
US 20220188427A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0188427 A1

WENGER (43) Pub . Date : Jun . 16 , 2022

Publication Classification (54) CRYPTOGRAPHIC PROCESSING DEVICE
AND METHOD FOR
CRYPTOGRAPHICALLY PROCESSING
DATA

(71) Applicant : Infineon Technologies AG , Neubiberg
(DE)

(72) Inventor : Erich WENGER , Munich (DE)

(51) Int . Ci .
GO6F 21/60 (2006.01)
G06F 7/544 (2006.01)

(52) U.S. CI .
CPC GO6F 21/602 (2013.01) ; G06F 7/5443

(2013.01)
(57) ABSTRACT
According to an embodiment , a cryptographic processing
device is described comprising a memory configured to store
a first operand and a second operand and a cryptographic
processor configured to determine , for cryptographically
processing the data , the product of the first operand with the
second operand by determining , for each result word index
in a result word index range , a result data word for the result
word index by accumulating products of sums of words of
the first operand and the second operand and subtracting
excess terms .

(21) Appl . No .: 17 / 548,626

(22) Filed : Dec. 13 , 2021
a

(30) Foreign Application Priority Data

Dec. 14 , 2020 (DE) 102020133312.9

100

101

107

Processor 102 Memory 103
108 Operand A Register 104 Operand A
109

Operand B Register 105 Operand B
110 Accumulator (s) 106

Result C 111 Multiplier

112
Adder

FIG 1

100

101

Patent Application Publication

107

102

Processor

Memory

103

108

Operand A Register

104

Operand A

109

Operand B Register

105

Operand B

110

Accumulator (s)

106

Result C

Jun . 16 , 2022 Sheet 1 of 7

111

Multiplier
112

Adder

US 2022/0188427 A1

FIG 2

C { 14 }

C17)

CO]

C [14]

C171

CO]

201

A [7] BIO

A [7] B [0]

202

Patent Application Publication

A [7] BIN

ATOB [O] A [7] B17

ALOJB [O]

AOB

A [OJB 7]

Jun . 16 , 2022 Sheet 2 of 7

C [14]

C [71

C [o

C [141

CO

203

204

A17B0

A [7] B [0]

A17] B17

AL01B [0]

A71B71

AOB [O]

US 2022/0188427 A1

A [0] B171

A [0B [7]

FIG 3

300

Patent Application Publication

C [i + 1]

C [14]

CIT]

Lolo

304
A [7] B [0]

303

2

BD

301

Jun . 16 , 2022 Sheet 3 of 7

1b

2

A [7] BAZE

la

ALDIB [O]

la

302

3

-A [i]

US 2022/0188427 A1

ADOBI7)

FIG 4

Patent Application Publication

C (14)

C17)

C [0]

A71B [0]

401

A [4] B (0)

403

Jun . 16 , 2022 Sheet 4 of 7

A [7] B17)

ALOJB [0)

402

A [O] B141

US 2022/0188427 A1

A [0] B [7]

FIG 5

504
505

500

503
504

Patent Application Publication

505

503
504

501

505

5032 504

505

6

502

Jun . 16 , 2022 Sheet 5 of 7 US 2022/0188427 A1

Patent Application Publication Jun . 16 , 2022 Sheet 6 of 7 US 2022/0188427 A1

600

601
?

Memory Cryptographic processor

602

FIG 6

Patent Application Publication Jun . 16 , 2022 Sheet 7 of 7 US 2022/0188427 A1

700
FIG 7

701

Store operands

702

For each result data word

703

Accumulate over operand index pairs

704

Add product of operand words with index equal to half
the result word index (if even)

705

Take carry into account

706

Subtract excess terms

US 2022/0188427 A1 Jun . 16 , 2022
1

CRYPTOGRAPHIC PROCESSING DEVICE
AND METHOD FOR

CRYPTOGRAPHICALLY PROCESSING
DATA

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority to German Patent
Application DE 10 2020 133 312.9 , which was filed on Dec.
14 , 2020 , the entire contents of which are incorporated
herein by reference .

TECHNICAL FIELD

[0002] The present disclosure relates to cryptographic
processing devices and methods for cryptographically pro
cessing data .

BACKGROUND

a

a

[0003] In cryptographic processing of data , such as cal
culation of a signature , encryption or decryption of data , the
multiplication and addition of large integers are typical
operations , which are to be carried out a high number of
times . This is in particular the case in asymmetric cryptog
raphy based on ECC (elliptic curve cryptography) or RSA
(Rivest , Shamir , Adleman) . Therefore , especially the multi
plication , with its quadratic complexity , usually defines the
majority of the runtime of the cryptographic processing of
data . Accordingly , approaches for optimizing the multipli
cation of large integers is desirable for cryptographic pro
cessing performance .

