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(57) ABSTRACT

A system and methods for operating a multi-robot system
(MRS) are disclosed. In some aspects, each robot of the
MRS can: determine a local system regret state belief based
on local evidence obtained by the robot itself and social
evidence provided by other robots in a social community,
determine a local system drift state belief based on the local
system regret state belief, determine a next action based on
the based on the local system regret state belief and the local
system drift state belief, and execute the next action. Local
system regret state belief is generally an estimation of a
system regret state for the MRS. Local system drift state
belief is generally an estimate of a system drift state for the
MRS.
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FIG. 1A
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FIG. 3
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FIG. 5
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Obtain local and social evidence L~ 802

Y

Transmit the local and/or social evidence o additional robots in the MRS L~ 804

h 4

Determine a local system regrat state belief based on local and social evidence |- 808

A4

Determine a local system drift state belief based on the local system regret state | 808
belief

A 4

Calculate a local opinion vector L~ 810

!

To Step 812

FIG. 8
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Transmit the local opinion vector to an edge server

- 812

Y

Determine a next action based on the local system drift state belief and the local
system regret state belief

- 814

Exscute the next action

L~ 816

FIG. 8 {cont.)
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RESILIENT MULTI-ROBOT SYSTEM WITH
SOCIAL LEARNING FOR SMART
FACTORIES

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of and priority
to U.S. Provisional Patent App. No. 63/362,235, filed Mar.
31, 2022, which is incorporated herein by reference in its
entirety.

BACKGROUND

[0002] Intelligent multi-robot systems (MRS) and multi-
agent systems (MAS)——collectively referred to herein as
MRSs—are a growing field of interest with respect to smart
manufacturing and smart factories. Intelligent MRSs can, for
example, meet desired characteristics in modern production,
such as high productivity, resource efficiency, flexibility,
agility, and sustainability. However, increasing reliance on
MRSs raises concerns about the robustness, resilience, and
security of smart factories. The goal of robustness is to
preserve system objective performance under stochastic
dynamics. The goal resilience, on top of robustness, is to
preserve system objective performance under abrupt distur-
bance from the environment or even inside the system.

SUMMARY

[0003] One implementation of the present disclosure is a
method of operating a first robot in a multi-robot system,
wherein the first robot and at least one additional robot of the
multi-robot system form a community in a social network.
The method generally includes: determining, by the first
robot, a local system regret state belief based on local
evidence obtained by the first robot and social evidence
provided by the at least one additional robot in the social
community, wherein the local system regret state belief is an
estimation of a system regret state for the multi-robot
system; determining, by the first robot, a local system drift
state belief based on the local system regret state belief,
wherein the local system drift state belief is an estimate of
a system drift state for the multi-robot system; determining,
by the first robot, a next action based on the based on the
local system regret state belief and the local system drift
state belief; and executing, by the first robot, the next action.
[0004] Another implementation of the present disclosure
is a control system for a first robot in a multi-robot system,
wherein the first robot and at least one additional robot of the
multi-robot system form a community in a social network.
The control system generally includes a processor and
memory having instructions stored thereon that, when
executed by the processor, cause the control system to:
determine a local system regret state belief based on local
evidence obtained by the first robot and social evidence
provided by the at least one additional robot in the social
community, wherein the local system regret state belief is an
estimation of a system regret state for the multi-robot
system; determine a local system drift state belief based on
the local system regret state belief, wherein the local system
drift state belief is an estimate of a system drift state for the
multi-robot system; determine a next action for the first
robot based on the based on the local system regret state
belief and the local system drift state belief; and control the
first robot to execute the next action.
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[0005] Yet another implementation of the present disclo-
sure is a non-transitory computer readable medium having
instructions stored thereon that, when executed by a proces-
sor, cause a device to: determine, for a first robot in a
multi-robot system, a local system regret state belief,
wherein the first robot and at least one additional robot of the
multi-robot system form a community in a social network,
wherein the local system regret state belief is determined
based on local evidence obtained by the first robot and social
evidence provided by the at least one additional robot in the
social community, and wherein the local system regret state
belief is an estimation of a system regret state for the
multi-robot system; determine, for the first robot, a local
system drift state belief based on the local system regret state
belief, wherein the local system drift state belief is an
estimate of a system drift state for the multi-robot system;
determine, for the first robot, a next action based on the
based on the local system regret state belief and the local
system drift state belief; and control the first robot to execute
the next action.

[0006] Additional advantages will be set forth in part in
the description which follows or may be learned by practice.
The advantages will be realized and attained by means of the
elements and combinations particularly pointed out in the
appended claims. It is to be understood that both the
foregoing general description and the following detailed
description are exemplary and explanatory only and are not
restrictive, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIGS. 1A and 1B are diagrams of an example
hybrid multi-robot system (MRS), according to some imple-
mentations.

[0008] FIG. 2 is adiagram of a cyber-social MRS network,
according to some implementations.

[0009] FIG. 3 is a diagram of cyber-physical interactions
over a dynamic physical network, according to some imple-
mentations.

[0010] FIGS. 4A and 4B are diagrams of an example
social-physical network, according to some implementa-
tions.

[0011] FIG. 5 is a diagram of an example Bayesian net-
work for cyber-physical interactions, according to some
implementations.

[0012] FIG. 6 is a diagram of a cascade machine learning
network for MRSs, according to some implementations.
[0013] FIG. 7 is a block diagram of an example MRS have
multiple individual robots that communicate with a remote
device, according to some implementations.

[0014] FIG. 8 is a flow chart of a process for controlling
or operating a robot in an MRS, according to some imple-
mentations.

[0015] FIG. 9 is a graph illustrating average quality factor,
@, on an example 30-robot MRS, according to some imple-
mentations.

[0016] FIG. 10 is a graph illustrating system yield over
time for an example 30-robot MRS, according to some
implementations.

[0017] FIG. 11 is a graph illustrating cumulative system
yield for an example 30-robot MRS, according to some
implementations.

[0018] FIG. 12 is a graph illustrating average quality
factor, ®@, on an examples 24- and 48-robot MRSs, according
to some implementations.



US 2023/0311312 Al

[0019] FIGS. 13A-13C are graphs illustrating consensus
levels in an example 30-robot MRS, according to some
implementations.

[0020] FIGS. 14A and 14B are graphs illustrating the
results of a resilience experiment regarding a number of
disturbances on an example MRS, according to some imple-
mentations.

[0021] FIGS. 15A and 15B are graphs illustrating the
results of a resilience experiment regarding a scale of
disturbances on an example MRS, according to some imple-
mentations.

[0022] Various objects, aspects, features, and advantages
of the disclosure will become more apparent and better
understood by referring to the detailed description taken in
conjunction with the accompanying drawings, in which like
reference characters identify corresponding elements
throughout. In the drawings, like reference numbers gener-
ally indicate identical, functionally similar, and/or structur-
ally similar elements.

DETAILED DESCRIPTION

[0023] Each production robot in an MRS is generally
dedicated to a specific manufacturing process and/or can be
reconfigured to collaborate with other production robots and
transportation robots to fulfill fabrication of a product,
device, or component. Edge computing, mobile computing,
Cyber-Physical Systems (CPS), Information Communica-
tion Technologies (ICT), Artificial Intelligence (AI), and
wireless communication and networks can endow MRS with
real-time configuration, heterogeneity and collaboration. In
some cases, MRS utilize an upper-level or higher-level
smart agent on a dedicated computing device for robot
scheduling and task assignments through hypergraphical
multi-robot task allocation (MRTA), which orchestrates the
reconfiguration of a heterogeneous, collaborative multi-
robot system to accommodate batch customized production.
Meanwhile, each robot can include an individual “smart
agent” configured to receive the task assignment, perform
reconfiguration, and then implement the new task assign-
ment and collaboration pattern with individual action deci-
sion-making. Benefitting from heterogeneity and collabora-
tively, each robot may collaborate with different robot teams
determined by MRTA to accommodate production demands
in wide range of type, number and deadlines. However, this
flexibility makes aligning the accuracy of task execution
challenging and increases the risk of product failure.

[0024] In some cases, a robot’s task execution may be
inaccurate due to environmental factors, such as unfinished
products, raw material condition, and other robots in the
collaboration team. Further, the robot itself can be impacted
by machine tool wear, overheating, actuator misalignment,
and the like. The accuracy of each individual robot generally
cannot be obtained by straightforward inspection or mea-
surements, since the regret caused by inaccurate actions
propagates due to measurement noise and can accumulate
along a production flow, which leads to partial observability.
Consequently, the resilience of an MRC in a smart factory
is challenged by external dynamics of variant production
demands, internal dynamics of frequent reconfiguration and
collaboration with varying robot teams, and partial observ-
ability due to absence of precise global references for
aligned task execution in flow-based manufacture. As men-
tioned above, a robot’s regret may also drift due to mis-
alignment of sensors and machine tools, machine tool wear
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etc., which is a predictive maintenance problem that chal-
lenges resilience in MRS s. Point failures may happen when
a small number of robots have significant misalignment
problems within their collaborative robot team and dedi-
cated cyberattack on wireless networks and robot applica-
tions can introduce wireless outage and abrupt inaccuracies.

