6 alkenyl optionally substituted with one or more R_{10} . In some embodiments, R_9 is C_2 - C_6 alkynyl optionally substituted with one or more R_{10} . [0157] In some embodiments, R_9 is independently at each occurrence C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl. [0158] In some embodiments, R_9 is independently at each occurrence $\rm C_3\text{-}C_8$ cycloalkyl, heterocyclyl, aryl, or heteroaryl, wherein each cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with one or more $R_{10}.$ **[0159]** In some embodiments, R_9 is C_3 - C_8 cycloalkyl. In some embodiments, R_9 is heterocyclyl. In some embodiments, R_9 is aryl. In some embodiments, R_9 is heteroaryl. **[0160]** In some embodiments, R_9 is C_3 - C_8 cycloalkyl optionally substituted with one or more R_{10} . In some embodiments, R_9 is heterocyclyl optionally substituted with one or more R_{10} . In some embodiments, R_9 is aryl optionally substituted with one or more R_{10} . In some embodiments, R_9 is heteroaryl optionally substituted with one or more R_{10} . [0161] In some embodiments, R_8 and R_9 when taken together form a C_3 - C_6 cycloalkyl or heterocycle, wherein the cycloalkyl or heterocycle is optionally substituted with R_{10} . [0162] In some embodiments, R_8 and R_9 when taken together form a C_3 - C_6 cycloalkyl, wherein the cycloalkyl is optionally substituted with R_{10} . In some embodiments, R_8 and R_9 when taken together form a C_3 - C_6 cycloalkyl. In some embodiments, R_8 and R_9 when taken together form cyclopropyl, wherein the cyclopropyl is optionally substituted with R_{10} . In some embodiments, R_8 and R_9 when taken together form cyclopropyl. **[0163]** In some embodiments, R_8 and R_9 when taken together form a heterocycle, wherein the heterocycle is optionally substituted with R_{10} . In some embodiments, R_8 and R_9 when taken together form a 4-membered heterocycle optionally substituted with R_{10} . In some embodiments, R_8 and R_9 when taken together form azetidinyl optionally substituted with R_{10} . In some embodiments, R_8 and R_9 when taken together form oxetanyl optionally substituted with R_{10} . $\begin{array}{lll} \textbf{[0164]} & \text{In some embodiments, R}_{10} \text{ is independently at each} \\ \text{occurrence} & \text{oxo, halogen, } -\text{CN, } -\text{OR}_{11}, & -\text{C(O)R}_{11}, \\ -\text{C(O)OR}_{11}, & -\text{C(O)NR}_{11}\text{R}_{12}, & -\text{NR}_{11}\text{C(O)R}_{12}, & -\text{S(O)} \\ \text{R}_{11}, & -\text{S(O)}_2\text{R}_{11}, & -\text{NR}_{11}\text{S(O)}_2\text{R}_{12}, & -\text{S(O)}_2\text{NR}_{11}\text{R}_{12}, \\ \text{C}_1\text{-C}_6 & \text{alkyl, C}_1\text{-C}_6 & \text{haloalkyl, C}_2\text{-C}_6 & \text{alkenyl, C}_2\text{-C}_6 & \text{alkynyl, C}_3\text{-C}_8 & \text{cycloalkyl, heterocyclyl, aryl, or heteroaryl.} \end{array}$ $\begin{array}{llll} \textbf{[0165]} & \text{In some embodiments, R}_{10} \text{ is independently at each occurrence} & \text{oxo, halogen, } & -\text{CN, } & -\text{OR}_{11}, & -\text{C(O)R}_{11}, \\ & -\text{C(O)OR}_{11}, & -\text{C(O)NR}_{11}\text{R}_{12}, & -\text{NR}_{11}\text{R}_{12}, & -\text{NR}_{11}\text{C(O)}\\ \text{R}_{12}, & -\text{S(O)R}_{11}, & -\text{S(O)}_2\text{R}_{11}, & -\text{NR}_{11}\text{S(O)}_2\text{R}_{12}, & -\text{S(O)}_2\text{NR}_{11}\text{R}_{12}, & \text{C}_1\text{-C}_6 & \text{alkyl, C}_1\text{-C}_6 & \text{haloalkyl, C}_2\text{-C}_6 & \text{alkenyl, C}_2\text{-C}_6 & \text{alkynyl, C}_3\text{-C}_8 & \text{cycloalkyl, heterocyclyl, aryl, or heteroaryl.} \end{array}$ [0166] In some embodiments, R_{10} is independently at each occurrence oxo, halogen, or —CN. In some embodiments, R_{10} is oxo. In some embodiments, R_{10} is halogen. In some embodiments, R₁₀ is F, Cl, Br, or I. In some embodiments, R_{10} is F or Cl. In some embodiments, R_{10} is F. In some embodiments, R_{10} is Cl. In some embodiments, R_{10} is —CN. [0167] In some embodiments, R_{10} is independently at each $-NR_{11}S(O)_2R_{12}$, or $-S(O)_2NR_{11}R_{12}$. In some embodiments, R_{10} is —OR₁₁. In some embodiments, R_{10} is —C(O) R_{11} . In some embodiments, R_{10} is $-C(O)OR_{11}$. In some embodiments, R_{10} is $-C(O)NR_{11}R_{12}$. In some embodiments, R_{10} is $-NR_{11}C(O)R_{12}$. In some embodiments, R_{10} is $-S(O)R_{11}$. In some embodiments, R_{10} is
$-S(O)_2R_{11}$. In some embodiments, R_{10} is $-NR_{11}IS(O)_2R_{12}$. In some embodiments, R_{10} is $-S(O)_2NR_{11}R_{12}$. **[0168]** In some embodiments, R_{10} is independently at each occurrence C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, or C_2 - C_6 alkynyl. **[0169]** In some embodiments, R_{10} is C_1 - C_6 alkyl. In some embodiments, R_{10} is methyl. In some embodiments, R_{10} is ethyl. In some embodiments, R_{10} is propyl. In some embodiments, R_{10} is butyl. In some embodiments, R_{10} is pentyl. In some embodiments, R_{10} is hexyl. **[0170]** In some embodiments, R_{10} is C_1 - C_6 haloalkyl. In some embodiments, R_{10} is halomethyl. In some embodiments, R_{10} is haloethyl. In some embodiments, R_{10} is halopropyl. In some embodiments, R_{10} is halopentyl. In some embodiments, R_{10} is halopentyl. In some embodiments, R_{10} is halopentyl. **[0171]** In some embodiments, R_{10} is C_2 - C_6 alkenyl. In some embodiments, R_{10} is C_2 - C_6 alkynyl. **[0172]** In some embodiments, R_{10} is independently at each occurrence C_3 - C_8 cycloalkyl or heterocyclyl. In some embodiments, R_{10} is C_3 - C_8 cycloalkyl. In some embodiments, R_{10} is heterocyclyl. **[0173]** In some embodiments, R_{10} is independently at each occurrence aryl or heteroaryl. In some embodiments, R_{10} is aryl. In some embodiments, R_{10} is heteroaryl. [0174] In some embodiments, R_{10} is —OH. [0175] In some embodiments, R_{11} and R_{12} are independently H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl. [0176] In some embodiments, R_{11} and R_{12} are independently H. **[0177]** In some embodiments, R_{11} and R_{12} are independently C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl. [0178] In some embodiments, R_{11} is $H,\,C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ haloalkyl, $C_2\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ alkynyl, $C_3\text{-}C_8$ cycloalkyl, heterocyclyl, aryl, or heteroaryl. [0179] In some embodiments, R_{11} is H. **[0180]** In some embodiments, R_{11} is C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl. **[0181]** In some embodiments, R_{11} is C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, or C_2 - C_6 alkynyl. **[0182]** In some embodiments, R_{11} is C_1 - C_6 alkyl. In some embodiments, R_{11} is methyl. In some embodiments, R_{11} is ethyl. In some embodiments, R_{11} is propyl. In some embodiments, R_{11} is butyl. In some embodiments, R_{11} is pentyl. In some embodiments, R_{11} is hexyl. **[0183]** In some embodiments, R_{11} is C_1 - C_6 haloalkyl. In some embodiments, R_{11} is halomethyl. In some embodiments, R_{11} is haloethyl. In some embodiments, R_{11} is halopropyl. In some embodiments, R_{11} is halopentyl. In some embodiments, R_{11} is halopentyl. In some embodiments, R_{11} is halopentyl. [0184] In some embodiments, R_{11} is C_2 - C_6 alkenyl. In some embodiments, R_{11} is C_2 - C_6 alkynyl. **[0185]** In some embodiments, R_{11} is C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl. In some embodiments, R_{11} is C_3 - C_8 cycloalkyl. In some embodiments, R_{11} is heterocyclyl. In some embodiments, R_{11} is aryl. In some embodiments, R_{11} is heteroaryl. **[0186]** In some embodiments, R_{12} is H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl. [0187] In some embodiments, R_{12} is H. **[0188]** In some embodiments, R_{12} is C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl. **[0189]** In some embodiments, R_{12} is C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, or C_2 - C_6 alkynyl. **[0190]** In some embodiments, R_{12} is C_1 - C_6 alkyl. In some embodiments, R_{12} is methyl. In some embodiments, R_{12} is ethyl. In some embodiments, R_{12} is propyl. In some embodiments, R_{12} is butyl. In some embodiments, R_{12} is pentyl. In some embodiments, R_{12} is hexyl. **[0191]** In some embodiments, R_{12} is C_1 - C_6 haloalkyl. In some embodiments, R_{12} is halomethyl. In some embodiments, R_{12} is haloethyl. In some embodiments, R_{12} is haloethyl. propyl. In some embodiments, R_{12} is halobutyl. In some embodiments, R_{12} is halopentyl. In some embodiments, R_{12} is halohexyl. **[0192]** In