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1. 

PROCESSES, CIRCUITS, DEVICES, AND 
SYSTEMIS FOR CONCURRENT DUAL 

MEMORYACCESS IN ENCRYPTION AND 
DECRYPTION 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is related to and is a division of U.S. patent 
application Ser. No. 12/552,760, filed Sep. 2, 2009, titled 
“PROCESSES, CIRCUITS, DEVICES, AND SYSTEMS 
FORENCRYPTION AND DECRYPTION AND OTHER 
PURPOSES, AND PROCES MAKING, now issued as U.S. 
Pat. No. 8,032,732, for which priority, under 35 U.S.C. 120 
and 35 U.S.C. 121, is hereby claimed to such extent as may be 
applicable and application Ser. No. 12/552,760 is also hereby 
incorporated herein by reference. application Ser. No. 
12/552.760 is related to and is a division of U.S. patent appli 
cation Ser. No. 10/932,506, filed Sep. 1, 2004, titled “PRO 
CESSES, CIRCUITS, DEVICES, AND SYSTEMS FOR 
ENCRYPTION AND DECRYPTION AND OTHER PUR 
POSES, AND PROCESSES OF MAKING, now issued as 
U.S. Pat. No. 7,602,905, for which priority, under 35 U.S.C. 
120 and 35 U.S.C. 121, is hereby claimed to such extent as 
may be applicable and application Ser. No. 10/932,506 is also 
hereby incorporated herein by reference. 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH ORDEVELOPMENT 

Not applicable. 

BACKGROUND OF THE INVENTION 

This invention is in the field of information and communi 
cations, and is more specifically directed to improved pro 
cesses, circuits, devices, and systems for encryption and 
decryption and other information and communication pro 
cessing purposes, and processes of making them. Without 
limitation, the background is further described in connection 
with wireless communications processing. 

Wireless communications, of many types, have gained 
increasing popularity in recent years. The mobile wireless (or 
“cellular) telephone has become ubiquitous around the 
world. Mobile telephony has recently begun to communicate 
Video and digital data, in addition to voice. Wireless modems, 
for communicating computer data over a wide area network, 
using mobile wireless telephone channels and techniques are 
also available. 

Wireless data communications in wireless local area net 
works (WLAN), such as that operating according to the well 
known IEEE 802.11 standard, has become especially popular 
in a wide range of installations, ranging from home networks 
to commercial establishments. Short-range wireless data 
communication according to the “Bluetooth” technology per 
mits computer peripherals to communicate with a personal 
computer or workstation within the same room. 

Encryption/decryption techniques are used to improve the 
security of retail and other business commercial transactions 
in electronic commerce and the security of communications 
wherever personal and/or commercial privacy is desirable. 
Security is important in both wireline and wireless commu 
nications. 

Digital signal processing (DSP) chips and/or other inte 
grated circuit devices are essential to these systems and appli 
cations. Reducing the cost of manufacture and increasing 
speed of operation without compromising performance is an 
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2 
important goal in DSPs, integrated circuits generally and 
system-on-a-chip (SOC) design. Cost of manufacture and 
power consumption usually decrease if the number of elec 
tronic logic circuits (gate count) can be reduced. Decreasing 
the gate count in the encryption/decryption circuit contributes 
to the goals of reduced cost of manufacture and power con 
Sumption. The importance of decreasing the gate count 
becomes even stronger in hand held/mobile applications 
where Small size is so important, to control the cost and the 
power consumed. 

Speed of operations is reflected in reduced initialization 
time of encryption and increased throughput of encrypted 
communications. Both initialization time and throughput are 
important considerations in communications and other appli 
cations. Reduced initialization time reduces delays in starting 
and continuing communications processes. Increased 
throughput allows more information to be communicated in 
the same amount of time, or the same information to be 
communicated in a shorter time. Communications security 
should contribute as little overhead, or burden, to communi 
cations as possible, all other system requirements being 
equal. 
WEP (Wired Equivalent Privacy) encryption/decryption 

(RC4) is an example of one data transmission security 
method. Improved implementations for reduced gate count 
and increased speed are desirable in the art for data processing 
generally and for RC4 and other encryption/decryption pro 
cesses for use at both ends of communications applications 
such as WLAN and cellular communications. 

U.S. Pat. No. 6,549,622, D. P. Matthews, Jr., describes a 
system and method suggested to be a fast hardware imple 
mentation of RC4. U.S. Patent Application Publication 2002/ 
0186839, Parker et al., describes an apparatus and method for 
cipher processing system using multiple port memory and 
parallel read/write operations and has a comparator circuit. 
Further alternative and more advantageous approaches would 
be desirable in the art. 

SUMMARY OF THE INVENTION 

Generally and in a form of the invention, an integrated 
circuit includes execute circuitry operable to execute at least 
part of an encryption process involving a set of data having 
numerousness N. The circuitry is arranged to update at least 
first and second data concurrently in the set in a series of 
overlapping iterations followed by Subsequent overlapping 
iterations in the series wherein at least one of the second data 
depends on the uncompleted processing of the first data. An 
assemblage of memory elements is coupled to the execute 
circuitry and has at least two read ports and at least two write 
ports operable for concurrent read and write, the elements 
having addresses. The number of memory elements is 
bounded in numerousness by the number N and sufficient to 
be utilized by the execute circuitry for updating the set of data 
for a Subsequent iteration in the series. 

Generally and in another form of the invention, an inte 
grated circuit includes a first memory having a first read port 
and a first write port for concurrent read and write. The first 
memory has memory locations for data accessible by assert 
ing respective addresses to the first memory through the first 
read port and the first write port. The integrated circuit 
includes a second memory having a second read port and a 
second write port for concurrent read and write. The second 
memory has memory locations for data accessible by assert 
ing respective addresses to the second memory through the 
second read port and the second write port. The integrated 
circuit further includes address generation circuitry respec 
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tively coupled by address lines to the first memory and to the 
second memory. The address generation circuitry is operable 
to generate address bits representative of odd and even 
addresses. The first memory is responsive only to the even 
addresses, and the second memory is responsive only to the 
odd addresses. 

Generally, an additional form of the invention involves 
circuitry for use with a storage having storage locations for 
data and dirty bits accessible at addresses corresponding to 
addresses in the storage. The circuitry includes an address 
line for carrying address bits, a data line for carrying data bits, 
and a dirty bit line for conveying a dirty bit set/reset state. A 
selector circuit has a selector output selectively coupled to the 
address line and to the data line. The selector circuit is respon 
sive to a state on the dirty bit line to couple data bits related to 
the address bits themselves from the address line to the selec 
tor output. 

Generally, a further process form of the invention resolves 
a dependency in an integrated circuit including a memory 
having memory locations for data accessible by asserting 
respective addresses to the memory. The process includes 
reading to a first register a first datum stored at a location in 
the memory represented by a first address. A second address 
is generated at which the first datum will be stored in the 
memory. A third address is provided at which a second datum 
can be read. The second address is compared with the third 
address, and if different then the second datum is read to a 
second register from the third address in the memory, and if 
same then the first datum is copied to the second register as the 
second datum. 

Generally, a yet further process of manufacture form of the 
invention is for integrated circuits having operations of at 
least a portion of the integrated circuit definable by Case/ 
Subcase tables. The process includes making at least a first 
state machine and a second state machine corresponding to a 
partition of the Case/SubCase tables into at least a first part 
and a second part. 

Generally, an additional form of the invention for operating 
an integrated circuit includes executing at least part of a 
process having operations of setup and execution on a set of 
data in at least first and second threads concurrently in a series 
of overlapping iterations by sharing a state machine for opera 
tions common to the setup and execution iterations. 

Generally, an article of manufacture form of the invention 
includes a Substantially planar medium having physically 
established therein structures corresponding to operations of 
a process including operations of setup and execution on a set 
of data in at least first and second threads concurrently in a 
series of overlapping iterations by dividing the set of data into 
at least two different Subsets and concurrently reading and 
writing in both subsets. 

Other forms of the invention involving processes of manu 
facture, articles of manufacture, processes and methods of 
operation, circuits, devices, systems, and wireless communi 
cations devices are disclosed and claimed. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a pictorial diagram of a communications system 
including a cellular base station, a WLAN AP (wireless local 
area network access point), a WLAN gateway, a WLAN 
station on a PC/Laptop, and two cellular telephone handsets, 
any one, Some or all of the foregoing improved according to 
the invention. 

FIGS. 2A-2G are block diagrams of inventive integrated 
circuit chips for use in the blocks of the communications 
system of FIG. 1. 
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4 
FIG. 2A is a block diagram of an integrated circuit includ 

ing a digital baseband section, the integrated circuit provided 
on a printed circuit board system of integrated circuit chips 
for use in a cellular base station and the cellular handsets of 
FIG 1. 

FIG. 2B is a block diagram of an integrated circuit includ 
ing an analog baseband section, the integrated circuit pro 
vided on a printed circuit board system of integrated circuit 
chips for use in a cellular base station and the cellular hand 
sets of FIG. 1. 

FIG. 2C is a block diagram of an integrated circuit includ 
ing a GSM/GPRS RF (radio frequency) unit, the integrated 
circuit on a printed circuit board system of integrated circuit 
chips for use in a cellular base station and the cellular hand 
sets of FIG. 1. 

FIG. 2D is a block diagram of an integrated circuit includ 
ing a WCDMA (wideband code division multiple access) RF 
(radio frequency) unit, the integrated circuit on a printed 
circuit board system of integrated circuit chips for use in a 
cellular base station and the cellular handsets of FIG. 1. 

FIGS. 2E and 2F are two halves of a block diagram of an 
integrated circuit including application processor circuitry, 
the integrated circuit provided with off-chip peripherals on a 
printed circuit board system of integrated circuit chips for use 
in a cellular base station and the cellular handsets of FIG. 1. 

FIG. 2G is a block diagram of a WLAN integrated circuit 
including MAC (media access controller), PHY (physical 
layer) and AFE (analog front end), the integrated circuit on a 
printed circuit board system of integrated circuit chips for use 
in one, some or all of the cellular base station, the WLAN AP, 
the WLAN PC, the WLAN gateway, and the two cellular 
telephone handsets of FIG. 1. 

FIG. 3 is a schematic diagram of inventive circuitry for 
implementation of the improved cell phone and in the 
improved WLAN system of all as shown in FIGS. 1 and 2A 
through 2G. 

FIG. 4 is a more detailed schematic diagram of inventive 
circuitry in FIG. 3. 

FIG. 5 is a state transition diagram of an inventive Primary 
State Machine embodiment and inventive process for the 
circuitry of FIG. 4. 

FIG. 6 is a state transition diagram of an inventive Second 
ary State Machine embodiment and inventive process for the 
inventive circuitry of FIG. 4. 

FIG. 7 is a flow diagram of an inventive method of manu 
facturing integrated circuits including the inventive circuitry 
of FIGS. 3, 4, 5, and 6. 

FIGS. 8A and 8B are time interval diagrams for illustrating 
improved real time operations in the inventive blocks and 
inventive system of FIG. 1. 

FIG. 9 is a partially schematic, partially block diagram 
emphasizing parts of an implementation of the inventive cir 
cuitry of FIG. 3. 

FIG. 10 is a flow diagram of improved operations in an 
inventive S-Box setup process. 

FIG. 11 is a flow diagram of improvements for dirty bit 
operations and other operations in an S-Box setup process of 
the invention. 

FIG. 12 is a flow diagram of an inventive process of depen 
dency resolution. 

DETAILED DESCRIPTION OF EMBODIMENTS 

In FIG. 1 an improved security-enabled communications 
system 100 includes two improved cellular telephone hand 
sets 110 and 110'. In handset 110, for example, a WLAN 
block 114 has improved decryption and encryption. WLAN 
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here refers to IEEE 802.11 compatible networks and other 
WLAN networks. Also in handset 110, cellular telephone 
communications are encrypted and decrypted in block 118 
suitably also in an improved manner. Handset 110' is corre 
spondingly improved for security. A cellular base station 140 
is improved with at least security block similar to block 118 
and two-way communicates with the Internet and with cellu 
lar telephone networks and PSTN (public switched telephone 
network). A WLAN AP (wireless local area network access 
point) 160, personal computer PC/Laptop 170 equipped with 
WLAN station, and a WLAN gateway 180, are provided with 
one or more blocks similar to block 114. Any one, some or all 
of the WLAN AP 160, WLAN station on PC/Laptop 170, and 
WLAN gateway 180 are provided with one or more PHY 
physical layer blocks and interfaces as selected by the skilled 
worker in various products, for DSL (digital subscriber line 
broadband over twisted pair copper infrastructure), cable 
(DOCSIS and other forms of coaxial cable broadband com 
munications), fiber (fiber optic cable to subscriber premises), 
and Ethernet wideband network. In this way advanced net 
working capability for audio, music, Voice, video, e-mail, 
e-commerce, file transfer and other data services, internet, 
worldwide web browsing, TCP/IP (transmission control pro 
tocol/Internet protocol), Voice over packet and Voice over 
Internet protocol (VoP/VoIP), and other services are provided 
with a sufficient level of security for secure utilization and 
enjoyment appropriate to the just-listed and other particular 
applications. 

FIGS. 2A-2G illustrate inventive integrated circuit chips 
for use in the blocks of the communications system 100 of 
FIG. 1. The skilled worker uses and adapts the integrated 
circuits to the particular parts of the communications system 
100 as appropriate to the functions intended. For conciseness 
of description, the integrated circuits are described with par 
ticular reference to use of all of them in the cellular telephone 
handsets 110 and 110' by way of example. It is contemplated 
that the skilled worker uses each of the integrated circuits 
shown, or such selection from the complement of blocks 
therein provided into appropriate other integrated circuit 
chips, in a manner optimally combined or partitioned 
between the chips, to the extent needed by any of the appli 
cations supported by the cellular telephone base station 140, 
WLAN access point 160, PC/Laptop 170 with WLAN, and 
WLAN gateway 180, as well as personal computers, radios 
and televisions, fixed and portable entertainment units, rout 
ers, pagers, personal digital assistants (PDA), organizers, 
scanners, faxes, copiers, household appliances, office appli 
ances, combinations thereof, and other application products 
now known or hereafter devised in which increased security 
of communication is desirable. 

In FIG. 2A, an integrated circuit 200 includes a digital 
baseband (DBB) block 210 that has a RISC processor (such as 
MIPS core, ARM processor, or other suitable processor), a 
digital signal processor (DSP) such as a TMS320C55x DSP 
from Texas Instruments Incorporated or other digital signal 
processor, and a memory controller interfacing the RISC and 
the DSP to Flash memory and SDRAM (synchronous 
dynamic random access memory). On chip RAM 220 and 
on-chip ROM 230 also are accessible to the processors via the 
memory controller. Security accelerators block 240 provide 
additional computing power accessible, for instance, when 
the integrated circuit 200 is operated in a security mode 
enabling the security accelerators block 240. Digital circuitry 
250 supports and provides interfaces for one or more of GSM, 
GPRS, EDGE, and UMTS (Global System for Mobile com 
munications, General Packet Radio Service, Enhanced Data 
Rates for Global Evolution, Universal Mobile Telecommuni 
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6 
cations System) wireless, with or without the high speed 
digital data service, via the analog baseband chip 300 of FIG. 
2B and GSM chip 400 of FIG. 2C. Digital circuitry 250 
includes ciphering processor CRYPT for GSM A51 and/or 
A52 ciphering or and/or other encryption/decryption pur 
poses. Blocks TPU (Time Processing Unit real-time 
sequencer), TSP (Time Serial Port), GEA (GPRS Encryption 
Algorithm block for ciphering at LLC logical link layer), RIF 
(Radio Interface), and SPI (Serial Port Interface) are included 
in digital circuitry 250. 

Digital circuitry 260 provides codec for CDMA (Code 
Division Multiple Access), CDMA2000, and/or WCDMA 
(wideband CDMA) wireless with or without an HSDPA 
(High Speed Downlink Packet Access) (or 1xEV-DV, 1xEV 
DO or 3xEV-DV) data feature via the analog baseband chip 
300 of FIG. 2B and the CDMA chip 500 of FIG. 2D. Digital 
circuitry 260 includes blocks MRC (maximal ratio combiner 
for multipath symbol combining), ENC (encryption/decryp 
tion), RX (downlink receive channel decoding, de-interleav 
ing, Viterbi decoding and turbo decoding) and TX (uplink 
transmit convolutional encoding, turbo encoding, interleav 
ing and channelizing). Block ENC has blocks for uplink and 
downlink supporting the F8 confidentiality algorithm and the 
F9 integrity algorithm of WCDMA or otherwise suitable 
encryption/decryption process for the communications appli 
cation. 

Audio/voice block 270 supports audio and voice functions 
and interfacing. Applications interface block 275 couples the 
digital baseband 210 to the applications processor 600 of 
FIGS. 2E and 2F. Serial interface 280 interfaces from parallel 
on-chip digital busses to USB (Universal Serial Bus) of a PC 
(personal computer). Serial interface 280 includes UARTs 
(universal asynchronous receiver/transmitter circuit) for per 
forming the conversion of data between parallel and serial 
lines. Chip 200 is coupled to location-determining circuitry 
290 for GPS (Global Positioning System), and to a USIM 
(UMTS Subscriber Identity Module) 295 or other SIM. 