[0025] To address these and other limitations with existing
MRS techniques and architectures, a system and methods
for controlling robots in an MRS are generally described
herein. In at least one aspect, a partially connected, wireless
social network is described that does not require frequent
topology switching. Notably, social learning in MRSs and
MAS:s, with distributed diffusion strategy, may result in
accelerated and/or higher efficiency learning, as messages
may be passed to multiple robots (but not all robots) and
each robot may be configured to adapt to social evidence and
perform estimation simultaneously. In addition, said social
learning can enable scalable wireless communication that
considers an MRSs spatial layout and allows for adaptations
to production flow changes without frequently switching
social network topology. With respect to faults, individual
robots can make soft opinion decisions while hard mainte-
nance decisions are made on a more robust edge server or
other computing device through consensus. In distributed
social learning, external and internal dynamics and/or partial
observability can be assumed, such that each robot may only
communicate with a small subset robots of the MRS.

[0026] Insome aspects, the system and methods described
herein may be realized via a systematic social multi-robot Al
network, which can implement and/or include: 1) Bayesian
network-based social learning to estimate system action
regret state, ii) a stochastic gradient descent (SGD) network
to track system regret drift state, and iii) distributed soft trust
decision and centralized maintenance decision to detect
failure robots caused by drifting or cyberattacks. In addition,
the system and methods described herein can include: i)
stochastic unified degree social network topology formula-
tion, ii) hierarchical reinforcement learning-based distrib-
uted alignment action decision, and iii) rule of thumb for
social network composite degree.

[0027] Insome aspects, the system and methods described
herein provide a systematic methodology for resilient MRS
in smart factories with stochastic social network formula-
tion, Bayesian network social learning, SGD for state track-
ing, computationally-cheap reinforcement learning (RL)
based action alignment, and consensus maintenance deci-
sion-making. Each robot in the MRS may execute and/or
include a uniform, cascade machine learning network. In
some implementations, the machine learning network of
each robot is trained to have different weights. Compared to
traditional artificial neural networks (ANNs), the cascade
machine learning network described herein manually
assigns connection and connection weights—making the
output nonlinear to the input—and doesn’t require back
propagation. Although some of the elements in the modeling
consider linear dynamics, the entire system—under the
architecture of MRTA orchestration, stochastic social net-
work, individual RL.-based action—is highly nonlinear.
Additionally, a SGD supervised by Bayesian social learning
generally does not require significant computational costs
and/or pre-collected data for offline training.
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Overview

[0028] Referring now to FIG. 1A, a diagram of an
example hybrid MRS 100 is shown, according to some
implementations. MRS 100 is, in particular, shown to
include a plurality of robots 102. In some implementations,
robots 102 are industrial robots used for manufacturing. For
example, each of robots 102 may be configured to perform
a task in a manufacturing and/or fabrication process. MRS
100 can also include various additional robots 104 that
perform task related or unrelated to the manufacturing
and/or fabrication process performed by robots 102. In FIG.
1, for example, MRS 100 includes a plurality of mobile
robots that can move around a factory or manufacturing
facility (e.g., to transport materials, components, and the like
between robots 102). While generally described herein as
industrial robots and/or robots used for manufacturing and/
or in factories, it should be appreciated that robots 102, 104
may be any type of robot or autonomous device. For
example, in some implementations, robots 102, 104 may be
vehicles with autonomous capabilities.

[0029] Generally, each of robots 102, 104 can include a
controller or other computing hardware that facilitates
operation of each respective robot as an artificial intelligence
(AI) agent, as described below in greater detail with respect
to FIG. 7. In some implementations, robots 102 and/or
robots 104 can communicate with (e.g., transfer data to
and/or receive data from) a remote computing device, shown
as an edge server 108. In some implementations, edge server
108 is configured to receive operational data, configuration
data, and other information from robots 102, 104, and can
additionally or alternatively send configuration data, main-
tenance instructions, scheduling information, and other
operational data to each of robots 102, 104. For example,
edge server 108 may send instructions to each of robots 102
to configure each robot for a respective task in a fabrication
process. In some implementations, communications
between robots 102, 104 and edge server 108 are facilitated
by (e.g., run through) a router or modem 106. In some such
implementations, robots 102, 104 can communicate wire-
lessly with edge server 108. In various implementations,
robots 102, 104 can communicate directly with edge server
108 (e.g., via a wired or wireless connection) or indirectly.
For example, in some implementations, robots 102, 104 can
communicate with edge server 108 via a network (e.g., a
local area network (LAN), the Internet, etc.).

[0030] FIG. 1B illustrates MRS 100 of FIG. 1A adapted
for two different production flows between different time
steps. As shown in the top half of FIG. 1B, MRS 100 is in
a first configuration where a ‘Material A’ and a ‘Material B’
are used to produce corresponding products, ‘Product A’ and
‘Product B’. Each of the materials is shown to flow a
different path through robots 102, thereby each being modi-
fied in a different manner by each of robots 102. FIG. 1B
also visually indicates an example accuracy of each robot. In
some implementations, the accuracy of each of robots 102
affects the quality of the respective completed product. As
such, inaccuracies in robots 102 can be compounded, pos-
sibly resulting in a substandard or insufficient end product.
[0031] After time step t,, MRS 100 is shown to change
configurations to produce ‘Product C’ and ‘Product D’ from
‘Material C’ and ‘Material D’. In some implementations,
edge server 108 initiates this change in configuration by
assigning new tasks to each of robots 102 in real-time or
near real-time, thereby modifying a production flow through
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MRS 100. It can also be seen from FIG. 1B that the accuracy
of each of the robots 102 has drifted slightly between time
steps. As discussed in greater detail below, robot accuracy
can drift for a number of reasons, such as wear on the robot
itself, changes in material quality, and the like. In some
implementations, robot accuracy is a tracked variable that is
assumed to drift/decline over time. In some such implemen-
tations, once a robot’s accuracy exceeds a threshold limit,
the robot may be flagged for maintenance and/or mainte-
nance may be automatically scheduled for the robot.

Physical Network

[0032] Referring now to FIG. 2, a diagram of an example
cyber-social MRS network is shown, according to some
implementations. Generally, MRSs (e.g., in smart factories)
can be envisioned as a dual-layer network having both a
physical layer and cyber layer. These two layers share robots
as vertices but are different in topologies, as illustrated in
FIG. 2.

[0033] In some implementations, a synchronized, hetero-
geneous, wireless networked multi-robot system (e.g., MRS
100) can be characterized by tuple (M, N, o, ,, €,, €,).
IN}= (N,,...,N ..., N, indicates that N type-m
production robots are spatially placed and top-aligned in the
m?” column dedicated to type-m manufacturing tasks, m=1,
.. ., M. Synchronization occurs with respect to timeslot t,
in which each robot column has multiplexing capability corn
from w=(w,, ..., ®,, ..., ®,,). This means that type-m
production robots are capable of executing corn type-m
tasks in parallel in a given timeslot. Transportation is gen-
erally restricted between two spatially-adjacent production
robot neighbors in columns, rows, or diagonally, with fixed
transportation energy €, €,, €, respectively.

[0034] Hence, the physical network at timeslot t, G
({R,.},E,z,") inherits production robot set {R,,,} as ver-
tices, characterized by tuple (m, n, w,,, TA?, ). Driven by a
hypergraphical MRTA, the task assignment (TA’, ) effec-
tive at timeslot t can be derived from a set of production
flows {p™} in the form of simple path in hypergraph given
by (1a), in which IEL’ fulfills the production demand L‘.
This also provides the edges of G/, e.g., a transportation path
given by (1b), for all IEL.

P =Ry Ry - - R (1a)

™.y

Eppiy ={ Ry oy Ry s -+ - >Ry R )} (1b)
[0035] Insome cases, pluralism can occur when one robot
is included or participates in multiple production flows,
which suggests that it collaborates with multiple teams of
robots. The top half of FIG. 2 shows two physical networks
in which reconfiguration take place in between time inter-
vals t; and t,. Reconfiguration, as referred to herein, gener-
ally refers to physical topology changes in the MRS. FIG. 2
further illustrates a product-type corresponding production
flow between robots, where arrows indicate task assign-
ments, transportation path, as well as straightforward pro-
ductivity and energy efficiency evaluation. In the example of
FIG. 2, pluralism can occur to R, , and R, , at t=t,, and R, ,
and R; ; at t=t,. Reconfigurability, multiplexing, and plural-
ism can enable flexible manufacturing while challenge pro-
ductivity and energy efficiency optimization, which is
resolved by real-time MRTA.
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Cyber (Social) Network

[0036] Consistent with partial observability and absence
of a global reference, the cyber network described herein,
denoted as G, is a generally a partially connected social
network that shares hypervertex set {R,, ,,} with the physical
network, G, As shown, G, generally includes wireless
Robot-to-Infrastructure-to-Robot (R212R) communications.
As briefly discussed above, a fully connected topology may
not be a suitable communication architecture for MRSs,
since each robot in an MRS can collaborate within a small
team. Therefore, redundant communications can increase
massage passing between robots, introducing delays and
making the system sensitive to wireless outage and cyber-
attacks. In contrast, a partially connected, unify-degree
social network can work well with the wireless communi-
cation and resources usage on robots and is scalable.

