(2013.01)

May 2, 2024

GO6F 8/65 (2013.01); GOG6F 9/544

No.: US 2024/0143304 Al
ABSTRACT

US 20240143304A1
CL

(43) Pub. Date
S.

CP
etc.) and allows a developer to use a REST API and declare,

via a YAML file, the type of BIR dashboard, report, metric
or set of metrics desired. A YAML descriptor interpreter

interprets the YAML file, collaborates with a BIR server at

the backend to dynamically construct the requested content,
opers to avoid any need of pre-designing reports, dash-

boards, etc., and eliminates the need of application devel-
opers to embed client-side scripting libraries, significantly
reduces the amount of effort, time, and complexity in using
a BI and reporting service. Application developers simply
declare what they need, and the service returns the content

and repackages and returns the requested content in a REST
exactly as described in the request.

and reporting (BIR) into an application (e.g., web, mobile,
API response. This new method allows application devel-

(52) U.

(57
A new declarative approach to business intelligence (BI) and

reporting focuses on streamlining the embeddability of BI

10N (10) Pub.

icat
TN

El

Publ

INTELLIGENCE

10N

P s ]

heid

£

(2006.01)

Roger David Moyers, Spring Hill
(2006.01)

DECLARATIVE BUSINESS
AND REPORTING
Menlo Park, CA (US)
(Us)
Oct. 31, 2022
Publication Classification
GOGF 8/65
GOG6F 9/54

Moyers
Inventor:

a9 United States

a2y Patent Applicat

(54) SYSTEMS AND METHODS FOR

(71) Applicant: OPEN TEXT HOLDINGS, INC.,
(21) Appl. No.: 17/977,222

(22) Filed:

(51) Int. CL

(72)

] ] ] %, %, \,

g s e s e




May 2, 2024 Sheet 1 of 14 US 2024/0143304 A1

Patent Application Publication

3

&

3
&

&
oo™

| N ——

P

@

7 b

e
L
-
o

e
Yo,




Patent Application Publication = May 2, 2024 Sheet 2 of 14 US 2024/0143304 A1

L4

®
~ &
& fO]
[ fal
SN

e P P p— P S

¢
{
4

N

o ®
Y o b
B = ;
o oy Nt
S & N
i) 5 .
. AN ey
o gt
@ PR ]
ol e pc
fed) {:
-~ ad KX
o o
L iX R
3
o
)
"R
=
R o
i i
3 o
G = =
o = =
L2 L3
Py =
; Y
Sand Nod
S8 &
vt ke o
s = &
Z\R = &
‘\v.- ¥ -
Rt o " e " " .
% g} gy} greng gy gy ] g | greseny
(SN AT A R A A B
<X LT P L L ad L
S
2
=5
oy
&3
e & 0
he S a8y
R o - &
. o > = L3 A
& e A Ry o
= @ 3 Fal = =
oo oo o SR, E) O o
= = S S
f) 2 £ ™ ™ 3 22 ~0o
o N & R P B
> T dd §ild Ld Ll [ -
Q€
el ] oy P ] Pty
e % R 1 T
) gSE ™ B S &1 Ry
{\3 v R Nk o
B =
~ =
,'@') by o~ o \:Q
& p s E =
o £ SR
o N R 8
bt - R WH W4




Patent Application Publication

May 2, 2024 Sheet 3 of 14

US 2024/01

43304 A1

‘\\@N @
&
)
- g
2 &
e [
Q-
=5
§
e
.
y"‘ \\
At
&
f]
&
ot
bl
R—_—
33 o 03
8 Fwex o S0
I o . onn oy
ﬁ Y e L)
f =¥ W WY
&
£
o0
==
[
o3
@
fan
a3
e
[
- - - - J— J—
.
et vy
o
R
- & foy s
@ o o H e
e ey = Y 7
=2 @& R B Ao
S 3 N
L P
. @® T
3 R -
& = achon{
3 i =
N [«
N
B
3
o
o3
"
=
e
& a R Py
&= & <+ =
0 o P
4 Sern W e
(& o o
o ey e =
g P b =2
=X L. = G
5 )
At Aot
R . " A
3 B ) J
3 h & fal D= fs) -8
N LN I S NN g ¢
5 a
i s 1 oe § E) s b os
nah R, ¢ 1 H N
8 oy} guamang | poweany | geweny | ogeneny ] geeeng | geeees
S iU
o R FEEE
<X bt o had b LG A A A
H i H i
N
(]
e
© fend N
= o & @
] o= 45 &
P = :\\' canne &%
i frnd ~ = k
& W 3 By TG i e
= "‘{.’f QO o A3 oy e 3 —
o] = o o Lo BN @ it Q
<= e = e @3
=~ oy & & ] = R = G
R o Q I T I R = ‘S
S =% UM (WIS BN S U S A S S W + SO
- @ e &S
= o3 ™ i E§‘= . S
) 2 H i 8 J 4 .
= O SO S A fd L
By
0 ~y v,
& &r H N S > EN N &
¢ a3 A ey
ey adpaat A
oy U,
~T% h
A 13
U Raded




Patent Application Publication = May 2, 2024 Sheet 4 of 14 US 2024/0143304 A1

W
£
X
T3

-

X3

o

Lo

[

23

Newe

gy

i
i
i

snsnand

,mw,m
%

[

N
ot
3.
.
o
= -
£} 2 fa]
o =3
M - .
i1 ® & ‘@\.‘“
52, i N
B8 H Bl g
{ = N
N
e‘&’ o
& i
i & N’
" ol
& R fy
bEx] R
=5 Mndang
=3,
oo B ol 2
o
& D
e R
FR Lo
Pome A
i =
§ @y
i o]
G e
b I
e
S
B
b; .
SRR
i S Lo T vn B v B R wa )
(S o ooy o S
S S S S
- 2 L . =
wi i P v S S =
el S SOWw D Wy =
iy S Y =
3 + — o)
{5’“¥ Ay Ly
L el
Pt AR R e e R
.
il e
= =R ] i
9 iy ey H
= =W =2 N : i
5 . i _;-‘;{ ;\- W [0
=1 S S F 8 2 = @
o >4 3 = L = =Y
by wisss 3 3 R e = & St [0 a8 3
= ~$_\5§ oY SR c§ - 2R =
= S o ow BNl R oS 8 2o
e A S O 2 e W R 5R 5
v f g LN I SR R o O &R 0
Wy A I SN N ;\~§ S AU B
4 s 2 QAT W L L WA [
R =
o w £H A aen 5 A AT TR SER N
. £ v} SN OATTOATHY OSNTL SR oW 8
3] ™ N N R N T AN EN
. S -
B o - L
Lad Y
e §i8 3