In FIG. 2B a mixed-signal integrated circuit 300 includes 
an analog baseband (ABB) block 310 for GSM/GPRS/ 
EDGE/UMTS which includes SPI, digital-to-analog/analog 
to-digital conversion DAC/ADC block, and RF (radio fre 
quency) Control pertaining to GSM/GPRS/EDGE/UMTS 
and coupled to RF (GSM etc.) chip 400 of FIG.2C. Block315 
is an analogous ABB for WCDMA wireless and any associ 
ated HSDPA data (or 1xEV-DV, 1xEV-DO or 3xEV-DV data 
and/or voice) with its respective SPI (Serial Port Interface), 
digital-to-analog conversion DAC/ADC block, and RF Con 
trol pertaining to WCDMA and coupled to RF (WCDMA) 
chip 500 of FIG. 2D. Audio block 320 has audio I/O (input/ 
output) circuits to a speaker 322, a microphone 324, and 
headphones 326. Audio block 320 is coupled to a voice codec 
and a stereo DAC (digital to analog converter), which in turn 
have the signal path coupled to the baseband blocks 310 and 
315 with suitable encryption/decryption activated or not. 

Control interface 330 has a primary host interface (I/F) and 
a secondary host interface to DBB-related integrated circuit 
200 of FIG. 2A for the respective GSM and WCDMA paths. 
The integrated circuit 300 is also interfaced to the I2C port of 
applications processor chip 600 of FIG. 2E. Control interface 
330 is also coupled via access arbitration circuitry to the 
interfaces in circuits 350 and the basebands 310 and 315. 
Power conversion block 340 includes buck voltage conver 
sion circuitry for DC-to-DC conversion, and low-dropout 
(LDO) Voltage regulators for power management/sleep mode 
of respective parts of the chip regulated by the LDOs. Power 
conversion block 340 provides information to and is respon 
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sive to a power control state machine shown between the 
power conversion block 340 and circuits 350. 

Circuits 350 provide oscillator support for the audio circuit 
320 including voice codec and stereo DAC. A 32 KHZ oscil 
lator and 12 MHz oscillator are included for clocking chip 
300. The oscillators have frequencies determined by respec 
tive crystals 354. Circuits 350 include a RTC real time clock 
(time/date functions), general purpose I/O, a vibrator drive 
(supplement to cell phone ringing features), a USB On-The 
Go (OTG) transceiver, and touch screen interface. A touch 
screen 356 off-chip is connected to the touchscreen interface 
on-chip. Batteries such as a lithium-ion battery 358 and 
backup battery provide power to the system and battery data 
on suitably provided separate lines from the battery pack. 
When needed, the battery also receives charging current from 
the Battery Charge Controller in analog circuit 350 which 
includes MADC (Monitoring ADC and analog input multi 
plexer Such as for on-chip charging Voltage and current, and 
battery Voltage lines, and off-chip battery Voltage, current, 
temperature) under control of the power control state 
machine. 

In FIG. 2C an RF integrated circuit 400 includes a GSM/ 
GPRS/EDGE/UMTS RF transmitter block 410 supported by 
oscillator circuitry 420 with off-chip crystal 425. Transmitter 
block 410 is fed by baseband 310 of FIG. 2B. Transmitter 
block 410 drives an off-chip dual band RF power amplifier 
(PA) 430. On-chip voltage regulators 440 maintain appropri 
ate Voltage under conditions of varying power usage. Off 
chip switchplexer 450 couples wireless antenna and switch 
circuitry in FIG. 2D to both the transmit portion 410, 430 in 
FIG. 2C and receive portion next described. Switchplexer 450 
is coupled via band-pass filters 455 to receiving LNAS 460 
(low noise amplifiers) for 850/900 MHz, 1800 MHz, and 
1900 MHz. Depending on the band in use, the output of LNAs 
460 couples to GSM/GPRS/EDGE/UMTS demodulator 470 
to produce the I/O outputs thereof (in-phase, quadrature) to 
the GSMFGPRS/EDGE/UMTS baseband block 310 in FIG. 
2B. 

In FIG. 2D an integrated circuit 500 supports WCDMA 
(wideband code division multiple access) RF (radio fre 
quency) in a receiver section 510 and a transmitter section 
550. The antenna of the cellular telephone handset 110 
couples to a switch unit 570 that in turn couples to the GSM 
circuits of FIG. 2C and the CDMA circuits of FIG. 2D. The 
receiver output lines at upper left and transmitter inputlines at 
lower left are all coupled to the WCDMA/HSDPA baseband 
block 315 in FIG. 2B. 

In FIGS. 2E and 2F are illustrated two halves of the block 
diagram of an integrated circuit chip 600 for application 
processing and various off-chip peripherals. 

Beginning with FIG. 2E, on-chip are found a high-speed 
WLAN 802.11a/b/g interface circuit 610 coupled to the 
WLAN chip 800 of FIG.2G. As described in connection with 
FIG.2Gandelsewhere herein, WLAN chip 800 has improved 
circuitry and processes for encryption and decryption. 

Further provided on chip 600 is an applications processing 
section 620 which includes a RISC processor (such as MIPS 
core, ARM processor, or other suitable processor), a digital 
signal processor (DSP) such as a TMS320C55x DSP from 
Texas Instruments Incorporated or other digital signal pro 
cessor, and a shared memory controller with DMA (direct 
memory access), and a 2D (two-dimensional display) graphic 
accelerator. The RISC and the DSP have access via on-chip 
extended memory interface (EMIF/CF) 630 to off-chip 
memory resources 635 including as appropriate, mobile DDR 
(double data rate) DRAM, and flash memory of any of NAND 
Flash, NOR Flash, and Compact Flash. On-chip, the shared 
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8 
memory controller in circuitry 620 interfaces the RISC and 
the DSP via on-chip bus to on-chip memory 640 with RAM 
and ROM. The 2D graphic accelerator is coupled to frame 
buffer internal SRAM (static random access memory) 660. 

Further in FIG. 2E, security 650 is provided by security 
features and encryption and decryption of any one or more 
types known in the art. A random number generator RNG is 
provided in security 650. Among the Hash approaches are 
SHA-1 (Secured Hashing Algorithm), MD2 and MD5 (Mes 
sage Digest version it). Among the symmetric approaches are 
DES (Digital Encryption Standard), 3DES (Triple DES), 
RC4 (Rivest Cipher), ARCO (related to RC4), TKIP (Tem 
poral Key Integrity Protocol, uses RC4), AES (Advanced 
Encryption Standard). Among the asymmetric approaches 
are RSA, DSA, DH, NTRU, and ECC (elliptic curve cryptog 
raphy). The security features contemplated include any of the 
foregoing hardware and processes and/or any other known or 
yet to be devised security and/or hardware and encryption/ 
decryption processes implemented in hardware or software. 
Improvements are suitably implemented as described herein. 
Some of the foregoing encryption/decryption processes are 
shuffle-based which has to do with encryption key formation 
and processing also as described in more detailed herein. 

Further in FIG.2E, on-chip peripherals 670 include UART 
data interface and MCSI (Multi-Channel Serial Interface) 
voice interface for off-chip Bluetooth short distance wireless 
circuit 690. Debug messaging and serial interfacing are also 
available through the UART. A JTAG emulation interface 
couples to an off-chip emulator pod for test and debug. 

Further in peripherals 670 are an I2C interface to analog 
baseband ABB chip 300 of FIG. 2B, and an interface 685 to 
applications interface 275 of integrated circuit chip 200 hav 
ing digital baseband DBB in FIG. 2A. Interface 685 includes 
a MCSI voice interface, a UART interface for controls, and a 
multi-channel buffered serial port (McBSP) for data. Timers, 
interrupt controller, and RTC (real time clock) circuitry are 
provided in chip 600. 

Further in peripherals 670 area MicroWire (u-wire 4 chan 
nel serial port) and multi-channel buffered serial port 
(McBSP) to off-chip Audio codec, a touch-screeen controller, 
and audio amplifier 680 to stereo speakers. External audio 
content and touchscreen (in/out) are Suitably provided. Addi 
tionally, an on-chip USB OTG interface couples to off-chip 
Host and Client devices. These USB communications are 
suitably directed outside handset 110 such as a PC (personal 
computer) or inside the handset. 

Turning to FIG. 2F illustrating further features of chip 600, 
various further interfaces and features are shown. Note that 
the block diagram is to be understood as providing on-chip 
peripheral bussing and couplings between the application 
processing circuitry 620 and the various on-chip peripheral 
blocks, regardless of whether the diagram lacks explicitly 
shown busses and couplings, as is understood by the skilled 
worker. 
An on-chip UART/IrDA (infrared data) interface 710 

couples to off-chip GPS (global positioning system) and Fast 
IrDA infrared communications device. Interface 720 pro 
vides EMT9 and Camera interfacing to one or more off-chip 
still cameras or video cameras 730, and/or to a CMOS sensor 
of radiant energy, and/or to a debugger. 

Further in FIG. 2F, an on-chip LCD controller and associ 
ated PWL (Pulse-Width Light) block 740 are coupled to a 
color LCD display and its LCD light controller off-chip. 
Further, on-chip interfaces 750 are respectively provided for 
off-chip keypad and GPIO 760, on-chip LPG (LED Pulse 
Generator) and PWT (Pulse-Width Tone) interfaces are 
respectively provided for off-chip LED and buzzer peripher 
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als 770. On-chip MMC/SD multimedia and flash interfaces 
are provided for off-chip MMC Flash card, SD flash card and 
SDIO peripherals 780. An on-chip selectable-mode HDQ or 
1-Wire (hardware protocols) battery monitoring serial inter 
face module is provided for monitoring the off-chip Battery. 
On-chip Clock and Reset management circuitry 790 is con 
nected to off-chip 12 MHZ and 32 KHZ crystals and to a reset 
pushbutton switch 795. 

In FIG. 2G, a WLAN integrated circuit 800 includes MAC 
(media access controller) 810, PHY (physical layer) 820 and 
AFE (analog front end) 830. PHY 820 includes blocks for 
BARKER coding, CCK, and OFDM PHY 820 receives PHY 
Clocks from a clock generation block supplied with suitable 
off-chip host clock, such as at 13, 16.8, 19.2, 26, or 38.4 MHz. 
These clocks are often found in cell phone systems and the 
host application is suitably a cell phone or any other end 
application. 
AFE 830 is coupled by receive (RX), transmit (Tx) and 

CONTROL lines to an off-chip WLAN RF circuitry 840. 
WLAN RF 840 includes a 2.4 GHz (and/or 5 GHz) direct 
conversion transceiver and power amplifier and has low noise 
amplifier LNA in the receive path. Bandpass filtering couples 
WLAN RF 840 to a WLAN antenna. 

In MAC 810, Security circuitry 850 supports any one or 
more of various encryption/decryption processes such as 
WEP (Wired Equivalent Privacy), RC4, TKIP, CKIP, WPA, 
AES (advanced encryption standard), 802.11i and others. 
Note that the RC4 and TKIP and other processes are shuffle 
based processes. RC4 has been an early encryption/decryp 
tion process in WLAN technology. It is expected that that the 
installed base of WLAN modems will become a mix of earlier 
and later-provided encryption/decryption processes in the 
industry and among users. Accordingly, it will be expected for 
a long time for a WLAN modem to include the early encryp 
tion process(es) even as and after such later encryption/de 
cryption processes are introduced. 
The security circuitry and processes depicted in FIGS. 3, 4, 

5, 6, 9, 10, 11 and 12 are suitably situated in security block 
850 of FIG. 2G, security block 650 of FIG. 2E, security 
accelerators 240, ENC block in 260, and cryptographic area 
250 of FIG. 2A, and generally in either or both of encryption/ 
decryption blocks 114 and 118 of FIG. located in any of the 
handset 110, 110', cellular base station 140, WLAN AP 160, 
PC/Laptop 170, and WLAN gateway 180 and wherever the 
advantages of the security circuitry and processes in FIGS. 3, 
4, 5, 6, 9, 10, 11 and 12 commend their use. 

Further in FIG. 2G, embedded CPU (central processing 
unit) 860 is connected to internal RAM and coupled to pro 
vide QoS (Quality of Service) IEEE 802.11e operations 
WME, WSM, and PCF (packet control function). Security 
block 850 in FIGS. 2G and 900 of FIG.3 has busing for data 
in, data out, and controls interconnected with CPU 860. Inter 
face hardware 870 and internal RAM on-chip couples CPU 
860 with (see FIG. 2E) interface 610 of applications proces 
sor integrated circuit 600 of FIG. 2E. 

Without limiting the generality of application of the vari 
ous inventive embodiments, some examples are next 
described specifically in connection with their advantages in 
relation to hardware acceleration for the RC4 process in WEP 
encryption/decryption methods and implementations. 
Some embodiments provide a faster throughput implemen 

tation, are less gate and memory intensive, and are more gate 
efficient and more memory efficient in their implementation 
of WEP (RC4) and other encryption and decryption and infor 
mation processing methods. Some of these embodiments use 
fractional-size dual and multiple memory banks and adopt a 
look-ahead method mechanism for high performance and 
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10 
acceleration. Other embodiments use full size memory with 
multiple read/write ports. Some of the embodiments have a 
dirty-bit scheme for substantially reducing the setup time of 
the process. Still other features and advantages are evident 
from the description herein. 
Many encryption/decryption core algorithms, such as 

RC4, can utilize a shuffling or Swapping algorithm in them. 
Moreover, each of the core algorithms can be used in various 
more extensive algorithms, just as RC4 is used in WPA (WEP 
and TKIP together) for instance. 
Where the term “encryption' is used by itself, it should be 

understood that either or both of encryption and decryption 
are intended as example applications. The term “encryption” 
shall include "ciphering and “enciphering, and the term 
“decryption' shall include “deciphering herein. “Storage' 
refers to memory, registers, media, and any other device, 
circuit, or element that holds information, and combinations 
of any of the foregoing forms of storage. 
RC4 Algorithm. The first step is to initialize the 256 byte 

Sbox (SIO to SL255 each being 8bits) array and the 256 byte 
key array (KIO to K255 each being 8 bits). Separate key 
memory is not needed and local memory is suitably used to 
store the key. 
STEP 1: Initialization consists of two steps 
(a) Sbox Initialization 
Initializej to 0 
for i=0 to 255 
Si=i 
(b) Sbox Shuffling 
for i=0 to 255 
j=(+Si+Ki) mod 256 (The symbols “” and ' ' 

represent this formula only for purposes of shuffling section 
description.) 
Read SI 
Swap Si and S (i.e. holding byte=S), S=Si and 

Si-holding byte. Sk is a location in the memory at an 
address k outside of Sbox which is used for the holding byte; 
otherwise a register is used.) 

Note: Ki is formed and found from the WEP key array. 
The key array is made up of repeated iterations of the IV 
(initialization vector for the key) and the WEP key. WEP key 
is variable length. Once complete, initialize i and j to 0. The 
IV is 3 bytes (and for WPA, i.e., WEP and TKIP together, it is 
6 bytes). The WEP key is variable length and is stored in local 
memory. 
STEP 2: Encryption/Decryption 

Initialize indices i and back to 0. 
To encrypt/decrypt a random byte, perform the following: 

i=(i+1) mod 256 
j=(+Si) mod 256: (The symbols o” and are 

same symbols as noted in STEP 1 above but note differ 
ent meaning here. Each of 'and', 'represent this 
distinct formula but only for purposes of the encryption/ 
decryption section description.) 

swap Si and S 
t=(Si)+S) mod 256; (The symbols “t, and “t, each 

represent this formula for purposes of the encryption/ 
decryption section below) 

Key=SIt 
Data Out-Data In XOR Key 
Dirty bit Approach: A dirty bit approach eliminates the 

Sbox initialization step (Step 1(a)) of the initialization phase 
of the algorithm. Conventionally, in the Sbox initialization 
step the i' Sbox data byte at address location i of the Sbox 
array is written with the data value i itself (i.e. SO=0, S1=1, 
S|255)=255). 
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By contrast, in the dirty bit enhanced embodiment 
described next (and hereinbelow at FIGS. 9 and 11), each 
Sbox location has associated with it an additional dirty bit 
which is independently set and reset as described. 

Thus, in effect, each Sbox location is simply assigned a 
dirty bit status instead of undergoing conventional 0 through 
255 initialization. The time consuming steps of initializing 
the Sbox array entries are omitted, and do not occur at all in 
this embodiment. Initially the dirty bits corresponding to all 
the Sbox values (SIO to S255) are reset to zero. Advanta 
geously, the dirty bit cells are simultaneously reset upon 
initialization by one reset signal in one clock cycle. 

Then, as operations continue, whenevera Sbox location is 
written to, its corresponding dirty bit is set. Setting the dirty 
bit indicates that whatever is the value of Sbox in that par 
ticular location is a valid value. That is, the value in that Sbox 
byte is the actual bit contents in that Sbox byte, which are 
physically read as needed to determine what those contents 
are. Whenever any Sbox location is to be read, its correspond 
ing dirty bit status is checked. If the dirty bit is set, then 
whatever value is in the corresponding byte in the Sbox array 
is a valid Sbox value and is read as needed to retrieve that valid 
value. 