[0037] The topology control of a social network can be
generally viewed as a network sampling or representation
problem that benefits robustness and resilience in MRSs by
using a limited amount of wireless communication and robot
computing resources. Algorithm 1, below, includes a unify-
degree hypergraph sampling algorithm which outputs a
stochastic social network topology. In some implementa-
tions, this stochastic social network topology is imple-
mented by edge server 108 or another computing device.
Algorithm 1 iteratively considers each robot hypervertex,
R, ., as the root, taking robot-type differences with root
hypervertex as the depth of the search tree, and obtaining d
social neighbors of the root vertex from a random walk. k is
a ratio of the number intra-type hypervertices over the
inter-type hypervertex in the social network. The social
network degree is thus a composite: degree,_,,=(d, kd, (1-k)
d). This suggests that cyber network G, has degree of d,
and that each hypervertex has k, links to intra-type hyper-
vertices and (1-k)d) links to inter-type hypervertices.

Algorithm 1: Stochastic Social Network Formulation

Dats: Gy ({ Ry} By degree,, = (d, kd, (1 - )

1 Initialization:

2 Geys({Rpn}> Beys) = Gy

3 {R,,,.--Social-Neighbor} < 0

4 for R, , in {R,, .} :

S 1 Gpee= Ry Gy

6 I while R, ..Social-Neighbor <d :

7 | | if R,,, ,,..Social-Neighbor same-type < kd :

8 I I | Candidates < {R,uy 15 - -« » Rpur v, f

9 | | I R,,,-Social-Neighbor.same-type <
10 | | I RandomChoose (Candidates)
11 | | else:
12 I I | Candidates < {R,,,,,} \Ryper 15 - - - » Rrn,,
13 | | I R, ,-Social-Neighbor.different-type <
14 | | I RandomChoose (Candidates)
[0038] Consequently, a small set of fully connected robots

(e.g., in two “hops”) can form a social community. In some
implementations, each social community of robots in an
MRS periodically multi-cast both local evidence and social
evidence—without retransmission and back/forth with the
community. Meanwhile, a robot can be included in multiple
communities so that evidence can be shared among the
communities. All robots in an MRS, based on the above
social-physical network model, can communicate with a
smart agent on a remote device (e.g., edge server 108)
through R2I communication. In this manner, robots can
receive task assignments and maintenance instructions.
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[0039] The bottom half of FIG. 2 shows two social net-
works, where reconfiguration takes place in between time
intervals t; and t, (e.g., with degree (3, 0.33, 0.66)). In this
example, the edge of each vertex shows a relationship within
the physical network. The stochastic social network diffuses
information through multi-casting and forwarding. In some
implementations, an exception can occur if Line 7 of Algo-
rithm 1 cannot be fulfilled. Considering the example shown
in FIG. 2, Algorithm 1 can set a total link number d at first
priority, enabling R, ; to have three inter-type links. The
randomness of the stochastic social network is produced
from the sequence of robots in Line 4 and function ‘Ran-
domChoose’ in Line 10 and 14, which randomly choose a
robot to link from a candidate list.

Cyber-Physical Interaction

[0040] As mentioned, collaboration among a heteroge-
neous MRS includes cyber-physical interactions that chal-
lenge the resilience of smart factories. Consider an example
where, at timeslot t, a robot R, , receives a piece of raw
material or unfinished product 1 from upstream physical
neighbor. The physical circumstance of the product can be
characterized by product state 6%/<@, where © is a product
state space including all possible product states that the
product could belong to. Robot R,,,, may make measure-
ments of the product to obtain numerical local evidence x™
of product 1 in the cyber domain. Considering noise that may
interfere with the measurements, let x** to be a random
variable distinguish by function fxl(em,nl”) in (2).

Xpun" = F O™ =PI, 16,7
=S 4By ) = PHA= 18, )

B 17f P T V=P (00,0, 5 a1
X" Cma) @

[0041]
about task execution based on x

After the measurement, R, , can make decisions
 denoted by action

am,nl”E A where A is an action space that reflects a range
that robot can possibly modify the state of the product
(characterized by function f,(x™) in (2)). Cyber regret is
simply indicated by the action decision a’* with a**=0, as a
straightforward action that modifies product 1 as configured.
During this process, a robot can have an unknown physical
regret denoted by numerical time series variable e,, ,’, which
describes the accuracy of robot Meanwhile, positive numeri-
cal y; denotes a maintenance threshold such that —yz=e,,
sy indicates that R, is in normal operation; otherwise,
R,,, may be flagged as faulty or in need of maintenance.

[0042] Each robot in an MRS can generally be thought of
as a repairable unit. This introduces Time to Repair (TTR)
and Mean Time To Repair (MTTR) to model action regret
drifting and maintenance. Specifically, the drifting of action
regret is characterized by w,,, for R, ,. Herein, it is
assumed that drift is a linear process, given by (3a) in which
¢° is the action regret of R,, . at initial timeslot t,. Addition-
ally, TTR,, , is the number of timeslots that R, has sig-
nificant regret (e, ,’&[~Vx, Yz]) since last maintenance as in
(3b). When maintenance is complete, e, can generally be
reset. MTTR the expected value of all robot’s TTR, a
system-wise variable indicating robustness and resilience.
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. ¢ (3a)
Cmn = Wm,n(eo )

mn
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[0043] The process of product by R, ,, is therefore char-
acterized by function f,(a,, . X,, " €,,,") in (2).

[0044] Referring now to FIG. 3, a diagram of cyber-
physical interactions over a dynamic physical network is
shown, according to some implementations. In particular,
FIG. 3 shows cyber-physical interactions over two physical
networks in which reconfiguration takes place between time
interval t; and t,. In the lower portions of FIG. 3, R; ; is used
to illustrate cyber-physical interactions. Product physical
state 8™ is part of the environment for R; ; and x** that gives
robot a local cyber abstraction of product physical state and
to take action a,, ,,”". In this example, task reconfiguration
has occurred between t, and t, such that R; ,’s task assign-
ment has changed from “manufacture product-a” to “manu-
facture product-b and c.” Meanwhile, physical network
changes cause R;,’s physical neighbors to change from
(R;5. Ryy) to Ry, Rys, Ry, R, 5), which shows how
social learning can take advantage of external dynamics to
collect and diffuse information about a system over time.
[0045] In an MRS, each robot (e.g., robots 102) is a
complex individual system involving a joint effort of Al
control and sensing and analysis, operating with an absence
of precise global reference of actions (known as the robot-
pose problem). In a heterogeneous MRS with dynamic
production flow and time variant collaborative robot teams,
the productivity and efficiency goal of smart factories are
imperiled by internal and external dynamics, which lead to
a robustness and resilience operation problem. As discussed
above, a product 1 manufactured by an MRS has production
flow (la) and thus the state of product 1, having been
modified by i robots, can be denoted by action vector a' as
in (4).

aI:a Lt a beel a .[,H»i—l) (4)

mpt] 2 Tn.ny

[0046] By assuming real-valued actions, and that modifi-
cation of the product state is linear, the degree of alignment
of actions can be evaluated as a standard deviation of all the
actions in the action vector. This is denoted by ® in (5a), in
which

1« .
—_ L+ j-1
a_—g ay

jLddj=1 "N

given task assignments {p’} for all le L Smaller ©' values
indicate a better degree of alignment during manufacturing,
and thus the finished products tend to be of a higher quality.
Another practical smart factory performance index is Yield,
which defines a percentage of satisfactory products within a
given accuracy. For the purposes of this disclosure, Yield
may be constrained by A—that is, only if the difference
between the maximum action value and minimum action
value is less than A will the product be counted into Yield,
where function max and min returns maximum element and
minimum element of the input vector and 1, is an indicator
function. Greater yield directly suggests greater productivity
and efficiency of a smart factory.
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[0047] Although a series of inaccurate task executions by
a plurality of robots can still generally fulfill a fabrication
process, misalignment may lead to failure/rejection of fin-
ished products. Dynamic production flows and robot plural-
ism make it challenging to improve robot action alignment
without specific knowledge of action regret of each robot in
a collaboration team (e.g., a community). Additionally, since
each robot is configured to execute the assigned tasks,
sensors in the environment (including other robots in MRS
that the robot collaborating with) are generally used collect
information about accuracy rather than relying on the robot
itself to take measurements (e.g., as the robot may be
misaligned or otherwise not performing properly, which can
propagate errors into the measurements). More importantly,
a temporal production flow endures accumulation of inac-
curate task executions since robots execute task based on
measurements of a product state. Therefore, cyber-physical
interactions are often not enough to estimate the action
regret of physical neighbors. Point failure may happen as a
robot’s action regret drifts over time, or when a significant
and/or abrupt regret value appear in the MRS due to lack of
maintenance or dedicated cyberattacks.