BRIEF DESCRIPTION OF THE FIGURES

operand word index range and a cryptographic processor
configured to determine , for cryptographically processing
the data , the product of the first operand with the second
operand by determining , for each result word index in a
result word index range , a result data word for the result
word index by accumulating , over all pairs of a first operand
word index and a second operand word index with the first
operand word index being bigger than the second operand
word index and the sum of the first operand word index and
the second operand word index being equal to the result
word index the products of the sum of the word of the first
operand for the first operand word index and the word of the
first operand for the second operand word index with the
sum of the word of the second operand for the first operand
word index and the word of the second operand for the
second operand word index , adding , if the result word index
is even two times the product of the word of the first operand
having the operand word index equal to half the result word
index and the word of the second operand having the
operand word index equal to half the result word index , if
there is a positive carry from a result data word of a lower
index than the result word index to the result data word ,
adding the carry , if there is a negative carry from a result
data word of a lower index than the result word index to the
result data word , subtracting the carry and subtracting , for
each first operand word index occurring in the pairs over
which the cryptographic processor performs the accumula
tion for the result word index , the product of the first operand
word with the first operand word index and the second
operand word with the first operand word index .
[0013] According to a further embodiment , a method for
cryptographically processing data according to the above
cryptographic processing device is provided .
[0014] The following detailed description refers to the
accompanying drawings that show , by way of illustration ,
specific details and aspects of this disclosure in which the
invention may be practiced . Other aspects may be utilized
and structural , logical , and electrical changes may be made
without departing from the scope of the invention . The
various aspects of this disclosure are not necessarily mutu
ally exclusive , as some aspects of this disclosure can be
combined with one or more other aspects of this disclosure
to form new aspects .
[0015] FIG . 1 shows an example of a data processing
device 100 .
[0016] The data processing device 100 may be a computer ,
or a controller or a microcontroller , e.g. in a vehicle , e.g. an
ECU (Electronic Control Unit) in a car . It may also be a chip
card integrated circuit (IC) of a smart card such as a smart
card of any form factor , e.g. for a passport or for a SIM
(Subscriber Identity Module) .
[0017] The data processing device 100 has an integrated
circuit in the form of a chip 101. The chip 101 may be a
control chip and implement a processor 102 and a memory
103 , e.g. a RAM (Random Access Memory) . It should be
noted that the processor 102 and the memory 103 may also
be implemented on separate chips . The chip 101 may also
be , for example , an RFID (Radio Frequency Identification)
chip or implement a SIM (Subscriber Identity Module) for
a mobile phone . The chip 101 may be provided for a security
application , i.e. may be a security chip . For example , the
memory 103 stores secret data used for a cryptographic
operation , e.g. to authenticate a user or to encrypt / decrypt or
to sign data , for example according to an asymmetric

[0004] In the drawings , like reference characters generally
refer to the same parts throughout the different views . The
drawings are not necessarily to scale , emphasis instead
generally being placed upon illustrating the principles of the
invention . In the following description , various aspects are
described with reference to the following drawings , in
which :
[0005] FIG . 1 shows an example of a data processing
device .
[0006] FIG . 2 shows four diagrams , each illustrating an
approach for multiplication of two operands .
[0007] FIG . 3 shows a diagram illustrating a further mul
tiplication method .
[0008] FIG . 4 illustrates the multiplication method
described above in the way of FIG . 2 and FIG . 3 .
[0009] FIG . 5 illustrates a combination of the multiplica
tion method described with parallel product scanning as it is
described with reference to FIG . 3 .
[0010] FIG . 6 shows a cryptographic processing device
according to an embodiment .
[0011] FIG . 7 shows a flow diagram illustrating a method
for cryptographically processing data .

a

DETAILED DESCRIPTION

[0012] According to various embodiments , a crypto
graphic processing device is provided including a memory
configured to store a first operand and a second operand
represented by data to be cryptographically processed ,
wherein the first operand and the second operand each
include a data word for each operand word index in an