Otherwise, when the dirty bit status check shows the dirty 
bit is not set, the read value in this embodiment is understood 
to be the location number, or byte address, itself (i.e. Sii) of 
the Sbox location or byte in question. Since that byte address 
is already asserted to access the dirty bit, that address is 
conveyed onto data output lines of the Sbox memory or asso 
ciated circuitry when the dirty bit is indeed not set, thereby to 
represent the understood read value. Put another way, if the 
dirty bit is not set, that particular Sbox byte has never been 
written to, hence that byte is regarded as if it retains the value 
Sii, regardless of the actual bit contents in that Sbox 

byte. Implementing this scheme eliminates any requirement 
of a multi-cycle Sbox initialization step. 
The Sbox array can be implemented in hardware, in a 

memory, or in registers. Memory implementation is a gate 
efficient way to implement the Sbox space as compared to a 
register implementation. The tradeoff is large Sbox initializa 
tion time (one memory access cycle to initialize one memory 
location). Advantageously, the dirty bit approach completely 
eliminates this series of initialization steps in implementa 
tion. 
Two 2-Port Half-Memories with Double-Byte Throughput 
Look ahead mechanism: In a memory-based implementa 

tion for each single byte of processing of Sbox every iteration 
of Sbox setup shuffling step (Step 1(b)) involves two Sbox 
reads and writes (at locations Si and SI). Also encryption/ 
decryption of each single byte of data involves three Sbox 
reads (at Si, Si and St) and two Sbox writes (at Si and 
SI). A single dual port memory approach might do a single 
read and single write from and to the memory through the 
dedicated read and write ports. Thus, the Sbox shuffling step 
might take two clock cycles or more periteration per single 
byte of yield (for 256 iterations). Encryption/decryption of a 
byte of data might take three clock cycles or more periteration 
per single byte of yield. In both setup and encryption, only a 
single byte would have been obtained from the iteration even 
though a dual port memory were used. 

In a disclosed embodiment herein having two dual-port 
half-size memory banks, a lookahead mechanism processes 
two Sbox setup shuffle iterations at a time and encrypts/ 
decrypts two bytes of data likewise by adopting a lookahead 
mechanism. The lookahead mechanism remarkably uses just 
the same total memory space for the Sbox as would have been 
conventionally needed to process just one byte of data. Where 
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12 
larger memory banks are used, they suitably have their extra 
space (no longer needed for Sbox) used for other applications 
and features. 

In other words, execute circuitry operates to execute at 
least part of an encryption process involving a set of data 
having a predetermined size or numerousness N (e.g., 
N=256). The circuitry is arranged to update at least first and 
second data (not just a single byte at a time) concurrently in 
the set in a series of overlapping uniform or variable length 
iterations followed by Subsequent overlapping iterations in 
the series. The circuitry processes the data in at least first and 
second threads concurrently in the set in the series of over 
lapping uniform or variable-length iterations. In one of the 
iterations at least one of the second data depends on the 
uncompleted processing of the first data. 
An assemblage of memory elements is coupled to the 

execute circuitry, and the assemblage of memory elements 
has one, two, or more read ports and one, two, or more write 
ports operable for concurrent read and write. The number of 
memory elements used, even though the number used is 
bounded in numerousness by the number N, is sufficient to be 
utilized by the execute circuitry for updating the set of data for 
a Subsequent iteration in the series. The assemblage of 
memory elements is arranged in Some embodiments into at 
least two memory units segregating the set of data. The pre 
determined size N comprehends the total number of 
addresses occupied by the set of data utilized in operation of 
the execute circuitry in the memory units combined. 

Note that the higher byte addresses (e.g., j, and t ) and 
values (e.g., S1, St1) depend on the results of the lower byte 
calculations (e.g., ji=0, S0 and swapped-in S0). However, 
even though dependencies exist, the remarkable processing 
obtains the lower-byte results just in time in the multiple-byte 
iteration and handles them so that the results obtained for 
higher-byte processing are the correct ones because the 
dependencies are resolved just in time beforehand. The lower 
address operations actually affect two locations of the Sbox 
space-specifically the j(i+0) and the i+0 location of the lower 
address byte (in the two byte case). When computing the next 
byte (i+1) of operation, if the access to the memories that are 
required are not the ones being modified by the lower address 
operation (i.e., j(i+0) and i--0)), then the fetched result from 
the memory can be used as such. However, if the access 
required to the memory for the higher address is to a location 
modified by the lower address operation, then instead ofusing 
the fetched result from the memory, the hardware and method 
advantageously use the modified value directly. This is 
accomplished by one or more multiplexers that selects which 
value of the Sbox is to be selected in response to the select 
signal and the dirty bit. This extra logic is accommodated 
within one cycle of operation and contributes to the dramati 
cally improved performance. 

Put another way, a method of processing of two or more 
bytes of data here can have the steps respective to the two or 
more bytes overlap in time whereby overall execution time is 
dramatically reduced. Below is further description how to go 
about it. 
SHUFFLING PROCESS 1 (b): Consider two memory 

banks to store the Sbox array (MO and M1) having Sbox data 
alternately in order, i.e. MOO=SIO, MOL1=S2). . . . 
MO127=S254 and M10=S1, M11=S3, . . . 
M1127=S255). Periteration of Sbox shuffle the following 
steps need to be performed (for i=0 to 255). 
Read Si 
Calculatej (+Si+Ki)mod 256 
Read SI 
Swap Si with Si 
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Having two half-size memory banks to store Sbox alter 
nately allows for reading from both the banks simultaneously. 
Consider the first iteration of Sbox shuffling (i=0). Instead of 
reading just SOI for the first shuffle Sbox iteration, S1 is 
also read from the memory bank M1 to do a look ahead for 
Sbox shuffling. 

Depending on the value of KIO, can have an even or an 
odd value (corresponding to MO or M1 banks respectively). 
The following four tables (case (a) through case (d)) represent 
all possible combinations of is and j's lying in memory 
banks MO and M1. Each table represents one Sbox Shuffle 
iteration. 

Terminology Followed: 
First Row of each table: Represents Read (R) and Write (W) 

for respective columns 
Second Row of each table: Represents the memory bank MO 

or M1 operated on 
All but the first two rows of each table: operations done in the 
memory banks. Each row corresponds to one clock cycle in 
ascending order from top to down. i.e. Third row indicates 
the operations done in the first clock cycle of the iteration 
and so on. 

First Column of each table: Read from Memory bank M. 
Second Column of each table: Write to Memory bank Mo 
Third Column of each table: Read from Memory bank M. 
Fourth Column of each table: Write to Memory bank M. 
S: SO Sbox memory access at location i=0 
S: S1 Sbox memory access at location i=1 
So: Si, ol Sbox memory access at locationjo 
S.: Si, Sbox memory access at location j, 
S: S2 Sbox memory access at location i=2 
S: S3 Sbox memory access at location i=3 

Case (1): Both j, andj, even, i.e. both address even address 
memory Mo 

Case (2): j, o even and j, q odd, i.e.j, o addresses Mo and j, 
addresses odd address memory M. 

Case (3): j, o odd and j, even, i.e.j, o addresses M and j, 
addresses Mo 

Case (4): Both and odd, i.e. both address odd address 
memory M. 
Note: The above four values are at the beginning of the 

iteration 

TABLE 

Case (1 

R W R W 
Mo Mo M M 

1 So S 
2 So So 
3 S1 S 
4 S2 So S. S1 

TABLE 

Case (2 

R W R W 
Mo Mo M M 

1 So S 
2 So So S1 S 
3 S2 So S. S1 
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14 
TABLE 

Case (3 

R W R W 

Mo Mo M M 

1 So S 
2 S1 S So So 
3 S2 So S. S1 

TABLE 

R W R W 
Mo Mo M M 

1 So S. 
2 So So 
3 S1 S 
4 S2 So S. S1 

In the first row (clock cycle) of all four TABLES for Cases 
(1), (2), (3), (4), respective reading operations So and S 
simultaneously read the contents of Sbox byte Si for address 
i=0 out of even memory Mo and read the contents of Sbox 
byte Si for i=1 out of odd memory M. 
Now assume both ofj, and j, are even (use TABLE for 

Case (1)). The next step (second row clock cycle) in one clock 
cycle generates address join fast address generation logic 
and then reads and transfers to a holding register the contents 
of Sbox byte So from jo location of even address memory 
Mo since address jo is an even number in Case (1). The 
shuffle swap for i=0 is thereby begun. This operation is sym 
bolized by the entry So in second row, first column. In the 
same clock cycle (second row, second column), the read value 
So of Si for i=0 read in the first row is written to locationjo. 
Since address jo is an even number in Case (1), the write 
operation of value So is asserted to even memory M. Now the 
shuffle swap of value So is complete. 

In the third row (clock cycle) of Case (1), note that since the 
calculated address j lies in or points to the same memory 
Mo as did addressi, o, the Sbox byte S, is not read in the same 
clock cycle as the read of So of row 2. In Case (1) it is the third 
cycle wherein Sbox byte S, is read from even memory Mo 
and byte S is written to it. 

This third step (third row clock cycle) in one clock cycle 
generates address j in fast address generation logic and 
then reads to a holding register the contents of Sbox byte S, 
from location of even address memory Mo since address 
j, is an even number in Case (1). The shuffle swap for i=1 is 
thereby begun. This operation is symbolized by the entry S. 
in third row, first column. In the same clock cycle (third row, 
second column), the read value S of Si for i=1 read in the 
first row is written to locationi . Since address, is an even 
number in Case (1), the write operation of value S is asserted 
to even memory M. Now the shuffle swap of value S is 
complete. 

In the fourth row (clock cycle) the next iteration of Sbox 
shuffling for byte pair S and S is started, analogous to the 
first row above. Also, in this fourth clock cycle, writing of So 
and S. respectively completes their pending shuffle Swaps to 
locations i=0 and i=1 in the respective even and odd memories 
Mo and M simultaneously. 
The process of Case (1) continues by repeating the opera 

tions of row triplets 2, 3, 4, 2, 3, 4, etc. where the indices i in 
each row triplet are incremented by 2 with every repetition. 
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Thus, 256 values of index i are processed in 385 clock cycles 
(4 cycles for i=0, 1 plus 3 cycles times the 127 remaining pairs 
of successive index i values.) On the very last 257' clock 
cycle of Case (1), the byte entries in second and fourth col 
umns are as shown for row 4 in the table, but the new-byte 
entries in first and third columns are omitted. 
The TABLES for Case (2) and Case (3) are similar to the 

TABLE for Case (1) and differ wherein the operations in 

16 
Terminology followed: 
Following tables depicts the memory accesses (first and 

second column representing read and write accesses to 
memory bank Zero Mo respectively and the third and fourth to 
memory bank M.) in all the possible cases. Each row repre 
sents clock cycles (from top to bottom) and each box contains 
the particular memory access done in the corresponding clock 
cycle on the particular port (read/write). 

clock cycle row 3 of Case (1) are able to be moved into the Sod-Sbox memory access at location i=0 - - - ith thread 
unused columns of clock cycle row 2. Here addresses, and 10 So->Sbox memory access at locationjo - - - ith thread 
j, lie in different memory banks Mo and M (Case (2) and So->Sbox memory access at location to - - - ith thread 
Case (3)), and the readings of So and S. are done in the same S>Sbox memory access at location i=1 - - - (i+1)th 
cycle 2 as demonstrated in each Table for Case (2) and (3). thread 
Also, the writing of So and S are also done in the same cycle is S>Sbox memory access at location j, - - - (i+1)th 
2 as shown in each Table for Case (2) and (3). thread 

Advantageously further increased efficiency of memory S>Sbox memory access at location t, - - - (i+1)th 
use occurs because both even memory and odd memory Mo thread 
and Mare simultaneously used in clock cycle row 2 aS shown S>Sbox memory access at location i 2- - - next iteration 
in the TABLES for Case (2) and Case (3). This result is 20 S>>Sb - - - 3. OX memory access at location i3 - - - next iteration conferred by the condition of Cases (2) and (3) that j, and Case (1): Bothjo and even, i.e. both address even address j, are complementary in their even- and odd-ness. The memory M 
TABLE for Case (2) differs from the TABLE of Case (3) in ry O 
having the memory Mo columns reversed with the memory Case (2): j, even and j, odd, i.e. j, o addresses Mo and j, 
M columns, reflecting the reversal of designated memories 25 addresses odd address memory M. 
into which the accesses occur. Case (3): j, o odd and j, even, i.e. j, o addresses M and j, 
The TABLE for Case (4) is similar to the TABLE for Case addresses Mo 

(1) and differs wherein the roles of the even memory and odd Case (4): Both j, and j, odd, i.e. both address odd address 
memory Mo and M are reversed so that most accesses lie in memory M. 
odd memory M because of the condition that both j, o and 30 SubCase (a): Both to and t, even, i.e. both address even 
ji=1 are odd. address memory Mo 
h it be emphasized that eachwhile t SubCase (b): to even and t, odd, 
as the operations pertaining to that successive 1teration of a i.e. t. ddr M d t. dd dd add 

particular Case out of the four (4) Shuffle Cases. Furthermore, meiory M. esses Mo and l, addresses odd address 
when the iteration is begun, the identity of the particular Case 35 SubC 1. dd and dd M, and 
is not necessarily known, and operations remarkably “learn l E. N and t, even, 1.e. to addresses Man 
as the operations proceed which Case the operations are in so t, addresses Mo 
that the operations proceed further to complete the iteration in subs (d): Both to and t, odd, i.e. both address odd 
a manner appropriate to that Case. address memory M. 
ENCRYPTION/DECRYPTION PROCESS 2: Similar 40 Case (1): Bothj andj, even, i.e. both address even address 

lookahead is applied to the step 2. i.e. Encryption/decryption memory Mo 

SubCase SubCase SubCase SubCase 
- (a) - - (b) - - - - - 

Mo Mo M M1 Mo Mo M M Mo Mo M M Mo Mo M1 M1 

So S So S So S So S 
So So So So So So So So 
S, S1 S, S1 S. S. So S. S. So 
So So So So S. S1 S. So S1 So S. S1 
S, S, S2 S. S2 S. S2 S. 
S2 S. 

55 
has two extra reads (So and S) from Sbox shuffling. The Case (2): j, o even and j, q odd, 
following tables depict all possible combinations of memory i.e. j. addresses M and j, addresses odd address 
bank access possible. memory M. 

SubCase SubCase SubCase SubCase 

- - - b- - - - - 

Mo Mo M M1 Mo Mo M M Mo Mo M M Mo Mo M1 M1 

So S So S So S So S 
So So S, S. So So Si Si So So Si Si So So Si S1 
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-continued 

SubCase SubCase SubCase SubCase 
- (a) - - (b) - - - - - 

Mo Mo M M Mo Mo M. M. Mo Mo M. M. Mo Mo M. M. 

So So So So S, S. S. So So S1 So So 
S, S, S2 S. S2 S. S, S1 
S2 S. S2 S3 

Case (3): j, o odd and j, even, i.e. j, o addresses M and 
j, addresses Mo 

here and execute another 256 iterations repeatedly during 
encryption of an outgoing information stream. In clock 

SubCase SubCase SubCase SubCase 
- (a) - - (b) - - - - d - 

Mo Mo M M Mo Mo M M1 Mo Mo M M Mo Mo M1 M1 

So S. So S So S So S1 
Si Si So So S, S. So So S, S1 So So S, S1 So So 
So So So So S, S. S. So So S1 So So 
S, S, S2 S. S2 S. S, S1 
S2 S. S2 S3 

25 

Case (4): Both jo 
address memory M. 

and j, odd, i.e. both address odd cycles, the iterations are either three (3), four (4), or five (5) 
clock cycles in duration depending on which possibility is 

SubCase SubCase SubCase SubCase 
- (a) - - (b) - - - - d - 

Mo Mo M M Mo Mo M M1 Mo Mo M M Mo Mo M1 M1 

So S So S So S So S 
So So So So So So So So 

So So S, S. So So Si S1 S, S1 So So 
S1 S1 S, S1 S. So So S1 S, S1 
S2 S. S2 S. S2 S. S, S1 

S2 S3 

In the encryption/decryption process, sixteen tables 
(4x4=16) are shown arising from four Cases 1,2,3,4 wherein 
possible pairs of addresses (, ) j, ) are even,even; even, 
odd; odd,even; odd.odd corresponding to the subscripts of So 
and S. Further, there are for each Case four SubCases (a), 
(b),(c),(d) wherein possible pairs of addresses (t , t ) are 
independently even,even; even.odd; odd,even; odd.odd cor 
responding to the subscripts of So and S. Tables for each 
case are shown in four groups (Cases 1,2,3,4) of four tables 
(SubCases (a),(b),(c),(d)). The tables have been cosmetically 
reduced in size by omitting the clock cycle left-hand column 
and the RWRW headings, all these being understood. The 
memory designations MoMMM remain. Each Table rep 
resents one full iteration of a pair of respective threads for 
Sbox addresses i, i-1. 

