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METHODS FOR PREDICTING
SYNERGISTIC DRUG COMBINATION

BACKGROUND

[0001] Drug combination has been widely used in treating
diseases, including some of the most dreadful diseases such
as cancer and AIDS. Oftentimes, a drug combination can
have better therapeutic outcomes than single anticancer drug
treatment. The rationale for drug combination includes
improved therapeutic effect, dose and toxicity reduction, and
the reduction or delay of drug resistance.

[0002] Due to the large number of available drugs, their
complex (and often not well-understood) mechanism in
treating diseases, and the complicated drug-drug interac-
tions, finding a good combination of drugs having improved
efficacy, toxicity and other properties of drug combinations
can be extremely difficult. It is infeasible to experimentally
screen possible drug combinations considering the limited
resources.

[0003] There is a need to develop methods for improved
reliability/accuracy in the prediction of properties of com-
bination drugs.

SUMMARY

[0004] The present disclosure provides computer-imple-
mented methods to predict drug combinations using
genomic data, treatment patterns, and clinical outcomes
data.

[0005] In one aspect, the present disclosure provides a
method of determining effects of drug combinations on
treatment outcomes, which comprises: generating a plurality
of genomic and clinical variables from the combination of
(1) comprehensive genomic data, (2) EHR data, and (3)
clinical treatment data, for each of a plurality of patients;
wherein the plurality of patients comprise at least a first
subset who have been treated with at least one first drug for
a disease, and a second subset who have been treated with
at least one second, different drug for the same disease, the
first subset not entirely overlapping the second subset;
setting up a plurality of two by two contingency tables in
which rows are defined by the presence or absence of each
of the plurality of genomic and clinical variables, and the
columns are defined by the presence or absence of each of
the first drug and the second drug; based on a Cox Propor-
tional Hazards model, calculating independent risk factors,
cumulative hazard-ratios, and p-values for the combination
of the first drug and the second drug; and determining the
nature of the combination of the first drug and the second
drug as being one of additive, synergistic, and antagonistic
with respect to treating the disease.

[0006] In another aspect, the present disclosure provides a
method of determining drug effect on treatment outcome for
a disease, comprising: generating a plurality of genomic and
clinical variables from the combination of (1) comprehen-
sive genomic data, (2) EHR data, and (3) clinical treatment
data, for each of a plurality of patients; wherein some, but
not all, of the plurality of patients share a common bio-
marker, and wherein some, but not all, of the plurality of
patients have been treated with a same drug for a disease;
based on the plurality of genomic and clinical variables and
a two by two contingency table representing the following
combinations: (1) the number of patients having the bio-
marker and having been treated with the drug, (2) the
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number of patients having the biomarker but having not
been treated by the drug, (3) the number of patients not
having the biomarker and having been treated with the drug,
and (4) the number of patients not having the biomarker and
not having been treated by the drug, using a Cox Propor-
tional Hazards model to calculate independent risk factors,
cumulative hazard-ratios, and p-values for the combination
of'the drug and the biomarker; and determining the nature of
the combination of the drug and the biomarker as being one
of additive, synergistic, and antagonistic with respect to
treating the disease.

[0007] In further aspect, the present disclosure provides a
method of determining effects of drug combinations on
treatment outcomes, the method comprising: generating a
plurality of genomic and clinical variables from the combi-
nation of (1) comprehensive genomic data, (2) EHR data,
and (3) clinical treatment data, for each of a plurality of
patients; wherein the plurality of patients comprise at least
a first subset who have been treated with at least one first
drug for a disease, a second subset who have been treated
with at least one second, different drug for the same disease,
and a third subset who have been treated with at least one
third drug which are different from the first drug and
different from the second drug for the same disease, each of
the first, second, and third subsets not entirely overlapping
with any of other subsets; setting up a plurality of two by two
contingency tables in which rows are defined by the pres-
ence or absence of each of the plurality of genomic and
clinical variables, and the columns are defined by the
presence or absence of each of the first, second and third
drug; based on a Cox Proportional Hazards model, calcu-
lating independent risk factors, cumulative hazard-ratios,
and p-values for the combination of the first and the second
drug, combination of the first and the second drug, and
combination of the first and the second drug, and determin-
ing the nature of all possible binary combinations of the first,
second and third drug as being one of additive, synergistic,
and antagonistic with respect to treating the disease.
[0008] In some embodiments, whole-exome (WES) and
transcriptome (RNA-Seq) sequencing of tumors of patients
are first obtained. Bioinformatics analysis can be performed
on the sequencing data to provide certain genomic features
for each cancer patient, such as gene expression, loss of
heterozygosity (LOH), copy number alteration (CNA),
somatic and germline mutations, Microsatellite instability
(MSI), tumor mutational burden (TMB), Chromosomal
Variation, Mutational signatures, human Leukocyte Antigen
Typing (HLA) and human pathogen. Demographics, tumor
types/characteristics (biomarkers, stage, pathology), treat-
ment (prescriptions, surgery, radiotherapy, diagnostic imag-
ing, side effects/adverse events), and long-term survival
outcome clinical variables can be obtained from real-world
clinical electronic health records (EHRs).