US 2022/0188427 A1 Jun . 16 , 2022
2

cryptography scheme . Accordingly , the data processing
device may be a cryptographic processing device , i.e. a
device that performs cryptographic processing of data .
[0018] Asymmetric cryptography based on ECC (elliptic
curve cryptography) or RSA (Rivest , Shamir , Adleman)
requires the addition and multiplication of long integers
(typically with a length of 256 bits to 4096 bits) . Also , e.g. ,
the isogeny - based post - quantum algorithm SIKE requires
the same . Especially the multiplication , with its quadratic
complexity , usually defines the majority of the runtime of
those applications . To compute these algorithms efficiently
on a processor 102 (or coprocessor) , the long integers may
be split into words of 32 bit or 64 bit length . A hardware
implementation may follow a similar approach .
[0019] In the following , examples are described in which
two operands A and B , stored in arrays 104 , 105 in the
memory 103 as A [] and B [] are processed , i.e. multiplied .
Both operands are n - words large (i.e. are vectors of n
words) . The product C [] = A [] * B [] is stored as 2n - word
large array 106 .
[0020] The word length in bit) is denoted by w . The
multiplication sign ** ' is often omitted in the following for
simplicity , i.e. A [] * B [] = A [] B [] .
[0021] An integer A of length n can be represented by
N = [n / w] words . Let A [O] denoted the least significant word
and let A [N - 1] the most significant word (analogously for
integers B and C) .
[0022] The processor 102 includes a set of registers 107 in
which it stores data on which it operates , for example one or
more registers 108 for storing
[0023] The processor 102 includes a register set 107 in
which it stores data it operates on , e.g. one or more registers
108 for storing data (e.g. one or more words) of A , one or
more registers 109 for storing data (e.g. one or more words)
of B and one or more result registers (e.g. accumulators) 110
for storing and accumulating results of partial multiplica
tions .
[0024] FIG . 2 shows four diagrams 201 , 202 , 203 , 204 ,
each illustrating an approach for multiplication of two
operands .
[0025] The diagrams 201 to 204 illustrate the multiplica
tion approaches for n = 8 . Each dot in the diagrams 201 to 204
represents a multiplication of words of the operands A and
B. Arrows indicate the order in which the processor 102
performs partial multiplications one after the other .
[0026] The first diagram 201 illustrates the operand - scan
ning or schoolbook multiplication method . According to this
multiplication approach , the processor 102 loads one oper
and word A [i] (into register set 107 , e.g. a register 108) and
multiplies A [i] with all B [j] (which are successively loaded
to a register 109) before moving on to the next operand
A [i + 1] . The resulting product (for each A [i]) is added to the
intermediate product C [] in memory 103 .
[0027] The second diagram 202 illustrates product - scan
ning or column - wise multiplication method . According to
this multiplication approach , all A [i] are multiplied with B [j]
wherein the sum of i + j is kept constant . After summing up
all intermediate products (for constant i + j , e.g. in an accu
mulator 110) , the resulting C [i + j] is stored back to memory
103. Then the next column i + j + 1 is processed .
[0028] The third diagram 203 illustrates the hybrid mul
tiplication method which can be seen to combine the oper
and - scanning method and the product scanning method .
Globally , it performs product scanning . Locally , it performs

operand - scanning . While the product scanning reduces the
number of necessary load instructions (i.e. loads to register
set 107 from memory 103) , the local operand - scanning is
performed on the local registers 107 of a processor 102. The
register set 107 stores a 2d + 2 words large accumulator and
ad - size operand . The other operand can be loaded to register
set 107 and processed iteratively .
[0029] The fourth diagram 204 illustrates the operand
caching multiplication method . This method performs prod
uct - scanning locally and operand - scanning globally . It
trades additional load / store (LD / ST) instructions for the
more efficient use of the local register set 107. Only three
words are needed for the accumulator 110 and 2e words are
used to cache the processed operands (e being a design
parameter) .

[0030] The methods illustrated in FIG . 2 were designed to
efficiently use an available register set 107 of a processor
102 in software . In hardware there is a similar challenge .
The challenge is to reduce the number of memory accesses
with registers , and consequently achieve the best perfor
mance , with a minimal number of added registers .
[0031] FIG . 3 shows a diagram 300 illustrating a further
multiplication method .
[0032] Similarly to the diagrams of FIG . 2 , the diagram
300 illustrates the multiplication approaches for n = 8 , each
dot 301 represents a multiplication of words of the operands
A and B and arrows indicate the order in which partial
multiplications are performed one after the other .
[0033] In the form in the two - dimensional representation
of the overall multiplication of FIG . 3 , each “ row ” 302 (from
top right to bottom left) corresponds to an A [i] , each
“ diagonal ” 304 corresponds to a B [j] and each “ column " 304
corresponds to a C [i + j] .
[0034] The multiplication method of FIG . 3 is denoted as
parallel - product scanning . The parallel - product scanning
performs globally product scanning and locally operand
scanning . In the local register - file 107 , it keeps 2 + f accu
mulator registers 110 and f operand registers 108 , 109. It is
assumed that each operand register 108 , 109 and each
accumulator register 110 stores one word .
[0035] From one processed operand A [i] to A [i + 1] , f - 1
local registers of operand B [] can be re - used (and do not
need to be fetched again from memory 103) .
[0036] In FIG . 3 , blocks of word multiplications 301 of
three different base types are shown : block types 1 (with
variants la and 1b) , 2 and 3. The block type la occurs two
times (a big and a small version) and the block type 2 occurs
two times . The other block types occur only one time . It
should be noted that FIG . 3 is a simple example with n = 8 .
For higher n , the various block types may occur much more
often .

a

[0037] It should be noted that the blocks form , from left to
right , block columns , i.e. , “ vectors of blocks ” (4) ,

1b (10)

