US 20240231796A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2024/0231796 A1

Nimmagadda et al.

43) Pub. Date: Jul. 11, 2024

(54)

(71)

(72)

(73)

@

(22)

SYSTEM FOR PUBLISHING EMBEDDED
WEB APPLICATION WITH ATOMIC
VERSION CONTROL

Applicant: Salesforce, Inc., San Francisco, CA
(US)

Inventors: Sankara Jaya Prakash Nimmagadda,

Austin, TX (US); Benjamin Drasin,

Portland, OR (US); Sudhakara Reddy

Peddi, Irvine, CA (US)

Assignee: Salesforce, Inc., San Francisco, CA

Us)

Appl. No.: 18/094,267

Filed: Jan. 6, 2023

Publication Classification

(51) Int. CL

GOGF 8/65 (2006.01)

GOGF 9/445 (2006.01)

HO4L 51/046 (2006.01)
(52) US.CL

CPC ... GOGF 8/65 (2013.01); GOGF 9/44505

(2013.01); HO4L 51/046 (2013.01)

(57) ABSTRACT

Disclosed herein are system, method, and computer program
product embodiments for publishing an embedded web
application with atomic version control. An embodiment
operates by generating an updated version of an embedded
code in response to receiving a request to publish an updated
embedded web application. The embodiment then generates
an embedding code and an application configuration corre-
sponding to the updated version of the embedded code in
response to a determination that the embedded web appli-
cation was published successfully. The embodiment then
stores the embedding code and the application configuration.

300

Runtime Loading Seguence

End User/Browser
A

Service provider Servers
A

H !
i H
| Website E ;

i

Loads the website, with
code snippet

JEU—

n
|

L.oads Embedding Code

App Server

- - e

!

| Ca(;{}e Data Store | | Management
% Service I

i

Content i
308 1 | System %;

;
Gat Embedding Code for ;

published version

Relurns Embedding Code

Get Configuration

—_
w {Feich if neaded

Get Configuration for
published versicn

Retum Configuration

E

-{ Embedding Code }--{ Cade Snippet}--
3

i

Create iframe with |
sro for embedded |
code !

5 (Fefch if nesded
[N p—— X

Get Embsdded Code JJ

Ly

iframa p-----

{

US 2024/0231796 Al

Jul. 11,2024 Sheet 1 of 5

Patent Application Publication

TN e

\\ \\i/\ .f\.../v
[~ ot =
L 1ouIeL }
4<% \.\\\
\ /

/i./ v,.(.l.\ \\.\\

4
-4

[\ W%w;msgmww,,“
T aY
m e |
01 |
m |
diby |
L bappaquid "
SpOo PAPPBGLIS YD1 N A
apos Buppagius udie- (sBed up |
sujuy |
uopenbyuo) ypedy 1addius T\...waw
apony |
200
afed gam sowwi0I1I8ND
wion abedawos// sdny

Patent Application Publication Jul. 11,2024 Sheet 2 of 5 US 2024/0231796 A1

202
o

H
{)
7

\‘\Admm clicks /
on Publish /

. ' |
Vobutton
L 3 /
L S
e

T 204
< Deployment™, ok

Y]
(o]
("]

o Type‘?//
\\ o
S 2086
! -
o 1. Latest component code
Publish site > 2. updates URL site uses to make calls
o services

2}0

/f}(e Lo

. //‘ \\‘\X’-\"‘" 208 E
Mobile -

-~ \\ E
o i ~ | Show error
< Publish > No | :
\.\succegs’?/ in Ul
A

\\ /f/
Yes
i 212

—~

{
| {
i Store configuration in 1. Stores the core version

“““““““““““ ’*i Data Store 2. Config information

i 3. Custom labels
i

214
. ¥ .
g Push invalidate l &J/ End\
i cache event to App I ”‘\\\ J
| Server e

FIG. 2

apoo
DEPOBGIIS IO} IS
YA BLIBIY 818810

8p00 PEpPPEqU 90

US 2024/0231796 Al

¥

&.:! mms mms mma wmm mmm s
pepssU i yaed

-

IOREINBEUGT LImay

uoisisA paysignd
{0} uoeInByLc] 185 uopeInbiuc) 189

A

e,

¥

8p07) BUIpPsGLT SWMey

et UoiCisA peusnand :
103 8poy Buppegquiy 190 apo] Buippegiug speo

Y

wddius 8pos
U 'S)ISCEM B SPROT :

o
2
G
fllﬂllv
:
i
H
¥
]
o,
T
w
&
&
o
g
=
&
]
[
.
&
‘.\(1)\
'
poene,
O
&
&
@
o2
2.
e
g2
&
&
H

