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PROCESSING-IN-MEMORY (PIM) DEVICES

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is a continuation-in-part of U.S.
patent application Ser. No. 17/002,341, filed on Aug. 25,
2020, which claims priority under 35 U.S.C. 119(a) to
Korean Application No. 10-2019-0117098, filed on Sep. 23,
2019. Also, the present application claims the priority of
U.S. Provisional Application Ser. No. 63/041,358, filed on
Jun. 19, 2020. The disclosures of all of the above applica-
tions are incorporated herein by reference in their entirety.

BACKGROUND

1. Technical Field

Various embodiments of the disclosed technology relate
to processing-in-memory (PIM) devices and methods of
performing a multiplication/accumulation arithmetic opera-
tion in the PIM devices.

2. Related Art

Recently, interest in artificial intelligence (Al) has been
increasing not only in the information technology industry
but also in the financial and medical Industries. Accordingly,
in various fields, the artificial intelligence, more precisely,
the introduction of deep learning is considered and proto-
typed. In general, techniques for effectively learning deep
neural networks (DNNs) or deep networks having the
increased layers as compared with general neural networks
to utilize the deep neural networks (DNNs) or the deep
networks in pattern recognition or inference are commonly
referred to as the deep learning.

One of backgrounds or causes of this widespread interest
may be due to the improved performance of a processor
performing arithmetic operations. To improve the perfor-
mance of the artificial intelligence, it may be necessary to
increase the number of layers constituting a neural network
in the artificial intelligence to educate the artificial intelli-
gence. This trend has continued in recent years, which has
led to an exponential increase in the amount of computation
required for the hardware that actually does the computation.
Moreover, if the artificial intelligence employs a general
hardware system including a memory and a processor which
are separated from each other, the performance of the
artificial intelligence may be degraded due to limitation of
the amount of data communication between the memory and
the processor. In order to solve this problem, a PIM device
in which a processor and a memory are integrated in one
semiconductor chip has been used as a neural network
computing device. Because the PIM device directly per-
forms arithmetic operations in the PIM device, a data
processing speed in the neural network may be improved.

SUMMARY

According to an embodiment of the present disclosure,
there may be provided a processing-in-memory (PIM)
device including an error correction code (ECC) logic circuit
configured to generate write data and write parity from write
input data when a write operation in an operation mode is
performed, and generate converted data from read data and
read parity when a read operation in the operation mode is
performed; and a multiplication/accumulation (MAC)
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2

operator configured to perform a MAC arithmetic operation
for the converted data and buffer data to generate MAC
operation result data.

According to another embodiment, there may be provided
a processing-in-memory (PIM) device including a storage
region configured to receive and store write data and write
parity when a write operation in an operation mode is
performed, and output read data and read parity when a read
operation in the operation mode is performed; and an ECC
logic circuit configured to generate the write data and the
write parity from write input data when the write operation
in the operation mode is performed, and generate converted
data for a MAC arithmetic operation from the read data and
the read parity when the read operation in the operation
mode is performed.

BRIEF DESCRIPTION OF THE DRAWINGS

Certain features of the disclosed technology are illustrated
by various embodiments with reference to the attached
drawings, in which:

FIG. 1 is a block diagram illustrating a PIM system
according to the present disclosure.

FIG. 2 is a schematic diagram illustrating an example of
a disposal structure between memory banks and multiplica-
tion/accumulation (MAC) operators included in a PIM
device according to the present disclosure.

FIG. 3 is a schematic diagram illustrating an other
example of a disposal structure between memory banks and
MAC operators included in a PIM device according to the
present disclosure.

FIG. 4 is a block diagram illustrating a configuration of a
PIM device according to an embodiment of the present
disclosure;

FIG. 5 is a block diagram illustrating a configuration of an
error correction code (ECC) logic circuit included in a PIM
device according to an embodiment of the present disclo-
sure;

FIG. 6 illustrates a multiplication/accumulation (MAC)
calculator included in a PIM device according to an embodi-
ment of the present disclosure;

FIG. 7 illustrates a multiplying calculation executed by a
multiplier included in a PIM device according to an embodi-
ment of the present disclosure;

FIG. 8 illustrates one of multiplication result compensa-
tors included in a PIM device according to an embodiment
of the present disclosure;

FIG. 9 is a block diagram illustrating a configuration of an
output logic circuit included in a PIM device according to an
embodiment of the present disclosure;

FIG. 10 is a block diagram illustrating a write operation
performed in a memory mode of a PIM device according to
an embodiment of the present disclosure;

FIG. 11 is a block diagram illustrating a read operation
performed in a memory mode of a PIM device according to
an embodiment of the present disclosure;

FIG. 12 is a flowchart illustrating a MAC operation
performed in an MAC mode of a PIM device according to
an embodiment of the present disclosure;

FIG. 13 is a block diagram illustrating a MAC operation
performed in an MAC mode of a PIM device according to
an embodiment of the present disclosure;

FIG. 14 illustrates an example of a multiplying calcula-
tion executed in an MAC mode of a PIM device according
to an embodiment of the present disclosure;

FIG. 15 illustrates a process of the multiplying calculation
shown in FIG. 14,
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FIG. 16 is a block diagram illustrating a multiplication
output compensation operation performed in the multiplica-
tion result compensator of FIG. 8 when no error occurs in the
multiplying calculation of FIG. 14;

FIG. 17 is a block diagram illustrating an example of a
multiplication output compensation operation performed in
the multiplication result compensator of FIG. 8 when an
error occurs in the multiplying calculation of FIG. 14;

FIG. 18 illustrates a process of an adding calculation of
multiplication result data and shifted data in the multiplica-
tion output compensation operation shown in FIG. 17;

FIG. 19 illustrates a process of a multiplication result data
calculation when no error occurs in the multiplication output
compensation operation of FIG. 17,

FIG. 20 is a block diagram illustrating another example of
a multiplication output compensation operation performed
in the multiplication result compensator of FIG. 8 when an
error occurs in the multiplying calculation of FIG. 14;

FIG. 21 illustrates a process of a subtracting calculation
for subtracting shifted data from multiplication result data in
the multiplication output compensation operation shown in
FIG. 20;

FIG. 22 illustrates a process of a multiplication result data
calculation when no error occurs in the multiplication output
compensation operation of FIG. 20;

FIG. 23 is a timing diagram illustrating a MAC operation
performed when an error occurs in an MAC mode of a PIM
device according to an embodiment of the present disclo-
sure;

FIG. 24 is a timing diagram illustrating a MAC operation
performed when no error occurs in an MAC mode of a PIM
device according to an embodiment of the present disclo-
sure;

FIG. 25 is a block diagram illustrating a configuration of
a PIM device according to another embodiment of the
present disclosure;

FIG. 26 is a block diagram illustrating a configuration of
an error correction code (ECC) logic circuit included in a
PIM device according to another embodiment of the present
disclosure;

FIG. 27 illustrates one of multiplication result compen-
sators included in a PIM device according to another
embodiment of the present disclosure;

FIG. 28 illustrates an operation of the multiplication result
compensator shown in FIG. 27 when no error occurs in a
PIM device according to another embodiment of the present
disclosure; and

FIG. 29 is a timing diagram illustrating a MAC operation
performed when no error occurs in an MAC mode of a PIM
device according to another embodiment of the present
disclosure.

FIG. 30 is a block diagram illustrating a configuration of
a PIM device according to another embodiment of the
present disclosure.

FIG. 31 is a block diagram illustrating a configuration
according to an example of an ECC logic circuit included in
the PIM device illustrated in FIG. 30.

FIG. 32 is a block diagram illustrating a configuration
according to an example of a write data generator included
in the ECC logic circuit illustrated in FIG. 31.

FIGS. 33, 34, 35, and 36 are diagrams illustrating opera-
tions of a write data generator and a write parity generator
illustrated in FIGS. 31 and 32.

FIG. 37 is a block diagram illustrating a configuration
according to an example of a converted data generator
included in the ECC logic circuit illustrated in FIG. 31.
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FIGS. 38 and 39 are diagrams illustrating an operation of
generating converted data in the converted data generator
illustrated in FIG. 37.

FIG. 40 is a block diagram illustrating a configuration of
a PIM device according to yet another embodiment of the
present disclosure.

FIG. 41 is a block diagram illustrating a configuration
according to an example of an ECC logic circuit included in
the PIM device illustrated in FIG. 40.

FIG. 42 is a block diagram illustrating a configuration of
a PIM device according to yet another embodiment of the
present disclosure.

FIG. 43 is a block diagram illustrating a configuration
according to an example of a CRC logic circuit included in
the PIM device illustrated in FIG. 42.

FIGS. 44 to 47 are diagrams illustrating operations of a
write data generator and a write fail check signal generator
included in the CRC logic circuit illustrated in FIG. 43.

FIG. 48 is a block diagram illustrating a configuration
according to an example of a converted data generator
included in the CRC logic circuit illustrated in FIG. 43.

FIGS. 49 and 50 are diagrams illustrating an operation of
generating converted data in the converted data generator
illustrated in FIG. 48.

FIG. 51 is a block diagram illustrating a configuration
according to an example of a MAC operator included in the
PIM device illustrated in FIG. 42.

FIG. 52 is a block diagram illustrating a configuration of
a PIM device according to still yet another embodiment of
the present disclosure.

FIG. 53 is a block diagram illustrating a configuration
according to an example of a CRC logic circuit included in
the PIM device illustrated in FIG. 52.

FIG. 54 is a block diagram illustrating a configuration
according to an example of a MAC operator included in the
PIM device illustrated in FIG. 52.

DETAILED DESCRIPTION

In the following description of the embodiments, it will be
understood that the terms “first” and “second” are intended
to identify an element, but not used to define only the
element itself or to mean a particular sequence. In addition,
when an element is referred to as being located “on”, “over”,
“above”, ‘“under” or “beneath” another element, it is
intended to mean relative position relationship, but not used
to limit certain cases that the element directly contacts the
other element, or at least one intervening element is present
therebetween. Accordingly, the terms such as “on”, “over”,
“above”, “under”, “beneath”, “below” and the like that are
used herein are for the purpose of describing particular
embodiments only and are not intended to limit the scope of
the present disclosure. Further, when an element is referred
to as being “connected” or “coupled” to another element, the
element may be electrically or mechanically connected or
coupled to the other element directly, or may form a con-
nection relationship or coupling relationship by replacing
the other element therebetween. As used herein, the char-
acter °/” means any and all combinations of the terms recited
before and after the character /.

FIG. 1 is a block diagram illustrating a PIM system
according to the present disclosure. As illustrated in FIG. 1,
the PIM system 1 may include a PIM device 10 and a PIM
controller 20. The PIM device 10 may include a data storage
region 11, arithmetic circuit 12, an interface (I/F) 13-1, and
a data input/output (I/O) pad 13-2. The data storage region
1 may include a first storage region and a second storage
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region. In an embodiment, the first storage region and the
second storage region may be memory bank, respectively. In
another embodiment, the first data storage region and the
second storage region may be memory bank and buffer
memory, respectively. The data storage region may include
a volatile memory element or a non-volatile memory ele-
ment. The data storage region may include both the volatile
memory element and the non-volatile memory element.

The arithmetic circuit 12 may perform an arithmetic
operation of the data transferred from the data storage region
11. In an embodiment, the arithmetic circuit 12 may include
a multiplying-and-accumulating (MAC) operator. The MAC
operator may perform a multiplying calculation of the data
transferred from the data storage region 11 and perform an
accumulating calculation of the multiplication result data.
After MAC operating, the MAC operator may output a
MAC result data. The MAC result data may store the data
storage region 11 or output from the PIM device 10 through
the data I/O pad 13-2.

The interface 13-1 of the PIM device 10 may receive a
command CMD and address ADDR from the PIM controller
20. The interface 13-1 may output the command CMD to the
data storage region 11 or the arithmetic circuit 12 in the PIM
device 10. The interface 13-1 may output the address ADDR
to the data storage region 11 in the PIM device 10. The data
1/0 pad 13-2 of the PIM device 10 may function as a data
communication terminal between an external device of the
PIM device 10, for example the PIM controller 20 and the
data storage region 11 included in the PIM device 10. The
external device of the PIM device 10 may correspond to the
PIM controller 20 of the PIM system 1 or a host located
outside the PIM system 1. Accordingly, data output from the
host or the PIM controller 20 may be input into the PIM
device 10 through the data I/O pad 13-2.

The PIM controller 20 may control operations of the PIM
device 10. In an embodiment, the PIM controller 20 may
control the PIM device 10 such that the PIM device 10
operates in a memory mode or a MAC mode. In the event
that the PIM controller 20 controls the PIM device 10 such
that the PIM device 10 operates in the memory mode, the
PIM device 10 may perform a data read operation or a data
write operation for the data storage region 11. In the event
that the PIM controller 20 controls the PIM device 10 such
that the PIM device 10 operates in the MAC mode, the PIM
device 10 may perform a MAC operation for the arithmetic
circuit 12. In the event that the PIM controller 20 controls
the PIM device 10 such that the PIM device 10 operates in
the MAC mode, the PIM device 10 may also perform the
data read operation and the data write operation for the data
storage region 11 to execute the MAC operation.

The PIM controller 20 may be configured to include a
command queue logic 21, a scheduler 22, a command
generator 23, and an address generator 25. The command
queue logic 21 may receive a request REQ from an external
device (e.g., a host of the PIM system 1) and store the
command queue corresponding to the request REQ in the
command queue logic 21. The command queue logic 21 may
transmit information on a storage status of the command
queue to the scheduler 22 whenever the command queue
logic 21 stores the command queue. The commands queues
stored in the command queue logic 21 may be transmitted to
the command generator 23 according to a sequence deter-
mined by the scheduler 22.

The scheduler 22 may adjust a sequence of the command
queue when the command queue stored in the command
queue logic 21 is output from the command queue logic 21.
In order to adjust the output sequence of the command queue
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stored in the command queue logic 21, the scheduler 22 may
analyze the information on the storage status of the com-
mand queue provided by the command queue logic 21 and
may readjust a process sequence of the command queue
such that the command queue is processed according to a
proper sequence.

The command generator 23 may receive the command
queue related to the memory mode of the PIM device 10 the
MAC mode of the PIM device 10 from the command queue
logic 21. The command generator 23 may decode the
command queue to generate and output the command CMD.
The command CMD may include a memory command for
the memory mode or a MAC command for the MAC mode.
The command CMD output from the command generator 23
may be transmitted to the PIM device 10.

The address generator 25 may receive address informa-
tion from the command queue logic 21 and generate the
address ADDR for accessing to a region in the data storage
region 11. In an embodiment, the address ADDR may
include a bank address, a row address, and a column address.
The address ADDR output from the address generator 25
may be input to the data storage region 11 through the
interface (I/F) 13-1.

FIG. 2 illustrates an example of a disposal structure of
memory banks BKO, . . ., and BK15 and MAC operators
MACO, . . ., and MAC7 included in a PIM device 10-1
according to the present disclosure. Referring to FIG. 2, the
PIM device 10-1 may include storage regions and process-
ing devices. In an embodiment, the storage regions may be
the memory banks BKO, . . . , and BK15. Although the
present embodiment illustrates an example in which the
storage regions are the memory banks BKO, . . ., and BK15,
the memory banks BKO, . . . , and BK15 are merely
examples which are suitable for the storage regions. In some
embodiments, the memory banks BKO, . . ., and BK15 may
be a memory region corresponding to a volatile memory
device, for example, a DRAM device. In an embodiment,
each of the memory banks BKO, . . ., and BK15 may be a
component unit which is independently activated and may
be configured to have the same data bus width as external
input/output lines, for example, data input/output (I/O) lines.
In an embodiment, the memory banks BKO, . . . ; and BK15
may operate in an interleaving way that an active operation
of any one of the memory banks is performed in parallel
while another memory bank is selected. Although the pres-
ent embodiment illustrates an example in which the PIM
device 10 includes the memory banks BKO, . . . , and BK15,
the number of the memory banks is not limited to be ‘16’ but
may be set to be different according to the embodiments.
Each of the memory banks BKO, . . ., and BK15 may include
a memory cell array which is comprised of memory unit
cells that are respectively located at cross points of a
plurality of rows and a plurality of columns. The memory
banks BKO, . . ., and BK15 may include first memory banks,
for example, odd-numbered memory banks BKO,
BK2, . . ., and BK14 and second memory banks, for
example, even-numbered memory banks BK1, BK3, . . .,
and BK15.

A core circuit may be disposed to be adjacent to the
memory banks BKO, . . ., and BK15. The core circuit may
include X-decoders XDECs and Y-decoders/IO circuits
YDEC/10s. The X-decoder XDEC may also be referred to
as a word line decoder or a row decoder. In an embodiment,
two odd-numbered memory banks arrayed to be adjacent to
each other in one row among the odd-numbered memory
banks BK0, BK2, . . . , and BK14 may share one of the
X-decoders XDECs with each other. For example, the first
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memory bank BK0 and the third memory bank BK2 adja-
cent to each other in a first row may share one of the
X-decoders XDECs, and the fifth memory bank BK4 and the
seventh memory bank BK6 adjacent to each other in the first
row may also share one of the X-decoders XDECs. Simi-
larly, two even-numbered memory banks arrayed to be
adjacent to each other in one row among the even-numbered
memory banks BK1, BK3, . . ., and BK15 may share one
of'the X-decoders XDECs with each other. For example, the
second memory bank BK1 and the fourth memory bank
BK3 adjacent to each other in a second row may share one
of'the X-decoders XDECs, and the sixth memory bank BKS
and the eighth memory bank BK7 adjacent to each other in
the second row may also share one of the X-decoders
XDECs. Each of the X-decoders XDECs may receive a row
address from an address latch included in a peripheral circuit
PERI and may decode the row address to select and enable
one of rows (i.e., word lines) coupled to the memory banks
adjacent to the X-decoder XDEC.

The Y-decoders/1O circuits YDEC/IOs may be disposed
to be allocated to the memory banks BKO, . . ., and BK15,
respectively. For example, the first memory bank BK0 may
be allocated to one of the Y-decoders/10 circuits YDEC/1Os,
and the second memory bank BK1 may be allocated to
another one of the Y-decoders/IO circuits YDEC/IOs. Each
of the Y-decoders/IO circuits YDEC/IOs may include a
Y-decoder YDEC and an I/O circuit IO. The Y-decoder
YDEC may also be referred to as a bit line decoder or a
column decoder. Each of the Y-decoders YDECs may
receive a column address from an address latch included in
the peripheral circuit PERI and may decode the column
address to select and enable at least one of columns (i.e., bit
lines) coupled to the selected memory bank. Each of the I/O
circuits may include an I/O sense amplifier for sensing and
amplifying a level of a read datum output from the corre-
sponding memory bank during a read operation and a write
driver for driving a write datum during a write operation for
the corresponding memory bank.

In an embodiment, the processing devices may include
MAC operators MACO, . . . , and MAC7. Although the
present embodiment illustrates an example in which the
MAC operators MACAO, . . ., and MAC7 are employed as the
processing devices, the present embodiment may be merely
an example of the present disclosure. For example, in some
other embodiments, processors other than the MAC opera-
tors MACO, . . . , and MAC7 may be employed as the
processing devices. The MAC operators MACO, . . ., and
MACT7 may be disposed such that one of the odd-numbered
memory banks BK0, BK2, . . ., and BK14 and one of the
even-numbered memory banks BK1, BK3, . . ., and BK15
share any one of the MAC operators MACO, . . . and MAC7
with each other. Specifically, one odd-numbered memory
bank and one even-numbered memory bank arrayed in one
column to be adjacent to each other may constitute a pair of
memory banks sharing one of the MAC operators
MACO, . . ., and MAC7 with each other. One of the MAC
operators MACO, . . . , and MAC7 and a pair of memory
banks sharing the one MAC operator with each other will be
referred to as ‘a MAC unit’ hereinafter.

