
US 20220114123A1
IT IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0114123 A1

Broussard et al . (43) Pub . Date : Apr. 14 , 2022

(54) DISTRIBUTED INTERRUPT PRIORITY AND
RESOLUTION OF RACE CONDITIONS

(52) U.S. CI .
CPC G06F 13/26 (2013.01) ; G06F 2212/1008

(2013.01) ; G06F 12/0875 (2013.01) ; G06F
13/4027 (2013.01) (71) Applicant : Advanced Micro Devices , Inc. , Santa

Clara , CA (US)

(57) ABSTRACT (72) Inventors : Bryan P Broussard , Austin , TX (US) ;
Paul Moyer , Fort Collins , CO (US) ;
Eric Christopher Morton , Austin , TX
(US) ; Pravesh Gupta , Bengaluru (IN)

(21) Appl . No .: 17 / 068,660

(22) Filed : Oct. 12 , 2020

Publication Classification

(51) Int . Ci .
G06F 13/26 (2006.01)
GO6F 13/40 (2006.01)
G06F 12/0875 (2006.01)

A method of operating a processing unit includes storing a
first copy of a first interrupt control value in a cache device
of the processing unit , receiving from an interrupt controller
a first interrupt message transmitted via an interconnect
fabric , where the first interrupt message includes a second
copy of the first interrupt control value , and if the first copy
matches the second copy , servicing an interrupt specified in
the first interrupt message .

computing
system
100

interconnect 125

core complex
105A

; I / O interfaces
120

core complex
105N

memory
controller (s)

130

network interface
135

Patent Application Publication Apr. 14 , 2022 Sheet 1 of 8 US 2022/0114123 A1

computing
system
100

interconnect 125

core complex
105A

: : I / O interfaces
120

core complex
105N

memory
controller (s)

130

network interface
135

FIGURE 1

Patent Application Publication Apr. 14 , 2022 Sheet 2 of 8 US 2022/0114123 A1

computing
system
100

node
230A

node
230N

core
231A 232A 234A core

233A ...

: 240A 240N

core
231N 232N 234N core

233N |
interconnect fabric

125

interrupt
controller

220

device
225A

device
225N

FIGURE 2

processing node 230A

Patent Application Publication

core 231A

core 231C

Ll cache 315A

L2 cache 320A

L2 cache 320C

Ll cache 315C

interrupt controller 232A

interrupt controller 232C

L3 cache 330

core 231B

core 231N

Apr. 14 , 2022 Sheet 3 of 8

Ll cache 315B

Ll cache 315N

L2 cache 320B

L2 cache 320N

interrupt controller 232B

interrupt controller 232N

to / from interconnect fabric 125

US 2022/0114123 A1

FIGURE 3

L2 cache 320A memory array 410

Patent Application Publication

from devices 225A - N

TPR shadow copy 411 danger flag 412

interrupt controller 220

cache control logic 413

comparison logic 414

task priority register (TPR) 421

Apr. 14 , 2022 Sheet 4 of 8

to / from processor core 231A

interrupt enable / mask register 422

communication interface 415

via L3 cache 330 and interconnect fabric 125

US 2022/0114123 A1

FIGURE 4

Patent Application Publication Apr. 14 , 2022 Sheet 5 of 8 US 2022/0114123 A1

processor core
310A

L2 cache
320A

interrupt
controller

220

update
TP
501

TPR
update
503

TPR
update
505

save shadow copy
504 store new

TPR value
507

interrupt
message

511

generate
interrupt
message

509
match 513

start ISR
517

interrupt
vector
515

update
??
551

TPR
update
553

TPR
update
555

interrupt
message

559

generate
interrupt
message

557
save shadow copy

554 store new
TPR value

561
no match 563

request
vector
565

interrupt
vector
569

interrupt
vector
567

start
ISR
571

FIGURE 5

Patent Application Publication Apr. 14 , 2022 Sheet 6 of 8 US 2022/0114123 A1

processor
core 310A

L2 cache
320A

interrupt
controller

220

ho
interrupt
message

603

generate
interrupt
message

601 check danger flag
(not asserted) 605

start ISR
609

interrupt
vector
607

update
interrupt
enable
611 interrupt

enable
update
613

interrupt
enable
update
617

interrupt
message

621

generate
interrupt
message
619 assert danger flag

615 store new
interrupt

enable value
623

check danger flag
(asserted) 625

deassert danger flág
626

request
vector
627

interrupt
vector
631

interrupt
vector
629

start
ISR
633

FIGURE 6

Patent Application Publication Apr. 14 , 2022 Sheet 7 of 8 US 2022/0114123 A1

interrupt
process
700

send interrupt vector
to core to start ISR

721 no yes
received

update of task
priority or interrupt
Cenable from core ?

701 interrupt
controller returned
interrupt vector ?

725 no yes

no update of task
priority detected at

L2 ?
705

send request for
interrupt vector to
interrupt controller

723 yes

no
update

of interrupt
enable detected

at L2 ?
711

obtain interrupt
vector from interrupt

message
719

yes

store shadow copy of
task priority value in

L2 cache
707

deassert danger flag
718

yes assert danger flag
713

no danger flag is
asserted ?

717 transmit update to
interrupt controller kt

709

yes

no no
received

interrupt message
from interrupt

controller
703

task priority
shadow copy = task priority from

message ?
715

yes

FIGURE 7

Patent Application Publication Apr. 14 , 2022 Sheet 8 of 8 US 2022/0114123 A1

interrupt
process
800

no received
update message ?

801

yes

update task priority or
interrupt enable value

803

no send indication that
interrupt does not need

to be serviced
815

valid
interrupt event

occurred ?
805

yes

send requested
interrupt vector

813

generate and send
interrupt message with
copy of task priority
and interrupt vector

807

no
received

request for
interrupt vector ?

809
no

yes requested
interrupt is
still valid ?

811 yes

FIGURE 8

US 2022/0114123 A1 Apr. 14 , 2022
1

DISTRIBUTED INTERRUPT PRIORITY AND
RESOLUTION OF RACE CONDITIONS

BACKGROUND

[0001] An interrupt is an event that changes instruction
execution from a currently executing instruction flow to
another instruction flow , and is typically generated by a
processor or a device coupled to the processor . A typical
interrupt processing mechanism changes program control
flow of the interrupted processor to an interrupt handler .
Input / output (I / O) device and central processing unit (CPU)
to CPU interrupts are generally delivered to a CPU thread in
a computing system depending on the programming of an
interrupt controller device or the type of interrupt being
delivered
[0002] Interrupt requests originating from multiple
devices are managed by an interrupt controller according to
interrupt priorities and interrupt masks recorded in the
system . Interrupt priority levels and interrupt masks indicate
which interrupts are allowed to interrupt a task currently
being executed by a CPU . The interrupt mask includes a set
of bits indicating which interrupts are ignored by the CPU .
In addition , an interrupt is ignored if its priority level does
not exceed the priority of the task it would interrupt .