[0009] Any of the steps or aspects of the methods dis-
closed herein can be carried out on a computer using one or
more computer processors.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG.1 is a flowchart illustrating data processing for
comprehensive genomic bioinformatics analysis whole-ex-
ome sequencing (WES).

[0011] FIG. 2 is a flowchart illustrating data processing for
transcriptome sequencing RNA-seq pipeline (RNA-seq).
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[0012] FIG. 3 is a flowchart illustrating clinical high-
throughput sequencing and bioinformatics analysis accord-
ing to an embodiment of the present disclosure.

[0013] FIG. 4 is a flowchart illustrating real-world clinical
electronic health records (EHRs) collection, clinical data
entry and long-term follow-up according to an embodiment
of the present disclosure.

[0014] FIG. 5 is a flowchart illustrating comprehensive
genomic data being matched with real-world treatment
patterns and clinical outcomes feature database and analysis
workflow according to one embodiment of the present
disclosure.

[0015] FIG. 6 is an example architecture of a computing
device on which steps of the described methods of the
present disclosure may be implemented or operated.
[0016] FIG. 7 is real-world survival data of treatment
using PD-1/PD-L.1 inhibitors in combination with Lenva-
tinib on certain Chinese HCC and ICC patients, and evalu-
ation by methods described in the present disclosure.
[0017] FIG. 8 is real-world survival data of treatment
using PD-1/PD-L1 inhibitors with genetic HLA-B*15:01
factor in certain Chinese Hepatocellular carcinoma, cholan-
giocarcinoma, Glioma, lung adenocarcinoma and soft tissue
sarcoma patients, and evaluation by the methods described
in the present disclosure.

DETAILED DESCRIPTION OF CERTAIN
EMBODIMENTS

[0018] Reference will now be made in detail to the present
embodiments of the invention, examples of which are illus-
trated in the accompanying drawings.

[0019] In one aspect, the present disclosure provides a
method of determining effects of drug combinations on
treatment outcomes, which comprises: generating a plurality
of genomic and clinical variables from the combination of
(1) comprehensive genomic data, (2) EHR data, and (3)
clinical treatment data, for each of a plurality of patients;
wherein the plurality of patients comprise at least a first
subset who have been treated with at least one first drug for
a disease, and a second subset who have been treated with
at least one second, different drug for the same disease, the
first subset not entirely overlapping the second subset;
setting up a plurality of two by two contingency tables in
which rows are defined by the presence or absence of each
of the plurality of genomic and clinical variables, and the
columns are defined by the presence or absence of each of
the first drug and the second drug; based on a Cox Propor-
tional Hazards model, calculating independent risk factors,
cumulative hazard-ratios, and p-values for the combination
of the first drug and the second drug; and determining the
nature of the combination of the first drug and the second
drug as being one of additive, synergistic, and antagonistic
with respect to treating the disease.

[0020] In another aspect, the present disclosure provides a
method of determining effects of drug combinations on
treatment outcomes, the method comprising: generating a
plurality of genomic and clinical variables from the combi-
nation of (1) comprehensive genomic data, (2) EHR data,
and (3) clinical treatment data, for each of a plurality of

Aug. 3, 2023

patients; wherein the plurality of patients comprise at least
a first subset who have been treated with at least one first
drug for a disease, a second subset who have been treated
with at least one second, different drug for the same disease,
and a third subset who have been treated with at least one
third drug which are different from the first drug and
different from the second drug for the same disease, each of
the first, second, and third subsets not entirely overlapping
with any of other subsets; setting up a plurality of two by two
contingency tables in which rows are defined by the pres-
ence or absence of each of the plurality of genomic and
clinical variables, and the columns are defined by the
presence or absence of each of the first, second and third
drug; based on a Cox Proportional Hazards model, calcu-
lating independent risk factors, cumulative hazard-ratios,
and p-values for the combination of the first and the second
drug, combination of the first and the second drug, and
combination of the first and the second drug, and determin-
ing the nature of all possible binary combinations of the first,
second and third drug as being one of additive, synergistic,
and antagonistic with respect to treating the disease. A
particular combination of two drugs can be selected for
treating patients based on the determined nature of these
possible binary combinations of drugs.

[0021] Inanother aspect, the present disclosure provides a
method of determining drug effect on treatment outcome for
a disease, comprising: generating a plurality of genomic and
clinical variables from the combination of (1) comprehen-
sive genomic data, (2) EHR data, and (3) clinical treatment
data, for each of a plurality of patients; wherein some, but
not all, of the plurality of patients share a common bio-
marker, and wherein some, but not all, of the plurality of
patients have been treated with a same drug for a disease;
based on the plurality of genomic and clinical variables and
a two by two contingency table representing the following
combinations: (1) the number of patients having the bio-
marker and having been treated with the drug, (2) the
number of patients having the biomarker but having not
been treated by the drug, (3) the number of patients not
having the biomarker and having been treated with the drug,
and (4) the number of patients not having the biomarker and
not having been treated by the drug, using a Cox Propor-
tional Hazards model to calculate independent risk factors,
cumulative hazard-ratios, and p-values for the combination
of'the drug and the biomarker; and determining the nature of
the combination of the drug and the biomarker as being one
of additive, synergistic, and antagonistic with respect to
treating the disease.

