US 20240321384A1

a2y Patent Application Publication (o) Pub. No.: US 2024/0321384 Al

a9y United States

KIM et al. 43) Pub. Date: Sep. 26, 2024
(54) NPU WITH CAPABILITY OF BUILT-IN GO6F 11/26 (2006.01)
SELF-TEST GIIC 29/10 (2006.01)
. . (52) US.CL
(71) Applicant: DEEPX CO., LTD., Seongnam-si (KR) CPC ... G1IC 29/78 (2013.01); GO5B 19/41875

(72) Inventors: Lok Won KIM, Seongnam-si (KR);
Jeong Kyun YIM, Anyang-si (KR)

(21) Appl. No.: 18/678,072

(22) Filed: May 30, 2024

Related U.S. Application Data

(63) Continuation of application No. 18/193,351, filed on
Mar. 30, 2023, now Pat. No. 12,040,040, which is a
continuation of application No. 17/886,463, filed on
Aug. 12, 2022, now Pat. No. 11,651,835.

(30) Foreign Application Priority Data

May 3, 2022 (KR) oo 10-2022-0054878

Publication Classification

(51) Int. CL
G1IC 29/00
GO5B 19/418

(2006.01)
(2006.01)

(2013.01); GO6F 11/26 (2013.01); G11C 29/10
(2013.01); GOSB 2219/32368 (2013.01); GO5B
2219/45031 (2013.01)

(57) ABSTRACT

A neural processing unit (NPU) for testing a component
during runtime is provided. The NPU may include a plural-
ity of functional components including a first functional
component and a second functional component. At least one
of the plurality of functional components may be driven for
calculation of an artificial neural network. Another one of
the plurality of functional components may be selected as a
component under test (CUT). A scan test may be performed
on the at least one functional component selected as the
CUT. A tester for detecting a defect of an NPU is also
provided. The tester may include a component tester con-
figured to communicate with at least one functional com-
ponent of the NPU, select the at least one functional com-
ponent as a CUT, and perform a scan test for the selected
CUT.

100

NPU INTERFACE ~~—140

NPU SCHEDULER 130

NPU INTERNAL MEMORY (1~120

PE7

peg| T 110

PES

PET1

PE1Z2

Patent Application Publication Sep. 26, 2024 Sheet 1 of 29

100
NPU INTERFACE 140
NPU SCHEDULER 130
NPU INTERNAL MEMORY 120
PE1| | PE2]| | PE3| |PE4|
PE5| | PEB| | PE7| |PES| 110
peg| PE10] |PETT |PE1Z]

FIG. 1

US 2024/0321384 Al

Patent Application Publication

Sep. 26, 2024 Sheet 2 of 29 US 2024/0321384 A1

110
r/
PE1
(N)bit (M)bit
Multiplier ~—111
(N+M)bit
—P Adder i -112

(N+M+log2(L)bit

Accumulator

Sl

(Lloops

i(NJrMHogZ(L))bit

Bit quantization unit

o

113,
Initialization Reset

114

(X)bit

FI1G. 2

Patent Application Publication Sep. 26, 2024 Sheet 3 of 29 US 2024/0321384 A1

100

Nl

3

NPU INTERFACE ~140

NPU SCHEDULER 130

NPU INTERNAL MEMORY t1~120

PE1] {PEZ2] |PE3] | PE4

RES| | RE6) | RE7 | | RE8| ~110
PES| | PEBI [PE7] | PES

!
!
!
L RE9L IBE1O IBE11 F\’F12E
L PESL PE1O (PE1T PE12

RE1l | BE2| | RE3! [RE4 E

FI1G. 3

US 2024/0321384 Al

Sep. 26, 2024 Sheet 4 of 29

Patent Application Publication

110-10

PE4

PE1

110-12 110-13 110-14 110-15 110-16 110-17

110-11

FIG. 4

Patent Application Publication Sep. 26, 2024 Sheet S of 29

Convolution Paoling Convolution Pooling

Channe!s\,

FI1G. 5A

KERNEL 1 for)
. CHANNEL 1
: Py

Feature
Map 1

Fully

US 2024/0321384 Al

Fully Dutput

Connected Connected Predictions

e

N,

IKERNEL 4 for
! CHANNEL 1 |
t i

1
1
1
1
1
1
1
1

CONVOLUTION A

KERNEL 2 ford
| CHARNEL 2 |
‘ P

Feature
Map 2

CONVOLUTION

;]