In an embodiment, the number of the MAC operators
MACO, . . ., and MAC7 may be equal to the number of the
odd-numbered memory banks BK0, BK2, . .., and BK14 or
the number of the even-numbered memory banks BK1,
BK3, . . ., and BK15. The first memory bank BKO0, the
second memory bank BK1, and the first MAC operator
MACO between the first memory bank BK0 and the second
memory bank BK1 may constitute a first MAC unit. Simi-
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larly, the third memory bank BK2, the fourth memory bank
BK3, and the second MAC operator MAC1 between the
third memory bank BK2 and the fourth memory bank BK3
may constitute a second MAC unit. The first MAC operator
MACO included in the first MAC unit may receive first data
DAT1 output from the first memory bank BKO0 included in the
first MAC unit and second data DA2 output from the second
memory bank BK1 included in the first MAC unit. In
addition, the first MAC operator MACO0 may perform a
MAC operation of the first data DA1 and the second data
DAZ2. In the event that the PIM device 10-1 performs neural
network calculation, for example, an arithmetic operation in
a deep learning process, one of the first data DA1 and the
second data DA2 may be weight data and the other may be
vector data. A configuration of any one of the MAC opera-
tors MACO~MACT7 will be described in more detail here-
inafter.

In the PIM device 10-1, the peripheral circuit PERI may
be disposed in a region other than an area in which the
memory banks BKO, BK1, . . . , and BK15, the MAC
operators MACO, . . . , and MAC7, and the core circuit are
disposed. The peripheral circuit PERI may include a control
circuit and a transmission path for a command/address
signal, a control circuit and a transmission path for input/
output of data, and a power supply circuit. The control
circuit for the command/address signal may include a com-
mand decoder for decoding a command included in the
command/address signal to generate an internal command
signal, an address latch for converting an input address into
a row address and a column address, a control circuit for
controlling various functions of row/column operations, and
a control circuit for controlling a delay locked loop (DLL)
circuit. The control circuit for the input/output of data in the
peripheral circuit PERI may include a control circuit for
controlling a read/write operation, a read/write buffer, and an
output driver. The power supply circuit in the peripheral
circuit PERI may include a reference power voltage gen-
eration circuit for generating an internal reference power
voltage and an internal power voltage generation circuit for
generating an internal power voltage from an external power
voltage.

The PIM device 10-1 according to the present embodi-
ment may operate in any one mode of a memory mode and
a MAC mode. In the memory mode, the PIM device 10-1
may operate to perform the same operations as general
memory devices. The memory mode may include a memory
read operation mode and a memory write operation mode. In
the memory read operation mode, the PIM device 10-1 may
perform a read operation for reading out data from the
memory banks BK0, BK1, . . ., and BK15 to output the read
data, in response to an external request. In the memory write
operation mode, the PIM device 10-1 may perform a write
operation for storing data provided by an external device
into the memory banks BKO0, BK1, . . . , and BK15, in
response to an external request.

In the MAC mode, the PIM device 10-1 may perform the
MAC operation using the MAC operators MACO, . . . , and
MACT. Specifically, the PIM device 10-1 may perform the
read operation of the first data DA1 for each of the odd-
numbered memory banks BK0, BK2, ..., and BK14 and the
read operation of the second data DA2 for each of the
even-numbered memory banks BK1, BK3, . . ., and BK15,
for the MAC operation in the MAC mode. In addition, each
of'the MAC operators MACO), . . ., and MACT may perform
the MAC operation of the first data DA1 and the second data
DA2 which are read out of the memory banks to store a
result of the MAC operation into the memory bank or to
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output the result of the MAC operation. In some cases, the
PIM device 10-1 may perform a data write operation for
storing data to be used for the MAC operation into the
memory banks before the data read operation for the MAC
operation is performed in the MAC mode.

The operation mode of the PIM device 10-1 according to
the present embodiment may be determined by a command
which is transmitted from a host or a controller to the PIM
device 10-1. In an embodiment, if a first external command
requesting a read operation or a write operation for the
memory banks BK0, BK1, . . ., and BK15 is input to the
PIM device 10-1, the PIM device 10-1 may perform the data
read operation or the data write operation in the memory
mode. Meanwhile, if a second external command requesting
a MAC operation from external host or controller is input to
the PIM device 10-1, the PIM device 10-1 may perform the
data read operation and the MAC operation.

FIG. 3 illustrates an other example of a disposal structure
of memory banks and MAC operators included in a PIM
device 10-2 according to the present disclosure. Referring to
FIG. 3, the PIM device 10-2 may include first storage
regions such as a plurality of memory banks (e.g., first to

sixteenth memory banks BKO, . . . ; and BK15), processing
devices such as a plurality of MAC operators (e.g., first to
sixteenth MAC operators MACO, . . . , and MAC15), and a

second storage region such as a global buffer GB. A core
circuit may be disposed to be adjacent to the memory banks
BKO, . . ., and BK15. The core circuit may include
X-decoders XDECs and Y-decoders/IO circuits YDEC/IOs.
The memory banks BKO, . . ., and BK15 and the core circuit
may have the same configuration as described with reference
to FIG. 2. Thus, descriptions of the memory banks
BKO, . . ., and BK15 and the core circuit will be omitted
hereinafter. The each of the MAC operators MACO, . . ., and
MAC15 may be disposed to be allocated to the each of the
memory banks BKO, . . . ; and BK15, respectively. That is,
in the PIM device 20, two or more memory banks do not
share one MAC operator with each other. Thus, the number
of the MAC operators MACO, . . ., and MAC15 included in
the PIM device 20 may be equal to the number of the
memory banks BKO, . . ., and BK15 included in the PIM
device 10-2. One of the memory banks BKO, . . ., and BK15
and one of the MAC operators MACO, . . . , and MAC15
may constitute one MAC unit. For example, the first
memory bank BK0 and the first MAC operator MACO may
constitute a first MAC unit, and the second memory bank
BK1 and the second MAC operator MAC1 may constitute a
second MAC unit. Similarly, the sixteenth memory bank
BK15 and the sixteenth MAC operator MAC15 may con-
stitute a sixteenth MAC unit. In each of the first to sixteenth
MAC units, the MAC operator may receive first data DA1
to be used for the MAC operation from the memory bank.

The peripheral circuit PERI may be disposed in a region
other than an area in which the memory banks BKO,
BK1, ..., and BK15, the MAC operators MACO, . . ., and
MACI15, and the core circuit are disposed, and the peripheral
circuit PERI may be configured to include a control circuit
relating to a command/address signal, a control circuit
relating to input/output of data, and a power supply circuit.
The peripheral circuit PERI of the PIM device 10-2 may
have substantially the same configuration as the peripheral
circuit PERI of the PIM device 10-1 illustrated in FIG. 2.
The difference between the peripheral circuit PERI of the
PIM device 10-2 and the peripheral circuit PERI of the PIM
device 10-1 is that the global buffer GB is disposed in the
peripheral circuit PERI of the PIM device 10-2. The global
buffer GB may receive second data DA2 to be used for the
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MAC operation from an external device and may store the
second data DA2 therein. The global buffer GB may output
the second data DA2 to each of the MAC operators
MACAO, . . . , and MAC15 through a GIO line. In the event
that the PIM device 10-2 performs neural network calcula-
tion, for example, an arithmetic operation in a deep learning
process, the first data DA1 may be weight data and the
second data DA2 may be vector data.

The PIM device 10-2 according to the present embodi-
ment may operate in any one mode of a memory mode and
a MAC mode. In the memory mode, the PIM device 10-2
may operate to perform the same operations as general
memory devices. The memory mode may include a memory
read operation mode and a memory write operation mode. In
the memory read operation mode, the PIM device 10-2 may
perform a read operation for reading out data from the
memory banks BK0, BK1, . . ., and BK15 to output the read
data, in response to an external request. In the memory write
operation mode, the PIM device 10-2 may perform a write
operation for storing data provided by an external device
into the memory banks BKO0, BK1, . . . , and BK15, in
response to an external request. In the MAC mode, the PIM
device 10-2 may perform the MAC operation using the
MAC operators MACO, . . . , and MAC15. The PIM device
10-2 may perform the read operation of the first data DA1
for each of the memory banks BKO, . . . , and BK154 and the
read operation of the second data DA2 for the global buffer
GB, for the MAC operation in the MAC mode. In addition,
each of the MAC operators MACO, . . ., and MAC15 may
perform the MAC operation of the first data DA1 and the
second data DA2 to store a result of the MAC operation into
the memory bank or to output the result of the MAC
operation to an external device. In some cases, the PIM
device may perform a data write operation for storing data
to be used for the MAC operation into the memory banks
before the data read operation for the MAC operation is
performed in the MAC mode.

The operation mode of the PIM device 10-2 according to
the present embodiment may be determined by a command
which is transmitted from an external controller to the PIM
device 10-2. In an embodiment, if a first external command
requesting a read operation or a write operation for the
memory banks BK0, BK1, . . . ; and BK15 is transmitted
from the host or the controller to the PIM device 10-2, the
PIM device 10-2 may perform the data read operation or the
data write operation in the memory mode. Alternatively, if a
second external command requesting the MAC operation is
transmitted from the host or the controller to the PIM device
10-2, the PIM device 10-2 may perform the read operation,
write operation and the MAC operation.

FIG. 4 is a block diagram illustrating a configuration of a
PIM device 100 according to an embodiment of the present
disclosure. Referring to FIG. 4, the PIM device 100 may be
configured to include a first storage region 200, an error
correction code (ECC) logic circuit 300, a multiplication/
accumulation (MAC) operator 400, and a second storage
region 500. In an embodiment, the PIM device 100 may be
applied to a neural network circuit. In such a case, vector
data necessary to neural network calculation may be stored
in the first storage region 200, and weight data may be
temporarily stored in the second storage region 500. In an
embodiment, while the first storage region 200 may be a
memory region (e.g., a bank) of the PIM device 100, the
second storage region 500 may be a buffer memory which is
distinguished from the memory region (e.g., a bank) of the
PIM device 100. In other embodiment, the first storage
region 200 may be a bank of the PIM device 100, and the
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second storage region 500 may be an other bank of the PIM
device 100. The first storage region 200 may have a data
storage region 210 and a parity storage region 220. The data
storage region 210 and the parity storage region 220 may be
regions which are physically distinguished from each other.
Alternatively, the data storage region 210 and the parity
storage region 220 may be regions which are only logically
distinguished from each other. Data may be stored in the
data storage region 210, and parities for correcting errors of
the data may be stored in the parity storage region 220. In
an embodiment, the first storage region 200 may be realized
using a volatile memory device such as a DRAM device. In
another embodiment, the first storage region 200 may be
realized using a nonvolatile memory device. In yet another
embodiment, the first storage region 200 may be realized to
include both of a volatile memory device and a nonvolatile
memory device.

The ECC logic circuit 300 may perform an ECC operation
for error correction during access to the first storage region
200. In an embodiment the ECC operation may include an
ECC encoding operation and an ECC decoding operation.
The ECC encoding operation may be performed while write
data W_DA are written into the first storage region 200. In
an embodiment, the ECC encoding operation may include
an operation generating a parity PA1 for the write data
W_DA. The write data W_DA may be stored into the data
storage region 210 of the first storage region 200. The parity
PA1 generated by the ECC encoding operation may be
stored into the parity storage region 220 of the first storage
region 200. The ECC decoding operation may be performed
while read data R_DA are output from the first storage
region 200. In an embodiment, the ECC decoding operation
may include an operation for generating a syndrome using a
parity PA2 of the read data R_DA, an operation for finding
out an error location of the read data R_DA using the
syndrome, and an operation for correcting an error located
at the error location.

The ECC logic circuit 300 may output different data in a
memory mode and in an MAC mode. The “memory mode”
may be defined as a mode in which the PIM device 100
performs an operation for accessing to the first storage
region 200 regardless of calculating operations. The “MAC
mode” may be defined as a mode in which the PIM device
100 performs an operation for accessing to the first storage
region 200 and an operation for calculating the accessed
data. An operation of the ECC logic circuit 300 for writing
the write data W_DA into the first storage region 200 in the
memory mode may be the same as an operation of the ECC
logic circuit 300 for writing the write data W_DA into the
first storage region 200 in the MAC mode. During a read
operation for reading out the read data R_DA stored in the
first storage region 200 in the memory mode, the ECC logic
circuit 300 may output corrected data of the read data R_DA
to an external device (not shown). In contrast, during a read
operation for reading out first data DA1 stored in the first
storage region 200 in the MAC mode, the ECC logic circuit
300 does not output corrected data generated by correcting
the first data DA1 using a parity PA3 which is provided by
the parity storage region 220. Instead the ECC logic circuit
300 may generate an error code EC indicating an error
location using the parity PA3 and may output the error code
EC to the MAC operator 400. That is, during the read
operation in the MAC mode, no corrected data of the first
data DA1 may be output from the ECC logic circuit 300.

The MAC operator 400 may perform a MAC calculation
in the MAC mode of the PIM device 100. The MAC
operator 400 does not perform any MAC calculation in the
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memory mode of the PIM device 100. In an embodiment, the
MAC operator 400 may include a multiplying block 410, a
multiplication result compensating circuit 420, and an add-
ing block 430. The multiplying block 410 may receive the
first data DA1 stored in the data storage region 210 of the
first storage region 200 and second data DA2 stored in the
second storage region 500. The second data DA2 may be
provided by an external device (not shown) and may be
input to the MAC operator 400 through the second storage
region 500 without passing through the ECC logic circuit
300. The multiplying block 410 may execute a multiplying
calculation of the first data DA1 and the second data DA2 to
output multiplication result data (M_DA_1<0:255> of FIG.
13).

The multiplication result compensating circuit 420 may
receive the multiplication result data (M_DA_1<0:255> of
FIG. 13) output from the multiplying block 410 and the error
code EC output from the ECC logic circuit 300. The
multiplication result compensating circuit 420 may output
the multiplication result data (M_DA_1<0:255> of FIG. 13)
generated by the multiplying block 410 without any com-
pensation or compensated data of the multiplication result
data (C_M_DA_1<0:255> of FIG. 13) after compensating
the multiplication result data (M_DA_1<0:255> of FIG. 13)
according to the error code EC. Specifically, if no error
exists in the error code EC output from the ECC logic circuit
300, the multiplication result compensating circuit 420 may
output the multiplication result data (M_DA_1<0:255> of
FIG. 13) generated by the multiplying block 410 without any
compensation. In contrast, if an error exists in the error code
EC output from the ECC logic circuit 300, the multiplication
result compensating circuit 420 may perform a compensat-
ing calculation for the multiplication result data
(M_DA_1<0:255> of FIG. 13) generated by the multiplying
block 410 to output the compensated multiplication result
data (C_M_DA_1<0:255> of FIG. 13). The adding block
430 may execute an adding calculation of the multiplication
result data (M_DA_1<0:255> of FIG. 13) or the compen-
sated multiplication result data (C_M_DA_1<0:255> of
FIG. 13) output from the multiplication result compensating
circuit 420 and may output the addition result data as MAC
calculation result data corresponding to final output data.

FIG. 5 is a block diagram illustrating a configuration of
the ECC logic circuit 300 included in the PIM device 100.
Referring to FIG. 5, the ECC logic circuit 300 may include
a parity/syndrome generator 310, a syndrome decoder 320,
and an error corrector 330. The parity/syndrome generator
310 may generate and output the parity PA1<0:7> for the
write data W_DA<0:127> to perform a write operation of
the first storage region 200. An embodiment will be
described in conjunction with a case that the write data
W_DA<0:127> are comprised of 128 bits and the parity
PA1<0:7> is comprised of 8 bits. However, the present
embodiment may be merely an example of various embodi-
ments. Thus, the number of bits included in the write data
W_DA may be set to be different according to the embodi-
ments. Similarly, the number of bits included in the parity
PA1 may also be set to be different according to the
embodiments. As described with reference to FIG. 3, the
parity PA1<0:7> may be stored into the parity storage region
220 of the first storage region 200. The parity/syndrome
generator 310 may generate and output a syndrome SYN<O:
7> of the read data R_DA<0:127> and the parity PA2<0:7>
to perform the read operation of the first storage region 200
in the memory mode. Similarly, the parity/syndrome gen-
erator 310 may generate and output the syndrome SYN<O:
7> of the first data DA1<0:127> and the parity PA3<0:7>to
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perform the read operation of the first storage region 200 in
the MAC mode. The syndrome SYN<O0:7> may be input to
the syndrome decoder 320.

The syndrome decoder 320 may generate and output the
error code EC<0:127> indicating an error location based on
the syndrome SYN<0:7>. The error code EC<0:127> may
be a binary stream having the same number of bits as the
read data R_DA<0:127> or the first data DA1<0:127>. In
order to generate the error code EC<0:127>, the syndrome
decoder 320 may execute a calculation for finding an error
location polynomial and a solution of the error location
polynomial. In the memory mode, the error code EC<0:127>
output from the syndrome decoder 320 may be input to the
error corrector 330. In contrast, the error code EC<0:127>
output from the syndrome decoder 320 may be input to the
multiplication result compensating circuit 420 of the MAC
operator 400 in the MAC mode, as described with reference
to FIG. 3. The error corrector 330 may correct the read data
to output the corrected read data R_DA<0:127> if an error
exists in the error code EC<0:127> output from the syn-
drome decoder 320.

FIG. 6 illustrates the MAC operator 400 included in the
PIM device 100. Referring to FIG. 6, the MAC operator 400
may include a plurality of multipliers 411 constituting the
multiplying block 410, a plurality of multiplication result
compensators (C1~C16) 421 constituting the multiplication
result compensating circuit 420, and a plurality of adders
431-1, 431-2, 431-3 and 431-4 constituting the adding block
430. The number of the multipliers 411 may be equal to the
number of the multiplication result compensators 421. The
adders 431-1, 431-2, 431-3 and 431-4 may be disposed at
respective ones of a plurality of stages to form a tree
structure.

When the first data DA1<0:127> have 128 bits and the
second data DA2<0:127> also have 128 bits, the number of
the multipliers 411 may be 16 and the number of the
multiplication result compensators 421 may also be 16. Each
of the multipliers 411 may receive 8-bit data of the first data
DA1<0:127> and 8-bit data of the second data DA2<O0:
127>. That is, the first data DA1<0:127> may be divided
into 16 groups of data in units of 8 bits, and the 16 groups
of data of the first data DA1<0:127> may be input to the 16
multipliers 411, respectively. Similarly, the second data
DA2<0:127> may be divided into 16 groups of data in units
of 8 bits, and the 16 groups of data of the second data
DA2<0:127> may be input to the 16 multipliers 411, respec-
tively. Each of the multipliers 411 may execute a multiplying
calculation of 8-bit data of the first data DA1<0:127> and
8-bit data of the second data DA2<0:127> to generate and
output 16-bit multiplication result data. Because the number
of'the multipliers 411 is 16, 256-bit multiplication result data
may be generated by and output through all of the multi-
pliers 411.

Each of the multiplication result compensators 421 may
receive the 16-bit multiplication result data output from any
one of the multipliers 411. That is, the first multiplication
result compensator C1 may receive first 16-bit multiplica-
tion result data output from the first one of the multipliers
411. Similarly, the last multiplication result compensator
(i.e., the sixteenth multiplication result compensator C16)
may receive sixteenth 16-bit multiplication result data out-
put from the last one (i.e., the sixteenth one) of the multi-
pliers 411. Each of the multiplication result compensators
421 may also receive the 8-bit data of the second data
DA2<0:127> like any one of the multipliers 411. That is, the
8-bit data of the second data DA2<0:127> input to the first
one of the multipliers 411 may also be input to the first
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multiplication result compensator C1. Similarly, the 8-bit
data of the second data DA2<0:127> input to the sixteenth
one of the multipliers 411 may also be input to the sixteenth
multiplication result compensator C16. In addition, the
128-bit error code EC<0:127> output from the syndrome
decoder 320 of the ECC logic circuit 300 may be divided
into 16 groups of data in units of 8 bits, and the 16 groups
of data of the 128-bit error code EC<0:127> may be input
to the multiplication result compensators 421 (i.e., the first
to sixteenth multiplication result compensators C1~C16),
respectively. Each of the multiplication result compensators
421 may output the 16-bit multiplication result data without
any compensation or may execute a compensating calcula-
tion for the 16-bit multiplication result data to output the
compensated 16-bit multiplication result data, according to
the 8-bit error code EC input thereto.