[0022] The disclosed method utilizes certain data sources,
which can be provided by healthcare institutions, hospitals,
clinics, medical practice groups, and patients. As an
example, for evaluation efficacy of possible cancer drug
combinations, data about cancer patients can be used. Tumor
tissues can be collected from patients, pathology tests can be
performed on the tissue, and the tissue can also be subject to
genomic sequencing, such as whole-exome (WES) and
transcriptome (RNA-Seq) sequencing. Bioinformatics
analysis can be performed on the sequencing data to provide
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certain genomic features for each cancer patient, such as
gene expression, loss of heterozygosity (LOH), copy num-
ber alteration (CNA), somatic and germline mutations,
Microsatellite instability (MSI), tumor mutational burden
(TMB), Chromosomal Variation, Mutational signatures,
human Leukocyte Antigen Typing (HLLA) and human patho-
gen.

[0023] Meanwhile, patient data from real-world clinical
electronic health records (EHR) for the patients can be used
to obtain demographics, medical history, medication and
allergies, immunization status, laboratory test results, radi-
ology images, vital signs, personal statistics like age and
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weight, etc. of the patients. Such patient data can be de-
identified, processed, and stored into a database for use by
clinical management software. Quality control and inspec-
tion may be performed on the patient data to reduce or
eliminate errors.

[0024] Further, clinical treatment data can also be obtained
about the patients. For example, for cancer patients, a patient
may undergo one or more therapies and has been treated by
one or more drugs for the cancer. The clinical treatment data
can include prescriptions, surgery, radiotherapy, diagnostic
imaging, side effects/adverse events, other treatment status
and progress, as well as outcomes.

TABLE 1

Summary of Comprehensive Genomic Data

Genomic
analysis

Tools and

Description databases

Somatic
Mutation

Tumor Mutation
Burden TMB

Microsatellite
instability MSI

Gene Copy
Number
Variation

Chromosomal
variation
Pathogen
Taxomic

Mutational
Signature

Loss of
heterozygosity
(LOH)

HLA Typing

Sentieon
hgl9 VEP

The commercial Sentieon packages were
applied to identify somatic mutations (SNP
and Indel) in tumor compared with a
matched control blood sample from one
patient. Somatic mutations were annotated
by VEP hgl9 version.

TMB was defined as the total number of
somatic nonsynonymous mutations in the
tumor exome. To calculate TMB
mutations/Mb, the total number of somatic
nonsynonymous mutations was normalized
to the total number of exonic megabases
sequenced.

MSI is a condition exhibited by certain
tumors involving DNA mismatch repair
defects that lead to high mutation rates.
Normalized the number of reading counts
for each genes’ exonic region can reflect
copy numbers changes in tumor. Standard
normal distribution was used to normalized
five sources of bias that affect raw read
counts, including the size of exonic regions,
batch effect, sequencing data quantity and
quality, local GC content percentage and
genomic mappability.

Chromosomal Variations is defined as focal
events and more complex arm level events.
Pathogenic microorganisms achieve their
persistence in the human body by
integrating its genome into the human cell
genome leading to development of
carcinoma.

Mutation signatures are characteristic
combinations arising from a specific
mutagenesis process such as DNA
replication infidelity, exogenous and
endogenous genotoxins exposures,
defective DNA repair pathways and DNA
enzymatic editing.

Heterozygosity is the condition of having
two different alleles at one locus. Loss of
heterozygosity is the phenomenon of
partially or completely losing one allele at
the locus caused by direct deletion, gene

NA

msisensor

Inhouse
development

Inhouse
development
Centrifuge

COSMIC
signatures_ v2
database

Inhouse
development

conversion, or loss of chromosome.

HLA is a gene complex encoding human
major histocompatibility complex. It is
located on the short arm of chromosome 6
(6p21.21). These cell surface proteins are
involved in the regulation of the human
immune system.

Optitype
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TABLE 1-continued
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Summary of Comprehensive Genomic Data

Genomic
analysis

Description

Tools and
databases

Rare Germline
Mutation

Homologous
Recombination
Deficiency
(HRD)

Gene expression

Fusion

Immunopheno
Score

Immune Cell
Infiltration
Score

Neoantigen

Pathogenic interpretation of Germline
mutated genes was performed based on the
ClinVar database. Cutoff mutation rate <1%
is a cutoff in The East Asian Population

from Exome Aggregation Consortium(ExXAC), <2%.

Homologous recombination is a process of
exchanging genetic materials between the
two sister strands of DNA and was defined
as the levels of homologous recombination
deficiency (telomeric allelic imbalance
HRD-TAI, loss off heterozygosity HRD-LOH,
number of large-scale transitions HRD-LST)
based on whole exome data.

The determination of the pattern of genes
expressed at the level of genetic
transcription, and will take into account the
various expression measures produced:
count, FPKM (Fragments Per Kilobase Million),
TPM (Transcripts Per Million)

Fusion gene is a hybrid gene formed from
two independent genes through
chromosomal rearrangement.

The immune score is calculated by the TPM
of the immunogenic gene, reveals
genotype-immunophenotype relationships
and predictors of response to checkpoint
blockade

This method estimates the relative
abundance of 24 immune cell types from
RNA data based on deviation of gene
signatures, with powerful and unique
function in tumor immune infiltration
estimation and immunotherapy response
prediction.