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The present disclosure is illustrated by way of
example , and not by way of limitation , in the figures of the
accompanying drawings .
[0004] FIG . 1 illustrates a computing system , according to
an embodiment .
[0005] FIG . 2 illustrates components in a computing sys
tem , according to an embodiment .
[0006] FIG . 3 illustrates a processing node in a computing
system , according to an embodiment .
[0007] FIG . 4 illustrates components in a level 2 (L2)
cache and an interrupt controller , according to an embodi
ment .
[0008] FIGS . 5 and 6 illustrate communications between
components in a computing system implementing race
detection mechanisms , according to an embodiment .
[0009] FIGS . 7 and 8 illustrate processes for detecting and
resolving race conditions for interrupts , according to an
embodiment .

topology , and conveys messages between the nodes . Mes
sages are used for various purposes , including maintaining
memory coherence and transmitting interrupts generated by
peripheral devices . Interrupt messages are generated by
interrupt controllers connected in the data interconnect fab
ric and are transmitted over the interconnect fabric to one or
more processing units in the system . However , message
based delivery of interrupts over the interconnect fabric can
result in race conditions due to the communication latency
for messages sent between the interrupt controller and the
processing units .
[0012] Race conditions can occur when interrupt control
values are changed using update messages transmitted over
the interconnect fabric , and then an interrupt message is
issued by the interrupt controller before the update reaches
the interrupt controller . The interrupt controller includes a
set of interrupt control registers , which are used to store
interrupt control values that affect how interrupts are raised
and handled . One register is the task priority register , which
stores a task priority value for a task currently being
executed in a processing unit . The task priority determines
which interrupts are allowed to interrupt the currently
executing task ; interrupts having a lower priority than the
task priority are not allowed to interrupt the task . The task
priority in the interrupt controller is changed by the pro
cessing unit depending on the task being executed . Accord
ingly , the task priority can change frequently or unpredict
ably depending on the processing unit's workload .
[0013] The task priority is updated by the processing unit
sending a write message directed to the task priority register
in the interrupt controller . Since the update message is
transmitted over the interconnect fabric , the change to the
task priority is delayed by the communication latency . A race
condition occurs when an interrupt message is sent from the
interrupt controller after the processing unit sends the update
message , but before the update is reflected in the task
priority register . In this case , the processing unit can receive
an interrupt having a lower priority than its current task
priority value .
[0014] A race condition can also affect the function other
interrupt control values , such as interrupt enable values ,
which is stored in an interrupt enable register in the interrupt
controller . For example , if the processing unit updates an
interrupt enable value , the update is delayed by the com
munication latency between the processing unit and the
interrupt controller . The race condition occurs if , after the
processing unit sends the update message and before the
update is reflected in the interrupt enable register , the
interrupt controller sends an interrupt message for an inter
rupt that would have been disabled by the new interrupt
enable value . The processing unit then receives an interrupt
message for an interrupt that was disabled .
[0015] In one embodiment , race conditions for interrupt
control values that change frequently (e.g. , task priorities)
are resolved by maintaining a first shadow copy of the
interrupt control value near the processing unit (i.e. , acces
sible with low latency) and comparing it with a second copy
of the interrupt control value received in the interrupt
message , with the second copy representing the interrupt
control value at the interrupt controller at the time the
interrupt was generated . If the values match , then the
interrupt is serviced according to an interrupt vector deliv
ered with the initial interrupt message . If the values do not
match , an interrupt vector for the indicated interrupt is

DETAILED DESCRIPTION

[0010] The following description sets forth numerous spe
cific details such as examples of specific systems , compo
nents , methods , and so forth , in order to provide a good
understanding of the embodiments . It will be apparent to one
skilled in the art , however , that at least some embodiments
may be practiced without these specific details . In other
instances , well - known components or methods are not
described in detail or are presented in a simple block
diagram format in order to avoid unnecessarily obscuring
the embodiments . Thus , the specific details set forth are
merely exemplary . Particular implementations may vary
from these exemplary details and still be contemplated to be
within the scope of the embodiments .
[0011] One embodiment of a computing system includes
multiple processing units that communicate with memory
and other devices via a data interconnect fabric . The data
interconnect fabric connects multiple nodes in an arbitrary

a

US 2022/0114123 A1 Apr. 14 , 2022
2

2

requested from the interrupt controller . If the interrupt is still
allowed after the updated interrupt control value has been
received at the interrupt controller , then the interrupt con
troller responds , and the interrupt is serviced .
[0016] Race conditions for interrupt control values that
change infrequently (e.g. , interrupt enable values) are
resolved by setting a danger flag near the processor , which
can be set and read with low latency , when an update to the
interrupt control value is detected . For an interrupt message
that is received while the danger flag is asserted , the pro
cessing unit requests an interrupt vector from the interrupt
controller and deasserts the danger flag . Thus , any update to
the interrupt control value is reflected in the interrupt
controller's response .
[0017] FIG . 1 illustrates a block diagram of one embodi
ment of a computing system 100 , in which the above race
condition detection and resolution approach is implemented .
Computing system 100 includes at least core complexes
105A - N , input / output (I / O) interfaces 120 , interconnect fab
ric 125 , memory controller (s) 130 , and network interface
135. In other embodiments , computing system 100 includes
other components and / or computing system 100 is arranged
differently . Each core complex 105A - N includes one or
more general purpose processors , such as central processing
units (CPUs) . It is noted that a “ core complex ” is also
referred to as a “ processing node ” , “ processing unit ” or a
“ CPU ” herein . In some embodiments , one or more core
complexes 105A - N include a data parallel processor with a
highly parallel architecture . Examples of data parallel pro
cessors include graphics processing units (GPUs) , digital
signal processors (DSPs) , and so forth .
[0018] Memory controller (s) 130 are representative of any
number and type of memory controllers accessible by core
complexes 105A - N . Memory controller (s) 130 are coupled
to any number and type of memory devices (not shown) . For
example , the type of memory in memory device (s) coupled
to memory controller (s) 130 can include Dynamic Random
Access Memory (DRAM) , Static Random Access Memory
(SRAM) , NAND Flash memory , NOR flash memory , Fer
roelectric Random Access Memory (FeRAM) , or others . I / O
interfaces 120 are representative of any number and type of
I / O interfaces (e.g. , peripheral component interconnect
(PCI) bus , PCI - Extended (PCI - X) , PCIE (PCI Express) bus ,
gigabit Ethernet (GBE) bus , universal serial bus (USB)) .
Various types of peripheral devices can be coupled to I / O
interfaces 120. Such peripheral devices include (but are not
limited to) displays , keyboards , mice , printers , scanners ,
joysticks or other types of game controllers , media recording
devices , external storage devices , network interface cards ,
and so forth .
[0019] In general , the computing system 100 is embodied
as any of a number of different types of devices , including
but not limited to a laptop or desktop computer , mobile
device , server , etc. Some embodiments of computing system
100 may include fewer or more components than the
embodiment as illustrated in FIG . 1. Additionally , in other
embodiments , computing system 100 is structured in other
ways than shown in FIG . 1 .
[0020] FIG . 2 is a block diagram illustrating specific
components in the computing system 100 , according to an
embodiment . In one embodiment , the computing system 100
is a system on chip (SoC) . In other embodiments , the
computing system 100 is any of various other types of
computing systems .