Each of the eight adders 431-1 disposed at a first stage
may receive two sets of the 16-bit data output from two of
the multiplication result compensators 421 to execute an
adding calculation of the two sets of the 16-bit data. Each of
the eight adders 431-1 disposed at the first stage may
generate and output 17-bit addition data including one-bit
carry as a result of the adding calculation. Each of the four
adders 431-2 disposed at a second stage may receive two
sets of the 17-bit addition data output from two of the eight
adders 431-1 to execute an adding calculation of the two sets
of the 17-bit addition data. Each of the four adders 431-2
disposed at the second stage may generate and output 18-bit
addition data including one-bit carry as a result of the adding
calculation. Each of the two adders 431-3 disposed at a third
stage may receive two sets of the 18-bit addition data output
from two of the four adders 431-2 to execute an adding
calculation of the two sets of the 18-bit addition data. Each
of the two adders 431-3 disposed at the third stage may
generate and output 19-bit addition data including one-bit
carry as a result of the adding calculation. Finally, the adder
431-4 disposed at a last stage (i.e., a fourth stage) may
receive two sets of the 19-bit addition data output from the
two adders 431-3 to execute an adding calculation of the two
sets of the 19-bit addition data. The adders 431-4 disposed
at the fourth stage may generate and output 20-bit addition
data including one-bit carry as a result of the adding calcu-
lation.

FIG. 7 illustrates a multiplying calculation executed by
any one of the multiplier 411 included in the PIM device
100. The present embodiment will be described in conjunc-
tion with a case that the multiplier 411 receives binary data
of “X7 X6 X5 X4 X3 X2 X1 X0 as the first data DA1<0:7>
having eight bits and binary data of “Y7 Y6 Y5 Y4 Y3 Y2
Y1 Y0” as the second data DA2<0:7> having eight bits. As
illustrated in FIG. 7, the multiplying calculation of the first
data DA1<0:7> having eight bits and the second data
DA2<0:7> having eight bits may include shifting calcula-
tions of first to eighth steps STEP1~STEP8 and a final
adding calculation. Data “P70 P60 P50 P40 P30 P20 P10
P00 corresponding to result data of the first step STEP1
may be the same as the second data DA2<0:7> when the first
bit “X0” corresponding to a least significant bit (LSB) of the
first data DA1<0:7> has a value of “1”, and all of bits
included in the data “P70 P60 P50 P40 P30 P20 P10 P00~
corresponding to the result data of the first step STEP1 may
have a value of “0” when the first bit “X0” corresponding to
the LSB of the first data DA1<0:7> has a value of “0”. Data
“P71 P61 P51 P41 P31 P21 P11 P01” corresponding to result
data of the second step STEP2 may be located to be shifted
by one bit from a position of the data “P70 P60 P50 P40 P30
P20 P10 P00” in a direction of a most significant bit (MSB)
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of the data “P70 P60 P50 P40 P30 P20 P10 P00”. In such a
case, the data “P71 P61 P51 P41 P31 P21 P11 P01~ may be
the same as the second data DA2<0:7> when the second bit
“X1” of the first data DA1<0:7> has a value of “1”, and all
of bits included in the data “P71 P61 P51 P41 P31 P21 P11
P01” may have a value of “0” when the second bit “X1” of
the first data DA1<0:7> has a value of “0”.

Similarly, data “P72 P62 P52 P42 P32 P22 P12 P02~
corresponding to result data of the third step STEP3 may be
located to be shifted by two bits from a position of the data
“P70 P60 P50 P40 P30 P20 P10 P00” in a direction of the
MSB of the data “P70 P60 P50 P40 P30 P20 P10 P00”. In
such a case, the data “P72 P62 P52 P42 P32 P22 P12 P02~
may be the same as the second data DA2<0:7> when the
third bit “X2” of the first data DA1<0:7> has a value of “1”,
and all of bits included in the data “P72 P62 P52 P42 P32
P22 P12 P02” may have a value of “0” when the third bit
“X2” of the first data DA1<0:7> has a value of “0”. In the
same way, data “P77 P67 P57 P47 P37 P27 P17 P07~
corresponding to result data of the eighth step STEP8 may
be located to be shifted by seven bits from a position of the
data “P70 P60 P50 P40 P30 P20 P10 P00” in a direction of
the MSB of the data “P70 P60 P50 P40 P30 P20 P10 P00”.
In such a case, the data “P77 P67 P57 P47 P37 P27 P17 P07~
may be the same as the second data DA2<0:7> when the
eighth bit “X7” corresponding to the MSB of the first data
DA1<0:7> has a value of “1”, and all of bits included in the
data “P77 P67 P57 P47 P37 P27 P17 P07” may have a value
of “0” when the eighth bit “X7” of the first data DA1<0:7>
has a value of “0”. After all of the shifting calculations of the
first to eighth steps STEP1~STEP8 are executed, the mul-
tiplier 411 may add all of the result data of the first to eighth
steps STEP1~STEPS to output 16-bit multiplication result
data M_DA_1<0:15> of “M15 M14 M13 M12 M11 M10
M9 M8 M7 M6 M5 M4 M3 M2 M1 M0”.

FIG. 8 illustrates one of the multiplication result com-
pensators 421 included in the PIM device 100. Referring to
FIG. 8, the multiplication result compensator 421 may be
configured to include a register 421-1, a shift register 421-2,
a selector 421-3, and an output logic circuit 421-4. The
16-bit multiplication result data M_DA_1<0:15> output
from the multiplier 411 may be stored into the register
421-1. The second data DA2<0:7> may be stored into the
shift register 421-2. The second data DA2<0:7> stored in the
shift register 421-2 may be shifted by a certain number of
bits in a direction from the LSB toward the MSB of the
second data DA2<0:7> in response to a shift signal
S_SHIFT<0:2> output from the selector 421-3, and the
shifted data of the second data DA2<0:7> may be output
from the shift register 421-2. The selector 421-3 may output
the shift signal S_SHIFT<0:2> and a selection signal S_SE-
LECT<0:1>to respective ones of the shift register 421-2 and
the output logic circuit 421-4 in response to the error code
EC<0:7> output from the syndrome decoder 320 of the ECC
logic circuit 300.

The output logic circuit 421-4 may receive the multipli-
cation result data M_DA_1<0:15> output from the register
421-1 and shifted second data SHIFT_DA2<0:7> output
from the shift register 421-2. The output logic circuit 421-4
may output the multiplication result data M_DA_1<0:15>or
the compensated multiplication result data C_M_DA_1<0:
15> in response to the selection signal S_SELECT<0:1>
output from the selector 421-3. The multiplication result
data M_DA_1<0:15> output from the output logic circuit
421-4 may be the same as the multiplication result data
M_DA_1<0:15> output from the register 421-1. The com-
pensated multiplication result data C_M_DA_1<0:15> out-
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put from the output logic circuit 421-4 may be data which
are generated by a compensating calculation of the multi-
plication result data M_DA_1<0:15> provided without error
correction. A configuration and an operation of the output
logic circuit 421-4 will be described hereinafter with refer-
ence to FIG. 9.

FIG. 9 is a block diagram illustrating a configuration of
the output logic circuit 421-4 included in the PIM device
100. Referring to FIG. 9, the output logic circuit 421-4 may
be configured to include an output logic controller 610, an
addition logic circuit 620, and a subtraction logic circuit
630. The output logic controller 610 may receive the selec-
tion signal S_SELECT<0:1> from the selector 421-3. In
addition, the output logic controller 610 may receive the
multiplication result data M_DA_1<0:15> output from the
register 421-1 and the shifted second data SHIFT_DA2<0:
7> output from the shift register 421-2. The output logic
controller 610 may operate in one mode of first to third
output operation modes in response to the selection signal
S_SELECT<0:1>.

The first output operation mode may be activated when
the selection signal S_SELECT<0:1> corresponding to a
case that no error exists by the error code EC<0:7> is
generated. In the first output operation mode, the output
logic controller 610 may directly output the multiplication
result data M_DA_1<0:15> to the adding block 430 without
any compensation of the multiplication result data
M_DA_1<0:15>. The second and third output operation
modes may be activated when the selection signal S_SE-
LECT<0:1> corresponding to a case that an error exists by
the error code EC<0:7> is generated. In particular, the output
logic controller 610 may operate in the second output
operation mode when an erroneous bit of the first data
DA1<0:7> has a value of “0”. In the second output operation
mode, the output logic controller 610 may output the mul-
tiplication result data M_DA_1<0:15> and the shifted sec-
ond data SHIFT_DA2<0:7> to the addition logic circuit 620.
In contrast, when an erroneous bit of the first data DA1<0:7>
has a value of “1”, the output logic controller 610 may
operate in the third output operation mode. In the third
output operation mode, the output logic controller 610 may
output the multiplication result data M_DA_1<0:15> and
the shifted second data SHIFT_DA2<0:7> to the subtraction
logic circuit 630.

The addition logic circuit 620 may execute an adding
calculation of the multiplication result data M_DA_1<0:15>
and the shifted second data SHIFT_DA2<0:7> provided in
the second output operation mode and may output the result
data of the adding calculation as the compensated multipli-
cation result data C_M_DA_1<0:15>. The subtraction logic
circuit 630 may execute a subtracting calculation subtracting
the shifted second data SHIFT DA2<0:7> from the multi-
plication result data M_DA_1<0:15> in the third output
operation mode and may output the result data of the
subtracting calculation as the compensated multiplication
result data C_M_DA_1<0:15>.

As described above, according to the PIM device 100, the
multiplying calculation for the MAC calculation in the MAC
mode may be executed regardless of the error correction
operation of the ECC logic circuit. In addition, the PIM
device 100 may execute a compensating calculation of the
multiplication result data to output the compensated multi-
plication result data only when an error is detected during
the error correction operation performed by the ECC logic
circuit. Thus, it may be possible to reduce a time it takes the
multiplying calculation for the MAC calculation to be
executed in most of cases that errors are not detected.
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Moreover, even though an error is detected, the compensat-
ing calculation may be executed at a state that only an error
location is found out before the error correction operation
completely terminates. In such a case, the multiplying
calculation spending a relatively long time has already
finished, and only the compensating calculation spending a
relatively short time may be additionally executed. Accord-
ingly, it may be possible to reduce a time it takes the
multiplying calculation for the MAC calculation to be
executed.

FIG. 10 is a block diagram illustrating a write operation
performed in the memory mode of the PIM device 100. In
FIG. 10, the same reference numerals as used in FIG. 3
denote the same elements. Referring to FIG. 10, the PIM
device 100 may receive the 128-bit write data W_DA<O0:
127> from an external device (not shown) to perform the
write operation in the memory mode. The write data
W_DA<0:127> may be stored into the data storage region
210 of the first storage region 200 and may also be input to
the ECC logic circuit 300. As described with reference to
FIG. 5, the parity/syndrome generator 310 of the ECC logic
circuit 300 may generate the 8-bit parity PA1<0:7>. The
8-bit parity PA1<0:7> may be stored into the parity storage
region 220 of the first storage region 200.

FIG. 11 is a block diagram illustrating the read operation
performed in the memory mode of the PIM device 100. In
FIG. 11, the same reference numerals as used in FIG. 4
denote the same elements. Referring to FIG. 11, when the
read operation is requested in the memory mode (i.e., a read
command is generated by an external device such as a host
or an external controller), the 128-bit read data R_DA<O0:
127> stored in the data storage region 210 of the first storage
region 200 and the 8-bit parity PA2<0:7> stored in the parity
storage region 220 of the first storage region 200 may be
input to the ECC logic circuit 300. As described with
reference to FIG. 5, the parity/syndrome generator 310 of
the ECC logic circuit 300 may generate the 8-bit syndrome
SYN<0:7>. The syndrome decoder 320 of the ECC logic
circuit 300 may find an error location polynomial and a
solution of the error location polynomial using the syndrome
SYN<O0:7> to generate the 128-bit error code EC<0:127>
indicating an error location. The error corrector 330 of the
ECC logic circuit 300 may correct an error of the read data
R_DA<0:127> to output the corrected read data R_DA<O0:
127>. The corrected read data R_DA<0:127> output from
the ECC logic circuit 300 may be transmitted to an external
device, for example, a host or an external controller.

FIG. 12 is a flowchart illustrating a MAC operation
performed in the MAC mode of the PIM device 100, and
FIG. 13 is a block diagram illustrating the MAC operation
performed in the MAC mode of the PIM device 100. In FIG.
13, the same reference numerals as used in FIG. 4 denote the
same elements. Referring to FIGS. 12 and 13, the first data
DA1<0:127> having 128 bits and the parity PA3<0:7> may
be output from the first storage region 200 at a step 710. In
addition, the first data DA1<0:127> may be input to the ECC
logic circuit 300 and the MAC operator 400, and the parity
PA3<0:7> may be input to the ECC logic circuit 300.
Moreover, the second data DA2<0:127> may be input to the
MAC operator 400. The first and second data DA1<0:127>
and DA2<0:127> may be input to the multiplying block 410
of the MAC operator 400. The second data DA2<0:127>
may also be input to the multiplication result compensating
circuit 420 of the MAC operator 400.

At a step 720, an ECC calculation of the first data
DA1<0:127> and the multiplying calculation of the first and
second data DA1<0:127> and DA2<0:127> may be simul-
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taneously executed. The words “simultaneous™ and “simul-
taneously” as used herein with respect to calculations mean
that the calculations take place on overlapping intervals of
time. For example, if a first calculation takes place over a
first interval of time and a second calculation takes place
simultaneously over a second interval of time, then the first
and second intervals at least partially overlap each other
such that there exists a time at which the first and second
calculations are both taking place. Specifically, the ECC
logic circuit 300 may generate a syndrome using the first
data DA1<0:127> and the parity PA3<0:7>. The ECC logic
circuit 300 may perform an ECC decoding operation using
the syndrome to generate and output the 128-bit error code
EC<0:127> indicating an error location. The error code
EC<0:127> may be input to the multiplication result com-
pensating circuit 420 of the MAC operator 400. The mul-
tiplying block 410 of the MAC operator 400 may execute the
multiplying calculation of the first and second data DA1<0:
127> and DA2<0:127> to generate and output the 256-bit
multiplication result data M_DA_1<0:255>. The multipli-
cation result data M_DA_1<0:255> may be input to the
multiplication result compensating circuit 420 of the MAC
operator 400.

At a step 730, whether an error exists as a result of the
ECC calculation may be discriminated. Specifically, the
multiplication result compensating circuit 420 of the MAC
operator 400 may analyze bit values of the error code
EC<0:127> output from the ECC logic circuit 300 to dis-
criminate whether an error exists in the first data DA1<O0:
127> and to find out an error location if an error exists in the
first data DA1<0:127>. When no error exists in the first data
DA1<0:127> at the step 730, the multiplication result com-
pensating circuit 420 of the MAC operator 400 may output
the multiplication result data M_DA_1<0:255> correspond-
ing to a result of the multiplying calculation of the first data
DA1<0:127> and the second data DA2<0:127> at a step
740. When an error exits the first data DA1<0:127> at the
step 730, the multiplication result compensating circuit 420
of the MAC operator 400 may compensate for the multipli-
cation result data M_DA_1<0:255> of the first and second
data DA1<0:127> and DA2<0:127> to output the compen-
sated multiplication result data C_M_DA_1<0:255>. The
multiplication result data M_DA_1<0:255> or the compen-
sated multiplication result data C_M_DA_1<0:255> output
from the multiplication result compensating circuit 420 may
be input to the adding block 430. The adding block 430 may
execute an adding calculation of the multiplication result
data M_DA_1<0:255> or the compensated multiplication
result data C_M_DA_1<0:255> to output 20-bit output data
A_DA<0:19> as the MAC calculation result data.

FIG. 14 illustrates an example of a multiplying calcula-
tion executed in the MAC mode of the PIM device 100.
Referring to FIG. 14, it may be assumed that the first data
DA1 of “01100101” output from the first storage region 200
are input to one input terminal of the multiplier 411 and the
second data DA2 of “01010001” output from the second
storage region 500 are input to the other terminal of the
multiplier 411. The first data DA1 of “01100101” may be
data whose parity is generated by the ECC logic circuit 300
when the first data DA1 are written into the first storage
region 200 by a previous write operation. In contrast, the
second data DA2 of “01010001” may be merely data that are
input to the multiplier 411 of the multiplying block 410 only
through the second storage region 500 from an external
device. Thus, the ECC calculation in the MAC mode may be
executed for only the first data DA1 of “01100101”. The
multiplier 411 may execute a multiplying calculation of the
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first data DA1 of “01100101” and the second data DA2 of
“01010001” to output data of “0001111111110101” as the
multiplication result data M_DA_1.

FIG. 15 illustrates a process of the multiplying calculation
shown in FIG. 14. Referring to FIG. 15, the multiplying
calculation of the present embodiment may be executed in
the same way as the multiplying calculation described with
reference to FIG. 7. Specifically, because a first bit corre-
sponding to an L.SB of the first data DA1 has a value of “1”,
data “01010001” may be provided as result data of the first
step STEP1. Because a second bit of the first data DA1 has
a value of “0”, data “00000000” may be provided as result
data of the second step STEP2 and the data “00000000” may
be shifted by one bit from a position of the result data
“01010001” of the first step STEP1 in a direction of the
MSB of the data “01010001”. Because a third bit of the first
data DA1 has a value of “1”, data “01010001” may be
provided as result data of the third step STEP3 and the data
“01010001” may be shifted by two bits from a position of
the result data “01010001” of the first step STEP1 in a
direction of the MSB of the data “01010001”. Because both
of a fourth bit and a fifth bit of the first data DA1 have a
value of “0”, data “00000000” may be provided as result
data of the fourth and fifth steps STEP4 and STEPS and the
result data “00000000” of the fourth and fifth steps STEP4
and STEP5 may be respectively shifted by three bits and
four bits from a position of the result data “01010001” of the
first step STEP1 in a direction of the MSB of the data
“01010001”. Because both of a sixth bit and a seventh bit of
the first data DA1 have a value of “17, data “01010001”” may
be provided as result data of the sixth and seventh steps
STEP6 and STEP7 and the result data “01010001” of the
sixth and seventh steps STEP6 and STEP7 may be respec-
tively shifted by five bits and six bits from a position of the
result data “01010001” of the first step STEP1 in a direction
of the MSB of the data “01010001”. Finally, because an
eighth bit of the first data DA1 has a value of “0”, data
“00000000” may be provided as result data of the eighth
STEPS8 and the result data “00000000” of the eighth step
STEP8 may be shifted by seven bits from a position of the
result data “01010001” of the first step STEP1 in a direction
of the MSB of the data “01010001”. Next, all of the result
data of the first to eighth steps STEP1~STEP8 may be added
to generate the multiplication result data M_DA_1 of
“0001111111110101”.

FIG. 16 is a block diagram illustrating a multiplication
output compensation operation performed in the multiplica-
tion result compensator 421 of FIG. 8 when no error occurs
in the multiplying calculation of FIG. 14. In FIG. 16, the
same reference numerals as used in FIG. 8 denote the same
elements. Referring to FIG. 16, the multiplication result data
M_DA_1 of “0001111111110101” output from the multi-
plier 411 may be stored into the register 421-1. The multi-
plication result data M_DA_1 of “0001111111110101”
stored in the register 421-1 may be input to the output logic
circuit 421-4. The second data DA2 of “01010001” may be
stored into the shift register 421-2. Because the present
embodiment corresponds to a case that no error exists in the
first data, the error code EC of “00000000” may be input to
the selector 421-3. The selector 421-3 may output the
selection signal S_SELECT of “00” to the output logic
circuit 421-4 to drive the output logic circuit 421-4 in the
first output operation mode. The output logic circuit 421-4
may transmit the multiplication result data M_DA_1 of
“0001111111110101” output from the register 421-1 to the
adding block 430.
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FIG. 17 is a block diagram illustrating an example of a
multiplication output compensation operation performed in
the multiplication result compensator 421 of FIG. 8 when an
error occurs in the multiplying calculation of FIG. 14, and
FIG. 18 illustrates a process of an adding calculation of the
multiplication result data M_DA_1 and the shifted second
data SHIFT_DAZ2 in the multiplication output compensation
operation shown in FIG. 17. In FIG. 17, the same reference
numerals as used in FIG. 8 denote the same elements. First,
referring to FIG. 17, the multiplication result data M_DA_1
0of“0001111111110101” output from the multiplier 411 may
be stored into the register 421-1. The multiplication result
data M_DA_10f“0001111111110101” stored in the register
421-1 may be input to the output logic circuit 421-4. The
second data DA2 of “01010001” may be stored into the shift
register 421-2. It may be assumed that the present embodi-
ment corresponds to a case that the first data are erroneous
data and the error code EC is “00001000” indicating that a
fourth bit of the first data is an erroneous bit. Because the
fourth bit (i.e., the erroneous bit) of the first data has a value
of “0”, the output logic circuit 421-4 may operate in the
second output operation mode as described with reference to
FIG. 9.