some embodiments, R_{12} is C_2 - C_6 alkenyl. In some embodiments, R_{12} is C_2 - C_6 alkynyl. **[0193]** In some embodiments, R_{12} is C_3 - C_8 cycloalkyl, heterocyclyl, aryl, or heteroaryl. In some embodiments, R_{12} is C_3 - C_8 cycloalkyl. In some embodiments, R_{12} is heterocyclyl. In some embodiments, R_{12} is aryl. In some embodiments, R_{12} is heteroaryl. [0194] In some embodiments, the compounds of the present disclosure are represented by compounds of Formula II: $$X_{2}$$ $$X_{3}$$ $$X_{1}$$ $$X_{2}$$ $$X_{1}$$ $$X_{2}$$ $$X_{1}$$ $$X_{2}$$ $$X_{1}$$ $$X_{2}$$ $$X_{3}$$ $$X_{4}$$ $$X_{2}$$ $$X_{3}$$ $$X_{4}$$ $$X_{2}$$ $$X_{3}$$ $$X_{4}$$ $$X_{5}$$ $$X_{7}$$ $$X_{1}$$ $$X_{2}$$ $$X_{1}$$ $$X_{2}$$ $$X_{3}$$ $$X_{4}$$ $$X_{4}$$ $$X_{5}$$ $$X_{7}$$ $$X_{8}$$ $$X_{1}$$ $$X_{1}$$ $$X_{2}$$ $$X_{3}$$ $$X_{4}$$ $$X_{5}$$ $$X_{7}$$ $$X_{8}$$ $$X_{9}$$ $$X_{1}$$ $$X_{1}$$ $$X_{2}$$ $$X_{3}$$ $$X_{4}$$ $$X_{5}$$ $$X_{7}$$ $$X_{8}$$ $$X_{1}$$ $$X_{1}$$ $$X_{2}$$ $$X_{3}$$ $$X_{4}$$ $$X_{5}$$ $$X_{7}$$ $$X_{8}$$ $$X_{1}$$ $$X_{1}$$ $$X_{2}$$ $$X_{3}$$ $$X_{4}$$ $$X_{5}$$ $$X_{7}$$ $$X_{8}$$ $$X_{8}$$ $$X_{9}$$ $$X_{1}$$ $$X_{1}$$ $$X_{2}$$ $$X_{3}$$ $$X_{4}$$ $$X_{5}$$ $$X_{7}$$ $$X_{8}$$ $$X_{9}$$ $$X_{1}$$ $$X_{1}$$ $$X_{2}$$ $$X_{3}$$ $$X_{4}$$ $$X_{7}$$ $$X_{8}$$ $$X_{9}$$ $$X_{1}$$ $$X_{1}$$ $$X_{1}$$ $$X_{2}$$ $$X_{3}$$ $$X_{4}$$ $$X_{5}$$ $$X_{7}$$ $$X_{7}$$ $$X_{8}$$ $$X_{8}$$ $$X_{9}$$ $$X_{9}$$ $$X_{1}$$ $$X_{1}$$ $$X_{1}$$ $$X_{2}$$ $$X_{3}$$ $$X_{4}$$ $$X_{5}$$ $$X_{7}$$ $$X_{7}$$ $$X_{7}$$ $$X_{8}$$ $$X_{8}$$ $$X_{9}$$ $$X_{1}$$ $$X_{1}$$ $$X_{1}$$ $$X_{2}$$ $$X_{3}$$ $$X_{4}$$ $$X_{7}$$ $$X_{7}$$ $$X_{8}$$ $$X_{8}$$ $$X_{9}$$ $$X_{1}$$ $$X_{1}$$ $$X_{2}$$ $$X_{3}$$ $$X_{4}$$ $$X_{5}$$ $$X_{7}$$ $$X_{8}$$ $$X_{8}$$ $$X_{9}$$ $$X_{1}$$ $$X_{1}$$ $$X_{1}$$ $$X_{2}$$ $$X_{3}$$ $$X_{4}$$ $$X_{5}$$ $$X_{7}$$ $$X_{7}$$ $$X_{7}$$ $$X_{7}$$ $$X_{8}$$ $$X_{8}$$ $$X_{9}$$ $$X_{1}$$ $$X_{1}$$ $$X_{2}$$ $$X_{3}$$ $$X_{4}$$ $$X_{5}$$ $$X_{7}$$ $$X_{8}$$ $$X_{8}$$ $$X_{8}$$ $$X_{9}$$ $$X_{1}$$ $$X_{1}$$ $$X_{2}$$ $$X_{3}$$ $$X_{4}$$ $$X_{4}$$ $$X_{5}$$ $$X_{7}$$ $$X_{7}$$ $$X_{8}$$ $$X_{8}$$ $$X_{9}$$ $$X_{9$$ or pharmaceutically acceptable salts, prodrugs, solvates, hydrates, enantiomers, isomers, or tautomers thereof, wherein: **[0195]** ----- represents optional double bonds which can form an aromatic when present; Z_1 , Z_2 , Z_3 , and Z_4 are independently C, N, S, O, $N(R_{10})$, or $C(R_{10})$; and X_1 , X_2 , X_3 , A_1 , A_2 , Y, R_2 , R_3 , R_4 , R_{10} are described as herein. [0196] In some embodiments, the compounds of the present disclosure are represented by compounds of Formula III: $$Z_2$$ Z_3 Z_4 Z_1 Z_4 Z_1 Z_4 Z_1 Z_4 Z_1 Z_4 Z_1 Z_4 Z_4 Z_1 Z_4 or pharmaceutically acceptable salts, prodrugs, solvates, hydrates, enantiomers, isomers, or tautomers thereof, #### wherein: [0197] ----- straight or curved represents optional double bonds that form a partially unsaturated ring or an aromatic ring when present; **[0198]** Z_1 , Z_2 , Z_3 , and Z_4 are independently C, N, O, $N(R_{10})$, or $C(R_{10})$, provided Z_1 , Z_2 , Z_3 , and Z_4 are not all N or $N(R_{10})$ when ----- is present and aromatic; provided that no three N or $N(R_{10})$ are adjacent; provided that Z_1 , Z_2 , Z_3 , and Z_4 are not O when ----- is present and aromatic; and X_1 , X_2 , X_3 , A_1 , A_2 , Y, R_2 , R_3 , R_4 , R_{10} are described as herein. [0199] In some embodiments, the compound is of formula Ia: $$R_1$$ R_1 R_1 R_2 R_2 R_3 R_4 or a pharmaceutically acceptable salt, prodrug, solvate, hydrate, enantiomer, isomer, or tautomer thereof. [0200] In some embodiments, the compound is of formula Ib: $$R_1$$ R_1 R_1 R_2 R_2 R_2 R_2 R_2 R_3 R_4 R_4 R_5 R_7 R_8 or a pharmaceutically acceptable salt, prodrug, solvate, hydrate, enantiomer, isomer, or tautomer thereof, wherein the D ring represents a $\rm C_3\text{-}C_{10}$ cycloalkyl, heterocyclyl, aryl, or heteroaryl. [0201] In some embodiments, the compound is of formula Ic: $$\begin{array}{c} R_{6} \\ R_{6} \\ T \end{array}$$ $$\begin{array}{c} R_{7} \\ R_{2} \end{array}$$ or a pharmaceutically acceptable salt, prodrug, solvate, hydrate, enantiomer, isomer, or tautomer thereof, wherein the D ring represents a C_3 - C_{10} cycloalkyl, heterocyclyl, aryl, or heteroaryl; and the T ring represents a C_3 - C_{10} cycloalkyl, C_3 - C_8 spirocycloalkyl, spiroheterocyclyl, heterocyclyl, aryl, or heteroaryl. [0202] In some embodiments, the compound is of formula Id: $$R_6$$ R_6 R_7 R_8 R_8 or a pharmaceutically acceptable salt, prodrug, solvate, hydrate, enantiomer, isomer, or tautomer thereof, wherein the T ring represents a C_3 - C_{10} cycloalkyl, C_3 - C_8 spirocycloalkyl, spiroheterocyclyl, heterocyclyl, aryl, or heteroaryl. [0203] In some embodiments, the compound is of formula Ie: $$\begin{array}{c} R_{6} \\ R_{6} \\ T
\end{array}$$ $$\begin{array}{c} R_{6} \\ R_{6} \\ \end{array}$$ $$\begin{array}{c} R_{6} \\ R_{7} \\ \end{array}$$ $$\begin{array}{c} R_{1} \\ R_{2} \\ \end{array}$$ $$\begin{array}{c} R_{2} \\ R_{3} \\ \end{array}$$ or a pharmaceutically acceptable salt, prodrug, solvate, hydrate, enantiomer, isomer, or tautomer thereof, wherein the T ring represents a C_3 - C_{10} cycloalkyl, C_3 - C_8 spirocycloalkyl, spiroheterocyclyl, heterocyclyl, aryl, or heteroaryl. [0204] In some embodiments, the compound is of formula If; $$\begin{array}{c} R_{6} \\ R_{6} \\ T \end{array}$$ $$\begin{array}{c} R_{6} \\ R_{6} \\ \end{array}$$ $$\begin{array}{c} R_{6} \\ R_{7} \\ \end{array}$$ $$\begin{array}{c} R_{1} \\ R_{2} \\ \end{array}$$ or a pharmaceutically acceptable salt, prodrug, solvate, hydrate, enantiomer, isomer, or tautomer thereof, wherein the D ring represents a $\rm C_3\text{-}C_{10}$ cycloalkyl, heterocyclyl, aryl, or heteroaryl; and the T ring represents a $\rm C_3\text{-}C_{10}$ cycloalkyl, $\rm C_3\text{-}C_8$ spirocycloalkyl, spiroheterocyclyl, heterocyclyl, aryl, or heteroaryl. [0205] In some embodiments, the compound is of formula Ig: $$R_8$$ R_9 or a pharmaceutically acceptable salt, prodrug, solvate, hydrate, enantiomer, isomer, or tautomer thereof. [0206] In some embodiments, the compound is of formula Ih. $$R_1$$ R_1 R_2 R_2 R_2 R_2 R_3 R_4 R_4 R_5 R_7 R_8 or a pharmaceutically acceptable salt, prodrug, solvate, hydrate, enantiomer, isomer, or tautomer thereof. [0207] In some embodiments, the compound is of formula Ih-a: $$R_1$$ R_1 R_1 R_2 R_3 (Ih-a) or a pharmaceutically acceptable salt, prodrug, solvate, hydrate, enantiomer, isomer, or tautomer thereof. [0208] In some embodiments, the compound is of formula Ii: $$\begin{array}{c} R_{6} \\ R_{6} \\ T \end{array}$$ $$\begin{array}{c} R_{6} \\ R_{6} \\ \end{array}$$ $$\begin{array}{c} R_{6} \\ R_{2} \\ \end{array}$$ $$\begin{array}{c} R_{6} \\ R_{2} \\ \end{array}$$ or a pharmaceutically acceptable salt, prodrug, solvate, hydrate, enantiomer, isomer, or tautomer thereof, wherein the T ring represents a C_3 - C_{10} cycloalkyl, C_3 - C_8 spirocycloalkyl, spiroheterocyclyl, heterocyclyl, aryl, or heteroaryl. [0209] In some embodiments, the compound is of formula Ii-a: $$\begin{array}{c} R_6 \\ R_6 \\ T \end{array}$$ $$\begin{array}{c} R_6 \\ R_6 \end{array}$$ $$\begin{array}{c} R_6 \\ R_2 \end{array}$$ $$\begin{array}{c} R_6 \\ R_2 \end{array}$$ or a pharmaceutically acceptable salt, prodrug, solvate, hydrate, enantiomer, isomer, or tautomer thereof, wherein the T ring represents a C₃-C₁₀ cycloalkyl, C₃-C₈ spirocycloalkyl, spiroheterocyclyl, heterocyclyl, aryl, or heteroaryl. **[0210]** In some embodiments, the compound is of formula Ii or a pharmaceutically acceptable salt, prodrug, solvate, hydrate, enantiomer, isomer, or tautomer thereof, wherein the T ring represents a heterocyclyl. **[0211]** In some embodiments, the compound is of formula Ii-a or a pharmaceutically acceptable salt, prodrug, solvate, hydrate, enantiomer, isomer, or tautomer thereof, wherein the T ring represents a heterocyclyl. [0212] In some embodiments, the compound is of formula Ij: $$\begin{array}{c} R_{6} \\ R_{6} \\ T \end{array}$$ $$\begin{array}{c} R_{6} \\ R_{7} \\ \end{array}$$ $$\begin{array}{c} R_{6} \\ R_{2} \\ \end{array}$$ $$\begin{array}{c} R_{1} \\ R_{2} \\ \end{array}$$ or a pharmaceutically acceptable salt, prodrug, solvate, hydrate, enantiomer, isomer, or tautomer thereof, wherein the T ring represents a C₃-C₁₀ cycloalkyl, C₃-C₈ spirocycloalkyl, spiroheterocyclyl, heterocyclyl, aryl, or heteroaryl. **[0213]** In some embodiments, the compound is of formula Ij or a pharmaceutically acceptable salt, prodrug, solvate, hydrate, enantiomer, isomer, or tautomer thereof, wherein the T ring represents a heterocyclyl. [0214] In some embodiments, the compound is of formula Ik: $$\begin{array}{c} R_8 \\ N \\ N \\ N \\ N \\ N \\ R_9 \\ R_1 \\ A_1 \\ A_2 \\ R_2 \\ R_3 \end{array} \tag{Ik}$$ or a pharmaceutically acceptable salt, prodrug, solvate, hydrate, enantiomer, isomer, or tautomer thereof. [0215] In some embodiments, the compound is of formula Ik-a: R_8 R_8 R_9 R_9 R_9 R_9 R_9 R_9 R_9 R_9 R_9 or a pharmaceutically acceptable salt, prodrug, solvate, hydrate, enantiomer, isomer, or tautomer thereof. [0216] In some embodiments, inhibitors of the disclosure are and pharmaceutically acceptable salts, prodrugs, solvates, hydrates, enantiomers, isomers, and tautomers thereof are described in Table 1. #### TABLE 1 | Compound No. | . Compound Name | |--------------|--| | 1 | (15R)-10-(2-methyl-3-pyridyl)-13,17-dioxa-3,5,7,8-tetrazapentacyclo | | 3 | [13.6.1.04,12.05,9.018,22] docosa-1(22),4(12),6,8,10,18,20-heptaene