Jul. 11, 2024 Sheet 3 of 5

v0E Z0e
Janjeg ddy SUSGBAM

welsAs | | BOE
wewsbeuepyy | 2018 BIB(
ween

B0IBS
BYOB

: H
J %,

¥ k v
3IBAIRS IBpIACKE B0IAIBS IOSMOIG/IBSN pUT

BSUBNLES DUIPEO | BUINUNY

00¢

Patent Application Publication

Patent Application Publication Jul. 11,2024 Sheet 4 of 5

US 2024/0231796 Al

NN
L)
L}

Generate an updated version of an embedded code
in response o receiving a request to publish an
updaled embedded web application

- 402

¥

Generate an embedding code and an application
configuration corresponding to the updated version
of the embedded code in response to a
delermination that the embedded web application
was published successfully

- 404

¥

Store the embedding code and the application
configuration

T 408

976 Uied SUCHESIUNWILLICT ~

826
{senAnus (8iomsy
(8)}801AD SlOWBY

US 2024/0231796 Al

TAASRILS
ab2i01n SjgBATIDY

vZs
BoRLBILY
SUCHBOUNUIWOD

16 uun
oBrIoIS SjaRACLIDY

0gG soeusiy

Jul. 11, 2024 Sheet 5 of 5

£04 (sjsoepeiy|
ndinganduy sesn

Pig
aauy abeioig
SBIQBAOLIEY

AR
SALICT A8I(T PIBH

015 Aowispy Aepuocses

S

005 ISISAT 18TRaTnS

Patent Application Publication

z0g (s)sospaiy
indimoandul esn

806G AIoWsiy UK

N

BOG J0SSO00I

AN

RV N S

90%
SinoNAsEU

LOREDIUNUILICT

US 2024/0231796 Al

SYSTEM FOR PUBLISHING EMBEDDED
WEB APPLICATION WITH ATOMIC
VERSION CONTROL

BACKGROUND

[0001] One or more implementations relate to the field of
publishing embedded web applications.

[0002] A web application is an application software deliv-
ered over the Internet and is run in a web browser. Modern
web applications are often complex and require a publishing
system to keep the application cohesive as it is updated with
new views, components, and configurations. A publishing
system for web applications typically has a development
phase, where an administrator configures and designs the
website. A publishing system further includes a publishing
process where various design resources are converted and
compiled into resources that are subsequently consumed by
runtime processes which serve the resources to users on the
Internet.

[0003] An embedded web application is usually enclosed
inside an iframe and embedded within a larger parent
website. Hence, updating an embedded web application may
necessitate changes to the parent webpage and/or changes to
the code that enable communication between the embedded
application and the parent webpage. A mismatch between
versions of various code sets corresponding to the embedded
application may result in an inconsistent user experience.
Accordingly, what is needed is a system to facilitate a
consistent versioned publication of embedded web applica-
tions.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The accompanying drawings are incorporated
herein and form a part of the specification.

[0005] FIG. 1 illustrates a block diagram of an exemplary
embedded web application, in accordance with some
embodiments.

[0006] FIG. 2 illustrates a block diagram of an exemplary
method for publishing an embedded web application, in
accordance with some embodiments.

[0007] FIG. 3 illustrates a block diagram of an exemplary
runtime loading sequence for publishing embedded web
applications with atomic version control, in accordance with
some embodiments.

[0008] FIG. 4 illustrates an exemplary method for pub-
lishing an embedded web application with atomic version
control, according to some embodiments.

[0009] FIG. 5 depicts an example computer system useful
for implementing various embodiments.

[0010] In the drawings, like reference numbers generally
indicate identical or similar elements. Additionally, gener-
ally, the left-most digit(s) of a reference number identifies
the drawing in which the reference number first appears.

DETAILED DESCRIPTION

[0011] Provided herein are system, apparatus, device,
method and/or computer program product embodiments,
and/or combinations and sub-combinations thereof, for pub-
lishing an embedded web application with atomic version
control.