I +

—HE - -
t i
| i
:KERNEL 5 for:
| CHANNEL 2 5

1
H 1

INPUT & : ‘ [:‘!;
IMAGE i |

%Y

IKERNEL 3 for

Map 3

CONVOLUTION

CONVOLUTION!

t
t
L
i

IKERMEL 6 for|
| CHARNEL 3 ;

1
]
1
U CHANNEL 3 |
i 1
]
1
1
1

Layer 1 Layer 2
(CONVOLUTION) (POOLING)

FI1G. 5B

§cow1vow1‘zom;

i
t
t
I
i

Layer 3
{CONVOLUTION)

Patent Application Publication

Sep. 26, 2024

Sheet 6 of 29 US 2024/0321384 Al

100
. NFU
190 ~ Wrapper
170
-~ NPU INTERFACE 2
140 p ICT

160

110

{

120

NPU

CONTROLLER

130

2

NPU
SCHEDULER

PROCESSING ELEMENTS

PE1 PE2 PE3
PE4 PES PEG
PEY PES PEY
PETO PETT |PETZ

NPU
INTERNAL
MEMORY

FIG. 6A

Patent Application Publication Sep. 26, 2024 Sheet 7 of 29 US 2024/0321384 A1

190 100
) I {

i NPU
Wrapper
¢ 170
NPU SCHEDULER 2
2 - Component
Tester
140
160 110 120
NPU PROCESSING ELEMENTS
COMNTROLLER
PE1 PEZ PE3
130
? = NPU
PE4] |PES| |PES INTERNAL
NPU MEMORY
SCHEDULAR pe7t |pesl |PEY9
PETO IPETY IPE1Z

FIG. 6B

Patent Application Publication Sep. 26, 2024 Sheet 8 of 29 US 2024/0321384 A1
I 190a 140 100
)) 0
w L . NPU
170 Wrapper NPU INTERFACE
ICT Wrapper NPU SCHEDULER
2 2 190d
190b 130 2
Wrapper
110 120
PROCESSING ELEMENTS
190c
2 PET PEZ2 PE3
Wrapper NPU
PE4 PES PEB INTERNAL
MEMORY
PEY PES PES
PETOL (PETY IPE12

FI1G. 6C

Patent Application Publication Sep. 26, 2024 Sheet 9 of 29 US 2024/0321384 A1
I 90a 140 100
) !
170 v _{ NPU
2 Wrapper NPU INTERFACE
Component Wrapper NPU SCHEDULER
Tester
2 2 190d
190b 130 2
Wrapper
Wrapper +—~190¢c 110 120
PROCESSING ELEMENTS
PE1 PEZ PE3
NPU
PE4 PES PEB INTERNAL
MEMORY
PE7 PES PES
PE1O (PETY IPE1Z

FI1G. 6D

US 2024/0321384 Al

Sep. 26,2024 Sheet 10 of 29

Patent Application Publication

_
, _ —~¥ 5300030
O _
_
i {
! 008
_
AHOWIW —¥ wIQ 4_'*
s OV ! 4——p HOSNIS
| 3OV
_
_ {
- B HIdAVHM = e e e _ ! 00¥
r 3 i X & |
{ (1 4 L | | _
oel | 1061 v g1831 ¥ A YT AHOMIN
¥ ININOINGD e T Gt _ R
HaddYHA WALISAS-NI HaddvHM Hidavemd |
\, A 7 v _
(T8~ 7 ﬁ [T oo¢
0L i 806} | |
h 2 ¥ |
_
HITIOHINGD ! ——¥ a0
_
..] !
N. 002

Patent Application Publication Sep. 26, 2024 Sheet 11 of 29 US 2024/0321384 A1l

Combinational
fogic

Combinational
logic

CLR

Previous FF ~ Scan-cell

following FF

FI1G. 8

Patent Application Publication Sep. 26, 2024 Sheet 12 of 29 US 2024/0321384 A1l

@
=

JCOUTs

W g Wg

A A
fuu:t
W
f_f_f'_’

