
USOO8671254B2

(12) United States Patent (10) Patent No.: US 8,671,254 B2
Shingal et al. (45) Date of Patent: Mar. 11, 2014

(54) PROCESSES, CIRCUITS, DEVICES, AND (52) U.S. Cl.
SYSTEMIS FOR CONCURRENT DUAL USPC 711/157: 711/217; 711/E12.078;
MEMORY ACCESS IN ENCRYPTION AND 365/230.04
DECRYPTION (58) Field of Classification Search

None
(75) Inventors: Tonmoy Shingal, Kanpur (IN); See application file for complete search history.

Chakravarthy Srinivasan, Bangalore
(IN); Shankaranarayana Karantha, (56) References Cited
Mangalore (IN)

U.S. PATENT DOCUMENTS
(73) Assignee: Texas Instruments Incorporated,

Dallas, TX (US) 6.292,873 B1* 9/2001 Keaveny et al. T11 149
6,912,173 B2 * 6/2005 Beat............... ... 365,230.03

(*) Notice: Subject to any disclaimer, the term of this 2005/0180240 A1* 8, 2005 Beat 365,221
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. FOREIGN PATENT DOCUMENTS

(21) Appl. No.: 13/223,905 JP O9180433 A * 7, 1997
* cited by examiner

(22) Filed: Sep. 1, 2011
Primary Examiner — Kevin Verbrugge

(65) Prior Publication Data (74) Attorney, Agent, or Firm — Wade J. Brady, III;
US 2012/OO3O447 A1 Feb. 2, 2012 Frederick J. Telecky, Jr.

Related U.S. Application Data
(62) Division of application No. 12/552.760, filed on Sep.

2, 2009, now Pat. No. 8,032,762, which is a division of
application No. 10/932,506, filedon Sep. 1, 2004, now
Pat. No. 7,602,905.

(57) ABSTRACT

A wireless communications device has two or more multiple
port memory units operable to perform encryption/decryp
tion shuffling and processing. Other circuits and methods of
manufacture and operation are also disclosed.

(51) Int. Cl.
G06F 12/06 (2006.01) 24 Claims, 15 Drawing Sheets

THREAD

READS1 ROM
ADDRESSia

STORES IN
HOLDINGREGISTER

GENERATE ADDRESS
j=0=(j-i-S-KC)

MOD 256

READSBOX
SOFROM
ADDRESSO

GENERATE ADDRESS
j=1 = (+S)--Ki

MOD 258
54

N
L

s
as

EXECUTE 1545.7 execuTE 1545.7
NCYCLE3 NCYCLE 2

WRESTO
ADDRESSj0

1545

REASBOX WRITESTO
SFROM ADDRESS
ADDRESS

55 1555 557
S. 2 S
WRITESOTO READS2 FROM WRITESTO READS3 FROM
ADDRESS i ADDRESS i-2 ADDRESS i-1 ADDRESS i-3

56

U.S. Patent

INTERNETO

CELL NETWORKO

Mar. 11, 2014

CELLULAR
BASE

STATION

140

Sheet 1 of 15

CELLPHONE

118

ENCRYPT/
DECRYPT

WLAN

US 8,671,254 B2

WLAN AP
Access CABLE
POINT) FIBER

ETHERNET

DSL
WLAN

PCAPTOP-CABLE
ETHERNET

WLAN DSL
GATEWAY 1-> CABLE

180

FIG. I.

U.S. Patent Mar. 11, 2014 Sheet 2 of 15 US 8,671,254 B2

200 FIG. 2A

AUDIO

VOICE/F

GSM/GPRS

TPU
MEMORY

CONTROLLER

USB PC APPS I/F

275 280 TO/FROM
FIG. 2B

290 295
TO FIG 2E

U.S. Patent Mar. 11, 2014 Sheet 3 of 15 US 8,671,254 B2

300
FIG. 2B

ABB/PM

GSM/GPRS BASEBAND

TO/FROM
FIG. 2C

310

324 VOICE 32KHZ (AUDIO E. E.

12MHZ OSC Ex

GPIO
INTERFACE

TO/FROM FIG. 2A PRIMARY ACCESS VIBRATOR
N- HOST I/F ARBITRATION DRIVE

SECONDARY USB OTG
HOST I/F TRANSCEIVER 356

CONVERSION

BUCK
POWER 358

DC/DCX2 CONTROL
STATE BATTERY

LDOs (27) MACHINE CHARGE L-ION
CONTROLLER

BACKUP TO/FROM FIG. 2E

WCDMA BASEBAND

TO/FROM FIG. 2D

U.S. Patent Mar. 11, 2014 Sheet 4 of 15 US 8,671,254 B2

400
FIG. 2C

FROM RF (GSM/GPRS)
FIG. 2B 410

SWITCH
PLEXER

LNA850/
LNA900 5C

AlsoLNA1900
460

TO FIG. 2D

U.S. Patent Mar. 11, 2014 Sheet 5 Of 15 US 8,671,254 B2

FROM FIG. 2C

RF (WCDMA)

SERIAL /F

TRANSMITTER 550 \-570

A AMREFER:

U.S. Patent Mar. 11, 2014 Sheet 6 of 15 US 8,671,254 B2

SJTo FIG. 2G
635

COMPACT NAND f
800 FLASH FLASH

EMULATOR MOBILE

JTAG/ HIGH-SPEED
EMULATION WLAN EMF/CF

A/B/G

FIG. 2E

600

610 630

MESSAGING g 11

DATA
V7 TMsgess RISC

BLUETOOTH

MCS SHARED MEMORY
CONTROLLER/DMA

TO/FROM 690 /
FIG. 2B
N/ 2D GRAPHIC ACCELERATOR

2C TIMERS, INTERRUPT
FROM CONTROLLER, RTC
FIG. 2A

VOICE I MCS FRAME BUFFER/INTERNAL SRAM

CONTROL I UART 660 650

SECURITY: SHA-1/MD5 DES/3DES
RNG/SHUFFLE-BASED

pu-WIRE MCBSP USB OTG

DH AESSEE TOUCH-SCREEN
CONTROLLER 680

D AUDIO AMPLIFER
O O O

AUDIO IN/OUT

U.S. Patent Mar. 11, 2014 Sheet 7 Of 15 US 8,671,254 B2

730

STILLWIDEO
FIG. 2F (2SN

FAST GPS 600 GPs IrDA 760

wo EMT9 UART/IrDA
CAMERA/F 720/

710

O
DEBUGGER

750 CMOS SENSOR

KEYPAD KEYPAD

GPIO GPIO

LPG HOLED

780
C BUZZER PWT f

MMC FLASHCARD,
SD FLASHCARD, SDIO

i MMC/SD

MMC FLASHCARD,
MMC/SD SD FLASHCARD, SDIO

HDQ/1 WIRE I BATTERY

740 CLOCK
y AND RESET

MANAGEMENT S32kHz
PWL || as CONTROLLER RESET

COLOR LCD LIGHT 795
LCD CONTROLLER

U.S. Patent Mar. 11, 2014 Sheet 8 of 15 US 8,671,254 B2

FIG. 2G
800 820 830

2.4-GHz RF
VA V w

SECURITY/
802.11 i

TKIP

ON-CHIP WEP
POWER

MANAGEMENT AES

UNREGULATED
POWER

WPA

FROM
FIG. 2E CKIP

INTERFACE
HARDWARE

st st
INTERNAL
RAM

840

860

CLOCK PHY CLOCKS
GENERATION

HOST CLOCK
(13, 19.2, 26,
38.4MHz)

U.S. Patent Mar. 11, 2014 Sheet 9 Of 15 US 8,671,254 B2

900
920 1.

y wbusp addr 31:0 32

wbUSp req, wbuSp ready 2

Wep enc data Out
wbusp ridata

920
CONTROLS

32
key length

KEY 950

US 8,671,254 B2 Sheet 10 of 15 Mar. 11, 2014 U.S. Patent

!!!!!!!!==E |×|---I--i.
<-JUTISI

U.S. Patent Mar. 11, 2014 Sheet 11 of 15 US 8,671,254 B2

1100
1110 1

RESET OR CLEAR= 1
RESET OR CLEAR=1

RESET OR
CLEAR = 1 RESET OR CLEAR=1 Start stb

1120

(SiO, SO, S1, S1) Sin, S go READ SWR st (SiO, SO

Reg Sec
state done
OR ISbOX done=1

READ
LOOKAHEAD MEM1

READ
LOOKAHEAD MEMO joXOR ji=1

DELAY

UNCONDITIONAL
TRANSiTION

1150
UNCONDITIONAL
TRANSTION

1130

READ CURRENT
AND LOOK AHEAD

FIG. 5

1200

UNCONDX UNCONDX

SB done AND prm state= toXOR t1=1
=RS S WR SJ OR RESET OR CLEAR

1230 1240

U.S. Patent Mar. 11, 2014 Sheet 12 of 15 US 8,671,254 B2

1310

PREPARE CASE/SUBCASE TABLES

ARRANGECASE/SUBCASE TABLES
TO HAVE HIGHREGULARITY AT

SAME THROUGHPUT

1320

1330

PARTITION ENCRYPTION
TABLES INTO FIRST, SECOND
PARTS FOR STATE MACHINES

1340

IMPLEMENT FIRST STATE
MACHINE TO PERFORM

1350 OPERATIONS COMMON TO
SETUP AND ENCRYPTION

1700
1710

READ FIRST DATUM FROM
MEMORY TO REGISTER 1

GENERATE SECONDADDRESS

PROVIDE THIRD ADDRESS

COMPARE ADDRESSES

1750

IMPLEMENT SECOND
STATE MACHINE TO

1360 ACCOMPLISHOPERATIONS
INSECOND TABLE PARTS

1720 COMPUTE ESTIMATE
1370 METRICS: REAL ESTATE

1730

1740

MANUFACTURE OPTIMUM DESIGN

FIG. 7 YES
1390 ARE

ADDRESSES
EQUAL

COPY
REGISTER 1 TO
REGISTER 2

READ SECOND DATUM
FROM THIRD MEMORY

1770 ADDRESS TO REGISTER 2

STORE FIRST DATUM
TO SECONDADDRESS

IN MEMORY

1790

1780

FIG. 12

U.S. Patent Mar. 11, 2014 Sheet 13 of 15 US 8,671,254 B2

1000 usec
H
w-va-7 wav-7

ENCRYPT/DECRYPT FEATURES

FIG. 8A

w-v- w ==
ENCRYPT/DECRYPT FEATURES

FIG. 8B

1400
Y 1490

1490 f
CONTROL y CONTROL CONTROL

SBOX DATA IN ADDRESS 8 DATA

HOLDINGs, Collison HOLDING
REGISTERS REGISTERS 1405

DIRTY
256, BITS P 256

XOR
ENCRYPTION/
DECRYPTION

FIG. 9

U.S. Patent Mar. 11, 2014 Sheet 14 of 15 US 8,671,254 B2

FIG. IO

THREAD 1

READS 1 FROM
ADDRESS a

STORE S1 IN
HOLDING REGISTER

THREADO

READ SO FROM
ADDRESS

STORE SON
HOLDING REGISTER

GENERATE ADDRESS
j=0= (j-i-Si-Kii)

MOD 256

WRITESO TO
ADDRESS O

1519

1525

READ SBOX
SO FROM
ADDRESS O

GENERATE ADDRESS
j=j1 = (+Si)+K))

MOD 256 1541

LSB(0) =
LSB(1)?

EXECUTE 1545,7 EXECUTE 1545,7
INCYCLE 3 INCYCLE 2

1547

READ SBOX

SFROM / \ EE
ADDRESS 1

1559

WRITES1 TO READ S3 FROM
ADDRESS i-1 ADDRESS i-3

1561

g
WRITE SO TO READS2 FROM
ADDRESS ADDRESS i-2

US 8,671,254 B2 Sheet 15 Of 15 Mar. 11, 2014 U.S. Patent

US 8,671,254 B2
1.

PROCESSES, CIRCUITS, DEVICES, AND
SYSTEMIS FOR CONCURRENT DUAL

MEMORYACCESS IN ENCRYPTION AND
DECRYPTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to and is a division of U.S. patent
application Ser. No. 12/552,760, filed Sep. 2, 2009, titled
“PROCESSES, CIRCUITS, DEVICES, AND SYSTEMS
FORENCRYPTION AND DECRYPTION AND OTHER
PURPOSES, AND PROCES MAKING, now issued as U.S.
Pat. No. 8,032,732, for which priority, under 35 U.S.C. 120
and 35 U.S.C. 121, is hereby claimed to such extent as may be
applicable and application Ser. No. 12/552,760 is also hereby
incorporated herein by reference. application Ser. No.
12/552.760 is related to and is a division of U.S. patent appli
cation Ser. No. 10/932,506, filed Sep. 1, 2004, titled “PRO
CESSES, CIRCUITS, DEVICES, AND SYSTEMS FOR
ENCRYPTION AND DECRYPTION AND OTHER PUR
POSES, AND PROCESSES OF MAKING, now issued as
U.S. Pat. No. 7,602,905, for which priority, under 35 U.S.C.
120 and 35 U.S.C. 121, is hereby claimed to such extent as
may be applicable and application Ser. No. 10/932,506 is also
hereby incorporated herein by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH ORDEVELOPMENT

Not applicable.

BACKGROUND OF THE INVENTION

This invention is in the field of information and communi
cations, and is more specifically directed to improved pro
cesses, circuits, devices, and systems for encryption and
decryption and other information and communication pro
cessing purposes, and processes of making them. Without
limitation, the background is further described in connection
with wireless communications processing.

Wireless communications, of many types, have gained
increasing popularity in recent years. The mobile wireless (or
“cellular) telephone has become ubiquitous around the
world. Mobile telephony has recently begun to communicate
Video and digital data, in addition to voice. Wireless modems,
for communicating computer data over a wide area network,
using mobile wireless telephone channels and techniques are
also available.

Wireless data communications in wireless local area net
works (WLAN), such as that operating according to the well
known IEEE 802.11 standard, has become especially popular
in a wide range of installations, ranging from home networks
to commercial establishments. Short-range wireless data
communication according to the “Bluetooth” technology per
mits computer peripherals to communicate with a personal
computer or workstation within the same room.

Encryption/decryption techniques are used to improve the
security of retail and other business commercial transactions
in electronic commerce and the security of communications
wherever personal and/or commercial privacy is desirable.
Security is important in both wireline and wireless commu
nications.

Digital signal processing (DSP) chips and/or other inte
grated circuit devices are essential to these systems and appli
cations. Reducing the cost of manufacture and increasing
speed of operation without compromising performance is an

10

15

25

30

35

40

45

50

55

60

65

2
important goal in DSPs, integrated circuits generally and
system-on-a-chip (SOC) design. Cost of manufacture and
power consumption usually decrease if the number of elec
tronic logic circuits (gate count) can be reduced. Decreasing
the gate count in the encryption/decryption circuit contributes
to the goals of reduced cost of manufacture and power con
Sumption. The importance of decreasing the gate count
becomes even stronger in hand held/mobile applications
where Small size is so important, to control the cost and the
power consumed.

Speed of operations is reflected in reduced initialization
time of encryption and increased throughput of encrypted
communications. Both initialization time and throughput are
important considerations in communications and other appli
cations. Reduced initialization time reduces delays in starting
and continuing communications processes. Increased
throughput allows more information to be communicated in
the same amount of time, or the same information to be
communicated in a shorter time. Communications security
should contribute as little overhead, or burden, to communi
cations as possible, all other system requirements being
equal.
WEP (Wired Equivalent Privacy) encryption/decryption

(RC4) is an example of one data transmission security
method. Improved implementations for reduced gate count
and increased speed are desirable in the art for data processing
generally and for RC4 and other encryption/decryption pro
cesses for use at both ends of communications applications
such as WLAN and cellular communications.

U.S. Pat. No. 6,549,622, D. P. Matthews, Jr., describes a
system and method suggested to be a fast hardware imple
mentation of RC4. U.S. Patent Application Publication 2002/
0186839, Parker et al., describes an apparatus and method for
cipher processing system using multiple port memory and
parallel read/write operations and has a comparator circuit.
Further alternative and more advantageous approaches would
be desirable in the art.

SUMMARY OF THE INVENTION

Generally and in a form of the invention, an integrated
circuit includes execute circuitry operable to execute at least
part of an encryption process involving a set of data having
numerousness N. The circuitry is arranged to update at least
first and second data concurrently in the set in a series of
overlapping iterations followed by Subsequent overlapping
iterations in the series wherein at least one of the second data
depends on the uncompleted processing of the first data. An
assemblage of memory elements is coupled to the execute
circuitry and has at least two read ports and at least two write
ports operable for concurrent read and write, the elements
having addresses. The number of memory elements is
bounded in numerousness by the number N and sufficient to
be utilized by the execute circuitry for updating the set of data
for a Subsequent iteration in the series.

Generally and in another form of the invention, an inte
grated circuit includes a first memory having a first read port
and a first write port for concurrent read and write. The first
memory has memory locations for data accessible by assert
ing respective addresses to the first memory through the first
read port and the first write port. The integrated circuit
includes a second memory having a second read port and a
second write port for concurrent read and write. The second
memory has memory locations for data accessible by assert
ing respective addresses to the second memory through the
second read port and the second write port. The integrated
circuit further includes address generation circuitry respec

US 8,671,254 B2
3

tively coupled by address lines to the first memory and to the
second memory. The address generation circuitry is operable
to generate address bits representative of odd and even
addresses. The first memory is responsive only to the even
addresses, and the second memory is responsive only to the
odd addresses.

Generally, an additional form of the invention involves
circuitry for use with a storage having storage locations for
data and dirty bits accessible at addresses corresponding to
addresses in the storage. The circuitry includes an address
line for carrying address bits, a data line for carrying data bits,
and a dirty bit line for conveying a dirty bit set/reset state. A
selector circuit has a selector output selectively coupled to the
address line and to the data line. The selector circuit is respon
sive to a state on the dirty bit line to couple data bits related to
the address bits themselves from the address line to the selec
tor output.