US 2022/0188427 Al Jun . 16 , 2022
3

a

a

[0045] In all the multiplication methods illustrated in FIG .
2 and FIG . 3 , word multiplications A [i] * B [j] are carried out .
For this , the Chip 101 may for example include a w - bit
multiplier 111 .
[0046] In a direct implementation , Nº word multiplica
tions are required for multiplying two integers
[0047] According to various embodiments , a multiplica
tion method is used which allows an asymptotic runtime
enhancement of up to two with respect to conventional
multiplication .
[0048] This speed - up can be achieved by dedicated hard
ware design which requires only little additional chip area :
the w - bit - multiplier 111 is replaced by a w + 1 - bit - multiplier
111 and two w - bit - adders 112 are additionally included . This
also holds in case of a software implementation (by emu
lating the behavior) , if a multiplication in hardware takes
longer than an addition .
[0049] To achieve the speed - up , the word multiplications
A [i] * B [j] and A [j] * B [i] are combined by :

(A [i] + A [j]) * (B [i] + B [7]) = A [i] B [i] + A [i] B [j] + A [j] B [i] + A
[] B [j]

For example , to the right , a block of type 2 is above a block
of type la . Block columns are similarly formed in case of
higher dimensions .
[0038] The block types differ in their form . Accordingly ,
the operations carried out may be different for different
blocks .
[0039] The blocks with the biggest performance impact
are blocks la and 1b . They have a width of f = 4 columns in
the example of FIG . 3 .
[0040] For each of the f columns , one A [i] (of the current
row 302) is multiplied with the local B [j] (of the current
diagonal 303) and added to the local accumulator 110 (for
the current column 304) . This happens independently from
parallel product scanning . In other words , results of partial
multiplications are accumulated taking the indices of the
data words of the operands into account . This means that
A [i] * B [j] for all pairs of i , j with i + j being constant need to
be accumulated for the result data word C [i + j] . If the
maximum value of the data word C [i + j] is exceeded the
exceeding amount is carried over to the next data words
C [i + j + 1] and C [i + j + 2] .
[0041] According to one embodiment , the processor 102
processes the blocks from right to left and bottom to top , i.e.
(small) block la , (right) block 2 , (big) block la , (left) block
2 , block 3 , block 1b block 4. The processor 102 processes
each of the blocks row - wise from bottom to top . From one
row 302 to the next , f - 1 words of B [] can be re - used . See
for example (big) block la : in the bottom row , the leftmost
B (which is B [7]) may not be re - used for the row above ,
while the others (B [6] , B [5] , B [4]) can . B [3] has to be
loaded . In other words , B [7] is exchanged for B [3] .
[0042] The difference between the blocks la and 1b is that
while the processor 102 can start processing block 1b with
already cached (i.e. loaded) words of B [] , it needs to start
the processing of the blocks la with loading all necessary
words of B [] . In turn , the processor 102 finishes the
processing of block 1b by storing the accumulated multi
plications to C [] in the memory 103 in result array 106 .
[0043] In the processing of blocks 2 , the processor 102
stores the accumulated registers to the destination memory
array for C [] 106. When the processor processes blocks 2 ,
it still performs local operand - scanning , just processing
shorter rows (e.g. in comparison to block 1a) . As all neces
sary words of B [] are already available from the respective
preceding block la , it does not need to fetch further words
of B [] . Only additional words of A [] need to be fetched . In
the end , there are only two accumulator registers 110 left
over , i.e. still allocated , namely those storing the two most
significant words of the result of processing block 2. Those
two are forwarded (carried over) to the following block
column (as the two least significant accumulator words) .
[0044] At the start of block 3 , only the two accumulator
registers 110 storing the carried over words are allocated . At
this point , according to one embodiment , there are sufficient
registers available to load all A [i] and B [j] that are needed
within block 3. Once the processor 102 has processed a row
with an A [i] , it can re - purpose the register 108 storing the
A [i] as an additional accumulator register 110. From one
row 302 to the next , the accumulator increases by one word
register 110 , until the accumulator finally requires f + 2
words , i.e. includes f + 2 accumulator registers 110 of one
word each .

[0050] Namely , if considering for example the second
diagram 202 of FIG . 2 , it can be seen that each column
(except for the first and the last) include word - multiplica
tions A [i] * B [j] and A [j] * B [i] . Therefore , the sum of the
word - multiplications over the column includes the sum
A [i] B [j] + A [j] B [i] .
[0051] Therefore , these two word - multiplications can be
combined by the product (A [i] + A [j]) * (B [i] + B [j]) by sub
tracting from the result of this product the word - products
A [i] B [i] and A [j] B [i] .
[0052] In the following , an example for an algorithm in
two parts is given . The second part serves for subtracting the
word - products A [i] B [i] which are generated in the first part
of the algorithm . Note that ACC is at least three w - bit words
wide .

Part 1 :

for col = 0..2 * N - 2

= for all i + j = col and i > = j
if i ! = j
ACC — ACC + (A [i] + A [j]) * (B [i] + B [j])

else

ACC — ACC + 2 * A [i] * B [i] = ACC + (A [i] + A [i]) * (B [i] + 0)
C [col] + ACC [O]
ACC + ACC >> W

C [2 * N - 1] ACC [O]
C [2 * N - 2] — ACC [1]

[0053] Part 1 generates the following result in memory for
an example with N = 4 .
[0054] Each column corresponds (from right to left) a
C [col] (from col = 0 to 2N - 1) , i.e. indicates the word - multi
plications which are accumulated in the respective C [col] .