[0048] The resilience of MRS driven flow-based manu-
facturing can therefore be evaluated by preserving the
average product quality factor 1 and Yield by adapting
stochastic and abrupt disturbance from both inside and
outside the system. The above discussion leads to the social
learning posed below, on top of cyber-physical interaction.
The resilience problem thus involves distributed state esti-
mation, distributed coordination, and distributed action deci-
sion-making with concrete numerical performance index
seeking for the alignment of robot actions within the col-
laboration team.

Distributed Machine Learning Over A Social Network

[0049] Referring now to FIGS. 4A and 4B, diagrams of an
example social-physical network are shown, according to
some implementations. In this example network, a plurality
of production robots 402-408 are shown to communicate
with an edge server 400, or another remote device. As
discussed above, an MRS is a distributed machine learning
system over social network with uniform learning model,
learning objectives, and training algorithms. FIG. 4B, in
particular, illustrates a production flow across robots 402-
408. In particular, at time t,, robot 402 may take action on
a material or component that is being fabricated/produced,
which is then passed to and acted upon by robot 404 at time
t,+1, and so on. In this case, a robot may “take action” by
executing its designated action as part of the production
process. For example, a robot may cut, weld, bend, or take
any other action to manipulate the material/component.

[0050] Each robot is also shown to have a designated
accuracy, ez, and can apply self-adjustments, ag, to correct
or offset any inaccuracies (e.g., to compensate for wear,
material differences, etc.). As mentioned above, robot accu-
racies and/or self-adjustments—which can also be indicated
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as combined ex+a,—can compound throughout the produc-
tion flow, which ultimately determines the quality of the
output product. As discussed in greater detail below, each
robot may also be configured to generate a trust opinion
vector, which indicates a level of trust to each of the other
robots in the MRS. For example, robot 408 can generate a
trust opinion vector indicating trust in each of robots 402-
406. These trust opinion vectors may be transmitted to edge
server 400 or another remote device and aggregated into a
trust matrix. From the trust matrix, edge server 400 can
detect failures, inaccuracies, and/or errors. In this example,
edge server 400 can determine, from the trust opinion
vectors received from each of robots 402-408, that robot 404
(‘R,’) is causing a point failure, which is resulting in defects
in the final product. Thus, edge server 400 may initiate
corrective actions, such as forcing a calibration of robot 404,
scheduling robot 404 for maintenance, or the like.

[0051] Building on the social-physical network and formal
resilience definitions, above, the learning objectives are to:
a) estimate system regret state e,/ given by (6) as local
belief b, . " and estimate system drift state w,,, , . * given
by (13) on top of b,,, ,,...."s b) detect robots with s1gn1ﬁcant
regret and calculate system trust opinion o, ,...." as a soft
opinion; and c) adapt Al decision-making to improve func-
tion f,(x,, ,) for aligned actions with collaboration team and
further improve system ¢ and Yield.

[0052] Meanwhile, a smart agent on edge server 108 or
another remote device can gather trust opinions from indi-
vidual robots, which are used to make a “hard” decision of
maintenance—considering partial observability and the fact
that maintenance has certain cost and may relegate produc-
tivity and efficiency.

,€, M,NMt) ©)
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Regret State Estimation

[0053] Due to the accumulation of inaccurate actions
along the production flow and absence of a precise global
reference, it may be insufficient to estimate any robot’s
action regret with local evidence from cyber-physical inter-
actions. Accordingly, a social learning based state estimation
is described herein, on top of multi-casting and/or forward-
ing wireless social communications in stochastic unify-
degree social network discussed above. FIG. 5 shows an
example Bayesian network that models a segment of a
cyber-physical interaction on a production flow. The
upstream robot R, finishes process, then downstream

"y

robot R, , receives the unfinished product and takes mea-
surement Xy, The probability that R, , obtains local
evidence x,, ,, is given by (7).
7.0 r 1./ r 1,/ —1,/ _
P s Oty oy Boniony Ty Oraromy ) = )
! 1/ 1/ 1/
Pr(fcm2 s | Oty JPH Bty my | ity Fon g » vy )

Pr(arfl,l |x1711 rll |0111 Prerll )=

myny

fxe:gz,mzfp( ot ot ittt ) Gt PO )

mysny ml 7y | Tmymy ml M

F0x,, nz”llam] n]‘_l’l Xom,, n]’_l’l 0,., n]’_”) is the process by
which Rm ., takes action to modify a product, 1, and Pr
(C— ) is prior information about a physical state of

product 1.
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[0054] The goal forR,, ,, istoestimatee,, ,’ whileR,,

does not have data and/or values for a, " and x,, "
However, as discussed above, after socially communicating
withR,, ,,.R,, . may have social evidence of x,, ,, ! from
its s001al community, denoted as y,, n” Assuming that
Yo, n] ' is available to R a nalve-Bayes network can
perform both updating the likelihood of pm])n]”l((p) and data

aggregation of local and social evidences given by (8).

"y, ny?

& m OO ) ol o s e @) () ®

.4
Hiny oy (9) =
Zw etrpomt e GO Ol )
To @t nss Foins> €ty @O S iny)
[0055] Subsequently, a maximum likelihood estimation
(MLE) can be made to form local believe y,, ,, ! about
Yo, n]’ ' by summarizing (7), (8), and nalve-Bayes
By oy =0 GMAX g 108 bty g Oy y ™ Yy g
I ®

[0056] Without a loss of generality, R, ,, can formulate a
local belief of R, ;, b,,, ., following a combine-then-adapt
(CTA) diffusion strategy: local-social observation aggrega-
tion with Bayesian update in (10) and adaption with maxi-
mum likelihood estimation in (11), which is unique com-
paring to social learning methods that share beliefs instead
of evidences. Both (10) and (11) use boldface vectors instead
of time-specific values in (8) and (9), since social learning
can be performed periodically or on-demand instead of
being performed on every timeslot.

L= & @ Onn) o (. - €,/ 4 0y) ao
O Y s n O folas g i, €6 fa0y)
bin,n;i,j = argmawag(ﬂin,n;i,j(@ | Xons Vijs ai,j) an

[0057] Consequently, R, after social learning, will
develop a local belief b,,, ... of a system regret state e,
given by (12), which is the objective of social learning. Due
to the social topology, wireless error, and non-retransmis-
sion in social communications, it’s generally not feasible for
each robot to have local belief of all other robots in the
system. Consequently, b, , .. is a generally a partially
observable regret state for an individual robot.

n,n?

b1 b1 buiay az
. b1 2 b im,2 bunsm 2
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[0058] Thus, both local evidence and social evidence,
benefited from dynamics in physical network, can be
enhanced over every reconfiguration of MRS, since each
robot accumulates beliefs of additional robots in the MRS.
Applying social learning takes advantage of the dynamics
that challenge robustness and resilience to enhance the
adaption ability of a distributed MRS.
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Regret State Tracking

[0059] Under the modeling described above, the regret of
production robots can generally be defined as time series
data that reaches and/or moves to a maintenance threshold—
defined as [—Yg, Yzl—over time. Regret state tracking can
address regret drifting issues and can estimate a system drift
state w,,, ..., from local belief b, ,,..". Since b’ relies on
MRS task execution, cyber-physical interaction, and social
learning, the estimation of w,,, ,,..." is an online process, e.g.,
a stochastic optimization problem. Stochastic gradient
descent (SGD) is a general framework that calculates a
stochastic gradient to approximate a gradient vector from
streaming data. As in (3a), the drifting state can be modeled
linearly. Thus, SGD on a production robot is used to estimate
w " using streaming b, ’ from social learning.

mniij moi

Winn;1,1 Win,nm,1 Winm M1 a3
; Wanm;1,2 Wonn;m,2 Wi M.2
wm,n;sys = M M M
Winn; 1N © Wnm Ny -+ Wi MNys

[0060] Benefitting from the above-mentioned CTA diffu-
sion strategy and social learning, a drifting model and SGD
become a supervised learning methodology that helps to
minimize temporal loss, supervised by local belief b,/ from
social learning.

i ( t ) 14
mngi,j — Wmnii,j|

o d b?n,n;i,j

[0061] Since social learning is based on noisy local evi-

dence and social evidence, as well as partial observability,
Huber loss with parameter & given by (15) can adapted for
more robust learning, since it is generally less sensitive to
outliers in data than squared error loss.

v g (15)

sys sys| = 9
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sys sys
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[0062] An MRS that implements SDG to estimate system
drifting state w,,,,,...." given by (13) is a fully distributed
SGD system as in (16) with a as learning rate.