Generally, a further process form of the invention resolves
a dependency in an integrated circuit including a memory
having memory locations for data accessible by asserting
respective addresses to the memory. The process includes
reading to a first register a first datum stored at a location in
the memory represented by a first address. A second address
is generated at which the first datum will be stored in the
memory. A third address is provided at which a second datum
can be read. The second address is compared with the third
address, and if different then the second datum is read to a
second register from the third address in the memory, and if
same then the first datum is copied to the second register as the
second datum.

Generally, a yet further process of manufacture form of the
invention is for integrated circuits having operations of at
least a portion of the integrated circuit definable by Case/
Subcase tables. The process includes making at least a first
state machine and a second state machine corresponding to a
partition of the Case/SubCase tables into at least a first part
and a second part.

Generally, an additional form of the invention for operating
an integrated circuit includes executing at least part of a
process having operations of setup and execution on a set of
data in at least first and second threads concurrently in a series
of overlapping iterations by sharing a state machine for opera
tions common to the setup and execution iterations.

Generally, an article of manufacture form of the invention
includes a Substantially planar medium having physically
established therein structures corresponding to operations of
a process including operations of setup and execution on a set
of data in at least first and second threads concurrently in a
series of overlapping iterations by dividing the set of data into
at least two different Subsets and concurrently reading and
writing in both subsets.

Other forms of the invention involving processes of manu
facture, articles of manufacture, processes and methods of
operation, circuits, devices, systems, and wireless communi
cations devices are disclosed and claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a pictorial diagram of a communications system
including a cellular base station, a WLAN AP (wireless local
area network access point), a WLAN gateway, a WLAN
station on a PC/Laptop, and two cellular telephone handsets,
any one, Some or all of the foregoing improved according to
the invention.

FIGS. 2A-2G are block diagrams of inventive integrated
circuit chips for use in the blocks of the communications
system of FIG. 1.

10

15

25

30

35

40

45

50

55

60

65

4
FIG. 2A is a block diagram of an integrated circuit includ

ing a digital baseband section, the integrated circuit provided
on a printed circuit board system of integrated circuit chips
for use in a cellular base station and the cellular handsets of
FIG 1.

FIG. 2B is a block diagram of an integrated circuit includ
ing an analog baseband section, the integrated circuit pro
vided on a printed circuit board system of integrated circuit
chips for use in a cellular base station and the cellular hand
sets of FIG. 1.

FIG. 2C is a block diagram of an integrated circuit includ
ing a GSM/GPRS RF (radio frequency) unit, the integrated
circuit on a printed circuit board system of integrated circuit
chips for use in a cellular base station and the cellular hand
sets of FIG. 1.

FIG. 2D is a block diagram of an integrated circuit includ
ing a WCDMA (wideband code division multiple access) RF
(radio frequency) unit, the integrated circuit on a printed
circuit board system of integrated circuit chips for use in a
cellular base station and the cellular handsets of FIG. 1.

FIGS. 2E and 2F are two halves of a block diagram of an
integrated circuit including application processor circuitry,
the integrated circuit provided with off-chip peripherals on a
printed circuit board system of integrated circuit chips for use
in a cellular base station and the cellular handsets of FIG. 1.

FIG. 2G is a block diagram of a WLAN integrated circuit
including MAC (media access controller), PHY (physical
layer) and AFE (analog front end), the integrated circuit on a
printed circuit board system of integrated circuit chips for use
in one, some or all of the cellular base station, the WLAN AP,
the WLAN PC, the WLAN gateway, and the two cellular
telephone handsets of FIG. 1.

FIG. 3 is a schematic diagram of inventive circuitry for
implementation of the improved cell phone and in the
improved WLAN system of all as shown in FIGS. 1 and 2A
through 2G.

FIG. 4 is a more detailed schematic diagram of inventive
circuitry in FIG. 3.

FIG. 5 is a state transition diagram of an inventive Primary
State Machine embodiment and inventive process for the
circuitry of FIG. 4.

FIG. 6 is a state transition diagram of an inventive Second
ary State Machine embodiment and inventive process for the
inventive circuitry of FIG. 4.

FIG. 7 is a flow diagram of an inventive method of manu
facturing integrated circuits including the inventive circuitry
of FIGS. 3, 4, 5, and 6.

FIGS. 8A and 8B are time interval diagrams for illustrating
improved real time operations in the inventive blocks and
inventive system of FIG. 1.

FIG. 9 is a partially schematic, partially block diagram
emphasizing parts of an implementation of the inventive cir
cuitry of FIG. 3.

FIG. 10 is a flow diagram of improved operations in an
inventive S-Box setup process.

FIG. 11 is a flow diagram of improvements for dirty bit
operations and other operations in an S-Box setup process of
the invention.

FIG. 12 is a flow diagram of an inventive process of depen
dency resolution.

DETAILED DESCRIPTION OF EMBODIMENTS

In FIG. 1 an improved security-enabled communications
system 100 includes two improved cellular telephone hand
sets 110 and 110'. In handset 110, for example, a WLAN
block 114 has improved decryption and encryption. WLAN

US 8,671,254 B2
5

here refers to IEEE 802.11 compatible networks and other
WLAN networks. Also in handset 110, cellular telephone
communications are encrypted and decrypted in block 118
suitably also in an improved manner. Handset 110' is corre
spondingly improved for security. A cellular base station 140
is improved with at least security block similar to block 118
and two-way communicates with the Internet and with cellu
lar telephone networks and PSTN (public switched telephone
network). A WLAN AP (wireless local area network access
point) 160, personal computer PC/Laptop 170 equipped with
WLAN station, and a WLAN gateway 180, are provided with
one or more blocks similar to block 114. Any one, some or all
of the WLAN AP 160, WLAN station on PC/Laptop 170, and
WLAN gateway 180 are provided with one or more PHY
physical layer blocks and interfaces as selected by the skilled
worker in various products, for DSL (digital subscriber line
broadband over twisted pair copper infrastructure), cable
(DOCSIS and other forms of coaxial cable broadband com
munications), fiber (fiber optic cable to subscriber premises),
and Ethernet wideband network. In this way advanced net
working capability for audio, music, Voice, video, e-mail,
e-commerce, file transfer and other data services, internet,
worldwide web browsing, TCP/IP (transmission control pro
tocol/Internet protocol), Voice over packet and Voice over
Internet protocol (VoP/VoIP), and other services are provided
with a sufficient level of security for secure utilization and
enjoyment appropriate to the just-listed and other particular
applications.

FIGS. 2A-2G illustrate inventive integrated circuit chips
for use in the blocks of the communications system 100 of
FIG. 1. The skilled worker uses and adapts the integrated
circuits to the particular parts of the communications system
100 as appropriate to the functions intended. For conciseness
of description, the integrated circuits are described with par
ticular reference to use of all of them in the cellular telephone
handsets 110 and 110' by way of example. It is contemplated
that the skilled worker uses each of the integrated circuits
shown, or such selection from the complement of blocks
therein provided into appropriate other integrated circuit
chips, in a manner optimally combined or partitioned
between the chips, to the extent needed by any of the appli
cations supported by the cellular telephone base station 140,
WLAN access point 160, PC/Laptop 170 with WLAN, and
WLAN gateway 180, as well as personal computers, radios
and televisions, fixed and portable entertainment units, rout
ers, pagers, personal digital assistants (PDA), organizers,
scanners, faxes, copiers, household appliances, office appli
ances, combinations thereof, and other application products
now known or hereafter devised in which increased security
of communication is desirable.

In FIG. 2A, an integrated circuit 200 includes a digital
baseband (DBB) block 210 that has a RISC processor (such as
MIPS core, ARM processor, or other suitable processor), a
digital signal processor (DSP) such as a TMS320C55x DSP
from Texas Instruments Incorporated or other digital signal
processor, and a memory controller interfacing the RISC and
the DSP to Flash memory and SDRAM (synchronous
dynamic random access memory). On chip RAM 220 and
on-chip ROM 230 also are accessible to the processors via the
memory controller. Security accelerators block 240 provide
additional computing power accessible, for instance, when
the integrated circuit 200 is operated in a security mode
enabling the security accelerators block 240. Digital circuitry
250 supports and provides interfaces for one or more of GSM,
GPRS, EDGE, and UMTS (Global System for Mobile com
munications, General Packet Radio Service, Enhanced Data
Rates for Global Evolution, Universal Mobile Telecommuni

10

15

25

30

35

40

45

50

55

60

65

6
cations System) wireless, with or without the high speed
digital data service, via the analog baseband chip 300 of FIG.
2B and GSM chip 400 of FIG. 2C. Digital circuitry 250
includes ciphering processor CRYPT for GSM A51 and/or
A52 ciphering or and/or other encryption/decryption pur
poses. Blocks TPU (Time Processing Unit real-time
sequencer), TSP (Time Serial Port), GEA (GPRS Encryption
Algorithm block for ciphering at LLC logical link layer), RIF
(Radio Interface), and SPI (Serial Port Interface) are included
in digital circuitry 250.

Digital circuitry 260 provides codec for CDMA (Code
Division Multiple Access), CDMA2000, and/or WCDMA
(wideband CDMA) wireless with or without an HSDPA
(High Speed Downlink Packet Access) (or 1xEV-DV, 1xEV
DO or 3xEV-DV) data feature via the analog baseband chip
300 of FIG. 2B and the CDMA chip 500 of FIG. 2D. Digital
circuitry 260 includes blocks MRC (maximal ratio combiner
for multipath symbol combining), ENC (encryption/decryp
tion), RX (downlink receive channel decoding, de-interleav
ing, Viterbi decoding and turbo decoding) and TX (uplink
transmit convolutional encoding, turbo encoding, interleav
ing and channelizing). Block ENC has blocks for uplink and
downlink supporting the F8 confidentiality algorithm and the
F9 integrity algorithm of WCDMA or otherwise suitable
encryption/decryption process for the communications appli
cation.

Audio/voice block 270 supports audio and voice functions
and interfacing. Applications interface block 275 couples the
digital baseband 210 to the applications processor 600 of
FIGS. 2E and 2F. Serial interface 280 interfaces from parallel
on-chip digital busses to USB (Universal Serial Bus) of a PC
(personal computer). Serial interface 280 includes UARTs
(universal asynchronous receiver/transmitter circuit) for per
forming the conversion of data between parallel and serial
lines. Chip 200 is coupled to location-determining circuitry
290 for GPS (Global Positioning System), and to a USIM
(UMTS Subscriber Identity Module) 295 or other SIM.

In FIG. 2B a mixed-signal integrated circuit 300 includes
an analog baseband (ABB) block 310 for GSM/GPRS/
EDGE/UMTS which includes SPI, digital-to-analog/analog
to-digital conversion DAC/ADC block, and RF (radio fre
quency) Control pertaining to GSM/GPRS/EDGE/UMTS
and coupled to RF (GSM etc.) chip 400 of FIG.2C. Block315
is an analogous ABB for WCDMA wireless and any associ
ated HSDPA data (or 1xEV-DV, 1xEV-DO or 3xEV-DV data
and/or voice) with its respective SPI (Serial Port Interface),
digital-to-analog conversion DAC/ADC block, and RF Con
trol pertaining to WCDMA and coupled to RF (WCDMA)
chip 500 of FIG. 2D. Audio block 320 has audio I/O (input/
output) circuits to a speaker 322, a microphone 324, and
headphones 326. Audio block 320 is coupled to a voice codec
and a stereo DAC (digital to analog converter), which in turn
have the signal path coupled to the baseband blocks 310 and
315 with suitable encryption/decryption activated or not.

Control interface 330 has a primary host interface (I/F) and
a secondary host interface to DBB-related integrated circuit
200 of FIG. 2A for the respective GSM and WCDMA paths.
The integrated circuit 300 is also interfaced to the I2C port of
applications processor chip 600 of FIG. 2E. Control interface
330 is also coupled via access arbitration circuitry to the
interfaces in circuits 350 and the basebands 310 and 315.
Power conversion block 340 includes buck voltage conver
sion circuitry for DC-to-DC conversion, and low-dropout
(LDO) Voltage regulators for power management/sleep mode
of respective parts of the chip regulated by the LDOs. Power
conversion block 340 provides information to and is respon

US 8,671,254 B2
7

sive to a power control state machine shown between the
power conversion block 340 and circuits 350.

Circuits 350 provide oscillator support for the audio circuit
320 including voice codec and stereo DAC. A 32 KHZ oscil
lator and 12 MHz oscillator are included for clocking chip
300. The oscillators have frequencies determined by respec
tive crystals 354. Circuits 350 include a RTC real time clock
(time/date functions), general purpose I/O, a vibrator drive
(supplement to cell phone ringing features), a USB On-The
Go (OTG) transceiver, and touch screen interface. A touch
screen 356 off-chip is connected to the touchscreen interface
on-chip. Batteries such as a lithium-ion battery 358 and
backup battery provide power to the system and battery data
on suitably provided separate lines from the battery pack.
When needed, the battery also receives charging current from
the Battery Charge Controller in analog circuit 350 which
includes MADC (Monitoring ADC and analog input multi
plexer Such as for on-chip charging Voltage and current, and
battery Voltage lines, and off-chip battery Voltage, current,
temperature) under control of the power control state
machine.

In FIG. 2C an RF integrated circuit 400 includes a GSM/
GPRS/EDGE/UMTS RF transmitter block 410 supported by
oscillator circuitry 420 with off-chip crystal 425. Transmitter
block 410 is fed by baseband 310 of FIG. 2B. Transmitter
block 410 drives an off-chip dual band RF power amplifier
(PA) 430. On-chip voltage regulators 440 maintain appropri
ate Voltage under conditions of varying power usage. Off
chip switchplexer 450 couples wireless antenna and switch
circuitry in FIG. 2D to both the transmit portion 410, 430 in
FIG. 2C and receive portion next described. Switchplexer 450
is coupled via band-pass filters 455 to receiving LNAS 460
(low noise amplifiers) for 850/900 MHz, 1800 MHz, and
1900 MHz. Depending on the band in use, the output of LNAs
460 couples to GSM/GPRS/EDGE/UMTS demodulator 470
to produce the I/O outputs thereof (in-phase, quadrature) to
the GSMFGPRS/EDGE/UMTS baseband block 310 in FIG.
2B.

In FIG. 2D an integrated circuit 500 supports WCDMA
(wideband code division multiple access) RF (radio fre
quency) in a receiver section 510 and a transmitter section
550. The antenna of the cellular telephone handset 110
couples to a switch unit 570 that in turn couples to the GSM
circuits of FIG. 2C and the CDMA circuits of FIG. 2D. The
receiver output lines at upper left and transmitter inputlines at
lower left are all coupled to the WCDMA/HSDPA baseband
block 315 in FIG. 2B.

In FIGS. 2E and 2F are illustrated two halves of the block
diagram of an integrated circuit chip 600 for application
processing and various off-chip peripherals.

Beginning with FIG. 2E, on-chip are found a high-speed
WLAN 802.11a/b/g interface circuit 610 coupled to the
WLAN chip 800 of FIG.2G. As described in connection with
FIG.2Gandelsewhere herein, WLAN chip 800 has improved
circuitry and processes for encryption and decryption.

Further provided on chip 600 is an applications processing
section 620 which includes a RISC processor (such as MIPS
core, ARM processor, or other suitable processor), a digital
signal processor (DSP) such as a TMS320C55x DSP from
Texas Instruments Incorporated or other digital signal pro
cessor, and a shared memory controller with DMA (direct
memory access), and a 2D (two-dimensional display) graphic
accelerator. The RISC and the DSP have access via on-chip
extended memory interface (EMIF/CF) 630 to off-chip
memory resources 635 including as appropriate, mobile DDR
(double data rate) DRAM, and flash memory of any of NAND
Flash, NOR Flash, and Compact Flash. On-chip, the shared

10

15

25

30

35

40

45

50

55

60

65

8
memory controller in circuitry 620 interfaces the RISC and
the DSP via on-chip bus to on-chip memory 640 with RAM
and ROM. The 2D graphic accelerator is coupled to frame
buffer internal SRAM (static random access memory) 660.

Further in FIG. 2E, security 650 is provided by security
features and encryption and decryption of any one or more
types known in the art. A random number generator RNG is
provided in security 650. Among the Hash approaches are
SHA-1 (Secured Hashing Algorithm), MD2 and MD5 (Mes
sage Digest version it). Among the symmetric approaches are
DES (Digital Encryption Standard), 3DES (Triple DES),
RC4 (Rivest Cipher), ARCO (related to RC4), TKIP (Tem
poral Key Integrity Protocol, uses RC4), AES (Advanced
Encryption Standard). Among the asymmetric approaches
are RSA, DSA, DH, NTRU, and ECC (elliptic curve cryptog
raphy). The security features contemplated include any of the
foregoing hardware and processes and/or any other known or
yet to be devised security and/or hardware and encryption/
decryption processes implemented in hardware or software.
Improvements are suitably implemented as described herein.
Some of the foregoing encryption/decryption processes are
shuffle-based which has to do with encryption key formation
and processing also as described in more detailed herein.

Further in FIG.2E, on-chip peripherals 670 include UART
data interface and MCSI (Multi-Channel Serial Interface)
voice interface for off-chip Bluetooth short distance wireless
circuit 690. Debug messaging and serial interfacing are also
available through the UART. A JTAG emulation interface
couples to an off-chip emulator pod for test and debug.

Further in peripherals 670 are an I2C interface to analog
baseband ABB chip 300 of FIG. 2B, and an interface 685 to
applications interface 275 of integrated circuit chip 200 hav
ing digital baseband DBB in FIG. 2A. Interface 685 includes
a MCSI voice interface, a UART interface for controls, and a
multi-channel buffered serial port (McBSP) for data. Timers,
interrupt controller, and RTC (real time clock) circuitry are
provided in chip 600.

Further in peripherals 670 area MicroWire (u-wire 4 chan
nel serial port) and multi-channel buffered serial port
(McBSP) to off-chip Audio codec, a touch-screeen controller,
and audio amplifier 680 to stereo speakers. External audio
content and touchscreen (in/out) are Suitably provided. Addi
tionally, an on-chip USB OTG interface couples to off-chip
Host and Client devices. These USB communications are
suitably directed outside handset 110 such as a PC (personal
computer) or inside the handset.