(S)-1-(4-(7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2- | | 4 | b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)piperidin-1-yl)ethan-1-one
1-(4-(12-fluoro-7,8,13,14-tetrahydro-[1,2,4]triazolo[4',3':1,6]pyrido[3,2- | | 5 | b]benzo[f][1,4]oxazonin-4-yl)piperidin-1-yl)ethan-1-one
12-fluoro-4-(2-methylpyridin-3-yl)-7,8,13,14-tetrahydro- | | 6 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzo[f][1,4]oxazonine
12-fluoro-4-(2-methylpyridin-3-yl)-6,8,13,14-tetrahydro- | | 7 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-c]benzo[g][1,5]oxazonine
(S)-4-(((1-methyl-1H-pyrazol-4-yl)methyl)-7a,8,13,14-tetrahydro-7H- | | 8 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine (S)-12-fluoro-4-(2-methylpyridin-3-yl)-7a,8,13,14-tetrahydro-7H- | | 9 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine
(S)-1-(4-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2- | | 10 | b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)piperidin-1-yl)ethan-1-one
(S)-12-fluoro-4-((1-methyl-1H-pyrazol-4-yl)methyl)-7a,8,13,14-tetrahydro-7H- | | 11 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine
(S)-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2- | | 12 | b]benzofuro[4,3-fg][1,4]oxazonine
(S)-12-fluoro-4-(oxetan-3-yl)-7a,8,13,14-tetrahydro-7H- | | 13 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine
(S)-4-(2,4-dimethylpyrimidin-5-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | 14 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine
4-(2,4-dimethylpyrimidin-5-yl)-12-fluoro-7,8,13,14-tetrahydro- | | 15 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzo[f][1,4]oxazonine
(S)-12-fluoro-4-(4-methyl-1H-imidazol-1-yl)-7a,8,13,14-tetrahydro-7H- | | 16 | [1,2,4]triazolo[4,3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine methyl (S)-4-(12-fluoro-7a.8.13.14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)piperidine-1-carboxylate | | 17 | (S)-12-fluoro-4-(1-methyl-1H-pyrazol-5-yl)-7a,8,13,14-tetrahydro-7H-
[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 18 | (S)-4-(1,3-dimethyl-1H-pyrazol-5-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H-
[1,2.4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 19 | (S)-12-fluoro-4-(4-methylpyrimidin-5-yl)-7a,8,13,14-tetrahydro-7H- | | 20 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine (S)-12-fluoro-4-(2-methylpyrimidin-5-yl)-7a,8,13,14-tetrahydro-7H- | | 21 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine
(S)-12-fluoro-4-(pyridin-2-yl)-7a,8,13,14-tetrahydro-7H- | | 22 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine (S)-4-(1,3-dimethyl-1H-pyrazol-4-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | TABLE 1-continued | ompound No. | Compound Name | |-------------|---| | 23 | (S)-4-(3-(difluoromethyl)-1-methyl-1H-pyrazol-4-yl)-12-fluoro-7a,8,13,14- | | 23 | tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3- | | 24 | fg][1,4]oxazonine
(S)-4-((S)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | 24 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-1- | | | methylpiperidin-2-one | | 25 | (R)-4-((S)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-1- | | 26 | methylpiperidin-2-one | | 26 | (S)-4-ethyl-12-fluoro-7a,8,13,14-tetrahydro-7H-
[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 27 | (S)-12-fluoro-4-(1H-pyrazol-1-yl)-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 28 | (S)-4-(1,5-dimethyl-1H-pyrazol-4-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | • • | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 29 | (S)-4-(2,3-dimethylpyridin-4-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H-
[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 30 | (S)-12-fluoro-4-(2-methoxypyrimidin-5-yl)-7a,8,13,14-tetrahydro-7H- | | 50 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 31 | (S)-12-fluoro-4-(6-methoxypyridin-3-yl)-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 32 | (S)-4-(6-ethyl-4-methylpyridin-3-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | 3.2 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 33 |
(S)-4-(2-(difluoromethyl)pyridin-3-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 34 | (S)-4-(2,6-dimethylpyridin-3-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 35 | (S)-2-(5-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2- | | | b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)pyridin-2-yl)propan-2-ol | | 36 | (S)-12-fluoro-4-(4-(methylsulfonyl)phenyl)-7a,8,13,14-tetrahydro-7H- | | 37 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine (S)-12-fluoro-N,N-dimethyl-7a,8,13,14-tetrahydro-7H- | | 31 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine-4- | | | carboxamide | | 38 | (S)-12-fluoro-N-methyl-N-(2,2,2-trifluoroethyl)-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine-4- | | 39 | carboxamide (S)-12-fluoro-4-(1-methyl-1H-pyrazol-3-yl)-7a,8,13,14-tetrahydro-7H- | | 39 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 40 | (S)-12-fluoro-4-(5-fluoro-2-methylpyridin-3-yl)-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 41 | (S)-12-fluoro-4-(3-fluoropyridin-2-yl)-7a,8,13,14-tetrahydro-7H- | | 42 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 42 | (S)-12-fluoro-4-(5-fluoropyridin-2-yl)-7a,8,13,14-tetrahydro-7H-
[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 43 | (S)-12-fluoro-4-(3-fluoro-5-methylpyridin-2-yl)-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 44 | (S)-4-(3,5-difluoropyridin-2-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 45 | (S)-12-fluoro-4-(5-fluoro-3-methylpyridin-2-yl)-7a,8,13,14-tetrahydro-7H- | | 46 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine (S)-12-fluoro-4-(5-methylpyrazin-2-yl)-7a,8,13,14-tetrahydro-7H- | | 40 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 47 | (S)-12-fluoro-4-(3-methylpyrazin-2-yl)-7a,8,13,14-tetrahydro-7H- | | • | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 48 | (S)-4-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2- | | 40 | b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)benzonitrile | | 49 | (S)-4-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-3-methylbenzonitrile | | 50 | (S)-12-fluoro-4-(2-methoxypyridin-4-yl)-7a,8,13,14-tetrahydro-7H- | | 50 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 51 | (S)-3-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2- | | | b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-2-methylpyridine 1-oxide | | 52 | (S)-4-(3,5-dimethylpyrazin-2-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 52 | (S)-12-fluoro-4-(3-methylpyridazin-4-yl)-7a,8,13,14-tetrahydro-7H-
[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 53 | | | | (S)-12-fluoro-4-(4-methylpyridazin-3-yl)-7a 8 13 14-tetrahydro-7H- | | 53
54 | (S)-12-fluoro-4-(4-methylpyridazin-3-yl)-7a,8,13,14-tetrahydro-7H-
[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | | | | 54
55 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine
(S)-12-fluoro-4-(6-methylpyridin-2-yl)-7a,8,13,14-tetrahydro-7H-
[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 54 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine (S)-12-fluoro-4-(6-methylpyridin-2-yl)-7a,8,13,14-tetrahydro-7H- [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine (S)-12-fluoro-4-(2-methylpyrimidin-4-yl)-7a,8,13,14-tetrahydro-7H- | | 54
55 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine
(S)-12-fluoro-4-(6-methylpyridin-2-yl)-7a,8,13,14-tetrahydro-7H-