16)
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[0063] Similar to local belief b, " w, . “in (13) is
partially observable. A SGD algorithm with Huber loss is a
computationally inexpensive and robust supervised learning
method that enables resilience against the scenario that
physical topology dynamics, wireless error, and wireless
outages from cyberattacks invalidate social learning. For

example, a robot can take the predicted belief in (14) as a
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local belief if social evidence is lost due to physical network
dynamics and wireless outages.

Soft Trust Opinion

[0064] Due to partial observability, each individual robot
has only partial exposure to a system’s true state from the
aforementioned cyber-physical interaction and social com-
munications. Thus, fully distributed consensus decision
making may not result in optimal decisions. A resilient,
distributed MRS is an analogue of distributed fault-tolerant
systems, in which trust-based methods are widely adopted in
distributed fault tolerate systems. Herein, a trust-based soft
opinion decision making methodology for detecting robots
with significant regrets is described.

[0065] Each robot, based on its local regret belief state
b, s and local drift state estimation w,,, ,,. .., can calcu-
late, for a future timeslot T, when that robot may reach
maintenance threshold —y, or ¥ from (17). Local opinion
O, msys 18 @ vector with individual opinion values o, ,,.; .

given by (18).

) 1+ a7
Wi j| 1 =—YrR Of YR
bm,n;i,j
— 7 7 1
om,n;sys = (Om,n;l,l’ ERRE ] om,n;m,n’ LRI om,n;M,NM) (18)

[0066] Opinion vector o, .. " measures the level of trust
of R,, , to other robots in the system. A larger O,, ,,; / value
generally means that R, , predicts that R, ; is more reliable
and has less probability to challenge the resilience, while a
smaller O,, ., / value can indicate that R, , predicts that R, ;
will become a robot with significant regret and should be
considered for maintenance. An opinion vector is a soft
decision, since no individual robot in a partially connected
cyber network can have a precise and complete estimation of
system regret state and system drift state—because, again,
partial observability makes the opinion vector incomplete.

Action Decisions by Reinforcement Learning

[0067] Referring now to FIG. 6 is a diagram of a cascade
machine learning network for MRSs, according to some
implementations. As mentioned above, noisy measurements,
non-retransmission social communications, wireless error,
wireless outages, and partial system state observability all
challenge the resilience of an MRS. Accordingly, it may be
desirable to implement additional reliable decision-making
mechanisms to take actions with cyber regret so that actions
in collaboration team can be aligned. To address this prob-
lem, a low complexity hierarchical reinforcement-learning
(RL) based cyber action regret decision-making methodol-
ogy is disclosed.

[0068] Hierarchical RL is generally characterized by tuple
(Ol ey’ Ay s I W, T, B, €) from the perspective of robot
R, .. State b, ' is a local system regret state belief at
timeslot t. Action a,,, is an action decision for R, at

timeslot t with a,,,’e #. '’ is a reward provided by a

remote system or device, such as an inspection system in a
smart factory, which indicates a quality of the product 1.
State-action value function Q,,,,," (b,,, ..cys» @y,.,,") is an opti-
mization objective of the RL methodology and an accumu-
lation of robot-environment interaction. Policies Tt(b,,, ..
¢) and =, (b !, €) are functions of a state that gives a

nm,n;sys ?
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probability distribution over actions. State classifier (b,
nssys) is a binary classifier that determines a policy to apply.
[0069] In some implementations, state classifier (b, .
sys) is a binary classifier that returns ‘0’ when R, ,, does not
have local belief about itself (b,,,,.,.,,) and ‘1" otherwise.
When (b, ,..,.") returns ‘0°, R, , may take actions follow-
ing 7(b,,, ,...s €), which is to take actions that align to other
robots in collaboration team since R, , doesn’t have regret
information about itself. When (b, .7 returns ‘1>, R,
may take action following (b, .., £), which is to take
actions to correct its physical regret through cyber regret
while align to other robots in collaboration team. Both
policies take E-greedy actions to balance exploitation and
exploration.

[0070] A group of RL agents may interact with a non-
stationary environment, including other robots and inspec-
tion systems, so that a learning rate § plays the weight of
history rewards when update date Q function in (19).

O(b',a)=0(b",a)+Blr mmax, 006", a)-0(b%.a")] 19

[0071] Hierarchical RL can provide an updated temporal
cyber-physical interaction framework on top of what is
described above, as summarized by FIG. 6. In some imple-
mentations, an Al model is therefore implemented and/or
executed on each robot in a MRS. In some implementations,
the Al model includes a cascade machine learning algorithm
with dedicated connections to improve desired productivity,
robustness, and resiliency of an MRS. In some implemen-
tations, the AT model replaces f , from above, taking x, from
the physical domain and y, from the cyber domain as inputs,
and outputting a, in the cyber domain. Algorithm 2, below,
summarizes this machine learning process from the perspec-
tive of an individual robot, in which functions ‘Sociallearn-
ing,” ‘SGD,” and ‘CalculateTrust’ are correspond to the
social learning, SGD, and opinion determinations/processes
described above.

[0072] In the social learning step, a naive-Bayesian update
(10) utilizes a, ;, which is not available from the diffusion
strategy. In some implementations, a, ; can either be prior
knowledge that is share amongst all of the robots in a
system, or it can be distributed between robots along with
the local and social evidences. For simplicity’s sake, the
earlier scenario is considered in the following use-case
example, providing a four-step algorithm with the “step-
size” numerical in Algorithm 2. At first step, the system
performs cyber-physical interactions with f, and social
communications, which can be referred as calibration
period. Between the first step and the second step, each robot
in the MRS performs social learning, SGD, and trust opinion
decision making (e.g., as in lines 16-19 of Algorithm 2). In
steps two through four, the MRS performs RI.-based action-
decision making while performing social communications.
Therefore, learning is only performed periodically instead of
in each timeslot, which further reduces the computation
complexity of the Al network.

Algorithm 2: Algorithm on robot R, ,

Data: GP}.'y’
fp, step-size
Reconfiguration:

physical-neighbors, Task-Assignment < G,
social-neighbors < G,

other_robots <= spatial_neighbor,m, n, M , N

Gep Yr» MTTE, ©, A, @, B, A, 8, , 7o, 7y, €, Ty, L4,

Bowro o~
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-continued

Algorithm 2: Algorithm on robot R,,, ,,

5 social_neighbor < spatial_neighbor, other_robots, k, p
6 step-number = 0

7 learning-flag = 0

8 for t to Next reconfiguration do

9 | X — Ty (69
10 | y* < Social (social-neighbor, x%, y1)
11 | if step-mumber == O then
12 I I a’ «— f,(x)
13 | end
14 | if step-number == 1 then
15 | | if learning-flag == 0 then
16 I I | b" < SocialLearning (x’, y)
17 [ [ | w' = SGD (b, a, &)
18 I I | of < CalculateTrust (b%, W/, Yz)
19 | | | learning-flag = 1
20 | | end
21 | | a’RL (b", at-1 , ¢, my, 7, , B, €)
22 | end
23 | if step-number = 2 then
24 | | af < RL (b*, @, y, mwy, 7, , B, €)
25 | end
26 | 0! — fp (0f , %7, &)
27 | if t % step-size == O then
28 | | if step-number = 3 then
29 | | | step-number += 1
30 | | else
31 | | | step-number = 0
32 | | | learning-flag = 0
33 | | end
34 | end
35 end
[0073] Thus, a hierarchical RL. methodology incorporates

domain knowledge of social-physical network modeling to
accelerate the convergence of Q function. Not only is offline
training therefore optional, but resilience performance is
improved when out-of-stochastic dynamics (e.g., abrupt
disturbances) occur.

Consensus-Based Failure Detection and Maintenance

[0074] As discussed above, a hard maintenance decision is
made on an edge server or other supervisory control system
for the MRS, since fully distributed consensus may lead to
poor decision making. Although maintenance can be mod-
eled straightforwardly as a state change, it can also be
assumed that maintenance can cause system-wide change at
the cost of time, energy, etc. A smart agent on the edge
server/supervisory controller, however, can determine both
cyber and physical topologies of the system and is therefore
in a more appropriate role to make hard decisions regarding
maintenance and the like. Accordingly, described herein a
trust consensus-based hard maintenance decision-making
that can be implemented by the edge server and/or a super-
visory controller.

[0075] In some implementations, a supervisory agent
(e.g., operating on edge server 108 and/or another supervi-
sory computing system) gathers opinion vectors from each
agent (e.g., Al agents operating on each of the robots in the
MRS) as opinion matrix OM’ at timeslot t given by (20).
Then, z robots with the least average trust will be regarded
as robots with significant regret (e.g., failure robots) and will
be selected by the supervisory agent for maintenance.
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[0076] The performance of the decision is evaluated by
autocorrelation of OM’, given by (21a) and (21b).