The error code EC of “00001000” may be input to the
selector 421-3. The selector 421-3 may output the shift
signal S_SHIFT of “011” to the shift register 421-2 such that
the shift register 421-2 shifts the second data DA2 of
“01010001” stored in the shift register 421-2 by three bits in
a direction from the LSB of the second data DA2 toward the
MSB of the second data DA2. In addition, the selector 421-3
may output the selection signal S_SELECT of “01” to the
output logic circuit 421-4 to drive the output logic circuit
421-4 in the second output operation mode. In the second
output operation mode, the shift register 421-2 may shift the
second data DA2 by three bits in a direction from the LSB
of the second data DA2 toward the MSB of the second data
DAZ2 in response to the shift signal S_SHIFT of “011” and
may output the shifted second data SHIFT _DA2 of
“01010001000” to the output logic circuit 421-4. The output
logic circuit 421-4 may operate in the second output opera-
tion mode in response to the selection signal S_SELECT of
“01”. Thus, as illustrated in FIG. 18, the output logic circuit
421-4 may execute an adding calculation of the multiplica-
tion result data M_DA_1 of “0001111111110101” and the
shifted second data SHIFT_DAZ2 of “01010001000” to gen-
erate and output the compensated multiplication result data
C_M_DA_1 of “0010001001111101”".

FIG. 19 illustrates a process of a multiplication result data
calculation when no error occurs in the multiplication output
compensation operation of FIG. 17. Referring to FIG. 19,
because the error code EC is “000010007, a fourth bit of the
first data DA1 may correspond to an erroneous bit. Thus, the
first data DA1 before error occurrence may be “01101101”.
If the ECC calculation is executed, the fourth erroneous bit
of'the first data DA1 may be corrected such that the first data
DA1 are changed from the erroneous data of “01100101”
into the corrected data of “01101101”. Accordingly, if the
MAC calculation is executed after the ECC calculation is
executed, the corrected first data DA1 of “01101101” and
the second data DA2 of “01010001” may be used in the
MAC calculation. The multiplying calculation of the cor-
rected first data DA1 of “01101101” and the second data
DA2 of “01010001” may be executed in the same way as the
described with reference to FIG. 7, thereby generating the
multiplication result data M_DA_1 of
“0010001001111101”.  This multiplication result data
M_DA_1 of “0010001001111101” may be the same as the
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compensated multiplication result data C_M_DA_1 of
“0010001001111101” described with reference to FIGS. 17
and 18. That is, even though an error exists in the first data
DAT1 like the present embodiment, the same data as the
multiplication result data after error correction may be
obtained by executing the compensating calculation after the
multiplying calculation regardless of the ECC calculation.

FIG. 20 is a block diagram illustrating another example of
a multiplication output compensation operation performed
in the multiplication result compensator 421 of FIG. 8 when
an error occurs in the multiplying calculation of FIG. 14, and
FIG. 21 illustrates a process of a subtracting calculation for
subtracting the shifted second data SHIFT_DA2 from the
multiplication result data M_DA_1 in the multiplication
output compensation operation shown in FIG. 20. In FIG.
20, the same reference numerals as used in FIG. 8 denote the
same elements. First, referring to FIG. 20, the multiplication
result data M_DA_1 of “0001111111110101” output from
the multiplier 411 may be stored into the register 421-1. The
multiplication result data M_DA_1 of “0001111111110101”
stored in the register 421-1 may be input to the output logic
circuit 421-4. The second data DA2 of “01010001” may be
stored into the shift register 421-2. It may be assumed that
the present embodiment corresponds to a case that the first
data are erroneous data and the error code EC is “00000100”
indicating that a third bit of the first data is an erroneous bit.
Because the third bit (i.e., the erroneous bit) of the first data
has a value of “1”, the output logic circuit 421-4 may operate
in the third output operation mode as described with refer-
ence to FIG. 9.

The error code EC of “00000100” may be input to the
selector 421-3. The selector 421-3 may output the shift
signal S_SHIFT of “010” to the shift register 421-2 such that
the shift register 421-2 shifts the second data DA2 of
“01010001” stored in the shift register 421-2 by two bits in
a direction from the LSB of the second data DA2 toward the
MSB of the second data DA2. In addition, the selector 421-3
may output the selection signal S_SELECT of “10” to the
output logic circuit 421-4 to drive the output logic circuit
421-4 in the third output operation mode. In the third output
operation mode, the shift register 421-2 may shift the second
data DA2 by two bits in a direction from the LSB of the
second data DA2 toward the MSB of the second data DA2
in response to the shift signal S_SHIFT of “010” and may
output the shifted second data SHIFT_DA2 of
“0101000100” to the output logic circuit 421-4. The output
logic circuit 421-4 may operate in the third output operation
mode in response to the selection signal S_SELECT of “10”.
Thus, as illustrated in FIG. 21, the output logic circuit 421-4
may execute a subtracting calculation for subtracting the
shifted second data SHIFT DA2 of “0101000100” from the
multiplication result data M_DA_1 of “0001111111110101”
to generate and output the compensated multiplication result
data C_M_DA_1 of “0001111010110001”.

FIG. 22 illustrates a process of a multiplication result data
calculation when no error occurs in the multiplication output
compensation operation of FIG. 20. Referring to FIG. 22,
because the error code EC is “00000100”, a third bit of the
first data DA1 may correspond to an erroneous bit. Thus, the
first data DA1 before error occurrence may be “01100001”.
If the ECC calculation is executed, the third erroneous bit of
the first data DA1 may be corrected such that the first data
DAT1 are changed from the erroneous data of “01100101”
into the corrected data of “01100001”. Accordingly, if the
MAC calculation is executed after the ECC calculation is
executed, the corrected first data DA1 of “01100001” and
the second data DA2 of “01010001” may be used in the
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MAC calculation. The multiplying calculation of the cor-
rected first data DA1 of “01100001” and the second data
DA2 of “01010001” may be executed in the same way as the
described with reference to FIG. 7, thereby generating the
multiplication result data M_DA_1 of
“0001111010110001”.  This multiplication result data
M_DA_1 of “0001111010110001” may be the same as the
compensated multiplication result data C_M_DA_1 of
“0001111010110001” described with reference to FIGS. 20
and 21.

FIG. 23 is a timing diagram illustrating a MAC operation
performed when an error occurs in the MAC mode of the
PIM device 100. In FIG. 23, a topmost timing diagram
denotes a case that the ECC calculation and the MAC
calculation are sequentially executed, and an intermediate
timing diagram and a bottommost timing diagram denote a
case that the ECC calculation and the MAC calculation are
independently executed in parallel, respectively. Referring
to FIG. 23, the ECC calculation executed by the ECC logic
circuit (300 of FIG. 4) may be executed from a first point in
time “T1” till a fifth point in time “T5”. Specifically, a
syndrome calculation may be executed from the first point in
time “T1” till a third point in time “T3”, the syndrome may
be decoded from the third point in time “T3” till a fourth
point in time “T4”, and an error correction may be executed
from the fourth point in time “T4” till the fifth point in time
“T5”. The multiplying calculation of the MAC calculation
may be executed from the fifth point in time “T5” when the
ECC calculation terminates till a ninth point in time “T9”. In
addition, the adding calculation of the MAC calculation may
be executed from the ninth point in time “T9” till a tenth
point in time “T10”. That is, in the event that the ECC
calculation and the MAC calculation are sequentially
executed, the MAC calculation may terminate at the tenth
point in time “T10”.

In contrast, in the event that the ECC calculation and the
MAC calculation are independently executed in parallel, the
ECC calculation may be executed during the same period
(from the first point in time “T1” till the fifth point in time
“T5”) as the ECC calculation shown in the topmost timing
diagram. However, the multiplying calculation of the MAC
calculation may start from the first point in time “T1”. That
is, the multiplying calculation may be executed during a
period from the first point in time “T1” till the second point
in time “T2”. In general, a time it takes the syndrome
calculation of the ECC calculation to be executed may be
longer than a time it takes the multiplying calculation of the
MAC calculation to be executed. Thus, the second point in
time “T2” when the multiplying calculation of the MAC
calculation terminates may precede the third point in time
“T3” when the syndrome calculation of the ECC calculation
terminates. A multiplication result compensation calculation
may be executed during a period from the fourth point in
time “T4” when the syndrome decoding calculation termi-
nates till a sixth point in time “T6”. As described with
reference to FIGS. 8 and 9, the multiplication result com-
pensation calculation may be executed during a relatively
short period because the multiplication result compensation
calculation is achieved by a shift operation and an addition
operation (or a subtraction operation) of the shift register.
The adding calculation of the MAC calculation may be
executed during a period from the sixth point in time “T6”
when the multiplication result compensation calculation
terminates till an eighth point in time “T8”. As a result, when
the ECC calculation and the MAC calculation are indepen-
dently executed in parallel like the present embodiment, it
may be possible to reduce a calculation time by a period



US 12,081,237 B2

23

between the eighth point in time “T8” and the tenth point in
time “T10” as compared with the case that the ECC calcu-
lation and the MAC calculation are sequentially executed.

FIG. 24 is a timing diagram illustrating a MAC operation
performed when no error occurs in the MAC mode of the
PIM device 100. In FIG. 24, a topmost timing diagram
denotes a case that the ECC calculation and the MAC
calculation are sequentially executed, and an intermediate
timing diagram and a bottommost timing diagram denote a
case that the ECC calculation and the MAC calculation are
independently executed in parallel, respectively. Referring
to FIG. 24, the case that ECC calculation and the MAC
calculation are sequentially executed may be the same as
described with reference to FIG. 23. Thus, in such a case, the
MAC calculation may terminate at the tenth point in time
“T10”. The ECC calculation and the MAC calculation of the
case that the ECC calculation and the MAC calculation are
independently executed in parallel may also be the same as
described with reference to FIG. 23. However, when no error
occurs as a result of the syndrome decoding calculation of
the ECC calculation, the adding calculation of the MAC
calculation may be executed during a period from the fourth
point in time “T4” till the seventh point in time ““T7” because
the multiplication result compensation calculation is unnec-
essary for the MAC calculation. Thus, if the ECC calculation
and the MAC calculation are independently executed in
parallel and no error occurs as a result of the syndrome
decoding calculation of the ECC calculation, it may be
possible to reduce a calculation time by a period between the
seventh point in time “T'7” and the tenth point in time “T10”
as compared with the case that the ECC calculation and the
MAC calculation are sequentially executed.

FIG. 25 is a block diagram illustrating a configuration of
a PIM device 100" according to another embodiment of the
present disclosure. In FIG. 25, the same reference numerals
as used in FIG. 4 denote the same elements. Thus, descrip-
tions of the same elements as set forth with reference to FIG.
4 will be omitted or briefly mentioned to avoid duplicate
descriptions. Referring to FIG. 25, the PIM device 100' may
include an ECC logic circuit 800 corresponding to the ECC
logic circuit 300 illustrated in FIG. 4. The ECC logic circuit
800 may sequentially output an error signal EE and the error
code EC in the MAC mode. The error signal EE may be a
signal including only information on whether an error exists
as a result of the ECC calculation. For example, the error
signal EE having a value of “0” may indicate that no error
occurs as a result of the ECC calculation, and the error signal
EE having a value of “1” may indicate that an error occurs
as a result of the ECC calculation. The ECC logic circuit 800
may output the error signal EE and may output the error
code EC only when an error exists in the first data DA1 after
outputting the error signal EE. As described with reference
to FIG. 4, the error code EC may include information on an
error location.

The PIM device 100" may include a MAC operator 900
corresponding to the MAC operator 400 illustrated in FIG.
4, and the MAC operator 900 may include a multiplication
result compensating circuit 920 corresponding to the mul-
tiplication result compensating circuit 420 illustrated in FIG.
4. The multiplication result compensating circuit 920 may
receive the error signal EE in addition to the error code EC
from the ECC logic circuit 800. The multiplication result
compensating circuit 920 may transmit the multiplication
result data output from the multiplying block 410 to the
adding block 430 without executing any compensating cal-
culation when the error signal EE having a value of “0” is
input to the multiplication result compensating circuit 920.
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In contrast, when the error signal EE having a value of “1”
is input to the multiplication result compensating circuit 920
from the ECC logic circuit 800, the multiplication result
compensating circuit 920 may execute a compensating cal-
culation of the multiplication result data according to the
error code EC input to the multiplication result compensat-
ing circuit 920 and may output the compensated multipli-
cation result data to the adding block 430.

FIG. 26 is a block diagram illustrating a configuration of
the ECC logic circuit 800 included in the PIM device 100'.
The ECC logic circuit 800 include a parity/syndrome gen-
erator 810, a syndrome decoder 820, and an error corrector
830. The ECC logic circuit 800 including the parity/syn-
drome generator 810, the syndrome decoder 820, and the
error corrector 830 may perform the same operations as the
ECC logic circuit 300 described with reference to FIGS. 4
and 5 during the read and write operations performed in the
memory mode and during the write operation performed in
the MAC mode. Thus, only the read operation of the ECC
logic circuit 800 performed in the MAC mode will be
described hereinafter. During the read operation in the MAC
mode, the parity/syndrome generator 810 may receive the
first data DA1<0:127> and the parity PA3<0:7> from the
first storage region 200 to generate the syndrome SYN<O:
7>. In general, while the syndrome SYN<O0:7> is generated
by the parity/syndrome generator 810, whether the first data
DA1<0:127> are erroneous data may be discriminated. That
is, if the syndrome SYN<0:7> is generated, information on
whether an error exists in the first data DA1<0:127> may be
obtained even though the error location is not found.

When no error exists in the first data DA1<0:127> as a
result of the syndrome calculation, the parity/syndrome
generator 810 may output the error signal EE having a value
of “0”. In an embodiment, if the error signal EE has a value
of “0”, the syndrome SYN<0:7> generated by the parity/
syndrome generator 810 is not input to the syndrome
decoder 820. In another embodiment, even though the
syndrome SYN<0:7> is input to the syndrome decoder 820,
no decoding calculation is executed by the syndrome
decoder 820 and no error code EC<0:127> is generated by
the syndrome decoder 820. When an error exists in the first
data DA1<0:127> as a result of the syndrome calculation,
the parity/syndrome generator 810 may output the error
signal EE has a value of “1” and may output the syndrome
SYN<0:7> to the syndrome decoder 820. The syndrome
decoder 820 may generate and output the error code EC<O0:
127> indicating an error location based on the syndrome
SYN<0:7>. The error code EC<0:127> output from the
syndrome decoder 820 may be input to the multiplication
result compensating circuit 920 of the MAC operator 900, as
described with reference to FIG. 25. The error corrector 830
may perform an error correction operation only in the
memory mode and does not perform any error correction
operation in the MAC mode.

FIG. 27 illustrates one of multiplication result compen-
sators 921 constituting the multiplication result compensat-
ing circuit 920 included in the PIM device 100'. In the
present embodiment, the multiplication result compensator
921 may correspond to one of the plurality of multiplication
result compensators 421 constituting the multiplication
result compensating circuit 420 described with reference to
FIG. 6. Referring to FIG. 27, the multiplication result
compensator 921 may be configured to include a register
921-1, a shift register 921-2, a selector 921-3, and an output
logic circuit 921-4. The multiplication result data
M_DA_1<0:15> output from the multiplier 411 of the
multiplying block 410 may be stored into the register 921-1.
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The second data DA2<0:7> may be stored into the shift
register 921-2. The second data DA2<0:7> stored in the shift
register 921-2 may be shifted by a certain number of bits in
a direction from the LSB toward the MSB of the second data
DA2<0:7> in response to the shift signal S_SHIFT<0:2>
output from the selector 921-3, and the shifted data of the
second data DA2<0:7> may be output from the shift register
921-2. The number of bits by which the second data DA2<0:
7> are shifted may be determined according to the shift
signal S_SHIFT<0:2>.

The selector 921-3 may output the selection signal S_SE-
LECT<0:1> to the output logic circuit 921-4 in response to
the error signal EE output from the parity/syndrome gen-
erator 810 of the ECC logic circuit 800. In addition, the
selector 921-3 may output the shift signal S_SHIFT<0:2>
and the selection signal S_SELECT<0:1> to respective ones
of the shift register 921-2 and the output logic circuit 921-4
in response to the error code EC<0:7> output from the
syndrome decoder 820 of the ECC logic circuit 800. In an
embodiment, the selection signal S_SELECT<0:1> may be
a 2-bit binary stream. For example, when no error exists in
the first data DA1 (i.e., the error signal EE having a value of
“0” is input to the selector 921-3), the selector 921-3 may
output the selection signal S_SELECT<0:1> of “00”. When
an error exists in the first data DA1 and an adding calcula-
tion is required as the compensating calculation, the selector
921-3 may output the selection signal S_SELECT<0:1> of
“01”. When an error exists in the first data DAl and a
subtracting calculation is required as the compensating
calculation, the selector 921-3 may output the selection
signal S_SELECT<0:1> of “10”.

The output logic circuit 921-4 may receive the multipli-
cation result data M_DA_1<0:15> from the register 921-1.
In addition, the output logic circuit 921-4 may receive the
shifted second data SHIFT_DA2<0:7> from the shift reg-
ister 921-2. When the error signal EE having a value of “0”
is input to the selector 921-3 (i.e., no compensating calcu-
lation is required because no error occurs), the output logic
circuit 921-4 does not receive the shifted second data
SHIFT_DA2<0:7>. In such a case, the output logic circuit
921-4 may output the multiplication result data M_DA_1<0:
15> without executing any compensating calculation of the
multiplication result data M_DA_1<0:15> in response to the
selection signal S_SELECT<0:1> of “00”. In contrast, when
the error signal EE having a value of “1” and the error code
EC<0:7> are input to the selector 921-3, the selector 921-3
may output the selection signal S_SELECT<0:1> of “01” or
“10” and the output logic circuit 921-4 may execute an
adding calculation of the multiplication result data
M_DA_1<0:15> and the shifted second data
SHIFT_DA2<0:7> or a subtracting calculation for subtract-
ing the shifted second data SHIFT_DA2<0:7> from the
multiplication result data M_DA_1<0:15> in response to the
selection signal S_SELECT<0:1> of “01” or “10” to gen-
erate and output the compensated multiplication result data
C_M_DA_1<0:15>.

FIG. 28 illustrates an operation of the multiplication result
compensator 921 shown in FIG. 27 when no error occurs in
the PIM device 100'. In FIG. 28, the same reference numer-
als as used in FIG. 27 denote the same elements. In the
present embodiment, it may be assumed that the first data
DA1 are “01100101”, the second data DA2 are 010100017,
and the multiplication result data M_DA_1 output from the
multiplier 411 of the multiplying block 410 are
“0001111111110101” (see FIG. 14). Referring to FIG. 28,
the multiplication result data M_DA_ 1 of
“0001111111110101” output from the multiplier 411 may be
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stored into the register 921-1. The multiplication result data
M_DA_1 of “0001111111110101” stored in the register
921-1 may be input to the output logic circuit 921-4. The
second data DA2 of “01010001” may be stored into the shift
register 921-2. Because the present embodiment corre-
sponds to a case that no error exists in the first data DA1, the
error signal EE of “0” may be input to the selector 921-3.
The selector 921-3 may output the selection signal S_SE-
LECT of “00” to the output logic circuit 921-4 to drive the
output logic circuit 921-4 in the first output operation mode.
The output logic circuit 921-4 may transmit the multiplica-
tion result data M_DA_1 of “0001111111110101” output
from the register 921-1 to the adding block 430.