[0012] According to some embodiments, when a web
application is updated and published, the publishing system
may have a means of grouping the changes into a cohesive

Jul. 11, 2024

set and assigning it a unique version name or a unique
version number. According to some aspects, version control
with a publishing system prevents mixing newly published
files with content from previously published versions of
software and ensures a consistent user experience. Accord-
ing to some aspects, a publishing system may publish all of
the resources except the initial resource (e.g., home page/
index.html) using a path unique to the version being pub-
lished and subsequently replaces the initial resource with an
updated version referencing all of the new resources.
[0013] According to some aspects, an embedded web
application is enclosed within a larger parent webpage, and
an embedding code enables the communication between the
embedded web application and the parent webpage. Accord-
ing to some aspects, the owner of an embedded web appli-
cation may wish to update the application in such a way as
to require changes in the parent webpage, for example,
changes to the dimensions of the iframe, changes to the
messages exchanged between the parent webpage and the
embedded web application, and the like. Furthermore, the
administrator of the embedded web application may not be
the same as the owner of the parent webpage. Hence,
coordinating concurrent updates to the parent webpage and
the embedded web application might be difficult.

[0014] According to some aspects, an embedded web
application may utilize a set of externally-supplied configu-
rations obtained at runtime. According to some aspects, a
real-time application server may be utilized to deliver exter-
nal embedding code and application configuration that is
consistent with the published version of the embedded web
application. Maintaining consistency between the published
version of the embedded web application and the embedding
code and configuration avoids code mismatches that may
result in an inconsistent end-user experience.

[0015] Various embodiments of these features will now be
discussed with respect to the corresponding figures.

[0016] FIG. 1 illustrates a block diagram of an exemplary
embedded web application, in accordance with some
embodiments. As illustrated in FIG. 1, embedded web
application 106 is enclosed within a larger parent web page
102 (e.g., a consumer webpage). Exemplary applications
that may be embedded in a webpage include embedded
advertisements, embedded videos (e.g., YouTube, Vimeo,
etc.), discussion threads (e.g., Disqus, Facebook comments),
social media posts, and real-time messaging applications
(e.g., chat applications and the like).

[0017] According to some aspects, the parent webpage
102 includes an iframe 108, and the embedded web appli-
cation 106 is enclosed within the iframe 108. The parent web
page 102 also includes an in-lined code snippet 104. Accord-
ing to some aspects, embedded application 106 utilizes
various sets of code, including an embedding code, an
embedding code, and an application configuration. Accord-
ing to some aspects, an external application server is used to
deliver the embedding code and application configuration
corresponding to the published version of the embedded
application to the customer webpage 102.

[0018] According to some aspects, all the embedding code
may be contained in a code snippet. Alternatively, for
complex web applications, the embedding code may be
included in the code snippet as attributes for the iframe, as
a free JavaScript, or as a separate external file. According to
some aspects, using the code snippet 110, application con-
figuration and embedding code are loaded from an external

US 2024/0231796 Al

application server located in the Internet 110. As illustrated
in FIG. 1, code snippet 104 includes instructions to create a
request to an application server to fetch application configu-
ration and embedding code corresponding to the published
version of the embedded application.

[0019] According to some aspects, the configuration code
may specity various attributes of the embedded application,
and the embedding code may include instructions that
enable communication between the embedded application
106 and the parent page 102.

[0020] The embedding code is consumed by the parent
page 102 and may include a Javascript function to create the
iframe 108. According to some aspects, the embedding code
may also include a URL of the embedded code.

[0021] According to some aspects, the embedded code
implements the embedded application 106 and is loaded into
an iframe 108 inside the parent webpage 102. According to
some aspects, the embedded code is generated by a third-
party website or server and is loaded into the iframe 108.
According to some aspects, the code snippet 104 is kept to
a minimal size, and the configuration code and the embed-
ding code are loaded externally

[0022] FIG. 2 illustrates a block diagram of an exemplary
process for publishing an embedded web application, in
accordance with some embodiments. FIG. 2 may be
described with reference to elements from FIG. 1.

[0023] At 202, a website administrator may click on a
publish button to publish an updated embedded web appli-
cation. According to some aspects, a determination is made
at 204 as to whether the deployment is a web deployment or
a mobile deployment. According to some aspects, based on
a determination that the deployment type is a web deploy-
ment, an application programming interface (API) call may
be made to a content management system to publish the site.
According to some aspects, the publishing process at 206
prepares XML pages and component code to be consumed
as content. According to some aspects, an updated compo-
nent code is generated at 206, and a URL to makes calls to
services is updated.