Turning to FIG. 2F illustrating further features of chip 600,
various further interfaces and features are shown. Note that
the block diagram is to be understood as providing on-chip
peripheral bussing and couplings between the application
processing circuitry 620 and the various on-chip peripheral
blocks, regardless of whether the diagram lacks explicitly
shown busses and couplings, as is understood by the skilled
worker.
An on-chip UART/IrDA (infrared data) interface 710

couples to off-chip GPS (global positioning system) and Fast
IrDA infrared communications device. Interface 720 pro
vides EMT9 and Camera interfacing to one or more off-chip
still cameras or video cameras 730, and/or to a CMOS sensor
of radiant energy, and/or to a debugger.

Further in FIG. 2F, an on-chip LCD controller and associ
ated PWL (Pulse-Width Light) block 740 are coupled to a
color LCD display and its LCD light controller off-chip.
Further, on-chip interfaces 750 are respectively provided for
off-chip keypad and GPIO 760, on-chip LPG (LED Pulse
Generator) and PWT (Pulse-Width Tone) interfaces are
respectively provided for off-chip LED and buzzer peripher

US 8,671,254 B2

als 770. On-chip MMC/SD multimedia and flash interfaces
are provided for off-chip MMC Flash card, SD flash card and
SDIO peripherals 780. An on-chip selectable-mode HDQ or
1-Wire (hardware protocols) battery monitoring serial inter
face module is provided for monitoring the off-chip Battery.
On-chip Clock and Reset management circuitry 790 is con
nected to off-chip 12 MHZ and 32 KHZ crystals and to a reset
pushbutton switch 795.

In FIG. 2G, a WLAN integrated circuit 800 includes MAC
(media access controller) 810, PHY (physical layer) 820 and
AFE (analog front end) 830. PHY 820 includes blocks for
BARKER coding, CCK, and OFDM PHY 820 receives PHY
Clocks from a clock generation block supplied with suitable
off-chip host clock, such as at 13, 16.8, 19.2, 26, or 38.4 MHz.
These clocks are often found in cell phone systems and the
host application is suitably a cell phone or any other end
application.
AFE 830 is coupled by receive (RX), transmit (Tx) and

CONTROL lines to an off-chip WLAN RF circuitry 840.
WLAN RF 840 includes a 2.4 GHz (and/or 5 GHz) direct
conversion transceiver and power amplifier and has low noise
amplifier LNA in the receive path. Bandpass filtering couples
WLAN RF 840 to a WLAN antenna.

In MAC 810, Security circuitry 850 supports any one or
more of various encryption/decryption processes such as
WEP (Wired Equivalent Privacy), RC4, TKIP, CKIP, WPA,
AES (advanced encryption standard), 802.11i and others.
Note that the RC4 and TKIP and other processes are shuffle
based processes. RC4 has been an early encryption/decryp
tion process in WLAN technology. It is expected that that the
installed base of WLAN modems will become a mix of earlier
and later-provided encryption/decryption processes in the
industry and among users. Accordingly, it will be expected for
a long time for a WLAN modem to include the early encryp
tion process(es) even as and after such later encryption/de
cryption processes are introduced.
The security circuitry and processes depicted in FIGS. 3, 4,

5, 6, 9, 10, 11 and 12 are suitably situated in security block
850 of FIG. 2G, security block 650 of FIG. 2E, security
accelerators 240, ENC block in 260, and cryptographic area
250 of FIG. 2A, and generally in either or both of encryption/
decryption blocks 114 and 118 of FIG. located in any of the
handset 110, 110', cellular base station 140, WLAN AP 160,
PC/Laptop 170, and WLAN gateway 180 and wherever the
advantages of the security circuitry and processes in FIGS. 3,
4, 5, 6, 9, 10, 11 and 12 commend their use.

Further in FIG. 2G, embedded CPU (central processing
unit) 860 is connected to internal RAM and coupled to pro
vide QoS (Quality of Service) IEEE 802.11e operations
WME, WSM, and PCF (packet control function). Security
block 850 in FIGS. 2G and 900 of FIG.3 has busing for data
in, data out, and controls interconnected with CPU 860. Inter
face hardware 870 and internal RAM on-chip couples CPU
860 with (see FIG. 2E) interface 610 of applications proces
sor integrated circuit 600 of FIG. 2E.

Without limiting the generality of application of the vari
ous inventive embodiments, some examples are next
described specifically in connection with their advantages in
relation to hardware acceleration for the RC4 process in WEP
encryption/decryption methods and implementations.
Some embodiments provide a faster throughput implemen

tation, are less gate and memory intensive, and are more gate
efficient and more memory efficient in their implementation
of WEP (RC4) and other encryption and decryption and infor
mation processing methods. Some of these embodiments use
fractional-size dual and multiple memory banks and adopt a
look-ahead method mechanism for high performance and

10

15

25

30

35

40

45

50

55

60

65

10
acceleration. Other embodiments use full size memory with
multiple read/write ports. Some of the embodiments have a
dirty-bit scheme for substantially reducing the setup time of
the process. Still other features and advantages are evident
from the description herein.
Many encryption/decryption core algorithms, such as

RC4, can utilize a shuffling or Swapping algorithm in them.
Moreover, each of the core algorithms can be used in various
more extensive algorithms, just as RC4 is used in WPA (WEP
and TKIP together) for instance.
Where the term “encryption' is used by itself, it should be

understood that either or both of encryption and decryption
are intended as example applications. The term “encryption”
shall include "ciphering and “enciphering, and the term
“decryption' shall include “deciphering herein. “Storage'
refers to memory, registers, media, and any other device,
circuit, or element that holds information, and combinations
of any of the foregoing forms of storage.
RC4 Algorithm. The first step is to initialize the 256 byte

Sbox (SIO to SL255 each being 8bits) array and the 256 byte
key array (KIO to K255 each being 8 bits). Separate key
memory is not needed and local memory is suitably used to
store the key.
STEP 1: Initialization consists of two steps
(a) Sbox Initialization
Initializej to 0
for i=0 to 255
Si=i
(b) Sbox Shuffling
for i=0 to 255
j=(+Si+Ki) mod 256 (The symbols “” and ' '

represent this formula only for purposes of shuffling section
description.)
Read SI
Swap Si and S (i.e. holding byte=S), S=Si and

Si-holding byte. Sk is a location in the memory at an
address k outside of Sbox which is used for the holding byte;
otherwise a register is used.)

Note: Ki is formed and found from the WEP key array.
The key array is made up of repeated iterations of the IV
(initialization vector for the key) and the WEP key. WEP key
is variable length. Once complete, initialize i and j to 0. The
IV is 3 bytes (and for WPA, i.e., WEP and TKIP together, it is
6 bytes). The WEP key is variable length and is stored in local
memory.
STEP 2: Encryption/Decryption

Initialize indices i and back to 0.
To encrypt/decrypt a random byte, perform the following:

i=(i+1) mod 256
j=(+Si) mod 256: (The symbols o” and are

same symbols as noted in STEP 1 above but note differ
ent meaning here. Each of 'and', 'represent this
distinct formula but only for purposes of the encryption/
decryption section description.)

swap Si and S
t=(Si)+S) mod 256; (The symbols “t, and “t, each

represent this formula for purposes of the encryption/
decryption section below)

Key=SIt
Data Out-Data In XOR Key
Dirty bit Approach: A dirty bit approach eliminates the

Sbox initialization step (Step 1(a)) of the initialization phase
of the algorithm. Conventionally, in the Sbox initialization
step the i' Sbox data byte at address location i of the Sbox
array is written with the data value i itself (i.e. SO=0, S1=1,
S|255)=255).

US 8,671,254 B2
11

By contrast, in the dirty bit enhanced embodiment
described next (and hereinbelow at FIGS. 9 and 11), each
Sbox location has associated with it an additional dirty bit
which is independently set and reset as described.

Thus, in effect, each Sbox location is simply assigned a
dirty bit status instead of undergoing conventional 0 through
255 initialization. The time consuming steps of initializing
the Sbox array entries are omitted, and do not occur at all in
this embodiment. Initially the dirty bits corresponding to all
the Sbox values (SIO to S255) are reset to zero. Advanta
geously, the dirty bit cells are simultaneously reset upon
initialization by one reset signal in one clock cycle.

Then, as operations continue, whenevera Sbox location is
written to, its corresponding dirty bit is set. Setting the dirty
bit indicates that whatever is the value of Sbox in that par
ticular location is a valid value. That is, the value in that Sbox
byte is the actual bit contents in that Sbox byte, which are
physically read as needed to determine what those contents
are. Whenever any Sbox location is to be read, its correspond
ing dirty bit status is checked. If the dirty bit is set, then
whatever value is in the corresponding byte in the Sbox array
is a valid Sbox value and is read as needed to retrieve that valid
value.

Otherwise, when the dirty bit status check shows the dirty
bit is not set, the read value in this embodiment is understood
to be the location number, or byte address, itself (i.e. Sii) of
the Sbox location or byte in question. Since that byte address
is already asserted to access the dirty bit, that address is
conveyed onto data output lines of the Sbox memory or asso
ciated circuitry when the dirty bit is indeed not set, thereby to
represent the understood read value. Put another way, if the
dirty bit is not set, that particular Sbox byte has never been
written to, hence that byte is regarded as if it retains the value
Sii, regardless of the actual bit contents in that Sbox

byte. Implementing this scheme eliminates any requirement
of a multi-cycle Sbox initialization step.
The Sbox array can be implemented in hardware, in a

memory, or in registers. Memory implementation is a gate
efficient way to implement the Sbox space as compared to a
register implementation. The tradeoff is large Sbox initializa
tion time (one memory access cycle to initialize one memory
location). Advantageously, the dirty bit approach completely
eliminates this series of initialization steps in implementa
tion.
Two 2-Port Half-Memories with Double-Byte Throughput
Look ahead mechanism: In a memory-based implementa

tion for each single byte of processing of Sbox every iteration
of Sbox setup shuffling step (Step 1(b)) involves two Sbox
reads and writes (at locations Si and SI). Also encryption/
decryption of each single byte of data involves three Sbox
reads (at Si, Si and St) and two Sbox writes (at Si and
SI). A single dual port memory approach might do a single
read and single write from and to the memory through the
dedicated read and write ports. Thus, the Sbox shuffling step
might take two clock cycles or more periteration per single
byte of yield (for 256 iterations). Encryption/decryption of a
byte of data might take three clock cycles or more periteration
per single byte of yield. In both setup and encryption, only a
single byte would have been obtained from the iteration even
though a dual port memory were used.

In a disclosed embodiment herein having two dual-port
half-size memory banks, a lookahead mechanism processes
two Sbox setup shuffle iterations at a time and encrypts/
decrypts two bytes of data likewise by adopting a lookahead
mechanism. The lookahead mechanism remarkably uses just
the same total memory space for the Sbox as would have been
conventionally needed to process just one byte of data. Where

10

15

25

30

35

40

45

50

55

60

65

12
larger memory banks are used, they suitably have their extra
space (no longer needed for Sbox) used for other applications
and features.

In other words, execute circuitry operates to execute at
least part of an encryption process involving a set of data
having a predetermined size or numerousness N (e.g.,
N=256). The circuitry is arranged to update at least first and
second data (not just a single byte at a time) concurrently in
the set in a series of overlapping uniform or variable length
iterations followed by Subsequent overlapping iterations in
the series. The circuitry processes the data in at least first and
second threads concurrently in the set in the series of over
lapping uniform or variable-length iterations. In one of the
iterations at least one of the second data depends on the
uncompleted processing of the first data.
An assemblage of memory elements is coupled to the

execute circuitry, and the assemblage of memory elements
has one, two, or more read ports and one, two, or more write
ports operable for concurrent read and write. The number of
memory elements used, even though the number used is
bounded in numerousness by the number N, is sufficient to be
utilized by the execute circuitry for updating the set of data for
a Subsequent iteration in the series. The assemblage of
memory elements is arranged in Some embodiments into at
least two memory units segregating the set of data. The pre
determined size N comprehends the total number of
addresses occupied by the set of data utilized in operation of
the execute circuitry in the memory units combined.

Note that the higher byte addresses (e.g., j, and t) and
values (e.g., S1, St1) depend on the results of the lower byte
calculations (e.g., ji=0, S0 and swapped-in S0). However,
even though dependencies exist, the remarkable processing
obtains the lower-byte results just in time in the multiple-byte
iteration and handles them so that the results obtained for
higher-byte processing are the correct ones because the
dependencies are resolved just in time beforehand. The lower
address operations actually affect two locations of the Sbox
space-specifically the j(i+0) and the i+0 location of the lower
address byte (in the two byte case). When computing the next
byte (i+1) of operation, if the access to the memories that are
required are not the ones being modified by the lower address
operation (i.e., j(i+0) and i--0)), then the fetched result from
the memory can be used as such. However, if the access
required to the memory for the higher address is to a location
modified by the lower address operation, then instead ofusing
the fetched result from the memory, the hardware and method
advantageously use the modified value directly. This is
accomplished by one or more multiplexers that selects which
value of the Sbox is to be selected in response to the select
signal and the dirty bit. This extra logic is accommodated
within one cycle of operation and contributes to the dramati
cally improved performance.

Put another way, a method of processing of two or more
bytes of data here can have the steps respective to the two or
more bytes overlap in time whereby overall execution time is
dramatically reduced. Below is further description how to go
about it.
SHUFFLING PROCESS 1 (b): Consider two memory

banks to store the Sbox array (MO and M1) having Sbox data
alternately in order, i.e. MOO=SIO, MOL1=S2). . . .
MO127=S254 and M10=S1, M11=S3, . . .
M1127=S255). Periteration of Sbox shuffle the following
steps need to be performed (for i=0 to 255).
Read Si
Calculatej (+Si+Ki)mod 256
Read SI
Swap Si with Si

US 8,671,254 B2
13

Having two half-size memory banks to store Sbox alter
nately allows for reading from both the banks simultaneously.
Consider the first iteration of Sbox shuffling (i=0). Instead of
reading just SOI for the first shuffle Sbox iteration, S1 is
also read from the memory bank M1 to do a look ahead for
Sbox shuffling.

Depending on the value of KIO, can have an even or an
odd value (corresponding to MO or M1 banks respectively).
The following four tables (case (a) through case (d)) represent
all possible combinations of is and j's lying in memory
banks MO and M1. Each table represents one Sbox Shuffle
iteration.

Terminology Followed:
First Row of each table: Represents Read (R) and Write (W)

for respective columns
Second Row of each table: Represents the memory bank MO

or M1 operated on
All but the first two rows of each table: operations done in the
memory banks. Each row corresponds to one clock cycle in
ascending order from top to down. i.e. Third row indicates
the operations done in the first clock cycle of the iteration
and so on.

First Column of each table: Read from Memory bank M.
Second Column of each table: Write to Memory bank Mo
Third Column of each table: Read from Memory bank M.
Fourth Column of each table: Write to Memory bank M.
S: SO Sbox memory access at location i=0
S: S1 Sbox memory access at location i=1
So: Si, ol Sbox memory access at locationjo
S.: Si, Sbox memory access at location j,
S: S2 Sbox memory access at location i=2
S: S3 Sbox memory access at location i=3

Case (1): Both j, andj, even, i.e. both address even address
memory Mo

Case (2): j, o even and j, q odd, i.e.j, o addresses Mo and j,
addresses odd address memory M.

Case (3): j, o odd and j, even, i.e.j, o addresses M and j,
addresses Mo

Case (4): Both and odd, i.e. both address odd address
memory M.
Note: The above four values are at the beginning of the

iteration

TABLE

Case (1

R W R W
Mo Mo M M

1 So S
2 So So
3 S1 S
4 S2 So S. S1

TABLE

Case (2

R W R W
Mo Mo M M

1 So S
2 So So S1 S
3 S2 So S. S1

10

15

25

30

35

40

45

50

55

60

65

14
TABLE

Case (3

R W R W

Mo Mo M M

1 So S
2 S1 S So So
3 S2 So S. S1

TABLE

R W R W
Mo Mo M M

1 So S.
2 So So
3 S1 S
4 S2 So S. S1

In the first row (clock cycle) of all four TABLES for Cases
(1), (2), (3), (4), respective reading operations So and S
simultaneously read the contents of Sbox byte Si for address
i=0 out of even memory Mo and read the contents of Sbox
byte Si for i=1 out of odd memory M.
Now assume both ofj, and j, are even (use TABLE for

Case (1)). The next step (second row clock cycle) in one clock
cycle generates address join fast address generation logic
and then reads and transfers to a holding register the contents
of Sbox byte So from jo location of even address memory
Mo since address jo is an even number in Case (1). The
shuffle swap for i=0 is thereby begun. This operation is sym
bolized by the entry So in second row, first column. In the
same clock cycle (second row, second column), the read value
So of Si for i=0 read in the first row is written to locationjo.
Since address jo is an even number in Case (1), the write
operation of value So is asserted to even memory M. Now the
shuffle swap of value So is complete.

In the third row (clock cycle) of Case (1), note that since the
calculated address j lies in or points to the same memory
Mo as did addressi, o, the Sbox byte S, is not read in the same
clock cycle as the read of So of row 2. In Case (1) it is the third
cycle wherein Sbox byte S, is read from even memory Mo
and byte S is written to it.

This third step (third row clock cycle) in one clock cycle
generates address j in fast address generation logic and
then reads to a holding register the contents of Sbox byte S,
from location of even address memory Mo since address
j, is an even number in Case (1). The shuffle swap for i=1 is
thereby begun. This operation is symbolized by the entry S.
in third row, first column. In the same clock cycle (third row,
second column), the read value S of Si for i=1 read in the
first row is written to locationi . Since address, is an even
number in Case (1), the write operation of value S is asserted
to even memory M. Now the shuffle swap of value S is
complete.