I I i
Crp € Limn CPLLM N (21a)
: ¢ ¢ ¢
CR! = Cryp11 v Clymn crm’n;M,NM
cr cr cr
MNyll o CTMNypmn o CTMNyMNy,
. Cov(Ommsys, O jisys) (21b)
Conpsi,j =

Tmmsys T, jisys

[0077] Consensus-based decision-making is also an infor-
mation aggregation process for the supervisory agent. Com-
pared to centralized methods, information aggregation can
be initiated when a maintenance decision is necessary, such
as when point failures are detected or when system-wide
reconfiguration is initiated (e.g., triggered by new produc-
tion demands). This can result in limited wireless commu-
nications and improved balance of computation between the
edge server/supervisory computing system and each robot in
the MRS, which is a benefit to resiliency of the system.
[0078] Referring now to FIG. 7, a block diagram of an
example MRS having multiple individual robots that com-
municate with a remote device is shown, according to some
implementations. Specifically, the MRS is shown to include
an edge server 700, which is generally the same as edge
server 108 described above, and a plurality of robots 710,
720, and 730, which may be the same as robots 102, 104 also
described above. It should be understood that the MRS may
include any number of robots (e.g., n number of robots). In
some implementations, the MRS is representative of an
MRS that operates in a factory or other similar setting. In
some such implementations, robots 710, 720, and 730 may
be industrial robots that, together, fabricate or manufacture
a product. It should be appreciated, however, that robots
710, 720, and 730 may be any robot device(s) that are
configured to operate cooperatively. For example, robots
710, 720, and 730 may be autonomous or semi-autonomous
vehicles, drones, etc.

[0079] Each of edge server 700, robot 710, and robot 720
are shown to include a processor and a memory, denoted as
processors 702, 712, 722 and memory 704, 714, 724,
respectively. While not shown, it should be appreciated that
robot 730 and any other robots of the MRS may also include
the same components as robots 710, 720. Processors 702,
712, 722 can be general-purpose processors, ASICs, one or
more FPGAs, groups of processing components, or other
suitable electronic processing structures. In some embodi-
ments, processors 702, 712, 722 are configured to execute
program code stored on respective memory 704, 714, 724 to
cause edge server 700, robot 710, and/or robot 720 to
perform one or more operations, as described below in
greater detail. It will be appreciated that, in embodiments
where edge server 700, robot 710, and/or robot 720 are part
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of another computing device, the components of edge server
700, robot 710, and/or robot 720 may be shared with, or the
same as, the host device.

[0080] Memory 704, 714, 724 can include one or more
devices (e.g., memory units, memory devices, storage
devices, etc.) for storing data and/or computer code for
completing and/or facilitating the various processes
described in the present disclosure. In some embodiments,
memory 704, 714, 724 includes tangible (e.g., non-transi-
tory), computer-readable media that stores code or instruc-
tions executable by processors 702, 712, 722. Tangible,
computer-readable media refers to any physical media that
is capable of providing data that causes a respective one of
edge server 700, robot 710, and/or robot 720 to operate in a
particular fashion. Example tangible, computer-readable
media may include, but is not limited to, volatile media,
non-volatile media, removable media and non-removable
media implemented in any method or technology for storage
of information such as computer readable instructions, data
structures, program modules or other data. Accordingly,
memory 704, 714, 724 can include RAM, ROM, hard drive
storage, temporary storage, non-volatile memory, flash
memory, optical memory, or any other suitable memory for
storing software objects and/or computer instructions.
Memory 704, 714, 724 can include database components,
object code components, script components, or any other
type of information structure for supporting the various
activities and information structures described in the present
disclosure. Memory 704, 714, 724 can be communicably
connected to processors 702, 712, 722, such as via process-
ing circuit, and can include computer code for executing
(e.g., by processors 702, 712, 722, respectively) one or more
processes described herein.

[0081] While shown as individual components, it will be
appreciated that processors 702, 712, 722 and/or memory
704, 714, 724 can be implemented using a variety of
different types and quantities of processors and memory. For
example, each of processors 702, 712, 722 may represent a
single processing device or multiple processing devices.
Similarly, each of memory 704, 714, 724 may represent a
single memory device or multiple memory devices. Addi-
tionally, in some embodiments, any of edge server 700,
robot 710, and/or robot 720 may be implemented within a
single computing device (e.g., one server, one housing, etc.).
In other embodiments, any of edge server 700, robot 710,
and/or robot 720 may be distributed across multiple servers
or computers (e.g.. that can exist in distributed locations).
For example, edge server 700 may include multiple distrib-
uted computing devices (e.g., multiple processors and/or
memory devices) in communication with each other that
collaborate to perform operations. For example, but not by
way of limitation, an application may be partitioned in such
a way as to permit concurrent and/or parallel processing of
the instructions of the application. Alternatively, the data
processed by the application may be partitioned in such a
way as to permit concurrent and/or parallel processing of
different portions of a data set by the two or more computers.
[0082] Additionally, each of edge server 700, robot 710,
and robot 720 are shown to include a communications
interface 706, 716, 726, respectively, that facilitates com-
munication of data, control signals, and/or other informa-
tion. For example, communications interface 716 of ‘Robot
A’ can provide means for transmitting data to, or receiving
data from, edge server 700 and/or robot 720. Accordingly,
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communications interfaces 706, 716, 726 can be or can
include a wired or wireless communications interface (e.g.,
jacks, antennas, transmitters, receivers, transceivers, wire
terminals, etc.) for conducting data communications, or a
combination of wired and wireless communication inter-
faces. In some embodiments, communications via commu-
nications interfaces 706, 716, 726 are direct (e.g., local
wired or wireless communications) or via a network (e.g., a
WAN, the Internet, a cellular network, etc.). For example,
communications interfaces 706, 716, 726 may include one
or more Ethernet ports for communicably coupling to a
network (e.g., the Internet). In another example, communi-
cations interfaces 706, 716, 726 can include a Wi-Fi trans-
ceiver for communicating via a wireless communications
network. In yet another example, communications interfaces
706, 716, 726 may include cellular or mobile phone com-
munications transceivers.

[0083] In some implementations, each of robots 710, 720,
730 can also include one or more actuators—shown as
actuators 718, 728—that can be controlled by processors
712, 722 based on instructions from memory 714, 724,
respectively. In other words, processors 712, 722 can
execute instructions from memory 714, 724, respectively, to
control actuators 718, 728. In some implementations, actua-
tors 718, 728 are components of robots 710, 720 themselves.
In other implementations, actuators 718, 728 are external to
robots 710, 720, but are still controlled by robots 710, 720.
In an industrial robot, for example, actuators 718, 728 may
include motors, servos, linear actuators, and/or any other
component(s) that can cause the robot(s) to move and/or to
manipulate a material/component for production.

[0084] Generally, the MRS shown in FIG. 7, and the
components thereof, can be configured to implement the Al
network methodology and corresponding processes
described herein. To this point, robots 710, 720, and/or 730
may be configured to form “communities” via social net-
working in order to perform tasks (e.g., fabricating a prod-
uct). Within a “community,” robots can share social evi-
dence/data for making control decisions. In addition, each of
robots 710, 720, and 730 can communicate to edge server
700—either directly or through a network and/or gateway
device—to report trust opinions, operating and configuration
data, and the like. Additionally, edge server 700 may provide
commands, configuration data, and other information to
robots 710, 720, and 730. In some implementations, edge
server 700 can identify one or more of robots 710, 720, and
730 that require maintenance and/or can track maintenance
statuses, decisions, and/or history for robots 710, 720, and
730.

[0085] Referring now to FIG. 8, a flow chart of a process
800 for controlling or operating a robot in an MRS is shown,
according to some implementations. Generally, process 800
is implemented by the MRS of FIGS. 1, 4, and/or 7, as
described above. In particular, process 800 may be imple-
mented by each/any of robots 710, 720, and 730. In some
implementations, one or more steps of process 800 may be
performed by edge server 700. It will be appreciated that
certain steps of process 800 may be optional and, in some
implementations, process 800 may be implemented using
less than all of the steps. It will also be appreciated that the
order of steps shown in FIG. 8 is not intended to be limiting.
[0086] At step 802, local and/or social evidence is
obtained by a robot in a MRS. In some implementations,
local evidence is obtained by the robot itself. In some such
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implementations, the local evidence includes a previously
determined or historical local system regret state belief
determined by the robot. For example, the local evidence
can include a local system regret state belief determined at
a previous time step. In some implementations, the local
evidence includes a local system drift state belief determined
by the robot at the previous time step. In some implemen-
tations, the local evidence includes measurements of a
physical product obtained by the robot.