[0021] As illustrated in FIG . 2 , the computing system 100
is implemented with a number of processing nodes 230A - N
that are connected by an interconnect fabric 125. The
interconnect fabric represents a network of communication
links , and also includes devices such as memory nodes ,
devices for facilitating communication between nodes , and
so forth . Devices 225A - N represent any number and type of
peripheral or input / output (I / O) devices connected to the
interconnect fabric 125 via the interrupt controller 220 .
Nodes 230A - N represent of any number and type of pro
cessing nodes connected to the interconnect fabric 125. The
number of nodes included in system 100 varies in different
embodiments . Each node 230A - N includes a number of
processor cores , such as 231A - N in node 230A , and 233A - N
in node 230N .
[0022] The computing system 100 enforces a memory
coherency protocol to ensure that a processor core or device
does not concurrently access data that is being modified by
another core or device . The cores and devices in system 200
transmit coherency messages (e.g. , coherency probe mes
sages and probe responses) over the interconnect fabric 125 .
A coherency probe message is a message that seeks the
coherency state of data associated with a particular memory
location . A probe response is typically sent back to the
coherent agent that generated the coherency probe message ,
and indicates the coherency state of the referenced data ,
transfers data in response to a probe , or provides other
information in response to a probe .
[0023] In addition to coherency probe messages , the inter
connect fabric is used to transmit interrupt messages origi
nated by the devices 225A - 225N and targeting one or more
of the processing nodes 230A - 230N . In various embodi
ments , each of the devices 225A - N is able to generate an
interrupt by asserting an interrupt signal which is detected
by the interrupt controller 220. In response to detecting the
interrupt signal , interrupt controller 220 generates an inter
rupt message with information such as destination identifier ,
delivery mode , interrupt vector , or other suitable informa
tion . The interrupt message is encoded for transmission over
the interconnect fabric , and is transmitted over the intercon
nect fabric 125 to one or more nodes 230A - N that are
targeted by the interrupt . In one embodiment , the interrupt
message is broadcast on the interconnect fabric 125 to all of
the nodes 230A - N . Alternatively , the interrupt message is
sent to only the node or nodes targeted by the interrupt
message .
[0024] Interconnect fabric 125 is connected to a cache
subsystem 240A - N in each node 230A - N , respectively . Each
cache subsystem 240A - N includes a level three (3) cache
and a level two (L2) cache . In addition , each core includes
a local level one (L1) cache . In alternative embodiments , the
cache subsystems include other cache levels . When one of
the cache subsystems 240A - N receives an interrupt message
via interconnect fabric 125 , the given cache subsystem sends
the interrupt message to the interrupt controller (s) within the
corresponding core (s) . As illustrated , nodes 230A - N include
interrupt controllers 232A - N and 234A - N within cores
231A - N and 233A - N , respectively . In one embodiment , in
response to receiving an interrupt message , a given cache
subsystem 240A - N broadcasts the interrupt message to all of
the cores in the corresponding node . In an alternative
embodiment , in response to receiving an interrupt message ,
a given cache subsystem 240A - N sends the interrupt mes
sage only to those cores targeted by the interrupt message .

9

9

US 2022/0114123 A1 Apr. 14 , 2022
3

a

a

The interrupt controller (s) in the core (s) examine the inter
rupt message and generate interrupts to send to the targeted
core (s) .
[0025] FIG . 3 is a block diagram illustrating an embodi
ment of a processing node 230A . In one embodiment ,
processing node 230A includes four processor cores 231A
N. In other embodiments , processing node 230A includes
fewer or more processor cores . It is noted that a “ processing
node ” can also be referred to as a “ core complex ” , “ node ” ,
or “ CPU ” herein . In one embodiment , the components of
core complex 230A are included within core complexes
105A - N , as illustrated in FIG . 1 .
[0026] Each processor core 231A - N includes a cache
subsystem for storing data and instructions retrieved from
the memory subsystem (not shown) . Each core 231A - N
includes a corresponding level one (L1) cache 315A - N .
Each processor core 231A - N also includes or is coupled to
a corresponding level two (L2) cache 320A - N . Additionally ,
processing node 230A includes a level three (L3) cache 330
which is shared by the processor cores 231A - N . In alterna
tive embodiments , processing node 230A can include other
types of cache subsystems with fewer or more caches and / or
with other configurations of the different cache levels .
[0027] L3 cache 330 is coupled to an interconnect fabric
125. L3 cache 330 receives interrupt messages via intercon
nect fabric 125 and forwards interrupt messages to L2
caches 320A - N . In one embodiment , L3 cache 330 broad
casts received interrupt messages to all L2 caches 320A - N .
In an alternative embodiment , L3 cache 330 forwards a
received interrupt message to only those L2 caches 320A - N
targeted by the interrupt message . The L2 caches 320A - N
forward interrupt messages for processing to interrupt con
trollers 232A - N , respectively .
[0028] FIG . 4 illustrates components in an L2 cache and
an interrupt controller implementing race condition resolu
tion mechanisms for interrupt messages transmitted over the
interconnect fabric , according to an embodiment .
[0029] The interrupt controller 220 is connected to one or
more peripheral devices 225A - N , and transmits an interrupt
message when an interrupt event occurs in one or more of
the peripheral devices 225A - N . Interrupt messages are gen
erated by the interrupt controller 220 based on one or more
interrupt control values , which are stored in interrupt control
registers in the interrupt controller 220. The interrupt control
registers include a task priority register 421 and an interrupt
enable register 422 .
[0030] The interrupt enable register 422 stores an interrupt
enable value that indicates whether each of multiple inter
rupts associated with the devices 225A - N is enabled . In one
embodiment , the interrupt enable value includes a bit for
each interrupt that is asserted high (or low , when imple
mented as an interrupt mask) if the corresponding interrupt
is enabled . The interrupt controller 220 generates interrupt
messages for interrupts that are enabled , and does not
generate interrupt messages for interrupts that are disabled .
[0031] The task priority register 421 stores a task priority
value associated with a task being executed by the processor
core 231A . In one embodiment , the task priority register 421
also stores additional task priority values for tasks being
executed in other processor cores . Each interrupt event is
associated with a priority level so that , when an interrupt
event occurs , the interrupt controller 220 determines
whether the event is allowed to interrupt the current task by
comparing the priority level of the interrupt with the task