2

US 2022/0188427 A1 Jun . 16 , 2022
4

A [1] B [3]
A [2] B [3] A [2] B [2]
A [3] B [2] A [3] B [1] A [3] B [3]

A [O] B [3] A [0] B [2] A [0] B [1] A [O] B [0]
A [1] B [2] A [1] B [1] A [1] B [0]
A [2] B [1] A [2] B [0]
A [3] B [0]
A [O] B [O] A [O] B [O] A [O] B [0] A [O] B [0]
A [1] B [1] A [1] B [1] A [1] B [1]
A [2] B [2] A [2] B [2]
A [3] B [3]

A [1] B [1]
A [2] B [2] A [2] B [2]
A [3] B [3] A [3] B [3] A [3] B [3]

ms
are

[0055] As can be seen , the C [col] include excess
A [O] B [0] , A [1] B [1] , A [2] B [2] , A [3] B [3] . Those
removed in the second part of the algorithm in O (n) opera
tions .

Part 2 :

[0056] for col = 0 ... N - 1
[0057] ACCO < ACCO + A [col] * B [col]
[0058] ACC1 - ACC1 + C [col] -ACCO
[0059] C [col] < ACC1 [0]
[0060] ACCI < ACCI >> w

[0061] for col = N ... 2 * N - 2
[0062] ACCO < ACCO - A [col - N] * B [col - N]
[0063] ACC1 < ACC1 + C [col] -ACCO
[0064) C [col] < ACC1 [0]]
[0065] ACC1_ACC1 >> w
[0066] C [2 * N - 1] ACC1 + C [2 * N - 1] -ACCO

[0067] In the above pseudo - code , an arrow ' < ' denotes
assigning the value of the right - hand side to the left - hand
side and >> denotes a shift to the right of the operand on the
left - hand side by the amount specified on the right - hand
side)
[0068] The two parts 1 and 2 can be combined to a single
algorithm . This allows updating two accumulators ACCO
and ACC1 simultaneously and reduce the accesses to C [col]
to a minimum .

[2®N

described above calculating (A [i] + A [j]) * (B [i] + B [j]) (and
correcting it afterwards) . As indicated by arrows the algo
rithm thus passes through each column only until it has
reached the middle region 403 which includes the multipli
cations A [i] * B [i] .
[0073] The upper half 401 includes (N - 1) N / 2 = N2 - N / 2
multiplications . The middle region 403 includes N multipli
cations which are performed twice . Thus , the multiplication
method described requires N2 / 2 + 3N / 2 in total . As mention
above , conventional product scanning requires N? multipli
cations .
[0074] The multiplication method described and product
scanning both require N² load operations as well as 2N store
operation .
[0075] The multiplication method described thus does not
reduce the number of load operations required . This may be
addressed by enhancing the memory bandwidth or by using
an algorithm which reduces the number of memory
accesses .

[0076] FIG . 5 illustrates a combination of the multiplica
tion method described with parallel product scanning as it is
described with reference to FIG . 3 .
[0077] In the upper half 501 the operand A [] is loaded in
the columns 503 , the operand B [] is loaded in the column
504 and both are loaded in the columns 505. In the middle
region 502 , both are always loaded .
[0078] The block columns are processed from top to
bottom (i.e. the arrows arranged in a column are processed
from top to bottom) .
[0079] In summary , according to various embodiments , a
cryptographic processing device is provided as illustrated in
FIG . 6 .
[0080] FIG . 6 shows a cryptographic processing device
600 according to an embodiment .
[0081] The cryptographic processing device 600 includes
a memory 601 configured to store a first operand and a
second operand represented by data to be cryptographically
processed , wherein the first operand and the second operand
each include a data word for each operand word index in an
operand word index range .
[0082] The cryptographic processing device 600 further
includes a cryptographic processor 602 configured to deter
mine , for cryptographically processing the data , the product
of the first operand with the second operand by determining ,
for each result word index in a result word index range , a
result data word for the result word index .
[0083] The cryptographic processor does this by accumu
lating , over all pairs of a first operand word index and a
second operand word index with the first operand word
index being bigger than the second operand word index and
the sum of the first operand word index and the second
operand word index being equal to the result word index the
products of

Combined Algorithm
[0069]

=

for col = 0..2 * N - 2
for all i + j = col and i > = 1

if i ! = j
ACCO — ACCO + (A [i] + A [i]) * (B [i] + B [j])

else
ACCO – ACCO + 2 * A [i] * B [i]

if col < = N - 1
ACC1 – ACC1 + A [col] * B [col]

ACCO ACCO - ACC1
if col > = N - 1

ACC1 – ACC1 - A [col - N + 1] * B [col - N + 1]
C [col] – ACCO [0]
ACCO ACCO >> W