[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | TABLE 1-continued | ompound No | Compound Name | |--------------|---| | ompound 140. | 1 | | 58 | (S)-5-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-N,N,4-trimethylpyrimidine-2-carboxamide | | 59 | (S)-5-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-N.N-dimethylpicolinamide | | 60 | (S)-4-(1,3-dimethyl-1H-1,2,4-triazol-5-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H-
[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 61 | (S)-12-fluoro-4-(5-methyl-1,3,4-oxadiazol-2-yl)-7a,8,13,14-tetrahydro-7H-
[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 62 | (S)-4-(3,5-dimethylisoxazol-4-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H-
[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 63 | (S)-12-fluoro-4-(1-(2-methoxyethyl)-3,5-dimethyl-1H-pyrazol-4-yl)-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3- | | 64 | fg][1,4]oxazonine
(S)-12-fluoro-N-methyl-N-(tetrahydro-2H-pyran-4-yl)-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine-4-carboxamiide | | 65 | (S)-12-fluoro-4-(5-methylpyrimidin-2-yl)-7a,8,13,14-tetrahydro-7H- | | 66 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine
(S)-12-fluoro-4-(6-methylpyridazin-3-yl)-7a,8,13,14-tetrahydro-7H- | | 67 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine
(S)-4-(4,6-dimethylpyridazin-3-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | 68 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine (S)-4-(4-(difluoromethyl)-2-methylpyrimidin-5-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3- | | 69 | fg][1,4]oxazonine
(S)-4-(2-(difluoromethyl)-4-methylpyrimidin-5-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3- | | 70 | fg][1,4]oxazonine
(S)-4-(4-(difluoromethyl)pyrimidin-5-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | 71 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine (S)-4-(1,4-dimethyl-1H-pyrazol-5-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | 72 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine
(S)-4-(1-ethyl-1H-pyrazol-5-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | 73 | $\label{eq:continuous} \begin{tabular}{l} [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine \\
(S)-12-fluoro-4-(1-(2,2,2-trifluoroethyl)-1H-pyrazol-5-yl)-7a,8,13,14-tetrahydro-12-yl-1$ | | 74 | 7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine (S)-1-(5-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2- | | 75 | b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-1H-pyrazol-1-yl)-2-methylpropan-2-ol (S)-12-fluoro-4-(1-isopropyl-1H-pyrazol-5-yl)-7a,8,13,14-tetrahydro-7H- | | 76 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine (S)-4-(2-(difluoromethoxy)pyrimidin-5-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | 77 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine
(S)-12-fluoro-4-(2-methoxypyridin-3-yl)-7a,8,13,14-tetrahydro-7H- | | 78 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine (S)-4-(2-(difluoromethoxy)pyridin-3-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 79 | [1,2,4]triazolo[4,3-1,5]pyrido[3,2-b]benzofuro[4,3-18][1,4]oxazonine
(S)-12-fluoro-4-(3-methyl-1H-pyrazol-1-yl)-7a,8,13,14-tetrahydro-7H-
[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 80 | (S)-12-fluoro-4-(4-methyl-1H-pyrazol-1-yl)-7a,8,13,14-tetrahydro-7H- | | 81 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine (S)-1-(3-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2- | | 82 | b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)pyridin-2-yl)-2-methylpropan-2-ol (S)-4-(3-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2- | | 83 | b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)pyridin-2-yl)-2-methylbutan-2-ol (S)-12-fluoro-4-(2-(trifluoromethoxy)pyridin-3-yl)-7a,8,13,14-tetrahydro-7H- | | 84 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine (S)-4-(6-(difluoromethyl)-2-methylpyridin-3-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3- | | 85 | fg][1,4]oxazonine
(S)-4-(2-(difluoromethyl)-6-methylpyridin-3-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3- | | 86 | fg][1,4]oxazonine
(S)-4-(4,6-dimethylpyridin-3-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | 87 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine (S)-12-fluoro-4-(3-fluoro-2-methylpyridin-4-yl)-7a,8,13,14-tetrahydro-7H- | | 88 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine (S)-4-(4-(difluoromethyl)-6-methylpyridin-3-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3- | | 89 | fg][1,4]oxazonine
(S)-12-fluoro-4-(5-fluoro-2-methylpyridin-4-yl)-7a,8,13,14-tetrahydro-7H- | | 90 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine (S)-4-(6-(difluoromethyl)-4-methylpyridin-3-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3- | | | tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | TABLE 1-continued | | . Compound Name | |------------|---| | 91 | (S)-12-fluoro-4-(pyrimidin-5-yl)-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 92 | (S)-12-fluoro-4-(3-methylisoxazol-4-yl)-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 93 | (S)-12-fluoro-4-(thiazol-5-yl)-7a,8,13,14-tetrahydro-7H- | | 94 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 94 | (S)-12-fluoro-4-(6-methylpyridin-3-yl)-7a,8,13,14-tetrahydro-7H-
[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 95 | (S)-12-fluoro-4-(3-methylpyridin-2-yl)-7a,8,13,14-tetrahydro-7H- | | 23 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 96 | (S)-4-(2-ethylpyridin-3-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 97 | (S)-5-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2 | | | b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-1-methylpyridin-2(1H)-one | | 98 | (S)-12-fluoro-4-(6-methoxypyridin-2-yl)-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 99 | (S)-12-fluoro-4-(1,3,5-trimethyl-1H-pyrazol-4-yl)-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 100 | (S)-4-(3-ethyl-1-methyl-1H-pyrazol-4-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H | | 101 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 101 | (S)-4-(5-chloropyridin-2-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | 103 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 102 | (S)-4-(4-cyclopropylpyrimidin-5-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | 103 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 103 | (S)-5-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-N,N-dimethylpyridin-2-amine | | 104 | (S)-12-fluoro-4-(6-methoxy-4-methylpyridin-3-yl)-7a,8,13,14-tetrahydro-7H- | | 104 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 105 | (S)-12-fluoro-4-(2-methoxy-6-methylpyridin-3-yl)-7a,8,13,14-tetrahydro-7H- | | 100 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 106 | (S)-12-fluoro-4-(6-methoxy-2-methylpyridin-3-yl)-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 107 | (S)-12-fluoro-4-(2-methoxy-4-methylpyridin-3-yl)-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 108 | (S)-5-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2 | | | b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-N,N-dimethylpyrimidin-2-amine | | 109 | (S)-4-(2-ethoxypyrimidin-5-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 110 | (S)-12-fluoro-4-(5-fluoro-6-methoxypyridin-3-yl)-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 111 | (S)-12-fluoro-4-(5-fluoro-2-methoxypyridin-3-yl)-7a,8,13,14-tetrahydro-7H- | | 112 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 112 | (S)-12-fluoro-4-(6-(trifluoromethyl)pyridin-3-yl)-7a,8,13,14-tetrahydro-7H-
[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 113 | (S)-12-fluoro-4-(5-(trifluoromethyl)pyridin-2-yl)-7a,8,13,14-tetrahydro-7H- | | 113 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 114 | (S)-12-fluoro-4-(2-(trifluoromethyl)pyrimidin-5-yl)-7a,8,13,14-tetrahydro-7H- | | ' | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 115 | (S)-12-fluoro-4-(1-methyl-3-(trifluoromethyl)-1H-pyrazol-5-yl)-7a,8,13,14- | | | tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3- | | | fg][1,4]oxazonine | | 116 | (S)-12-fluoro-4-(6-morpholinopyridin-3-yl)-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 117 | (S)-12-fluoro-4-(6-(4-methylpiperazin-1-yl)pyridin-3-yl)-7a,8,13,14-tetrahydr | | | 7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 118 | (S)-12-fluoro-4-(2-(4-methylpiperazin-1-yl)pyrimidin-5-yl)-7a,8,13,14- | | | tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3- | | | fg][1,4]oxazonine | | 119 | (S)-12-fluoro-4-(2-(trifluoromethyl)pyridin-3-yl)-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 120 | (S)-12-fluoro-4-(5-fluoro-6-methylpyridin-2-yl)-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 121 | (S)-12-fluoro-4-(2-methylpyridin-3-yl)-7a,8,13,14-tetrahydro-7H- | | |