priority in the task priority register 421. If the interrupt's
priority level exceeds the task priority , then the interrupt
controller 220 generates an interrupt message for transmit
ting over the interconnect fabric 125. The interrupt control
ler 220 does not send interrupt messages for interrupts
having a lower priority than the current task . For interrupt
events that are enabled and that have a higher priority than
the current task , the interrupt controller 220 transmits an
interrupt message over the interconnect fabric 125. The
interrupt message is received at the L3 cache 330 and
forwarded to the L2 cache 320A .
[0032] The L2 cache 320A implements two mechanisms
for resolving race conditions that can arise when interrupt
control values , such as the task priority and the interrupt
enable value , are changed . A race condition can occur when
an interrupt message is transmitted by the interrupt control
ler after the processor core 231A has sent an update of the
interrupt control value to the interrupt controller 220 , but
before the update has reached the interrupt controller .
[0033] In one embodiment , a shadow copy comparison
mechanism is performed to resolve race conditions affecting
the task priority . The processor core 231A changes the task
priority depending on the tasks being executed in the core
231A . The processor core 231A changes the task priority by
transmitting an update (e.g. , a new task priority value) to the
interrupt controller 220 via the interconnect fabric 125 .
Upon receiving the update , the interrupt controller 220
changes the task priority value in the task priority register
421 to the new task priority value .
[0034] The control logic 413 maintains a shadow copy 411
of the task priority register 421 in the memory 410 of the L2
cache 320A . The control logic 413 responds to the trans
mission of the updated task priority value by storing the
copy 411 of the new task priority . When the processor core
231A updates the task priority , the update indicating the new
task priority value passes the communication interface 415
of the L2 cache 320A before reaching the interconnect fabric
125. At this stage , the cache control logic 413 determines
that an update of the task priority is being sent by detecting
that the update message is a write access message directed
to the address of the task priority register 421. The control
logic 413 , having access to the updated task priority value ,
stores a copy 411 of the new task priority value in its
memory array 410. The shadow copy 411 of the new task
priority is thus stored in the L2 cache near the processor core
(i.e. , accessible with low latency) before the update is
received by the interrupt controller 220 and is reflected in the
task priority register 421 .
[0035] For each interrupt message that is transmitted from
the interrupt controller 220 , the interrupt controller 220
includes the interrupt vector and the task priority value from
the task priority register 421 at the time the interrupt
message is generated . The interrupt message with the inter
rupt controller 220's task priority value is received at the
communication interface 415. The control logic 413 obtains
the first copy 411 of the task priority from the memory array
410 and the second copy from the interface 415. The two
copies of the task priority are compared in the comparison
logic 414 .
[0036] If the first copy 411 matches the second copy of the
task priority , the control logic 413 transmits the interrupt
vector received with the interrupt message to the processor
core 231A . The interrupt vector contains information about
the interrupt , and identifies the ISR to be executed for

.

2

a

US 2022/0114123 A1 Apr. 14 , 2022
4

servicing the interrupt . Depending on the state of the inter
rupt controller 232A , the processor core 231A services ,
delays , or ignores the interrupt . The processor core 231A
services the interrupt by interrupting execution of its current
task and starting execution of the ISR in response to receiv
ing the interrupt vector . If the first copy 411 differs from the
second copy , the comparison logic 414 signals the control
logic 413 to initiate a request for an interrupt vector from the
interrupt controller 220. The control logic 413 sends a
message to the interrupt controller 220 requesting an inter
rupt vector for the interrupt message that was received . For
clarity , the processor core 231A is described herein as
servicing an interrupt whenever an interrupt vector is
received for the interrupt , and requesting an interrupt vector
from the interrupt controller 220 whenever a race condition
or potential race condition is detected . However , in practice ,
the state of interrupt controller 232A can determine whether
the interrupt service or interrupt vector request is delayed or
ignored instead .
[0037] In some cases , the new task priority value is
updated in the task priority register 421 before the request
for the interrupt vector is received by the interrupt controller
220 , and is higher than the interrupt priority , thus obviating
the interrupt . The interrupt controller 220 then returns an
indication that the interrupt does not need to be serviced . In
other cases , the new task priority is not higher than the
interrupt priority . Then , the interrupt controller 220 responds
to the request by transmitting the interrupt vector in another
message to the L2 cache via the interconnect fabric 125. In
alternative embodiments , the above shadow copy compari
son mechanism is used for detecting race conditions for
interrupt control values other than the task priority . In
particular , the mechanism is suited for values that change
frequently .
[0038] In one embodiment , potential race conditions for
one or more interrupt control values , such as an interrupt
enable value , are detected by setting a danger flag when the
value is changed . The processor core 231A changes the
interrupt enable value by transmitting a new interrupt enable
value in an update message to the interrupt controller 220 ,
for writing in the interrupt enable register 422. The update
is transmitted from the processor core 231A to the intercon
nect fabric 125 via the communication interface 415 of the
L2 cache 320A .

[0039] The control logic 413 in the L2 cache 320A moni
tors a number of addresses (including the address of the
interrupt enable register 422) that , if updated , can cause race
conditions . In response to detecting that the update message
is writing a new value to the interrupt enable register 422 ,
the control logic 413 asserts a danger flag 412 in the memory
410 of the L2 cache 320A . In alternative embodiments , the
danger flag 412 is located in memory other than the memory
array 410 , such as a register within the control logic 413 , or
memory outside the L2 cache 320A .
[0040] Subsequently , when an interrupt event occurs in
one of the devices 225A - N , the interrupt controller 220
sends an interrupt message to the L2 cache 320A . The
control logic 413 in the L2 cache 320A receives the interrupt
message and responds by checking the danger flag 412. If
the danger flag 412 is asserted , the control logic 413 sends
a message to the interrupt controller 220 to request the
interrupt vector associated with the received interrupt mes
sage , and deasserts the danger flag 412 .