C [2 * N - 1] + ACCO [0]

a

[0070] It should be noted that the multiplications related to
ACC1 do not require separate load operations . Those mul
tiplications can be performed right next to the multiplica
tions related to ACCO in which the same operands are
processed .
[0071] FIG . 4 illustrates the multiplication method
described above in the way of FIG . 2 and FIG . 3 .
[0072] Each multiplication A [j] B [i] in the lower half 402
is performed together with the multiplication A [i] B [j] in the
upper half 401 , for example A [0] B [4] with A [4] B [0] by , as

US 2022/0188427 Al Jun . 16 , 2022
5

a

[0084] the sum of the word of the first operand for the
first operand word index and the word of the first
operand for the second operand word index with

[0085] the sum of the word of the second operand for
the first operand word index and the word of the second
operand for the second operand word index ,

by adding (to the result of the accumulation) , if the result
word index is even two times the product of the word of the
first operand having the operand word index equal to half the
result word index and the word of the second operand having
the operand word index equal to half the result word index ,
by , if there is a positive carry from a result data word of a
lower index than the result word index to the result data
word , adding the carry , and , if there is a negative carry from
a result data word of a lower index than the result word index
to the result data word , subtracting the carry (i.e. by taking
into account a possible carry) and
by subtracting (from the result of the accumulation plus , if
applicable , the addition) , for each first operand word index
occurring in the pairs over which the cryptographic proces
sor performs the accumulation for the result word index , the
product of the first operand word with the first operand word
index and the second operand word with the first operand
word index .
[0086] According to various embodiments , in other words ,
a cryptographic processing device determines the product of
two multi - word operands by determining , for each result
word index in a result word index range , a result data word
by accumulating products of sums of words of the first
operand and the second operand and subtracting excess
terms arising in the accumulation .
[0087] It should be noted that the carry from one result
data word to another result data word may include more than

a

having the operand word index equal to half the result
word index and the word of the second operand having
the operand word index equal to half the result word
index

[0097] in 705 , if there is a positive carry from a result
data word of a lower index than the result word index
to the result data word , adding the carry , and , if there
is a negative carry from a result data word of a lower
index than the result word index to the result data word ,
subtracting the carry ; and

[0098] in 706 subtracting , for each first operand word
index occurring in the pairs over which the crypto
graphic processor performs the accumulation for the
result word index , the product of the first operand word
with the first operand word index and the second
operand word with the first operand word index .

[0099] It should be noted that 703 to 706 do not have
necessarily be performed in the order shown in FIG . 7. In
particular , for example , taking into account a possible carry
(which may be negative or positive) can happen at a different
stage , e.g. right in the beginning or in the end .
[0100] Various Examples are described in the following :
[0101] Example 1 is a cryptographic processing device as
illustrated in FIG . 6 .
[0102] Example 2 is the cryptographic processing device
of Example 1 , wherein the cryptographic processor includes
a further accumulator and is configured to accumulate , as a
further accumulation , by means of the second accumulator ,
the products of the first operand word with the first operand
word index and the second operand word with the first
operand word index over all first operand word index
occurring in the pairs over which the cryptographic proces
sor performs the accumulation and is configured to subtract
the result of the further accumulation from the result of the
accumulation and the adding .
[0103] Example 3 is the cryptographic processing device
of Example 2 , wherein the cryptographic processor is con
figured to determine the result of the further accumulation
for a result word from the result of the further accumulation
for the previous result word according to a determination
order of the result words .
[0104] Example 4 is the cryptographic processing device
according to any one of Examples 1 to 3 , wherein the data
includes data to be decrypted or to be encrypted , a crypto
graphic key , data for a cryptographic key exchange and / or a
cryptographic signature .
[0105] Example 5 is the cryptographic processing device
of any one of Examples 1 to 4 , wherein the cryptographic
processing device is configured to derive the first operand
and the second operand from the data to be cryptographi
cally processed .
[0106] Example 6 is the cryptographic processing device
of any one of Examples 1 to 5 , further including an input
configured to receive at least a part of the data to be
cryptographically processed .
[0107] Example 7 is the cryptographic processing device
of Example 6 , wherein the input is configured to receive at
least a part of the data via a communication network
connection .
[0108] Example 8 is a method for cryptographically pro
cessing data as illustrated in FIG . 7 .
[0109] Example 9 is the method of Example 8 , including
accumulating , as a further accumulation the products of the
first operand word with the first operand word index and the

one bit .

a a

[0088] According to various embodiments , a method is
provided as illustrated in FIG . 7 .
[0089] FIG . 7 shows a flow diagram 700 illustrating a
method for cryptographically processing data .
[0090] In 701 , storing a first operand and a second operand
represented by data to be cryptographically processed are
stored . The first operand and the second operand each
include a data word for each operand word index in an
operand word index range .
[0091] In 702 for cryptographically processing the data ,
the product of the first operand with the second operand is
determined by determining , for each result word index in a
result word index range , a result data word for the result
word index .
[0092] This is performed by