FIG. 29 is a timing diagram illustrating a MAC operation
performed when no error occurs in the MAC mode of the
PIM device 100'. In FIG. 29, a topmost timing diagram
denotes a case that the ECC calculation and the MAC
calculation are sequentially executed, and an intermediate
timing diagram and a bottommost timing diagram denote a
case that the ECC calculation and the MAC calculation are
independently executed in parallel, respectively. Referring
to FIG. 29, the case that ECC calculation and the MAC
calculation are sequentially executed may be the same as
described with reference to FIG. 23. Thus, in such a case, the
MAC calculation may terminate at the tenth point in time
“T10”. The ECC calculation and the MAC calculation of the
case that the ECC calculation and the MAC calculation are
independently executed in parallel may also be the same as
described with reference to FIG. 23. However, when no error
occurs as a result of the syndrome decoding calculation of
the ECC calculation (i.e., the error signal EE of “O” is
generated), it may be unnecessary to execute the multipli-
cation result compensation calculation. Thus, in such a case,
an adding calculation of the MAC calculation may be
executed during a period from the third point in time “T3”
till the fourth point in time “T4” if a time it takes the adding
calculation of the MAC calculation to be executed is equal
to a time it takes the syndrome decoding calculation of the
ECC calculation to be executed. Accordingly, if the ECC
calculation and the MAC calculation are independently
executed in parallel and no error occurs as a result of the
syndrome decoding calculation of the ECC calculation, it
may be possible to reduce a calculation time by a period
between the fourth point in time “T4” and the tenth point in
time “T10” as compared with the case that the ECC calcu-
lation and the MAC calculation are sequentially executed.

According to the embodiments described above, the ECC
calculation and the MAC calculation for data output from
the first storage region of the PIM device may be indepen-
dently executed in parallel, and the multiplication result data
may then be compensated only when an error exists in the
data output from the first storage region. Thus, it may be
possible to improve a calculation speed of the MAC opera-
tion performed in the PIM device.

FIG. 30 is a block diagram illustrating a configuration of
a PIM device 1000 according to another embodiment of the
present disclosure. Referring to FIG. 30, the PIM device
1000 may include an operation control circuit (OP CNT
CTR) 1010, a data line 1020, a data input/output circuit
1030, an ECC logic circuit 1040, a storage region 1050, a
global buffer 1060, and a MAC operator 1070.

The operation control circuit 1010 may control the ECC
logic circuit 1040 and the storage region 1050 when a write
operation in an operation mode is performed. The operation
control circuit 1010 may control the ECC logic circuit 1040
so that write data EW_DA and write parity WPA are
generated from write input data W_DA when the write
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operation in the operation mode is performed. The operation
control circuit 1010 may control the storage region 1050 to
receive and store the write data EW_DA and the write parity
WPA generated in the ECC logic circuit 1040 when the write
operation in the operation mode is performed. The operation
control circuit 1010 may include a command decoder (not
illustrated) that decodes a command CMD, an address
decoder (not illustrated) that decodes an address ADD, and
input/output control circuits (not illustrated) that control data
to be input/output in/from the storage region 1050.

The operation control circuit 1010 may control the ECC
logic circuit 1040 and the storage region 1050 when a read
operation in the operation mode is performed. The operation
control circuit 1010 may control the storage region 1050 so
that read data ER_DA and read parity RPA are output when
the read operation in the operation mode is performed. The
operation control circuit 1010 may control the ECC logic
circuit 1040 so that converted data C_DA is generated from
the read data ER_DA and the read parity RPA when the read
operation in the operation mode is performed.

The operation control circuit 1010 may control the MAC
operator 1070 when a MAC arithmetic operation in the
operation mode is performed. The operation control circuit
1010 may control the MAC operator 1070 so that a MAC
arithmetic operation for the converted data C_DA and buffer
data B_DA is performed when the MAC arithmetic opera-
tion in the operation mode is performed.

The ECC logic circuit 1040 may receive the write input
data W_DA that is input through the data input/output circuit
1030 when the write operation in the operation mode is
performed through the data line 1020. The ECC logic circuit
1040 may remove some bits from the bits included in the
write input data W_DA and generate write data EW_DA,
based on the remaining bits when the write operation in the
operation mode is performed. As an example, the ECC logic
circuit 1040 may remove 8 bits from the write input data
W_DA including 128 bits to generate the write data EW_DA
from the write input data W_DA including the remaining
120 bits. Some bits removed from the bits included in the
write input data W_DA in the ECC logic circuit 1040 may
be variously set according to embodiments. As an example,
when the write input data W_DA including 128 bits includes
8 pieces of 16-bit data implemented in a floating-point
method, 1 bit included in a mantissa part may be removed
for each piece of piece of 16-bit data. As another example,
when the write input data W_DA including 128 bits includes
8 pieces of 16-bit data implemented in a floating-point
method, 1 bit included in an exponent part may be removed
for each piece of piece of 16-bit data. The method of
generating the write data EW_DA from the write input data
W_DA including the remaining bits after some bits are
removed in the ECC logic circuit 1040 may be variously set
according to embodiments. As an example, when 8 bits are
removed from the write input data W_DA including 128
bits, the write input data W_DA including the remaining 120
bits may be output as the write data EW_DA. As another
example, when 8 bits are removed from the write input data
W_DA including 28 bits and the remaining write input data
W_DA includes 8 pieces of 15-bit data implemented in a
floating-point method, the bit combination of the bits
included in a mantissa part may be adjusted by rounding
methods according to the removed bits for each piece of the
remaining 15-bit data, and the write input data W_DA
including 120 bits whose bit combination is adjusted may be
output as the write data EW_DA. The rounding methods are
often done to obtain a value that is easier to report and
communicate than the original. Many rounding methods
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exist because it is not usually possible for a method to satisfy
all ideal characteristics. As another example, when 8 bits are
removed from the write input data W_DA including 128 bits
and the remaining write input data W_DA includes 8 pieces
of 15-bit data implemented in a floating-point method, the
bit combination of the bits included in an exponent part may
be adjusted in a preset bit combination according to the
removed bits for each piece of the remaining 15-bit data, and
the write input data W_DA including 120 bits whose bit
combination is adjusted may be output as the write data
EW_DA. The word “preset” as used herein with respect to
a parameter, such as a preset bits or preset bit combination,
means that a value for the parameter is determined prior to
the parameter being used in a process or algorithm. For some
embodiments, the value for the parameter is determined
before the process or algorithm begins. In other embodi-
ments, the value for the parameter is determined during the
process or algorithm but before the parameter is used in the
process or algorithm.

The ECC logic circuit 1040 may generate write parity
WPA, based on the write data EW_DA when the write
operation in the operation mode is performed. The ECC
logic circuit 1040 may encode the write data EW_DA to
generate the write parity WPA. A Hamming code may be
used to encode the write data EW_DA to generate the write
parity WPA in the ECC logic circuit 1040. As an example,
the ECC logic circuit 1040 may encode write data EW_DA
including 120 bits to generate write parity WPA including 8
bits when the write operation in the operation mode is
performed. The ECC circuit 1040 may apply the write data
EW_DA and the write parity WPA to the storage region
1050, based on the control of the operation control circuit
1010 when the write operation in the operation mode is
performed.

The ECC circuit 1040 may receive read data ER_DA and
read parity RPA from the storage region 1050 when a read
operation in the operation mode is performed. The read data
ER_DA may be the same data as the write data EW_DA
stored when the write operation in the operation mode is
performed. The read parity RPA may be the same parity as
the write parity WPA stored when the write operation in the
operation mode is performed.

The ECC logic circuit 1040 may generate syndrome
(SYN of FIG. 31), based on the read data ER_DA and the
read parity RPA when the read operation in the operation
mode is performed. The ECC logic circuit 1040 may decode
the read data ER_DA and the read parity RPA to generate the
syndrome (SYN of FIG. 31). A Hamming code may be used
to decode the read data ER_DA and the read parity RPA in
order to generate the syndrome (SYN in FIG. 31) in the ECC
logic circuit 1040. As an example, the ECC logic circuit
1040 may decode read data ER_DA including 120 bits and
read parity RPA including 8 bits to generate the syndrome
(SYN of FIG. 31) when the read operation in the operation
mode is performed. The ECC circuit 1040 may generate
corrected read data (CR_DA of FIG. 31) from the read data
ER_DA, based on the syndrome (SYN of FIG. 31) when the
read operation in the operation mode is performed. The ECC
logic circuit 1040 may correct an error included in the read
data ER_DA by the syndrome (SYN of FIG. 31) to generate
the corrected read data (CR_DA of FIG. 31).

The ECC circuit 1040 may generate converted data
C_DA, based on the corrected read data (CR_DA of FIG.
31) when the read operation in the operation mode is
performed. The ECC logic circuit 1040 may add preset bits
to the corrected read data (CR_DA of FIG. 31) to generate
the converted data (C_DA of FIG. 31) when the read
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operation in the operation mode is performed. As an
example, the ECC logic circuit 1040 may generate the
converted data C_DA including 128 bits generated by add-
ing 8 bits to the corrected read data including 120 bits
(CR_DA of FIG. 31). A method of adding the preset bits to
the corrected read data (CR_DA of FIG. 31) in the ECC
logic circuit 1040 may be variously set according to embodi-
ments. As an example, when the corrected read data
(CR_DA of FIG. 31) including 120 bits includes 8 pieces of
15-bit data implemented in a floating-point method, 1 bit
may be added to a mantissa part for each piece of the 15-bit
data. As another example, when the corrected read data
including 120 bits (CR_DA in FIG. 31) includes 8 pieces of
15-bit data implemented in a floating-point method, 1 bit
may be added to an exponent part for each piece of the 15-bit
data. In this embodiment, the bits added to the corrected read
data (CR_DA in FIG. 31) in the ECC logic circuit 1040 may
be setto ‘0’, it may be set to ‘1’ or differently for each piece
of piece of data implemented in a floating-point method
according to embodiments.

The storage region 1050 may receive the write data
EW_DA and the write parity WPA generated in the ECC
logic circuit 1040 when the write operation in the operation
mode is performed. The storage region 1050 may store the
write data EW_DA and the write parity WPA in a memory
region accessed based on the control of the operation control
circuit 1010 when the write operation in the operation mode
is performed. The storage region 1050 may apply the read
data ER_DA and the read parity RPA to the ECC logic
circuit 1040 when the read operation in the operation mode
is performed. The storage region 1050 may output the write
data EW_DA and the write parity WPA stored in the memory
region accessed based on the control of the operation control
circuit 1010 as the read data ER_DA and the read parity
RPA. The storage region 1050 may include a plurality of
memory regions implemented as banks.

The global buffer 1060 may store the buffer data B_DA.
The global data 1060 may receive and store the buffer data
B_DA input through the data input/output circuit 1030
through a data line 1020. The global buffer 1060 may apply
the buffer data B_DA to the MAC operator 1070 through the
data line 1020 when a MAC arithmetic operation is per-
formed.

The MAC operator 1070 may receive the converted data
C_DA from the ECC logic circuit 1040 and may receive the
buffer data B_DA from the global buffer 1060 when a MAC
arithmetic operation is performed. In this embodiment, the
converted data C_DA may be weight data applied to a neural
network circuit, and the buffer data B_DA may be vector
data applied to the neural network circuit. According to
embodiments, the converted data C_DA may be vector data
applied to a neural network circuit, and the buffer data
B_DA may be weight data applied to the neural network
circuit. The MAC operator 1070 may perform MAC arith-
metic operations including a multiplication operation and an
addition operation for the converted data C_DA and the
buffer data B_DA. The MAC operator 1070 may output the
MAC operation result data MRD to the data input/output
circuit 1030 through the data line 1020.

FIG. 31 is a block illustrating a configuration according to
an example of the ECC logic circuit 1040. Referring to FIG.
31, the ECC logic circuit 1040 may include a write data
generator (EW_DA GEN) 1100, a write parity generator
(WPA GEN) 1110, a syndrome generator (SYN GEN) 1120,
a corrected read data generator (CR_DA GEN) 1130, and a
converted data generator (C_DA GEN) 1140.
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The write data generator 1100 may remove some bits
included in the write input data W_DA and generate write
data EW_DA, based on the remaining bits when a write
operation in an operation mode is performed. As an
example, the write data generator 1100 may remove 8 bits
from the write input data W_DA including 128 bits and
generate the write data EW_DA from the write input data
W_DA including the remaining 120 bits.

The write parity generator 1110 may receive the write data
EW_DA from the write data generator 1100 when the write
operation in the operation mode is performed. The write
parity generator 1110 may encode the write data EW_DA to
generate the write parity WPA when the write operation in
the operation mode is performed. As an example, the write
parity generator 1110 may encode the write data EW_DA
including 120 bits to generate the write parity WPA includ-
ing 8 bits when the write operation in the operation mode is
performed.

The syndrome generator 1120 may decode read data
ER_DA and read parity RPA to generate syndrome SYN
when the read operation in the operation mode is performed.
As an example, the syndrome generator 1120 may decode
the read data ER_DA including 120 bits and the read parity
including 8 bits to generate the syndrome including 8 bits.

The corrected read data generator 1130 may receive the
syndrome SYN from the syndrome generator 1120 when the
read operation in the operation mode is performed. The
corrected read data generator 1130 may correct an error
included in the read data ER_DA based on the syndrome
SYN to generate corrected read data CR_DA when the read
operation in the operation mode is performed.

The converted data generator 1140 may receive the cor-
rected read data CR_DA from the corrected read data
generator 1130 when the read operation in the operation
mode is performed. In an embodiment, the converted data
generator 1140 may generate the converted data C_DA,
based on the corrected read data CR_DA when the read
operation in the operation mode is performed. The converted
data generator 1140 may add preset bits to the corrected read
data CR_DA to generate the converted data C_DA when the
read operation in the operation mode is performed. As an
example, the converted data generator 1140 may add 8 bits
to the corrected read data CR_DA including 120 bits to
generate the converted data C_DA including 128 bits.

FIG. 32 is a block diagram illustrating a configuration of
a write data generator 1100_1 according to an example of the
write data generator 1100. As illustrated in FIG. 32, the write
data generator 1100_1 may receive the write input data
W_DA including 8 pieces of 16-bit data to generate the write
data EW_DA including 8 pieces of 15-bit data. The write
data generator 11001 may remove 1 bit from first data
W_DA<16:1> of the write input data W_DA including 16
bits to generate first data EW_DA<16:2> of the write data
EW_DA including 15 bits. In addition, the write data
generator 1100_1 may remove 1 bit from the second data
W_DA<32:17> of the write input data W_DA including 16
bits to generate second data EW_DA<32:18> of the write
data EW_DA including 15 bits. In this way, the write data
generator 1100_1 may remove 1 bit from eighth data
W_DA<128:113> of the write input data W_DA including
16 bits to generate eighth data EW_DA<128:114> of the
write data EW_DA including 15 bits. For example, for each
piece of the data from the first data W_DA<16:1> of the
write input data W_DA to the eighth data W_DA<128:113>
of the write input data W_DA implemented in a floating-
point method, 1 bit may be allocated to a sign part, 8 bits
may be allocated to an exponent part, and 7 bits may be
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allocated to a mantissa part. As an example, for each piece
of the data from the first data EW_DA<16:2> of the write
data EW_DA implemented in a floating-point method to the
eighth data EW_DA<128:114> of the write data EW_DA| 1
bit may be allocated to a sign part, 8 bits may be allocated
to an exponent part, and 6 bits may be allocated to a mantissa
part. As another example, for each piece of the data from the
first data EW_DA<16:2> of the write data EW_DA imple-
mented in a floating-point method to the eighth data
EW_DA<128:114> of the write data EW_DA, 1 bit may be
allocated to the sign part, 7 bits may be allocated to the
exponent part, and 7 bits may be allocated to the mantissa
part.

The operation of generating the write data EW_DA from
the write input data W_DA in the write data generator
1100_1 illustrated in FIG. 32 and the operation of generating
the parity WPA in the write parity generator 1110 illustrated
in FIG. 31 will be described with reference to FIGS. 33 to
36.

As illustrated in FIG. 33, the write data generator 1100_1
may remove 1 bit from a mantissa part of the write data
EW_DA including 16 bits implemented in a floating-point
method in which 1 bit is allocated to a sign part, 8 bits are
allocated to an exponent part, and 7 bits are allocated to the
mantissa part to generate write data EW_DA including 15
bits implemented in a floating-point method in which 1 bit
is allocated to the sign part, 8 bits are allocated to the
exponent part, and 6 bits are allocated to the mantissa part.
The write parity generator 1110 may apply 1 bit of the bits
included in the write parity WPA generated by encoding the
write data EW_DA to the storage region 1050 together with
the write data EW_DA including 15 bits.

As illustrated in FIG. 34, the write data generator 1100_1
may remove 1 bit from a mantissa part of the write data
EW_DA including 16 bits implemented in a floating-point
method in which 1 bit is allocated to a sign part, 8 bits are
allocated to an exponent part, and 6 bits are allocated to the
mantissa part to generate the write data EW_DA including
15 bits implemented in a floating-point method in which 1
bit is allocated to the sign part, 8 bits are allocated to the
exponent part, and 6 bits are allocated to the mantissa part.
The bit combination of the 6 bits allocated to the mantissa
part included in the write data EW_DA may be adjusted
according to the 1 bit removed from the mantissa part. As an
example, when the removed 1 bit of the mantissa part is ‘0’,
the bit combination of the 6 bits allocated to the mantissa
part is not adjusted, but when the removed 1 bit of the
mantissa part is ‘1°, the bit combination of the 6 bits
allocated to the mantissa part may be adjusted by rounding
methods. The write parity generator 1110 may apply 1 bit of
the bits included in the write parity WPA generated by
encoding the write data EW_DA to the storage region 1050
together with the write data EW_DA including 15 bits.

As illustrated in FIG. 35, the write data generator 1100_1
may remove 1 bit from an exponent part of the write data
EW_DA including 16 bits implemented in a floating-point
method in which 1 bit is allocated to a sign part, 8 bits are
allocated to the exponent part, and 7 bits are allocated to a
mantissa part to generate the write data EW_DA including
15 bits implemented in a floating-point method in which 1
bit is allocated to the sign part, 7 bits are allocated to the
exponent part, and 7 bits are allocated to the mantissa part.
The write data generator 1100_1 may apply 1 bit of the bits
included in the write parity WPA generated by encoding the
write data EW_DA to the storage region 1050 together with
the write data EW_DA including 15 bits.
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As illustrated in FIG. 36, the write data generator 1100_1
may remove 1 bit from an exponent part of the write data
EW_DA including 16 bits implemented in a floating-point
method in which 1 bit is allocated to a sign part, 8 bits are
allocated to the exponent part, and 7 bits are allocated to a
mantissa part to generate the write data EW_DA including
15 bits implemented in a floating-point method in which 1
bit is allocated to the sign part, 7 bits are allocated to the
exponent part, and 7 bits are allocated to the mantissa part.
The bit combination of the 7 bits allocated to the exponent
part included in the write data EW_DA may be adjusted
according to the 1 bit removed from the exponent part. For
example, when the 1 bit removed from the exponent part is
the most significant bit and is ‘1°, the bit combination of the
7 bits allocated to the exponent part may be adjusted to a
preset bit combination, ‘1111111°. The preset bit combina-
tion to which the bit combination allocated to the exponent
part is adjusted may be variously set according to embodi-
ments. The write parity generator 1100 may apply 1 bit of
the bits included in the write parity WPA generated by
encoding the write data EW_DA to the storage region 1050
together with the write data EW_DA including 15 bits.