[0041] The updated interrupt enable value reaches the
interrupt enable register 422 before the request for the
interrupt vector is received by the interrupt controller 220. If
the new interrupt enable value disabled the interrupt , the
interrupt controller 220 responds with a message indicating
that the interrupt does not need to be serviced . If the new
interrupt enable value does not disable the interrupt , the
interrupt controller 220 returns the interrupt vector , and the
processor core 231A interrupts its current task to execute the
ISR indicated in the vector .
[0042] FIG . 5 is a network diagram illustrating commu
nications between the processor core 231A , L2 cache 320A ,
and interrupt controller 220 , according to an embodiment in
which the shadow copy comparison mechanism is imple
mented for detecting and resolving race conditions . An
update of the task priority does not result in a race condition
when the updated task priority reaches the task priority
register 421 in the interrupt controller 220 before an inter
rupt message is generated . The processor core 231A begins
by initiating an update of the task priority 501. The processor
core 231A sends an update message 503 to the L2 cache
320A . The L2 cache 320A identifies the update message as
changing the task priority value , and thus saves a shadow
copy 504 of the new task priority value . The L2 cache 320A
then forwards the update message 505 over the interconnect
fabric 125 to the interrupt controller 220. When the update
message 505 reaches the interrupt controller 220 , the inter
rupt controller 220 stores 507 the new task priority value in
the task priority register 421 .
[0043] Subsequently , the interrupt controller 220 gener
ates an interrupt message 509 in response to an interrupt
event occurring in one of the devices 225A - N . The interrupt
controller 220 transmits the interrupt message 511 over the
interconnect fabric 125 to the L2 cache 320A . When the
interrupt message 511 is received at the L2 cache 320A , the
copy of the task priority value received in the interrupt
message is compared with the shadow copy 411 of the task
priority that was previously saved 504. In this case , the
values match when compared 513 because the updated task
priority value was stored 507 in the task priority register 421
before the interrupt message was generated 509. Since the
task priority values match 513 , the interrupt vector 515 from
the interrupt message 511 is transmitted to the processor
core 231A . The processor core 231A starts the ISR 517
specified in the vector 515 upon receipt .
[0044] A race condition occurs when the processor core
231A issues an update of the task priority , and the interrupt
controller 220 sends an interrupt message after the update is
issued by the processor core 231A and before the update is
received at the interrupt controller 220. The processor core
231A updates the task priority 551 by sending an updated
task priority 533 to the L2 cache 320A , which saves 554 a
shadow copy of the updated task priority value , and trans
mits the updated task priority 555 to the interrupt controller
220. Before the update 555 reaches the interrupt controller
220 , the interrupt controller generates 557 and transmits an
interrupt message 559 in response to an interrupt event . The
interrupt message 559 includes a copy of the original task
priority value obtained from the task priority register 421 at
the time the interrupt message was generated 557 .
[0045] After the interrupt message 559 is transmitted , the
update message 555 arrives at the interrupt controller 220 ,
and the new task priority value is stored 561 in the task
priority register 421. When the interrupt message 559 arrives

a

US 2022/0114123 A1 Apr. 14 , 2022
5

a

at the L2 cache 320A , the task priority value included in the
message 559 is compared with the shadow copy 411 of the
task priority . The values do not match 563 because the
shadow copy 411 contains the updated task priority value
while the interrupt message 559 contains the original task
priority value . Because the values do not match 563 , the L2
cache 320A transmits a request 565 for the interrupt vector
to the interrupt controller 220 via the interconnect fabric
125. The request 565 arrives at the interrupt controller 220
after the task priority value has been updated 561 in the
interrupt controller 220. The interrupt controller 220
receives the request 565 and returns the interrupt vector 567
associated with the interrupt message 559 if the interrupt is
still valid (e.g. , the interrupt priority is still higher than the
new task priority) . The L2 cache 320A forwards the interrupt
vector 569 to the processor core 231A , and the processor
core 231A interrupts its current task to start the ISR 571
indicated in the vector 569. In situations where the new task
priority is higher than the interrupt priority , the interrupt
controller 220 responds to the request 565 by transmitting an
indication to the L2 cache 320A that the interrupt does not
need to be serviced , instead of returning the interrupt vector
567 .
[0046] FIG . 6 is a network diagram illustrating commu
nications between the processor core 231A , L2 cache 320A ,
and interrupt controller 220 , according to an embodiment in
which the danger flag mechanism is implemented for detect
ing and resolving potential race conditions caused by updat
ing one or more interrupt control values , such as an interrupt
enable value . In one embodiment , the shadow copy com
parison mechanism is performed in conjunction with the
danger flag mechanism ; however , actions performed for
implementing the shadow copy comparison mechanism are
omitted from FIG . 6 for clarity .
[0047] When the interrupt enable value is not updated , the
interrupt controller 220 generates an interrupt message 601
in response to an interrupt event , and transmits the interrupt
message 603 over the interconnect fabric 125 to the L2
cache 320A . The control logic 413 determines that the
danger flag is not asserted 605. Because the danger flag is
not asserted 605 , no potential race condition is detected and
the L2 cache 320A sends the interrupt vector 607 , obtained
from the interrupt message 603 , to the processor core 231A .
The processor core 231A interrupts its current task and starts
the ISR 609 specified in the vector 607 upon receiving the
vector 607 .
[0048] When the interrupt enable value is updated , a race
condition could occur the next time an interrupt is raised .
Therefore , the danger flag 412 is asserted when the update
occurs so that the next interrupt is processed in a manner that
avoids any potential race condition . The processor core
231A initiates an update 611 of the interrupt enable value by
transmitting an updated interrupt enable value 613 to the L2
cache 320A . The L2 cache 320A monitors a set of addresses
that , when written , can potentially cause a race condition .
The monitored set of addresses includes the address of the
interrupt enable register 422 ; thus , the L2 cache 320 asserts
615 the danger flag 412 in response to detecting that the
update 613 is a write message directed to the interrupt enable
register 422. The L2 cache 320A transmits the update
message 617 to the interrupt controller 220. Before the
interrupt controller 220 receives the update message 617 , the
interrupt controller 220 generates 619 and transmits 621 and
interrupt message in response to an interrupt event . After the