In all sixteen possibilities, the first row (clock cycle) of all 
TABLES for SubCases (a), (b), (c), (d), shows respective 
reading operations So and S simultaneously read the contents 
of Sbox byte Si for address i=0 out of even memory Mo and 
read the contents of Sbox byte Si for i=1 out of odd memory 
M. In all sixteentables, the next iteration increments both the 
addresses i and i-1 by two (2) in all the rows. 
The operations are executed through each iteration in an 

inner loop, whence they successively advance to each next 
iteration over 256 iterations in all, whereupon operations loop 
back by an outer loop to i=0, i-1=1 as explicitly tabulated 
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tabulated. For conciseness, one Case/SubCase example of 
each these 3-, 4-, and 5-cycle iterations is respectively 
described in detail below. Other Case/SubCases are then left 
to the reader whereby an understanding of the description of 
those other Case/SubCases follows straightforwardly 
because of symmetries in the tables. 

Let it be emphasized that each Successive iteration has the 
operations pertaining to that Successive iteration of a particu 
lar Case/SubCase out of the sixteen (16) Case/SubCases. 
Furthermore, when the iteration is begun, the identity of the 
particular Case/SubCase is not necessarily known, and opera 
tions remarkably “learn' as the operations proceed which 
Case/SubCase the operations are in so that the operations 
proceed further to complete the iteration in a manner appro 
priate to that Case/Subcase. Various embodiments make up to 
the maximum number of simultaneous reads that a memory 
Mo or memory M. permits, and make up to the maximum 
number of simultaneous writes that a memory Mo or memory 
M permits. For the present embodiment having two 2-port 
memories each of 128 bytes, the maximum number of simul 
taneous read that a memory Mo or memory M. permits is 
exactly one each, and the maximum number writes that a 
memory Mo or memory M. permits is also exactly one each. 
In other two 2-port memory embodiments, constraints 
observed may vary. 
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Furthermore, in this two 2-port memory embodiment, a 
result of computation is written at least one clock cycle later 
than the last read of an operand from memory Mo or memory 
M on which the computation depended. In other embodi 
ments, having appropriate fast logic and memory hardware, 
the read is performed in the first half of a clock cycle and the 
write is accomplished as soon as the second half of the same 
cycle. 

In general, the particular process operations tabulated are 
sufficient to execute a given Case/SubCase successfully, but 
those particular operations may have alternative timings (row 
positions) in different embodiments of the same memory 
type, and also be sufficient to execute the given Case/SubCase 
Successfully. 

Also, note that another similar set of operations may be 
executing concurrently with and independently of the encryp 
tion operations, wherein the similar operations pertain an 
incoming information stream and are timed in a manner 
related to the timing of the incoming data stream during 
decryption of that incoming information stream. However, 
for conciseness of description, the description of the opera 
tions here is detailed for either encryption or decryption, it 
being understood that the complementary decryption or 
encryption operations may be executing concurrently and 
independently. 

For any given Case number 1-4, the operations in the first 
two clock cycles are identical in all four TABLES for Sub 
Cases (a), (b), (c), (d) of that Case number. In all sixteen 
possibilities, the first two clock cycles operations of Cases 
1,2,3,4 for Encryption/Decryption respectively match those 
of Shuffle Cases (1), (2), (3), (4) described earlier above. 
Five Clock Cycle Iteration 
One example of a 5-cycle iteration is Case 1. SubCase (a) 

(use TABLE for Case 1, SubCase (a)). There, both ofjo and 
j, are even and both oft, and t, are even. Another 5-cycle 
Case/SubCase is 4(d) for a total of two (2) five cycle Case/ 
SubCases. 

In Case 1, SubCase (a), the first step (first row) reads bytes 
So and S from respective addresses i=0 and i=1. The next step 
(second row clock cycle) in one clock cycle generates address 
join fast address generation logic and then reads and trans 
fers to a holding register the contents of Sbox byte So from 
jo location of even address memory Mo since addressio is 
an even number in Case (1). The encryption swap for i=0 is 
thereby begun. This operation is symbolized by the entry So 
in second row, first column. In the same clock cycle (second 
row, second column), the read value So of Si for i=0 read in 
the first row is written to location jo. Since addressio is an 
even number in Case (1), the write operation of value So is 
asserted to even memory M. Now the swap of value So with 
So is half complete. 

In the third row (third clock cycle) of Case 1, SubCase (a), 
note that since the calculated address, lies in or points to 
the same memory Mo as did addressi, o, the Sbox byte S, is 
not read in the same clock cycle as the read of So of row 2. In 
Case 1 it is the third cycle wherein Sbox byte S, is read from 
even memory M. Also in that third cycle, byte S is written to 
it. 

Even more specifically, this third step (third row clock 
cycle) in one clock cycle generates address, in fast address 
generation logic and then reads and transfers to a holding 
register the contents of Sbox byte S, from the byte location 
having address, in even address memory Mo since address 
j, is an even number in Case 1. The swap for i=1 is thereby 
begun. This operation is symbolized by the entry S. in third 
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row, first column. In the same clock cycle (third row, second 
column), the read value S of Si for i=1 read in the first row 
is written to the byte location having address j . Since 
address, is an even number in Case 1, the write operation 
of value S is asserted to even memory M. Now the swap of 
value S, with S is half complete. 

Operations of the fourth row (fourth clock cycle)) generate 
address to in fast address generation logic and then reads and 
transfers to a key holding register for i=0 the contents of Sbox 
byte So from the byte location having address to in even 
address memory Mo since address to is an even number in 
SubCase (a). Also, in this fourth clock cycle, writing So 
completes its pending Swap to location i=0 in the even 
memory M. 

Operations in the fifth row (fifth clock cycle)) in one clock 
cycle generate addresst, in fast address generation logic and 
then reads and transfers to a key holding register for i=1 the 
contents of Sbox byte S from the byte location having 
address t, in even address memory Mo since address t, is 
an even number in SubCase (a). Also, in this fifth clock cycle, 
writing of S, respectively completes its pending Swap to 
location i=1 in the odd memory M. The iteration is com 
pleted. 

In the sixth row (sixth clock cycle) the next iteration of 
encryption for byte pair S and S is started, analogous to the 
first row above. 
Four Clock Cycle Iteration 
One example of a 4-cycle iteration is in Case 2. SubCase 

(d) (use TABLE for Case 1, SubCase (a)). There, address jo 
is even and address j is odd and both of to and t, are odd. 
The 4-cycle Case/SubCases are 1(b), 1 (c), 1 (d), 2Ga), 2Gd), 
3(a), 3(d), 4(a), 4(b), and 4(c) for a total often (10) four cycle 
Case/SubCases. 

In the TABLE for Case 2, SubCase (d), the first step (first 
row) reads bytes So and S from respective addresses i=0 and 
i=1. The next step (second row clock cycle) in one clock cycle 
generates address j in fast address generation logic and 
then reads and transfers to a holding register the contents of 
Sbox byte So from jo location of even address memory Mo 
since addressio is an even number in Case (2). The encryp 
tion swap for i=0 is thereby begun. This operation is symbol 
ized by the entry So in second row, first column. In the same 
clock cycle (second row, second column), the read value So of 
Si for i=0 read in the first row is written to location jo. 
Since address j, o is an even number in Case (2), the write 
operation of value So is asserted to even memory M. Now the 
swap of value So with So is half complete. 

In the same second row (second clock cycle) of Case 2, 
SubCase (d), note that since the calculated address, lies in 
or points to a different memory M than did address jo, the 
Sbox byte S, can be and is now read in the same second clock 
cycle as the read of So of row 2. Also in that same second 
cycle, byte S is written to the odd memory M. 

Even more specifically, this second step (second row clock 
cycle) in one clock cycle generates address, in fast address 
generation logic and then reads and transfers to another hold 
ing register the contents of Sbox byte S, from the byte loca 
tion having address in odd address memory M. since 
address j is an odd number in Case 2. The Swap for i=1 is 
thereby begun. This operation is symbolized by the entry S. 
in second row, third column in TABLE 20d). In the same 
second clock cycle (second row, fourth column), the read 
value S of Si for address i=1 read in the first row is written 
to the byte location having address. Since address is an 
odd number in Case 2, the write operation of value S is 
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asserted to odd memory M. Now the swap of value S with 
S is half complete. 

Operations of the third row (third clock cycle) generate 
address to in fast address generation logic and then read and 
transfer to a key holding register for i=0 the contents of Sbox 
byte So from the byte location having address to in odd 
address memory M. since address to is an odd number in 
SubCase (d). Also, in this third clock cycle, writing ofbyte So 
completes its pending Swap to location i=0 in the even 
memory Mo. 

Operations in the fourth row (fourth clock cycle) in one 
clock cycle generate address t, in fast address generation 
logic and then read and transfer to a key holding register for 
i=1 the contents of Sbox byte S from the byte location 
having address t, in odd address memory M. since address 
t, is an odd number in SubCase (d). Also, in this fourth clock 
cycle, writing of S, respectively completes its pending Swap 
to location i=1 in the odd memory M. The iteration is com 
pleted. 

In the fifth row (fifth clock cycle) the next iteration of 
encryption for byte pair S and S is started, analogous to the 
first row above. 
Three Clock Cycle Iteration 
One example of a 3-cycle iteration is in Case 3, SubCase (c) 

(use TABLE for Case 3, SubCase (c)). There, addressi, o is 
odd and address j is even. Address to is odd and address 
t, is even. The 3-cycle Case/SubCases are 2(b), 20c), 3(b), 
and 3(c) for a total of four (4) three cycle Case/SubCases. 

In the TABLE for Case 3, SubCase (c), the first step (first 
row) reads bytes So and S from respective addresses i=0 and 
i=1. The next step (second row clock cycle) in one clock cycle 
generates address join fast address generation logic and 
then reads and transfers to a holding register the contents of 
Sbox byte So from jo location of odd address memory M. 
since address j is an odd number in Case (3). The encryp 
tion swap for i=0 is thereby begun. This operation is symbol 
ized by the entry So in second row, third column. In the same 
clock cycle (second row, fourth column), the read value So of 
Sil for i=0 read in the first row is written to location jo. 
Since address jo is an odd number in Case (3), the write 
operation of value So is asserted to odd memory M. Now the 
swap of value So with So is half complete. 

In the same second row (second clock cycle) of Case 3, 
SubCase (c), note that since the calculated even address, 
lies in orpoints to a different memory Mothan did oddaddress 
j, o, the Sbox byte S, can be and is now read in the same 
second clock cycle as the read of So of row 2. Also in that 
same second cycle, byte S is written to the even memory Mo. 
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location having address, in even address memory Mo since 
address j is an even number in Case 3. The Swap for i=1 is 
thereby begun. This operation is symbolized by the entry S. 
in second row, first column in TABLE 3(c). In the same 
second clock cycle (second row, second column), the read 
value S of Si for address i=1 read in the first row is written 
to the byte location having address. Since address is an 
even number in Case 3, the write operation of value S is 
asserted to even memory M. Now the swap of value S with 
S is half complete. 

Operations of the third row (third clock cycle) generate 
address to in fast address generation logic and then read and 
transfer to a key holding register for i=0 the contents of Sbox 
byte So from the byte location having address to in even 
address memory Mo since address to is an even number in 
SubCase (c). Also, in this third clock cycle, writing of byte So 
completes its pending Swap to location i=0 in the even 
memory Mo. 

Operations in the same third row (third clock cycle) in one 
clock cycle generate address t, in fast address generation 
logic and then read and transfer to a key holding register for 
i=1 the contents of Sbox byte S from the byte location 
having address t, in even address memory Mo (third row, 
first column) since address tit= is an even number in SubCase 
(c). Also, in this third clock cycle, writing of S (third row, 
fourth column) respectively completes its pending Swap to 
location i=1 in the odd memory M. The iteration is com 
pleted. 

In the fourth row (fourth clock cycle) the next iteration of 
encryption for byte pair S and S is started, analogous to the 
first row above. 
Two 2-Port Half-Memories, Double-Byte Throughput with 
High Regularity Process Tables for Fewer Gates 

In general, as earlier pointed out, the particular process 
operations tabulated are sufficient to execute a given Case/ 
SubCase Successfully, but those particular operations may 
have alternative timings (row positions) in different embodi 
ments of the same memory type, and also be sufficient to 
execute the given Case/SubCase Successfully. Also, the num 
ber of gates and hence chip area used for the circuitry to 
implement the process operations may vary. It is believed 
that, without any reduction in throughput, the process repre 
sented by the tables hereinbelow advantageously uses even 
fewer gates and chip area to implement them than is the case 
with the process tables example hereinabove. Throughput is 
not reduced because each Case/Subcase has the same number 
of cycles periteration in the tables hereinbelow as the corre 
sponding Case/Subcase in the tables example hereinabove. 

Even more specifically, this second step (second row clock Case (1): Both j, o and j, even, i.e. both address even 
cycle) in one clock cycle generates address, in fast address address memory Mo 

SubCase SubCase SubCase SubCase 
- (a) - - (b) - - - - d - 

Mo Mo M M1 Mo Mo M M Mo Mo M M Mo Mo M1 M1 

So S. So S So S So S 
So So So So So So So So 
S, S1 S, S1 S, S1 S. S. So 
So So S. S. So S. 
S, S2 So S3 S, S2 So S3 S, S2 So S3 Sl 
S2 So S3 Sl 

65 

generation logic and then reads and transfers to a another 
holding register the contents of Sbox byte S, from the byte 

Case (2): j, o even and j, odd, i.e. j, o addresses Mo and 
j, addresses odd address memory M. 
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SubCase SubCase SubCase SubCase 
- (a) - - (b) - - - - - 

Mo Mo M M Mo Mo M. M. Mo Mo M. M. Mo Mo M. M. 

So S So S So S So S 
So So S, S. So So Si S1 So So S, S1 So So S, S1 
So So S. S. So So 
S, S2 So S3 S, S2 So S3 Sl Sl 
S2 So S3 Sl S2 So S3 Sl 

Case (3): j, o odd and j, even, i.e. j, o addresses M and 
j, addresses Mo 

internal blocks and the external system. The encryption cir 
cuit 910 is coupled to a key circuit KEY 950. 

SubCase SubCase SubCase SubCase 
8. b C d 

Mo Mo M M Mo Mo M M1 Mo Mo M1 M1 Mo Mo M. M. 

So S So S So S So S 
Si Si So So S, S. So So S, S1 So So S, S1 So So 
So So S. S. So So 
S, S2 So S3 S, S2 So S3 Sl Sl 
S2 So S3 Sl S2 So S3 Sl 

Case (4): Both jo 
address memory M. 

and j, odd, i.e. both address odd An address bus vbusp addr31:0 conveys four respective 
addresses generated by encryption circuit 910 on byte-wide 

SubCase SubCase SubCase SubCase 
- (a) - - (b) - - - - - 

Mo Mo M M Mo Mo M M1 Mo Mo M M Mo Mo M1 M1 

So S So S So S So S 
So So So So So So So So 

So S, S1 S, S1 S, S1 S, S1 
S, So S. S. So So 
S2 So S3 S, S2 So S3 S, S2 So S3 Sl Sl 

S2 So S3 Sl 

In each of the tables just above, the swap completion writes 
of So and S, both occur in the row where the values S. and S. 
for the next iteration are both read. Notice these writes were 
advanced by at least one cycle earlier in the set of encryption/ 
decryption tables for cases 1(a) through 4(d) set forth earlier 
hereinabove. However, this is not a problem for the process in 
the tables just above, because advantageously the key-gen 
eration values So and S, both are generated before the next 
iteration, and the S-Box updating by Swap completion writes 
of So and S is just-in-time as the next iteration commences. 

Another example, in Case/Subcase 4(d) as illustrated, 
reverses the order of cycle rows 3 and 4 wherein the cycle that 
reads value S is reversed with the cycle that writes S and 
reads value S. Furthermore, other embodiments could have 
mixtures of various orderings of the various Swap completion 
writes and some of the reads among the sixteen Case/Sub 
Case tables. Thus, the illustrated tables show but two of many 
embodiments in the two dual-port half-memory double-byte 
throughput group. 

In FIG.3, an encryption block 900 includes an encryption 
circuit wep enc 910 interconnected with a memory 920 hav 
ing a first 128-byte two-port memory MO 930 and a second 
128-byte two-port memory M1940. Encryption circuit 910 is 
responsible for the top level functioning and interfacing of the 
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lines 932,936,942,946 to the corresponding Aaddress inputs 
of the read port of memory MO930, the write port of memory 
M0930, the read port of memory M1940, and the write port 
of memory M1940. Handshake control lines vbusp req (Re 
quest) and vbusp ready (Ready) are respectively connected 
to corresponding enable inputs of memory MO 930 and 
memory M1940. 
A data bus vbusp rdata 31:0 conveys as many as four 

concurrent respective S-Box data bytes read or written by 
encryption circuit 910 on byte-wide lines 931,935,941,945 
to or from the corresponding output of the read port of 
memory MO 930, the input (for S-Box data to be written) of 
the write port of memory MO 930, the output of the read port 
of memory M1940, and the input (for S-Box data to be 
written) of the write port of memory M1940. These inputs 
and outputs for S-Box data relative to memories MO and M1 
are not to be confused with the next paragraph description of 
distinct data buses data in and data out along which stream 
ing data passes in the encryption/decryption process. 