[0093] in 703 , accumulating , over all pairs of a first
operand word index and a second operand word index
with the first operand word index being bigger than the
second operand word index and the sum of the first
operand word index and the second operand word
index being equal to the result word index the products
of

[0094] the sum of the word of the first operand for the
first operand word index and the word of the first
operand for the second operand word index with

[0095] the sum of the word of the second operand for
the first operand word index and the word of the second
operand for the second operand word index ;

[0096] in 704 , adding , if the result word index is even
two times the product of the word of the first operand

a

US 2022/0188427 Al Jun . 16 , 2022
6

[0117] In particular , the cryptographic processing device
may be implemented by one or more circuits , wherein a
“ circuit ” may be understood as any kind of a logic imple
menting entity , which may be hardware , software , firmware ,
or any combination thereof . Thus , in an embodiment , a
“ circuit ” may be a hard - wired logic circuit or a program
mable logic circuit such as a programmable processor , e.g.
a microprocessor (e.g. a Complex Instruction Set Computer
(CISC) processor or a Reduced Instruction Set Computer
(RISC) processor) . A “ circuit ” may also be software being
implemented or executed by a processor , e.g. any kind of
computer program . Any other kind of implementation of the
respective functions which are described herein may also be
understood as a “ circuit " in accordance with an alternative
embodiment .
[0118] Although specific embodiments have been illus
trated and described herein , it will be appreciated by those
of ordinary skill in the art that a variety of alternate and / or
equivalent implementations may be substituted for the spe
cific embodiments shown and described without departing
from the scope of the present invention . This application is
intended to cover any adaptations or variations of the
specific embodiments discussed herein . Therefore , it is
intended that this invention be limited only by the claims and
the equivalents thereof .

a

REFERENCE SIGNS

second operand word with the first operand word index over
all first operand word index occurring in the pairs over
which the cryptographic processor performs the accumula
tion and subtracting the result of the further accumulation
from the result of the accumulation and the adding .
[0110] Example 10 is the method of Example 9 , including
determining the result of the further accumulation for a
result word from the result of the further accumulation for
the previous result word according to a determination order
of the result words .
[0111] Example 11 is the method according to any one of
Examples 8 to 10 , wherein the data includes data to be
decrypted or to be encrypted , a cryptographic key , data for
a cryptographic key exchange and / or a cryptographic sig
nature .
[0112] Example 12 is the method of any one of Examples
8 to 11 , including deriving the first operand and the second
operand from the data to be cryptographically processed .
[0113] Example 13 is the method of any one of Examples
8 to 12 , further including receiving at least a part of the data
to be cryptographically processed .
[0114] Example 14 is the method of Example 13 , includ
ing receiving at least a part of the data via a communication
network connection .
[0115] According to various embodiments , a crypto
graphic processing device is provided including storing
means for storing a first operand and a second operand
represented by data to be cryptographically processed ,
wherein the first operand and the second operand each
include a data word for each operand word index in an
operand word index range ; determining , for cryptographi
cally processing the data , the product of the first operand
with the second operand , determining means for determin
ing , for each result word index in a result word index range ,
a result data word for the result word index by accumulating ,
over all pairs of a first operand word index and a second
operand word index with the first operand word index being
bigger than the second operand word index and the sum of
the first operand word index and the second operand word
index being equal to the result word index the products of
the sum of the word of the first operand for the first operand
word index and the word of the first operand for the second
operand word index with the sum of the word of the second
operand for the first operand word index and the word of the
second operand for the second operand word index and
adding , if the result word index is even two times the product
of the word of the first operand having the operand word
index equal to half the result word index and the word of the
second operand having the operand word index equal to half
the result word index , if there is a positive carry from a result
data word of a lower index than the result word index to the
result data word , adding the carry , if there is a negative carry
from a result data word of a lower index than the result word
index to the result data word , subtracting the carry and
subtracting , for each first operand word index occurring in
the pairs over which the cryptographic processor performs
the accumulation for the result word index , the product of
the first operand word with the first operand word index and
the second operand word with the first operand word index .
[0116] The cryptographic processing device according to
any one of the examples described above may be imple
mented in software (i.e. by means of a processor executing
a software) or in hardware (i.e. by a hard - wired hardware
circuit , possibly controlled by firmware or the like) .