Neoantigens are antigens that are not
expressed in normal tissues, but expressed
only in tumor tissues, in this study,
neoantigens mainly include antigens
produced by mutant proteins.

Inhouse

development

scarHRD

STAR,

StringTie2

STAR-FUSION

immunophenogram

ImmuCellAI

STAR-FUSION

TABLE 2

TABLE 2-continued

Clinical and follow-up variables from real-world

clinical electronic health records (EHRs).

Clinical data

Description Source

Survival data

Drug

Demographics
data

Diagnosis data
Treatment data

Disease Main
Category

Integration of the various sources of EHRs

real-world data (RWD), including EHRs,

clinical decision and support and

hospital-based systems, administrative

billing and claims databases, patient

registries, longitudinal studies, and
patient reported outcomes tools, will
yield a more robust dataset of real-
world evidence (RWE).

Drugs for cancer and conditions related
to cancer.

Age, gender, and ethnicity

biomarkers, stage and pathology
prescriptions, surgery, radiotherapy,
diagnostic imaging, side effects/adverse
events

The OncoTree tools is an open-source
ontology that was developed at Memorial
Sloan Kettering Cancer Center (MSK) for
standardizing cancer type diagnosis from

EHRs

EHRs

EHRs

EHRs

OncoTree

Clinical and follow-up variables from real-world
clinical electronic health records (EHRs).

Clinical data Description Source

a clinical perspective by assigning each
diagnosis a unique OncoTree code.

A primary tumor is a tumor growing at

the anatomical site where tumor progression
began and proceeded to yield a cancerous
mass.

Metastasis is a pathogenic agent’s

spread from an initial or primary site

to a different or secondary site within

the host’s body

Primary Site EHRs

Metastasis Site EHRs

[0025] Based on the comprehensive genomic data, EHR
data, and real-world treatment data, a database can be built
to match these data and generate a plurality of genomic and
clinical variables.

[0026] FIGS. 1 and 2 are flowcharts illustrating data
processing for comprehensive genomic bioinformatics
analysis whole-exome sequencing (WES) and transcriptome
sequencing RNA-seq pipeline.

[0027] Then, a novel exhaustive Cox proportional hazards
model (ECPH) model is used to evaluate all possible drug
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combinations with respect to their efficacy in prolonging
patients’ lives. In terms of efficacy, there can be three types
of drug interaction: additive, synergistic, and antagonistic.
Identifying the drug combination interactions in the clinical
trial and/or real-world clinical data can help make the choice
between sequential and simultaneous treatment and the
design of new drug combinations.

[0028] Additive interaction means the effect of two chemi-
cals is equal to the sum of the effect of the two chemicals
taken separately. Synergistic interaction means that the
effect of two substances/agents taken together is greater than
the sum of their separate effect at the same doses. Antago-
nistic interaction means that the effect of two substances/
agents is actually less than the sum of the effect of the two
drugs taken independently of each other. By mathematic
interaction definition, if the combination effect is greater
than the mathematic probability of the two agents contrib-
uting independently (Synergistic), equal to the probability of
their independent activities (Additive) or less than predicted
(Antagonistic).

[0029] The Cox proportional-hazards (CPH) model is
essentially a regression model used in medical research for
investigating the association between the survival time of
patients and one or more predictor variables. The CPH
model extends survival analysis methods to assess simulta-
neously the effect of several risk factors on survival time.
[0030] The approach used in the present disclosure further
extends the CPH model. In an example process, drugs used
for fewer than one treatment cycle or the number of patients
in any variables less than 15 were removed. Then, a 2x2
contingency table is set up, in which rows are defined by
every unique genomic or clinical variable, and the columns
are defined by drug variable (See Table 3 as an illustration).
Then the CPH model (as described in “The Robust Inference
for the Cox Proportional Hazards Model”, D. Y. Lin &L. J.
Wei, Journal of the Am. Stat. Assoc., pp. 1074-1078, 1989)
is used to calculate independent risk factors, cumulative
hazard-ratios, and p-values for each drug combination table.
Then these results are used predict and prioritize effective
drug combinations with respect to additive, synergistic and
antagonistic effects.

TABLE 3

2 x 2 contingency tables for all possible drug combinations pairs

Factor Factor
B present B Absent
(B+) (B-) Total
Drug A Treatment Group (A+) 36 14 50
Drug A free Treatment Group (A-)- 30 25 55
Total 66 39 105

[0031] Additive, synergistic and antagonistic effect of
factor/drug combinations in real-word clinical outcomes can
be described as follows.

[0032] Additive combination definition: The HR score of
the drug A+ plus factor B+ group is between the other two
treatment groups (A+B- and A-B+). The P-value of the
drug A+ plus factor B+ group is not statistically significant
compared with the other two treatment groups (A+B- and
A-B+).

[0033] Synergistic combination definition: The HR score
of'the drug A+ plus factor B+ group is smaller than the other
two treatment groups (A+B- and A-B+). The P-value of the
drug A+ plus factor B+ group has statistically significant
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compared with the other two treatment groups (A+B- and
A-B+). The drug A+ plus factor B+ group is the statistically
independent variable of the other two treatment groups
(A+B- and A-B+).