[0024] At 208, a determination is made as to whether the
publishing process is a success. According to some aspects,
if the publish process is a success, the procedure to imple-
ment atomic version control is subsequently executed. Alter-
natively, if the publish process is not a success, at 210, an
error message is displayed at the administrator’s user inter-
face. At 212, based on a determination that the publishing
process is a success, a set of resources containing the data
needed to create the embedding code are generated. The
generated set of resources may be stored in a persistent
entity at a data store core server. According to some aspects,
embedding code and application configuration correspond-
ing to the published embedded application are generated.
The generated embedding code and application configura-
tion, along with corresponding custom labels, may also be
stored in a persistent entity at a core server.

[0025] At 214, an invalid cache event is pushed to a cache
server. According to some aspects, the cache service is
invalidated so that the embedding code and the configuration
corresponding to the latest published version are fetched
from the core server.

[0026] FIG. 3 illustrates a block diagram of an exemplary
runtime loading sequence for publishing embedded web
application with atomic version control, according to some
embodiments.

Jul. 11, 2024

[0027] According to some aspects, the exemplary system
comprises an application server 304, a cache service 306, a
data store 308, and a content management system 310.
Furthermore, website 302 includes a webpage that may host
an embedded web application. According to some aspects,
the webpage includes an in-lined code snippet that commu-
nicates with an application server 304.

[0028] According to some aspects, when a user loads the
webpage with the code snippet, the in-line code snippet
sends a request to the application server 304 to fetch
appropriate embedding code corresponding to the embedded
web application last published by the user. According to
some aspects, the request sent by the code snippet includes
an identifier corresponding to the customer and/or an iden-
tifier corresponding to the website 302. The request may also
include an identifier corresponding to the embedded appli-
cation. According to some aspects, the application server
304 performs a look-up to determine the embedding code
corresponding to the published version of the embedded web
application. The application server may obtain the embed-
ding code corresponding to the published version of the
embedded web application from a cache service 306.
[0029] According to some aspects, a copy of the embed-
ding code and the application configuration corresponding to
the published version of the embedded application are stored
at a data store 308. According to some aspects, the data store
308 may be a persistent data storage device. If the embed-
ding code corresponding to the published version of the
embedded web application is unavailable at the cache ser-
vice 306 or if the cache service was indicated to be invalid,
the appropriate embedding code is fetched from the data
store 308, and the application server 304 returns the embed-
ding code to the website 302.

[0030] According to some aspects, once the appropriate
embedding code is received at the webpage, the embedding
code generates a request to the application server 304 to
fetch the appropriate application configuration correspond-
ing to the published embedded web application. The appli-
cation server 304 may obtain the application configuration
corresponding to the published version of the embedded web
application from a cache service 306. Alternatively, if the
application configuration corresponding to the published
version of the embedded web application is unavailable at
the cache service 306 or if the cache service was indicated
to be invalid, the appropriate version of the application
configuration is fetched from the data store 308, and the
application server 304 returns it to the website 302.

[0031] According to some aspects, the embedding code
creates an iframe that may be used for encapsulating the
embedded code corresponding to the embedded application.
In addition, the embedding code uses the received applica-
tion configuration and generates a request to a content
management system 310 to fetch the appropriate embedded
code. According to some aspects, the content management
system 310 returns the embedded code corresponding to the
published version of the embedded application. The embed-
ded code is encapsulated within the iframe to implement the
embedded application on the webpage.

[0032] FIG. 4 is a flowchart for method 400 for publishing
an embedded web application with atomic version control,
according to an embodiment. Method 400 can be performed
by processing logic that can comprise hardware (e.g., cir-
cuitry, dedicated logic, programmable logic, microcode,
etc.), software (e.g., instructions executing on a processing

US 2024/0231796 Al

device), or a combination thereof. It is to be appreciated that
not all steps may be needed to perform the disclosure
provided herein. Further, some of the steps may be per-
formed simultaneously, or in a different order than shown in
FIG. 4, as will be understood by a person of ordinary skill
in the art.

[0033] Method 400 shall be described with reference to
FIGS. 1-3. However, method 400 is not limited to those
example embodiments.

[0034] At 402, an updated version of an embedded code is
generated in response to receiving a request to publish an
updated embedded web application. According to some
aspects, the embedded code includes instructions for imple-
menting the updated embedded web application at a web
client. According to some aspects, the embedded web appli-
cation is a multi-tenant embedded web application. Accord-
ing to some aspects, the embedded code is generated by a
content management system. According to some aspects, the
embedded web application is a real-time messaging appli-
cation.