FIG. 37 is a block diagram illustrating a configuration of
a converted data generator 1140_1 according to an example
of the converted data generator 1140. Referring to FIG. 37,
the converted data generator 1140_1 may receive corrected
read data CR_DA including 8 pieces of 15-bit data to
generate converted data C_DA including 8 pieces of 16-bit
data. The converted data generator 1140_1 may add 1 bit to
first data CR_DA<16:2> of the corrected read data CR_DA
including 15 bits to generate first data C_DA<16:1> of the
converted data C_DA including 16 bits. In addition, the
converted data generator 1140_1 may add 1 bit to second
data CR_DA<32:18> of the corrected read data CR_DA
including 15 bits to generate second data C_DA<32:17> of
the converted data C_DA including 16 bits. In this way, the
converted data generator 1140_1 may add 1 bit to eighth data
CR_DA<128:114> of the corrected read data CR_DA
including 15 bits to generate eighth data C_DA<128:113> of
the converted data C_DA including 16 bits. As an example,
for each piece of the data from the first data CR_DA<16:2>
of the corrected read data CR_DA implemented in a float-
ing-point method to the eighth data CR_DA<128:114> of
the corrected read data CR_DA, 1 bit may be allocated to a
sign part, 8 bits may be allocated to an exponent part, and 6
bits may be allocated to a mantissa part. As another example,
for each piece of the data from the first data CR_DA<16:2>
of the corrected read data CR_DA implemented in the
floating-point method to the eighth data CR_DA<128:114>
of'the corrected read data CR_DA, 1 bit may be allocated to
the sign part, 7 bits may be allocated to the exponent part,
and 7 bits may be allocated to the mantissa part. As an
example, for each piece of the data from the first data
CR_DA<16:1> of the converted data C_DA implemented in
the floating-point method to the eighth data C_DA<128:
113> of the converted data C_DA, 1 bit may be allocated to
the sign part, 8 bits may be allocated to the exponent part,
and 7 bits may be allocated to the mantissa part.

The operation of generating the converted data C_DA
from the corrected read data CR_DA in the converted data
generator 1140_1 will be described with reference to FIGS.
38 and 39.

As illustrated in FIG. 38, the converted data generator
1140_1 may add 1 bit set to 0’ to the mantissa part of the
corrected read data CR_DA including 15 bits implemented
in a floating-point method in which 1 bit is allocated to a sign
part, 8 bits are allocated to an exponent part, and 6 bits are
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allocated to a mantissa part to generate converted data
C_DA including 16 bits implemented in the floating-point
method in which 1 bit is allocated to the sign part, 8 bits are
allocated to the exponent part, and 7 bits are allocated to the
mantissa part.

As illustrated in FIG. 39, the converted data generator
1140_1 may add 1 bit set to 0’ to the exponent part of the
corrected read data CR_DA including 15 bits implemented
in a floating-point method in which 1 bit is allocated to a sign
part, 7 bits are allocated to an exponent part, and 7 bits are
allocated to a mantissa part to generate converted data
C_DA including 16 bits implemented in the floating-point
method in which 1 bit is allocated to the sign part, 8 bits are
allocated to the exponent part, and 7 bits are allocated to the
mantissa part.

The PIM device 1000 according to another embodiment
of the present disclosure described above may convert some
of the bits included in the data into parity to store the same
in the storage region 1050, and may correct an error in data
used in a MAC arithmetic operation by using the data and
parity stored in the storage region 1050, thereby improving
the accuracy of the MAC arithmetic operation.

FIG. 40 is a block diagram illustrating a configuration of
a PIM device 2000 according to another embodiment of the
present disclosure. Referring to FIG. 40, the PIM device
2000 may include an operation control circuit (OP CNT
CTR) 2010, a data line 2020, a data input/output circuit (DA
1/0) 2030, an ECC logic circuit 2040, a storage region 2050,
and a MAC operator 2070.

The operation control circuit 2010 may control the ECC
logic circuit 2040 and the storage region 2050 when a write
operation in an operation mode is performed. The operation
control circuit 2010 may control the ECC logic circuit 2040
so that first write data EW_DA1, first write parity WPA1,
second write data EW_DAZ2, and second write parity WPA2
are generated from first write input data W_DA1 and second
write input data W_DA2 when the write operation in the
operation mode is performed. The operation control circuit
2010 may control the storage region 2050 to receive and
store the first write data EW_DAI1, the first write parity
WPA1, the second write data EW_DA2, and the second
write parity WPA2 generated in the ECC logic circuit 2040
when the write operation in the operation mode is per-
formed. The operation control circuit 2010 may include a
command decoder (not illustrated) that decodes a command
CMD, an address decoder (not illustrated) that decodes an
address ADD, and input/output control circuits (not illus-
trated) that control data to be input/output in/from the
storage region 2050.

The operation control circuit 2010 may control the ECC
logic circuit 2040 and the storage region 2050 when a read
operation in an operation is performed. The operation con-
trol circuit 2010 may control the storage region 2050 so that
first read data ER_DAI, first read parity RPA1, second read
data ER_DA1, and second read parity RPA2 are output when
the read operation in the operation is performed. The opera-
tion control circuit 2010 may control the ECC logic circuit
2040 so that first converted data C_DA1 and second con-
verted data C_DA2 are generated from the first read data
ER_DA1, the first read parity RPA1, the second read data
ER_DA1, and the second read parity RPA2 when the read
operation in the operation is performed.

The operation control circuit 2010 may control the MAC
operator 2070 when a MAC arithmetic operation in an
operation mode is performed. The operation control circuit
2010 may control the MAC operator 2070 so that a MAC
arithmetic operation for the first converted data C_DA1 and
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the second converted data C_DA2 are performed when the
MAC arithmetic operation in the operation mode is per-
formed.

The ECC logic circuit 2040 may receive the first write
input data W_DA1 and the second write input data W_DA2
input through the data input/output circuit 2030 when the
MAC arithmetic operation in the operation mode is per-
formed, through the data line 2020. The ECC logic circuit
2040 may remove some of the bits included in the first write
input data W_DA1 and the second write input data W_DA2
to generate the first write data EW_DA1 and the second
write data EW_DAZ2, based on the remaining bits when the
write operation in the operation mode is performed. As an
example, the ECC logic circuit 2040 may remove 8 bits from
each piece of the first write input data W_DA1 and the
second write input data W_DAZ2, and generate the first write
data EW_DAI1 and the second write data EW_DA2 from the
remaining first write input data W_DA1 and the second
write input data W_DA2 respectively including the remain-
ing 120 bits.

The ECC logic circuit 2040 may generate first write parity
WPA1 and second write parity WPA2, based on the first
write data EW_DA1 and the second write data EW_DA2
when the write operation in the operation mode is per-
formed. The ECC logic circuit 2040 may encode the first
write data EW_DA1 and the second write data EW_DA2 to
generate the first write parity WPA1 and second write parity
WPA2. As an example, the ECC logic circuit 2040 may
encode each piece of the first write data EW_DAI1 and the
second write data EW_DAZ2 including 120 bits to generate
the first write parity WPA1 and second write parity WPA2
including 8 bits, respectively, when the write operation in the
operation mode is performed. The ECC logic circuit 2040
may apply the first write data EW_DAI, the second write
data EW_DAZ2, the first write parity WPA1, and the second
write parity WPA2 to the storage region 2050, based on the
control of the operation control circuit 2010 when the write
operation in the operation mode is performed.

The ECC logic circuit 2040 may receive the first read data
EW_DAI1, the second read data ER_DA2, the first read
parity RPA1, and the second read parity RP2 from the
storage region 2050 when the read operation in the operation
mode is performed. The first read data EW_DA1 and the
second read data ER_DA2 may be the same data as the first
write data EW_DA1 and the second write data EW_DA2
stored when the write operation in the operation mode is
performed. The first read parity RPA1 and the second read
parity RP2 may be the same data as the first write parity
WPA1 and the second write parity WPA2 stored when the
write operation in the operation mode is performed.

The ECC logic circuit 2040 may generate first syndrome
(SYN1 of FIG. 41) and second syndrome (SYN2 of FIG.
41), based on the first read data ER_DA1, the second read
data ER_DAZ2, the first read parity RPA1, and the second
read parity RPA2 when the read operation in the operation
mode is performed. The ECC logic circuit 2040 may decode
the first read data ER_DAT1 and the first read parity RPA1 to
generate the first syndrome (SYN1 of FIG. 41). The ECC
logic circuit 2040 may decode the second read data
ER_DA2 and the second read parity RPA2 to generate the
second syndrome (SYN2 of FIG. 41). As an example, the
ECC logic circuit 2040 may decode the first read data
ER_DAT1 including 120 bits and the first read parity RPA1
including 8 bits to generate the first syndrome (SYN1 of
FIG. 41) including 8 bits when the read operation in the
operation mode is performed. The ECC logic circuit 2040
may correct an error included in the first read data ER_DA1
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based on the first syndrome (SYN1 of FIG. 41) to generate
first corrected read data (CR_DA2 of FIG. 41). As an
example, the ECC logic circuit 2040 may decode the second
read data ER_DA2 including 120 bits and the second read
parity RPA2 including 8 bits to generate the second syn-
drome (SYN2 of FIG. 41) including 8 bits when the read
operation in the operation mode is performed. The ECC
logic circuit 2040 may correct an error included in the
second read data ER_DA2 based on the second syndrome
(SYN2 of FIG. 41) to generate second corrected read data
(CR_DAZ2 of FIG. 41).

The ECC logic circuit 2040 may generate first converted
data C_DA1 and second converted data C_DA2, based on
the first corrected read data (CR_DA1 of FIG. 41) and the
second corrected read data (CR_DA2 of FIG. 41) when the
read operation in the operation mode is performed. The ECC
logic circuit 2040 may add 8 bits to the first corrected read
data CR_DAT1 including 120 bits to generate the first con-
verted data C_DAI including 128 bits. As an example, the
ECC logic circuit 2040 may generate the first converted data
C_DA1 including 128 bits generated by adding 8 bits to the
first corrected read data CR_DA1 including 120 bits. The
ECC logic circuit 2040 may add preset bits to the second
corrected read data (CR_DA2 of FIG. 41) to generate the
second converted data C_DA2 when the read operation in
the operation mode is performed. As an example, the ECC
logic circuit 2040 may generate the second converted data
C_DA2 including 128 bits generated by adding 8 bits to the
second corrected read data CR_DA2 including 120 bits.

The storage region 2050 may receive the first write data
EW_DAI, the second write data EW_DA2, the first write
parity WPA1, and the second write parity WPA2 generated
in the ECC logic circuit 2040 when the write operation in the
operation mode is performed. The storage region 2050 may
store the first write data EW_DAI, the second write data
EW_DAZ2, the first write parity WPA1, and the second write
parity WPA2 in a memory region accessed based on the
control of the operation control circuit 1020 when the write
operation in the operation mode is performed. The storage
region 2050 may apply the first write data EW_DAI, the
second write data EW_DA2, the first write parity WPA1,
and the second write parity WPA2 to the EC logic circuit
2040 when the read operation in the operation mode is
performed. The storage region 2050 may output the first
write data EW_DAI, the second write data EW_DA2, the
first write parity WPA1, and the second write parity WPA2
stored in the memory region accessed based on the control
of the operation control circuit 2010 as the first read data
ER_DA1, the second read data ER_DAZ2, the first read parity
RPA1, and the second read parity RPA2 when the read
operation in the operation mode is performed. The storage
region 2050 may include a plurality of memory regions
implemented as banks.

The MAC operator 2070 may receive the first converted
data C_DA1 and the second converted data C_D2 from the
ECC logic circuit 2040 when the MAC arithmetic operation
is performed. In this embodiment, the first converted data
C_DA1 may be weight data applied to a neural network, and
the second converted data C_D2 may be vector data applied
to the neural network. According to embodiments, the first
converted data C_DA1 may be vector data applied to the
neural network, and the second converted data C_D2 may be
weight data applied to the neural network. The MAC opera-
tor 2070 may perform MAC arithmetic operations including
a multiplication operation and an addition operation for the
first converted data C_DA1 and the second converted data
C_DAZ2 to generate MAC operation result data MRD. The
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MAC operator 2070 may output the MAC operation result
data MRD to the data input/output circuit 2030 through the
data line 2020.

FIG. 41 is a block diagram illustrating a configuration
according to an example of the ECC logic circuit 2040. As
illustrated in FIG. 41, the ECC logic circuit 2040 may
include a first ECC logic circuit 2041 and a second ECC
logic circuit 2043. The first ECC logic circuit 2041 may
include a first write data generator (EW_DA GEN(1)) 2100,
a first write parity generator (WPA GEN(1)) 2110, a first
syndrome generator (SYN GEN(1)) 2120, a first corrected
data generator (CR_DA GEN(1)) 2130, and a first converted
data generator (C_DA GEN(1)) 2140. The second ECC logic
circuit 2043 may include a second write data generator
(EW_DA GEN(2)) 2200, a second write parity generator
(WPA GEN(2)) 2210, a second syndrome generator (SYN
GEN(2)) 2220, a second corrected data generator (CR_DA
GEN(2)) 2230, and a second converted data generator
(C_DA GEN(2)) 2240.

The first write data generator 2100 may remove some of
the bits included in first write input data W_DA1 and
generate first write data EW_DAI, based on the remaining
bits when a write operation in an operation mode is per-
formed. As an example, the first write data generator 2100
may remove 8 bits from the first write input data W_DA1
including 128 bits and generate the first write data EW_DA1
from the first write input data W_DAT1 including the remain-
ing 120 bits.

The first write parity generator 2110 may receive the first
write data EW_DAT1 from the first write data generator 2100
when the write operation in the operation mode is per-
formed. The first write parity generator 2110 may encode the
first write data EW_DAI1 to generate the first write parity
WPA1 when the write operation in the operation mode is
performed. As an example, the first write parity generator
2110 may encode the first write data EW_DA1 including
120 bits to generate the first write parity WPA1 including 8
bits when the write operation in the operation mode is
performed.

The first syndrome generator 2120 may decode the first
read data ER_DAT1 and the first read parity RPA1 to generate
the first syndrome SYN1 when a read operation in an
operation mode is performed. As an example, the first
syndrome generator 2120 may decode the first read data
ER_DAT1 including 120 bits and the first read parity RPA1
including 8 bits to generate the first syndrome SYN1 includ-
ing 8 bits when the read operation in the operation mode is
performed.

The first corrected data generator 2130 may receive the
first syndrome SYN1 from the first syndrome generator
2120 when a read operation in an operation mode is per-
formed. The first corrected data generator 2130 may correct
an error included in the first read data ER_DA1 based on
first syndrome SYN1 to generate first corrected read data
CR_DA1 when the read operation in the operation mode is
performed.

The first converted data generator 2140 may receive the
first corrected read data CR_DA1 from the first corrected
read data generator 2130 when the read operation in the
operation mode is performed. The first converted data gen-
erator 2140 may add preset bits to the first corrected read
data CR_DA1 to generate the first converted data C_DA1
when the read operation in the operation mode is performed.
As an example, the first converted data generator 2140 may
generate the first converted data C_DA1 including 128 bits
generated by adding 8 bits to the first corrected read data
CR_DAL1 including 120 bits.
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The second write data generator 2200 may remove some
of bits included in the second write input data W_DA2 and
generate second write data EW_DAZ2, based on the remain-
ing bits when the write operation in the operation mode is
performed. As an example, the second write data generator
2200 may remove 8 bits from the second write input data
W_DA2 including 128 bits and generate the second write
data EW_DA2 from the second write input data W_DA2
including the remaining 120 bits.

The second write parity generator 2210 may receive the
second write data EW_DA2 from the second write data
generator 2200 when the write operation in the operation
mode is performed. The second write parity generator 2210
may encode the second write data EW_DAZ2 to generate the
second write parity WPA2 when the write operation in the
operation mode is performed. As an example, the second
write parity generator 2210 may encode the second write
data EW_DAZ2 including 120 bits to generate the second
write parity WPA2 including 8 bits when the write operation
in the operation mode is performed.

The second syndrome generator 2220 may decode the
second read data ER_DA2 and the second read parity RPA2
to generate the second syndrome SYN2 when the read
operation in the operation mode is performed. As an
example, the second syndrome generator 2220 may decode
the second read data ER_DA2 including 120 bits and the
second read parity RPA2 including 8 bits to generate the
second syndrome SYN2 including 8 bits when the read
operation in the operation mode is performed.

The second corrected data generator 2230 may receive the
second syndrome SYN2 from the second syndrome genera-
tor 2220 when the read operation in the operation mode is
performed. The second corrected data generator 2230 may
correct an error included in the second read data ER_DA2
based on second syndrome SYN2 to generate the second
corrected read data CR_DA2 when the read operation in the
operation mode is performed.

The second converted data generator 2240 may receive
the second corrected read data CR_DA2 from the second
corrected read data generator 2230 when the read operation
in the operation mode is performed. The second converted
data generator 2240 may add preset bits to the second
corrected read data CR_DA2 to generate the second con-
verted data C_DA2 when the read operation in the operation
mode is performed. As an example, the second converted
data generator 2240 may generate the second converted data
C_DA2 including 128 bits generated by adding 8 bits to the
second corrected read data CR_DA2 including 120 bits.

The PIM device 2000 according to another embodiment
of the present disclosure described above may convert some
of the bits included in data into parity, store the same in the
storage region 2050, and utilize the data and parity stored in
the storage region 2050 to correct an error of the data used
in the MAC arithmetic operation, thereby improving the
accuracy of the MAC arithmetic operation.

FIG. 42 is a block diagram illustrating a configuration of
a PIM device 3000 according to another embodiment of the
present disclosure. Referring to FIG. 42, the PIM device
3000 may include an operation control circuit (OP CNT
CTR) 3010, a data input/output circuit (DA 1/0) 3030, a
cyclic redundancy checking (CRC) logic circuit 3040, a
storage region 3050, a global buffer 3060, and a MAC
operator 3070.

The operation control circuit 3010 may control the CRC
logic circuit 3040 and the storage region 3050 when a write
operation in an operation mode is performed. The operation
control circuit 3010 may control the CRC logic circuit 3040
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so that write data EW_DA and a write fail chick signal
WEFECS are generated from write input data W_DA when the
write operation in the operation mode is performed. The
operation control circuit 3010 may control the storage region
3050 to receive and store the write data EW_DA and the
write fail check signal WFCS generated in the CRC logic
circuit 3040 when the write operation in the operation mode
is performed. The operation control circuit 3010 may
include a command decoder (not illustrated) that decodes a
command CMD, an address decode (not illustrated) that
decodes an address ADD, and input/output control circuits
(not illustrated) that control data to be input/output in/from
the storage region 3050.

The operation control circuit 3010 may control the CRC
logic circuit 3040 and the storage region 3050 when a read
operation in an operation mode is performed. The operation
control circuit 3010 may control the storage region 3050 so
that read data ER_DA and a read fail check signal RFCS are
output when the read operation in the operation mode is
performed. The operation control circuit 3010 may control
the CRC logic circuit 3040 so that a fail flag FFG and
converted data C_DA are generated from the read data
ER_DA and the read fail check signal RFCS when the read
operation in the operation mode is performed.

The operation control circuit 3010 may control the MAC
operator 3070 when a MAC arithmetic operation in an
operation mode is performed. The operation control circuit
3010 may control the MAC operator 3070 so that MAC
arithmetic operations for the converted data C_DA and
buffer data B_DA are performed when the MAC arithmetic
operation in the operation mode is performed.

The CRC logic circuit 3040 may receive the write input
data W_DA input through the data input/output circuit 3030
when the write operation in the operation mode is performed
through the data line 3020. The CRC logic circuit 3040 may
remove some of bits included in the write input data W_DA
and generate the write data EW_DA, based on the remaining
bits when the write operation in the operation mode is
performed. As an example, the CRC logic circuit 3040 may
remove 8 bits from the write input data W_DA including 128
bits and generate the write data W_DA from the write input
data W_DA including 120 bits. Some bits removed from the
bits included in the write input data W_DA in the CRC logic
circuit 3040 may be variously set according to embodi-
ments. As an example, when the write input data W_DA
including 128 bits includes 8 pieces of 16-bit data imple-
mented in a floating-point method, 1 bit included in a
mantissa part may be removed for each piece of the 16-bit
data. As another example, when the write input data W_DA
including 128 bits includes 8 pieces of 16-bit data imple-
mented in the floating-point method, 1 bit included in an
exponent part may be removed for each piece of the 16-bit
data. The method of generating the write data EW_DA from
the write input data W_DA including remaining bits after
some bits are removed in the CRC logic circuit 3040 may be
variously set according to embodiments. As an example,
when 8 bits are removed from the write input data W_DA
including 128 bits, the write input data W_DA including the
remaining 120 bits may be output. As another example,
when 8 bits are removed from the write input data W_DA
including 128 bits and the remaining write input data W_DA
includes 8 pieces of 15-bits data implemented in the float-
ing-point method, the bit combination of the bits included in
the mantissa part may be adjusted by rounding methods
according to the removed bits for each piece of the remain-
ing 15-bit data, and the write input data W_DA including
120 bits whose bit combination is adjusted may be output as
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the write data EW_DA. As another example, when 8 bits are
removed from the write input data W_DA including 128 bits
and the remaining write input data W_DA includes 8 pieces
of 15-bit data implemented in the floating-point method, the
bit combination of the bits included in the exponent part may
be adjusted to a preset bit combination according to the
removed bits for each piece of the remaining 15-bit data, and
the write input data W_DA including 120 bits whose bit
combination is adjusted may be output as the write data
EW_DA.