[0034] Antagonistic combination definition: The HR score
of the drug A+ plus factor B+ group is greater than the other
two treatment groups (A+B- and A-B+). The P-value of the
drug A+ plus factor B+ group has statistically significant
compared with the other two treatment groups (A+B- and
A-B+).

[0035] In the above definitions of different types of com-
binations, factor B can be a second drug which has been used
to treat the patient cohort, or a certain characteristic of the
patient cohort, for example, a genomic biomarker.

[0036] Any steps of the described methods can be per-
formed on one or more computing devices (e.g., a worksta-
tion, a PC, a laptop, a mobile device, etc., or networked
computers in a distributed environment, e.g., a cloud). As
shown in FIG. 6, an example computing device 10 of the
present disclosure includes a processor 110, memory 120,
storage 130, an input/output (I/O) interface 140, a commu-
nication component 150, and a bus 160. Although this figure
illustrates a particular computing device having a particular
number of particular components in a particular arrange-
ment, this disclosure contemplates any suitable computing
device having any suitable number of any suitable compo-
nents in any suitable arrangement. The processor can include
hardware for executing instructions, such as those making
up a computer program or application, for example, it may
retrieve (or fetch) the instructions from an internal register,
an internal cache, memory, storage; decode and execute
them; and then write one or more results to internal register,
internal cache, memory, or storage. In particular embodi-
ments, software executed by processor 110 may include an
operating system (OS) (e.g., Windows, Unix, MacOS, etc.),
and applications designed for implement the methods
herein. In some embodiments, the memory 120 can include
main memory for storing instructions for the processor to
execute or data for processor to operate on. One or more
buses 160 may connect the processor with the memory. The
memory 120 can include random-access memory (RAM).
This RAM may be volatile memory, where appropriate.
Where appropriate, this RAM may be dynamic RAM
(DRAM) or static RAM (SRAM). The storage 130 can
include non-volatile and/or non-transient mass storage or
media for data or instructions, for example HDD, SSD, flash
memory, optical medium, etc., or a combination of two or
more thereof. The I/O interface 140 can include hardware,
software, or both providing one or more interfaces for
communication between two or more computing devices
and one or more 1/O devices. The communication compo-
nent 150 can include hardware, software, or both providing
one or more interfaces for communication (such as, for
example, packet-based communication) between the com-
puting device with another computing device, for example,
a network interface controller (NIC) or network adapter for
communicating with an Ethernet or other wire-based net-
work or a wireless NIC (WNIC), wireless adapter for
communicating with a wireless network, such as a Wi-Fi
network or cellular network, or a combination of two or
more thereof. The bus 160 can include hardware, software,
or both coupling components of the personal computing
device to each other, for example, a graphics bus, an
Enhanced Industry Standard Architecture (EISA) bus, a
front-side bus (FSB), or another suitable combinations.
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EXAMPLES

[0037] The described methods are validated by the fol-
lowing examples.

[0038] 1. Synergistic Combination of Lenvatinib with
PD-1/PD-L.1 Immune Checkpoint Inhibitors for Hepatocel-
Iular Carcinoma (HCC) and Intrahepatic Cholangiocarci-
noma (ICC).

[0039] FIG. 7 shows real-world survival data of PD-1/PD-
L1 inhibitors in combination with Lenvatinib in 105 Chinese
HCC and ICC patients, and evaluation by the ECPH model-
based method described in the present disclosure. The top
survival curve is the 46 Lenvatinib plus PD-1/PD-L1 inhibi-
tors patient group versus the bottom survival curve for 59
patient group which were treated with only PD-1/PD-L1
inhibitors. Lenvatinib is a statistically independent good
prognostic factor in HCC and ICC after PD-1/PD-L1 inhibi-
tors treatment. The combination patient group (Lenvatinib+
PD-1/PD-L.1) showed a statistically significant better in
survival than either treatment with Lenvatinib or PD-1/PD-
L1 group (PD-1/PD-L1+ and Lenvatinib+ group: HR: 0.278,
P-value: 0.008; PD-1/PD-L1+ and Lenvatinib— group: HR:
0.503, P-value: 0.117; PD-1/PD-L1- and Lenvatinib+
group: HR: 1.00 P-value: 0.977).

[0040] In this example, data were collected and analyzed
in the following steps:

[0041] (1) Clinical high-throughput sequencing and bio-
informatics analysis according to the flow chart shown in
FIG. 3.

[0042] (2) Real-world clinical electronic health records
(EHRSs) collection, clinical data entry and 1 long-term fol-
low-up, according to the flowchart shown in FIG. 4.
[0043] (3) Comprehensive genomic data is matched with
real-world treatment patterns and clinical outcomes feature
database and analysis workflow, as shown in FIG. 5.
[0044] (4) A large one-hot encoding matrix(~10,000%10,
000) of comprehensive genomic and clinical factors. Based
on the one-hot encoding matrix, the combined effects of all
factors such as: age, gender, gene mutation, and drug treat-
ment can be obtained.

A sample snippet of one-hot matrix encoding in shown in the
below Table.