Patent Application Publication = May 2, 2024 Sheet 5 of 14 US 2024/0143304 A1

P
8
Y
3
F
X3
o
Lo
3
[
Newe
R
H
i
Tani
s (‘“' ¥
19V
Bt &
yonaey R S SERRER
e I S ;
A LT NI d
- :
w ; -
&8 :
e H
s ;
o :
8 :
Ll }
Ry H
© - 5
Q i\“ H
s o i
," oSty &3 H
£ £ H
% [ - :
£ "5 ; st
H) [N qeRanng T : e
5\: \"} H x : -‘:
V5 o~ H s H faden
i3 LR B s :
< A H e
N s o
& 3 -
R Fa H BN
N o H S
-5 == : o
! o Eeet)
i = o i &N
e 3 - :
2 ] g { 5 A
— ] R e H A HEH
- = o a i : N ek
.,{s% & XN § &3 ;
E -2 B i X RN
st o - < H
. fad PO - N
R e RO
o R 3 R 8 8™
ha & -2 @ iy s
& W 3N PR ey
Y =3 R AW &
O O G§0 oo
] £ Lo hovoneg
i s SEOTTTe Bd Rusasunnd 200 Bannnanad hannnand svanag
o 2 H
ey okt
=
& & 8
. 1 S N
88 e hne
:,:: 3 [
Q5 = > s
S s 5 WA
oy g s Q™
SR X S 8
Y &L < 8
= N oy H o2
8§ T8 S =@
=2 2% 8 Lo N WY oS
&R U 3 & o5 - & o
3 &% = & o - Rl
oy P oml MW & S @ < T R
ki S s W ey D S i ::5 g< J—
= P R OB KG B IO S -
e §oan § & i & ; = R
2 " [ 5 SN ) H
s [ OLd - el s LR PO e Rannd
[ s T
T % < <
1 f 2 : ' Sey
H e o)
Lo 8 L S
i £ i T
- i { k2 { { o~ B
w i H s H i § =
B i i o i i | ¥
£ - i i =L ¢ H { H
S Y H H B0
B lald ey g - i | Y
I I Lo T se B v S v B w H | FIS
Waey U oo o § § i s
S OS S S .
U e end el oA oo
ol I e =S & P
Bioad Sowr gy = & <3
e R P WD 8N - S "~
3 + - (S Y e
‘é“‘ RS WD P
H. o8Ny
ey
\{\\;-;
3
o
2 N .
== . S g g
; = = ¥ O o £ O
s s o B = B &2 . &
i Re [ ] TR 3 N o O 8 -
=Y Sy g # 88 s B v 3
s 3 ; Y & 5 >R 3
& s & Fo &S OE D 8§ &=
oy 1B O3 [ > S T S R ¢ Y
o - § 3 AW 0 o« e
& ‘Sf\:f oy g & Sred & [ @ o a3
At A TERER BN e 22, R & &
Wi Sigh s R ¥ s VOTHOoM o R




Patent Application Publication = May 2, 2024 Sheet 6 of 14 US 2024/0143304 A1

W
£
X
T3

-

X3

o

Lo

[

23

Newe

gy

i
i
i

snsnand

.
%

[

Y
=
[
—
= o~
o3 W
i -~
by Q2 o
yis =
\ & o
X B N
L2 ¢
v N
N 5 Lt
L .
35 3 o o N
BB i 5 8
H o
§ =
3 =
& ]
3 \\\s"'
& ) v
T {r
& é:a Sractoond
B
=L
[ B o} L)
S8
=
e R
FR Lo
e ENX )
. 8
i oy
i oo
Ny \‘,,::
-
<
§
% .
RN R
i L] Levt TR v SR v B R et}
WO M EEE=
S B 5 D
o~ .= LS .
ai 5 o S =2
el S DTS S R =
AN B L I Y =3
L3 E % - o)
| Dy
L. “a
&
=
ey
&2 ~ L
B oy ]
ey by g £ o]
TE 3 S 8 &
B = < = o &
- & OB ro® -
§ e QO
bee = § = RO o 8.2 ¢ g -
B — s\“f-% -l = N o &N W R D8 ¥
R o 2 ] [ PRI ¥ <35 NE FE g E &
1 = B S8 R N D" § 8 8
el e o G o 3 GO aa s =
@ Sionmm s © = N = ~ e
ey s P B ] oo yE ~ FC e :‘\ Sy . it
L P R A} i " rer i \ el . T i
w B s 0 W H SO TN W W Yy R




Patent Application Publication = May 2, 2024 Sheet 7 of 14 US 2024/0143304 A1

2 A ~
Y
3
o
£ N
o ¢
] N
o {
8 HEN
b o
= HE
3 DS
e § Y §
:‘..‘.“, § ) §
N H W H 3
NP ) kY H
S & = N
NI &8 =X .
N H W W ¥
S - & .
3 [l Y
& S8
& e
Q.

b
&=
N
o
=
ey
3.
.
&8
-~
1 O
=3
% ]
N o
i e
i G
; g
=X
§\ .
£
F
& <3
& - =
& Y
& sy
&
<3
oo o <
D D
SO D
e S v S
oS S
& o~D
—
-
<
§
§ .
=1 e ey o e e
A Nt Lot T s N T e )
M DD S D
""" S B D .
Cowy e el o
Xy Fi Love B w3 vt SR o] g
2iad S DD 2 &
A SO B N RS
3 + - oF g
€3 £ 3
fnd S
&
=
=
B
= €3
2PN 2 y
= = & -~ a &
R . @
-~ = = oo = ol &
o g 8 o 3
@ e S oy NOQ {3
. $on Jol prey 5 [ o [
= Sy & = - O W oae 2O W .
REE IR B = . @ ¥ ¥ @ H# R 8&E 83 5
3 2 | o ®E o o BB (N o S N &
-é’;:‘ e WYOORR S e W b W W3 LR K o
o ROl oeery e o SRS e § T . N y o
e S THRHEE > N 8 = &Y Y AR LN T & &
il L3 ) Bed g = Ay N i bl & Nl DO SN SR L
[*. Ry oA RN - e R AR N SRS S A W




Patent Application Publication = May 2, 2024 Sheet 8 of 14 US 2024/0143304 A1

P
8
Y
&
o
= A
X3
o -
T e =
& Ry
M7 o So
= 3 % [
== ) R
ol 3]y -
— =N o PO
§ o b
i i 0 =
N ey 1
S &
N N
N H e e
- N o
3 e
A i
&
\m@”
T s B =
&8 . IR 8 ey
= & % o, Pe:d
[ F OB [
Gm St F —
ot LA =3 w
+ =~
-
\ NG
kY o
} Ll
% N
3 o
H <
N e
3 L _
) L o
§ RS N
§ X
§\ ©
o e
& ™
& Ry
N :
§ oo
& =
& H
& S
o e S v
=D o
&S D
o oo oS
o 5
o N
.
¥ e
¢ Lo
S
1 R
LR
i 33
b e
i o]
e B v
e
S o
=i ofal
SR L S
(SN o o
""" &S D S
] S g P
[y §s§ o owR ‘::it
25 A oW
B & oS
] kY NS
o -
Nt
=
b
ey
. &
= PN <
{:‘3 vas =
- . = a i3
=1 B s oo & & &
e - & B & S
=) = S M 5o 3
e s & & W o N ne s b e
3 = 5 & n 2 8 2 E S &8 88
POy B R E ol o e LS B N S o
0 L] [N U Tk B RN 05 T O S T G o= S+
& E e - o
&3 83 a8 N Ny EETY - - F % b M
oy kAl § IS H B oy At Sog ST
el e L] &X; ¢ ool {0 o S Y Yao &b G
o = i W4 RS VRO T TR Ny W




Patent Application Publication = May 2, 2024 Sheet 9 of 14 US 2024/0143304 A1

w0 N »
&
S I - I sy gy N
e . &
T3 » » ¥ » » {
& . @
8 e, @
= & 3
pe A0 o e
(e > Ras ke
) . o s .
g w3 B/ o
¢ B e S
= T Wi AR \ &
= &y FA S TN ¢ O S 3 B N
oy S
t S
I 8 SN
N H St
N H a ol
Yy i X 2
1R & o et =
N 5 SN | P
N Hl W@ M s - S
Baasamnaad & o ol R S ¥ £
Do £ ooy » =
& te) . -
oan s F) Yooy &3
< el AT B §
B gidiie o wrii e
G N R =t
[ RS -
oo S S » -
ey &
& 8o
[ el e
&
o
&
o
[ad]
g
=
&
o
&
-
e -
{ W S -
&3 ¥y an
e =R
:«-‘»\‘ A e
= ) o~
= b -
K &
3 PN
1Y o & &N
1 8 § q o5
AR § PR A o
1S H < N
1) & = oD
. i oy § S o N
8 , H o ) = S
¥ b § X & 8
H H 5 K : Sre T
H H & § ¥ R N
= §> 8y @ RS
N b 3
& o
f“ PR
i1
& Sobonf
oD 2 <
D D
&S S S
oo oS
S D
S D
—
-
)
-
3
% .
¢
RN
i\ i Smast
-~ sy Lo B svoc)
R LD
i =
] X o g
Nl PO
L3 S G
ey
o
ey
3
- R
= oy gy
B o — ., =5
e N & = & &
- o ol B = R
Iy o Ry = om {3
o w = [ PR -, . o
FH = & & oW W HE S &§ = oy o
N 8 s B &5 = £ R
1Y & NN L EN & 8 8 %
e PR S = ¢ s At 2% SR -
-E‘::‘ o LEA TN N V5 T W T ¥ S I O o= 1
o8 B © N s
U 08 S Y RS e gy - SN s,‘ o e
ik &3 [y oAl T AN RO N &1 ool
©i & S OUR T Ny 0 W Y 8y