[1,2,4]triazolo[r,5':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 122 | (S)-12-fluoro-4-(1-(2,2,2-trifluoroethyl)-1H-pyrazol-3-yl)-7a,8,13,14-tetrahyd | | | 7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 123 | (S)-12-fluoro-4-(6-methylpyridazin-4-yl)-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 124 | (S)-5-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2- | | | b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-1-methyl-1H-pyrazol-3-amine | | 125 | (S)-5-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2- | | 125 | | | 125 | b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-N,1-dimethyl-1H-pyrazol-3-amine | | 125
126 | | TABLE 1-continued | | TABLE 1-continued | |--------------|--| | Compound No. | Compound Name | | 127 | (S)-(5-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2- | | 128 | b] benzofuro[4,3-fg][1,4] oxazonin-4-yl)-1-methyl-1H-pyrazol-3-yl) methanamine (S)-1-(5-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-1]-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | | | b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-1-methyl-1H-pyrazol-3-yl)-N-methylmethanamine | | 129 | (S)-1-(5-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-1-methyl-1H-pyrazol-3-yl)-N,N-dimethylmethanamine | | 130 | (S)-4-(3-(difluoromethyl)-1-methyl-1H-pyrazol-5-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3- | | 131 | fg][1,4]oxazonine
(S)-2-(5-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2- | | 132 | b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-1-methyl-1H-pyrazol-3-yl)ethan-1-ol (S)-2-(5-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-1-methyl-1H-pyrazol-3-yl)-N,N- | | | dimethylethan-1-amine | | 133 | (S)-4-(1,2-dimethyl-1H-imidazol-5-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H-
[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 134 | (S)-4-(1,4-dimethyl-1H-imidazol-5-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | 135 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine
(S)-4-(1,4-dimethyl-1H-imidazol-2-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 136 | (S)-4-(1,5-dimethyl-1H-imidazol-2-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 137 | (S)-12-fluoro-4-(1-methyl-1H-imidazol-2-yl)-7a,8,13,14-tetrahydro-7H-
[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 138 | (S)-12-fluoro-4-(1-methyl-1H-imidazol-4-yl)-7a,8,13,14-tetrahydro-7H- | | 139 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine
(S)-4-(1,5-dimethyl-1H-imidazol-4-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | 140 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine
(S)-4-(1,2-dimethyl-1H-imidazol-4-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 141 | (S)-4-(5-(difluoromethyl)-6-methylpyridin-2-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3- | | 142 | fg][1,4]oxazonine
(8)-12-fluoro-4-(1H-pyrazol-5-yl)-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 143 | (S)-1-(3-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-1H-pyrazol-1-yl)-2-methylpropan-2-ol | | 144 | (S)-4-(3-(diffuoromethyl)-6-methylpyridin-2-yl)-12-ffuoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3- | | | fg][1,4]oxazonine | | 145 | (S)-4-(3-ethyl-1-methyl-1H-1,2,4-triazol-5-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 146 | (S)-4-(3-ethyl-1-methyl-1H-pyrazol-5-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 147 | (S)-12-fluoro-4-(1,2,4-trimethyl-1H-imidazol-5-yl)-7a,8,13,14-tetrahydro-7H- | | 148 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine (S)-12-fluoro-4-(1,4,5-trimethyl-1H-imidazol-2-yl)-7a,8,13,14-tetrahydro-7H- | | 149 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine
(S)-12-fluoro-4-(4-methylpyridin-2-yl)-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 150 | (S)-12-fluoro-4-(5-methylpyridin-2-yl)-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 151 | (S)-4-(3-chloropyridin-2-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H-
[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 152 | (S)-4-(5-chloro-2-methylpyridin-3-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | 153 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine (S)-4-(5-chloro-6-methylpyridin-3-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | 154 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine
(S)-12-fluoro-4-(5-fluoro-6-methylpyridin-3-yl)-7a,8,13,14-tetrahydro-7H- | | 155 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine
(S)-12-fluoro-4-(2-methylpyridin-4-yl)-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 156 | (S)-4-(2,5-dimethylpyridin-4-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H-
[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 157 | (S)-4-(3-chloro-2-methylpyridin-4-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | 158 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | | (S)-4-(3-chloro-5-fluoropyridin-2-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 159 | (S)-12-fluoro-4-(3-methoxypyridin-2-yl)-7a,8,13,14-tetrahydro-7H-
[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 160 | [1,2,4]triazolo[4,3:1,6]pyrido[3,2-0]benzofuro[4,3-1g][1,4]oxazonine (S)-12-fluoro-4-(pyrimidin-4-yl)-7a,8,13,14-tetrahydro-7H- [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | | [-,-, .] | TABLE 1-continued | | TADLE 1-continued | |--------------|--| | Compound No. | Compound Name | | 161 | (S)-12-fluoro-4-(6-methylpyrimidin-4-yl)-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 162 | (S)-12-fluoro-4-(5-methylpyrimidin-4-yl)-7a,8,13,14-tetrahydro-7H-
[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 163 | (S)-4-(5-chloropyrimidin-4-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 164 | (S)-12-fluoro-4-(5-fluoropyrimidin-4-yl)-7a,8,13,14-tetrahydro-7H- | | 165 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine (S)-4-bromo-12-fluoro-7a,8,13,14-tetrahydro-7H- | | 103 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 166 | (S)-4-(5-chloro-3-methylpyridin-2-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | 1.67 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 167 | (S)-4-(3-(difluoromethoxy)-1-methyl-1H-pyrazol-5-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3- | | | fg][1,4]oxazonine | | 168 | (S)-12-fluoro-4-(3-fluoro-1-methyl-1H-pyrazol-5-yl)-7a,8,13,14-tetrahydro-7H- | | 169 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine
(S)-2-(5-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2- | | 105 | b benzofuro[4,3-fg][1,4]oxazonin-4-yl)-1-methyl-1H-pyrazol-3-yl)-2- | | | methylpropanenitrile | | 170 | (S)-5-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2- | | 171 | b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-1-methyl-1H-pyrazole-4-carbonitrile (S)-4-(5,6-dihydro-4H-pyrrolo[1,2-b]pyrazol-3-yl)-12-fluoro-7a,8,13,14- | | -7- | tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3- | | | fg][1,4]oxazonine | | 172 | (S)-5-fluoro-12-(1-methyl-1H-pyrazol-5-yl)-6,7,15,15a-tetrahydro-1H-benzofuro[4,3-fg]imidazo[r,2':1,6]pyrido[3,2-b][1,4]oxazonine-10-carbonitrile | | 174 | (S)-5-fluoro-12-(1-methyl-1H-pyrazol-5-yl)-6,7,15,15a-tetrahydro-1H- | | | benzofuro[4,3-fg]imidazo[r,2':1,6]pyrido[3,2-b][1,4]oxazonine-10-carboxylic | | 175 | acid | | 175 | (S)-5-fluoro-12-(1-methyl-1H-pyrazol-5-yl)-6,7,15,15a-tetrahydro-1H-benzofuro[4,3-fg]imidazo[r,2':1,6]pyrido[3,2-b][1,4]oxazonine-10-carboxamide | | 176 | (S)-5-fluoro-12-(2-methylpyridin-3-yl)-6,7,15,15a-tetrahydro-1H-benzofuro[4,3- | | 4.55 | fg]imidazo[r,2':1,6]pyrido[3,2-b][1,4]oxazonine-10-carboxamide | | 177 | (S)-5-fluoro-12-(2-methylpyridin-3-yl)-6,7,15,15a-tetrahydro-1H-benzofuro[4,3-fg]imidazo[r,2':1,6]pyrido[3,2-b][1,4]oxazonine-10-carboxylic acid | | 178 | (S)-4-(2-cyclopropylpyrimidin-5-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 179 | (S)-5-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-2-methylpyridin-3-amine | | 181 | methyl 4-(12-fluoro-6,8,13,14-tetrahydro-[1,2,4]triazolo[4',3':1,6]pyrido[3,2- | | | c]benzo[g][1,5]oxazonin-4-yl)piperidine-1-carboxylate | | 182 |
4-(2,4-dimethylpyrimidin-5-yl)-12-fluoro-6,8,13,14-tetrahydro-
[1,2,4]triazolo[4',3':1,6]pyrido[3,2-c]benzo[g][1,5]oxazonine | | 183 | 12-fluoro-4-((1-methyl-1H-pyrazol-4-yl)methyl)-6,8,13,14-tetrahydro- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-c]benzo[g][1,5]oxazonine | | 184 | (S)-4-(4,5-dimethyl-4H-1,2,4-triazol-3-yl)-12-fluoro-7a,8,13,14-tetrahydro-7H- | | 185 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine
(R)-12-fluoro-4-(2-methylpyridin-3-yl)-7a,8,13,14-tetrahydro-7H- | | | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 186 | (S)-5-fluoro-12-(2-methylpyridin-3-yl)-6,7,15,15a-tetrahydro-1H-benzofuro[4,3- | | 187 | fg]imidazo[1',2':1,6]pyrido[3,2-b][1,4]oxazonine-10-carbonitrile (S)-5-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2- | | 207 | b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-6-methylpyridin-2-ol | | 188 | (S)-12-fluoro-4-(oxazol-5-yl)-7a,8,13,14-tetrahydro-7H- | | 189 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine
(S)-12-fluoro-4-(4-methyloxazol-5-yl)-7a,8,13,14-tetrahydro-7H- | | 107 | [1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine | | 190 | (S)-4-(2-cyclopropyl-4-methylpyrimidin-5-yl)-12-fluoro-7a,8,13,14-tetrahydro- | | 191 | 7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonine (S)-3-(5-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2- | | 191 | b benzofuro[4,3-fg][1,4 oxazonin-4-yl)-6-methylpyridin-2-yl)-N- | | | methylpropanamide | | 192 | (S)-3-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2- | | 193 | b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-2-methylpyridin-4-ol (S)-1-(4-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2- | | 120 | b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-3,6-dihydropyridin-1(2H)-yl)ethan-1-one | | 194 | (S)-5-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2- | | 195 | b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-6-methylpyridin-3-ol (S)-(3-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2- | | 193 | (\$)-(\$-(12-111000-7a,8,13,14-tetranydro-7h-[1,2,4]thazolo[4,3:1,0]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)pyridin-2-yl)methanol | | 196 | (S)-5-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2- | | 107 | b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-1-methyl-1H-pyrazol-4-ol | | 197 | (S)-5-(12-fluoro-7a,8,13,14-tetrahydro-7H-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-b]benzofuro[4,3-fg][1,4]oxazonin-4-yl)-1-methyl-1H-pyrazol-3-ol | | | ojounnous i jo 1811. i jounnous i juj 1 monty i iii pytacoi o oi | TABLE 1-continued Compound No. Compound Name 1-(4-(12-fluoro-6,8,13,14-tetrahydro-[1,2,4]triazolo[4',3':1,6]pyrido[3,2-c]benzo[g][1,5]oxazonin-4-yl)piperidin-1-yl)ethan-1-one [0217] In some embodiments, the compound is: [0218] In some embodiments, the compound is: [0219] In some embodiments, the inhibitor is: [0220] In some embodiments, the inhibitor is: **[0221]** Additional inhibitors useful in the methods of the present disclosure include, but are not limited to, tazemetostat, CPI-0209, CPI-1205, EBI-2554, HH-2853, MAK-683, SHR-2554, valemetostat, PF-06821497, ORIC-944, and GSK-2816126. #### Alternative Embodiments [0222] In an alternative embodiment, compounds described herein may also comprise one or more isotopic substitutions. For example, hydrogen may be 2H (D or deuterium) or 3H (T or tritium); carbon may be, for example, 13C or 14C; oxygen may be, for example, 180; nitrogen may be, for example, 15N, and the like. In other embodiments, a particular isotope (e.g., 3H, 13C, 14C, 180, or 15N) can represent at least 1%, at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 60%, at least 85%, at least 99%, or at least 99.9% of the total isotopic abundance of an element that occupies a specific site of the compound. #### **EXAMPLES** [0223] Abbreviations: DMSO: dimethyl sulfoxide; EPO: erythropoietin; FPKM: fragments per kilobase of transcript per million mapped reads; HbA: hemoglobin A; HbC: hemoglobin C; HbF: fetal hemoglobin; HbS: hemoglobin S; HPLC: high-performance liquid chromatography; hSCF: human stem cell factor; IMDM: Iscove's Modified Dulbecco's Medium. Example 1. Compound 1 Decreases BCL11A mRNA Expression [0224] Human Mobilized Peripheral Blood Primary CD34+ cells from healthy donors were expanded from thaw by seeding 100,000 viable cells/mL in a culture flask containing CD34+ Phase 1 Media comprised of IMDM, 100 ng/ml hSCF, 5 ng/ml IL-3, 3 IU/mL EPO, 250 μg/mL transferrin, 2.5% normal human serum, 1% pen/strep, 10 ng/ml heparin, 10 μg/mL insulin. The cells were supplemented by adding an additional 1X culture volume of CD34+ Phase 1 Media on Day 3 after thaw. At Day 7 post-thaw, cells were seeded at 0.111×10⁶ cells/ml in 1.5 mLs of Phase 1 media in 12-well plates and compound was applied. On Day 10 post-thaw, cells were differentiated towards the erythroid lineage by complete medium exchange into CD34+ Phase 2 Media comprised of IMDM, 100 ng/ml hSCF, 3 IU/mL EPO, 250 μg/mL transferrin, 2.5% normal human serum, 1% pen/strep, 10 ng/mL heparin, 10 µg/mL insulin and compound treatment was reapplied. On Day 12 post-thaw the plates were centrifuged, and 1 mL of Phase 2 media exchanged with fresh Phase 2 media and compound. The cells were harvested on Day 14 postthaw for downstream analyses. [0225] RNA was extracted from Day 14 post-thaw primary CD34+ cells that were differentiated and treated for 7 days with DMSO, 11 nM, 33 nM, 100 nM, or 300 nM of Compound 1 using Ambion mirVana RNA extraction kits. Purified RNA samples were submitted for library preparation and deep sequencing at Novogene. Sequenced raw reads of fastq files from all samples were mapped to hg38 genome assemblies using ArrayStudio aligner. Raw read counts and FPKM were calculated for all genes and DESeq2 was applied to calculate differentially expressed genes using general linear model. The statistical cutoff of absolute fold change greater than 4 (fdr<0.05, abs(FC)>4, log2(FPKM+1)>1). **[0226]** BCL11A mRNA decreased in a concentration dependent manner with Compound 1 challenge, as depicted in FIG. 1. For example, 100 nM Compound 1 significantly decreased BCL11A mRNA levels relative to DMSO and other HbF inducing mechanisms. Example 2. EED Inhibitors Decrease BCL11A Expression, Increase HBG1 Expression, and Increase HBG2 Expression in Multiple Healthy CD34+ Donor Cells [0227] Changes in BCL11A expression and HBG1 and HBG2 expression in multiple healthy CD34+ donor cells were measured by RNA sequencing (RNA-Seq). Human Mobilized Peripheral Blood Primary CD34+ cells from 2 healthy donors and 1 sickle cell trait donor were expanded from thaw by seeding 100,000 viable cells/mL in a culture flask containing CD34+ Phase 1 Media comprised of IMDM, 100 ng/ml hSCF, 5 ng/ml IL-3, 3 IU/mL EPO, 250 μg/mL transferrin, 2.5% normal human serum, 1% pen/ strep, 10 ng/ml heparin, 10 µg/mL insulin. The cells were supplemented by adding an additional 1X culture volume of CD34+ Phase 1 Media on Day 3 after thaw. At Day 7 post-thaw, cells were seeded at 0.111×10⁶ cells/ml in 1.5 mLs of Phase 1 media in 12-well plates and compound was applied. On Day 10 post-thaw, cells were differentiated towards the erythroid lineage by complete medium exchange into CD34+ Phase 2 Media comprised of IMDM, 100 ng/ml hSCF, 3 IU/mL EPO, 250 μg/mL transferrin, 2.5% normal human serum, 1% pen/strep, 10 ng/ml heparin, 10 μg/mL insulin and compound treatment was reapplied. On Day 12 post-thaw the plates were centrifuged, and 1 mL of Phase 2 media exchanged with fresh Phase 2 media and compound. The cells were harvested on Day 14 post-thaw for downstream analyses. [0228] RNA was extracted from Day 14 post-thaw primary CD34+ cells that were differentiated and treated for 7 days with DMSO, 100 nM of Compound 1, or 100 nM of Compound 2 using Ambion mirVana RNA extraction kits. Purified RNA samples were submitted for library preparation and deep sequencing at Novogene. Sequenced raw reads of fastq files from all samples were mapped to hg38 genome assemblies using ArrayStudio aligner. Raw read counts and FPKM were calculated for all genes and DESeq2 was applied to calculate differentially expressed genes using general linear model. The statistical cutoff of absolute fold change greater than 4 (fdr<0.05, abs(FC)>4, log2(FPKM+1)>1). [0229] Hemoglobin protein tetramers were analyzed using HPLC analysis following a protocol derived from Gravett et al. Science 2018. Briefly, approximately 1 million cells were lysed in 100 uL of water with 10 uL of lysate used per injection. Hemolysates were cleared by centrifugation and analyzed for identity and levels of hemoglobin variants (HbF and HbA) by cation-exchange HPLC with a weak cation-exchange column (Poly CAT A: 35 mm×4.6 mm, Poly LC, Inc., Columbia, MD). Hemoglobin isotype peaks were eluted with a linear gradient of phase B from 0% to 80% at A410 nm (Mobile Phase A: 20 mM Bis-Tris, 2 mM KCN, pH 6.95; Phase B:20 mM Bis-Tris, 2 mM KCN, 0.2 M sodium chloride, pH 6.55). Species were monitored with UV absorbance at 410 nm. Retention times for hemoglobin species was optimized using the hemoglobin FASC control (PerkinElmer) as isotype controls for HbF, HbA, HbS and HbC. The abundance of HbF, HbS, and HbA was quantified by calculating the area under the curve for each species in the samples. % HbF was calculated as HbF/(HbF+HbS+HbA)*100. [0230] 100 nM of Compound 1 and 100 nM of Compound 2 decreased BCL11A and increase HBG1 and HBG2 expression in all donors studied (i.e., D069, D144, and D326 donors), as shown in FIG. 2. It was observed that expression of the housekeeping gene TFRC did not result in substantial changes in expression upon exposure to Compound 1 or Compound 2. However, an approximately 2-fold increase in percentage HbF by HPLC