In FIG. 3, Key circuit 950 provides an 8 bit key length 
datum to encryption circuit 910. Key circuit 950 also provides 
a key on a 32-bit bus key addr to encryption circuit 910. 
Control lines CONTROLS Supply signals to start and reset 
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the encryption circuit 910. Unencrypted data bytes are suc 
cessively supplied to encryption circuit 910 on an 8-wide 
input data bus data in. Real time processing by encryption 
circuit 910 produces and outputs encrypted data bytes suc 
cessively supplied from encryption circuit 910 on an 8-wide 
output data bus data out. Where a symmetric encryption/ 
decryption process is used, as illustrated, the encryption cir 
cuit 910 is also operative for decryption when encrypted data 
bytes are successively supplied to circuit 910 on the 8-wide 
input data bus data in. Real time processing by circuit 910 
produces and outputs decrypted data bytes Successively Sup 
plied from circuit 910 on the 8-wide output data bus data out. 

Thus, as shown in FIG. 3, an integrated circuit is provided 
that includes first memory 930 having a first read port and 
lines 931 and a first write port and lines 935 for concurrent 
read and write. Memory 930 has memory locations for data 
accessible, by asserting respective addresses onlines 932 and 
936 to memory 930, through the first read port and the first 
write port. Second memory 940 has a second read port and 
lines 941 and a second write port and lines 945 for concurrent 
read R and write W. Memory 940 has memory locations for 
data accessible by asserting respective addresses onlines 942 
and 946 to the memory 940 through the second read port and 
the second write port. Address generation circuitry in block 
920 is respectively coupled by the address lines 932,936,942, 
946 to the first memory 930 and to the second memory 940. 
The address generation circuitry is operable sequentially for 
encryption to generate address bits representative of at least 
one odd address and at least one even address concurrently. 
First memory 930 is responsive only to the even addresses, 
and the second memory 940 is responsive only to the odd 
addresses. 

In FIG. 4, encryption circuit 910 has an encryption engine 
enc eng1010 coupled with a circuit enc keys 1020. Encryp 
tion engine 1010 is responsible for basic SBox setup and 
encryption functionality using a state-machine based look 
ahead approach and dirty bit circuitry. Enc keys circuit 1020 
is responsible for fetching keys for the engine 1010 and 
handshake appropriately with the engine 1010. 

Encryption engine 1010 includes two parallel state 
machines called a Primary State Machine 1100 of FIG.5 and 
a Secondary State Machine 1200 of FIG. 6 for implementing 
the process tables discussed herein. The Primary state 
machine contains the Sbox setup and the dirty bit circuitry. 
Primary State Machine is also responsible for performing the 
tasks that are common to Sbox STEP1 and the encryption 
STEP2. Secondary state machine is an incremental state 
machine over the primary state machine. Secondary State 
Machine gets triggered when the Sbox setup is done and 
works with Primary State Machine in tandem to perform the 
extra steps in the encryption process. 

Secondary state machine starts only after the primary state 
machine issues an SbOX done signal indicating to it that 
encryption phase has begun. After the Sbox done signal is 
issued, the Primary State Machine waits for the secondary 
state machine to complete the iteration step before it starts the 
computation for the next iteration. These state machines are 
described in further detail in connection with FIGS. 5 and 6. 

Encryption Engine signal interfaces to Circuit 910 of 
FIGS. 3 and 4 are tabulated here. 
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TABLE 

Encryption Engine Interface 

Signal Dir Description 

clk Clock 
rst in Asynchronous active low reset 
start stb Starts the operation of wep engine 
nxt key stb Valid input data indication available 

for encryption. 
data in 7:0 Input data to be encrypted 
next byte O Indicating the interfacing logic that 

engine is ready to intake more raw data 
finish stb Indicating end of the data stream. Stops 

the operation of WEP engine. (No more 
input data will be available. Engine is 
expected to continue holding out the last 
encrypted byte) 

key addr31:0 Address where wep key is present 
key length 7:0 Length in bytes of wep key 
data out 7:0 O Encrypted data 
done O Asserted when input data is encrypted 

(Can be on same cycle as data in is 
presented) 

tX rod ack I Acknowledge from external logic that the 
encrypted byte (data out) in the output 
bus is read 

Wep done O Indicating all the bytes inputted to the 
engine have been processed 

memory interface signals 

wbusp req O Request to memory 
wbusp addr31:0 O Memory address 
wbusp relata 31:0 I Read data from memory 
wbusp rready I Read ready 

Circuit 1020 generates Requests on line vbusp req, and 
has address generators to generate addresses on 4-byte 
address bus vbusp addr 31:0. Circuit 1020 sends data to 
write ports of memories 930 and 940 along two byte-wide 
portions of data bus vbusp ralata, and receives data from read 
ports of memories 930 and 940 along another two byte-wide 
portions of data bus vbusp raata. Circuit 1020 receives 
Ready acknowledgement from memory 920 on line 
vbusp ready. Circuit 1020 is coupled via a 2-byte-wide bus 
data key to encryption engine 1010 and thereby supplies 
Encryption engine 1010 data that has been read from memo 
ries 930 and 940. Encryption engine 1010 handshake-replies 
on a line key rdack (Key read acknowledge) back to circuit 
102O. 

Further in FIG. 4, during encryption a multiplexer MUX 
1030 feeds an enable or disable to encryption engine 1020 
depending on a selection signal SBdone (SBOX initialization 
complete) fed to the control input of the MUX 1030. When 
selection signal indicates SBOX initialization is complete, a 
key-valid signal from circuit 1020 is supplied via MUX 1030 
to encryption circuit 1010. Otherwise, when S-Box initializa 
tion is in progress but not complete or not in progress at all, 
MUX 1030 feeds a different control signal to encryption 
engine 1010. 

During either S-Box setup STEP 1 or encryption process 
ing by encryption engine 1010, a MUX 1040 is clocked 
alternately to receive first one output key-byte Sto or a second 
output key-byte St1 via a two-byte-wide bus 1042 from 
encryption engine 1010. The alternately-selected key-bytes 
are successively fed along the byte-wide output of MUX 1040 
to a first encryption Key FIFO (first-in, first-out) circuit KFF 
1050. 

In the meantime, data on data bus data in 7:0 is being fed 
to a second encryption data FIFO DFF 1060. The first and 
second encryption FIFOs KFF 1050 and DFF 1060 supply 
their respective byte-wide output Successively to eight paral 
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lel Exclusive-OR circuits symbolized collectively as XOR 
1072. This part of the encryption process produces encrypted/ 
decrypted byte-wide data at the 8-wide data bus data out. 

During the encryption cycles, second encryption FIFO 
DFF 1060 provides a handshake output nxt byte requesting 
next data byte from a data source (not shown). A handshake 
input tX rd ack provides a transmit read acknowledge per 
taining to the data on data bus data in to be encrypted/de 
crypted. When the encryption cycles are completed, a DONE 
signal is provided by an AND gate 1076 having low-active 
inputs coupled to the first and second encryption FIFOs KFF 
1050 and DFF 1060. 
The encryption engine enc eng 1010 and MUX 1040 

together form an example of execute circuitry herein, which 
has an output from MUX 1040. XOR 1072 is an example of 
a cryptological logic circuit. XOR 1072 is coupled by FIFO 
buffer KFF 1050 to the output of the execute circuitry. The 
execute circuitry is operable to Supply at least some of the set 
of SBox data from the memory elements of memories 930 and 
940 to the cryptological logic circuit. XOR 1072 has a first 
input coupled to the output of a second FIFObuffer DFF 1060 
for supplying a data stream from FIFO 1060 input data in 7: 
O to the first input of XOR 1072. The cryptological logic 
circuit (e.g. XOR 1072) is responsive to the data stream and to 
the series of iterations by the execute circuitry to supply the 
data stream cryptologically altered as an output at data out 
7:0. 
Further in FIG. 4, a control state machine circuit 1080 has 

three states and cycles through them in this order: IDLE, 
SBDONE (S-Box Done), and ENG ACT (Encryption 
Engine Active). When S-Box setup is initiated by external 
control signal Start Stb, operations in circuit 1080 transition 
from IDLE state to state SBDONE. When S-Box setup is 
completed, circuit 1080 transitions from SBDONE to 
ENG ACT. When encryption of the data is completed, circuit 
1080 transitions from ENG ACT to IDLE. If control signal 
Finish Stb goes active during the state ENG ACT, opera 
tions transition from ENG ACT to IDLE. 

Control state machine circuit 1080 supplies a first output 
SBDONE to the Selection control of MUX 1030 and a second 
output to an input of MUX 1030 to signal encryption engine 
1010 to perform the operations specific to encryption instead 
of the S-Box setup. Output SBDONE also goes to encryption 
keys circuit 1020 to signal it that key Ki is not needed in 
encryption iterations. These operations include preventing 
the two bytes of data key on the 2-byte-wide bus data key from 
being utilized directly in the computation of address j in the 
encryption STEP2, but explicitly utilizing the on-coming two 
bytes of data key on the 2-byte-wide bus data key in the S-Box 
setup STEP1 in the computation of address. In S-Box setup 
STEP1, however, the encryption circuit 1010 responds to 
MUX 1030 to inhibit operation of the Secondary State 
Machine of FIG. 6 so as not to produce output key-bytes St0 
and St1. The encryption circuit 1010 responds to MUX 1030 
to produce output key-bytes St0 and St1 only in encryption 
STEP2 by operation of the Secondary State Machine of FIG. 
6. 

Encryption engine Supplies a key done signal to Control 
State Machine circuit 1080. Key FIFO 1050 handshakes with 
Control state machine circuit 1080 by supplying a 3-wide 
Occupied (occ) signal representing when key FIFO 1050 has 
all latest 8 data bits loaded from MUX 1040. Then control 
state machine circuit 1080 Supplies an acknowledge signal 
kff valid write to key FIFO 1050. 
A clock source CLK is connected to clock the encryption 

engine 1010, the encryption keys circuit 1020, the first and 
second encryption FIFOs KFF 1050 and DFF 1060, and 
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control state machine 1080. A clock buffer 1090 couples 
clock CLK to the selection control input of MUX 1040 and to 
an input of control state machine 1080. An inhibit output of 
control state machine 1080 selectively controls the clocking 
selection input of MUX 1040. 
A low-active reset signal on line rst n is connected to and 

resets the encryption engine 1010, the encryption keys circuit 
1020, the first and second encryption FIFOs KFF 1050 and 
DFF 1060, and control state machine 1080. Reset also drives 
a low-active inhibit input of clock buffer 1090. 
A pair of 32-bit input busses wep enco gpi and 

wep enc1 gpi are connected to Encryption engine 1010. A 
pair of 8-bit output busses wep enco gpo and 
wep enc1 gpo are connected to and driven by Encryption 
engine 1010. These two pairs of busses pertain to built-in 
self-test (BIST) and need no further discussion herein for 
purposes of the embodiments. 
State Machines 

In FIG. 4, control state machine 1080 provides control 
signals to initiate the S-Box setup (RC4 STEP 1 herein 
above), and then provides control signals to initiate the 
encryption (RC4 STEP 2 hereinabove). 
Execution State Machines 
Two parallel state machines called the Primary State 

Machine 1100 and the Secondary State Machine 1200 are 
used to further implement the above embodiment. An exter 
nal agent on chip (e.g. embedded CPU 860 of FIG. 2G acti 
Vates start Stb) or in the system initiates or fires commence 
ment of the operations of the Primary State Machine 1100, 
which in turn initiates operation of the Secondary State 
Machine 1200. 

Secondary State Machine 1200 is an incremental state 
machine over the Primary State Machine 1100. Secondary 
State Machine 1200 gets triggered when the Sbox setup is 
done and works with Primary State Machine 1100 in tandem 
to perform the extra steps in the encryption process as com 
pared with the Sbox setup process. 

In FIG. 5, Primary State Machine 1100 contains the special 
Sbox setup implementing dirty bit scheme. This state 
machine is also responsible for performing the tasks that are 
common to the Sbox setup step and the encryption step. 
Encryption of bytes is then initiated when the Sbox setup is 
done and Sbox done signal has been generated. The dirty bit 
state is also part of the logic of encryption reads from memory 
920. When necessary, Primary State Machine 1100 waits for 
the Secondary State Machine 1200 to complete an iteration 
before Primary State Machine starts the computation for the 
next iteration. When an Encryption Done enc done signal is 
generated according to the last byte of data encrypted, Pri 
mary State Machine 1100 goes back to the initial state where 
it again resets the dirty bit state and then moves to the Idle 
state and waits to be fired by an external agent in the system. 

In FIG. 6, Secondary State Machine 1200 is in a SEC I 
DLE state until Primary State Machine 1100 generates, or 
issues, a signal Sbox done indicating that Sbox setup is done. 
Signal Sbox done is coupled to and received by Secondary 
State Machine 1200. Sbox done signal indicates to Second 
ary State Machine 1200 that encryption phase has begun. 
Secondary State Machine 1200 then invokes a parallel thread 
of accessing the memory 930, 940 depending on the current 
and the next byte accesses required (t, and t). Secondary 
State Machine 1200 is responsible for invoking the parallel 
thread of operation for throughput enhancement. 

In the embodiment of FIG. 5 the Primary State Machine 
1100 executes the operations which the S-Box setup and the 
encryption have in common. This state machine 1100 is 
defined by four (4) case statements for the Cases, and four (4) 
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case statements for the Subcases, so that the operations of the 
sixteen (16-4 Casesx4 Subcases) tables result. If-else struc 
tures in state machine 1100 are provided to establish the parts 
pertaining to S-Box setup, and the further parts pertaining to 
encryption. Note that the S-Box setup tables for Cases (1) and 
(4) utilize one more clock cycle (have one more row each) 
than the S-Box setup tables for each of Cases (2) and (3). 
Accordingly, an additional pair of States in Primary State 
Machine 1100 are provided for Cases (1) and (4) respectively 
to realize operations in the additional clock cycle. 

In the embodiment of FIG. 6, the Secondary State Machine 
1200 executes the operations in the encryption process that 
involve reading S-Box key bytes So and S. These operations 
are not present in the S-Box setup. Notice that in the eight (8) 
tables for Subcases (a) and (d), the operations to read S-Box 
key bytes So and Soccupy two clock cycles (2 rows) com 
pared to the single clock cycle read of both S-Box key bytes 
So and S in each of the eight (8) tables for Subcases (b) and 
(c). Accordingly, an additional pair of States are provided in 
Secondary State Machine 1200 for Subcases (a) and (d) 
respectively to realize operations in the additional clock 
cycle. Here again, case Statements and if-else structures are 
then used to define the variations among the tables as shown 
for the Cases and Subcases. 
RTL (Register Transfer Language) design tools currently 

available allow for high level design code to represent not 
only the operations but also the structures of an integrated 
circuit. Conventionally, the design code is automatically pro 
cessed to produce the netlist of the gates of the integrated 
circuit. From the netlist a place-and-route program defines the 
geometric layout of the transistors and interconnecting con 
ductive upper layers of the integrated circuit. The layout is 
used to establish the information needed by the wafer fabri 
cation operation to actually manufacture the integrated cir 
cuit. 
The operations and high level structures are described 

herein at a design level used by the person skilled in the art to 
thereupon implement the integrated circuit by preparing the 
RTL design code and proceeding to manufacture. 

In FIG. 5 operations of Primary State Machine 1100 begin 
in an IDLE state 1110 or go to IDLE when a RESET or 
CLEAR signal is active regardless of previous state. In the 
IDLE state initialization operations occur and the very first 
read of So and Soccurs. 

Next a start signal Start stb causes a transition from IDLE 
state to a state 1120 designated READ SI WR SJ. This state 
1120 suitably is defined in design code in terms of a case 
statement that has cases corresponding to the Cases 1, 2, 3, 4 
of the Tables. In cases 2 and 3 the reads and writes are 
instantiated as respectively symbolized by table rows So So, 
S.S, and S.S. So, Sol for those cases 2 and 3 regardless 
of subcase. Thereupon, operations transition to a state 1150 as 
indicated by the transition legend identifying Cases 2 and 3 as 
the ones where the Exclusive-OR of address j and address 
j, is one (1). In other words these cases are the ones where 
the two addresses are different in even/oddness. 

In state 1120, operations of Cases 1 and 4 do not do all four 
RWRW operations at once. Instead, Case 1 in state 1120 first 
performs ReadWrite into Memory 0 of So, Sol followed by 
a transition to a state 1130 to perform ReadWrite S, SI into 
Memory 0 on the next clock cycle which is the cycle in which 
state 1130 operates. Alternatively in Case 4 of state 1120, 
state 1120 first performs ReadWrite into Memory 1 of So, 
So followed by a transition to a state 1140 to perform Read 
Write (S,S) into Memory 1 on the next clock cycle which 
is the cycle in which state 1140 operates. After either of states 
1130 and 1140, operations transition to state 1150. 
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State 1150 is designated READ CURRENT AND LOO 

K AHEAD. This state 1150 is allowed to execute the first 
clock cycle of a new iteration provided the S-Box setup is not 
done (SbOX done 1) or encryption is going on and the Sec 
ondary State Machine is done. Execution of state 1150 is 
delayed or temporarily prevented by logic if the Secondary 
State Machine 1200 is still executing its contribution to an 
encryption iteration. (Reg Sec State done not active). This 
delay is symbolized by the arrow DELAY on the oval for state 
1150. When Reg sec state done goes active, the state 1150 
proceeds to execute the first cycle of the next iteration. State 
1150 executes the operations of the first clock cycle of the 
next iteration by executing the RWRW operations symbol 
ized by S. So, S, S.J. Upon completion of state 1150 
execution, operations transition to state 1120 READ SI 
WR SJ and proceed through the next iteration. Finally, the 
last iteration is reached and completed. 