[0087] In some implementations, social evidence is
obtained/received from least one additional robot in a com-
munity or social network with the robot. To this point, at step
804, local evidence (e.g., evidence/data collected by a first
robot in a community) and/or social evidence (e.g., current
and/or historical data received by the first robot from other
robots in the community) can be transmitted to other robot’s
in the community. Notably, local and/or social evidence is
transmitted between robots in a social community without
retransmission and back-forwarding. In some implementa-
tions, social evidence may be obtained from other robots in
the first robot’s community within a social network. These
other robots may be robots that are local to the first robot
and/or that are configured to operate in conjunction with the
first robot to, for example, fabricate a product. In some
implementations, the social evidence indicates a state of a
product being fabricated or manipulated by the MRS as
determined by the additional robot(s). In some implemen-
tations, the social evidence includes measurements of a
physical product obtained by the additional robot(s) at a
previous time step.

[0088] At step 806, a local system regret state belief is
determined based on the local and/or social evidence. Gen-
erally, the local system regret state belief is an estimation of
a system regret state for the MRS, as described in detail
above. In some implementations, the local system regret
state belief is determined using a Bayesian network. At step
808, a local system drift state belief is determined based on
the local system regret state belief. Generally, the local
system drift state belief is an estimate of a system drift state
for the MRS, as described in detail above. In some imple-
mentations, is determined using a stochastic gradient
descent (SGD) network with Huber loss.

[0089] At step 810, a local opinion vector is optionally
calculated. The local opinion vector—or local trust opin-
ion—is a vector that represents a level of trust to the other
robots in the MRS and/or in a social community with the
first robot. In some implementations, the opinion vector is
calculated from the local system drift state belief. Subse-
quently, at step 812, the local opinion vector is optionally
transmitted to an edge server or other remote/supervisory
device. For example, the local opinion vector can be trans-
mitted to an edge server in order for the edge server to form
‘hard’ opinions that can be used to make maintenance and/or
configuration control decisions.

[0090] At step 814, a next action for the robot is deter-
mined based on the local system regret state belief and local
system drift state belief. Generally, the next action is an
action that the robot will take at the current or a next time
step. In some implementations, the next action is determined
using a reinforcement learning model. In some such imple-
mentations, the next action may be further determined by a
reward value that is provided as an input to the reinforce-
ment learning model. In some implementations, the reward
value is provided by a downstream inspection and/or quality
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control system. The reward value may, for example, indicate
a quality of a product that was produced, at least in part, by
the robot. Subsequently, at step 816, the next action is
executed. For example, the robot may execute the next
action and/or a control signal may be sent to the robot to
initiate the next action.

Experimental Results

[0091] To evaluate the resiliency of distributed social
learning in an MRS, a stochastic environment with abrupt
disturbances was developed. As discussed above, a resilient
system on top of robust against stochastic dynamics, can
preserve @ and Yield under unexpected disturbances (e.g.,
that take place accidentally). Abrupt disturbance is modeled
as an instant system regret state e. ' change, potentially
caused by a machine part broken, a wireless outage, cyber-
attacks on wireless network or robot applications, and the
like. In this example, the number of instances, timeslots,
number of robots, and robots that are affected were ran-
domly selected. For the selected robots, e, " was increased
by ten when the robot had a positive w,, " and decrease by
ten in other instances. Four groups of computational experi-
ments are performed to demonstrate successfulness, scal-
ability, and resiliency performance of the proposed Al
network methodology.

TABLE I

Parameters of Resilience Experiment

Parameters Values

M 6

N (5,5,5,5,5,5)
® 6,5,6,5,7,6)
L U (1,5)
P (0, 8)
Reconfigurations 10
Interval (in timeslots) 40
Social composite degree (6,0.2,0.8)
Yr 5
MTTF 200

A 10

z 5

[0092] Given the parameters in Table I, the resilience of
30-robot MRS was evaluated. FIGS. 9 and 10 illustrate the
results of these evaluations over 400 timeslots. The
“straightforward” group represents a fully distributed physi-
cal MRS network with edge server assigned tasks in a cyber
domain. Three abrupt disturbances are indicated by vertical
dash lines and one robot was subjected to a random and
significant change in regret. FIG. 9 shows that drifting of the
robot’s regret increases D, . s.0mwara OVErtime, relegating
the quality of the finished products. Meanwhile, FIG. 10
shows that, during the 7" reconfiguration, the straightfor-
ward group encounters point failures that all finished prod-
ucts are not counting into the Yield. However, a social
learning group preserves D, .. joaming OVertime. The
Bayesian learning phase shows a sudden increase of the
D ciat tearming» Which indicates that system regret state is
potentially relegated to system performance and that the AL
network preserves system performance. Further, sudden
increases can be observed in both FIGS. 9 and 10, which
show abrupt disturbances at timeslots 38, 106, and 267 that
decrease the system performance. Yet, the resilient social
learning group adapted to the disturbance and recovered
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performance (e.g., back to a theoretical “ideal”), shown as a
“best scenario” group in FIG. 10.

[0093] To further demonstrate the scalability of the pro-
posed Al network methodology, computational experiments
were carried out using the same parameters in Table I with
various groups of robots as shown in Table II. The results of
these additional experiments are shown in FIG. 12. Simi-
larly, three random abrupt disturbances happen to all groups.
The results show that the resiliency of preserving system
performance is achieved on all five groups over time. The ¢
performance with Inter Quartile Range (IQR) outliers
removed from a hyper-plain is shown in FIG. 10. As shown,
& performance does not fluctuate much under stochastic
dynamics and abrupt disturbances for all groups. This dem-
onstrates that the proposed Al network is scalable over robot
number and time.

TABLE II

Parameters of Scalability Experiment

Number of Robots N Composite Social Degree

24 (4,4,4,4,4,4)  (5,02,08)
30 (55,5555 (6,02, 0.8)
36 (6,6,6,6,6,6) (6,02, 0.8)
) (1,7.7.7.7,7 (7,02, 0.8)
48 (8,8,8,8,8,8 (7,02 08)

[0094] As discussed above, maintenance decisions are
generally made on an edge server or other supervisory
system based on trust-based soft opinion decisions from
each robot. Social network and partial observability lead to
incomplete opinion vectors, which makes consensus deci-
sion challenging. Thus, an experiment was conducted to
explore the rule of thumb about composite social degree for
resilient consensus decision. FIGS. 13A-13C show the mean
of opinion matrix times the effective opinion values given by
(22), in which f, represents a ratio of successful robot
opinions over all robots since opinion vector in not complete
due to partial observability.

ro 0 (22)
Z(m,n),(i,j)eGCyb mpiij Zm,neG(cyb)fO(Om’mSyS)

ICR| S N
ieM

Consensus level =

[0095] This treatment makes the results reflect both the
quality and quantity of consensus correlations. FIG. 13A
explores the rule of thumb about total degree d. With
increasing total degree d and similar k value (noting that
linked numbers are discrete so that it is difficult to get results
with identical k values), the converged consensus level
ranges from 0.03 to 0.05. This shows that a greater total
degree d results in a greater level of consensus. FIGS. 13B
and 13C explore the rule of thumb about k. Specifically,
FIG. 13B shows under d=4, Al m~U(0.8), 0=(6, 5, 6, 5, 7,
6), and that there is a considerable difference shown at
degree=(4, 1, 0) that has no inter-type links. However, FIG.
13C shows when d is large enough, k is no longer a major
parameter that affects consensus level. To summarize, the
rule of thumb lies in a biased choice of less intra-type robot
links and more intertype robot links, while maintaining a
rather small total degree d.
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[0096] Two additional experiments were conducted that
focus on abrupt disturbances to demonstrate the resilience
performance of the proposed Al network methodology.
FIGS. 14A and 14B show the results from different fre-
quency of the abrupt disturbances. With the same parameters
in Table 1, five groups of data show that different numbers
of abrupt disturbances take place, with larger number sug-
gesting more frequent abrupt disturbances. Similarly, FIGS.
15A and 15B shows the results from the scale of abrupt
disturbances, in which five groups of data shows different
number of robots in three abrupt disturbances suddenly have
significant regret so that larger number suggesting larger
scale abrupt disturbances happen.

[0097] The @ data in FIGS. 14A and 15A shows that more
frequent, large scale, abrupt disturbances bring more serious
performance decline. Also, both experiments show recovery
of @, and tendency to improve back to the value before
disturbances. Meanwhile, FIGS. 14B and 15B use “Net
Yield loss” given by the Yield-Yield,,,, . ...um0. 11 Which
Yieldes, scenario @re theoretical values from MRTA. Thus,
the proposed Al network methodology described herein is
resilient against a range of frequency and scale and has a
strong tendency for preserving and recovering from drops in
performance.