US 2024/0143304 A1

May 2, 2024 Sheet 10 of 14

Patent Application Publication

P
L]
K

“

- oo,

K4

e

g

e
o
b

e
i
Af
¥
T
i
N
N
o~
¢
N

A il oyi:
] o
Eded R
iy
frdmr.
]

[
9] 193]



Patent Application Publication = May 2, 2024 Sheet 11 of 14  US 2024/0143304 A1

R
SRR

S
e
—
.
T
5
\«\\*‘
.
] i 3 L;&;
o . 3
2 Boroiarbanan i & ’
i) ety | Y
= AW =
W X Q3
£ Mo N
== & 3o
X SRS
i

s

B
.

§

1

t
o,
¥

Z
o

B
£
o

3 =

fo) ¥ S

& Ty &

&8 \‘%‘} o

S $ 5

Q § B
i

5,
"

T

oy

N =
- < e
& K3 $or
B & 5
0

%,

H
£ 14
% ya
=2,
ey

%

e
e
%

7

;

]

i
vy

;,//

Pt ¥oe
)
o

3553

o3
%,

=

PSR

N
< el < o o
o= o o)
o <R o o]
— o NG o
oy fon Fwed =
v D el =
D <3 & o<
- - =
N _ ot -~ =
o ~ LAt RS gy




Patent Application Publication = May 2, 2024 Sheet 12 of 14  US 2024/0143304 A1

.
e £y
i sy N
il R
e 3o
LG O} = (]
N e i
bt £1
: oy
p—

4
S

e
s
¥
o Y
> L
o
2.
¥
o
<5
~L
~
oot
v
N &
&3 M
~ € o iy
o T
¥ ]
Now’
oot
Iy
Toosdod

A
-
e

L

1
1




US 2024/0143304 A1

May 2, 2024 Sheet 13 of 14

')

h

o

o

7y
[
o
e,
P P %
[ - » L
o b,
]
“uc
nsend
I
i oesdenss
% 1 porsas,
I
- Ll
L [
bl
e
IR
Saledt
T "
PEE op i
frs &
[y

<k

Patent Application Publication

cgreee et
3 =
fa Fa) Fa)
Sans? Sans? Sans?
ageees ageees ageees



US 2024/0143304 A1

May 2, 2024 Sheet 14 of 14

Patent Application Publication

SINIBITIIIITIIIIIIIIN

”
7% “\
it %
[ %
it Ty %
i fded ]
i 4 .
[ - g
i < H
i g
i [ H
H 4 = H
G
H i e

i i P 7
L PPy [ foee. Z
L L i " oo H
N t 7 155 H
wprees £ i H
o g e i g
LAV IR e (W \“
%
g Fo f i LV S—
" i
3 ;
i
H 7 H i
i
;
iz P
i H 5
Lid i i fas I
o ') wzf et k=
P - 4 7 gy
Lar Py Y adaa, (o]
[ [ [
Ll A
s
il “,
H
%
%, p
% " M
S
o P
[ il (o]
Lk — P razes
: ., s oz
feee eed P il 7 '
p P = [ L
- “f, ol
7 : . .
“\u\\ o e




US 2024/0143304 Al

SYSTEMS AND METHODS FOR
DECLARATIVE BUSINESS INTELLIGENCE
AND REPORTING

TECHNICAL FIELD

[0001] This disclosure relates generally to data analysis
and management of business information. More particularly,
this disclosure relates to systems, methods, and computer
program products for declarative business intelligence and
reporting that significantly streamlines the experience of
developers and greatly reduces the complexity of coding
needed in using a business intelligence and reporting service
provided by an artificial intelligence platform.

SUMMARY OF THE DISCLOSURE

[0002] Business intelligence (BI) generally refers to com-
puter systems that combine data gather, data storage, knowl-
edge management, and data analytics for evaluating com-
plex enterprise and competitive information for presentation
to planners and decision makers alike so that they can make
data-driven decisions. BI reporting broadly refers to the
process of using a BI software tool (BI application) to
prepare and analyze data to find and share actionable
insights. Such a BI application can obtain receive data from
multiple sources and transform the data into visualizations,
dashboards, reports, and so on. However, to develop this BI
application, the visualizations, dashboards, reports, etc. all
need to be pre-designed.

[0003] This disclosure provides a new methodology for
declarative business intelligence and reporting. Some
embodiments focus on streamlining the embeddability of BI
and reporting (BIR) into an application (e.g., a web appli-
cation, a mobile application, etc.). The invention allows a
developer to declare, via a Yet Another Markup Language
(YAML) file referred to herein as a YAML descriptor, the
desired BIR visualizations and behaviors such as the type of
BIR dashboard, report, metric, or set of metrics desired.

[0004] YAML is a human-readable data-serialization lan-
guage similar to eXtensible Markup Language (XML) and
JavaScript Object Notation (JSON). YAML is more human-
readable than XML and JSON and is used herein as a
non-limiting example of a declarative language that can be
used to implement embodiments disclosed herein. YAML,
XML, and JSON are known to those skilled in the art and
thus are not further described herein.

[0005] The YAML descriptor is sent, for instance, by a
client application on a client device via a BIR REST
application programming interface (API), to a YAML
descriptor interpreter. The YAMIL descriptor interpreter,
which can be implemented as a service provided by an
artificial intelligence platform, interprets the YAML file and
sends, via a Simple Object Access Protocol (SOAP) API, a
request with an interpreted payload (e.g., in SOAP XML), to
a BIR application running on the artificial intelligence
platform. The BIR application, which can be implemented
as a component of a backend system of the artificial intel-
ligence platform, dynamically constructs the requested con-
tent (e.g., in HyperText Markup Language (HTML)) based
on the interpreted payload and returns the dynamically
constructed content to the YAML descriptor interpreter. The
YAML descriptor interpreter, in turn, repackages the
requested content for a REST API response and sends, via

May 2, 2024

the BIR REST API, the REST API response to the client
application on the client device.

[0006] The new methodology disclosed herein allows
application developers to avoid any need of pre-designing
reports, dashboards, etc., and eliminates the need for appli-
cation developers to embed client-side scripting libraries.
Application developers can declare what they need, and the
service returns the content exactly as described in the
request.

[0007] In one embodiment, a system may comprise a
processor, a non-transitory computer-readable storage
medium, and stored instructions translatable by the proces-
sor to perform a method substantially as described herein.
Another embodiment comprises a computer program prod-
uct having a non-transitory computer-readable storage
medium storing instructions translatable by a processor to
perform a method substantially as described herein.