interrupt message 621 is sent , the update message 617 is
received at the interrupt controller 220 and the new interrupt
enable value is stored 623 in the interrupt enable register
422 .
[0049] When the interrupt message 621 reaches the L2
cache 320A , the control logic 413 checks 625 the danger flag
412. Since the danger flag is asserted , the L2 cache 320A
requests the interrupt vector 627 from the interrupt control
ler 220 and also deasserts the danger flag 626. The request
627 arrives at the interrupt controller 220 after the interrupt
enable value has been updated 623 in the interrupt controller
220. The interrupt controller 220 receives the request 627
and sends a message 629 with the interrupt vector for the
interrupt message 621 via the interconnect fabric 125 if the
interrupt is still valid (e.g. , was not disabled by the new
interrupt enable value) . The L2 cache 320A receives the
message 629 and forwards 631 the interrupt vector to the
processor core 231A . The processor core 231A interrupts its
current task to start the ISR 633 upon receiving the interrupt
vector 631. In situations where the new interrupt enable
value 623 disables the interrupt 621 that was sent , the
interrupt controller 220 responds to the request 627 by
transmitting an indication to the L2 cache 320A that the
interrupt does not need to be serviced , instead of returning
the interrupt vector 629 .
[0050] FIG . 7 is a flow diagram illustrating a process 700
of processing interrupts , according to an embodiment . The
process 700 is performed in components of a computing
system 100 , such as the processor core 231A and L2 cache
320A .
[0051] The L2 cache 320A implements the race condition
detection mechanism by performing actions in response to
updates of interrupt control values (e.g. , the task priority
and / or interrupt enable value) , and in response to receiving
interrupt messages from an interrupt controller 220. At block
701 , if no update of the task priority or interrupt enable value
has been received , the process 700 continues at block 703 .
At block 703 , if no interrupt message has been received , the
process 700 returns to block 701. The L2 cache 320A thus
repeats blocks 701 and 703 to monitor for interrupt control
value updates and interrupt messages .
[0052] The processor core 231A updates interrupt control
values , such as the task priority and the interrupt enable
value , by transmitting update messages to the interrupt
controller where the primary copies of the interrupt control
values are maintained (e.g. , in registers 421 and 422) . The
update messages are transmitted via the L2 cache 320A , and
then via the L3 cache 330 and interconnect fabric 125 to the
interrupt controller 220. At block 701 , if the L2 cache 320A
receives an update message for updating the task priority or
interrupt enable value , the process 700 continues at block
705. At block 705 , if the control logic 413 in the L2 cache
320A detects that the update message is a write access to the
address of the task priority register 421 , then at block 707 ,
the control logic 413 obtains the new task priority value
from the update message and stores a shadow copy 411 of
the new task priority value in the memory array 410 of the
cache 320A . At block 709 , the update message is transmitted
from the communication interface 415 to the interrupt
controller 220 via the L3 cache 330 and interconnect fabric
125. The storing of the shadow copy 411 of the task priority
value in the L2 cache 320A is thus completed prior to the
receiving of the update message at the interrupt controller
220 , which occurs after some delay due to communication

a

a 9

US 2022/0114123 A1 Apr. 14 , 2022
6

latency over the interconnect fabric 125. The interrupt
controller 220 updates the task priority value in its register
421 when the interrupt controller 220 receives the update
message containing the new task priority .
[0053] At block 705 , if the update message is not a write
request directed to the task priority register 421 , then the
process 700 continues at block 711. At block 711 , if the
update is not directed to the interrupt enable register 422 , the
process 700 returns to block 703 to continue monitoring for
interrupt messages and interrupt control value updates .
However , if the update is directed to the interrupt enable
register 422 , the control logic 413 asserts the danger flag 412
as provided at block 713. At block 709 , the update message
is transmitted from the communication interface 415 to the
interrupt controller 220 via the L3 cache 330 and intercon
nect fabric 125. The danger flag 412 is thus asserted prior to
the receiving of the update message at the interrupt control
ler 220. The interrupt controller 220 updates the interrupt
enable value in its register 422 when the interrupt controller
220 receives the update message containing the new inter
rupt enable value . From block 709 , the process 700 returns
to block 703 to continue monitoring for update messages
and interrupt messages .
[0054] At block 703 , if the L2 cache 320A has received an
interrupt message from the interrupt controller 220 , the
process 70 continues at block 715. The interrupt message
includes an interrupt vector (containing information about
the type of interrupt , specifies an ISR for handling the
interrupt , etc.) and a copy of the task priority value read from
the task priority register 421 at the time the interrupt
message was generated . The interrupt message received at
block 703 is the initial indication to the processing unit that
an interrupt event has occurred .
[0055] At block 715 , the comparison logic 414 determines
whether the shadow copy 411 of the task priority value
matches the task priority value sent in the interrupt message .
If the copies match , then no race condition is detected . At
block 717 , the control logic 413 responds to receiving the
interrupt message by checking the danger flag 412. If the
danger flag is not asserted , this also indicates that no
potential race condition is detected . Accordingly , the inter
rupt vector is obtained from the interrupt message , as
provided at block 719 , and is sent to the processor core 231A
from the communication interface 415 of the L2 cache
320A , as provided at block 721. In response to receiving the
interrupt vector , the processor core 231A services the inter
rupt indicated in the interrupt message by pausing execution
of its current task and initiating execution of the ISR
specified in the vector .
[0056] At block 715 , if the shadow copy 411 of the task
priority value does not match the copy of the task priority
received with the interrupt message , the process 700 con
tinues at block 723. The communication latency for writing
the shadow copy 411 of the task priority to the L2 cache
320A is substantially shorter than the communication
latency for transmitting messages (e.g. , updated interrupt
control values and interrupt messages) between the L2 cache
320A and the interrupt controller 220. Thus , a mismatch
between the copies of the task priority value indicates a race
condition , in which the interrupt message was generated
before the updated task priority value was received at the
interrupt controller 220 .
[0057] If the copies of the task priority value match at
block 715 , a potential race condition can alternatively be