In the fourth row (clock cycle) the next iteration of Sbox
shuffling for byte pair S and S is started, analogous to the
first row above. Also, in this fourth clock cycle, writing of So
and S. respectively completes their pending shuffle Swaps to
locations i=0 and i=1 in the respective even and odd memories
Mo and M simultaneously.
The process of Case (1) continues by repeating the opera

tions of row triplets 2, 3, 4, 2, 3, 4, etc. where the indices i in
each row triplet are incremented by 2 with every repetition.

US 8,671,254 B2
15

Thus, 256 values of index i are processed in 385 clock cycles
(4 cycles for i=0, 1 plus 3 cycles times the 127 remaining pairs
of successive index i values.) On the very last 257' clock
cycle of Case (1), the byte entries in second and fourth col
umns are as shown for row 4 in the table, but the new-byte
entries in first and third columns are omitted.
The TABLES for Case (2) and Case (3) are similar to the

TABLE for Case (1) and differ wherein the operations in

16
Terminology followed:
Following tables depicts the memory accesses (first and

second column representing read and write accesses to
memory bank Zero Mo respectively and the third and fourth to
memory bank M.) in all the possible cases. Each row repre
sents clock cycles (from top to bottom) and each box contains
the particular memory access done in the corresponding clock
cycle on the particular port (read/write).

clock cycle row 3 of Case (1) are able to be moved into the Sod-Sbox memory access at location i=0 - - - ith thread
unused columns of clock cycle row 2. Here addresses, and 10 So->Sbox memory access at locationjo - - - ith thread
j, lie in different memory banks Mo and M (Case (2) and So->Sbox memory access at location to - - - ith thread
Case (3)), and the readings of So and S. are done in the same S>Sbox memory access at location i=1 - - - (i+1)th
cycle 2 as demonstrated in each Table for Case (2) and (3). thread
Also, the writing of So and S are also done in the same cycle is S>Sbox memory access at location j, - - - (i+1)th
2 as shown in each Table for Case (2) and (3). thread

Advantageously further increased efficiency of memory S>Sbox memory access at location t, - - - (i+1)th
use occurs because both even memory and odd memory Mo thread
and Mare simultaneously used in clock cycle row 2 aS shown S>Sbox memory access at location i 2- - - next iteration
in the TABLES for Case (2) and Case (3). This result is 20 S>>Sb - - - 3. OX memory access at location i3 - - - next iteration conferred by the condition of Cases (2) and (3) that j, and Case (1): Bothjo and even, i.e. both address even address j, are complementary in their even- and odd-ness. The memory M
TABLE for Case (2) differs from the TABLE of Case (3) in ry O
having the memory Mo columns reversed with the memory Case (2): j, even and j, odd, i.e. j, o addresses Mo and j,
M columns, reflecting the reversal of designated memories 25 addresses odd address memory M.
into which the accesses occur. Case (3): j, o odd and j, even, i.e. j, o addresses M and j,
The TABLE for Case (4) is similar to the TABLE for Case addresses Mo

(1) and differs wherein the roles of the even memory and odd Case (4): Both j, and j, odd, i.e. both address odd address
memory Mo and M are reversed so that most accesses lie in memory M.
odd memory M because of the condition that both j, o and 30 SubCase (a): Both to and t, even, i.e. both address even
ji=1 are odd. address memory Mo
h it be emphasized that eachwhile t SubCase (b): to even and t, odd,
as the operations pertaining to that successive 1teration of a i.e. t. ddr M d t. dd dd add

particular Case out of the four (4) Shuffle Cases. Furthermore, meiory M. esses Mo and l, addresses odd address
when the iteration is begun, the identity of the particular Case 35 SubC 1. dd and dd M, and
is not necessarily known, and operations remarkably “learn l E. N and t, even, 1.e. to addresses Man
as the operations proceed which Case the operations are in so t, addresses Mo
that the operations proceed further to complete the iteration in subs (d): Both to and t, odd, i.e. both address odd
a manner appropriate to that Case. address memory M.
ENCRYPTION/DECRYPTION PROCESS 2: Similar 40 Case (1): Bothj andj, even, i.e. both address even address

lookahead is applied to the step 2. i.e. Encryption/decryption memory Mo

SubCase SubCase SubCase SubCase
- (a) - - (b) - - - - -

Mo Mo M M1 Mo Mo M M Mo Mo M M Mo Mo M1 M1

So S So S So S So S
So So So So So So So So
S, S1 S, S1 S. S. So S. S. So
So So So So S. S1 S. So S1 So S. S1
S, S, S2 S. S2 S. S2 S.
S2 S.

55
has two extra reads (So and S) from Sbox shuffling. The Case (2): j, o even and j, q odd,
following tables depict all possible combinations of memory i.e. j. addresses M and j, addresses odd address
bank access possible. memory M.

SubCase SubCase SubCase SubCase

- - - b- - - - -

Mo Mo M M1 Mo Mo M M Mo Mo M M Mo Mo M1 M1

So S So S So S So S
So So S, S. So So Si Si So So Si Si So So Si S1

US 8,671,254 B2

-continued

SubCase SubCase SubCase SubCase
- (a) - - (b) - - - - -

Mo Mo M M Mo Mo M. M. Mo Mo M. M. Mo Mo M. M.

So So So So S, S. S. So So S1 So So
S, S, S2 S. S2 S. S, S1
S2 S. S2 S3

Case (3): j, o odd and j, even, i.e. j, o addresses M and
j, addresses Mo

here and execute another 256 iterations repeatedly during
encryption of an outgoing information stream. In clock

SubCase SubCase SubCase SubCase
- (a) - - (b) - - - - d -

Mo Mo M M Mo Mo M M1 Mo Mo M M Mo Mo M1 M1

So S. So S So S So S1
Si Si So So S, S. So So S, S1 So So S, S1 So So
So So So So S, S. S. So So S1 So So
S, S, S2 S. S2 S. S, S1
S2 S. S2 S3

25

Case (4): Both jo
address memory M.

and j, odd, i.e. both address odd cycles, the iterations are either three (3), four (4), or five (5)
clock cycles in duration depending on which possibility is

SubCase SubCase SubCase SubCase
- (a) - - (b) - - - - d -

Mo Mo M M Mo Mo M M1 Mo Mo M M Mo Mo M1 M1

So S So S So S So S
So So So So So So So So

So So S, S. So So Si S1 S, S1 So So
S1 S1 S, S1 S. So So S1 S, S1
S2 S. S2 S. S2 S. S, S1

S2 S3

In the encryption/decryption process, sixteen tables
(4x4=16) are shown arising from four Cases 1,2,3,4 wherein
possible pairs of addresses (,) j,) are even,even; even,
odd; odd,even; odd.odd corresponding to the subscripts of So
and S. Further, there are for each Case four SubCases (a),
(b),(c),(d) wherein possible pairs of addresses (t , t) are
independently even,even; even.odd; odd,even; odd.odd cor
responding to the subscripts of So and S. Tables for each
case are shown in four groups (Cases 1,2,3,4) of four tables
(SubCases (a),(b),(c),(d)). The tables have been cosmetically
reduced in size by omitting the clock cycle left-hand column
and the RWRW headings, all these being understood. The
memory designations MoMMM remain. Each Table rep
resents one full iteration of a pair of respective threads for
Sbox addresses i, i-1.

In all sixteen possibilities, the first row (clock cycle) of all
TABLES for SubCases (a), (b), (c), (d), shows respective
reading operations So and S simultaneously read the contents
of Sbox byte Si for address i=0 out of even memory Mo and
read the contents of Sbox byte Si for i=1 out of odd memory
M. In all sixteentables, the next iteration increments both the
addresses i and i-1 by two (2) in all the rows.
The operations are executed through each iteration in an

inner loop, whence they successively advance to each next
iteration over 256 iterations in all, whereupon operations loop
back by an outer loop to i=0, i-1=1 as explicitly tabulated

45

50

55

60

65

tabulated. For conciseness, one Case/SubCase example of
each these 3-, 4-, and 5-cycle iterations is respectively
described in detail below. Other Case/SubCases are then left
to the reader whereby an understanding of the description of
those other Case/SubCases follows straightforwardly
because of symmetries in the tables.

Let it be emphasized that each Successive iteration has the
operations pertaining to that Successive iteration of a particu
lar Case/SubCase out of the sixteen (16) Case/SubCases.
Furthermore, when the iteration is begun, the identity of the
particular Case/SubCase is not necessarily known, and opera
tions remarkably “learn' as the operations proceed which
Case/SubCase the operations are in so that the operations
proceed further to complete the iteration in a manner appro
priate to that Case/Subcase. Various embodiments make up to
the maximum number of simultaneous reads that a memory
Mo or memory M. permits, and make up to the maximum
number of simultaneous writes that a memory Mo or memory
M permits. For the present embodiment having two 2-port
memories each of 128 bytes, the maximum number of simul
taneous read that a memory Mo or memory M. permits is
exactly one each, and the maximum number writes that a
memory Mo or memory M. permits is also exactly one each.
In other two 2-port memory embodiments, constraints
observed may vary.

US 8,671,254 B2
19

Furthermore, in this two 2-port memory embodiment, a
result of computation is written at least one clock cycle later
than the last read of an operand from memory Mo or memory
M on which the computation depended. In other embodi
ments, having appropriate fast logic and memory hardware,
the read is performed in the first half of a clock cycle and the
write is accomplished as soon as the second half of the same
cycle.

In general, the particular process operations tabulated are
sufficient to execute a given Case/SubCase successfully, but
those particular operations may have alternative timings (row
positions) in different embodiments of the same memory
type, and also be sufficient to execute the given Case/SubCase
Successfully.

Also, note that another similar set of operations may be
executing concurrently with and independently of the encryp
tion operations, wherein the similar operations pertain an
incoming information stream and are timed in a manner
related to the timing of the incoming data stream during
decryption of that incoming information stream. However,
for conciseness of description, the description of the opera
tions here is detailed for either encryption or decryption, it
being understood that the complementary decryption or
encryption operations may be executing concurrently and
independently.

For any given Case number 1-4, the operations in the first
two clock cycles are identical in all four TABLES for Sub
Cases (a), (b), (c), (d) of that Case number. In all sixteen
possibilities, the first two clock cycles operations of Cases
1,2,3,4 for Encryption/Decryption respectively match those
of Shuffle Cases (1), (2), (3), (4) described earlier above.
Five Clock Cycle Iteration
One example of a 5-cycle iteration is Case 1. SubCase (a)

(use TABLE for Case 1, SubCase (a)). There, both ofjo and
j, are even and both oft, and t, are even. Another 5-cycle
Case/SubCase is 4(d) for a total of two (2) five cycle Case/
SubCases.

In Case 1, SubCase (a), the first step (first row) reads bytes
So and S from respective addresses i=0 and i=1. The next step
(second row clock cycle) in one clock cycle generates address
join fast address generation logic and then reads and trans
fers to a holding register the contents of Sbox byte So from
jo location of even address memory Mo since addressio is
an even number in Case (1). The encryption swap for i=0 is
thereby begun. This operation is symbolized by the entry So
in second row, first column. In the same clock cycle (second
row, second column), the read value So of Si for i=0 read in
the first row is written to location jo. Since addressio is an
even number in Case (1), the write operation of value So is
asserted to even memory M. Now the swap of value So with
So is half complete.

In the third row (third clock cycle) of Case 1, SubCase (a),
note that since the calculated address, lies in or points to
the same memory Mo as did addressi, o, the Sbox byte S, is
not read in the same clock cycle as the read of So of row 2. In
Case 1 it is the third cycle wherein Sbox byte S, is read from
even memory M. Also in that third cycle, byte S is written to
it.

Even more specifically, this third step (third row clock
cycle) in one clock cycle generates address, in fast address
generation logic and then reads and transfers to a holding
register the contents of Sbox byte S, from the byte location
having address, in even address memory Mo since address
j, is an even number in Case 1. The swap for i=1 is thereby
begun. This operation is symbolized by the entry S. in third

10

15

25

30

35

40

45

50

55

60

65

20
row, first column. In the same clock cycle (third row, second
column), the read value S of Si for i=1 read in the first row
is written to the byte location having address j . Since
address, is an even number in Case 1, the write operation
of value S is asserted to even memory M. Now the swap of
value S, with S is half complete.

Operations of the fourth row (fourth clock cycle)) generate
address to in fast address generation logic and then reads and
transfers to a key holding register for i=0 the contents of Sbox
byte So from the byte location having address to in even
address memory Mo since address to is an even number in
SubCase (a). Also, in this fourth clock cycle, writing So
completes its pending Swap to location i=0 in the even
memory M.

Operations in the fifth row (fifth clock cycle)) in one clock
cycle generate addresst, in fast address generation logic and
then reads and transfers to a key holding register for i=1 the
contents of Sbox byte S from the byte location having
address t, in even address memory Mo since address t, is
an even number in SubCase (a). Also, in this fifth clock cycle,
writing of S, respectively completes its pending Swap to
location i=1 in the odd memory M. The iteration is com
pleted.

In the sixth row (sixth clock cycle) the next iteration of
encryption for byte pair S and S is started, analogous to the
first row above.
Four Clock Cycle Iteration
One example of a 4-cycle iteration is in Case 2. SubCase

(d) (use TABLE for Case 1, SubCase (a)). There, address jo
is even and address j is odd and both of to and t, are odd.
The 4-cycle Case/SubCases are 1(b), 1 (c), 1 (d), 2Ga), 2Gd),
3(a), 3(d), 4(a), 4(b), and 4(c) for a total often (10) four cycle
Case/SubCases.

In the TABLE for Case 2, SubCase (d), the first step (first
row) reads bytes So and S from respective addresses i=0 and
i=1. The next step (second row clock cycle) in one clock cycle
generates address j in fast address generation logic and
then reads and transfers to a holding register the contents of
Sbox byte So from jo location of even address memory Mo
since addressio is an even number in Case (2). The encryp
tion swap for i=0 is thereby begun. This operation is symbol
ized by the entry So in second row, first column. In the same
clock cycle (second row, second column), the read value So of
Si for i=0 read in the first row is written to location jo.
Since address j, o is an even number in Case (2), the write
operation of value So is asserted to even memory M. Now the
swap of value So with So is half complete.

In the same second row (second clock cycle) of Case 2,
SubCase (d), note that since the calculated address, lies in
or points to a different memory M than did address jo, the
Sbox byte S, can be and is now read in the same second clock
cycle as the read of So of row 2. Also in that same second
cycle, byte S is written to the odd memory M.

Even more specifically, this second step (second row clock
cycle) in one clock cycle generates address, in fast address
generation logic and then reads and transfers to another hold
ing register the contents of Sbox byte S, from the byte loca
tion having address in odd address memory M. since
address j is an odd number in Case 2. The Swap for i=1 is
thereby begun. This operation is symbolized by the entry S.
in second row, third column in TABLE 20d). In the same
second clock cycle (second row, fourth column), the read
value S of Si for address i=1 read in the first row is written
to the byte location having address. Since address is an
odd number in Case 2, the write operation of value S is

US 8,671,254 B2
21

asserted to odd memory M. Now the swap of value S with
S is half complete.

Operations of the third row (third clock cycle) generate
address to in fast address generation logic and then read and
transfer to a key holding register for i=0 the contents of Sbox
byte So from the byte location having address to in odd
address memory M. since address to is an odd number in
SubCase (d). Also, in this third clock cycle, writing ofbyte So
completes its pending Swap to location i=0 in the even
memory Mo.

Operations in the fourth row (fourth clock cycle) in one
clock cycle generate address t, in fast address generation
logic and then read and transfer to a key holding register for
i=1 the contents of Sbox byte S from the byte location
having address t, in odd address memory M. since address
t, is an odd number in SubCase (d). Also, in this fourth clock
cycle, writing of S, respectively completes its pending Swap
to location i=1 in the odd memory M. The iteration is com
pleted.

In the fifth row (fifth clock cycle) the next iteration of
encryption for byte pair S and S is started, analogous to the
first row above.
Three Clock Cycle Iteration
One example of a 3-cycle iteration is in Case 3, SubCase (c)

(use TABLE for Case 3, SubCase (c)). There, addressi, o is
odd and address j is even. Address to is odd and address
t, is even. The 3-cycle Case/SubCases are 2(b), 20c), 3(b),
and 3(c) for a total of four (4) three cycle Case/SubCases.

In the TABLE for Case 3, SubCase (c), the first step (first
row) reads bytes So and S from respective addresses i=0 and
i=1. The next step (second row clock cycle) in one clock cycle
generates address join fast address generation logic and
then reads and transfers to a holding register the contents of
Sbox byte So from jo location of odd address memory M.
since address j is an odd number in Case (3). The encryp
tion swap for i=0 is thereby begun. This operation is symbol
ized by the entry So in second row, third column. In the same
clock cycle (second row, fourth column), the read value So of
Sil for i=0 read in the first row is written to location jo.
Since address jo is an odd number in Case (3), the write
operation of value So is asserted to odd memory M. Now the
swap of value So with So is half complete.

In the same second row (second clock cycle) of Case 3,
SubCase (c), note that since the calculated even address,
lies in orpoints to a different memory Mothan did oddaddress
j, o, the Sbox byte S, can be and is now read in the same
second clock cycle as the read of So of row 2. Also in that
same second cycle, byte S is written to the even memory Mo.

5

10

15

25

30

35

40

45

22
location having address, in even address memory Mo since
address j is an even number in Case 3. The Swap for i=1 is
thereby begun. This operation is symbolized by the entry S.
in second row, first column in TABLE 3(c). In the same
second clock cycle (second row, second column), the read
value S of Si for address i=1 read in the first row is written
to the byte location having address. Since address is an
even number in Case 3, the write operation of value S is
asserted to even memory M. Now the swap of value S with
S is half complete.

Operations of the third row (third clock cycle) generate
address to in fast address generation logic and then read and
transfer to a key holding register for i=0 the contents of Sbox
byte So from the byte location having address to in even
address memory Mo since address to is an even number in
SubCase (c). Also, in this third clock cycle, writing of byte So
completes its pending Swap to location i=0 in the even
memory Mo.

Operations in the same third row (third clock cycle) in one
clock cycle generate address t, in fast address generation
logic and then read and transfer to a key holding register for
i=1 the contents of Sbox byte S from the byte location
having address t, in even address memory Mo (third row,
first column) since address tit= is an even number in SubCase
(c). Also, in this third clock cycle, writing of S (third row,
fourth column) respectively completes its pending Swap to
location i=1 in the odd memory M. The iteration is com
pleted.