at 100 nM Compound 1 or 100 nM Compound 2. Example 3. Dependence of Compound 1 Concentration on BCL11A Expression, HBG1 Expression, HBG2 Expression, and Percentage HbF [0231] A single donor (D069) was treated with Compound 1 to generate 4-point concentration response curves of fold changes in BCL11A expression, HBG1 expression, and HBG2 expression, and percentage HbF levels. Human Mobilized Peripheral Blood Primary CD34+ cells from 1 healthy donor were expanded from thaw by seeding 100,000 viable cells/mL in a culture flask containing CD34+ Phase 1 Media comprised of IMDM, 100 ng/ml hSCF, 5 ng/mL IL-3, 3 IU/mL EPO, 250 μg/mL transferrin, 2.5% normal human serum, 1% pen/strep, 10 ng/ml heparin, 10 μg/mL insulin. The cells were supplemented by adding an additional 1X culture volume of CD34+ Phase 1 Media on Day 3 after thaw. At Day 7 post-thaw, cells were seeded at 0.111×10⁶ cells/ml in 1.5 mLs of Phase 1 media in 12-well plates and compound was applied. On Day 10 post-thaw, cells were differentiated towards the erythroid lineage by complete medium exchange into CD34+ Phase 2 Media comprised of IMDM, 100 ng/ml hSCF, 3 IU/mL EPO, 250 µg/mL transferrin, 2.5% normal human serum, 1% pen/strep, 10 ng/ml heparin, 10 µg/mL insulin and compound treatment was reapplied. On Day 12 post-thaw the plates were centrifuged, and 1 mL of Phase 2 media exchanged with fresh Phase 2 media and compound. The cells were harvested on Day 14 post-thaw for downstream analyses. [0232] RNA was extracted from Day 14 post-thaw primary CD34+ cells that were differentiated and treated for 7 days with DMSO, 11 nM, 33 nM, 100 nM, or 300 nM of Compound 1 using Ambion mirVana RNA extraction kits. Purified RNA samples were submitted for library preparation and deep sequencing at Novogene. Sequenced raw reads of fastq files from all samples were mapped to hg38 genome assemblies using ArrayStudio aligner. Raw read counts and FPKM were calculated for all genes and DESeq2 was applied to calculate differentially expressed genes using general linear model. The statistical cutoff of absolute fold change greater than 4 (fdr<0.05, abs(FC)>4, log2(FPKM+1)>1). [0233] Hemoglobin protein tetramers were analyzed using HPLC analysis following a protocol derived from Gravett et al. Science 2018. Briefly, approximately 1 million cells were lysed in 100 uL of water with 10 uL of lysate used per injection. Hemolysates were cleared by centrifugation and analyzed for identity and levels of hemoglobin variants (HbF and HbA) by cation-exchange HPLC with a weak cation-exchange column (Poly CAT A: 35 mm×4.6 mm, Poly LC, Inc., Columbia, MD). Hemoglobin isotype peaks were eluted with a linear gradient of phase B from 0% to 80% at A410 nm (Mobile Phase A: 20 mM Bis-Tris, 2 mM KCN, pH 6.95; Phase B:20 mM Bis-Tris, 2 mM KCN, 0.2 M sodium chloride, pH 6.55). Species were monitored with UV absorbance at 410 nm. Retention times for hemoglobin species was optimized using the hemoglobin FASC control (PerkinElmer) as isotype controls for HbF, HbA, HbS and HbC. The abundance of HbF, HbS, and HbA was quantified by calculating the area under the curve for each species in the samples. % HbF was calculated as HbF/(HbF+HbS+ HbA)*100. [0234] A decrease in BCL11A expression, an increase in HBG1 expression, an increase in HBG2 expression, and an increase in HbF protein levels were observed in a concentration-dependent fashion and at similar concentrations, as shown in FIG. 3. Example 4. PRC2 Inhibition Reduces Expression of BCL11A Resulting in Induction of HBG1 Expression, Induction of HBG2 Expression, and Percentage HbF [0235] The effect of PRC2 inhibition on BCL11A expression, HBGI expression, HBG2 expression, and percentage HbF in two different CD34+ donors was studied. Human Mobilized Peripheral Blood Primary CD34+ cells from 2 healthy donors were expanded from thaw by seeding 100, 000 viable cells/mL in a culture flask containing CD34+ Phase 1 Media comprised of IMDM, 100 ng/mL hSCF, 5 ng/ml IL-3, 3 IU/mL EPO, 250 μg/mL transferrin, 2.5% normal human serum, 1% pen/strep, 10 ng/ml heparin, 10 μg/mL insulin. The cells were supplemented by adding an additional 1x culture volume of CD34+ Phase 1 Media on Day 3 after thaw. At Day 7 post-thaw, cells were seeded at 0.111×10⁶ cells/ml in 1.5 mLs of Phase 1 media in 12-well plates and compound was applied. On Day 10 post-thaw, cells were differentiated towards the erythroid lineage by complete medium exchange into CD34+ Phase 2 Media comprised of IMDM, 100 ng/mL hSCF, 3 IU/mL EPO, 250 μg/mL transferrin, 2.5% normal human serum, 1% pen/ strep, 10 ng/ml heparin, 10 µg/mL insulin and compound treatment was reapplied. On Day 12 post-thaw the plates were centrifuged, and 1 mL of Phase 2 media exchanged with fresh Phase 2 media and compound. The cells were harvested on Day 14 post-thaw for downstream analyses. [0236] RNA was extracted from Day 14 post-thaw primary CD34+ cells that were differentiated and treated for 7 days with DMSO, Compound 1 (11 nM, 33 nM, 100 nM, 300 nM), Compound 2 (11 nM, 33 nM, 100 nM, 300 nM), Compund 3 (37 nM, 111 nM, 333 nM, 1 uM), Compound 4 (37 nM, 111 nM, 333 nM, 1 uM) using Ambion mirVana RNA extraction kits. Purified RNA samples were submitted for library preparation and deep sequencing at Novogene. Sequenced raw reads of fastq files from all samples were mapped to hg38 genome assemblies using ArrayStudio aligner. Raw read counts and FPKM were calculated for all genes and DESeq2 was applied to calculate differentially expressed genes using general linear model. The statistical cutoff of absolute fold change greater than 4 (fdr<0.05, abs(FC)>4, log2(FPKM+1)>1). [0237] Hemoglobin protein tetramers were analyzed using HPLC analysis following a protocol derived from Gravett et al. Science 2018. Briefly, approximately 1 million cells were lysed in 100 uL of water with 10 uL of lysate used per injection. Hemolysates were cleared by centrifugation and analyzed for identity and levels of hemoglobin variants (HbF and HbA) by cation-exchange HPLC with a weak cation-exchange column (Poly CAT A: 35 mm×4.6 mm, Poly LC, Inc., Columbia, MD). Hemoglobin isotype peaks were eluted with a linear gradient of phase B from 0% to 80% at A410 nm (Mobile Phase A: 20 mM Bis-Tris, 2 mM KCN, pH 6.95; Phase B:20 mM Bis-Tris, 2 mM KCN, 0.2 M sodium chloride, pH 6.55). Species were monitored with UV absorbance at 410 nm. Retention times for hemoglobin species was optimized using the hemoglobin FASC control (PerkinElmer) as isotype controls for HbF, HbA, HbS and HbC. The abundance of HbF, HbS, and HbA was quantified by calculating the area under the curve for each species in the samples. % HbF was calculated as HbF/(HbF+HbS+ HbA)*100. [0238] From the procedure, aggregate data from two different CD34+ donors (D069 and D301) and multiple compounds that inhibit PRC2, particularly Compound 1, Compound 2, Compound 3, and Compound 4 were collected, as shown in FIG. 4A, FIG. 4B, and FIG. 4C. [0239] The data show that HBG1 mRNA expression level (FIG. 4A), HBG2 mRNA expression level (FIG. 4B), and percentage HbF protein (FIG. 4C) correlate to a decrease in BCL11A mRNA levels regardless of donor, concentration, or PRC2 inhibitor selected. ## Example 5. Effect of Various PRC2 Inhibitors on BCL11A, HBG1, and HBG2 Expression [0240] 4-point concentration response curves of the PRC2 inhibitors Compound 1, Compound 2, Compound 3, and Compound 4 on BCL11A expression (FIG. 5A), HBG1 expression (FIG. 5B), and HBG2 expression (FIG. 5C), were generated. The data show that all PRC2 inhibitors profiled show a reduction in BCL11A expression and a concomitant induction of HBG1 and HBG2 expression. ## Example 6. Studies of Effects of Compound 1 and Gene Knockdown BCL11A mRNA Levels [0241] Whole blood of wildtype CD-1 mice were treated for 5 days with 10 mg/kg Compound 1, and which was maintained over time in the Townes sickle cell disease (SCD) mouse model (FIG. 6). Furthermore, CRISPR-Cas9 in CD34+ cells was used to understand if loss-of-function of EED or BCL11A recapitulated the pharmacologic impact on fetal hemoglobin expression with Compound 1. Knockdown in vitro of both BCL11A and EED genes showed a significant reduction in BCL11A mRNA levels with a corresponding induction of HbF protein (FIG. 7). Whole Blood Real-Time Quantitative PCR (qRT-PCR) [0242] Whole blood was collected and preserved in DNA/RNA Shield Solution. RNA was extracted with MagMAX mirVana Total RNA Isolation Kit with KingFisher™ Flex Purification System. 