[0008] These, and other, aspects of the disclosure will be
better appreciated and understood when considered in con-
junction with the following description and the accompa-
nying drawings. It should be understood, however, that the
following description, while indicating various embodi-
ments of the disclosure and numerous specific details
thereof, is given by way of illustration and not of limitation.
Many substitutions, modifications, additions and/or rear-
rangements may be made within the scope of the disclosure
without departing from the spirit thereof, and the disclosure
includes all such substitutions, modifications, additions and/
or rearrangements.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The drawings accompanying and forming part of
this specification are included to depict certain aspects of the
invention. A clearer impression of the invention, and of the
components and operation of systems provided with the
invention, will become more readily apparent by referring to
the exemplary, and therefore nonlimiting, embodiments
illustrated in the drawings, wherein identical reference
numerals designate the same components. Note that the
features illustrated in the drawings are not necessarily drawn
to scale.

[0010] FIGS. 1-8 depict diagrammatic representations of
screenshots of a browser-based user interface of a business
intelligence and reporting application showing an example
of how a developer logs into the business intelligence and
reporting application and manually designs a visualization in
advance of publishing the visualization for broader use later,
such as displaying in web or mobile applications.

[0011] FIG. 9 is a flow chart that illustrates a declarative
approach to designing business intelligence and reporting
visualizations and behaviors via a YAML descriptor with
mandatory sections of attributes according to some embodi-
ments disclosed herein.

[0012] FIG. 10 depicts an example of a visualization
automatically presented through a user interface on a client
device in response to sending a request with a YAML
descriptor that declaratively describes the visualization to a
YAML descriptor interpreter via a REST API according to
some embodiments disclosed herein.

[0013] FIGS. 11A-11B show an example of collaboration
between a YAML descriptor interpreter and a business
intelligence and reporting application running on a backend
system according to some embodiments disclosed herein.



US 2024/0143304 Al

[0014] FIG. 12 depicts a diagrammatic representation of
an example of networked data processing systems for imple-
menting some embodiment disclosed herein.

DETAILED DESCRIPTION

[0015]
tageous details thereof are explained more fully with refer-

The invention and the various features and advan-

ence to the nonlimiting embodiments that are illustrated in
the accompanying drawings and detailed in the following
description. Descriptions of well-known starting materials,
processing techniques, components and equipment are omit-
ted so as not to unnecessarily obscure the invention in detail.
It should be understood, however, that the detailed descrip-
tion and the specific examples, while indicating preferred
embodiments of the invention, are given by way of illustra-
tion only and not by way of limitation. Various substitutions,
modifications, additions and/or rearrangements within the
spirit and/or scope of the underlying inventive concept will
become apparent to those skilled in the art from this disclo-
sure. Embodiments discussed herein can be implemented in
suitable computer-executable instructions that may reside on
a computer readable medium (e.g., a hard disk drive, flash
drive or other memory), hardware circuitry or the like, or
any combination.

[0016] In some cases, application developers may desire
to include, embed, or otherwise integrate business intelli-
gence (BI) and reporting content into their application such
as a mobile application, web application, or other user
device. To this end, existing BI and reporting (BIR) appli-
cations provide a browser-based user interface for applica-
tion developers to design BI and reporting visualizations
(e.g., dashboards, graphical widgets, reports, etc. with data
bindings and interactive behaviors). As illustrated in FIGS.
1-8, with such a browser-based user interface, the design
process requires a user (e.g., an application developer) to
logon to a BIR application through a browser on a user
device and manually design a visualization over multiple
steps, and perhaps over multiple days, in advance of pub-
lishing the visualization for later broader use, such as
displaying in web or mobile applications.

[0017] For example, as shown in FIG. 1, a user is pre-
sented a screen 100 to enter their credentials and logon to a
BIR application. After logging into the BIR application, the
user may create or edit visualizations within the browser-
based application. FIG. 2 shows that the user is presented
with a browser-based interface 200 allowing them to create,
design, refine, and publish visualizations for broader con-
sumption. As illustrated in FIG. 2, the browser-based inter-
face may provide a listing of preexisting visualizations. The
user may create a new visualization by clicking the “Create”
tab shown in FIG. 2. FIG. 3 shows that the user is editing a
preexisting visualization via a menu—“Edit Report Design”.
[0018] During the creation or editing of the visualization,
the user must manually establish the data source(s) and data
model(s) bound to the visualizations. This is shown in FIGS.

4A-4B. In FIG. 4A, the user selects a visualization compo-
nent (e.g., bar graph), and in FIG. 4B, the user designates the

May 2, 2024

data source and model bound to that visualization compo-
nent. The visualization component will display data accord-
ing to this binding.

[0019] The user may move the visualization component to
the desired location and/or add additional visualization
components and arrange them according to a desired flow.
For example, the user may desire for one visualization
component to be displayed on the left, and another displayed
on the right. FIG. 5 shows an example where a bar chart is
selected and placed onto the dashboard.

[0020] After placement of the visualization widget, the
widget will typically require customizations. As illustrated
in FIG. 6, such a customization can be done via setting
property attributes from a menu.

[0021] Additionally, the user may desire to change the
chart type by selecting a different type from a menu. As
illustrated in FIG. 7, the user is presented, through the menu,
different visualization types (e.g., a column chart type, a bar
chart type, a line chart type, a scatter chart type, or an area
chart type) in case they want to change it.

[0022] The user may continue to set various properties of
the visualization widget, and properties of the dashboard
itself to customize the look and feel and the desired behavior
of the visualization. The user may also add additional
visualization components. FIG. 8 shows an example of how
the visualization component can be customized.

[0023] Finally, after the user has finished designing/build-
ing the visualization, the user would save the visualization
and mark it for publication. At this point, an application
would be able to access and display the visualization for BIR
via a JavaScript-based BIR APIL.

[0024] As the above-described example illustrates, this
visualization design process is tedious, time-consuming, and
all very manual in nature where visualizations must be
designed and published in advance. The invention disclosed
here changes this paradigm by allowing a developer to
declare, instead of code, what they want on a visualization
and request the visualization be dynamically generated by
making a REST API call to a BIR YAML descriptor inter-
preter which, in turn, collaborates with a BIR application to
dynamically construct the requested content and return same
automatically.

[0025] Generally, a new declarative approach entails cre-
ating a YAML object definition, also referred to herein as a
YAML file or BIR YAML descriptor, to describe what they
want in a declarative manner and making a REST API call
to a BIR service from their application in development,
passing the YAML object definition as payload, and the
result is content dynamically constructed by the BIR service.
The application developer can change or customize what is
desired by only needing to change the YAML object defi-
nition. The use of YAMI -based descriptors is new for the BI
and reporting industry. This new method removes the need
for a visualization designer tool and enables a developer to
easily generate and enhance visualizations through a
declarative method.

[0026] FIG.9is a flow chart that illustrates a new declara-
tive method 900 for designing business intelligence and
reporting visualizations and behaviors according to some
embodiments disclosed herein. Method 900 begins with the
creation of a declarative YAML descriptor with disparate
mandatory sections of attributes (901). A non-limiting
example of a YAML descriptor is provided below.



US 2024/0143304 Al

Basic Example of YAML descriptor:

kind: Dashboard
apiVersion: vl
metadata:
name: UsersTradingActivityDashboard
spec:
metadata:
comment: “This is my template for a user’s trading activity
dashboard”
type: Content
components:
- name: FirstWidget
componentRef: UsersTradingActivityBarChart
- name: SecondWidget
componentRef: UsersTradingActivityDetailTable

[0027] Inthe example above, the YAML descriptor has the
following mandatory sections:

[0028] a. kind

[0029] b. apiVersion

[0030] c. metadata

[0031] d. spec
[0032] In some embodiments, each mandatory section has

a minimum set of attributes. The declarative YAML descrip-
tor thus created is sent to a YAML descriptor interpreter via
a BIR REST API (905).

[0033] The YAML descriptor interpreter collaborates with
a BIR application on a backend system of an artificial
intelligence platform to dynamically create the requested
content (e.g., a web page with a desired visualization). An
example of an artificial intelligence platform is described in
U.S. Patent Application Publication No. US 2019/0279101
Al, which is incorporated by reference herein. In some
embodiments, the YAML descriptor interpreter works with
the BIR backend system, referred to as a BIR iHub server,
within the artificial intelligence platform to dynamically
construct requested content. The requested content, with the
desired visualization and behaviors as declared in the YAML
descriptor, is then automatically presented on the client
device (910).