a

[0119] 101 chip
[0120] 102 processor
[0121] 103 memory
[0122] 104 , 105 operands
[0123] 106 result
[0124] 107 register set
[0125] 108-110 register
[0126] 111 multiplier
[0127] 112 adder
[0128] 201-204 multiplication diagrams
[0129] 300 multiplication diagram
[0130] 301 partial multiplication
[0131] 302 row
[0132] 303 diagonal
[0133] 304 column
[0134] 401 upper half
[0135] 402 lower half
[0136] 403 middle region
[0137] 501 upper half
[0138] 502 middle regions
[0139] 503-505 columns
[0140] 600 cryptographic processing device
[0141] 601 memory
[0142] 602 cryptographic processor
[0143] 700 flow diagram
[0144] 701-706 processing
What is claimed is :
1. A cryptographic processing device comprising :
a memory configured to store a first operand and a second

operand represented by data to be cryptographically
processed , wherein the first operand and the second
operand each comprise a data word for each operand
word index in an operand word index range ; and

a cryptographic processor configured to determine , for
cryptographically processing the data , the product of
the first operand with the second operand

a

US 2022/0188427 Al Jun . 16 , 2022
7

by determining , for each result word index in a result
word index range , a result data word for the result word
index by accumulating , over all pairs of a first operand
word index and a second operand word index with the
first operand word index being bigger than the second
operand word index and the sum of the first operand
word index and the second operand word index being
equal to the result word index the products of
the sum of the word of the first operand for the first

operand word index and the word of the first operand
for the second operand word index with

the sum of the word of the second operand for the first
operand word index and the word of the second
operand for the second operand word index

adding , if the result word index is even , two times the
product of the word of the first operand having the
operand word index equal to half the result word index
and the word of the second operand having the operand
word index equal to half the result word index ;

if there is a positive carry from a result data word of a
lower index than the result word index to the result data
word , adding the carry ;

if there is a negative carry from a result data word of a
lower index than the result word index to the result data
word , subtracting the carry ; and

subtracting , for each first operand word index occurring in
the pairs over which the cryptographic processor per
forms the accumulation for the result word index , the
product of the first operand word with the first operand
word index and the second operand word with the first
operand word index .

2. The cryptographic processing device of claim 1 ,
wherein the cryptographic processor comprises a further
accumulator and is configured to accumulate , as a further
accumulation , by means of the second accumulator , the
products of the first operand word with the first operand
word index and the second operand word with the first
operand word index over all first operand word index
occurring in the pairs over which the cryptographic proces
sor performs the accumulation and is configured to subtract
the result of the further accumulation from the result of the
accumulation and the adding .

3. The cryptographic processing device of claim 2 ,
wherein the cryptographic processor is configured to deter
mine the result of the further accumulation for a result word
from the result of the further accumulation for the previous
result word according to a determination order of the result
words .

4. The cryptographic processing device according to
claim 1 , wherein the data comprises data to be decrypted or
to be encrypted , a cryptographic key , data for a crypto
graphic key exchange and / or a cryptographic signature .

5. The cryptographic processing device of claim 1 ,
wherein the cryptographic processing device is configured to
derive the first operand and the second operand from the data
to be cryptographically processed .

6. The cryptographic processing device of claim 1 , further
comprising an input configured to receive at least a part of
the data to be cryptographically processed .

7. The cryptographic processing device of claim 6 ,
wherein the input is configured to receive at least a part of
the data via a communication network connection .

8. A method for cryptographically processing data com
prising :

storing a first operand and a second operand represented
by data to be cryptographically processed , wherein the
first operand and the second operand each comprise a
data word for each operand word index in an operand
word index range ;

determining , for cryptographically processing the data ,
the product of the first operand with the second operand

by determining , for each result word index in a result
word index range , a result data word for the result word
index by

accumulating , over all pairs of a first operand word index
and a second operand word index with the first operand
word index being bigger than the second operand word
index and the sum of the first operand word index and
the second operand word index being equal to the result
word index

the products of
the sum of the word of the first operand for the first

operand word index and the word of the first operand
for the second operand word index with

the sum of the word of the second operand for the first
operand word index and the word of the second
operand for the second operand word index

adding , if the result word index is even two times the
product of the word of the first operand having the
operand word index equal to half the result word index
and the word of the second operand having the operand
word index equal to half the result word index ; and

subtracting , for each first operand word index occurring in
the pairs over which the cryptographic processor per
forms the accumulation for the result word index , the
product of the first operand word with the first operand
word index and the second operand word with the first
operand word index .

9. The method of claim 8 , further comprising accumulat
ing , as a further accumulation the products of the first
operand word with the first operand word index and the
second operand word with the first operand word index over
all first operand word index occurring in the pairs over
which the cryptographic processor performs the accumula
tion and subtracting the result of the further accumulation
from the result of the accumulation and the adding .

10. The method of claim 8 , further comprising determin
ing the result of the further accumulation for a result word
from the result of the further accumulation for the previous
result word according to a determination order of the result
words .

11. The method of claim 8 , wherein the data includes data
to be decrypted or to be encrypted , a cryptographic key , data
for a cryptographic key exchange and / or a cryptographic
signature .

12. The method of claim 8 , further comprising deriving
the first operand and the second operand from the data to be
cryptographically processed .

13. The method of claim 8 , further comprising receiving
at least a part of the data to be cryptographically processed .

14. The method of claim 8 , further comprising receiving
at least a part of the data via a communication network
connection .

*