[0035] At 404, an embedding code and an application
configuration corresponding to the updated version of the
embedded code are generated in response to a determination
that the embedded web application was published success-
fully. According to some aspects, the embedding code
includes instructions for creating an iframe for embedding
the web application within a parent page at a web client.
According to some aspects, the application configuration
includes a plurality of attributes of an iframe for embedding
the web application within a parent page at a web client.
According to some aspects, the application configuration
includes information corresponding to the dimensions of the
iframe, color attributes, layout of the text boxes, and the
input fields corresponding to the embedded application.
According to some aspects, the application configuration is
generated in the format of a Javascript object notation
(JSON) object.

[0036] At 406, the embedding code and the application
configuration are stored on a data store server. According to
some aspects, the data store server includes a persistent
storage device that stores the embedding code and the
application configuration. According to some aspects, an
end-user website may send a request to an application server
304 to fetch embedding code corresponding to the user’s
published version of the embedded web application. Accord-
ing to some aspects, the application server may perform a
look-up to determine the appropriate embedding code cor-
responding to the published version of the embedded web
application. The application server may obtain the embed-
ding code corresponding to the user’s published version of
the embedded web application.

[0037] According to some aspects, an application server
sends the embedding code and the application configuration
to a web client in response to receiving a request generated
by an in-line code snippet at the web client. According to
some aspects, once the embedding code and the application
configuration are stored in a persistent storage device, the
application server cache containing an embedding code and
an application configuration corresponding to a previous
version of the embedded code is invalidated.

[0038] Various embodiments may be implemented, for
example, using one or more well-known computer systems,
such as computer system 500 shown in FIG. 5. One or more
computer systems 500 may be used, for example, to imple-

Jul. 11, 2024

ment any of the embodiments discussed herein, as well as
combinations and sub-combinations thereof.

[0039] Computer system 500 may include one or more
processors (also called central processing units, or CPUs),
such as a processor 504. Processor 504 may be connected to
a communication infrastructure or bus 506.

[0040] Computer system 500 may also include user input/
output device(s) 503, such as monitors, keyboards, pointing
devices, etc., which may communicate with communication
infrastructure 506 through user input/output interface(s)
502.

[0041] One or more of processors 504 may be a graphics
processing unit (GPU). In an embodiment, a GPU may be a
processor that is a specialized electronic circuit designed to
process mathematically intensive applications. The GPU
may have a parallel structure that is efficient for parallel
processing of large blocks of data, such as mathematically
intensive data common to computer graphics applications,
images, videos, etc.

[0042] Computer system 500 may also include a main or
primary memory 508, such as random access memory
(RAM). Main memory 508 may include one or more levels
of cache. Main memory 508 may have stored therein control
logic (i.e., computer software) and/or data.

[0043] Computer system 500 may also include one or
more secondary storage devices or memory 510. Secondary
memory 510 may include, for example, a hard disk drive 512
and/or a removable storage device or drive 514. Removable
storage drive 514 may be a floppy disk drive, a magnetic
tape drive, a compact disk drive, an optical storage device,
tape backup device, and/or any other storage device/drive.
[0044] Removable storage drive 514 may interact with a
removable storage unit 518. Removable storage unit 518
may include a computer usable or readable storage device
having stored thereon computer software (control logic)
and/or data. Removable storage unit 518 may be a floppy
disk, magnetic tape, compact disk, DVD, optical storage
disk, and/any other computer data storage device. Remov-
able storage drive 514 may read from and/or write to
removable storage unit 518.

[0045] Secondary memory 510 may include other means,
devices, components, instrumentalities or other approaches
for allowing computer programs and/or other instructions
and/or data to be accessed by computer system 500. Such
means, devices, components, instrumentalities or other
approaches may include, for example, a removable storage
unit 522 and an interface 520. Examples of the removable
storage unit 522 and the interface 520 may include a
program cartridge and cartridge interface (such as that found
in video game devices), a removable memory chip (such as
an EPROM or PROM) and associated socket, a memory
stick and USB port, a memory card and associated memory
card slot, and/or any other removable storage unit and
associated interface.