[0034] In some embodiments, the YAML descriptor inter-
preter is a server-based process that defines and enforces the
API contract. It provides the REST API implementation
which accepts a YAML based payload that is, in turn,
interpreted to produce the visualization content returned to
the caller (e.g., a client application on a client device). Upon
invocation, the YAML descriptor interpreter is operable to
examine the structure of the YAML payload and validate the
existence of mandatory sections, which are sections neces-
sary for the request to be understood and acted upon. Below
is a non-limiting example of mandatory sections:

[0035] e. kind
[0036] f. apiVersion
[0037] g. metadata
[0038] h. datasources
[0039] i. layout
[0040] In some embodiments, other mandatory sections

may be included. Although not listed here, non-mandatory
sections and attributes can also be included in some embodi-
ments. Further, although YAML. is used to declare a descrip-
tor for a visualization because of YAM L’s ease of human
readability, JSON could also be used.

[0041] In some embodiments, each of the mandatory
sections must also have a minimum set of attributes present
for the request to be serviced. If any of the mandatory

May 2, 2024

sections or mandatory attributes within those sections is
missing, an HTTP error 400 status code is returned to the
caller. The mandatory sections are

[0042] “kind” section: In this section, the type of content
being requested must be specified. In some embodiments,
the valid values are “Dashboard” or “Report™.

[0043] “apiVersion” section: In this section, the version of
the YAML object definition in use must be specified. In some
embodiments, the valid values are “v1” but is subject to
change.

[0044] “metadata” section: This section is used for naming
the content in a human readable form, and for providing
comments about the content. Both pieces of information are
associated and logged with the generated visualization con-
tent for audit purposes.

[0045] “datasources” section: This section provides refer-
ences to which data sources should be used to produce the
resulting content. These data sources are named and refer-
enceable via the names in the layout section. A minimum of
one data source is required to be listed in this section,
although there may be multiple data sources list and refer-
enced by name in different declarations within the layout
section.

[0046] “layout” section: This section is an important sec-
tion as it describes the organization and flow of the gener-
ated content. Declarations within the layout sections are akin
to a grid, where widgets are laid out by row and/or column
and have attributes that describe the visualization compo-
nent type and behavior. A layout is like a grid in the sense
that it may designate rows or columns, although columns are
implied. To declare multiple rows, the “row” tag must be
supplied to start a visualization widget declaration. A non-
limiting example is shown in Listing 1 below.

Listing 1.

- type: Pie Chart
datasets:
- name: Classic Models Data Model
binding:
slice:
column: Country
value:
column: Credit Limit
aggregation: sum
- type: Doughnut Chart
datasets:
- name: Classic Models Data Model
binding:
slice:
column: Country
value:
column: Credit Limit
aggregation: sum
- type: Line Chart
datasets:
- name: Classic Models Data Model
binding:
X-axis:
column: Country
y-axis:
column: Credit Limit
aggregation: sum

[0047] In the example above, a row is declared to have
three visualization widgets, a Pie Chart, a Doughnut Chart,
and a Line Chart. Fach widget has a declared set of
attributes, such as datasets which designates the data set



US 2024/0143304 Al

model should be used, and a binding attribute which pro-
vides details regarding how the data should be reflected on
the widget. For example, in the above Line Chart declara-
tion, the x-axis will reflect a country, and the y-axis will
show a sum of credit limit per country.

[0048] Listing 2 below shows an example declaration of a
visualization dashboard with two rows. On row one, there
are three visualization charts, and on row two, there is one
visualization chart. In this example, there is an optional
section named “vioptions” that declared the event that will
be emitted when the visualization is tapped or clicked on.

[0049] In some embodiments, a data source/data model is
provisioned in advance either using an existing API or via
the web application portal. It is typical for data to be loaded
into a data warehouse or lake in a reoccurring batch process.
The result is shown in FIG. 10.

Listing 2.

kind: Dashboard
apiVersion: v1
metadata:
name: /Home/sybil/ChartWithAxis.rptdesign
comments: This is an example visualization using the YAML
based declarative method.

datasources:
- url: Classic Models
version: v1
accessType: latest
uioptions:
events:
name: onselected
callback: onselected

layout:
- TOW:
type: Column Chart
datasets:
name: Classic Models Data Model
binding:
X-axis:
column: Country
y-axis:
column: Credit Limit
aggregation: sum
type: Bar Chart
datasets:
name: Classic Models Data Model
binding:
X-axis:
column: Country
y-axis:
column: Credit Limit
aggregation: sum
type: Line Chart
datasets:
name: Classic Models Data Model
binding:
X-axis:
column: Country
y-axis:
column: Credit Limit
aggregation: sum

type: Area Chart
datasets:
name: Classic Models Data Model
binding:
X-axis:
column: Country
y-axis:
column: Credit Limit
aggregation: sum

May 2, 2024

[0050] FIGS. 11A-11B show that the new capability
enabled by the declarative approach discussed above is
mostly a collaboration between the BIR YAML descriptor
interpreter (also referred to herein as the interpreter) and the
BIR application running on a backend system of an artificial
intelligence platform. The artificial intelligence platform can
include a BI reporting feature through which users can
create their own dashboards, reports, visualizations, and so
on from insights developed in other components of the
artificial intelligence platform (e.g., a content analytics sys-
tem, an advanced analytics system, etc.) and easily share or
embed them where needed.

[0051] As illustrated in FIG. 11A, a system 100 imple-
menting an embodiment disclosed herein may include a
client device 110 having a client application 115 (e.g., a
mobile phone application, a browser-based application, a
customer application, etc.), a BIR YAML descriptor inter-
preter with a BIR REST API 120, and a backend system 130
having a BIR application 135. Referring to FIG. 11B, the
client application on the client device may make a request
(e.g., over Hypertext Transfer Protocol Secure (HTTPS)) to
the BIR REST API which delegates the request to the BIR
YAML descriptor interpreter (101). The request contains a
BIR YAML payload with a declarative YAML descriptor.
The BIR YAML descriptor interpreter is operable to parse
the BIR YAML payload for the declarative YAML descriptor
and validate the sections contained in the declarative YAML
descriptor (102). The BIR YAML descriptor interpreter is
further operable to interpret the content of the declarative
YAML descriptor, prepare a SOAP request with a payload
(e.g., in SOAP XML) based on the interpreted content of the
declarative YAML descriptor, and make a SOAP call with
the SOAP request over HTTPS to the BIR application on the
backend system to construct the requested content (103). In
response, the BIR application dynamically constructs the
requested content (104) and returns the dynamically con-
structed content as an attachment in a SOAP response (105).
The BIR YAML descriptor interpreter is operable to exam-
ine the SOAP response and repackage the requested content
for a REST API response (106) and send the requested
content back to the client application (107).

[0052] The primary job of the BIR YAML descriptor
interpreter is to accept an external invocation (e.g., from a
client application on a user device) against its API contract,
then validate and translate the declarative YAML descriptor
into necessary invocations against the BIR application
(which, in some embodiments, is implemented as a BIR
iHub server). In some embodiments, the following collabo-
ration sequence occurs during this process:

[0053] 1. The interpreter creates a blank design canvas
payload onto which the translated YAML descriptor is
populated into a JSON-like internal format proprietary
to the BIR iHub server.

[0054] 2. The integration from the interpreter to the BIR
iHub server is via SOAP in a real-time call. The SOAP
API is a internally used legacy SOAP API for the BIR
iHub server.