Configuration of Certain Implementations

[0098] The construction and arrangement of the systems
and methods as shown in the various implementations are
illustrative only. Although only a few implementations have
been described in detail in this disclosure, many modifica-
tions are possible (e.g., variations in sizes, dimensions,
structures, shapes and proportions of the various elements,
values of parameters, mounting arrangements, use of mate-
rials, colors, orientations, etc.). For example, the position of
elements may be reversed or otherwise varied, and the
nature or number of discrete elements or positions may be
altered or varied. Accordingly, all such modifications are
intended to be included within the scope of the present
disclosure. The order or sequence of any process or method
steps may be varied or re-sequenced according to alternative
implementations. Other substitutions, modifications,
changes, and omissions may be made in the design, oper-
ating conditions, and arrangement of the implementations
without departing from the scope of the present disclosure.

[0099] The present disclosure contemplates methods, sys-
tems, and program products on any machine-readable media
for accomplishing various operations. The implementations
of the present disclosure may be implemented using existing
computer processors, or by a special purpose computer
processor for an appropriate system, incorporated for this or
another purpose, or by a hardwired system. Implementations
within the scope of the present disclosure include program
products including machine-readable media for carrying or
having machine-executable instructions or data structures
stored thereon. Such machine-readable media can be any
available media that can be accessed by a general purpose or
special purpose computer or other machine with a processor.
By way of example, such machine-readable media can
comprise RAM, ROM, EPROM, EEPROM, CD-ROM or
other optical disk storage, magnetic disk storage or other
magnetic storage devices, or any other medium which can be
used to carry or store desired program code in the form of
machine-executable instructions or data structures, and
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which can be accessed by a general purpose or special
purpose computer or other machine with a processor.
[0100] When information is transferred or provided over a
network or another communications connection (either
hardwired, wireless, or a combination of hardwired or
wireless) to a machine, the machine properly views the
connection as a machine-readable medium. Thus, any such
connection is properly termed a machine-readable medium.
Combinations of the above are also included within the
scope of machine-readable media. Machine-executable
instructions include, for example, instructions and data
which cause a general-purpose computer, special purpose
computer, or special purpose processing machines to per-
form a certain function or group of functions.

[0101] Although the figures show a specific order of
method steps, the order of the steps may differ from what is
depicted. Also, two or more steps may be performed con-
currently or with partial concurrence. Such variation will
depend on the software and hardware systems chosen and on
designer choice. All such variations are within the scope of
the disclosure. Likewise, software implementations could be
accomplished with standard programming techniques with
rule-based logic and other logic to accomplish the various
connection steps, processing steps, comparison steps and
decision steps.

[0102] It is to be understood that the methods and systems
are not limited to specific synthetic methods, specific com-
ponents, or to particular compositions. It is also to be
understood that the terminology used herein is for the
purpose of describing particular implementations only and is
not intended to be limiting.

[0103] As used in the specification and the appended
claims, the singular forms “a,” “an” and “the” include plural
referents unless the context clearly dictates otherwise.
Ranges may be expressed herein as from “about” one
particular value, and/or to “about” another particular value.
When such a range is expressed, another implementation
includes from the one particular value and/or to the other
particular value. Similarly, when values are expressed as
approximations, by use of the antecedent “about,” it will be
understood that the particular value forms another imple-
mentation. It will be further understood that the endpoints of
each of'the ranges are significant both in relation to the other
endpoint, and independently of the other endpoint.

[0104] “Optional” or “optionally” means that the subse-
quently described event or circumstance may or may not
occur, and that the description includes instances where said
event or circumstance occurs and instances where it does
not.

[0105] Throughout the description and claims of this
specification, the word “comprise” and variations of the
word, such as “comprising” and “comprises,” means
“including but not limited to,” and is not intended to
exclude, for example, other additives, components, integers
or steps. “Exemplary” means “an example of” and is not
intended to convey an indication of a preferred or ideal
implementation. “Such as” is not used in a restrictive sense,
but for explanatory purposes.

[0106] Disclosed are components that can be used to
perform the disclosed methods and systems. These and other
components are disclosed herein, and it is understood that
when combinations, subsets, interactions, groups, etc. of
these components are disclosed that while specific reference
of each various individual and collective combinations and
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permutation of these may not be explicitly disclosed, each is
specifically contemplated and described herein, for all meth-
ods and systems. This applies to all aspects of this applica-
tion including, but not limited to, steps in disclosed methods.
Thus, if there are a variety of additional steps that can be
performed it is understood that each of these additional steps
can be performed with any specific implementation or
combination of implementations of the disclosed methods.
What is claimed is:
1. A method of operating a first robot in a multi-robot
system, wherein the first robot and at least one additional
robot of the multi-robot system form a community in a social
network, the method comprising:
determining, by the first robot, a local system regret state
belief based on local evidence obtained by the first
robot and social evidence provided by the at least one
additional robot in the social community, wherein the
local system regret state belief is an estimation of a
system regret state for the multi-robot system;

determining, by the first robot, a local system drift state
belief based on the local system regret state belief,
wherein the local system drift state belief is an estimate
of a system drift state for the multi-robot system;

determining, by the first robot, a next action based on the
based on the local system regret state belief and the
local system drift state belief; and

executing, by the first robot, the next action.

2. The method of claim 1, further comprising:

calculating, by the first robot, an opinion vector repre-

senting a level of trust to the at least one additional
robot in the social community, wherein the opinion
vector is calculated from the local system drift state
belief.

3. The method of claim 2, further comprising:

transmitting, by the first robot, the opinion vector to a

remote computing device.

4. The method of claim 1, wherein the local evidence
comprises one or more of a local system regret state belief
determined by the first robot at a previous time step, a local
system drift state belief determined by the first robot at the
previous time step, and measurements of a physical product
obtained by the first robot.

5. The method of claim 1, wherein the social evidence
received from the least one additional robot indicating a
state of a product being fabricated or manipulated by the
multi-robot system as determined by the least one additional
robot.

6. The method of claim 1, wherein the social evidence
comprises measurements of a physical product obtained by
the at least one additional robot at a previous time step.

7. The method of claim 1, wherein the next action is
determined using a reinforcement learning model.

8. The method of claim 7, wherein determining the next
action is further based on a reward value provided by a
remote device.

9. The method of claim 1, wherein the local system regret
state belief is determined using a Bayesian network.

10. The method of claim 1, wherein the local system drift
state belief is determined using a stochastic gradient descent
(SGD) network with Huber loss.

11. The method of claim 1, wherein the social network is
a partially connected social network.

12. A control system for a first robot in a multi-robot
system, wherein the first robot and at least one additional
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robot of the multi-robot system form a community in a social
network, the control system comprising:

a processor; and

memory having instructions stored thereon that, when

executed by the processor, cause the control system to:

determine a local system regret state belief based on
local evidence obtained by the first robot and social
evidence provided by the at least one additional
robot in the social community, wherein the local
system regret state belief is an estimation of a system
regret state for the multi-robot system;

determine a local system drift state belief based on the
local system regret state belief, wherein the local
system drift state belief is an estimate of a system
drift state for the multi-robot system;

determine a next action for the first robot based on the
based on the local system regret state belief and the
local system drift state belief; and

control the first robot to execute the next action.

13. The control system of claim 12, the instructions
further causing the control system to:

calculate an opinion vector representing a level of trust to

the at least one additional robot in the social commu-
nity, wherein the opinion vector is calculated from the
local system drift state belief; and

transmit the opinion vector to a remote computing device.

14. The control system of claim 12, wherein the local
evidence comprises one or more of a local system regret
state belief determined by the first robot at a previous time
step, a local system drift state belief determined by the first
robot at the previous time step, and measurements of a
physical product obtained by the first robot.

15. The control system of claim 12, wherein the social
evidence received from the least one additional robot indi-
cating a state of a product being fabricated or manipulated
by the multi-robot system as determined by the least one
additional robot.

16. The control system of claim 12, wherein the social
evidence comprises measurements of a physical product
obtained by the at least one additional robot at a previous
time step.

17. The control system of claim 12, wherein the next
action is determined using a reinforcement learning model,
wherein determining the next action is further based on a
reward value provided by a remote device.

18. The control system of claim 12, wherein the local
system regret state belief is determined using a Bayesian
network.

19. The control system of claim 12, wherein the local
system drift state belief is determined using a stochastic
gradient descent (SGD) network with Huber loss.

20. A non-transitory computer readable medium having
instructions stored thereon that, when executed by a proces-
sor, cause a device to:

determine, for a first robot in a multi-robot system, a local

system regret state belief, wherein the first robot and at
least one additional robot of the multi-robot system
form a community in a social network, wherein the
local system regret state belief is determined based on
local evidence obtained by the first robot and social
evidence provided by the at least one additional robot
in the social community, and wherein the local system
regret state belief is an estimation of a system regret
state for the multi-robot system;
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determine, for the first robot, a local system drift state
belief based on the local system regret state belief,
wherein the local system drift state belief is an estimate
of a system drift state for the multi-robot system;

determine, for the first robot, a next action based on the
based on the local system regret state belief and the
local system drift state belief; and

control the first robot to execute the next action.
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