In FIG. 6, operations of Secondary State Machine 1200 
initialize and begin in a SEC IDLE state 1210. SEC IDLE 
state 1210 monitors the Primary State Machine 1100 to deter 
mine when operations are now in the encryption phase and the 
particular cycle wherein state READ SI WR SJ becomes 
active in an iteration. This condition is represented by the 
legend SB done AND prm state=READ SI WR S.J. 
Operations in Secondary State Machine 1200 now transition 
from SEC IDLE state 1210 to a state 1220 SEC RD. 
SEC-RD state 1220 suitably is defined in design code in 

terms of a case statement that has cases corresponding to the 
SubCases (a), (b), (c), (d) of the Tables. In the two Subcases 
(b) and (c) the encryption-key byte-reads are instantiated in 
one clock cycle as respectively symbolized by table rows 
So, ---.S. - - - and S. - - -, So, - - - for those Subcases 
(b) and (c) regardless of Case 1, 2, 3, 4. Thereupon in those 
two Subcases (b) and (c), operations transition back to 
SEC IDLE state 1210 as indicated by the transition legend (to 
XOR t=1) OR RESET OR CLEAR. Subcases (b) and (c) are 
thus identified as the ones where the Exclusive-OR of address 
to and address t, is one (1). In other words these Subcases 
(b) and (c) are the ones where the two addresses to and t are 
different in even/oddness. 

Further in FIG. 6, in state 1220, operations of Subcases (a) 
and (d) do not do both key-byte read operations at once. 
Instead, Subcase (a) in state 1220 first performs a single Read 
from Memory 0 of So, - - - - - - - - - - - followed by a 
transition to a state 1230 SEC LKAHD0 to perform Read 
S. - - - - - - - - - from Memory 0 on the next clock cycle 
which is the cycle in which state 1230 operates. Alternatively, 
Subcase (d) in state 1220 first performs a single Read from 
Memory 1 of- - - - - - S - - - followed by a transition to 
a state 1240 SEC LKAHD1 to perform a Read - - - - - - , 
S. - - - from Memory 1 on the next clock cycle which is the 
cycle in which state 1240 operates. After either of states 1230 
and 1240, the secondary state machine done condition is set 
(Reg Sec State done 1) and operations transition back to 
state 1210 SEC IDLE. 

Notice that the signal prm state-READ SI WR SJ from 
the Primary State Machine 1100 coordinates the operation of 
Secondary State Machine 1200 with the operations of Pri 
mary State Machine 1100 so that the encryption key byte read 
process in Secondary State Machine 1200 begins on the cor 
rect clock cycle as tabulated. Thus, both state machines 1100 
and 1200 are sometimes operative simultaneously, and other 
times one state machine is waiting for a signal to resume 
operating, with the signal coming from the other state 
machine. Moreover, the signal Reg Sec State done from the 
Secondary State Machine 1200 coordinates the operation of 
Primary State Machine 1100 with the operations of Second 
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ary State Machine 1200 so that the next iteration begins no 
Sooner than the correct clock cycle as tabulated. 

In FIG. 7, a remarkably real-estate efficient group of 
embodiments use not one but at least two execution state 
machines to implement the Case/SubCase tables. These 
advantageous embodiments are achieved by the following 
design process. 

Operations commence at BEGIN 1310. Then in a step 
1320, prepare the Case/SubCase tables for all steps of the 
setup and encryption process. In the case of RC4 encryption 
with two 2-port memories, this means preparing the four (4) 
S-Box setup tables and sixteen (16) encryption tables. The 
number of tables varies with the number of memories and 
number of ports as later discussed hereinbelow. 

Next, in a step 1330, arrange the Case/SubCase tables to 
have a high degree of regularity. Advantageously herein 
above, the second group of sixteen Case/SubCase encryption 
tables have a higher degree ofregularity. The same encryption 
throughput is achieved compared to the first group of sixteen 
Case/SubCase encryption tables because no additional clock 
cycle rows are needed. 

Further in FIG. 7, a step 1340 partitions the sixteen Case/ 
SubCase encryption tables having high regularity into at least 
a first part associated with at least a first state machine, and at 
least a second part associated with at least a second state 
machine. Succeeding step 1350 implements and arranges the 
first state machine to perform the first-part operations that the 
S-Box setup tables have in common with the sixteen Case/ 
SubCase tables. The next step 1360 implements and arranges 
the second state machine to accomplish the operations estab 
lished in the second part. 

Further step 1370 estimates (or utilizes a design tool to 
compute) the number of gates, number of transistors, and/or 
integrated circuit real-estate required to implement the 
encryption. Decision step 1380 determines if the tables indi 
cate a variety of ways to achieve regularity, and if so, the 
design process is iterated or repeated to determine whether 
even more efficient designs exist. If the iterations are com 
plete, or no iterations are needed, operations reach a step 
1390. 

In step 1390 the optimum design is chosen according to 
considerations of setup time, throughput, and cost. Cost is 
related to, and generally increases with, design complexity, 
gate count, transistor count, and actual area real-estate occu 
pied by the Solution. Upon choosing the optimum design, the 
optimum design is manufactured in a wafer fabrication and 
assembly/test operational sequence so that a working inte 
grated circuit in an integrated circuit package is the result. 

In FIG. 8A, a real-time system has an illustrative 1000 
microsecond (usec) time period in which to accomplisha unit 
of operations implementing not only encryption/decryption 
but also a panoply of features expected by users of the real 
time system. Where the improvements are not implemented, 
the encryption/decryption occupies a lengthy Substantial por 
tion of the 1000 usec time period according to unimproved 
implementation of operations of S-Box setup STEP 1 and 
encryption STEP 2. 

In FIG. 8B, by contrast, improved implementation of 
operations of S-Box setup STEP 1 and encryption STEP 2 
considerably shorten the encryption/decryption real-time 
operations and reduce the overhead that would otherwise 
burden the real-time system due to these operations. Advan 
tageously, the time remaining is suitably used to improve the 
operation of other important features of the real-time system, 
and to add additional important features to the real-time sys 
tem, thereby benefiting customer users. Alternatively or addi 
tionally, the processor is replaced with a less-expensive 
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lower-performance processor (or not replaced with a more 
expensive higher-performance processor as more features are 
demanded), so that the real-time system is made more eco 
nomical. 

In FIG.9 a circuit 1400 utilizes the advantageous dirty-bit 
control of data in a 256-byte S-Box memory 1405. (The 
number of RW ports and any segregating of the memory are 
deemphasized in the drawing in order to emphasize the dirty 
bit and dependency look ahead improvements.) A dirty-bit 
(db) controlled multiplexer (MUX) 1410 selects either the 
read data byte from output DR of memory 1405 via data line 
1408, or the address from an address generator 1420 on 
byte-wideline 1421, which address is asserted to the memory 
1405 at address input A. A dependency-resolution MUX 1415 
selects either the output of MUX 1410 or data from a holding 
register as described later hereinbelow. The output of MUX 
1415 is regarded as the S-Box Data Out output. 

In the dirty bit control portion of the circuitry 1400, a dirty 
bit register 1430 has 256 bi-stable storage elements for hold 
ing 256 dirty bits respectively. A read line 1435 when high 
active, enables a DATAVALID line 1437 and the read input R 
of the Memory 1405. NAND gate 1438 coupled at its output 
via an inverter 1439 to the control input of MUX 1410. A 
MUX 1440 couples a dirty bit selected from dirty bit register 
1430 to a second input of NAND gate 1438. The dirty bit 
selected is determined by the 8-bit address coupled from 
address generator 1420 to an 8-wide selection control input of 
MUX 1440. When dirty bit register 1430 has the dirty bit 
corresponding to that address set, the dirty bit signifies that 
the byte at the corresponding address in S-Box memory 1405 
has been previously written with data. If the dirty bit is not set, 
the byte at the corresponding address in S-Box memory 1405 
has not been previously written with data and the address 
itself will be used as if it were the S-Box data byte to be read. 
When the NAND gate 1438 has a dirty bit set (1) provided 

to its second input, the output of NAND gate 1438 goes low 
and the output of inverter 1439 goes high, causing MUX 1410 
to select the data output DR from memory 1405 and pass that 
data to the MUX 1415. When the dirty bit is not set (0), then 
the output of address generator 1420 is selected by MUX 
1410 and passed to the MUX 1415. 

Further in FIG.9, a controller 1460 controls the operations 
the rest of the circuitry, including a write circuit 1462, a reset 
circuit 1464, a read circuit 1465, address generator 1420 via 
a control line 1466, an arithmetic logic unit (ALU) 1470 via 
a control line 1467, an Exclusive-OR (XOR) encryption/ 
decryption circuit 1475 via a control line 1468. A Key circuit 
and storage block 1480 activates controller 1460 via an 
enable line 1469 when a key is present. The Key Sk is 
provided to ALU 1470 for use in the S-Box setup computa 
tions described earlier hereinabove. MUX 1415 also has its 
output SBOX DATA OUT connected to ALU 1470 so that 
ALU 1470 can utilize and process Si and S data in the setup 
and encryption operations as described elsewhere herein. The 
ALU 1470 supplies each computed address to address gen 
erator 1420 for accessing the S-Box memory 1405. 
The S-Box memory 1405 is updated with data on an 8-wide 

SBOX DATA IN data bus to memory 1405. The S-Box 
memory 1405 is write-controlled by write circuit 1462 send 
ing a signal connected to the write (W) input of S-Box 
memory 1405, and to the input of a 1:256 demultiplexer 
(DMUX) 1450. Address generator 1420 supplies an 8-bit 
address to an 8-wide selection control input of DMUX 1450. 
256 outputs of DMUX 1450 are respectively connected to the 
256 dirty bit elements of dirty bit register 1430. The write 
signal from Write circuit 1462 is coupled by DMUX 1450 to 
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the selected one of the 256 outputs of DMUX 1450 and 
thereupon sets the corresponding dirty bit element to one (1) 
at dirty bit register 1430. 
The dirty-bit circuitry is thus used with memory or storage 

having memory locations 1405 for data and dirty bits 1430 
accessible at addresses in the memory. An address line 1421 
(from Address generator 1420) carries address bits. A data 
line 1408 carries data bits. Dirty bit line 1436 conveys a dirty 
bit set/reset state (from MUX 1440). Control line 1435 carries 
a read signal (from Read circuit 1465). Selector circuit 1410 
has a selector output 1412 selectively coupled to the address 
line 1421 and to the data line 1408. A selector control input is 
connected via a dirty bit control line db to the output of 
inverter 1439. Readline 1435 is coupled to the selector circuit 
via NAND-gate 1438 and inverter 1439. The selector circuit 
MUX 1410 is responsive to a read signal on the readline 1435 
and to a reset state on the dirty bit line 1436 to couple the 
address line 1421 to the selector output 1412. 

In FIG. 9. Reset circuit 1464 operates at S-Box initializa 
tion time to simultaneously reset all 256 dirty bit elements of 
dirty bit register 1430 via reset line 1463. In this way, a 
single-cycle S-Box initialization is realized. Thereupon, 
S-Box setup operations proceed as elsewhere described 
herein. 

Encryption is performed by XOR-ing unencrypted bytes 
from an input DATA IN of the XOR Encryption/Decryption 
circuit 1475. A latest unencrypted byte is XOR-ed with the 
latestbyte SBOX DATAOUT from MUX 1415. The result of 
the XOR is supplied as an encrypted byte at an output DATA 
OUT from block 1475. 

Decryption is performed by XOR-ing encrypted bytes 
from input DATA IN of the XOR Encryption/Decryption 
circuit 1475. A latest encrypted byte is XOR-ed with the latest 
byte SBOX DATA OUT from MUX 1415. The result of the 
XOR is supplied as a decrypted byte at an output DATAOUT 
from block 1475. 

In design code, the dirty bit control of the read is suitably 
established by if-then structures. For example: 

if (db) S = MO rd data 
else S = j. 

where db means a selected dirty bit value of Zero or one, and 
MO rd data is an example of data read from memory MO of 
FIG. 3. The memory read that is expressed after “if (db) is 
read-executed when dirty bit db is (1). The "else S-line is 
executed when dirty bit db is zero (0). This “else Si' line 
interprets the address as a read value where the memory has 
not been written at that address and thus dirty bit db is zero 
(0), as illustrated in FIG.9. 

Dependency Resolution: Where results like S1 or St1 
relating to next byte i+1 may be dependent on results for byte 
ibefore a write of Sjo, the dependency is suitably resolved by 
an appropriate logic structure in the design code Such as 
illustrated by: 

If (i = j (i+1)) 
S1 = Sjo: 

else if (db) S1 = M1 ral data 
else S1 = j (i+1): 

This example handles the situation where S1 is to be read 
after Sjo is read but before Sjo is swap-written. Again db 
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means a selected dirty bit value of Zero or one, and 
M1 rd data is an example of data read from memory M1 of 
FIG. 3 in a case or subcase calling from a read from that 
particular memory M1 (otherwise enter “MO). The last 
"else' line interprets the address as a read value where the 
memory has not been written at that address and thus dirty bit 
db is zero (0), as illustrated in FIG. 9. 

Correspondingly in FIG. 9, a dependency circuit 1490 
includes the dependency-resolution MUX 1415, a compari 
son circuit 1493, address holding registers 1495, and data 
holding registers 1497. Controller 1460 provides control sig 
nals collectively designated group CTRL. At least one of 
these controls enables the comparison circuit 1493 and/or 
drives the Zero (0) selection from comparison circuit 1493 to 
MUX 1415 when no dependency is involved so that S-Box 
output is directly from MUX 1410. Another control signal in 
the group CTRL is fed to address-holding registers 1495 and 
enables storage into and output from a selected pair of regis 
ters. Such as for instance, one register for first byte address i 
and one register for address (i+1), where address j is a func 
tion of the second byte address i+1. Comparison circuit 1493 
compares the selected ith address i and the selected address 
j(i+1). If the addresses are not equal, then there is no depen 
dency, and comparison circuit 1493 provides a control signal 
Zero (0) to the control input of MUX 1415. In response to the 
control signal Zero, the MUX 1415 couples a byte ofread data 
from MUX 1410 to S-Box Data Out. 

If the addresses are equal at comparison circuit 1493, then 
a dependency exists. Comparison circuit 1493 provides a 
control signal one (1) to the control input of MUX 1415. In 
response to the control signal one (1), the MUX 1415 couples 
a byte of held data (e.g. byte Sjo) from a selected holding 
register in registers 1497 to S-Box Data Out. 

Further in FIG. 9 in an example of circuitry (using paren 
theses to illustrate particular data), the dependency circuitry 
has memory 1405 with memory locations for data accessible 
by asserting respective addresses to memory 1405, a first 
register (e.g., for Sjo in holding registers 1497), and a second 
register (e.g., for S1 in holding registers 1497). Read cir 
cuitry 1465 is operable to read to the first register a first datum 
(Sjo) stored at a location in the memory represented by a first 
address (jo). Address circuitry 1420, 1495 is operable to 
generate a second address (i) at which the first datum (Sjo) 
will be stored in memory 1405 and a third address (1) at 
which a second datum (S1) can be read from memory 1405. 
Comparison circuitry 1493 responds to address circuitry 
1420, 1495 when the third address (1) is different from the 
second address (i) to read the second datum (S1) to second 
register (S1) from the third address (t1) in memory 1405. 
When the third address (1) is the same as the second address 
(i) then comparison circuitry 1493 causes MUX 1415 to copy 
the first datum (Sjo) to the second register as the second 
datum (S1). 

Write circuit 1462 acts as a storing circuit to store the first 
datum (Sjo) at the second address (i) after the reading or 
storing of the second datum (S1) to the second register (for 
S1) by the comparison circuitry 1493. Comparison circuitry 
1493 suitably has multiple concurrently-operative compara 
tors and cascaded selector MUXes for multiple byte opera 
tions appropriate to all dependencies identified in the appli 
cation. Control circuitry 1460 is coupled to the comparison 
circuitry 1493 to perform the above operations plural times 
concurrently on plural bytes in an iteration of overlapping 
dependent calculations. Advantageously, the throughput is 
dramatically multiplied because dependencies in threads for 
one or more bytes (i+1) on calculations in a THREAD0 for a 
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given byte (i) are inventively resolved in those concurrent 
threads THREAD1, and even higher threads 2, and 3, etc. 