detected at block 717 if the danger flag 412 is asserted . In
this case , the danger flag 412 is deasserted at block 718 .
When a race condition is detected by either the shadow copy
comparison at block 715 or the danger flag check at block
717 , the process 700 sends a message requesting the inter
rupt vector to the interrupt controller 220 , as provided at
block 723. If the interrupt controller 220 responds by
sending the interrupt vector for the received interrupt mes
sage , the L2 cache 320A sends the vector to the processor
core 231A , as provided at block 721 , and the processor core
231A starts the ISR to handle the interrupt . From block 721 ,
the process 700 returns to block 701 .
[0058] In some cases , the interrupt controller 220 does not
return the requested interrupt vector . For example , when a
new task priority is higher than the priority of the interrupt
or the new interrupt enable value disables the interrupt , the
interrupt controller 220 instead returns an indication that the
interrupt does not need to be serviced . In this case , the
process 700 returns from block 725 to block 701. From
block 701 , the process 700 continues monitoring for updates
to the interrupt control values and interrupt messages .
Blocks 701-713 are repeated for each update of an interrupt
control value , and blocks 703 and 715-725 are repeated for
each interrupt message that is received . Thus , race condi
tions affecting some interrupt messages are detected by the
shadow copy comparison , while potential race conditions
affecting other interrupt messages are detected by observing
an asserted danger flag .
[0059] FIG . 8 is a flow diagram illustrating a process 800
of generating interrupt messages and updating interrupt
control values , according to an embodiment . The process
800 is performed by the interrupt controller 220. At block
801 , if the interrupt controller 220 has received , from the
processor core 231A or another core , an update message
requesting a change to an interrupt control value (e.g. , a task
priority , interrupt enable value , etc.) , then the update is
effected at block 803. At block 803 , the interrupt controller
220 updates the task priority and / or interrupt enable value by
writing the new values in the task priority register 421 and / or
the interrupt enable mask register 422 , respectively , and the
process 800 continues at block 805. At block 801 , if an
update message is not received that requests a change to an
interrupt control value , the process 800 continues from
block 801 to block 805 without writing any values to the
registers 421 and 422 .
[0060] At block 805 , if a valid interrupt event occurs in
one of the devices 225A - N that is enabled (according to the
interrupt enabled value in register 422) and has a higher
priority than the task priority value in register 421 , then the
interrupt controller 220 generates and sends an interrupt
message as provided at block 807. The interrupt message
includes the task priority value , which is read from the task
priority register 421 at the time the interrupt message is
generated . The interrupt message also includes an interrupt
vector that includes information about the type of interrupt
and the ISR to be executed for servicing the interrupt . The
interrupt controller transmits the interrupt message to the L2
cache 320A via the interconnect fabric 125 , and the process
800 continues at block 809. If a valid interrupt event has not
occurred at block 805 , the process 800 continues at block
809 without generating an interrupt message .
[0061] If a race condition is not detected based on the
interrupt message when it is received at the L2 cache 320A ,
the L2 cache 320A sends the interrupt vector included in the

a

US 2022/0114123 A1 Apr. 14 , 2022
7

structure may be a behavioral - level description or register
transfer level (RTL) description of the hardware function
ality in a high level design language (HDL) such as Verilog
or VHDL . The description may be read by a synthesis tool
which may synthesize the description to produce a netlist
including a list of gates from a synthesis library . The netlist
includes a set of gates which also represent the functionality
of the hardware including the computing system 100. The
netlist may then be placed and routed to produce a data set
describing geometric shapes to be applied to masks . The
masks may then be used in various semiconductor fabrica
tion steps to produce a semiconductor circuit or circuits
corresponding to the computing system 100. Alternatively ,
the database on the computer - readable storage medium may
be the netlist (with or without the synthesis library) or the
data set , as desired , or Graphic Data System (GDS) II data .
[0067] Although the operations of the method (s) herein
are shown and described in a particular order , the order of
the operations of each method may be altered so that certain
operations may be performed in an inverse order or so that
certain operations may be performed , at least in part , con
currently with other operations . In another embodiment ,
instructions or sub - operations of distinct operations may be
in an intermittent and / or alternating manner .
[0068] In the foregoing specification , the embodiments
have been described with reference to specific exemplary
embodiments thereof . It will , however , be evident that
various modifications and changes may be made thereto
without departing from the broader scope of the embodi
ments as set forth in the appended claims . The specification
and drawings are , accordingly , to be regarded in an illus
trative sense rather than a restrictive sense .

interrupt message to the processor core 231A without send
ing a request for the interrupt vector from the interrupt
controller 220. At block 809 , if a request for the interrupt
vector is not received , the process 800 returns to block 801
to continue checking for update messages , interrupt events ,
and interrupt vector requests .
[0062] If a race condition is detected based on the interrupt
message , then the L2 cache 320A sends a message request
ing the interrupt vector from the interrupt controller 220. At
block 809 , if the interrupt controller 220 receives a request
for the interrupt vector , the process 800 continues at block
811. At block 811 , if the requested interrupt is still valid (i.e. ,
enabled by the interrupt enable value and having a higher
priority than the task priority value) , then the interrupt
controller 220 sends the requested interrupt vector to the L2
cache 320A via the interconnect fabric 125 , as provided at
block 813. At block 811 , if the requested interrupt is no
longer valid (i.e. , was disabled by a new interrupt enable
value , or was superseded by a new higher task priority
value) , the interrupt controller 220 sends an indication that
the interrupt does not need to be serviced , as provided at
block 815. From block 813 or 815 , the process 800 returns
to block 801. Process 800 thus repeats to continue process
ing updates to the interrupt control values , interrupt events ,
and interrupt vector requests according to blocks 801-815 .
[0063] As used herein , the term " coupled to ” may mean
coupled directly or indirectly through one or more interven
ing components . Any of the signals provided over various
buses described herein may be time multiplexed with other
signals and provided over one or more common buses .
Additionally , the interconnection between circuit compo
nents or blocks may be shown as buses or as single signal
lines . Each of the buses may alternatively be one or more
single signal lines and each of the single signal lines may
alternatively be buses .
[0064] Certain embodiments may be implemented as a
computer program product that may include instructions
stored on a non - transitory computer - readable medium .
These instructions may be used to program a general
purpose or special - purpose processor to perform the
described operations . A computer - readable medium includes
any mechanism for storing or transmitting information in a
form (e.g. , software , processing application) readable by a
machine (e.g. , a computer) . The non - transitory computer
readable storage medium may include , but is not limited to ,
magnetic storage medium (e.g. , floppy diskette) ; optical
storage medium (e.g. , CD - ROM) ; magneto - optical storage
medium ; read - only memory (ROM) ; random - access
memory (RAM) ; erasable programmable memory (e.g. ,
EPROM and EEPROM) ; flash memory , or another type of
medium suitable for storing electronic instructions .
[0065] Additionally , some embodiments may be practiced
in distributed computing environments where the computer
readable medium is stored on and / or executed by more than
one computer system . In addition , the information trans
ferred between computer systems may either be pulled or
pushed across the transmission medium connecting the
computer systems .
[0066] Generally , a data structure representing the com
puting system 100 and / or portions thereof carried on the
computer - readable storage medium may be a database or
other data structure which can be read by a program and
used , directly or indirectly , to fabricate the hardware includ
ing the computing system 100. For example , the data

What is claimed is :
1. A method of operating a processing unit , comprising :
storing a first copy of a first interrupt control value in a

cache device of the processing unit with a first latency ;
receiving from an interrupt controller a first interrupt

message transmitted via an interconnect fabric with a
second latency greater than the first latency , wherein
the first interrupt message includes a second copy of the
first interrupt control value ; and

if the first copy matches the second copy , servicing an
interrupt specified in the first interrupt message .