TABLE 4

Sample encoding

D R1 R2 81 S2 ¢€1 M1 TiI DI D2 D3
A04262 1 13 1 0 0 0 0 1 0 1
A00964 0 28 0 1 0 0 0 1 0 0
A04736 0 16 0 1 0 0 0 1 0 0
A04764 0 15 0 1 0 1 0 0 0 0
A04859 0 15 0 1 0 0 1 0 0 0
A04884 0 15 0 1 0 0 0 1 0 0

‘Wherein in the above table, the column headers represent the below variables:
RI: death_observed
R2: survival Month
S1: gender_Female
§2: gender_Male
Cl: stage_1

M1: amp_ ERBB2
T1: chemotherapy
D1: Apatinib

D2: PD-1

D3: Lenvatinib
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[0045] (5) Applying exhaustive Cox proportional hazards
model (ECPH) model

[0046] a. Patients are divided into four categories based on
the combined use of the two drugs. For an example: Patients
treated with Lenvatinib and without Sorafenib were defined
as the Lenvatinib treatment group. Patients treated with
Sorafenib and without Lenvatinib were defined as the
Sorafenib treatment group. Patients treated with Sorafenib
and Lenvatinib were defined as the Sorafenib-Lenvatinib
treatment group. Patients treated without Sorafenib and
Lenvatinib were defined as Sorafenib-Lenvatinib free treat-
ment group.

[0047] b. 2x2 contingency tables were calculated for all
possible drug combinations pairs: Millions of possible com-
binations of Lenvatinib.

[0048] c. Cox PH model (The Robust Inference for the
Cox Proportional Hazards Model D. Y. Lin &L. J. Wei Pages
1074-1078) was used to calculate independent risk factors,
cumulative hazard-ratios, and p-values for each drug com-
bination table. Briefly, the hazard function can be interpreted
as the risk of dying at time t. It can be estimated as follow:
h(t)=h(Oxexp(b,x;+b,x,+ . . . +b x) where,

[0049] t represents the survival time.

[0050] h(t) is the hazard function determined by a set of
p covariates (X, X,, - . - , X,)

[0051] the coeflicients (b, b,, . . ., b,) measure the
impact (i.e., the effect size) of covariates.

[0052] the term h, is referred to the baseline hazard. It
corresponds to the value of the hazard if all the x; are
equal to zero (the quantity exp(0) equals 1). The ‘t” in
h(t) reminds us that the hazard may vary over time.

[0053] The Cox PH model can be written as a multiple
linear regression of the logarithm of the hazard on the
variables x,, with the baseline hazard being an ‘intercept’
term that varies with time. The average hazard rate of the
interval was used in which the number of patients dying per
unit time in the interval is divided by the average number of
survivors at the midpoint of the interval:

h(ty=number of patients dying per unit time in the
interval/((number of patients surviving at £)—
(number of deaths in the interval)/2)

[0054] The hazard ratio of the patient receiving the experi-
mental drug and the one receiving placebo is:

h(tlx =1)/h(tlx | =0)=exp(b,)

[0055] The hazard ratios (HR) are defined as the quantities
exp(b,). Thus, the two treatments are equally effective if
HR=1 and the experimental drug introduces lower (higher)
risk for survival than placebo if HR<1 (HR>1). The function
coxph (R survival package) can be used to compute the Cox
proportional hazards regression model in R. (https://cran.r-
project.org/web/packages/survival/survival.pdf). Using
Contingency Table A below for an example, three treatment
groups HR scores were obtained: Sorafenib+ and Lenva-
tinib+ group: HR: 1.35, P-value: 0.334; Sorafenib+ and
Lenvatinib— group: HR: 0.76, P-value: 0.388; Sorafenib-
and Lenvatinib+ group: HR: 0.56 P-value: 0.058. These
three results were used to predict and prioritize effective
drug combinations with respect to additive, synergistic and
antagonistic effects (according to the above additive, syn-
ergistic and antagonistic combination definition), as well as
explore the dynamics of combination therapy and its role in
combating drug resistance in cancer treatments.
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[0056] The below three tables are shown as calculation
examples:
Contingency Table A
Sorafenib
Sorafenib Free
Treatment Treatment Total
Lenvatinib Treatment 29 89 118
Lenvatinib free Treatment 63 491 554
Total 92 580
[0057] Sorafenib+ and Lenvatinib+ group: HR: 1.35,

P-value: 0.334; Sorafenib+ and Lenvatinib— group: HR:
0.76, P-value: 0.388; Sorafenib— and Lenvatinib+ group:
HR: 0.56 P-value: 0.058

Contingency Table B

Regorafenib
Regorafenib Free
Treatment Treatment Total
Lenvatinib Treatment 9 109 118
Lenvatinib free Treatment 24 543 567
Total 33 652

[0058] Regorafenib+ and Lenvatinib+ group: HR: 1.88,
P-value: 0.475; Regorafenib+ and Lenvatinib— group: HR:
0.99, P-value: 0.984; Regorafenib— and Lenvatinib+ group:
HR: 0.74 P-value: 0.226

Contingency Table C

PD-1/PD-L1
PD-1/PD-L1 Free
Treatment Treatment Total
Lenvatinib Treatment 46 96 142
Lenvatinib free Treatment 59 625 684
Total 105 721