The CRC logic circuit 3040 may generate the write fail
check signal WFCS, based on the write data EW_DA when
the write operation in the operation mode is performed. The
CRC logic circuit 3040 may encode the write data EW_DA
to generate the write fail check signal WFCS. In encoding
the write data EW_DA to generate the write fail check signal
WECS in the CRC logic circuit 3040, the cyclic redundancy
check (CRC) may be used. Encoding according to the CRC
may be performed in a method in which ‘0’ is added to the
write data EW_DA as many as the number of bits 1 bit less
than the number of bits of the divisor code, and the remain-
der calculated when ‘0’ is added to the write data EW_DA
divided by the divisor code is generated as the write fail
check signal WFCS. As an example, the CRC logic circuit
3040 may encode the write data EW_DA including 120 bits
to generate the write fail check signal WFCS including 8 bits
when the write operation in the operation mode is per-
formed. The CRC logic circuit 3040 may apply the write
data EW_DA and the write fail check signal WFCS to the
storage region 3050, based on the control of the operation
control circuit 3010 when the write operation in the opera-
tion mode is performed.

The CRC logic circuit 3040 may receive the read data
ER_DA and the read fail check signal RFCS from the
storage region 3050 when the read operation in the operation
mode is performed. The read data ER_DA may be the same
data as the write data EW_DA stored when the write
operation in the operation mode is performed. The read fail
check signal RFCS may be the same data as the write fail
check data WEFCS stored when the write operation in the
operation mode is performed.

The CRC logic circuit 3040 may generate the fail flag
FFG and the converted data C_DA, based on the read data
ER_DA and the read fail check signal RFCS when the read
operation in the operation mode is performed. The CRC
logic circuit 3040 may decode the read data ER_DA and the
read fail check signal RFCS to generate the fail flag signal
FFG. In decoding the read data ER_DA and the read fail
check signal RFCS to generate the fail flag signal FFG in the
CRC logic circuit 3040, the CRC may be used. Decoding
according to the CRC may be performed in a method in
which the read data ER_DA and the read fail check signal
RFCS are divided by a divisor code. As an example, the
CRC logic circuit 3040 may decode the read data ER_DA
including 120 bits and the read fail check signal RFCS
including 8 bits to generate the read fail flag signal FFG
including 8 bits when the read operation in the operation
mode is performed. The fail flag signal FFG may be acti-
vated to express that a defect is included in the read data
ER_DA in a case that the remainder is not ‘0’ when the read
data ER_DA and the read fail check signal RFCS are divided
by the divisor code.

The CRC logic circuit 3040 may generate the converted
data C_DA from the read data ER_DA when the read
operation in the operation mode is performed. The CRC
logic circuit 3040 may add preset bits to the read data
ER_DA to generate the converted data C_DA when the read
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operation in the operation mode is performed. As an
example, the CRC logic circuit 3040 may generate the
converted data C_DA including 128 bits generated by add-
ing 8 bits to the read data ER_DA including 120 bits. The
method of adding the preset bits to the read data ER_DA in
the CRC logic circuit 3040 may be variously set according
to embodiments. As an example, when the read data ER_DA
including 120 bits includes 8 pieces of 15-bit data imple-
mented in the floating-point method, 1 bit may be added to
a mantissa part for each piece of the 15-bit data. As another
example, when the read data ER_DA including 120 bits
includes 8 pieces of 15-bit data implemented in the floating-
point method, 1 bit included in an exponent part may be
added for each piece of the 15-bit data. In this embodiment,
the bits added to the read data ER_DA in the CRC logic
circuit 3040 may be set to ‘0’, but depending on embodi-
ments, the bits may be set to 1’ or set differently for each
piece of the data implemented in the floating-point method.

The storage region 3050 may receive the write data
EW_DA and the write fail check signal WFCS generated in
the CRC logic circuit 3040 when the write operation in the
operation mode is performed. The storage region 3050 may
store the write data EW_DA and the write fail check signal
WEFECS in the memory region accessed based on the control
of the operation control circuit 3010 when the write opera-
tion in the operation mode is performed. The storage region
3050 may apply the write data EW_DA and the write fail
check signal WFCS to the CRC logic circuit 3040 when the
read operation in the operation mode is performed. The
storage region 3050 may output the write data EW_DA and
the write fail check signal WFCS stored in the memory
region accessed based on the control of the operation control
circuit 3010 as the read data ER_DA and the read fail check
signal RFCS when the read operation in the operation mode
is performed. The storage region 3050 may include a plu-
rality of memory regions implemented as banks.

The global buffer 3060 may store the buffer data B_DA.
The global buffer 3060 may receive and store the buffer data
B_DA input through the data input/output circuit 3030
through the data line 3020. The global buffer 3060 may
apply the buffer data B_DA to the MAC operator 3070
through the data line 3020 when a MAC arithmetic opera-
tion is performed.

The MAC operator 3070 may receive the fail flag signal
FFG and the converted data C_DA from the CRC logic
circuit 3040 and may receive the buffer data B_DA from the
global buffer 3060 when the MAC arithmetic operation is
performed. In this embodiment, the converted data C_DA
may be weight data applied to a neural network circuit, and
the buffer data B_DA may be vector data applied to the
neural network circuit. According to embodiments, the con-
verted data C_DA may be vector data applied to the neural
network circuit, and the buffer data B_DA may be weight
data applied to the neural network circuit. The MAC opera-
tor 3070 may perform MAC arithmetic operations including
multiplication and addition operations on the converted data
C_DA and the buffer data B_DA, based on the fail flag
signal FFG to generate MAC operation result data MRD.
The MAC operator 3070 may be set so that at least one of
the multiplication and addition operations on the converted
data C_DA and the buffer data B_DA when a defect is
included in the read data ER_DA and the fail flag signal FFG
is activated. The MAC operator 3070 may output the MAC
operation result MRD to the data input/output circuit 3030
through the data line 3020.

FIG. 43 is a block diagram illustrating a configuration
according to an example of the CRC logic circuit 3040.
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Referring to FIG. 43, the CRC logic circuit 3040 may
include a write data generator (EW_DA GEN) 3100, a write
fail check signal generator (WFCS GEN) 3110, a fail flag
signal generator (FFG GEN) 3120, and a converted data
generator (C_DA GEN) 3130.

The write data generator 3100 may remove some of bits
included in write input data W_DA and generate write data
EW_DA, based on the remaining bits when a write operation
in an operation mode is performed. As an example, the write
data generator 3100 may remove 8 bits from the write input
data W_DA including 128 bits and generate the write data
EW_DA from the write input data W_DA including 120 bits.

The write fail check signal generator 3110 may receive
the write data EW_DA from the write data generator 3100
when the write operation in the operation mode is per-
formed. The write fail check signal generator 3110 may
encode the write data EW_DA to generate a write fail check
signal WFCS when the write operation in the operation
mode is performed. As an example, the write fail check
signal generator 3110 may encode the write data EW_DA
including 120 bits to generate the write fail check signal
WFCS including 8 bits when the write operation in the
operation mode is performed.

The fail flag signal generator 3120 may decode read data
ER_DA and read fail check signal RFCS to generate the fail
flag signal FFG when a read operation in an operation mode
is performed. As an example, the fail flag signal generator
3120 may decode the read data ER_DA including 120 bits
and the read fail check signal RFCS including 8 bits to
generate the fail flag signal FFG including 8 bits when the
read operation in the operation mode is performed.

The converted data generator 3130 may add preset bits to
the read data ER_DA to generate converted data C_DA
when the read operation in the operation mode is performed.
As an example, the converted data generator 3130 may
generate the converted data C_DA including 128 bits gen-
erated by adding 8 bits to the read data ER_DA including 20
bits.

The operation of generating the write data EW_DA from
the write input data W_DA in the write data generator 3100
illustrated in FIG. 43 and the operation of generating the
write fail check signal WFCS in the write fail check signal
generator 3110 illustrated in FIG. 43 will be described with
reference to FIGS. 44 to 47.

As illustrated in FIG. 44, the write data generator 3100
may remove 1 bit from a mantissa part of the write input data
W_DA including 16 bits implemented in a floating-point
method in which 1 bit is allocated to a sign part, 8 bits are
allocated to an exponent part, and 7 bits are allocated to a
mantissa part to generate the write data EW_DA including
15 bits implemented in the floating-point method in which 1
bit is allocated to the sign part, 8 bits are allocated to the
exponent part, and 6 bits are allocated to the mantissa part.
The write parity generator 3110 may apply 1 bit of the bits
included in the write fail check signal WFCS generated by
encoding the write data EW_DA to the storage region 3050
together with the write data EW_DA including 15 bits.

As illustrated in FIG. 45, the write data generator 3100
may remove 1 bit from the mantissa part of the write input
data W_DA including 16 bits implemented in the floating-
point method in which 1 bit is allocated to the sign part, 8
bits are allocated to the exponent part, and 7 bits are
allocated to the mantissa part to generate the write data
EW_DA including 15 bits implemented in the floating-point
method in which 1 bit is allocated to the sign part, 8 bits are
allocated to the exponent part, and 6 bits are allocated to the
mantissa part. The bit combination of the 6 bits allocated to
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the mantissa part included in the write data EW_DA may be
adjusted according to the removed 1 bit of the mantissa part.
As an example, when the removed bit of the mantissa part
is ‘0’, the bit combination of the 6 bits allocated to the
mantissa part might not be adjusted, but when the removed
bit of the mantissa part is ‘1°, the bit combination of the 6
bits allocated to the mantissa part may be adjusted by
rounding methods. The write parity generator 3110 may
apply 1 bit of the bits included in the write fail check signal
WEFCS generated by encoding the write data EW_DA to the
storage region 3050 together with the write data EW_DA
including 15 bits.

As illustrated in FIG. 46, the write data generator 3100
may remove 1 bit from the exponent part of the write input
data W_DA including 16 bits implemented in a floating-
point method in which 1 bit is allocated to a sign part, 8 bits
are allocated to an exponent part, and 7 bits are allocated to
a mantissa part to generate the write data EW_DA including
15 bits implemented in the floating-point method in which 1
bit is allocated to the sign part, 7 bits are allocated to the
exponent part, and 7 bits are allocated to the mantissa part.
The write parity generator 3110 may apply 1 bit of the bits
included in the write fail check signal WFCS generated by
encoding the write data EW_DA to the storage region 3050
together with the write data EW_DA including 15 bits.

As illustrated in FIG. 47, the write data generator 3100
may remove 1 bit from an exponent part of the write input
data W_DA including 16 bits implemented in the floating-
point method in which 1 bit is allocated to a sign part, 8 bits
are allocated to the exponent part, and 7 bits are allocated to
a mantissa part to generate the write data EW_DA including
15 bits implemented in the floating-point method in which 1
bit is allocated to the sign part, 7 bits are allocated to the
exponent part, and 7 bits are allocated to the mantissa part.
The bit combination of the 7 bits allocated to the exponent
part included in the write data EW_DA may be adjusted
according to the removed bit of the exponent part. As an
example, when the 1 bit removed from the exponent part is
the most significant bit and is ‘1°, the bit combination of the
7 bits allocated to the exponent part may be adjusted to a
preset bit combination, ‘1111111°. The preset bit combina-
tion to which the bit combination allocated to the exponent
part is adjusted may be variously set according to embodi-
ments. The write parity generator 3110 may apply 1 bit of
the bits included in the write fail check signal WFCS
generated by encoding the write data EW_DA to the storage
region 3050 together with the write data EW_DA including
15 bits.

FIG. 48 is a block diagram illustrating a configuration of
a converted data generator 3130_1 according to an example
of the converted data generator 3130. Referring to FIG. 48,
the converted data generator 31301 may receive read data
ER_DA including 8 pieces of 15-bit data to generate con-
verted data C_DA including 8 pieces of 16-bit data. The
converted data generator 3130_1 may add 1 bit to first data
CR_DA<16:2> of the read data ER_DA including 15 bits to
generate first data C_DA<16:1> of the converted data C_DA
including 16 bits. In addition, the converted data generator
3130_1 may add 1 bit to second data CR_DA<32:18> of the
read data ER_DA including 15 bits to generate second data
C_DA<32:17> of the converted data C_DA including 16
bits. In this manner, the converted data generator 31301 may
add 1 bit to eighth data CR_DA<128:114> of the read data
ER_DA including 15 bits to generate eighth data
C_DA<128:113> of the converted data C_DA including 16
bits. As an example, in each piece of the data from the first
data CR_DA<16:2> of the read data ER_DA implemented
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in a floating-point method to the eighth data CR_DA<128:
114> of the read data ER_DA, 1 bit may be allocated to a
sign part, 8 bits may be allocated to an exponent part, and 6
bits may be allocated to a mantissa part. As another example,
in each piece of the data from the first data CR_DA<16:2>
of the read data ER_DA implemented in the floating-point
method to the eighth data CR_DA<128:114> of the read
data ER_DA, 1 bit may be allocated to the sign part, 7 bits
may be allocated to the exponent part, and 7 bits may be
allocated to the mantissa part. As an example, in each piece
of the data from the first data C_DA<16:1> of the converted
data C_DA implemented in the floating-point method to the
eighth data C_DA<128:113> of the converted data C_DA, 1
bit may be allocated to the sign part, 8 bits may be allocated
to the exponent part, and 7 bits may be allocated to the
mantissa part.

An operation of generating the converted data C_DA from
the read data ER_DA in the converted data generator 3130_1
will be described with reference to FIGS. 49 and 50.

As illustrated in FIG. 49, the converted data generator
3130_1 may add 1 bit to read data ER_DA including 15 bits
implemented in a floating-point method in which 1 bit is
allocated to a sign part, 8 bits are allocated to an exponent
part, and 6 bits are allocated to a mantissa part to generate
converted data C_DA including 16 bits implemented in the
floating-point method in which 1 bit is allocated to the sign
part, 8 bits are allocated to the exponent part, and 7 bits are
allocated to the mantissa part.

As illustrated in FIG. 50, the converted data generator
31301 may add 1 bit to the read data ER_DA including 15
bits implemented in the floating-point method in which 1 bit
is allocated to the sign part, 7 bits are allocated to the
exponent part, and 6 bits are allocated to the mantissa part
to generate converted data C_DA including 16 bits imple-
mented in the floating-point method in which 1 bit is
allocated to the sign part, 8 bits are allocated to the exponent
part, and 7 bits are allocated to the mantissa part.

FIG. 51 is a block diagram illustrating a configuration
according to an example of the MAC operator 3070 included
in the PIM device illustrated in FIG. 42. Referring to FIG.
51, the MAC operator 3070 may include a multiplying block
3210, and an adding block 3220. The multiplying block
3210 may perform a multiplication operation on converted
data C_DA and buffer data B_DA, based on the fail flag
signal FFG to generate multiplication result data MP_D. The
multiplying block 3210 may perform the multiplication
operation for the converted data C_DA and the buffer data
B_DA to generate the multiplication result data MP_D when
an inactivated fail flag signal FFG is input because a defect
is not included in the read data ER_DA. The multiplying
block 3210 may stop the multiplication operation for the
converted data C_DA and the buffer data B_DA when an
activated fail flag signal FFG is input because a defect is
included in the read data ER_DA. The adding block 3220
may perform an addition operation for the multiplication
result data MP_D, based on the fail flag signal FFG to
generate MAC operation result data MRD. The adding block
3220 may perform the addition operation for the multipli-
cation result data MP_D to generate the MAC operation
result data MRD when an inactivated fail flag signal FFG is
input because a defect is not included in the read data
ER_DA. The adding block 3220 may stop the addition
operation for the multiplication result data MP_D when an
activated fail flag signal FFG is input because a defect is
included in the read data ER_DA.

The PIM device 3000 according to another embodiment
of the present disclosure described above may convert some
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of'the bits included in data into fail check signals to store the
same in the storage region 3050, and use the data and the fail
check signal stored in the storage region 3050 to correct the
data used in the MAC arithmetic operation, thereby improv-
ing the MAC arithmetic operation accuracy.

FIG. 52 is a block diagram illustrating a configuration of
a PIM device 4000 according to still yet another embodi-
ment of the present disclosure. Referring to FIG. 52, the PIM
device 4000 may include an operation control circuit (OP
CONT CTR) 4010, a data line 4020, a data input/output line
(DA T/O) 4030, a cyclic redundancy checking (CRC) logic
circuit 4040, a storage region 4050, and a MAC operator
4070.

The operation control circuit 4010 may control the CRC
logic circuit 4040 and the storage region 4050 when a write
operation in an operation mode is performed. The operation
control circuit 4010 may control the CRC logic circuit 4040
so that first write data EW_DAI1, a first write fail check
signal WFCS1, second write data EW_DA2, and a second
write fail chick signal WFCS are generated from first write
input data W_DA1 and second write input data W_DA2
when the write operation in the operation mode is per-
formed. The operation control circuit 4010 may control the
storage region 3050 to receive and store the first write data
EW_DAI1, the first write fail check signal WFCS1, the
second write data EW_DA2, and the second write fail chick
signal WFCS generated in the CRC logic circuit 4040 when
the write operation in the operation mode is performed. The
operation control circuit 4010 may include a command
decoder (not illustrated) that decodes a command CMD, an
address decoder (not illustrated) that decodes an address
ADD, and input/output control circuits (not illustrated) that
control data to be input/output in/from the storage region
4050.

The operation control circuit 4010 may control the CRC
logic circuit 4040 and the storage region 4050 when a read
operation in an operation is performed. The operation con-
trol circuit 4010 may control the storage region 4050 so that
first read data ER_DA1, a first read fail check signal RFCS1,
second read data ER_DAI1, and a second read fail check
signal RFCS2 are output when the read operation in the
operation is performed. The operation control circuit 4010
may control the CRC logic circuit 4040 so that a first fail flag
signal FFG1, a second fail flag signal FFG2, first converted
data C_DA1, and second converted data C_DA2 are gen-
erated from the first read data ER_DA1, the first read fail
check signal RFCS1, the second read data ER_DA1, and the
second read fail check signal RFCS2 when the read opera-
tion in the operation is performed.

The operation control circuit 4010 may control the MAC
operator 4070 when a MAC arithmetic operation in an
operation mode is performed. The operation control circuit
4010 may control the MAC operator 4070 so that MAC
arithmetic operations for the first converted data C_DA1 and
the second converted data C_DA2 are performed when the
MAC arithmetic operation in the operation mode is per-
formed.

The CRC logic circuit 4040 may receive the first write
input data W_DA1 and the second write input data W_DA2
input through the data input/output circuit 4030 through the
data line 4020 when the write operation in the operation
mode is performed. The CRC logic circuit 4040 may remove
some of the bits included in the first write input data W_DA1
and generate the first write data EW_DAI1, based on the
remaining bits when the write operation in the operation
mode is performed. As an example, the CRC logic circuit
4040 may remove 8 bits from the first write input data
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W_DAL1 including 128 bits and generate the first write data
EW_DAT1 from the first write input data W_DA1 including
the remaining 120 bits. The CRC logic circuit 4040 may
remove some of the bits included in the second write input
data W_DA2 and generate the second write data EW_DA2,
based on the remaining bits when the write operation in the
operation mode is performed. As an example, the CRC logic
circuit 4040 may remove 8 bits from the second write input
data W_DAZ2 including 128 bits and generate the second
write data EW_DA2 from the second write input data
W_DA2 including the remaining 120 bits.