[0055] 3. The interpreter bootstraps the SOAP invoca-
tion with all necessary attributes to ensure a successful
SOAP interaction. This includes, but is not limited to,
the following:

[0056] a. Creation of a HTTP session ID
[0057] b. Service token to use to authenticate against
the SOAP API



US 2024/0143304 Al

[0058] c. Placement of essential visualization prop-
erties in the SOAP request attributes

[0059] d. Placement of essential interactivity (event
callback) properties in the SOAP request attributes,
including but not limited to:

[0060] i. onchange callback
[0061] ii. onselected callback
[0062] iii. onsessiontimeout callback
[0063] iv. onexception callback
[0064] v. ondialogok callback
[0065] vi. oncontentdragselection callback
[0066] vii. oncontentdropselection callback
[0067] wviii. onfilterbroadcast callback
[0068] e. Mapping the request user/service account to
the appropriate report volume within the BIR iHub
server
[0069] f. Mapping the request session attributes to

necessary SOAP request session attributes

[0070] 4. For table (tabular) visualizations, placement
of the table column properties in the SOAP request
attributes.

[0071] 5. Interpreter receives the response payload back
from the SOAP API invocation and repackage the
payload in the response to the REST API invocation.
The response created by the Interpreter can include
additional HTTP attributes, including but not limited
to:

May 2, 2024

[0072] a. Character encoding (e.g., UTF-8)

[0073] b. Content type (e.g., text/html)

[0074] c. Cache control (e.g., no-cache)

[0075] d. Expiry control (e.g., date header and expires
attributes)

DART Code (Mobile Application Example Code):

Material App (
title: “Application Title”,
home: Scaffold (
body: Container (
child: WebView (
initialUrl: baseReportURL +
reportContextPath + folderPath + chartName +
“Quserid=" + userld,
onWebViewCreated: (controller) {
_myController = controller; }
)
)
)
)

[0076] Example HTTP REST API Invocation (POST)
with Response to Create the Visualization Based on Decla-
ration in YAML Format:

POST /iportal/yaml?userid=administrator HTTP/1.1
Content-Type: text/plain

User-Agent: PostmanRuntime/7.29.0

Accept: * /*

Postman-Token: c4d3fa37-5895-4312-861a-e926f7f2ebeb
Host:

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

Content-Length: 617

metadata:
name: /Home/administrator/RHLBE.rptdesign
datasources:
- url: Classic Models
version: -1
accessType: latest
layout:
- TOW:
- type: Area Chart
bookmark: My AreaChart
datasets:
- name: Classic Models Data Model
binding:
X-axis:
column: City
y-axis:
column: Credit Limit
aggregation; sum
- TOW
- type: Area Chart
datasets:
- name: Classic Models Data Model
binding:
X-axis:
column: Territory
y-axis:
column: Credit Limit
aggregation: sum
(Response)

HTTP/1.1 200 OK

Referrer-Policy: same-origin
X-Frame-Options: SAMEORIGIN
Strict-Transport-Security: max-age=31536000
Cache-Control: no-cache



US 2024/0143304 Al

-continued

May 2, 2024

X-Content-Type-Options: nosniff
Content-Security-Policy:
hstsMaxAgeSeconds: 31536000
hstsIncludeSubDomains: true
X-XSS-Protection: 1; mode=block
hstsEnabled: true

Set-Cookie: JSESSIONID=C915F0D4906D6459FD7FCC92B148D999; Path=/;

HttpOnly; SameSite=Strict

Pragma: no-cache

Expires: Thu, 01 Jan 1970 00:00:00 GMT

vary: accept-encoding

Content-Encoding: gzip

Content-Type: text/plain;charset=utf-8

Content-Language: en-US

Transfer-Encoding: chunked

Date: Fri, 27 May 2022 18:08:25 GMT

Keep-Alive: timeout=20

Connection: keep-alive

Server: web
{“uioptions”:{“shownavigation™:false},“filename”:*/Home/administr
ator/RHLBE.rptdesign”,“response”:{ “message”:“Message processed”’} }

[0077] Appendix A, which forms part of this disclosure,
provides an example of a SOAP Request and a correspond-
ing Response.

[0078] The new declarative approach described above
streamlines the incorporation of BI and reporting into an
application (e.g., a mobile application, a browser-based
application, etc.). Suppose an application developer wants
BI graphs and a BI dashboard in the application. Tradition-
ally, the application developer would be forced to code the
BI graphs and the BI dashboard into the application. As
those skilled in the art can appreciate, JavaScript codifica-
tion is tedious and error-prone and requires a massive effort.
For instance, to show a dashboard, one has to code in
JavaScript for browsers, download a specific library com-
patible with the web framework used, integrate to make
JavaScript calls to get something to show within the appli-
cation, writing hundreds/thousands of lines of code.

[0079] The new declarative approach eliminates the need
to code such visualizations into the application and the need
for a designer tool. With the declarative approach, the
application developer describes the BIR component they
want in a declarative manner via a declarative descriptor
(e.g., in YAML, JSON, etc.). The declarative descriptor is
sent to an interpreter (e.g., a BIR YAML descriptor inter-
preter) which interprets and provides the BIR component
back in real-time.

[0080] In some embodiments, the application developer is
provided with a YAML object (for a payload of annotations
and sets of objects and attributes). The application developer
indicates, without need to code, where and what to display
and a corresponding configuration and invokes a published
REST API. That is, instead of coding, a YAML-based
request payload for the REST API call is used to describe the
desired content. In response, the requested content, includ-
ing all the components, is dynamically generated and
returned in real time. The application developer can then
place, embed, or otherwise integrate the BIR content (e.g.,
a web page with a BIR visualization) thus returned in the
application.

[0081] The declarative approach disclosed herein provides
a new delivery method for declarative BI and reporting
content. The new method streamlines an application devel-
oper’s consumption of BI and reporting content without

needing to develop metrics, dashboards, and reports in
advance, eliminates the need for a human to pre-construct
the content via a browser-based designer tool, and reduces
the number of steps and effort needed to blend in BI and
reporting in the application. This declarative approach also
reduces from a multi-step multi-day effort to an on-the-fly
result. This API-based consumption and content syndication
can be achieved in five minutes or less.

[0082] FIG. 12 depicts a diagrammatic representation of
an example of networked data processing systems for imple-
menting some embodiment disclosed herein. In the example
illustrated, network computing environment 1200 includes
network 1214 that can be bi-directionally coupled to user
computer 1212, server machine 1215, and server machine
1216. Server machine can be bi-directionally coupled to
persistent storage 1218. Network 1214 may represent a
combination of wired and wireless networks that network
computing environment 1200 may utilize for various types
of network communications known to those skilled in the
art.

[0083] For the purpose of illustration, a single system is
shown for each of user computer 1212, server machine
1215, and server machine 1216. However, with each of user
computer 1212, server machine 1215, and server machine
1216, a plurality of computers (not shown) may be inter-
connected to each other over network 1214. For example, a
plurality of user computers 1212 and a plurality of server
machines 1215 may be coupled to network 1214. User
computer 1212 may include data processing systems for
communicating with server machine 1216. As a non-limiting
example, a client application may run on user computer
1212 and be communicatively connected through a YAML
descriptor service to a BIR application on a backend system
running on server machine 1216. Server machine 1216 may
be part of an artificial intelligence platform as described
above.

[0084] User computer 1212 can include central processing
unit (“CPU”) 1220, read-only memory (“ROM”) 1222,
random access memory (“RAM”) 1224, hard drive (“HD”)
or storage memory 1226, and input/output device(s) (“1/0”)
1228. 1/0 1228 can include a keyboard, monitor, printer,
electronic pointing device (e.g., mouse, trackball, stylus,
touch interface, etc.), or the like. User computer 1212 can



US 2024/0143304 Al

include a desktop computer, a laptop computer, a personal
digital assistant, a cellular or smart phone, or nearly any
device capable of communicating over a network. Server
machine 1216 may be similar to user computer 1212 and can
comprise CPU 1260, ROM 1262, RAM 1264, HD 1266, and
1/0 1268. Likewise, server machine 1215 may include CPU
1250, ROM 1252, RAM 1254, HD 1256, and I/O 1258.
Many other alternative configurations are possible and
known to skilled artisans.