In the fourth row (fourth clock cycle) the next iteration of
encryption for byte pair S and S is started, analogous to the
first row above.
Two 2-Port Half-Memories, Double-Byte Throughput with
High Regularity Process Tables for Fewer Gates

In general, as earlier pointed out, the particular process
operations tabulated are sufficient to execute a given Case/
SubCase Successfully, but those particular operations may
have alternative timings (row positions) in different embodi
ments of the same memory type, and also be sufficient to
execute the given Case/SubCase Successfully. Also, the num
ber of gates and hence chip area used for the circuitry to
implement the process operations may vary. It is believed
that, without any reduction in throughput, the process repre
sented by the tables hereinbelow advantageously uses even
fewer gates and chip area to implement them than is the case
with the process tables example hereinabove. Throughput is
not reduced because each Case/Subcase has the same number
of cycles periteration in the tables hereinbelow as the corre
sponding Case/Subcase in the tables example hereinabove.

Even more specifically, this second step (second row clock Case (1): Both j, o and j, even, i.e. both address even
cycle) in one clock cycle generates address, in fast address address memory Mo

SubCase SubCase SubCase SubCase
- (a) - - (b) - - - - d -

Mo Mo M M1 Mo Mo M M Mo Mo M M Mo Mo M1 M1

So S. So S So S So S
So So So So So So So So
S, S1 S, S1 S, S1 S. S. So
So So S. S. So S.
S, S2 So S3 S, S2 So S3 S, S2 So S3 Sl
S2 So S3 Sl

65

generation logic and then reads and transfers to a another
holding register the contents of Sbox byte S, from the byte

Case (2): j, o even and j, odd, i.e. j, o addresses Mo and
j, addresses odd address memory M.

US 8,671,254 B2

SubCase SubCase SubCase SubCase
- (a) - - (b) - - - - -

Mo Mo M M Mo Mo M. M. Mo Mo M. M. Mo Mo M. M.

So S So S So S So S
So So S, S. So So Si S1 So So S, S1 So So S, S1
So So S. S. So So
S, S2 So S3 S, S2 So S3 Sl Sl
S2 So S3 Sl S2 So S3 Sl

Case (3): j, o odd and j, even, i.e. j, o addresses M and
j, addresses Mo

internal blocks and the external system. The encryption cir
cuit 910 is coupled to a key circuit KEY 950.

SubCase SubCase SubCase SubCase
8. b C d

Mo Mo M M Mo Mo M M1 Mo Mo M1 M1 Mo Mo M. M.

So S So S So S So S
Si Si So So S, S. So So S, S1 So So S, S1 So So
So So S. S. So So
S, S2 So S3 S, S2 So S3 Sl Sl
S2 So S3 Sl S2 So S3 Sl

Case (4): Both jo
address memory M.

and j, odd, i.e. both address odd An address bus vbusp addr31:0 conveys four respective
addresses generated by encryption circuit 910 on byte-wide

SubCase SubCase SubCase SubCase
- (a) - - (b) - - - - -

Mo Mo M M Mo Mo M M1 Mo Mo M M Mo Mo M1 M1

So S So S So S So S
So So So So So So So So

So S, S1 S, S1 S, S1 S, S1
S, So S. S. So So
S2 So S3 S, S2 So S3 S, S2 So S3 Sl Sl

S2 So S3 Sl

In each of the tables just above, the swap completion writes
of So and S, both occur in the row where the values S. and S.
for the next iteration are both read. Notice these writes were
advanced by at least one cycle earlier in the set of encryption/
decryption tables for cases 1(a) through 4(d) set forth earlier
hereinabove. However, this is not a problem for the process in
the tables just above, because advantageously the key-gen
eration values So and S, both are generated before the next
iteration, and the S-Box updating by Swap completion writes
of So and S is just-in-time as the next iteration commences.

Another example, in Case/Subcase 4(d) as illustrated,
reverses the order of cycle rows 3 and 4 wherein the cycle that
reads value S is reversed with the cycle that writes S and
reads value S. Furthermore, other embodiments could have
mixtures of various orderings of the various Swap completion
writes and some of the reads among the sixteen Case/Sub
Case tables. Thus, the illustrated tables show but two of many
embodiments in the two dual-port half-memory double-byte
throughput group.

In FIG.3, an encryption block 900 includes an encryption
circuit wep enc 910 interconnected with a memory 920 hav
ing a first 128-byte two-port memory MO 930 and a second
128-byte two-port memory M1940. Encryption circuit 910 is
responsible for the top level functioning and interfacing of the

45

50

55

60

65

lines 932,936,942,946 to the corresponding Aaddress inputs
of the read port of memory MO930, the write port of memory
M0930, the read port of memory M1940, and the write port
of memory M1940. Handshake control lines vbusp req (Re
quest) and vbusp ready (Ready) are respectively connected
to corresponding enable inputs of memory MO 930 and
memory M1940.
A data bus vbusp rdata 31:0 conveys as many as four

concurrent respective S-Box data bytes read or written by
encryption circuit 910 on byte-wide lines 931,935,941,945
to or from the corresponding output of the read port of
memory MO 930, the input (for S-Box data to be written) of
the write port of memory MO 930, the output of the read port
of memory M1940, and the input (for S-Box data to be
written) of the write port of memory M1940. These inputs
and outputs for S-Box data relative to memories MO and M1
are not to be confused with the next paragraph description of
distinct data buses data in and data out along which stream
ing data passes in the encryption/decryption process.

In FIG. 3, Key circuit 950 provides an 8 bit key length
datum to encryption circuit 910. Key circuit 950 also provides
a key on a 32-bit bus key addr to encryption circuit 910.
Control lines CONTROLS Supply signals to start and reset

US 8,671,254 B2
25

the encryption circuit 910. Unencrypted data bytes are suc
cessively supplied to encryption circuit 910 on an 8-wide
input data bus data in. Real time processing by encryption
circuit 910 produces and outputs encrypted data bytes suc
cessively supplied from encryption circuit 910 on an 8-wide
output data bus data out. Where a symmetric encryption/
decryption process is used, as illustrated, the encryption cir
cuit 910 is also operative for decryption when encrypted data
bytes are successively supplied to circuit 910 on the 8-wide
input data bus data in. Real time processing by circuit 910
produces and outputs decrypted data bytes Successively Sup
plied from circuit 910 on the 8-wide output data bus data out.

Thus, as shown in FIG. 3, an integrated circuit is provided
that includes first memory 930 having a first read port and
lines 931 and a first write port and lines 935 for concurrent
read and write. Memory 930 has memory locations for data
accessible, by asserting respective addresses onlines 932 and
936 to memory 930, through the first read port and the first
write port. Second memory 940 has a second read port and
lines 941 and a second write port and lines 945 for concurrent
read R and write W. Memory 940 has memory locations for
data accessible by asserting respective addresses onlines 942
and 946 to the memory 940 through the second read port and
the second write port. Address generation circuitry in block
920 is respectively coupled by the address lines 932,936,942,
946 to the first memory 930 and to the second memory 940.
The address generation circuitry is operable sequentially for
encryption to generate address bits representative of at least
one odd address and at least one even address concurrently.
First memory 930 is responsive only to the even addresses,
and the second memory 940 is responsive only to the odd
addresses.

In FIG. 4, encryption circuit 910 has an encryption engine
enc eng1010 coupled with a circuit enc keys 1020. Encryp
tion engine 1010 is responsible for basic SBox setup and
encryption functionality using a state-machine based look
ahead approach and dirty bit circuitry. Enc keys circuit 1020
is responsible for fetching keys for the engine 1010 and
handshake appropriately with the engine 1010.

Encryption engine 1010 includes two parallel state
machines called a Primary State Machine 1100 of FIG.5 and
a Secondary State Machine 1200 of FIG. 6 for implementing
the process tables discussed herein. The Primary state
machine contains the Sbox setup and the dirty bit circuitry.
Primary State Machine is also responsible for performing the
tasks that are common to Sbox STEP1 and the encryption
STEP2. Secondary state machine is an incremental state
machine over the primary state machine. Secondary State
Machine gets triggered when the Sbox setup is done and
works with Primary State Machine in tandem to perform the
extra steps in the encryption process.

Secondary state machine starts only after the primary state
machine issues an SbOX done signal indicating to it that
encryption phase has begun. After the Sbox done signal is
issued, the Primary State Machine waits for the secondary
state machine to complete the iteration step before it starts the
computation for the next iteration. These state machines are
described in further detail in connection with FIGS. 5 and 6.

Encryption Engine signal interfaces to Circuit 910 of
FIGS. 3 and 4 are tabulated here.

10

15

25

30

35

40

45

50

55

60

65

26
TABLE

Encryption Engine Interface

Signal Dir Description

clk Clock
rst in Asynchronous active low reset
start stb Starts the operation of wep engine
nxt key stb Valid input data indication available

for encryption.
data in 7:0 Input data to be encrypted
next byte O Indicating the interfacing logic that

engine is ready to intake more raw data
finish stb Indicating end of the data stream. Stops

the operation of WEP engine. (No more
input data will be available. Engine is
expected to continue holding out the last
encrypted byte)

key addr31:0 Address where wep key is present
key length 7:0 Length in bytes of wep key
data out 7:0 O Encrypted data
done O Asserted when input data is encrypted

(Can be on same cycle as data in is
presented)

tX rod ack I Acknowledge from external logic that the
encrypted byte (data out) in the output
bus is read

Wep done O Indicating all the bytes inputted to the
engine have been processed

memory interface signals

wbusp req O Request to memory
wbusp addr31:0 O Memory address
wbusp relata 31:0 I Read data from memory
wbusp rready I Read ready

Circuit 1020 generates Requests on line vbusp req, and
has address generators to generate addresses on 4-byte
address bus vbusp addr 31:0. Circuit 1020 sends data to
write ports of memories 930 and 940 along two byte-wide
portions of data bus vbusp ralata, and receives data from read
ports of memories 930 and 940 along another two byte-wide
portions of data bus vbusp raata. Circuit 1020 receives
Ready acknowledgement from memory 920 on line
vbusp ready. Circuit 1020 is coupled via a 2-byte-wide bus
data key to encryption engine 1010 and thereby supplies
Encryption engine 1010 data that has been read from memo
ries 930 and 940. Encryption engine 1010 handshake-replies
on a line key rdack (Key read acknowledge) back to circuit
102O.

Further in FIG. 4, during encryption a multiplexer MUX
1030 feeds an enable or disable to encryption engine 1020
depending on a selection signal SBdone (SBOX initialization
complete) fed to the control input of the MUX 1030. When
selection signal indicates SBOX initialization is complete, a
key-valid signal from circuit 1020 is supplied via MUX 1030
to encryption circuit 1010. Otherwise, when S-Box initializa
tion is in progress but not complete or not in progress at all,
MUX 1030 feeds a different control signal to encryption
engine 1010.

During either S-Box setup STEP 1 or encryption process
ing by encryption engine 1010, a MUX 1040 is clocked
alternately to receive first one output key-byte Sto or a second
output key-byte St1 via a two-byte-wide bus 1042 from
encryption engine 1010. The alternately-selected key-bytes
are successively fed along the byte-wide output of MUX 1040
to a first encryption Key FIFO (first-in, first-out) circuit KFF
1050.

In the meantime, data on data bus data in 7:0 is being fed
to a second encryption data FIFO DFF 1060. The first and
second encryption FIFOs KFF 1050 and DFF 1060 supply
their respective byte-wide output Successively to eight paral

US 8,671,254 B2
27

lel Exclusive-OR circuits symbolized collectively as XOR
1072. This part of the encryption process produces encrypted/
decrypted byte-wide data at the 8-wide data bus data out.

During the encryption cycles, second encryption FIFO
DFF 1060 provides a handshake output nxt byte requesting
next data byte from a data source (not shown). A handshake
input tX rd ack provides a transmit read acknowledge per
taining to the data on data bus data in to be encrypted/de
crypted. When the encryption cycles are completed, a DONE
signal is provided by an AND gate 1076 having low-active
inputs coupled to the first and second encryption FIFOs KFF
1050 and DFF 1060.
The encryption engine enc eng 1010 and MUX 1040

together form an example of execute circuitry herein, which
has an output from MUX 1040. XOR 1072 is an example of
a cryptological logic circuit. XOR 1072 is coupled by FIFO
buffer KFF 1050 to the output of the execute circuitry. The
execute circuitry is operable to Supply at least some of the set
of SBox data from the memory elements of memories 930 and
940 to the cryptological logic circuit. XOR 1072 has a first
input coupled to the output of a second FIFObuffer DFF 1060
for supplying a data stream from FIFO 1060 input data in 7:
O to the first input of XOR 1072. The cryptological logic
circuit (e.g. XOR 1072) is responsive to the data stream and to
the series of iterations by the execute circuitry to supply the
data stream cryptologically altered as an output at data out
7:0.
Further in FIG. 4, a control state machine circuit 1080 has

three states and cycles through them in this order: IDLE,
SBDONE (S-Box Done), and ENG ACT (Encryption
Engine Active). When S-Box setup is initiated by external
control signal Start Stb, operations in circuit 1080 transition
from IDLE state to state SBDONE. When S-Box setup is
completed, circuit 1080 transitions from SBDONE to
ENG ACT. When encryption of the data is completed, circuit
1080 transitions from ENG ACT to IDLE. If control signal
Finish Stb goes active during the state ENG ACT, opera
tions transition from ENG ACT to IDLE.

Control state machine circuit 1080 supplies a first output
SBDONE to the Selection control of MUX 1030 and a second
output to an input of MUX 1030 to signal encryption engine
1010 to perform the operations specific to encryption instead
of the S-Box setup. Output SBDONE also goes to encryption
keys circuit 1020 to signal it that key Ki is not needed in
encryption iterations. These operations include preventing
the two bytes of data key on the 2-byte-wide bus data key from
being utilized directly in the computation of address j in the
encryption STEP2, but explicitly utilizing the on-coming two
bytes of data key on the 2-byte-wide bus data key in the S-Box
setup STEP1 in the computation of address. In S-Box setup
STEP1, however, the encryption circuit 1010 responds to
MUX 1030 to inhibit operation of the Secondary State
Machine of FIG. 6 so as not to produce output key-bytes St0
and St1. The encryption circuit 1010 responds to MUX 1030
to produce output key-bytes St0 and St1 only in encryption
STEP2 by operation of the Secondary State Machine of FIG.
6.

Encryption engine Supplies a key done signal to Control
State Machine circuit 1080. Key FIFO 1050 handshakes with
Control state machine circuit 1080 by supplying a 3-wide
Occupied (occ) signal representing when key FIFO 1050 has
all latest 8 data bits loaded from MUX 1040. Then control
state machine circuit 1080 Supplies an acknowledge signal
kff valid write to key FIFO 1050.
A clock source CLK is connected to clock the encryption

engine 1010, the encryption keys circuit 1020, the first and
second encryption FIFOs KFF 1050 and DFF 1060, and

10

15

25

30

35

40

45

50

55

60

65

28
control state machine 1080. A clock buffer 1090 couples
clock CLK to the selection control input of MUX 1040 and to
an input of control state machine 1080. An inhibit output of
control state machine 1080 selectively controls the clocking
selection input of MUX 1040.
A low-active reset signal on line rst n is connected to and

resets the encryption engine 1010, the encryption keys circuit
1020, the first and second encryption FIFOs KFF 1050 and
DFF 1060, and control state machine 1080. Reset also drives
a low-active inhibit input of clock buffer 1090.
A pair of 32-bit input busses wep enco gpi and

wep enc1 gpi are connected to Encryption engine 1010. A
pair of 8-bit output busses wep enco gpo and
wep enc1 gpo are connected to and driven by Encryption
engine 1010. These two pairs of busses pertain to built-in
self-test (BIST) and need no further discussion herein for
purposes of the embodiments.
State Machines

In FIG. 4, control state machine 1080 provides control
signals to initiate the S-Box setup (RC4 STEP 1 herein
above), and then provides control signals to initiate the
encryption (RC4 STEP 2 hereinabove).
Execution State Machines
Two parallel state machines called the Primary State

Machine 1100 and the Secondary State Machine 1200 are
used to further implement the above embodiment. An exter
nal agent on chip (e.g. embedded CPU 860 of FIG. 2G acti
Vates start Stb) or in the system initiates or fires commence
ment of the operations of the Primary State Machine 1100,
which in turn initiates operation of the Secondary State
Machine 1200.

Secondary State Machine 1200 is an incremental state
machine over the Primary State Machine 1100. Secondary
State Machine 1200 gets triggered when the Sbox setup is
done and works with Primary State Machine 1100 in tandem
to perform the extra steps in the encryption process as com
pared with the Sbox setup process.

In FIG. 5, Primary State Machine 1100 contains the special
Sbox setup implementing dirty bit scheme. This state
machine is also responsible for performing the tasks that are
common to the Sbox setup step and the encryption step.
Encryption of bytes is then initiated when the Sbox setup is
done and Sbox done signal has been generated. The dirty bit
state is also part of the logic of encryption reads from memory
920. When necessary, Primary State Machine 1100 waits for
the Secondary State Machine 1200 to complete an iteration
before Primary State Machine starts the computation for the
next iteration. When an Encryption Done enc done signal is
generated according to the last byte of data encrypted, Pri
mary State Machine 1100 goes back to the initial state where
it again resets the dirty bit state and then moves to the Idle
state and waits to be fired by an external agent in the system.

In FIG. 6, Secondary State Machine 1200 is in a SEC I
DLE state until Primary State Machine 1100 generates, or
issues, a signal Sbox done indicating that Sbox setup is done.
Signal Sbox done is coupled to and received by Secondary
State Machine 1200. Sbox done signal indicates to Second
ary State Machine 1200 that encryption phase has begun.
Secondary State Machine 1200 then invokes a parallel thread
of accessing the memory 930, 940 depending on the current
and the next byte accesses required (t, and t). Secondary
State Machine 1200 is responsible for invoking the parallel
thread of operation for throughput enhancement.