10 ng of RNA was used for one-step TaqMan RNA-to-Ct reaction using Taqman reverse transcriptase Multiplex Master Mix (ThermoFisher, #4484262) following the manufacturer's recommendations. Amplification was detected in a Quantstudio 7 Flex instrument from ThermoFisher. Transcript specific Taqman probes purchased from ThermoFisher are shown in Table 1. The relative expression levels from each gene target were calculated and normalized to geometric mean of three reference genes (Gapdh, Oazl and Tfrc) using 2^{-4Ct} method. Example 7. Comparative Studies of Compound 1 and Hydroxyurea (HU) in an SCD Mouse Model [0243] The Townes SCD mouse model was used to study the in vivo pharmacologic activity of Compound 1 in a model with the relevant human globin genes (HBG1 and HBB_{E6V}) integrated into the mouse beta globin locus. Hydroxyurea was used as a benchmark for this 21-day study. The Compound 1 treatment was well-tolerated in the SCD mice and target engagement analysis found that levels of H3K27me3 were significantly reduced in Ter119+ bone marrow cells with Compound 1 treatment but not hydroxyurea treatment after 28 days of treatment as expected (FIG. 8A). Compound 1 treatment led to increases in % F-cells when measured at Day 13 and Day 21, while hydroxyurea did not significantly impact F-cells (FIG. 8B). Despite the Townes SCD mouse having low basal HbF expression, % HbF of total hemoglobin was quantified by HPLC and showed significant induction of
HbF with Compound 1 treatment consistent with the 2-3 fold induction observed preclinically, while no change in HbF was observed with hydroxyurea (FIG. 8C). The Compound 1 treated Townes mice showed a statistically significant reduction in spleen weight as a percent of total body weight by Day 21, further demonstrating the benefit of increased HbF on SCD-related symptomatology (FIG. 8D). People living with sickle cell present with impaired erythropoiesis leading to elevated reticulocytes, decreased red blood cell count, and total hemoglobin, and additionally display markers of inflammation such as elevated neutrophils and white blood cells. Similarly, the Townes mouse model recapitulates these hematological aspects of SCD. The Compound 1 induced increase in HbF, although expressed at low levels relative to total hemoglobin, translated to positive improvements in hematological parameters in the Townes mice such as RBC count, total Hb, % reticulocytes, WBCs, and neutrophils (FIG. 8E). #### Equivalents [0244] Those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation, numerous equivalents to the specific embodiments described specifically herein. Such equivalents are intended to be encompassed in the scope of the following claims. What is claimed is: - 1. A method of downregulating BCL11A in a cell comprising: contacting the cell sample with an EED, EHZ2, and/or PRC2 inhibitor in amount sufficient to decrease expression of BCL11A. - 2. The method of claim 1, wherein the cell is an erythroid cell differentiated from a CD34+ cell. - 3. The method of claim 2, wherein upon contacting the cell, HBG1 and/or HBG2 expression increases. - **4**. The method of any one of claims **1-3**, wherein upon contacting the cell with the protein inhibitor, the cell does or does not express fetal hemoglobin. - 5. A method of identifying a patient having a BCL11A mediated disorder who may benefit from treatment comprising one or more inhibitors of EED, EHZ2, and/or PRC2, comprising determining an expression level of BCL11A in a sample obtained from the patient, wherein an increased - expression level of BCL11A in the sample as compared to a reference expression level identifies the patient as one who may benefit from the EED, EHZ2, and/or PRC2 inhibitor treatment. - **6.** A method of treating a patient having a BCL11A mediated disorder, comprising administering to the patient a therapeutically effective amount of a EED, EHZ2, and/or PRC2 inhibitor, wherein the expression level of BCL11A in a sample obtained from the patient has been determined to be decreased after the administration as compared to a reference expression level. - 7. The method of any one of claims 1-6, wherein the EED, EHZ2, and/or PRC2 inhibitor is selected from the group consisting of an antibody against EED, EHZ2, and/or PRC2 or an antigen-binding fragment thereof, a small molecule, and a nucleic acid. - **8**. The method of claim **7**, wherein the nucleic acid is a EED, EHZ2, and/or PRC2-specific RNA interference agent, a vector encoding a RNA interference agent, or an aptamer that binds EED, EZH2, and/or PRC2. - **9**. The method of any one of claims **5-8**, wherein the BCL11A mediated disorder is selected from the group consisting of triple negative breast cancer, non-small cell lung cancer, glioblastoma, neuroblastoma, prostate cancer, type 2 diabetes, laryngeal squamous cell carcinoma, and Williams syndrome. - 10. A method of treatment of a hemoglobinopathy in a subject comprising administering an effective amount of a composition comprising an inhibitor of EED, EHZ2, and/or PRC2, wherein the inhibitor of PRC2 downregulates the expression of BCL11A and whereby fetal hemoglobin expression is increased in the subject relative to prior to the administration. - 11. The method of claim 10, wherein the hemoglobinopathy is selected from the group consisting of sickle cell disease (SCD), α -thalassemia, and β -thalassemia. - 12. The method of claim 11, wherein the β -thalassemia is selected from the group consisting of sickle β -thalassemia, hemoglobin C β -thalassemia, and hemoglobin E β -thalassemia. - 13. The method of claim 12, wherein sickle β -thalassemia is selected from sickle β 0 thalassemia and sickle β +thalassemia. - 14. The method of any one of claims 1-13, wherein the expression level of BCL11A is decreased by at least 25% relative to a reference level. - **15**. The method of any one of claims **1-14**, wherein the expression level is a protein expression level or a mRNA expression level. - **16**. The method of claim **15**, wherein the mRNA expression level is determined by qPCR or RNA-Seq. - 17. The method of claim 15, wherein the protein expression level is determined using a method selected from the group consisting of high-performance liquid chromatography (HPLC), immunohistochemistry (IHC), immunofluorescence, mass spectrometry, flow cytometry, and Western blot **18**. The method of any one of claims **1-17**, wherein the EED, EHZ2, and/or PRC2 inhibitor is selected from the group consisting of: tazemetostat, CPI-0209, CPI-1205, EBI-2554, HH-2853, MAK-683, SHR-2554, valemetostat, PF-06821497, ORIC-944, and GSK-2816126. - 19. A genetically modified cell comprising an insertion and/or deletion in a gene loci that encodes a protein selected from the group consisting of EED, EHZ2, and PRC2, wherein the insertion and/or deletion is capable of downregulating expression of BCL11A in the cell. - 20. The genetically modified cell of claim 19, wherein the expression level of BCL11A is decreased by at least 25% relative to a reference level. - 21. The genetically modified cell of claim 19 or 20, wherein the expression level is a protein expression level or a mRNA expression level. - **22**. The genetically modified cell of claim **21**, wherein the mRNA expression level is determined by qPCR or RNA-Sea. - Seq. 23. The genetically modified cell of claim 21, wherein the protein expression level is determined using a method selected from the group consisting of high-performance liquid chromatography (HPLC), immunohistochemistry (IHC), immunofluorescence, mass spectrometry, flow cytometry, and Western blot. * * * * *