In FIG. 10, a process of execution of an S-Box Setup 
shuffle in a two 2-port memory embodiment commences at a 
BEGIN 1501. It is emphasized that FIG. 10 especially per 
tains to the STEP 1 S-Box Shuffling portrayed in the four 
TABLE representation earlier hereinabove. Comparing the 
flow diagram of FIG. 10 with each of the TABLEs for Cases 
1, 2, 3, 4 of the S-Box setup facilitates understanding of those 
tables and the process whether implemented in hardware, 
firmware or software. Operations proceed in a step 1505 to 
initialize an index i to Zero, initialize an incremented index i 
(designated “ia') to one, and initialize an index j to Zero. Next, 
two threads (concurrent operations) THREAD 0 and 
THREAD 1 start. In THREAD 0 a step 1515 reads S(i) from 
address i(S0 from address 0 of Memory MO for example). 
Next a step 1523 stores S(i) in a holding register. In THREAD 
1 a step 1519 reads S(ia) from address is (S1 from address 1 
of memory M1 for example). Next a step 1525 stores S(ia) in 
another holding register. These operations 1515, 1519, 1523, 
1525 are performed in a first clock cycle 1. THREAD 0 step 
1531 generates an address O in fast logic updating jj0 
according to an S-Box setup formula. 
Now in clock cycle 2, THREAD 0 step 1535 reads S-Box 

value S0from address O earlier obtained in step 1531. A step 
1537 in THREAD0 writes value S0 from step 1515 into 
address O (e.g. in the last half of the clock cycle) without 
conflict with read step 1535. The memory MO (or M1) to be 
written is identified by the least significant bit of address O. 
Meanwhile THREAD 1 step 1541 has the updated value of 
from step 1531 and applies that updated value of in gener 
ating an address 1 in fast logic further updating j-1 accord 
ing to the S-Box set up formula for indexj. 
The least significant bits of address O and 1 are compared. 

If address 1 has its least significant bit (LSB) different from 
the address O least significant bit, then the steps of the next 
paragraph are executed immediately in clock cycle 2. If 
address 1 has its least significant bit equal to the address 0 
least significant bit, then the steps of the next paragraph are 
deferred to the next clock cycle 3 since they would contend 
for the same memory. 
THREAD 1 steps 1545 and 1547 concurrently operate. In 

step 1545, S-Box value S1 is read from address 1 in Memory 
0 (assuming Case 1, for example). If a dependency issue is 
present in step 1545 since datum SO has not yet been written, 
the issue is resolved in step 1545 as described in connection 
with FIGS. 9 and 12 regarding dependencies. Step 1547 
writes value S1 to address 1 in Memory 0 without conflict 
with step 1545. As noted in the previous paragraph, these 
steps are executed in cycle 3 or cycle 2 depending on whether 
the address O LSB-1 LSB or not, respectively (i.e. whether 
the least significant bit (LSB) of address O equals the least 
significant bit of address 1 or not). Compare steps 1545, 1547 
of FIG. 10 specifically to entries S1, S1 in cycle 3 of the two 
TABLEs for Case 1 and Case 4 of S-Box Shuffling earlier 
hereinabove and to the same entries S1, S1 in cycle 2 of the 
two TABLEs for Case 2 and Case 3 of S-Box Shuffling. 

Proceeding in FIG. 10 to the next clock cycle NEXT 
CYCLE (4 or 3 see just above), THREAD 0 step 1551 writes 
datum Sjo to address i (e.g. i=0) in Memory M0. Step 1555 
also reads S-Box value S2 from address i-2 (e.g. 2) of 
Memory MO without conflict with step 1551. In the same 
cycle THREAD 1 Step 1557 writes datum S1 to address i+1 
(e.g. 1) in memory M1. Step 1559 reads S3 from address i-3 
(e.g. 3) in memory M1 without conflict with step 1557. Fur 
ther in this clock cycle, index i is incremented by two (2) in 
step 1561. Decision step 1567 compares the new value of 
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index i with 256, and if not greater, operations loop back to 
repeat THREAD 0 AND THREAD 1 based on the new value 
of index i. If greater in step 1567, then operations are com 
pleted, and RETURN 1571 is reached. 

In FIG. 11, a process of dirty bit control found in the FIG. 
5 state 1120 READ SI WR SJ is depicted in a case-based 
flow diagram. Comparing the flow diagram of FIG. 11 with 
the S-Box setup TABLEs hereinabove and with the state 
transition diagram of FIG. 5 facilitates understanding of 
inventive apparatus aspects and inventive process aspects 
whether implemented in hardware, firmware or software. 

In FIG. 11, operations commence with a START 1610 and 
proceed to a step 1615 initializing all the dirty bits 255:0 
simultaneously. Next a step 1620 handles the respective four 
cases (0, 1) as represented by a CASE statement. The 
respective branches 00, 01, 10, 11 for the four cases are 
labeled beneath the CASE statement and above alternative 
columns of steps corresponding to the branches. 

In FIG. 11, operations 1631, 1632, 1633, 1634 in each 
branch seta Dirty Bit ReadPointerdbOrdptrequal to the value 
of 0 found in cycle 1 step 1531 of FIG. 10. Operations 1641, 
1642, 1643, 1644 in each branch determine if the dirty bit db 
is set to one (1). If so, the memory has valid data, and each 
branch proceeds to read memory S0 from address O which 
points to memory MO in steps 1651 and 1652, and otherwise 
to memory M1 in steps 1653 and 1654. If dirty bit db is not set 
to zero, the address itself is used, and the value S0 is read 
from the address O, as indicated by steps 1656, 1657, 1658, 
1659. 

In FIG. 11, further operations 1661, 1662, 1663,1664 set at 
least one write pointer as appropriate to the setup tables 
entries. For example in Cases 1 and 4 where addresses 0 and 
1 are equal to each other in LSB by pointing to the same 
memory (i.e., O.j1-00 and 11), the write pointer dbOwrptris 
set to point to address O in the dirty bit array 1430 of FIG.8. 
This pointer setting is made in each of steps 1661 and 1664 
because in each case the value S0 is written to address O and 
no other write occurs in the same clock cycle 2 of the setup 
TABLEs for these two Cases 1 and 4. Then because of the 
write to memory, the respective succeeding steps 1671 and 
1674 set the dirty bit register with address O in dirty bit array 
1430. 

Advantageously, in steps 1662 and 1664, not one but two 
write pointers dbOwrptr and db 1 wrptr are suitably simulta 
neously set to point to respective addresses 0 and 1 in the 
dirty bit array 1430 of FIG.8. These two pointer settings are 
made in each of steps 1662 and 1663 because in each setup 
Case 2 and 3 the value S0 is written to address O and the value 
S1 is written to address 1. Both of these writes (S0, S1) occur 
in the same clock cycle 2 of the setup TABLEs for these two 
Cases 2 and 3. 

Returning to discussion of Cases 1 and 4, the second write 
pointer db1 wrptr is set to point to address 1 in the dirty bit 
array 1430 of FIG. 8 in each of the FIG. 5 state 1130 
READ LOOKAHEAD MEMO and FIG. 5 state 1140 
READ LOOKAHEAD MEM1. This pointer setting is made 
(not shown because outside of FIG. 11 state READ 
SI WR SJ) because in each of Case 1 and Case 4 the value S1 
is written to address 1 in clock cycle 3 and no other write 
occurs in the same clock cycle 3 of the setup TABLEs for 
these two Cases 1 and 4. 

In FIG. 11, operations go from the respective case opera 
tion 1671, 1672, 1673, or 1674 to a branch 1680. If the shuffle 
iterations are not finished, analogous to the loop of FIG. 10, 
then operations increment the byte index in step 1685 and 
loop back to case branch 1620. Otherwise operations reach 
RETURN 1190. 
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In FIG. 12, a process of dependency resolution commences 
at a BEGIN 1700. Parentheses are used to identify data and 
addresses by way of another one example only (and different 
from the dependency example narrated for FIG. 9 to add 
further description). Step 1710 reads to a first register (one 
register in registers 1497) a first datum (S1) stored at a 
location in memory 1405 represented by a first address (1). 
Next in a step 1720 a second address (i+1) is generated at 
which the first datum (S1) will be stored in the memory 1405. 
A further step 1730 provides a third address (t1) at which a 

second datum (St1) can be read. A succeeding step 1740 
compares the second address (i+1) with the third address (t1) 
and enters branch 1750. If the result of the comparison is 
different (“NO, addresses not equal, not same, no depen 
dency issue) then operations go to a step 1760 reading the 
second datum (St1) to a second register (for St1 in registers 
1497) from the third address (t1) in the memory 1405. If the 
result of the comparison is same (“YES. addresses equal, 
dependency exists), then operations instead go from branch 
1750 to a step 1770. Step 1770 copies the first datum (S1) to 
the second register (for St1 in registers 1497) as the second 
datum (St1). After either step 1750 or 1770, operations pro 
ceed to a step 1780 storing the first datum (S1) at the second 
address (i+1) after the reading or storing of the second datum 
(St1) to the second register (for St1 in registers 1497). 

Advantageously, this process of FIG. 12 is performed plu 
ral times concurrently on two bytes (e.g., Sto and St1) in the 
same iteration of overlapping dependent calculations, thus 
increasing the throughput of the process Substantially. Mul 
tiple dependencies are Suitably resolved in the same iteration 
by applying the solutions described herein to each of the 
dependencies. 
Average Data Rate Computation: Two 2-Port Half-Memo 
ries, Double-Byte Throughput 
The average encryption data rate is computed as the 

weighted average of the number of cycles per iteration 
weighted by the number of Case/SubCases to which that 
number pertains. The Rate Table below tabulates the cycles 
periteration for each of the Case/SubCases. Due to symmetry 
in this embodiment, the Rate Table is symmetric around its 
main diagonal from upper left to lower right. 

RATE TABLE 

Case (a) (b) (c) (d) 

1 5 4 4 4 
2 4 3 3 4 
3 4 3 3 4 
4 4 4 4 5 

For one illustrative example only, and in the embodiment 
above, assume that clock runs at a constant rate so that clock 
cycles are of equal duration and thus of equal probability 

EXPECTED THROUGHPUT=2subcas(5cycl/2 
Bytes)+10subcas(4cycl/2 Bytes)+4subcas 
(3cycl. 2 Bytes), 16Subcas=1.94 cycles/Byte), or 
1.03 Bytes every 2 cycles 

The above calculation assumes that each of the sixteen 
Case/SubCases occurs with equal probability. Another way of 
calculating it is: 

No of bytes processed in all the above combina 
tions=2x16=32 bytes 

Total no of clock cycles taken for this processing 31x 
2=62 cycles 
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Expected throughput=32/62=1.03 bytes per 2 clock 

cycles. 

BEST CASE: A higher estimate assumes all encryption 
cases run in 3 cycles (as in Cases 2(b), 20c), 3(b) and 3(c)): 

2 Bytes/3 cycles=1.33 Byte/2 cycles. 

WORST CASE: A lower estimate assumes all encryption 
cases run in 5 cycles (i.e. case 1 (a) and case 4 (c)): 

2 Bytes/5 cycles=0.80 Byte/2 cycles. 

At a processor clock frequency of 40 MHz, the data rate in 
megabits per second (1 Byte=8 bits) for this two dual-port 
memory, 2-bytes embodiment is 

AVERAGE DATA RATE=1.03(Bytes/2 cycles)x8 
bits/Bytex40 MHz=164.8 Mbps. 

A high estimate for data rate is 1.33(Bytes/2 cycles)x8 
bits/Bytex40 MHz=213.3 Mbps. 

A low estimate for data rate is 0.80 Bytes/2 cycles)x8 
bits/Bytex40 MHz=128 Mbps. 

Remarkably, a group of the inventive embodiments using 
highly regular process tables produces at least 0.40 bytes/ 
cycle minimum throughput using only 256 bytes in memory 
for S-Box, 256 dirty bits in the dirty bit array with single cycle 
initialization and less than 385 cycle S-Box setup all in less 
than 20,000 (twenty thousand) gates and in Some cases less 
than 15,000 (fifteen thousand) gates. 

In a real time system, every 1000 clock cycles are shared 
between encryption, decryption, and all other features of the 
application which that processor supports. Thus, the RATE 
calculation above may need to be diminished by a Factor 
representing the fraction of clock cycles which are devoted to 
encryption and decryption. If a general purpose processor has 
an associated processor Sometimes called an accelerator, Such 
as a digital signal processor (DSP) from Texas Instruments 
Incorporated, the associated processor may be able to devote 
a higher percentage of its clock cycles to encryption/decryp 
tion, thereby increasing that Factor. The application may be a 
cell phone, a wireless local area network (WLAN) client, a 
WLAN access point, or other equipment. 
Four 2-Port Quarter-Memory, Quadruple-Byte Throughput 
Embodiment 

(64 bytes per two-port memory, 4 bytes/iteration) The four 
two port memory embodiment is believed to have 4-to-the 
8"-power or 64K encryption tables of Case/Subcase combi 
nations. 

Also, the number of encryption tables for all the Cases/ 
SubCases is equal to the square of the following: Number of 
Memories (base) raised to the Number of Concurrently Pro 
cessed Variables power (exponent). 

Here the reasoning is that the last two bits of each address 
i byte are used to identify the memory being addressed by 
respective last-two-bits 00, 01, 10, 11. Thus the addresses jo 
and j, from the two-port memory cases above are replaced 
by four addresses that can point to any of not two memories, 
but four memories: j, oo, joi, j, o, j-, 1. 

Thus, 256–4x4x4x4-4" (four-to-the-fourth-power) tables 
result for the S-Box shuffle operation and represent that many 
Cases. Furthermore, in encryption, four reads of key bytes are 
needed too, t, oi, t, ot, 11. These addresses can point to 
any of the four memories. Thus, 4x4x4x4-4" (four-to-the 
fourth-power) tables result for the key bytes reading opera 
tion in encryption, and represent that many Subcases for each 
Case. In all, the number of encryption tables for all the Cases/ 
SubCases is the product of the number of Cases times the 
number of Subcases, or 4" (four-to-the-fourth-power) times 
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4" (four-to-the-fourth-power) which equals 4 (four-to-the 
eighth-power). This number of encryption tables is about 
64,000. Implementation of the appropriate state machines is 
accomplished by the skilled worker using computer-based 
design tools. While this category of embodiments confers a 
setup time reduction improvement and encryption throughput 
increase improvement, it is believed that they will be at least 
Somewhat more complex in the state machine implementa 
tion. 

Terminology Followed: 
First Row of each table: Represents the memory banks 
All but the first row of each table: operations done in the 
memory banks. Each row corresponds to one clock cycle in 
ascending order from top to down. i.e. Second row indi 
cates the operations done in the first clock cycle of the 
iteration and so on. 

First Column of each table: Read from Memory bank Mo 
Second Column of each table: Write to Memory bank Mo 
Third Column of each table: Read from Memory bank M. 
Fourth Column of each table: Write to Memory bank M. 
Fifth Column of each table: Read from Memory bank M. 
Sixth Column of each table: Write to Memory bank M. 
Seventh Column of each table: Read from Memory bank M. 
Eighth Column of each table: Write to Memory bank M. 

TABLE 

Case 

R W R 

Mo M1 
W R 

M. M. 
W R 

M2 M. 
W 

M 

S1 S2 S. 

For the present embodiment having four 2-port memories 
each of sixty-four 64 bytes, the maximum number of simul 
taneous reads that a memory Mo or memory M. permits is 
exactly one each, and the maximum number of simultaneous 
writes that a memory Mo or memory M. permits is also 
exactly one each. In other four 2-port memory embodiments, 
constraints observed may vary. 
Two 4-Port Half-Memory, Quadruple-Byte Throughput 
Embodiments 

In general, the number of S-Box setup tables for all the 
Cases is equal to: the Number of Memories (base) raised to 
the Number of Concurrently Processed Variables power (ex 
ponent). 

Also, the number of encryption tables for all the Cases/ 
SubCases is equal to the square of the following: Number of 
Memories (base) raised to the Number of Concurrently Pro 
cessed Variables power (exponent). 

Advantageously, the two 4-port half-memory embodi 
ments have a smaller number in the base than the four 2-port 
quarter-memory embodiments. Accordingly, they utilize a 
more manageable number of Tables in processing the same 
Number of Concurrently Processed Variables. 
The two four-port memory group of embodiments are ana 

lyzed here processing four (4) bytes periteration. They have 
16 (sixteen) S-Box setup process tables, because the quantity 
two-to-the-fourth-power is sixteen (1) (24=16) and hence 16 
tables are sufficient to describe them. The S-Box setup pro 
cess tables have eight (8) columns RRWWRRWW because 
the two memories have two (2) read ports and two (2) write 
ports. 
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The two four-port memory group of embodiments process 

ing four (4) bytes per iteration have 256 (two hundred fifty 
six) encryption process tables, because the square 
of the quantity two-to-the-fourth-power is 256 (24) 
(24)=28–256) and hence 256 tables are used to describe 
them. The encryption process tables also have eight variables 
(8) columns RRWWRRWW because the two memories have 
two (2) read ports and two (2) write ports. Due to the number, 
the skilled worker suitably completes the memory access 
tables and prepares the state machines according to the prin 
ciples already set forth using computerized tools. 
The throughput analysis of this category of embodiments is 

described next. Then an example of some of the tables is 
provided to show the process. 

Analysis for Two Four-port Half-memories (128 Bytes 
Each): 
Accesses required: So S, SS o: 1s. 2: .3: So S, S2, Sis 
Each access can be from any memory bank i.e. Mo, M. 
i.e. There are 28 such possible combinations=256. 
Sbox Setup Step: 

Accesses required: So, S1, S2, S for his 2: his 

Each access can be from any memory bank i.e. Mo, M. 
i.e. There are 24 such possible combinations=16. 
Possible cycle latencies (per four bytes of processing): 

2 cycles (6 combinations) 
3 cycles (10 combinations 
Since the total number of possible combinations is 256 the 

other case (4 cycles) have 190 possible values. 