In the embodiment of FIG. 5 the Primary State Machine
1100 executes the operations which the S-Box setup and the
encryption have in common. This state machine 1100 is
defined by four (4) case statements for the Cases, and four (4)

US 8,671,254 B2
29

case statements for the Subcases, so that the operations of the
sixteen (16-4 Casesx4 Subcases) tables result. If-else struc
tures in state machine 1100 are provided to establish the parts
pertaining to S-Box setup, and the further parts pertaining to
encryption. Note that the S-Box setup tables for Cases (1) and
(4) utilize one more clock cycle (have one more row each)
than the S-Box setup tables for each of Cases (2) and (3).
Accordingly, an additional pair of States in Primary State
Machine 1100 are provided for Cases (1) and (4) respectively
to realize operations in the additional clock cycle.

In the embodiment of FIG. 6, the Secondary State Machine
1200 executes the operations in the encryption process that
involve reading S-Box key bytes So and S. These operations
are not present in the S-Box setup. Notice that in the eight (8)
tables for Subcases (a) and (d), the operations to read S-Box
key bytes So and Soccupy two clock cycles (2 rows) com
pared to the single clock cycle read of both S-Box key bytes
So and S in each of the eight (8) tables for Subcases (b) and
(c). Accordingly, an additional pair of States are provided in
Secondary State Machine 1200 for Subcases (a) and (d)
respectively to realize operations in the additional clock
cycle. Here again, case Statements and if-else structures are
then used to define the variations among the tables as shown
for the Cases and Subcases.
RTL (Register Transfer Language) design tools currently

available allow for high level design code to represent not
only the operations but also the structures of an integrated
circuit. Conventionally, the design code is automatically pro
cessed to produce the netlist of the gates of the integrated
circuit. From the netlist a place-and-route program defines the
geometric layout of the transistors and interconnecting con
ductive upper layers of the integrated circuit. The layout is
used to establish the information needed by the wafer fabri
cation operation to actually manufacture the integrated cir
cuit.
The operations and high level structures are described

herein at a design level used by the person skilled in the art to
thereupon implement the integrated circuit by preparing the
RTL design code and proceeding to manufacture.

In FIG. 5 operations of Primary State Machine 1100 begin
in an IDLE state 1110 or go to IDLE when a RESET or
CLEAR signal is active regardless of previous state. In the
IDLE state initialization operations occur and the very first
read of So and Soccurs.

Next a start signal Start stb causes a transition from IDLE
state to a state 1120 designated READ SI WR SJ. This state
1120 suitably is defined in design code in terms of a case
statement that has cases corresponding to the Cases 1, 2, 3, 4
of the Tables. In cases 2 and 3 the reads and writes are
instantiated as respectively symbolized by table rows So So,
S.S, and S.S. So, Sol for those cases 2 and 3 regardless
of subcase. Thereupon, operations transition to a state 1150 as
indicated by the transition legend identifying Cases 2 and 3 as
the ones where the Exclusive-OR of address j and address
j, is one (1). In other words these cases are the ones where
the two addresses are different in even/oddness.

In state 1120, operations of Cases 1 and 4 do not do all four
RWRW operations at once. Instead, Case 1 in state 1120 first
performs ReadWrite into Memory 0 of So, Sol followed by
a transition to a state 1130 to perform ReadWrite S, SI into
Memory 0 on the next clock cycle which is the cycle in which
state 1130 operates. Alternatively in Case 4 of state 1120,
state 1120 first performs ReadWrite into Memory 1 of So,
So followed by a transition to a state 1140 to perform Read
Write (S,S) into Memory 1 on the next clock cycle which
is the cycle in which state 1140 operates. After either of states
1130 and 1140, operations transition to state 1150.

10

15

25

30

35

40

45

50

55

60

65

30
State 1150 is designated READ CURRENT AND LOO

K AHEAD. This state 1150 is allowed to execute the first
clock cycle of a new iteration provided the S-Box setup is not
done (SbOX done 1) or encryption is going on and the Sec
ondary State Machine is done. Execution of state 1150 is
delayed or temporarily prevented by logic if the Secondary
State Machine 1200 is still executing its contribution to an
encryption iteration. (Reg Sec State done not active). This
delay is symbolized by the arrow DELAY on the oval for state
1150. When Reg sec state done goes active, the state 1150
proceeds to execute the first cycle of the next iteration. State
1150 executes the operations of the first clock cycle of the
next iteration by executing the RWRW operations symbol
ized by S. So, S, S.J. Upon completion of state 1150
execution, operations transition to state 1120 READ SI
WR SJ and proceed through the next iteration. Finally, the
last iteration is reached and completed.

In FIG. 6, operations of Secondary State Machine 1200
initialize and begin in a SEC IDLE state 1210. SEC IDLE
state 1210 monitors the Primary State Machine 1100 to deter
mine when operations are now in the encryption phase and the
particular cycle wherein state READ SI WR SJ becomes
active in an iteration. This condition is represented by the
legend SB done AND prm state=READ SI WR S.J.
Operations in Secondary State Machine 1200 now transition
from SEC IDLE state 1210 to a state 1220 SEC RD.
SEC-RD state 1220 suitably is defined in design code in

terms of a case statement that has cases corresponding to the
SubCases (a), (b), (c), (d) of the Tables. In the two Subcases
(b) and (c) the encryption-key byte-reads are instantiated in
one clock cycle as respectively symbolized by table rows
So, ---.S. - - - and S. - - -, So, - - - for those Subcases
(b) and (c) regardless of Case 1, 2, 3, 4. Thereupon in those
two Subcases (b) and (c), operations transition back to
SEC IDLE state 1210 as indicated by the transition legend (to
XOR t=1) OR RESET OR CLEAR. Subcases (b) and (c) are
thus identified as the ones where the Exclusive-OR of address
to and address t, is one (1). In other words these Subcases
(b) and (c) are the ones where the two addresses to and t are
different in even/oddness.

Further in FIG. 6, in state 1220, operations of Subcases (a)
and (d) do not do both key-byte read operations at once.
Instead, Subcase (a) in state 1220 first performs a single Read
from Memory 0 of So, - - - - - - - - - - - followed by a
transition to a state 1230 SEC LKAHD0 to perform Read
S. - - - - - - - - - from Memory 0 on the next clock cycle
which is the cycle in which state 1230 operates. Alternatively,
Subcase (d) in state 1220 first performs a single Read from
Memory 1 of- - - - - - S - - - followed by a transition to
a state 1240 SEC LKAHD1 to perform a Read - - - - - - ,
S. - - - from Memory 1 on the next clock cycle which is the
cycle in which state 1240 operates. After either of states 1230
and 1240, the secondary state machine done condition is set
(Reg Sec State done 1) and operations transition back to
state 1210 SEC IDLE.

Notice that the signal prm state-READ SI WR SJ from
the Primary State Machine 1100 coordinates the operation of
Secondary State Machine 1200 with the operations of Pri
mary State Machine 1100 so that the encryption key byte read
process in Secondary State Machine 1200 begins on the cor
rect clock cycle as tabulated. Thus, both state machines 1100
and 1200 are sometimes operative simultaneously, and other
times one state machine is waiting for a signal to resume
operating, with the signal coming from the other state
machine. Moreover, the signal Reg Sec State done from the
Secondary State Machine 1200 coordinates the operation of
Primary State Machine 1100 with the operations of Second

US 8,671,254 B2
31

ary State Machine 1200 so that the next iteration begins no
Sooner than the correct clock cycle as tabulated.

In FIG. 7, a remarkably real-estate efficient group of
embodiments use not one but at least two execution state
machines to implement the Case/SubCase tables. These
advantageous embodiments are achieved by the following
design process.

Operations commence at BEGIN 1310. Then in a step
1320, prepare the Case/SubCase tables for all steps of the
setup and encryption process. In the case of RC4 encryption
with two 2-port memories, this means preparing the four (4)
S-Box setup tables and sixteen (16) encryption tables. The
number of tables varies with the number of memories and
number of ports as later discussed hereinbelow.

Next, in a step 1330, arrange the Case/SubCase tables to
have a high degree of regularity. Advantageously herein
above, the second group of sixteen Case/SubCase encryption
tables have a higher degree ofregularity. The same encryption
throughput is achieved compared to the first group of sixteen
Case/SubCase encryption tables because no additional clock
cycle rows are needed.

Further in FIG. 7, a step 1340 partitions the sixteen Case/
SubCase encryption tables having high regularity into at least
a first part associated with at least a first state machine, and at
least a second part associated with at least a second state
machine. Succeeding step 1350 implements and arranges the
first state machine to perform the first-part operations that the
S-Box setup tables have in common with the sixteen Case/
SubCase tables. The next step 1360 implements and arranges
the second state machine to accomplish the operations estab
lished in the second part.

Further step 1370 estimates (or utilizes a design tool to
compute) the number of gates, number of transistors, and/or
integrated circuit real-estate required to implement the
encryption. Decision step 1380 determines if the tables indi
cate a variety of ways to achieve regularity, and if so, the
design process is iterated or repeated to determine whether
even more efficient designs exist. If the iterations are com
plete, or no iterations are needed, operations reach a step
1390.

In step 1390 the optimum design is chosen according to
considerations of setup time, throughput, and cost. Cost is
related to, and generally increases with, design complexity,
gate count, transistor count, and actual area real-estate occu
pied by the Solution. Upon choosing the optimum design, the
optimum design is manufactured in a wafer fabrication and
assembly/test operational sequence so that a working inte
grated circuit in an integrated circuit package is the result.

In FIG. 8A, a real-time system has an illustrative 1000
microsecond (usec) time period in which to accomplisha unit
of operations implementing not only encryption/decryption
but also a panoply of features expected by users of the real
time system. Where the improvements are not implemented,
the encryption/decryption occupies a lengthy Substantial por
tion of the 1000 usec time period according to unimproved
implementation of operations of S-Box setup STEP 1 and
encryption STEP 2.

In FIG. 8B, by contrast, improved implementation of
operations of S-Box setup STEP 1 and encryption STEP 2
considerably shorten the encryption/decryption real-time
operations and reduce the overhead that would otherwise
burden the real-time system due to these operations. Advan
tageously, the time remaining is suitably used to improve the
operation of other important features of the real-time system,
and to add additional important features to the real-time sys
tem, thereby benefiting customer users. Alternatively or addi
tionally, the processor is replaced with a less-expensive

10

15

25

30

35

40

45

50

55

60

65

32
lower-performance processor (or not replaced with a more
expensive higher-performance processor as more features are
demanded), so that the real-time system is made more eco
nomical.

In FIG.9 a circuit 1400 utilizes the advantageous dirty-bit
control of data in a 256-byte S-Box memory 1405. (The
number of RW ports and any segregating of the memory are
deemphasized in the drawing in order to emphasize the dirty
bit and dependency look ahead improvements.) A dirty-bit
(db) controlled multiplexer (MUX) 1410 selects either the
read data byte from output DR of memory 1405 via data line
1408, or the address from an address generator 1420 on
byte-wideline 1421, which address is asserted to the memory
1405 at address input A. A dependency-resolution MUX 1415
selects either the output of MUX 1410 or data from a holding
register as described later hereinbelow. The output of MUX
1415 is regarded as the S-Box Data Out output.

In the dirty bit control portion of the circuitry 1400, a dirty
bit register 1430 has 256 bi-stable storage elements for hold
ing 256 dirty bits respectively. A read line 1435 when high
active, enables a DATAVALID line 1437 and the read input R
of the Memory 1405. NAND gate 1438 coupled at its output
via an inverter 1439 to the control input of MUX 1410. A
MUX 1440 couples a dirty bit selected from dirty bit register
1430 to a second input of NAND gate 1438. The dirty bit
selected is determined by the 8-bit address coupled from
address generator 1420 to an 8-wide selection control input of
MUX 1440. When dirty bit register 1430 has the dirty bit
corresponding to that address set, the dirty bit signifies that
the byte at the corresponding address in S-Box memory 1405
has been previously written with data. If the dirty bit is not set,
the byte at the corresponding address in S-Box memory 1405
has not been previously written with data and the address
itself will be used as if it were the S-Box data byte to be read.
When the NAND gate 1438 has a dirty bit set (1) provided

to its second input, the output of NAND gate 1438 goes low
and the output of inverter 1439 goes high, causing MUX 1410
to select the data output DR from memory 1405 and pass that
data to the MUX 1415. When the dirty bit is not set (0), then
the output of address generator 1420 is selected by MUX
1410 and passed to the MUX 1415.

Further in FIG.9, a controller 1460 controls the operations
the rest of the circuitry, including a write circuit 1462, a reset
circuit 1464, a read circuit 1465, address generator 1420 via
a control line 1466, an arithmetic logic unit (ALU) 1470 via
a control line 1467, an Exclusive-OR (XOR) encryption/
decryption circuit 1475 via a control line 1468. A Key circuit
and storage block 1480 activates controller 1460 via an
enable line 1469 when a key is present. The Key Sk is
provided to ALU 1470 for use in the S-Box setup computa
tions described earlier hereinabove. MUX 1415 also has its
output SBOX DATA OUT connected to ALU 1470 so that
ALU 1470 can utilize and process Si and S data in the setup
and encryption operations as described elsewhere herein. The
ALU 1470 supplies each computed address to address gen
erator 1420 for accessing the S-Box memory 1405.
The S-Box memory 1405 is updated with data on an 8-wide

SBOX DATA IN data bus to memory 1405. The S-Box
memory 1405 is write-controlled by write circuit 1462 send
ing a signal connected to the write (W) input of S-Box
memory 1405, and to the input of a 1:256 demultiplexer
(DMUX) 1450. Address generator 1420 supplies an 8-bit
address to an 8-wide selection control input of DMUX 1450.
256 outputs of DMUX 1450 are respectively connected to the
256 dirty bit elements of dirty bit register 1430. The write
signal from Write circuit 1462 is coupled by DMUX 1450 to

US 8,671,254 B2
33

the selected one of the 256 outputs of DMUX 1450 and
thereupon sets the corresponding dirty bit element to one (1)
at dirty bit register 1430.
The dirty-bit circuitry is thus used with memory or storage

having memory locations 1405 for data and dirty bits 1430
accessible at addresses in the memory. An address line 1421
(from Address generator 1420) carries address bits. A data
line 1408 carries data bits. Dirty bit line 1436 conveys a dirty
bit set/reset state (from MUX 1440). Control line 1435 carries
a read signal (from Read circuit 1465). Selector circuit 1410
has a selector output 1412 selectively coupled to the address
line 1421 and to the data line 1408. A selector control input is
connected via a dirty bit control line db to the output of
inverter 1439. Readline 1435 is coupled to the selector circuit
via NAND-gate 1438 and inverter 1439. The selector circuit
MUX 1410 is responsive to a read signal on the readline 1435
and to a reset state on the dirty bit line 1436 to couple the
address line 1421 to the selector output 1412.

In FIG. 9. Reset circuit 1464 operates at S-Box initializa
tion time to simultaneously reset all 256 dirty bit elements of
dirty bit register 1430 via reset line 1463. In this way, a
single-cycle S-Box initialization is realized. Thereupon,
S-Box setup operations proceed as elsewhere described
herein.

Encryption is performed by XOR-ing unencrypted bytes
from an input DATA IN of the XOR Encryption/Decryption
circuit 1475. A latest unencrypted byte is XOR-ed with the
latestbyte SBOX DATAOUT from MUX 1415. The result of
the XOR is supplied as an encrypted byte at an output DATA
OUT from block 1475.

Decryption is performed by XOR-ing encrypted bytes
from input DATA IN of the XOR Encryption/Decryption
circuit 1475. A latest encrypted byte is XOR-ed with the latest
byte SBOX DATA OUT from MUX 1415. The result of the
XOR is supplied as a decrypted byte at an output DATAOUT
from block 1475.

In design code, the dirty bit control of the read is suitably
established by if-then structures. For example:

if (db) S = MO rd data
else S = j.

where db means a selected dirty bit value of Zero or one, and
MO rd data is an example of data read from memory MO of
FIG. 3. The memory read that is expressed after “if (db) is
read-executed when dirty bit db is (1). The "else S-line is
executed when dirty bit db is zero (0). This “else Si' line
interprets the address as a read value where the memory has
not been written at that address and thus dirty bit db is zero
(0), as illustrated in FIG.9.

Dependency Resolution: Where results like S1 or St1
relating to next byte i+1 may be dependent on results for byte
ibefore a write of Sjo, the dependency is suitably resolved by
an appropriate logic structure in the design code Such as
illustrated by:

If (i = j (i+1))
S1 = Sjo:

else if (db) S1 = M1 ral data
else S1 = j (i+1):

This example handles the situation where S1 is to be read
after Sjo is read but before Sjo is swap-written. Again db

10

15

25

30

35

40

45

50

55

60

65

34
means a selected dirty bit value of Zero or one, and
M1 rd data is an example of data read from memory M1 of
FIG. 3 in a case or subcase calling from a read from that
particular memory M1 (otherwise enter “MO). The last
"else' line interprets the address as a read value where the
memory has not been written at that address and thus dirty bit
db is zero (0), as illustrated in FIG. 9.

Correspondingly in FIG. 9, a dependency circuit 1490
includes the dependency-resolution MUX 1415, a compari
son circuit 1493, address holding registers 1495, and data
holding registers 1497. Controller 1460 provides control sig
nals collectively designated group CTRL. At least one of
these controls enables the comparison circuit 1493 and/or
drives the Zero (0) selection from comparison circuit 1493 to
MUX 1415 when no dependency is involved so that S-Box
output is directly from MUX 1410. Another control signal in
the group CTRL is fed to address-holding registers 1495 and
enables storage into and output from a selected pair of regis
ters. Such as for instance, one register for first byte address i
and one register for address (i+1), where address j is a func
tion of the second byte address i+1. Comparison circuit 1493
compares the selected ith address i and the selected address
j(i+1). If the addresses are not equal, then there is no depen
dency, and comparison circuit 1493 provides a control signal
Zero (0) to the control input of MUX 1415. In response to the
control signal Zero, the MUX 1415 couples a byte ofread data
from MUX 1410 to S-Box Data Out.