[0059] PD-1/PD-L1+ and Lenvatinib+ group: HR: 0.278,
P-value: 0.008; PD-1/PD-L1+ and Lenvatinib— group: HR:
0.503, P-value: 0.117; PD-1/PD-L1- and Lenvatinib+
group: HR: 1.00 P-value: 0.977

[0060] Synergistic Combination Definition Used in this
Example:
[0061] The HR score of the PD-1/PD-L1+ and Lenva-

tinib+ group is smaller than the other two treatment groups
(HR: 0.278<PD-1/PD-L1+ and Lenvatinib— group: HR:
0.503 and PD-1/PD-L1- and Lenvatinib+ group: HR: 1.00).
The P-value of the PD-1/PD-L1+ and Lenvatinib+ group has
statistically significant compared with the other two treat-
ment groups (P-value: 0.008<PD-1/PD-L1+ and Lenva-
tinib— group: P-value: 0.117 and PD-1/PD-L1- and Lenva-
tinib+ group P-value: 0.977). The PD-1/PD-L1 and
Lenvatinib group is the statistically independent variable
(independence of Chi-square test: P-value: 0.223). These
results show the treatment with Lenvatinib plus anti-PD-1/
PD-L1 treatment induced significant antitumor activity com-
pared with Lenvatinib or anti-PD-1 treatment alone. Our
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ECPH model provide a real-world scientific rationale for
combination therapy of Lenvatinib with anti-PD-1/PD-L1
blockade to improve cancer immunotherapy.

[0062] Such validation can also find support in the fol-

lowing references:

[0063] Ref 1. Lenvatinib plus anti-PD-1 antibody combi-
nation treatment activates CD8+ T cells through reduction
of tumor-associated macrophage and activation of the
interferon pathway. 2.776 PLoS One. 2019 Feb. 27;
14(2):e0212513. doi: 10.1371/journal.pone.0212513.
eCollection 2019. The authors here show that lenvatinib
modulates cancer immunity in the tumor microenviron-
ment by reducing TAMs and, when combined with PD-1
blockade, shows enhanced antitumor activity via the IFN
signaling pathway.

[0064] Ref 2. Phase II study of lenvatinib plus pembroli-
zumab for disease progression after PD-1/PD-L1 immune
checkpoint inhibitor in metastatic clear cell renal cell
carcinoma (mccRCC): Results of an interim analysis.
ESMO 2019 Congress Annals of Oncology (2019) 30
(suppl_5): v475-v532. 10.1093/annonc/mdz253. At data
cutoff (Mar. 29, 2019), the first 33 pts enrolled were
followed for =12 weeks for response evaluation, and 24
(73%) pts were still on study treatment. The objective
response rate was 52%, the disease control rate was 94%,
and most pts had tumor shrinkage. Median follow-up time
for progression-free survival was 4.2 months.

[0065] Ref 3. Lenvatinib plus pembrolizumab in patients
with advanced endometrial cancer: an interim analysis of
a multicentre, open-label, single-arm, phase 2 trial. Lancet
Oncol. 2019 May; 20(5):711-718. doi: 10.1016/S1470-
2045(19)30020-8. Epub 2019 Mar. 25. Here, Lenvatinib
plus pembrolizumab showed anti-tumour activity in
patients with advanced recurrent endometrial cancer with
a safety profile that was similar to those previously
reported for lenvatinib and pembrolizumab monothera-
pies, apart from an increased frequency of hypothyroid-
ism. Lenvatinib plus pembrolizumab could represent a
new potential treatment option for this patient population,
and is being investigated in a randomized phase 3 study.

[0066] 2. Antagonistic Combination (Drug Resistance)

Genetics HLA Biomarker with PD-1/PD-L1 Immune

Checkpoint Inhibitors.

[0067] In this example, a specific HLA-B biomarker is

considered a second factor and its combination with the

treatment of a PD-1/PD-L1 drug is evaluated in a similar
manner as outlined above. For example, a 2 by 2 contin-
gency table can be set up as follows:

PD-1/PD-L1
PD-1/PD-L1 Free
Treatment Treatment Total
HLA-B*15:01 biomarker present 47 406 453
HLA-B*15:01 biomarker free 398 430 828
Total 445 836

[0068] FIG. 8 shows real-world survival data of PD-1/PD-
L1 inhibitors with genetic HLA-B*15:01 factor in 445
Chinese Hepatocellular carcinoma, cholangiocarcinoma,
Glioma, lung adenocarcinoma and soft tissue sarcoma
patients, and evaluation by the ECPH model-based methods
described in the present disclosure. The bottom survival
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curve is the 47 HLA-B*15:01 plus PD-1/PD-L.1 inhibitors
patient group versus the top curve 398 patient group without
HLA-B*15:01 treated with PD-1/PD-L1 inhibitors. HLA-
B*15:01 is a statistically independent poor prognostic factor
in main solid tumor after PD-1/PD-L1 inhibitors treatment.
The combination treatment patient group (HLA-B*15:01+
PD-1/PD-L.1) showed a statistically significant worse in
survival than either HLA-B*15:01 positive or treatment with
PD-1/PD-L1 group (PD-1/PD-L1+ and HLA-B*15:01+
group: HR: 1.880 P-value: 0.007; PD-1/PD-L1+ and HLA-
B*15:01-group: HR: 0.58 P-value: 0.069; PD-1/PD-L.1- and
HLA-B*15:01+ group: HR: 1.15 P-value: 0.442).