2. The method of claim 1 , wherein :
the first interrupt control value comprises a task priority

value ; and
the method further comprises changing the task priority

value by transmitting an update of the task priority
value via the interconnect fabric to the interrupt con
troller , wherein the storing of the first copy in the cache
device is performed prior to the receiving of the update
at the interrupt controller .

3. The method of claim 1 , wherein :
the storing of the first copy of the first interrupt control

value in the cache device is performed in response to
detecting an update of the first interrupt control value
transmitted to the interrupt controller .

4. The method of claim 1 , further comprising :
if the first copy differs from the second copy , requesting

from the interrupt controller an interrupt vector corre
sponding to the interrupt message .

US 2022/0114123 A1 Apr. 14 , 2022
8

first copy is stored in the cache device prior to receiving
of the update by the interrupt controller .

12. The computing device of claim 10 , wherein :
the comparison logic is further configured to , if the first

copy differs from the second copy , initiate a request for
an interrupt vector from the interrupt controller .

13. The computing device of claim 10 , further compris
ing :

a processor configured to update an interrupt enable value
by transmitting the interrupt enable value for writing in
an interrupt enable register in the interrupt controller ,
wherein the control logic is further configured to assert
a danger flag in response to the update .

14. The computing device of claim 13 , wherein :
the processor is further configured to , in response to

receiving a second interrupt message when the danger
flag is asserted , request from the interrupt controller an
interrupt vector associated with the second interrupt
message , and

occur

a

5. The method of claim 1 , further comprising :
in the cache device , asserting a danger flag in response to

detecting an update of a second interrupt control value
transmitted to the interrupt controller .

6. The method of claim 5 , wherein :
the update of the second interrupt control value comprises

a write access directed to an interrupt enable register in
the interrupt controller ;

the second interrupt control value comprises an interrupt
enable value stored in the interrupt enable register ; and

the method further comprises transmitting the interrupt
enable value to the interrupt controller via the inter
connect fabric .

7. The method of claim 5 , further comprising :
in response to receiving a second interrupt message when

the danger flag is asserted ,
requesting from the interrupt controller an interrupt

vector associated with the second interrupt message ,
and

deasserting the danger flag .
8. The method of claim 1 , wherein :
the first interrupt message is received at the processing

unit as an initial indication that the interrupt has
curred ; and

servicing the interrupt comprises :
interrupting a current task being executed in the pro

cessing unit , and
initiating execution in the processing unit of an inter

rupt service routine identified in the first interrupt
message .

9. The method of claim 1 , wherein :
the first latency includes a first communication latency for

writing the first copy of the first interrupt control value
to the cache device , and the second latency incudes a
second communication latency for transmitting the first
interrupt message from the interrupt controller to the
processing unit .

10. A computing device , comprising :
control logic configured to write a first copy of a first

interrupt control value in a cache device with a first
latency ;

a communication interface configured to receive a second
copy of the first interrupt control value from an inter
rupt message transmitted via an interconnect fabric
with a second latency greater than the first latency ; and

comparison logic coupled with the control logic and the
communication interface , wherein the comparison
logic is configured to initiate an interrupt service rou
tine specified in the first interrupt message if the first
copy matches the second copy .

11. The computing device of claim 10 , wherein :
the first interrupt control value comprises a task priority

value ;
the computing device further comprises a processor con

figured to change the task priority value by transmitting
an update of the task priority value via the interconnect
fabric to an interrupt controller to cause the interrupt
controller to change the task priority value in a task
priority register of the interrupt controller , and

the control logic is further configured to store the first
copy of the task priority value in the cache device in
response to the transmitting of the update of the task
priority value to the interrupt controller , wherein the

the control logic is further configured to , in response to
the receiving of the second interrupt message when the
danger flag is asserted , deassert the danger flag .

15. The computing device of claim 10 , further comprising
a processor coupled with the communication interface and
configured to service the interrupt by :

interrupting execution of a current task being executed in
the processor , and

executing an interrupt service routine identified in the first
interrupt message .

16. A computing system , comprising :
an interconnect fabric ;
an interrupt controller configured to transmit a first inter

rupt message with a first latency via the interconnect
fabric based on a first interrupt control value ;

a processing unit configured to :
store a first copy of a first interrupt control value in a

cache device with a second latency less than the first
latency ;

receive the first interrupt message from the interrupt
controller , wherein the first interrupt message
includes a second copy of the first interrupt control
value ; and

if the first copy matches the second copy , servicing an
interrupt specified in the first interrupt message .

17. The computing system of claim 16 , wherein :
the first interrupt control value comprises a task priority

value ; and
the processing unit is configured to :

change the task priority value by transmitting an update
of the task priority value via the interconnect fabric
to the interrupt controller to cause the interrupt
controller to change the task priority value in a task
priority register of the interrupt controller , and

store the first copy of the task priority value in the cache
device in response to the update , wherein the first
copy is stored in the cache device prior to receiving
of the update by the interrupt controller .

18. The computing system of claim 16 , wherein :
the processing unit is further configured to , if the first

copy differs from the second copy , request from the
interrupt controller an interrupt vector corresponding to
the interrupt message ; and

a

a

a
a

US 2022/0114123 A1 Apr. 14 , 2022
9

the interrupt controller is configured to , in response to the
request , transmit the interrupt vector to the processing
unit via the interconnect fabric .

19. The computing system of claim 16 , wherein the
processing unit is further configured to :

update a second interrupt control value by :
transmitting the second interrupt control value to the

interrupt controller via the interconnect fabric , and
asserting a danger flag ; and

in response to receiving a second interrupt message when
the danger flag is asserted :
request from the interrupt controller an interrupt vector

associated with the second interrupt message , and
deassert the danger flag .

20. The computing system of claim 16 , further compris
ing :

one or more peripheral devices coupled with the interrupt
controller , wherein the interrupt controller is config
ured to transmit the interrupt message in response to an
interrupt event occurring in the one or more peripheral
devices .

* *