If the addresses are equal at comparison circuit 1493, then
a dependency exists. Comparison circuit 1493 provides a
control signal one (1) to the control input of MUX 1415. In
response to the control signal one (1), the MUX 1415 couples
a byte of held data (e.g. byte Sjo) from a selected holding
register in registers 1497 to S-Box Data Out.

Further in FIG. 9 in an example of circuitry (using paren
theses to illustrate particular data), the dependency circuitry
has memory 1405 with memory locations for data accessible
by asserting respective addresses to memory 1405, a first
register (e.g., for Sjo in holding registers 1497), and a second
register (e.g., for S1 in holding registers 1497). Read cir
cuitry 1465 is operable to read to the first register a first datum
(Sjo) stored at a location in the memory represented by a first
address (jo). Address circuitry 1420, 1495 is operable to
generate a second address (i) at which the first datum (Sjo)
will be stored in memory 1405 and a third address (1) at
which a second datum (S1) can be read from memory 1405.
Comparison circuitry 1493 responds to address circuitry
1420, 1495 when the third address (1) is different from the
second address (i) to read the second datum (S1) to second
register (S1) from the third address (t1) in memory 1405.
When the third address (1) is the same as the second address
(i) then comparison circuitry 1493 causes MUX 1415 to copy
the first datum (Sjo) to the second register as the second
datum (S1).

Write circuit 1462 acts as a storing circuit to store the first
datum (Sjo) at the second address (i) after the reading or
storing of the second datum (S1) to the second register (for
S1) by the comparison circuitry 1493. Comparison circuitry
1493 suitably has multiple concurrently-operative compara
tors and cascaded selector MUXes for multiple byte opera
tions appropriate to all dependencies identified in the appli
cation. Control circuitry 1460 is coupled to the comparison
circuitry 1493 to perform the above operations plural times
concurrently on plural bytes in an iteration of overlapping
dependent calculations. Advantageously, the throughput is
dramatically multiplied because dependencies in threads for
one or more bytes (i+1) on calculations in a THREAD0 for a

US 8,671,254 B2
35

given byte (i) are inventively resolved in those concurrent
threads THREAD1, and even higher threads 2, and 3, etc.

In FIG. 10, a process of execution of an S-Box Setup
shuffle in a two 2-port memory embodiment commences at a
BEGIN 1501. It is emphasized that FIG. 10 especially per
tains to the STEP 1 S-Box Shuffling portrayed in the four
TABLE representation earlier hereinabove. Comparing the
flow diagram of FIG. 10 with each of the TABLEs for Cases
1, 2, 3, 4 of the S-Box setup facilitates understanding of those
tables and the process whether implemented in hardware,
firmware or software. Operations proceed in a step 1505 to
initialize an index i to Zero, initialize an incremented index i
(designated “ia') to one, and initialize an index j to Zero. Next,
two threads (concurrent operations) THREAD 0 and
THREAD 1 start. In THREAD 0 a step 1515 reads S(i) from
address i(S0 from address 0 of Memory MO for example).
Next a step 1523 stores S(i) in a holding register. In THREAD
1 a step 1519 reads S(ia) from address is (S1 from address 1
of memory M1 for example). Next a step 1525 stores S(ia) in
another holding register. These operations 1515, 1519, 1523,
1525 are performed in a first clock cycle 1. THREAD 0 step
1531 generates an address O in fast logic updating jj0
according to an S-Box setup formula.
Now in clock cycle 2, THREAD 0 step 1535 reads S-Box

value S0from address O earlier obtained in step 1531. A step
1537 in THREAD0 writes value S0 from step 1515 into
address O (e.g. in the last half of the clock cycle) without
conflict with read step 1535. The memory MO (or M1) to be
written is identified by the least significant bit of address O.
Meanwhile THREAD 1 step 1541 has the updated value of
from step 1531 and applies that updated value of in gener
ating an address 1 in fast logic further updating j-1 accord
ing to the S-Box set up formula for indexj.
The least significant bits of address O and 1 are compared.

If address 1 has its least significant bit (LSB) different from
the address O least significant bit, then the steps of the next
paragraph are executed immediately in clock cycle 2. If
address 1 has its least significant bit equal to the address 0
least significant bit, then the steps of the next paragraph are
deferred to the next clock cycle 3 since they would contend
for the same memory.
THREAD 1 steps 1545 and 1547 concurrently operate. In

step 1545, S-Box value S1 is read from address 1 in Memory
0 (assuming Case 1, for example). If a dependency issue is
present in step 1545 since datum SO has not yet been written,
the issue is resolved in step 1545 as described in connection
with FIGS. 9 and 12 regarding dependencies. Step 1547
writes value S1 to address 1 in Memory 0 without conflict
with step 1545. As noted in the previous paragraph, these
steps are executed in cycle 3 or cycle 2 depending on whether
the address O LSB-1 LSB or not, respectively (i.e. whether
the least significant bit (LSB) of address O equals the least
significant bit of address 1 or not). Compare steps 1545, 1547
of FIG. 10 specifically to entries S1, S1 in cycle 3 of the two
TABLEs for Case 1 and Case 4 of S-Box Shuffling earlier
hereinabove and to the same entries S1, S1 in cycle 2 of the
two TABLEs for Case 2 and Case 3 of S-Box Shuffling.

Proceeding in FIG. 10 to the next clock cycle NEXT
CYCLE (4 or 3 see just above), THREAD 0 step 1551 writes
datum Sjo to address i (e.g. i=0) in Memory M0. Step 1555
also reads S-Box value S2 from address i-2 (e.g. 2) of
Memory MO without conflict with step 1551. In the same
cycle THREAD 1 Step 1557 writes datum S1 to address i+1
(e.g. 1) in memory M1. Step 1559 reads S3 from address i-3
(e.g. 3) in memory M1 without conflict with step 1557. Fur
ther in this clock cycle, index i is incremented by two (2) in
step 1561. Decision step 1567 compares the new value of

5

10

15

25

30

35

40

45

50

55

60

65

36
index i with 256, and if not greater, operations loop back to
repeat THREAD 0 AND THREAD 1 based on the new value
of index i. If greater in step 1567, then operations are com
pleted, and RETURN 1571 is reached.

In FIG. 11, a process of dirty bit control found in the FIG.
5 state 1120 READ SI WR SJ is depicted in a case-based
flow diagram. Comparing the flow diagram of FIG. 11 with
the S-Box setup TABLEs hereinabove and with the state
transition diagram of FIG. 5 facilitates understanding of
inventive apparatus aspects and inventive process aspects
whether implemented in hardware, firmware or software.

In FIG. 11, operations commence with a START 1610 and
proceed to a step 1615 initializing all the dirty bits 255:0
simultaneously. Next a step 1620 handles the respective four
cases (0, 1) as represented by a CASE statement. The
respective branches 00, 01, 10, 11 for the four cases are
labeled beneath the CASE statement and above alternative
columns of steps corresponding to the branches.

In FIG. 11, operations 1631, 1632, 1633, 1634 in each
branch seta Dirty Bit ReadPointerdbOrdptrequal to the value
of 0 found in cycle 1 step 1531 of FIG. 10. Operations 1641,
1642, 1643, 1644 in each branch determine if the dirty bit db
is set to one (1). If so, the memory has valid data, and each
branch proceeds to read memory S0 from address O which
points to memory MO in steps 1651 and 1652, and otherwise
to memory M1 in steps 1653 and 1654. If dirty bit db is not set
to zero, the address itself is used, and the value S0 is read
from the address O, as indicated by steps 1656, 1657, 1658,
1659.

In FIG. 11, further operations 1661, 1662, 1663,1664 set at
least one write pointer as appropriate to the setup tables
entries. For example in Cases 1 and 4 where addresses 0 and
1 are equal to each other in LSB by pointing to the same
memory (i.e., O.j1-00 and 11), the write pointer dbOwrptris
set to point to address O in the dirty bit array 1430 of FIG.8.
This pointer setting is made in each of steps 1661 and 1664
because in each case the value S0 is written to address O and
no other write occurs in the same clock cycle 2 of the setup
TABLEs for these two Cases 1 and 4. Then because of the
write to memory, the respective succeeding steps 1671 and
1674 set the dirty bit register with address O in dirty bit array
1430.

Advantageously, in steps 1662 and 1664, not one but two
write pointers dbOwrptr and db 1 wrptr are suitably simulta
neously set to point to respective addresses 0 and 1 in the
dirty bit array 1430 of FIG.8. These two pointer settings are
made in each of steps 1662 and 1663 because in each setup
Case 2 and 3 the value S0 is written to address O and the value
S1 is written to address 1. Both of these writes (S0, S1) occur
in the same clock cycle 2 of the setup TABLEs for these two
Cases 2 and 3.

Returning to discussion of Cases 1 and 4, the second write
pointer db1 wrptr is set to point to address 1 in the dirty bit
array 1430 of FIG. 8 in each of the FIG. 5 state 1130
READ LOOKAHEAD MEMO and FIG. 5 state 1140
READ LOOKAHEAD MEM1. This pointer setting is made
(not shown because outside of FIG. 11 state READ
SI WR SJ) because in each of Case 1 and Case 4 the value S1
is written to address 1 in clock cycle 3 and no other write
occurs in the same clock cycle 3 of the setup TABLEs for
these two Cases 1 and 4.

In FIG. 11, operations go from the respective case opera
tion 1671, 1672, 1673, or 1674 to a branch 1680. If the shuffle
iterations are not finished, analogous to the loop of FIG. 10,
then operations increment the byte index in step 1685 and
loop back to case branch 1620. Otherwise operations reach
RETURN 1190.

US 8,671,254 B2
37

In FIG. 12, a process of dependency resolution commences
at a BEGIN 1700. Parentheses are used to identify data and
addresses by way of another one example only (and different
from the dependency example narrated for FIG. 9 to add
further description). Step 1710 reads to a first register (one
register in registers 1497) a first datum (S1) stored at a
location in memory 1405 represented by a first address (1).
Next in a step 1720 a second address (i+1) is generated at
which the first datum (S1) will be stored in the memory 1405.
A further step 1730 provides a third address (t1) at which a

second datum (St1) can be read. A succeeding step 1740
compares the second address (i+1) with the third address (t1)
and enters branch 1750. If the result of the comparison is
different (“NO, addresses not equal, not same, no depen
dency issue) then operations go to a step 1760 reading the
second datum (St1) to a second register (for St1 in registers
1497) from the third address (t1) in the memory 1405. If the
result of the comparison is same (“YES. addresses equal,
dependency exists), then operations instead go from branch
1750 to a step 1770. Step 1770 copies the first datum (S1) to
the second register (for St1 in registers 1497) as the second
datum (St1). After either step 1750 or 1770, operations pro
ceed to a step 1780 storing the first datum (S1) at the second
address (i+1) after the reading or storing of the second datum
(St1) to the second register (for St1 in registers 1497).

Advantageously, this process of FIG. 12 is performed plu
ral times concurrently on two bytes (e.g., Sto and St1) in the
same iteration of overlapping dependent calculations, thus
increasing the throughput of the process Substantially. Mul
tiple dependencies are Suitably resolved in the same iteration
by applying the solutions described herein to each of the
dependencies.
Average Data Rate Computation: Two 2-Port Half-Memo
ries, Double-Byte Throughput
The average encryption data rate is computed as the

weighted average of the number of cycles per iteration
weighted by the number of Case/SubCases to which that
number pertains. The Rate Table below tabulates the cycles
periteration for each of the Case/SubCases. Due to symmetry
in this embodiment, the Rate Table is symmetric around its
main diagonal from upper left to lower right.

RATE TABLE

Case (a) (b) (c) (d)

1 5 4 4 4
2 4 3 3 4
3 4 3 3 4
4 4 4 4 5

For one illustrative example only, and in the embodiment
above, assume that clock runs at a constant rate so that clock
cycles are of equal duration and thus of equal probability

EXPECTED THROUGHPUT=2subcas(5cycl/2
Bytes)+10subcas(4cycl/2 Bytes)+4subcas
(3cycl. 2 Bytes), 16Subcas=1.94 cycles/Byte), or
1.03 Bytes every 2 cycles

The above calculation assumes that each of the sixteen
Case/SubCases occurs with equal probability. Another way of
calculating it is:

No of bytes processed in all the above combina
tions=2x16=32 bytes

Total no of clock cycles taken for this processing 31x
2=62 cycles

10

15

25

30

35

40

45

50

55

60

65

38
Expected throughput=32/62=1.03 bytes per 2 clock

cycles.

BEST CASE: A higher estimate assumes all encryption
cases run in 3 cycles (as in Cases 2(b), 20c), 3(b) and 3(c)):

2 Bytes/3 cycles=1.33 Byte/2 cycles.

WORST CASE: A lower estimate assumes all encryption
cases run in 5 cycles (i.e. case 1 (a) and case 4 (c)):

2 Bytes/5 cycles=0.80 Byte/2 cycles.

At a processor clock frequency of 40 MHz, the data rate in
megabits per second (1 Byte=8 bits) for this two dual-port
memory, 2-bytes embodiment is

AVERAGE DATA RATE=1.03(Bytes/2 cycles)x8
bits/Bytex40 MHz=164.8 Mbps.

A high estimate for data rate is 1.33(Bytes/2 cycles)x8
bits/Bytex40 MHz=213.3 Mbps.

A low estimate for data rate is 0.80 Bytes/2 cycles)x8
bits/Bytex40 MHz=128 Mbps.

Remarkably, a group of the inventive embodiments using
highly regular process tables produces at least 0.40 bytes/
cycle minimum throughput using only 256 bytes in memory
for S-Box, 256 dirty bits in the dirty bit array with single cycle
initialization and less than 385 cycle S-Box setup all in less
than 20,000 (twenty thousand) gates and in Some cases less
than 15,000 (fifteen thousand) gates.

In a real time system, every 1000 clock cycles are shared
between encryption, decryption, and all other features of the
application which that processor supports. Thus, the RATE
calculation above may need to be diminished by a Factor
representing the fraction of clock cycles which are devoted to
encryption and decryption. If a general purpose processor has
an associated processor Sometimes called an accelerator, Such
as a digital signal processor (DSP) from Texas Instruments
Incorporated, the associated processor may be able to devote
a higher percentage of its clock cycles to encryption/decryp
tion, thereby increasing that Factor. The application may be a
cell phone, a wireless local area network (WLAN) client, a
WLAN access point, or other equipment.
Four 2-Port Quarter-Memory, Quadruple-Byte Throughput
Embodiment

(64 bytes per two-port memory, 4 bytes/iteration) The four
two port memory embodiment is believed to have 4-to-the
8"-power or 64K encryption tables of Case/Subcase combi
nations.

Also, the number of encryption tables for all the Cases/
SubCases is equal to the square of the following: Number of
Memories (base) raised to the Number of Concurrently Pro
cessed Variables power (exponent).

Here the reasoning is that the last two bits of each address
i byte are used to identify the memory being addressed by
respective last-two-bits 00, 01, 10, 11. Thus the addresses jo
and j, from the two-port memory cases above are replaced
by four addresses that can point to any of not two memories,
but four memories: j, oo, joi, j, o, j-, 1.

Thus, 256–4x4x4x4-4" (four-to-the-fourth-power) tables
result for the S-Box shuffle operation and represent that many
Cases. Furthermore, in encryption, four reads of key bytes are
needed too, t, oi, t, ot, 11. These addresses can point to
any of the four memories. Thus, 4x4x4x4-4" (four-to-the
fourth-power) tables result for the key bytes reading opera
tion in encryption, and represent that many Subcases for each
Case. In all, the number of encryption tables for all the Cases/
SubCases is the product of the number of Cases times the
number of Subcases, or 4" (four-to-the-fourth-power) times

US 8,671,254 B2
39

4" (four-to-the-fourth-power) which equals 4 (four-to-the
eighth-power). This number of encryption tables is about
64,000. Implementation of the appropriate state machines is
accomplished by the skilled worker using computer-based
design tools. While this category of embodiments confers a
setup time reduction improvement and encryption throughput
increase improvement, it is believed that they will be at least
Somewhat more complex in the state machine implementa
tion.

Terminology Followed:
First Row of each table: Represents the memory banks
All but the first row of each table: operations done in the
memory banks. Each row corresponds to one clock cycle in
ascending order from top to down. i.e. Second row indi
cates the operations done in the first clock cycle of the
iteration and so on.

First Column of each table: Read from Memory bank Mo
Second Column of each table: Write to Memory bank Mo
Third Column of each table: Read from Memory bank M.
Fourth Column of each table: Write to Memory bank M.
Fifth Column of each table: Read from Memory bank M.
Sixth Column of each table: Write to Memory bank M.
Seventh Column of each table: Read from Memory bank M.
Eighth Column of each table: Write to Memory bank M.

TABLE

Case

R W R

Mo M1
W R

M. M.
W R

M2 M.
W

M

S1 S2 S.

For the present embodiment having four 2-port memories
each of sixty-four 64 bytes, the maximum number of simul
taneous reads that a memory Mo or memory M. permits is
exactly one each, and the maximum number of simultaneous
writes that a memory Mo or memory M. permits is also
exactly one each. In other four 2-port memory embodiments,
constraints observed may vary.
Two 4-Port Half-Memory, Quadruple-Byte Throughput
Embodiments

In general, the number of S-Box setup tables for all the
Cases is equal to: the Number of Memories (base) raised to
the Number of Concurrently Processed Variables power (ex
ponent).

Also, the number of encryption tables for all the Cases/
SubCases is equal to the square of the following: Number of
Memories (base) raised to the Number of Concurrently Pro
cessed Variables power (exponent).

Advantageously, the two 4-port half-memory embodi
ments have a smaller number in the base than the four 2-port
quarter-memory embodiments. Accordingly, they utilize a
more manageable number of Tables in processing the same
Number of Concurrently Processed Variables.
The two four-port memory group of embodiments are ana

lyzed here processing four (4) bytes periteration. They have
16 (sixteen) S-Box setup process tables, because the quantity
two-to-the-fourth-power is sixteen (1) (24=16) and hence 16
tables are sufficient to describe them. The S-Box setup pro
cess tables have eight (8) columns RRWWRRWW because
the two memories have two (2) read ports and two (2) write
ports.