[0085] Each of the computers in FIG. 12 may have more
than one CPU, ROM, RAM, HD, I/O, or other hardware
components. For the sake of brevity, each computer is
illustrated as having one of each of the hardware compo-
nents, even if more than one is used. Each of computers
1212, 1215, and 1216 is an example of a data processing
system. ROM 1222, 1252, and 1262; RAM 1224, 1254, and
1264; HD 1226, 1256, and 1266; and database 1218 can
include media that can be read by CPU 1220, 1250, or 1260.
Therefore, these types of memories include non-transitory
computer-readable storage media. These memories may be
internal or external to computers 1212, 1215, or 1216.
[0086] Portions of the methods described herein may be
implemented in suitable software code that may reside
within ROM 1222, 1252, or 1262; RAM 1224, 1254, or
1264; or HD 1226, 1256, or 1266. In addition to those types
of memories, the instructions in an embodiment disclosed
herein may be contained on a data storage device with a
different computer-readable storage medium, such as a hard
disk. Alternatively, the instructions may be stored as soft-
ware code elements on a data storage array, magnetic tape,
floppy diskette, optical storage device, or other appropriate
data processing system readable medium or storage device.
[0087] Those skilled in the relevant art will appreciate that
the invention can be implemented or practiced with other
computer system configurations, including without limita-
tion multi-processor systems, network devices, mini-com-
puters, mainframe computers, data processors, and the like.
The invention can be embodied in a computer or data
processor that is specifically programmed, configured, or
constructed to perform the functions described in detail
herein. The invention can also be employed in distributed
computing environments, where tasks or modules are per-
formed by remote processing devices, which are linked
through a communications network such as a local area
network (LAN), wide area network (WAN), and/or the
Internet. In a distributed computing environment, program
modules or subroutines may be located in both local and
remote memory storage devices. These program modules or
subroutines may, for example, be stored or distributed on
computer-readable media, including magnetic and optically
readable and removable computer discs, stored as firmware
in chips, as well as distributed electronically over the
Internet or over other networks (including wireless net-
works). Example chips may include Electrically Erasable
Programmable Read-Only Memory (EEPROM) chips.
Embodiments discussed herein can be implemented in suit-
able instructions that may reside on a non-transitory com-
puter-readable medium, hardware circuitry or the like, or
any combination and that may be translatable by one or more
server machines. Examples of a non-transitory computer-
readable medium are provided below in this disclosure.
[0088] ROM, RAM, and HD are computer memories for
storing computer-executable instructions executable by the
CPU or capable of being compiled or interpreted to be

May 2, 2024

executable by the CPU. Suitable computer-executable
instructions may reside on a computer readable medium
(e.g., ROM, RAM, and/or HD), hardware circuitry or the
like, or any combination thereof. Within this disclosure, the
term “computer readable medium” is not limited to ROM,
RAM, and HD and can include any type of data storage
medium that can be read by a processor. Examples of
computer-readable storage media can include, but are not
limited to, volatile and non-volatile computer memories and
storage devices such as random access memories, read-only
memories, hard drives, data cartridges, direct access storage
device arrays, magnetic tapes, floppy diskettes, flash
memory drives, optical data storage devices, compact-disc
read-only memories, and other appropriate computer memo-
ries and data storage devices. Thus, a computer-readable
medium may refer to a data cartridge, a data backup mag-
netic tape, a floppy diskette, a flash memory drive, an optical
data storage drive, a CD-ROM, ROM, RAM, HD, or the
like.

[0089] The processes described herein may be imple-
mented in suitable computer-executable instructions that
may reside on a computer readable medium (for example, a
disk, CD-ROM, a memory, etc.). Alternatively or addition-
ally, the computer-executable instructions may be stored as
software code components on a direct access storage device
array, magnetic tape, floppy diskette, optical storage device,
or other appropriate computer-readable medium or storage
device.

[0090] Any suitable programming language can be used to
implement the routines, methods, or programs of embodi-
ments of the invention described herein, including C, C++,
Java, JavaScript, HyperText Markup Language (HTML),
Python, or any other programming or scripting code. Other
software/hardware/network architectures may be used. For
example, the functions of the disclosed embodiments may
be implemented on one computer or shared/distributed
among two or more computers in or across a network.
Communications between computers implementing
embodiments can be accomplished using any electronic,
optical, radio frequency signals, or other suitable methods
and tools of communication in compliance with known
network protocols.

[0091] Different programming techniques can be
employed such as procedural or object oriented. Any par-
ticular routine can execute on a single computer processing
device or multiple computer processing devices, a single
computer processor or multiple computer processors. Data
may be stored in a single storage medium or distributed
through multiple storage mediums, and may reside in a
single database or multiple databases (or other data storage
techniques). Although the steps, operations, or computations
may be presented in a specific order, this order may be
changed in different embodiments. In some embodiments, to
the extent multiple steps are shown as sequential in this
specification, some combination of such steps in alternative
embodiments may be performed at the same time. The
sequence of operations described herein can be interrupted,
suspended, or otherwise controlled by another process, such
as an operating system, kernel, etc. The routines can operate
in an operating system environment or as stand-alone rou-
tines. Functions, routines, methods, steps, and operations
described herein can be performed in hardware, software,
firmware, or any combination thereof.



US 2024/0143304 Al

[0092] Embodiments described herein can be imple-
mented in the form of control logic in software or hardware
or a combination of both. The control logic may be stored in
an information storage medium, such as a computer-read-
able medium, as a plurality of instructions adapted to direct
an information processing device to perform a set of steps
disclosed in the various embodiments. Based on the disclo-
sure and teachings provided herein, a person of ordinary
skill in the art will appreciate other ways and/or methods to
implement the invention.

[0093] Itis also within the spirit and scope of the invention
to implement in software programming or code any of the
steps, operations, methods, routines or portions thereof
described herein, where such software programming or code
can be stored in a computer-readable medium and can be
operated on by a processor to permit a computer to perform
any of the steps, operations, methods, routines or portions
thereof described herein. The invention may be imple-
mented by using software programming or code in one or
more digital computers, by using application specific inte-
grated circuits, programmable logic devices, field program-
mable gate arrays, optical, chemical, biological, quantum or
nanoengineered systems, components and mechanisms may
be used. The functions of the invention can be achieved in
many ways. For example, distributed or networked systems,
components, and circuits can be used. In another example,
communication or transfer (or otherwise moving from one
place to another) of data may be wired, wireless, or by any
other means.

[0094] A “computer-readable medium” may be any
medium that can contain, store, communicate, propagate, or
transport the program for use by or in connection with the
instruction execution system, apparatus, system, or device.
The computer readable medium can be, by way of example
only but not by limitation, an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system, appa-
ratus, system, device, propagation medium, or computer
memory. Such computer-readable medium shall be machine
readable and include software programming or code that can
be human readable (e.g., source code) or machine readable
(e.g., object code). Examples of non-transitory computer-
readable media can include random access memories, read-
only memories, hard drives, data cartridges, magnetic tapes,
floppy diskettes, flash memory drives, optical data storage
devices, compact-disc read-only memories, and other appro-
priate computer memories and data storage devices. In an
illustrative embodiment, some or all of the software com-
ponents may reside on a single server computer or on any
combination of separate server computers. As one skilled in
the art can appreciate, a computer program product imple-
menting an embodiment disclosed herein may comprise one
or more non-transitory computer readable media storing
computer instructions translatable by one or more processors
in a computing environment.