[0069] Such validation can also find support in the fol-
lowing reference: Patient HLA class 1 genotype influences
cancer response to checkpoint blockade immunotherapy.
(Science. 2018 Feb. 2; 359(6375):582-587. doi: 10.1126/
science.aao4572. Epub 2017 Dec. 7.) In this paper, it is
observed that two independent melanoma cohorts, patients
with the HLLA-B44 supertype had extended survival,
whereas the HLLA-B62 supertype (including HLA-B*15:01)
or somatic loss of heterozygosity at HLA-I was associated
with poor outcome.

[0070] It is to be understood that the embodiments shown
and described herein are only illustrative of the principles of
the present invention and that various modifications may be
implemented by those skilled in the art without departing
from the scope and spirit of the invention. Those skilled in
the art could implement various other feature combinations
without departing from the scope and spirit of the invention.

What is claimed is:

1. A computer-implemented method of determining
effects of drug combinations on treatment outcomes, com-
prising:

generating a plurality of genomic and clinical variables

from the combination of (1) comprehensive genomic
data, (2) EHR data, and (3) clinical treatment data, for
each of a plurality of patients; wherein the plurality of
patients comprise at least a first subset who have been
treated with at least one first drug for a disease, and a
second subset who have been treated with at least one
second, different drug for the same disease, the first
subset not entirely overlapping the second subset;

based on the plurality of genomic and clinical variables
and a two by two contingency table representing the
number of patients falling in the four different combi-
nations of treatments comprising (1) the number of
patients having been treated both by the first drug and
second drug, (2) the number of patients having been
treated by the first drug but not the second drug, (3) the
number of patients having been treated by the second
drug but not the first drug, and (4) the number of
patients having not been treated by either the first drug
or the second drug, using a Cox Proportional Hazards
model to calculate independent risk factors, cumulative
hazard-ratios, and p-values for the combination of the
first drug and the second drug; and

determining the nature of the combination of the first drug
and the second drug as being one of additive, syner-
gistic, and antagonistic with respect to treating the
disease.

2. The method of claim 1, further comprising clinically
testing the combination of the first drug and the second drug
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in treating the disease on a group of subjects if the combi-
nation of the first drug and the second drug has been
determined to be synergistic.

3. The method of claim 1, wherein the genomic and
clinical variables comprise one of: gene expression, loss of
heterozygosity (LOH), copy number alteration (CNA),
somatic and germline mutations, Microsatellite instability
(MSI), tumor mutational burden (TMB), Chromosomal
Variation, Mutational signatures, human Leukocyte Antigen
Typing (HLA), and human pathogen.

4. A computer-implemented method of determining drug
effect on treatment outcomes, comprising:

generating a plurality of genomic and clinical variables
from the combination of (1) comprehensive genomic
data, (2) EHR data, and (3) clinical treatment data, for
each of a plurality of patients; wherein some, but not
all, of the plurality of patients share a common bio-
marker, and wherein some, but not all, of the plurality
of patients have been treated with a same drug for a
disease;

based on the plurality of genomic and clinical variables
and a two by two contingency table representing the
following combinations: (1) the number of patients
having the biomarker and having been treated with the
drug, (2) the number of patients having the biomarker
but having not been treated by the drug, (3) the number
of patients not having the biomarker and having been
treated with the drug, and (4) the number of patients not
having the biomarker and not having been treated by
the drug, using a Cox Proportional Hazards model to
calculate independent risk factors, cumulative hazard-
ratios, and p-values for the combination of the drug and
the biomarker; and

determining the nature of the combination of the drug and
the biomarker as being one of additive, synergistic, and
antagonistic with respect to treating the disease.

5. A computer-implemented method of determining
effects of drug combinations on treatment outcomes, com-
prising:

generating a plurality of genomic and clinical variables

from the combination of (1) comprehensive genomic
data, (2) EHR data, and (3) clinical treatment data, for
each of a plurality of patients; wherein the plurality of
patients comprise at least a first subset who have been
treated with at least one first drug for a disease, a
second subset who have been treated with at least one
second, different drug for the same disease, and a third
subset who have been treated with at least one third
drug which is different from the first drug and different
from the second drug for the same disease, each of the
first, second, and third subsets not entirely overlapping
with any of other subsets;

based on the plurality of genomic and clinical variables
and contingency tables including information of
patients having been treated by one or more of the first,
second and third drugs, and using a Cox Proportional
Hazards model, calculating independent risk factors,
cumulative hazard-ratios, and p-values for the combi-
nation of the first and the second drug, the combination
of the first and the second drug, and the combination of
the first and the second drug, and
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determining the nature of all possible binary combinations
of the first, second and third drug as being one of
additive, synergistic, and antagonistic with respect to
treating the disease.

6. The method of claim 5, further comprising:

selecting a combination of two drugs based on the deter-

mined nature of all possible binary combinations of
drugs.
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