5

10

15

25

30

35

40

45

50

55

60

65

40
The two four-port memory group of embodiments process

ing four (4) bytes per iteration have 256 (two hundred fifty
six) encryption process tables, because the square
of the quantity two-to-the-fourth-power is 256 (24)
(24)=28–256) and hence 256 tables are used to describe
them. The encryption process tables also have eight variables
(8) columns RRWWRRWW because the two memories have
two (2) read ports and two (2) write ports. Due to the number,
the skilled worker suitably completes the memory access
tables and prepares the state machines according to the prin
ciples already set forth using computerized tools.
The throughput analysis of this category of embodiments is

described next. Then an example of some of the tables is
provided to show the process.

Analysis for Two Four-port Half-memories (128 Bytes
Each):
Accesses required: So S, SS o: 1s. 2: .3: So S, S2, Sis
Each access can be from any memory bank i.e. Mo, M.
i.e. There are 28 such possible combinations=256.
Sbox Setup Step:

Accesses required: So, S1, S2, S for his 2: his

Each access can be from any memory bank i.e. Mo, M.
i.e. There are 24 such possible combinations=16.
Possible cycle latencies (per four bytes of processing):

2 cycles (6 combinations)
3 cycles (10 combinations
Since the total number of possible combinations is 256 the

other case (4 cycles) have 190 possible values.

Latency cycles Number of possible cases

2 6
3 10

Latency cycles Number of possible cases Total Cycles (Col1 * Col.2)

2 6 12
3 10 30

Total 16 42

Hence average number of cycles per computation of 4
bytes of data: 42/16–2.625 cycles.
For Sbox setup the number of bytes need to process=256
bytes

Setup Figures are:

Best case (cycles) Worst case (cycles) Average (cycles)

128 192 42 * 4 = 1.68

Encryption Step:
Possible cycle latencies (per four bytes of processing):

3 cycles (6x6 possible combinations)
4 cycles
5 cycles (2 possible combinations)

US 8,671,254 B2
41

Since the total number of possible combinations is 256 the
other case (4 cycles) have 218 possible values.

Latency cycles Number of possible cases

3 36
4 218
5 2

Latency cycles Number of possible cases Total Cycles (Col1 * Col.2)

3 36 108
4 232 928
5 2 10

Total 256 1046

Hence average number of cycles per computation of 4
bytes of data: 1046/256–4.09 cycles.
Encryption throughput figures are:

Worst case
(bytes/cycles)

Best case
(bytes/cycles)

Average
(bytes/cycles)

1.33 O.8 1.02

Terminology Followed:
First Row of each table: Represents the memory banks
All but the first row of each table: operations done in the
memory banks. Each row corresponds to one clock cycle in
ascending order from top to down. i.e. Second row indi
cates the operations done in the first clock cycle of the
iteration and so on.

First Column of each table: Read from Memory bank Mo
Second Column of each table: Read from Memory bank Mo
Third Column of each table: Write to Memory bank Mo
Fourth Column of each table: Write to Memory bank Mo
Fifth Column of each table: Read from Memory bank M.
Sixth Column of each table: Read from Memory bank M.
Seventh Column of each table: Write to Memory bank M.
Eighth Column of each table: Write to Memory bank M.

R R W W R R W W
Mo Mo Mo Mo M M M M1

So S. S2 S.

For the present embodiment having two 4-port memories
each of 128 bytes, the maximum number of simultaneous
reads that a memory Mo or memory M. permits is exactly two
each, and the maximum number of writes that a memory Mo
or memory M. permits is also exactly two each. In other two
4-port memory embodiments, constraints observed may vary.

10

15

25

30

35

40

45

50

55

60

65

42
One 4-Port Full-Memory, Double-Byte Throughput Cat
egory of Embodiments

In general, as noted above, the number of S-Box setup
tables for all the Cases is equal to: the Number of Memories
(base) raised to the Number of Concurrently Processed Vari
ables power (exponent).

Also, the number of encryption tables for all the Cases/
SubCases is equal to the square of the following: Number of
Memories (base) raised to the Number of Concurrently Pro
cessed Variables power (exponent).

Advantageously, the one-memory embodiments have a
low number in the base. Accordingly, they utilize fewer tables
in processing the same Number of Concurrently Processed
Variables. The number of ports is applied to the full-size 256
byte memory as compared with embodiments with e.g., two
memories and 128 bytes each with two ports.
The one four-port memory group of embodiments are ana

lyzed here processing two (2) bytes per iteration. They have
one S-Box setup process table, because the quantity one-to
the-second-power is one (1) (12=1) and hence one table is
used to describe them. The S-Box setup process table has four
(4) columns RRWW because the one memory has two (2)
read ports and two (2) Write ports.
The one four-port memory group of embodiments process

ing two (2) bytes per iteration have one encryption process
table, because the square of the quantity one-to-the-second
power is one (1) ((12)(12)=14=1) and hence once table is
used to describe them. The encryption process table also has
four (4) columns RRWW because the one memory has two
(2) read ports and two (2) write ports.

Step 1) Setup
The four port asynchronous read and synchronous write

RAM gives the facility to make two reads and writes simul
taneously from and to the memory. Shown below is the figure
that shows the memory accesses in various cycles of opera
tion during the Sbox setup phase.

S-BOX SETUP PROCESS TABLE
Case (1

R W R W

Mo Mo Mo Mo

1 So S
2 So So S1 S
3 S2 So S. S1

Two bytes of setup are achieved in two cycles of operation.
Complete setup (for 256 bytes) therefore takes 256 cycles of
operation after cycle 1.
Step 2) Encryption Step
Si>Sbox memory access at location i=0 ith thread
So->Sbox memory access at locationjo ith thread
Sos-Sbox memory access at location to ith thread
Si>Sbox memory access at location i=1 —(i+1)th thread
S>Sbox memory access at location.j, -(i+1)th thread
S>Sbox memory access at location t—(i+1)th thread
Si>Sbox memory access at location i=2 next iteration
Si>Sbox memory access at location i=3—next iteration

Since the four port memory provides the option of two
reads and writes in a single cycle, therefore the SS can be read
in the cycle after Sis reads and subsequently Sts can be read in
the next cycle thereafter. Following table represents the read
and write access to the four port memory in the course of
encryption.

US 8,671,254 B2
43

ENCRYPTION PROCESS TABLE
Case (1

R W R W

Mo Mo Mo Mo

1 So S
2 So So S1 S
3 So S,
4 So So S S1

The Swrites are arranged to take place in either cycle 3 or
cycle 4 as selected by the skilled worker. Either way, the
encryption iteration takes three cycles of operations per two
bytes of data. Hence the throughput is 2/3 bytes per cycle.
Advantageously, the encryption throughput is uniformly pro
duced every three cycles per two bytes over time.

Analysis for One Four-port Full Memory (256 Bytes) with
Double-Byte Throughput:
Accesses required. So, S. So, S,
Each access can be from the one memory i.e. Mo.
i.e. There are 14 such possible combination=1.
Encryption Step 2 cycle latency (per two bytes of processing):

Three (3) cycles, one case. Total cycles: 3.
Encryption throughput: 0.67 bytes/cycle in best, worst, and

average case.
Sbox setup step accesses required: So S,

Each access can be from the one memory i.e. Mo, i.e. there is
only one combination.

Possible cycle latencies (per four bytes of processing): 2
cycles, one case.

Total cycles: 2.
For Sbox setup the number of bytes need to process=256

bytes
Setup figures are: 256 cycles=64 (4-byte groups)x2 cycles/

iteration in best, worst, and average case.
One 8-Port Memory Category of Embodiments

In general, as noted above, the number of S-Box setup
tables for all the Cases is equal to: the Number of Memories
(base) raised to the Number of Concurrently Processed Vari
ables power (exponent).

Also, the number of encryption tables for all the Cases/
SubCases is equal to the square of the following: Number of
Memories (base) raised to the Number of Concurrently Pro
cessed Variables power (exponent).

Advantageously, the one-memory embodiments have a
low number in the base. Accordingly, they utilize fewer tables
in processing the same Number of Concurrently Processed
Variables. The number of ports is applied to the full-size 256
byte memory as compared with embodiments with e.g., two
memories and 128 bytes each with two ports.
The one eight-port memory group of embodiments are

analyzed here processing four (4) bytes per iteration. They
have one S-Box setup process table, because the quantity
one-to-the-fourth-power is one (1) (14=1) and hence one
table is used to describe them. The S-Box setup process table
has eight (8) columns RRWW because the one memory has
four (4) read ports and four (4) write ports.
The one eight-port memory group of embodiments pro

cessing four (4) bytes periteration have one encryption pro
cess table, because the square of the quantity one-to-the
fourth-power is one (1) ((14)(14)=18=1) and hence once
table is used to describe them. The encryption process table
also has eight (8) columns RRRRWWWW because the one
memory has four (4) read ports and four (4) write ports.

10

15

25

30

35

40

45

50

55

60

65

44

S-BOX SETUP PROCESS TABLE
Case (1

R R R R W W W W

Mo Mo Mo Mo Mo Mo Mo Mo

So S. S. S.

ENCRYPTION PROCESS TABLE
Case (1

R R R R W W W W

Mo Mo Mo Mo Mo Mo Mo Mo

So S. S. S.

The throughput analysis of this category of embodiments is
described next. Then an example of some of the tables is
provided to show the process.
Analysis for One Eight-port Memory (256 Bytes):

Analysis is same as one 4-port memory case except that
twice as many bytes per cycle are processed. This produces
the following results.

Encryption accesses: So S, S2, Ss. So, S, S2, Sa
Each access can be from the one memory i.e. Mo.
i.e. There are 18 such possible combination=1.
Encryption Step 2 cycle latency (per four bytes of process

ing): Three (3) cycles, one case. Total cycles: 3.
Encryption throughput: 1.33 bytes/cycle in best, worst, and

average case.
Sbox setup step accesses required. So, S. S. S.

Each access can be from the one memory i.e. Mo, i.e. there are
14 such possible combination=1, i.e. there is one combina
tion.

Possible cycle latencies (per four bytes of processing): 2
cycles, one case.
Total cycles: 2.

For Sbox setup the number of bytes need to process=256
bytes

Setup figures are: 128 cycles=64 (4-byte groups)x2 cycles/
iteration in best, worst, and average case.
A few preferred embodiments have been described in

detail hereinabove. It is to be understood that the scope of the
invention comprehends embodiments superficially different
from those described yet within the inventive scope. Micro
processor and microcomputer are synonymous herein. Pro
cessing circuitry comprehends digital, analog and mixed sig
nal (digital/analog) integrated circuits, ASIC circuits, PALS,
PLAS, decoders, memories, non-Software based processors,
and other circuitry, and digital computers including micro
processors and microcomputers of any architecture, or com
binations thereof. Internal and external couplings and con
nections can be ohmic, capacitive, direct or indirect via
intervening circuits or otherwise as desirable. Implementa
tion is contemplated in discrete components or fully inte
grated circuits in any materials family and combinations

US 8,671,254 B2
45

thereof. Various embodiments of the invention can employ
hardware, Software or firmware. Process diagrams herein are
representative offlow diagrams for operations of any embodi
ments whether of hardware, software, or firmware, and pro
cesses of manufacture thereof.

While this invention has been described with reference to
illustrative embodiments, this description is not to be con
Strued in a limiting sense. Various modifications and combi
nations of the illustrative embodiments, as well as other
embodiments of the invention may be made. It is therefore
contemplated that the appended claims and their equivalents
cover any such embodiments, modifications, and embodi
ments as fall within the true scope of the invention.
What is claimed is:
1. An integrated circuit comprising:
a first memory having a first read port and a first write port

for concurrent read and write, the first memory having
memory locations for data accessible by asserting
respective addresses to the first memory through the first
read port and the first write port;

a second memory having a second read port and a second
write port for concurrent read and write, the second
memory having memory locations for data accessible by
asserting respective addresses to the second memory
through the second read port and the second write port;
and

address generation circuitry respectively coupled by
address lines to said first memory and to said second
memory and operable to generate address bits represen
tative of odd and even addresses, said first memory
responsive only to the even addresses and said second
memory responsive only to the odd addresses; and

wherein said first memory is operable, in response to said
address generation circuitry, to either read or write a first
data quantity responsive to an even address during a
same clock cycle said second memory is operable, in
response to said address generation circuitry, to perform
at least one of a read at a same time as a read of said first
memory, or a write at a same time as a write of said first
memory, a second data quantity, differing from said first
data quantity, responsive to an odd address.

2. The integrated circuit of claim 1 wherein the address
generation circuitry is for operating sequentially for encryp
tion.

3. The integrated circuit of claim 1 wherein the address
generation circuitry is operable to generate address bits rep
resentative of at least one odd address and at least one even
address concurrently.

4. The integrated circuit of claim 1 further comprising data
write circuitry and data read circuitry each coupled to said
first and second memories.

5. The integrated circuit of claim 1 further comprising a
sequential control circuit coupled to said address generation
circuitry and having a storage for a cryptological key.

6. The integrated circuit of claim 1 further comprising a
sequential control circuit operable to produce a series of reads
and writes of data from said first and second memories
thereby as a result to generate addresses for at least Some of
the reads and writes in the series.

7. The integrated circuit of claim 1 further comprising a
sequential control circuit having a encryption control output
coupled to the address generation circuitry.

8. The integrated circuit of claim 1 further comprising a
cryptological logic circuit responsive to data from said first
and second memories.

9. The integrated circuit of claim 1 further comprising a
cryptological logic circuit including:

10

15

25

30

35

40

45

50

55

60

65

46
a first input for a stream of bits,
a second input coupled to the first and second memories;

and
an output for Supplying a cryptologically altered stream of

bits.
10. The integrated circuit of claim 1 in combination with a

processor programmed to execute steps in an encryptionalgo
rithm, wherein the address generation circuitry is for operat
ing in response to said encryption algorithm to address, for
access in a single cycle, any one or more of a plurality of
different cases that arise from concurrent access of a combi
nation of the first read port, the first write port, the second read
port, and the second write port.

11. The integrated circuit of claim 1 wherein said first
memory is operable, in response to said address generation
circuitry, to read said first data quantity responsive to said
even address during a same clock cycle said second memory
is operable, in response to said address generation circuitry, to
read said second data quantity, differing from said first data
quantity, responsive to said odd address.

12. The integrated circuit of claim 1 wherein said first
memory is operable, in response to said address generation
circuitry, to write said first data quantity responsive to said
even address during a same clock cycle said second memory
is operable, in response to said address generation circuitry, to
write said second data quantity, differing from said first data
quantity, responsive to said odd address.

13. The integrated circuit of claim 1:
wherein said first memory is operable, in response to said

address generation circuitry, to read said first data quan
tity responsive to a first even address during a same clock
cycle said second memory is operable, in response to
said address generation circuitry, to read a second data
quantity, differing from said first data quantity, respon
sive to a first odd address; and

wherein, during said same clock cycle, said first memory is
operable, in response to said address generation cir
cuitry, to write a third data quantity responsive to a
second even address and said second memory is oper
able, in response to said address generation circuitry, to
write a fourth data quantity, differing from said third
data quantity, responsive to a second odd address.

14. A methodofoperating an integrated circuit comprising:
concurrently reading a first data quantity and writing a

second data quantity in a first memory, the first memory
having memory locations for data accessible by assert
ing respective addresses to the first memory through a
first read port and a first write port;

concurrently reading a third data quantity and writing a
fourth data quantity in a second memory, the second
memory having memory locations for data accessible by
asserting respective addresses to the second memory
through a second read port and a second write port; and

generating address bits representative of odd and even
addresses, the first memory responsive only to the even
addresses and the second memory responsive only to the
odd addresses; and

wherein said step of concurrently reading and writing data
in a first memory occurs during a same clock cycle at a
same time as said step of concurrently reading and writ
ing data in a second memory.

15. The method of claim 14 wherein the generating address
bits provides an encryption-related operation.

16. The method of claim 14 wherein the generating address
bits provides at least one odd address and at least one even
address concurrently.

US 8,671,254 B2
47

17. The method of claim 14 further comprising sequen
tially controlling the generating address bits based on a cryp
tological key.

18. The method of claim 14 further comprising sequen
tially producing a series of reads and writes of data from the s
first and second memories thereby as a result to generate
addresses for at least some of the reads and writes in the
series.

19. The method of claim 14 further comprising a sequen
tially controlling the generating address bits to provide a
setup operation followed by an encryption operation. 10

20. The method of claim 14 further comprising a crypto
logically altering a stream data in response to bits from said
first and second memories and said address bits.

21. The method of claim 14 and further comprising oper- 15
ating a processor to execute an encryption algorithm, wherein
said step of generating address bits is in response to said
encryption algorithm to generate the address bits, for access
in a single cycle, any one or more of a plurality of different
cases that arise from concurrent access of a combination of
the first read port, the first write port, the second read port, and 2O
the second write port.

22. A method of operating an integrated circuit comprising:
reading a first data quantity in a first memory, the first
memory having memory locations for data accessible by
asserting respective addresses to the first memory
through a first read port;

48
concurrently and during a same clock cycle and at a same

time with reading the first data quantity, reading a sec
ond data quantity in a second memory, the second
memory having memory locations for data accessible by
asserting respective addresses to the second memory
through a second read port; and

generating address bits representative of odd and even
addresses, the first memory responsive only to the even
addresses and the second memory responsive only to the
odd addresses.

23. The method of claim 22 and further comprising:
writing a third data quantity in the first memory, the first
memory having memory locations for data accessible by
asserting respective addresses to the first memory
through a first write port; and

concurrently and during a same clock cycle and at a same
time with writing the third data quantity, writing a fourth
data quantity in the second memory, the second memory
having memory locations for data accessible by assert
ing respective addresses to the second memory through
a second write port.

24. The method of claim 23 wherein each of the reading
steps is concurrent and during a same clock cycle as each of

25 the writing steps.