[0046] Computer system 500 may further include a com-
munication or network interface 524. Communication inter-
face 524 may enable computer system 500 to communicate
and interact with any combination of external devices,
external networks, external entities, etc. (individually and
collectively referenced by reference number 528). For
example, communication interface 524 may allow computer
system 500 to communicate with external or remote devices
528 over communications path 526, which may be wired
and/or wireless (or a combination thereof), and which may

US 2024/0231796 Al

include any combination of LANs, WANS, the Internet, etc.
Control logic and/or data may be transmitted to and from
computer system 500 via communication path 526.

[0047] Computer system 500 may also be any of a per-
sonal digital assistant (PDA), desktop workstation, laptop or
notebook computer, netbook, tablet, smart phone, smart
watch or other wearable, appliance, part of the Internet-of-
Things, and/or embedded system, to name a few non-
limiting examples, or any combination thereof.

[0048] Computer system 500 may be a client or server,
accessing or hosting any applications and/or data through
any delivery paradigm, including but not limited to remote
or distributed cloud computing solutions; local or on-prem-
ises software (“on-premise” cloud-based solutions); “as a
service” models (e.g., content as a service (CaaS), digital
content as a service (DCaaS), software as a service (SaaS),
managed software as a service (MSaaS), platform as a
service (PaaS), desktop as a service (DaaS), framework as a
service (FaaS), backend as a service (BaaS), mobile backend
as a service (MBaaS), infrastructure as a service (laaS),
etc.); and/or a hybrid model including any combination of
the foregoing examples or other services or delivery para-
digms.

[0049] Any applicable data structures, file formats, and
schemas in computer system 500 may be derived from
standards including but not limited to JavaScript Object
Notation (JSON), Extensible Markup Language (XML), Yet
Another Markup Language (YAML), Extensible Hypertext
Markup Language (XHTML), Wireless Markup Language
(WML), MessagePack, XML User Interface Language
(XUL), or any other functionally similar representations
alone or in combination. Alternatively, proprietary data
structures, formats or schemas may be used, either exclu-
sively or in combination with known or open standards.
[0050] In some embodiments, a tangible, non-transitory
apparatus or article of manufacture comprising a tangible,
non-transitory computer uscable or readable medium having
control logic (software) stored thereon may also be referred
to herein as a computer program product or program storage
device. This includes, but is not limited to, computer system
500, main memory 508, secondary memory 510, and remov-
able storage units 518 and 522, as well as tangible articles
of manufacture embodying any combination of the forego-
ing. Such control logic, when executed by one or more data
processing devices (such as computer system 500), may
cause such data processing devices to operate as described
herein.

[0051] Based on the teachings contained in this disclosure,
it will be apparent to persons skilled in the relevant art(s)
how to make and use embodiments of this disclosure using
data processing devices, computer systems and/or computer
architectures other than that shown in FIG. 5. In particular,
embodiments can operate with software, hardware, and/or
operating system implementations other than those
described herein.

[0052] Itis to be appreciated that the Detailed Description
section, and not any other section, is intended to be used to
interpret the claims. Other sections can set forth one or more
but not all exemplary embodiments as contemplated by the
inventor(s), and thus, are not intended to limit this disclosure
or the appended claims in any way.

[0053] While this disclosure describes exemplary embodi-
ments for exemplary fields and applications, it should be
understood that the disclosure is not limited thereto. Other