Latency cycles Number of possible cases 

2 6 
3 10 

Latency cycles Number of possible cases Total Cycles (Col1 * Col.2) 

2 6 12 
3 10 30 

Total 16 42 

Hence average number of cycles per computation of 4 
bytes of data: 42/16–2.625 cycles. 
For Sbox setup the number of bytes need to process=256 
bytes 

Setup Figures are: 

Best case (cycles) Worst case (cycles) Average (cycles) 

128 192 42 * 4 = 1.68 

Encryption Step: 
Possible cycle latencies (per four bytes of processing): 

3 cycles (6x6 possible combinations) 
4 cycles 
5 cycles (2 possible combinations) 



US 8,671,254 B2 
41 

Since the total number of possible combinations is 256 the 
other case (4 cycles) have 218 possible values. 

Latency cycles Number of possible cases 

3 36 
4 218 
5 2 

Latency cycles Number of possible cases Total Cycles (Col1 * Col.2) 

3 36 108 
4 232 928 
5 2 10 

Total 256 1046 

Hence average number of cycles per computation of 4 
bytes of data: 1046/256–4.09 cycles. 
Encryption throughput figures are: 

Worst case 
(bytes/cycles) 

Best case 
(bytes/cycles) 

Average 
(bytes/cycles) 

1.33 O.8 1.02 

Terminology Followed: 
First Row of each table: Represents the memory banks 
All but the first row of each table: operations done in the 
memory banks. Each row corresponds to one clock cycle in 
ascending order from top to down. i.e. Second row indi 
cates the operations done in the first clock cycle of the 
iteration and so on. 

First Column of each table: Read from Memory bank Mo 
Second Column of each table: Read from Memory bank Mo 
Third Column of each table: Write to Memory bank Mo 
Fourth Column of each table: Write to Memory bank Mo 
Fifth Column of each table: Read from Memory bank M. 
Sixth Column of each table: Read from Memory bank M. 
Seventh Column of each table: Write to Memory bank M. 
Eighth Column of each table: Write to Memory bank M. 

R R W W R R W W 
Mo Mo Mo Mo M M M M1 

So S. S2 S. 

For the present embodiment having two 4-port memories 
each of 128 bytes, the maximum number of simultaneous 
reads that a memory Mo or memory M. permits is exactly two 
each, and the maximum number of writes that a memory Mo 
or memory M. permits is also exactly two each. In other two 
4-port memory embodiments, constraints observed may vary. 
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One 4-Port Full-Memory, Double-Byte Throughput Cat 
egory of Embodiments 

In general, as noted above, the number of S-Box setup 
tables for all the Cases is equal to: the Number of Memories 
(base) raised to the Number of Concurrently Processed Vari 
ables power (exponent). 

Also, the number of encryption tables for all the Cases/ 
SubCases is equal to the square of the following: Number of 
Memories (base) raised to the Number of Concurrently Pro 
cessed Variables power (exponent). 

Advantageously, the one-memory embodiments have a 
low number in the base. Accordingly, they utilize fewer tables 
in processing the same Number of Concurrently Processed 
Variables. The number of ports is applied to the full-size 256 
byte memory as compared with embodiments with e.g., two 
memories and 128 bytes each with two ports. 
The one four-port memory group of embodiments are ana 

lyzed here processing two (2) bytes per iteration. They have 
one S-Box setup process table, because the quantity one-to 
the-second-power is one (1) (12=1) and hence one table is 
used to describe them. The S-Box setup process table has four 
(4) columns RRWW because the one memory has two (2) 
read ports and two (2) Write ports. 
The one four-port memory group of embodiments process 

ing two (2) bytes per iteration have one encryption process 
table, because the square of the quantity one-to-the-second 
power is one (1) ((12)(12)=14=1) and hence once table is 
used to describe them. The encryption process table also has 
four (4) columns RRWW because the one memory has two 
(2) read ports and two (2) write ports. 

Step 1) Setup 
The four port asynchronous read and synchronous write 

RAM gives the facility to make two reads and writes simul 
taneously from and to the memory. Shown below is the figure 
that shows the memory accesses in various cycles of opera 
tion during the Sbox setup phase. 

S-BOX SETUP PROCESS TABLE 
Case (1 

R W R W 

Mo Mo Mo Mo 

1 So S 
2 So So S1 S 
3 S2 So S. S1 

Two bytes of setup are achieved in two cycles of operation. 
Complete setup (for 256 bytes) therefore takes 256 cycles of 
operation after cycle 1. 
Step 2) Encryption Step 
Si>Sbox memory access at location i=0 ith thread 
So->Sbox memory access at locationjo ith thread 
Sos-Sbox memory access at location to ith thread 
Si>Sbox memory access at location i=1 —(i+1)th thread 
S>Sbox memory access at location.j, -(i+1)th thread 
S>Sbox memory access at location t—(i+1)th thread 
Si>Sbox memory access at location i=2 next iteration 
Si>Sbox memory access at location i=3—next iteration 

Since the four port memory provides the option of two 
reads and writes in a single cycle, therefore the SS can be read 
in the cycle after Sis reads and subsequently Sts can be read in 
the next cycle thereafter. Following table represents the read 
and write access to the four port memory in the course of 
encryption. 
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ENCRYPTION PROCESS TABLE 
Case (1 

R W R W 

Mo Mo Mo Mo 

1 So S 
2 So So S1 S 
3 So S, 
4 So So S S1 

The Swrites are arranged to take place in either cycle 3 or 
cycle 4 as selected by the skilled worker. Either way, the 
encryption iteration takes three cycles of operations per two 
bytes of data. Hence the throughput is 2/3 bytes per cycle. 
Advantageously, the encryption throughput is uniformly pro 
duced every three cycles per two bytes over time. 

Analysis for One Four-port Full Memory (256 Bytes) with 
Double-Byte Throughput: 
Accesses required. So, S. So, S, 
Each access can be from the one memory i.e. Mo. 
i.e. There are 14 such possible combination=1. 
Encryption Step 2 cycle latency (per two bytes of processing): 

Three (3) cycles, one case. Total cycles: 3. 
Encryption throughput: 0.67 bytes/cycle in best, worst, and 

average case. 
Sbox setup step accesses required: So S, 

Each access can be from the one memory i.e. Mo, i.e. there is 
only one combination. 

Possible cycle latencies (per four bytes of processing): 2 
cycles, one case. 

Total cycles: 2. 
For Sbox setup the number of bytes need to process=256 

bytes 
Setup figures are: 256 cycles=64 (4-byte groups)x2 cycles/ 

iteration in best, worst, and average case. 
One 8-Port Memory Category of Embodiments 

In general, as noted above, the number of S-Box setup 
tables for all the Cases is equal to: the Number of Memories 
(base) raised to the Number of Concurrently Processed Vari 
ables power (exponent). 

Also, the number of encryption tables for all the Cases/ 
SubCases is equal to the square of the following: Number of 
Memories (base) raised to the Number of Concurrently Pro 
cessed Variables power (exponent). 

Advantageously, the one-memory embodiments have a 
low number in the base. Accordingly, they utilize fewer tables 
in processing the same Number of Concurrently Processed 
Variables. The number of ports is applied to the full-size 256 
byte memory as compared with embodiments with e.g., two 
memories and 128 bytes each with two ports. 
The one eight-port memory group of embodiments are 

analyzed here processing four (4) bytes per iteration. They 
have one S-Box setup process table, because the quantity 
one-to-the-fourth-power is one (1) (14=1) and hence one 
table is used to describe them. The S-Box setup process table 
has eight (8) columns RRWW because the one memory has 
four (4) read ports and four (4) write ports. 
The one eight-port memory group of embodiments pro 

cessing four (4) bytes periteration have one encryption pro 
cess table, because the square of the quantity one-to-the 
fourth-power is one (1) ((14)(14)=18=1) and hence once 
table is used to describe them. The encryption process table 
also has eight (8) columns RRRRWWWW because the one 
memory has four (4) read ports and four (4) write ports. 
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S-BOX SETUP PROCESS TABLE 
Case (1 

R R R R W W W W 

Mo Mo Mo Mo Mo Mo Mo Mo 

So S. S. S. 

ENCRYPTION PROCESS TABLE 
Case (1 

R R R R W W W W 

Mo Mo Mo Mo Mo Mo Mo Mo 

So S. S. S. 

The throughput analysis of this category of embodiments is 
described next. Then an example of some of the tables is 
provided to show the process. 
Analysis for One Eight-port Memory (256 Bytes): 

Analysis is same as one 4-port memory case except that 
twice as many bytes per cycle are processed. This produces 
the following results. 

Encryption accesses: So S, S2, Ss. So, S, S2, Sa 
Each access can be from the one memory i.e. Mo. 
i.e. There are 18 such possible combination=1. 
Encryption Step 2 cycle latency (per four bytes of process 

ing): Three (3) cycles, one case. Total cycles: 3. 
Encryption throughput: 1.33 bytes/cycle in best, worst, and 

average case. 
Sbox setup step accesses required. So, S. S. S. 

Each access can be from the one memory i.e. Mo, i.e. there are 
14 such possible combination=1, i.e. there is one combina 
tion. 

Possible cycle latencies (per four bytes of processing): 2 
cycles, one case. 
Total cycles: 2. 

For Sbox setup the number of bytes need to process=256 
bytes 

Setup figures are: 128 cycles=64 (4-byte groups)x2 cycles/ 
iteration in best, worst, and average case. 
A few preferred embodiments have been described in 

detail hereinabove. It is to be understood that the scope of the 
invention comprehends embodiments superficially different 
from those described yet within the inventive scope. Micro 
processor and microcomputer are synonymous herein. Pro 
cessing circuitry comprehends digital, analog and mixed sig 
nal (digital/analog) integrated circuits, ASIC circuits, PALS, 
PLAS, decoders, memories, non-Software based processors, 
and other circuitry, and digital computers including micro 
processors and microcomputers of any architecture, or com 
binations thereof. Internal and external couplings and con 
nections can be ohmic, capacitive, direct or indirect via 
intervening circuits or otherwise as desirable. Implementa 
tion is contemplated in discrete components or fully inte 
grated circuits in any materials family and combinations 



US 8,671,254 B2 
45 

thereof. Various embodiments of the invention can employ 
hardware, Software or firmware. Process diagrams herein are 
representative offlow diagrams for operations of any embodi 
ments whether of hardware, software, or firmware, and pro 
cesses of manufacture thereof. 

While this invention has been described with reference to 
illustrative embodiments, this description is not to be con 
Strued in a limiting sense. Various modifications and combi 
nations of the illustrative embodiments, as well as other 
embodiments of the invention may be made. It is therefore 
contemplated that the appended claims and their equivalents 
cover any such embodiments, modifications, and embodi 
ments as fall within the true scope of the invention. 
What is claimed is: 
1. An integrated circuit comprising: 
a first memory having a first read port and a first write port 

for concurrent read and write, the first memory having 
memory locations for data accessible by asserting 
respective addresses to the first memory through the first 
read port and the first write port; 

a second memory having a second read port and a second 
write port for concurrent read and write, the second 
memory having memory locations for data accessible by 
asserting respective addresses to the second memory 
through the second read port and the second write port; 
and 

address generation circuitry respectively coupled by 
address lines to said first memory and to said second 
memory and operable to generate address bits represen 
tative of odd and even addresses, said first memory 
responsive only to the even addresses and said second 
memory responsive only to the odd addresses; and 

wherein said first memory is operable, in response to said 
address generation circuitry, to either read or write a first 
data quantity responsive to an even address during a 
same clock cycle said second memory is operable, in 
response to said address generation circuitry, to perform 
at least one of a read at a same time as a read of said first 
memory, or a write at a same time as a write of said first 
memory, a second data quantity, differing from said first 
data quantity, responsive to an odd address. 

2. The integrated circuit of claim 1 wherein the address 
generation circuitry is for operating sequentially for encryp 
tion. 

3. The integrated circuit of claim 1 wherein the address 
generation circuitry is operable to generate address bits rep 
resentative of at least one odd address and at least one even 
address concurrently. 

4. The integrated circuit of claim 1 further comprising data 
write circuitry and data read circuitry each coupled to said 
first and second memories. 

5. The integrated circuit of claim 1 further comprising a 
sequential control circuit coupled to said address generation 
circuitry and having a storage for a cryptological key. 

6. The integrated circuit of claim 1 further comprising a 
sequential control circuit operable to produce a series of reads 
and writes of data from said first and second memories 
thereby as a result to generate addresses for at least Some of 
the reads and writes in the series. 

7. The integrated circuit of claim 1 further comprising a 
sequential control circuit having a encryption control output 
coupled to the address generation circuitry. 

8. The integrated circuit of claim 1 further comprising a 
cryptological logic circuit responsive to data from said first 
and second memories. 

9. The integrated circuit of claim 1 further comprising a 
cryptological logic circuit including: 
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a first input for a stream of bits, 
a second input coupled to the first and second memories; 

and 
an output for Supplying a cryptologically altered stream of 

bits. 
10. The integrated circuit of claim 1 in combination with a 

processor programmed to execute steps in an encryptionalgo 
rithm, wherein the address generation circuitry is for operat 
ing in response to said encryption algorithm to address, for 
access in a single cycle, any one or more of a plurality of 
different cases that arise from concurrent access of a combi 
nation of the first read port, the first write port, the second read 
port, and the second write port. 

11. The integrated circuit of claim 1 wherein said first 
memory is operable, in response to said address generation 
circuitry, to read said first data quantity responsive to said 
even address during a same clock cycle said second memory 
is operable, in response to said address generation circuitry, to 
read said second data quantity, differing from said first data 
quantity, responsive to said odd address. 

12. The integrated circuit of claim 1 wherein said first 
memory is operable, in response to said address generation 
circuitry, to write said first data quantity responsive to said 
even address during a same clock cycle said second memory 
is operable, in response to said address generation circuitry, to 
write said second data quantity, differing from said first data 
quantity, responsive to said odd address. 

13. The integrated circuit of claim 1: 
wherein said first memory is operable, in response to said 

address generation circuitry, to read said first data quan 
tity responsive to a first even address during a same clock 
cycle said second memory is operable, in response to 
said address generation circuitry, to read a second data 
quantity, differing from said first data quantity, respon 
sive to a first odd address; and 

wherein, during said same clock cycle, said first memory is 
operable, in response to said address generation cir 
cuitry, to write a third data quantity responsive to a 
second even address and said second memory is oper 
able, in response to said address generation circuitry, to 
write a fourth data quantity, differing from said third 
data quantity, responsive to a second odd address. 

14. A methodofoperating an integrated circuit comprising: 
concurrently reading a first data quantity and writing a 

second data quantity in a first memory, the first memory 
having memory locations for data accessible by assert 
ing respective addresses to the first memory through a 
first read port and a first write port; 

concurrently reading a third data quantity and writing a 
fourth data quantity in a second memory, the second 
memory having memory locations for data accessible by 
asserting respective addresses to the second memory 
through a second read port and a second write port; and 

generating address bits representative of odd and even 
addresses, the first memory responsive only to the even 
addresses and the second memory responsive only to the 
odd addresses; and 

wherein said step of concurrently reading and writing data 
in a first memory occurs during a same clock cycle at a 
same time as said step of concurrently reading and writ 
ing data in a second memory. 

15. The method of claim 14 wherein the generating address 
bits provides an encryption-related operation. 

16. The method of claim 14 wherein the generating address 
bits provides at least one odd address and at least one even 
address concurrently. 
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17. The method of claim 14 further comprising sequen 
tially controlling the generating address bits based on a cryp 
tological key. 

18. The method of claim 14 further comprising sequen 
tially producing a series of reads and writes of data from the s 
first and second memories thereby as a result to generate 
addresses for at least some of the reads and writes in the 
series. 

19. The method of claim 14 further comprising a sequen 
tially controlling the generating address bits to provide a 
setup operation followed by an encryption operation. 10 

20. The method of claim 14 further comprising a crypto 
logically altering a stream data in response to bits from said 
first and second memories and said address bits. 

21. The method of claim 14 and further comprising oper- 15 
ating a processor to execute an encryption algorithm, wherein 
said step of generating address bits is in response to said 
encryption algorithm to generate the address bits, for access 
in a single cycle, any one or more of a plurality of different 
cases that arise from concurrent access of a combination of 
the first read port, the first write port, the second read port, and 2O 
the second write port. 

22. A method of operating an integrated circuit comprising: 
reading a first data quantity in a first memory, the first 
memory having memory locations for data accessible by 
asserting respective addresses to the first memory 
through a first read port; 

48 
concurrently and during a same clock cycle and at a same 

time with reading the first data quantity, reading a sec 
ond data quantity in a second memory, the second 
memory having memory locations for data accessible by 
asserting respective addresses to the second memory 
through a second read port; and 

generating address bits representative of odd and even 
addresses, the first memory responsive only to the even 
addresses and the second memory responsive only to the 
odd addresses. 

23. The method of claim 22 and further comprising: 
writing a third data quantity in the first memory, the first 
memory having memory locations for data accessible by 
asserting respective addresses to the first memory 
through a first write port; and 

concurrently and during a same clock cycle and at a same 
time with writing the third data quantity, writing a fourth 
data quantity in the second memory, the second memory 
having memory locations for data accessible by assert 
ing respective addresses to the second memory through 
a second write port. 

24. The method of claim 23 wherein each of the reading 
steps is concurrent and during a same clock cycle as each of 

25 the writing steps. 