[0095] A “processor” includes any, hardware system,
mechanism or component that processes data, signals or
other information. A processor can include a system with a
central processing unit, multiple processing units, dedicated
circuitry for achieving functionality, or other systems. Pro-
cessing need not be limited to a geographic location, or have
temporal limitations. For example, a processor can perform
its functions in “real-time,” “offline,” in a “batch mode,” etc.

May 2, 2024

Portions of processing can be performed at different times
and at different locations, by different (or the same) pro-
cessing systems.

[0096] It will also be appreciated that one or more of the
elements depicted in the drawings/figures can also be imple-
mented in a more separated or integrated manner, or even
removed or rendered as inoperable in certain cases, as is
useful in accordance with a particular application. Addition-
ally, any signal arrows in the drawings/Figures should be
considered only as exemplary, and not limiting, unless
otherwise specifically noted.

[0097] As used herein, the terms “comprises,” “compris-
ing,” “includes,” “including,” “has,” “having,” or any other
variation thereof, are intended to cover a non-exclusive
inclusion. For example, a process, product, article, or appa-
ratus that comprises a list of elements is not necessarily
limited only those elements but may include other elements
not expressly listed or inherent to such process, product,
article, or apparatus.

[0098] Furthermore, the term “or” as used herein is gen-
erally intended to mean “and/or” unless otherwise indicated.
For example, a condition A or B is satisfied by any one of
the following: A is true (or present) and B is false (or not
present), A is false (or not present) and B is true (or present),
and both A and B are true (or present). As used herein,
including the claims that follow, a term preceded by “a” or
“an” (and “the” when antecedent basis is “a” or “an”
includes both singular and plural of such term, unless clearly
indicated within the claim otherwise (i.e., that the reference
“a” or “an” clearly indicates only the singular or only the
plural). Also, as used in the description herein and through-
out the claims that follow, the meaning of “in” includes “in”
and “on” unless the context clearly dictates otherwise.
[0099] It will also be appreciated that one or more of the
elements depicted in the drawings/figures can also be imple-
mented in a more separated or integrated manner, or even
removed or rendered as inoperable in certain cases, as is
useful in accordance with a particular application. Addition-
ally, any signal arrows in the drawings/figures should be
considered only as exemplary, and not limiting, unless
otherwise specifically noted. The scope of the disclosure
should be determined by the following claims and their legal
equivalents.

2 <

What is claimed is:

1. A method, comprising:

receiving, by a declarative descriptor interpreter from a
client application on a client device over a REST
application programming interface (API), a request for
business intelligence (BI) and reporting (BIR) content,
the request including a declarative descriptor for the
BIR content;

interpreting, by the declarative descriptor interpreter, the
declarative descriptor in preparation for a Simple
Object Access Protocol (SOAP) API call;

making, by the declarative descriptor interpreter, the
SOAP API call to a BIR server operating on an artificial
intelligence platform, wherein the BIR server dynami-
cally constructs the BIR content in response to the
SOAP API call and returns a SOAP response with the
dynamically constructed BIR content;

repackaging, by the declarative descriptor interpreter, the
BIR content dynamically constructed by the BIR server
for a REST API response; and



US 2024/0143304 Al

communicating, by the declarative descriptor interpreter
in response to the request from the client application,
the BIR content dynamically constructed by the BIR
server and repackaged by the declarative descriptor
interpreter to the client application on the client device.

2. The method according to claim 1, wherein the declara-
tive descriptor is in Yet Another Markup Language (YAML)
or JavaScript Object Notation (JSON).

3. The method according to claim 1, wherein the declara-
tive descriptor has a plurality of mandatory sections of
attributes.

4. The method according to claim 3, wherein each of the
plurality of mandatory sections of attributes has a minimum
set of attributes.

5. The method according to claim 3, wherein the plurality
of mandatory sections of attributes comprises a kind section,
an API version section, a metadata section, a data source
section, and a layout section.

6. The method according to claim 1, wherein the inter-
preting comprises examining a structure of a payload of the
request and validating existence of mandatory sections in the
declarative descriptor.

7. The method according to claim 1, wherein the declara-
tive descriptor interpreter is implemented as a BIR service
provided by the BIR server operating on the artificial
intelligence platform.

8. A system, comprising:

a processor;

a non-transitory computer-readable medium; and

instructions stored on the non-transitory computer-read-

able medium and translatable by the processor for:

receiving, by a declarative descriptor interpreter from a
client application on a client device over a REST
application programming interface (API), a request
for business intelligence (BI) and reporting (BIR)
content, the request including a declarative descrip-
tor for the BIR content;

interpreting, by the declarative descriptor interpreter,
the declarative descriptor in preparation for a Simple
Object Access Protocol (SOAP) API call;

making, by the declarative descriptor interpreter, the
SOAP API call to a BIR server operating on an
artificial intelligence platform, wherein the BIR
server dynamically constructs the BIR content in
response to the SOAP API call and returns a SOAP
response with the dynamically constructed BIR con-
tent;

repackaging, by the declarative descriptor interpreter,
the BIR content dynamically constructed by the BIR
server for a REST API response; and

communicating, by the declarative descriptor inter-
preter in response to the request from the client
application, the BIR content dynamically con-
structed by the BIR server and repackaged by the
declarative descriptor interpreter to the client appli-
cation on the client device.

9. The system of claim 8, wherein the declarative descrip-
tor is in Yet Another Markup Language (YAML) or
JavaScript Object Notation (JSON).

10. The system of claim 8, wherein the declarative
descriptor has a plurality of mandatory sections of attributes.

May 2, 2024

11. The system of claim 10, wherein each of the plurality
of mandatory sections of attributes has a minimum set of
attributes.
12. The system of claim 10, wherein the plurality of
mandatory sections of attributes comprises a kind section, an
API version section, a metadata section, a data source
section, and a layout section.
13. The system of claim 8, wherein the interpreting
comprises examining a structure of a payload of the request
and validating existence of mandatory sections in the
declarative descriptor.
14. The system of claim 8, wherein the declarative
descriptor interpreter is implemented as a BIR service
provided by the BIR server operating on the artificial
intelligence platform.
15. A computer program product comprising a non-
transitory computer-readable medium storing instructions
translatable by a processor for:
receiving, by a declarative descriptor interpreter from a
client application on a client device over a REST
application programming interface (API), a request for
business intelligence (BI) and reporting (BIR) content,
the request including a declarative descriptor for the
BIR content;

interpreting, by the declarative descriptor interpreter, the
declarative descriptor in preparation for a Simple
Object Access Protocol (SOAP) API call;

making, by the declarative descriptor interpreter, the
SOAP API call to a BIR server operating on an artificial
intelligence platform, wherein the BIR server dynami-
cally constructs the BIR content in response to the
SOAP API call and returns a SOAP response with the
dynamically constructed BIR content;

repackaging, by the declarative descriptor interpreter, the

BIR content dynamically constructed by the BIR server
for a REST API response; and

communicating, by the declarative descriptor interpreter

in response to the request from the client application,
the BIR content dynamically constructed by the BIR
server and repackaged by the declarative descriptor
interpreter to the client application on the client device.

16. The computer program product of claim 15, wherein
the declarative descriptor is in Yet Another Markup Lan-
guage (YAML) or JavaScript Object Notation (JSON).

17. The computer program product of claim 15, wherein
the declarative descriptor has a plurality of mandatory
sections of attributes.

18. The computer program product of claim 17, wherein
each of the plurality of mandatory sections of attributes has
a minimum set of attributes.

19. The computer program product of claim 17, wherein
the plurality of mandatory sections of attributes comprises a
kind section, an API version section, a metadata section, a
data source section, and a layout section.

20. The computer program product of claim 15, wherein
the interpreting comprises examining a structure of a pay-
load of the request and validating existence of mandatory
sections in the declarative descriptor.

#* #* #* #* #*