Jul. 11, 2024

embodiments and modifications thereto are possible, and are
within the scope and spirit of this disclosure. For example,
and without limiting the generality of this paragraph,
embodiments are not limited to the software, hardware,
firmware, and/or entities illustrated in the figures and/or
described herein. Further, embodiments (whether or not
explicitly described herein) have significant utility to fields
and applications beyond the examples described herein.
[0054] Embodiments have been described herein with the
aid of functional building blocks illustrating the implemen-
tation of specified functions and relationships thereof. The
boundaries of these functional building blocks have been
arbitrarily defined herein for the convenience of the descrip-
tion. Alternate boundaries can be defined as long as the
specified functions and relationships (or equivalents thereof)
are appropriately performed. Also, alternative embodiments
can perform functional blocks, steps, operations, methods,
etc. using orderings different than those described herein.
[0055] References herein to “one embodiment,” “an
embodiment,” “an example embodiment,” or similar
phrases, indicate that the embodiment described can include
a particular feature, structure, or characteristic, but every
embodiment can not necessarily include the particular fea-
ture, structure, or characteristic. Moreover, such phrases are
not necessarily referring to the same embodiment. Further,
when a particular feature, structure, or characteristic is
described in connection with an embodiment, it would be
within the knowledge of persons skilled in the relevant art(s)
to incorporate such feature, structure, or characteristic into
other embodiments whether or not explicitly mentioned or
described herein. Additionally, some embodiments can be
described using the expression “coupled” and “connected”
along with their derivatives. These terms are not necessarily
intended as synonyms for each other. For example, some
embodiments can be described using the terms “connected”
and/or “coupled” to indicate that two or more elements are
in direct physical or electrical contact with each other. The
term “coupled,” however, can also mean that two or more
elements are not in direct contact with each other, but yet
still co-operate or interact with each other.
[0056] The breadth and scope of this disclosure should not
be limited by any of the above-described exemplary embodi-
ments, but should be defined only in accordance with the
following claims and their equivalents.
What is claimed is:
1. A computer-implemented method, comprising:
generating an updated version of an embedded code in
response to receiving a request to publish an updated
embedded web application;
generating an embedding code and an application con-
figuration corresponding to the updated version of the
embedded code in response to a determination that the
embedded web application was published successfully;
and
storing the embedding code and the application configu-
ration.
2. The method of claim 1, further comprising:
sending the embedding code and the application configu-
ration to a web client in response to receiving a request
generated by an in-line code snippet at the web client.
3. The method of claim 1, further comprising:
invalidating an application server cache containing an
embedding code and an application configuration cor-
responding to a previous version of the embedded code.

US 2024/0231796 Al

4. The method of claim 1, wherein the embedding code
includes instructions for creating an iframe for embedding
the web application within a parent page at a web client.

5. The method of claim 1, wherein application configu-
ration includes a plurality of attributes of an iframe for
embedding the web application within a parent page at a web
client.

6. The method of claim 1, wherein the embedded code
includes instructions for implementing the updated embed-
ded web application at a web client.

7. The method of claim 1, wherein the embedded web
application is a real-time messaging application.

8. A system, comprising:

a memory; and

at least one processor coupled to the memory and con-

figured to:

generate an updated version of an embedded code in

response to receiving a request to publish an updated
embedded web application;

generate an embedding code and an application configu-

ration corresponding to the updated version of the
embedded code in response to a determination that the
embedded web application was published successfully;
and

store the embedding code and the application configura-

tion.

9. The method of claim 8, wherein the at least one
processor is further configured to:

send the embedding code and the application configura-

tion to a web client in response to receiving a request
generated by an in-line code snippet at the web client.

10. The system of claim 8, wherein the at least one
processor is further configured to:

invalidate an application server cache containing an

embedding code and an application configuration cor-
responding to a previous version of the embedded code.

11. The system of claim 8, wherein the embedding code
includes instructions for creating an iframe for embedding
the web application within a parent page at a web client.

12. The system of claim 8, wherein application configu-
ration includes a plurality of attributes of an iframe for
embedding the web application within a parent page at a web
client.

Jul. 11, 2024

13. The system of claim 8, wherein the embedded code
includes instructions for implementing the updated embed-
ded web application at a web client.

14. The system of claim 8, wherein the embedded web
application is a real-time messaging application.

15. A non-transitory computer-readable medium (CRM)
having instructions stored thereon that, when executed by at
least one computing device, causes the at least one comput-
ing device to perform operations comprising:

generating an updated version of an embedded code in

response to receiving a request to publish an updated
embedded web application;

generating an embedding code and an application con-

figuration corresponding to the updated version of the
embedded code in response to a determination that the
embedded web application was published successfully;
and

storing the embedding code and the application configu-

ration.

16. The non-transitory CRM of claim 15, further com-
prises:

sending the application configuration and the embedding

code to a web client in response to receiving a request
generated by an in-line code snippet at the web client.

17. The non-transitory CRM of claim 15, further com-
prises:

invalidating an application server cache containing an

application configuration and an embedded code cor-
responding to a previous version of the embedded code

18. The non-transitory CRM of claim 15, wherein the
embedding code includes instructions for creating an iframe
for embedding the web application within a parent page at
a web client.

19. The non-transitory CRM of claim 15, wherein appli-
cation configuration includes a plurality of attributes of an
iframe for embedding the web application within a parent
page at a web client.

20. The non-transitory CRM of claim 15, wherein the
embedded code includes instructions for implementing the
updated embedded web application at a web client.

#* #* #* #* #*