The CRC logic circuit 4040 may generate the first write
fail check signal WFCS1 and the second write fail check
signal WFCS2, based on the first write data EW_DA1 and
the second write data EW_DA2 when the write operation in
the operation mode is performed. The CRC logic circuit
4040 may encode the first write data EW_DA1 to generate
the first write fail check signal WFCS1. The CRC logic
circuit 4040 may encode the second write data EW_DAZ2 to
generate the second write fail check signal WFCS2. Cyclic
redundancy check (CRC) may be used to encode the first
write data EW_DAI1 to generate the first write fail check
signal WFCS1 and to encode the second write data
EW_DA2 to generate the second write fail check signal
WFCS2. As an example, the CRC logic circuit 4040 may
encode the first write data EW_DA1 and the second write
data EW_DAZ2 including 120 bits to generate the first write
fail check signal WFCS1 and second write fail check signal
WFCS2 including 8 bits, respectively, when the write opera-
tion in the operation mode is performed. The CRC logic
circuit 4040 may apply the first write data EW_DAI, the
second write data EW_DAZ2, the first write fail check signal
WFCS1, and the second write fail check signal WFCS2 to
the storage region 4050, based on the control of the opera-
tion control circuit 4010 when the write operation in the
operation mode is performed.

The CRC logic circuit 4040 may receive first read data
ER_DA1, a first read fail check signal RFCS1, second read
dataER_DAZ2, and a second read fail check signal RFCS2
from the storage region 4050 when a read operation in an
operation mode is performed. The first read data ER_DA1
may be the same data as the first write data EW_DA1 stored
when the write operation in the operation mode is per-
formed, and the second read data ER_DA2 may be the same
data as the second write data EW_DA2 stored when the
write operation in the operation mode is performed. The first
read fail check signal RFCS1 may be the same signal as the
first write fail check signal WFCS1 stored when the write
operation in the operation mode is performed, and the
second read fail check signal RFCS2 may be the same signal
as the second write fail check signal WFCS2 stored when the
write operation in the operation mode is performed.

The CRC logic circuit 4040 may generate a first fail flag
signal FFG1, a second fail flag signal FFG2, first converted
data C_DAI, and second converted data C_DA2, based on
the first read data ER_DAI, the first read fail check signal
RFCS1, the second read data ER_DA2, and the second read
fail check signal RFCS2 when the read operation in the
operation mode is performed. The CRC logic circuit 4040
may decode the first read data ER_DA1 and the first read fall
check signal RFCS1 to generate the first fail flag signal
FFG1. Cyclic redundancy checking (CRC) may be used to
decode the first read data ER_DA1 and the first read fail
check signal RFCS1 to generate the first fail flag signal
FFG1 in the CRC logic circuit 4040. As an example, the
CRC logic circuit 4040 may decode the first read data
ER_DAT1 including 120 bits and the first read fail check
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signal RFCS1 including 8 bits to generate the first fail flag
signal FFG1 including 8 bits when the read operation in the
operation mode is performed. The first fail flag signal FFG1
may be activated to express that a defect is included in the
first read data ER_DAT1 in a case that the remainder is not ‘0’
when the first read data ER_DA1 and the first read fail check
signal RFCS1 are divided by a divisor code. The CRC logic
circuit 4040 may decode the second read data ER_DA2 and
the second read fail check signal RFCS2 to generate the
second fail flag signal FFG2. Cyclic redundancy checking
(CRC) may be used to decode the second read data ER_DA2
and the second read fail check signal RFCS2 to generate the
second fail flag signal FFG2 in the CRC logic circuit 4040.

The CRC logic circuit 4040 may generate the first con-
verted data C_DA1 and the second converted data C_DA2
from the first read data ER_DA1 and the second read data
ER_DA2 when the read operation in the operation mode is
performed. The CRC logic circuit 4040 may add preset bits
to the first read data ER_DA1 to generate the first converted
data C_DA1 when the read operation in the operation mode
is performed. As an example, the CRC logic circuit 4040
may generate the first converted data C_DAT1 including 128
bits generated by adding 8 bits to the first read data ER_DA1
including 120 bits. The CRC logic circuit 4040 may add
preset bits to the second read data ER_DA2 to generate the
second converted data C_DA2 when the read operation in
the operation mode is performed. As an example, the CRC
logic circuit 4040 may generate the second converted data
C_DA2 including 128 bits generated by adding 8 bits to the
second read data ER_DA2 including 120 bits.

The storage region 4050 may receive the first write data
EW_DAI, the second write data EW_DA2, the first write
fail check signal WFCS1, and the second write fail check
signal WFCS2 generated in the CRC logic circuit 4040 when
the write operation in the operation mode is performed. The
storage region 4050 may store the first write data EW_DAI1,
the second write data EW_DAZ2, the first write fail check
signal WFCS1, and the second write fail check signal
WFCS2 in a memory region accessed based on the control
of the operation control circuit 4010 when the write opera-
tion in the operation mode is performed. The storage region
4050 may apply the first read data ER_DAT1, the second read
data ER_DAZ2, the first read fail check signal RFCS1, and
the second read fail check signal RFCS2 to the CRC logic
circuit 4040 when the read operation in the operation mode
is performed. The storage region 4050 may output the first
write data EW_DAI, the second write data EW_DA2, the
first write fail check signal WFCS1, and the second write fail
check signal WFCS2 stored in the memory region accessed
based on the control of the operation control circuit 4010 as
the first read data ER_DAI, the second read data ER_DA2,
the first read fail check signal RFCS1, and the second read
fail check signal RFCS2 when the read operation in the
operation mode is performed. The storage region 4050 may
include a plurality of memory regions implemented as
banks.

The MAC operator 4070 may receive the first fail flag
signal FFG1, the second fail flag signal FFG2, the first
converted data C_DA1, and the second converted data
C_DA2 from the CRC logic circuit 4040 when the MAC
arithmetic operation is performed. In this embodiment, the
first converted data C_DA1 may be weight data applied to
a neural network circuit, and the second converted data
C_DA2 may be vector data applied to the neural network
circuit. According to embodiments, the first converted data
C_DA1 may be vector data applied to the neural network
circuit, and the second converted data C_DA2 may be
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weight data applied to the neural network circuit. The MAC
operator 4070 may perform MAC arithmetic operations
including multiplication and addition operations for the first
converted data C_DA1 and the second converted data
C_DA2, based on the first fail flag signal FFG1 and the
second fail flag signal FFG2 to generate the MAC operation
result data MRD. The MAC operator 4070 may be set so that
at least one of the multiplication and addition operations for
the first converted data C_DA1 and the second converted
data C_DA2 is not operated when the first fail flag signal
FFG1 is activated because a defect is included in the first
read data ER_DAI1 or the second fail flag signal FFG2 is
activated because a defect is included in the second read data
ER_DA2. The MAC operator 4070 may output the MAC
operation result MRD to the data input/output circuit 4030
through the data line 4020.

FIG. 53 is a block diagram illustrating a configuration
according to an example of the CRC logic circuit 4040.
Referring to FIG. 53, the CRC logic circuit 4040 may
include a first CRC logic circuit 4041 and a second CRC
logic circuit 4043. The first CRC logic circuit 4041 may
include a first write data generator (EW_DA GEN(1)) 4100,
a first write fail check signal generator (WFCS GEN(1))
4110, a first fail flag signal generator (FFG GEN(1)) 4120,
and a first converted data generator (C_DA GEN(1)) 4130.
The second CRC logic circuit 4043 may include a second
write data generator (EW_DA GEN(2)) 4200, a second write
fail check signal generator (WFCS GEN(2)) 4210, a second
fail flag signal generator (FFG GEN(2)) 4220, and a second
converted data generator (C_DA GEN(2)) 4230.

The first write data generator 4100 may remove some of
bits included in first write input data W_DA1 and generate
first write data EW_DAI1, based on the remaining bits when
a write operation in an operation mode is performed. As an
example, the first write data generator 4100 may remove 8
bits from the first write input data W_DAI1 including 128
bits and generate the first write data EW_DA1 from the first
write input data W_DAT1 including 120 bits.

The first write fail check signal generator 4110 may
receive the first write data EW_DA1 from the first write data
generator 4100 when the write operation in the operation
mode is performed. The first write fail check signal genera-
tor 4110 may encode the first write data EW_DA1 to
generate a first write fail check signal WFCS1 when the
write operation in the operation mode is performed. As an
example, the first write fail check signal generator 4110 may
encode the first write data EW_DAI1 including 120 bits to
generate the first write fail check signal WFCS1 including 8
bits when the write operation in the operation mode is
performed.

The first fail flag signal generator 4120 may decode first
read data ER_DA1 and first read fail check signal RFCS1 to
generate first fail flag signal FFG1 when a read operation in
an operation mode is performed. As an example, the first fail
flag signal generator 4120 may decode the first read data
ER_DAT1 including 120 bits and the first read fail check
signal RFCS1 including 8 bits to generate the first fail flag
signal FFG1 including 8 bits when the read operation in the
operation mode is performed.

The first converted data generator 4130 may add preset
bits to the first read data ER_DA1 to generate first converted
data C_DA1 when the read operation in the operation mode
is performed. As an example, the first converted data gen-
erator 4130 may generate the first converted data C_DA1
including 128 bits generated by adding 8 bits to the first read
data ER_DA1 including 20 bits.
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The second write data generator 4200 may remove some
of bits included in second write input data W_DA2 and
generate second write data EW_DAZ2, based on the remain-
ing bits when the write operation in the operation mode is
performed. As an example, the second write data generator
4200 may remove 8 bits from the second write input data
W_DA2 including 128 bits and generate the second write
data EW_DA2 from the second write input data W_DA2
including the remaining 120 bits.

The second write fail check signal generator 4210 may
receive the second write data EW_DA2 from the second
write data generator 4200 when the write operation in the
operation mode is performed. The second write fail check
signal generator 4210 may encode the second write data
EW_DAZ2 to generate second write fail check signal WFCS2
when the write operation in the operation mode is per-
formed. As an example, the second write fail check signal
generator 4210 may encode the second write data EW_DA2
including 120 bits to generate the second write fail check
signal WFCS2 including 8 bits when the write operation in
the operation mode is performed.

The second fail flag signal generator 4220 may decode the
second read data ER_DA2 and the second read fail check
signal RFCS2 to generate second fail flag signal FFG2 when
the read operation in the operation mode is performed. As an
example, the second fail flag signal generator 4220 may
decode the second read data ER_DA2 including 120 bits and
the second read fail check signal RFCS2 including 8 bits to
generate the second fail flag signal FFG2 including 8 bits
when the read operation in the operation mode is performed.

The second converted data generator 4230 may add preset
bits to the second read data ER_DA2 to generate second
converted data C_DA2 when the read operation in the
operation mode is performed. As an example, the second
converted data generator 4230 may generate the second
converted data C_DA2 including 128 bits generated by
adding 8 bits to the second read data ER_DA2 including 20
bits.

FIG. 54 is a block diagram illustrating a configuration
according to an example of the MAC operator 4070 included
in the PIM device illustrated in FIG. 52. Referring to FIG.
54, the MAC operator 4070 may include a multiplying block
4210 and an adding block 4220. The multiplying block 4210
may perform a multiplication operation on the first con-
verted data C_DA1 and the second converted data C_DA2,
based on the first fail flag signal FFG1 and the second fail
flag signal FFG2 to generate multiplication result data
MP_D. The multiplying block 4210 may perform a multi-
plication operation for the first converted data C_DA1 and
the second converted data C_DA2 to generate the multipli-
cation result data MP_D when an inactivated first fail flag
signal FFG1 is input because a defect is not included in the
first read data ER_DA1 and an inactivated second fail flag
signal FFG2 is input because a defect is not included in the
second read data ER_DA2. The multiplying block 4210 may
stop the multiplication operation for the first converted data
C_DA1 and the second converted data C_DA2 when an
activated first fail flag signal FFG1 is input because a defect
is included in the first read data ER_DA1 or an activated
second fail flag signal FFG2 is input because a defect is
included in the second read data ER_DA2. The adding block
4220 may perform an addition operation for the multiplica-
tion result data MP_D, based on the first fail flag signal
FFG1 and the second fail flag signal FFG2 to generate MAC
operation result data MRD. The adding block 4220 may
perform an addition operation for the multiplication result
data MP_D to generate the MAC operation result data MRD



US 12,081,237 B2

49

when an inactivated first fail flag signal FFG1 is input
because a defect is not included in the first read data
ER_DAT1 and an inactivated second fail flag signal FFG2 is
input because a defect is not included in the second read data
ER_DA2. The adding block 4220 may stop the addition
operation for the multiplication result data MP_D when an
activated first fail flag signal FFG1 is input because a defect
is included in the first read data ER_DA1 or an activated
second fail flag signal FFG2 is input because a defect is
included in the second read data ER_DA2.

The PIM device 4000 according to another embodiment
of the present disclosure described above converts some of
the bits included in the data into fail check signals to store
the same in the storage region 4050, and corrects an error of
the data used in the MAC arithmetic operation by using the
data and the fail check signal stored in the storage region
4050, thereby improving the accuracy of the MAC arithme-
tic operation.

The concepts have been disclosed in conjunction with
some embodiments as described above. Those skilled in the
art will appreciate that various modifications, additions and
substitutions are possible, without departing from the scope
and spirit of the present disclosure. Accordingly, the
embodiments disclosed in the present specification should
be considered from not a restrictive standpoint but an
illustrative standpoint. The scope of the concepts is not
limited to the above descriptions but defined by the accom-
panying claims, and all of distinctive features in the equiva-
lent scope should be construed as being included in the
concepts.

The embodiments of the disclosed technology have been
disclosed above for illustrative purposes. Those of ordinary
skill in the art will appreciate that various modifications,
additions, and substitutions are possible. While this patent
document contains many specifics, these should not be
construed as limitations on the scope of what may be
claimed, but rather as descriptions of features that may be
specific to particular embodiments. Certain features that are
described in this patent document in the context of separate
embodiments can also be implemented in combination in a
single embodiment. Conversely, various features that are
described in the context of a single embodiment can also be
implemented in multiple embodiments separately or in any
suitable subcombination. Moreover, although features may
be described above as acting in certain combinations and
even initially claimed as such, one or more features from a
claimed combination can in some cases be excised from the
combination, and the claimed combination may be directed
to a subcombination or variation of a subcombination.

What is claimed is:

1. A processing-in-memory (PIM) device comprising:

an error correction code (ECC) logic circuit configured to
generate write data and write parity from write input
data when a write operation in an operation mode is
performed, and generate converted data from read data
and read parity when a read operation in the operation
mode is performed;

a global buffer configured to store buffer data; and

a multiplication and accumulation (MAC) operator con-
figured to receive the buffer data from the global buffer
through a data line and receive the converted da ta
fromthe ECC logic circuit to perform a MAC arithme-
tic operation with the converted data and the buffer data
to generate MAC operation result data,

wherein the ECC logic circuit removes one or more bits
included in the write input data and generates the write
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data, based on the remaining bits when the write
operation in the operation mode is performed.

2. The PIM device of claim 1, wherein the ECC logic
circuit receives the write input data input through a data
input/output circuit when the write operation in the opera-
tion mode is performed through the data line.

3. The PIM device of claim 1, wherein the ECC logic
circuit removes at least one bit from the bits included in a
mantissa part of the write input data when the write input
data is implemented in a floating-point method and gener-
ates the write data from the write input data having the
mantissa part including the remaining bits, when the write
operation in the operation mode is performed.

4. The PIM device of claim 1, wherein the ECC logic
circuit removes at least one bit from the bits included in the
mantissa part of the write input data when the write input
data is implemented in a floating-point method, the bit
combination of the remaining bits is adjusted by rounding
methods according to the removed bit, and the write data is
generated from the write input data having the mantissa part
including the bits with a bit combination that has been
adjusted, when the write operation in the operation mode is
performed.

5. The PIM device of claim 1, wherein the ECC logic
circuit removes at least one bit from the bits included in an
exponent part of the write input data when the write input
data is implemented in the floating-point method, and gen-
erates the write data from the write input data having the
exponent including the remaining bits, when the write
operation in the operation mode is performed.

6. The PIM device of claim 1, wherein the ECC logic
circuit removes at least one bit from the bits included in the
exponent part of the write input data when the write input
data is implemented in the floating-point method, the bit
combination of the remaining bits is adjusted to a preset bit
combination according to the removed bit, and the write data
is generated from the write input data having the exponent
part including the bits with a bit combination that has been
adjusted, when the write operation in the operation mode is
performed.

7. The PIM device of claim 1, wherein the ECC logic
circuit encodes the write data to generate the write parity
when the write operation in the operation mode is per-
formed.

8. The PIM device of claim 7, wherein the ECC logic
circuit encodes the write data, based on a Hamming code to
generate the write parity.

9. The PIM device of claim 1, wherein the ECC logic
circuit decodes the read data and the read parity to generate
syndrome when the read operation in the operation mode is
performed.

10. The PIM device of claim 9, wherein the ECC logic
circuit encodes the read data and the read parity, based on a
Hamming code to generate the syndrome.

11. The PIM device of claim 9, wherein the ECC logic
circuit corrects an error included in the read data, based on
the syndrome to generate corrected read data when the read
operation in the operation mode is performed.

12. The PIM device of claim 11, wherein the ECC logic
circuit adds preset bits to the corrected read data to generate
the converted data when the read operation in the operation
mode is performed.

13. The PIM device of claim 12, wherein the ECC logic
circuit adds the preset bits to a mantissa part of the corrected
read data to generate the converted data when the corrected
read data is implemented in the floating-point method.
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14. The PIM device of claim 12, wherein the ECC logic
circuit adds the preset bits to an exponent part of the
corrected read data to generate the converted data when the
corrected read data is implemented in the floating-point
method.

15. The PIM device of claim 1, wherein the ECC logic
circuit applies the write data and the write parity to the
storage region when the write operation in the operation
mode is performed and receives the read data and the read
parity when the read operation in the operation mode is
performed.

16. The PIM device of claim 15, wherein the storage
region outputs the write data and the write parity as the read
data and the read parity stored when the write operation in
the operation mode is performed, when the read operation in
the operation mode is performed.

17. The PIM device of claim 1, wherein the ECC logic
circuit includes:

a write data generator configured to generate the write
data from the write input data when the write operation
in the operation mode is performed; and

a write parity generator configured to encode the write
data to generate the write parity when the write opera-
tion in the operation mode is performed.

18. The PIM device of claim 1, wherein the ECC logic

circuit includes:

a syndrome generator configured to decode the read data
and the read parity to generate syndrome when the read
operation in the operation mode is performed;

a corrected read data generator configured to correct an
error included in the read data, based on the syndrome
to generate corrected read data when the read operation
in the operation mode is performed; and

a converted data generator configured to generate the
converted data, based on the corrected read data when
the read operation in the operation mode is performed.
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19. The PIM device of claim 1, wherein the MAC
operator performs MAC arithmetic operations on the con-
verted data, which is weight data applied to a neural network
circuit and the buffer data, which is vector data applied to the
neural network circuit.

20. A processing-in-memory (PIM) device comprising:

a storage region configured to receive and store write data

and write parity when a write operation in an operation
mode is performed and output read data and read parity
when a read operation in the operation mode is per-
formed; and

an error correction code (ECC) logic circuit configured to

generate the write data and the write parity from write
input data when the write operation in the operation
mode is performed and generate converted data for a
multiplication and accumulation (MAC) arithmetic
operation from the read data and the read parity when
the read operation in the operation mode is performed,
wherein the ECC logic circuit removes one or more bits
included in the write input data and generates the write
data, based on the remaining bits when the write
operation in the operation mode is performed.

21. The PIM device of claim 20, wherein the storage
region outputs the write data and the write parity stored
when the write operation in the operation mode is performed
as the read data and the read parity when the read operation
in the operation mode is performed.

22. The PIM device of claim 20, wherein the ECC logic
circuit generates the converted data, which is weight data
applied to a neural network circuit.

23. The PIM device of claim 20, wherein the ECC logic
circuit generates the converted data, which is vector data
applied to a neural network circuit.
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