Functional
Combinational
logic

INTPUTs

Vi
%
FaaWy

IR

e g W2 oY

Vs e a Vst
RYARNY

Y
T
5
T
Z
o

5t
LR
f
1)
3¢
LR
3
OLF
F1G. 9

sf
L
' >
3t
. E
s b
38
Qpb : g
y >
5
___’
) b

od
T
1
T
&l
Q
T
CLR

P
?
o
£

\
3
]
N
]
Q
]
LF
N
2
G

SET

1)

chain 1

1_chain 2

Bzan_chain_n

Patent Application Publication Sep. 26, 2024 Sheet 13 of 29 US 2024/0321384 A1l

Function Function
QOutput input
'y
190
Wrapper
TEST_INPUT
TEST_OUTPUT * |
TEST_EN ;
b 4
CuUT

FI1G. 10

Patent Application Publication Sep. 26, 2024 Sheet 14 of 29 US 2024/0321384 A1l

Remote host External
System componsnts
$ *
l 160 '
' }
170 | NPU !
! | |
ICT 650 . 660 670 Post l
A= 2 (l e detection
Uodats c o operalion i
Test ale Host - Post >
- N— i 190
Vecior Interface ACT —t }
Power gatmgl
620 - Wrapper |
State {C.ID co| Tester cut
Detector Scheduler
Powsar gatinglsignal - Wrapper
630 S
CONF Component configuration data S
640
_DATA 610 190
Regisler
selting
(SYSTEM BUS O

FIG. 11

Patent Application Publication

Power galing
controf signal

Global

Sep. 26,2024 Sheet 15 of 29

170

controt
uhit

From address decodar HSEL

ICT

From bus arbiter HMASTER

US 2024/0321384 A1l
VDD :
Power gating b 4
control signal Power fabric >
4
Status output :
signal < £~
CuT m& c::i'g}d?avice

Dff=chip nput
signal

t—,(Wrapper) ;
Accessing :

status register 2
190

30 bus
architeciure

FI1G. 12

Patent Application Publication Sep. 26, 2024 Sheet 16 of 29 US 2024/0321384 A1l

ARBITER

HMASTER

HGRANT
HBUSREQ

HSPLIT

HRESP
HREADY /
MASTER)‘ & SLAVE
HADDR
/ HDATA

FI1G. 13

Patent Application Publication Sep. 26, 2024 Sheet 17 of 29 US 2024/0321384 A1l

System bus

!
|
|

_.-__.{ wrapper

ICT

T

- wrapper

1‘%0

100

FIG. 14

Shift register
depth control

Variable depth shift
register

NPU

Output
signal

Patent Application Publication Sep. 26, 2024 Sheet 18 of 29

US 2024/0321384 Al
$601
Timirg CHECKING No
—— - = 1
expired TEST TIMER Pending CUT?
8611
S603 Yas
IDLERESS Timing CuT
DETECTION axpired BACK-OFF fecovery
8615 Test complstion
Timing expired
S605 S613 S608
System
access
TEST System CuT TEST RESULTY
PREPARATION racavery CHECK
Mext test
Systemn access vacior
5607 Tast error
CUT TEST VECTOR Transient time S617
ready INJECTION expirad
POST
DETECTION
OPERATION

FIG. 15

Patent Application Publication Sep. 26, 2024 Sheet 19 of 29 US 2024/0321384 A1l

) BUS.DATALIN
{ i
HSEL_RAM {
TESTER pe——m e e o e T e e e o o -
{ !
A ; !
1 e
! HSEL_RAM N 1/ P 1o
§ TEST_DATA_IN ; J HSEL RAM
| r N |
: o
! i |
_ft‘—' o i h 4
BUS i INTERNAL MEMORY ! TEMP |BEGLWE
BUS_ADDR p :) 1 ; Register file
| T
} 600~ ; |
| \ /| |
PoHIT <@ MEM_WE } § }
| BUS WE P | {
_____________________ b
A i
Address HIT
Comp @ B
§ BUS_WE
j’ ST WE

BUS_DATA_QUT

FIG. 16

Patent Application Publication Sep. 26, 2024 Sheet 20 of 29

Expected result

Seed

I

US 2024/0321384 Al

Random number generator

Random number

cuT

Output data

comparison {e.g., XOR operation)

{
|
(
(

Perform comparison
{XOR operation)

L_/_/“ix_/k_/

Test result Register

FIG. 17

Patent Application Publication Sep. 26, 2024 Sheet 21 of 29 US 2024/0321384 A1l

=
<
o
o
=
je)
[an]
[)]

o0

| o

-
[a]

5 o
~
=
B

f_clk
Sk

sclk
s_clk

Patent Application Publication Sep. 26, 2024 Sheet 22 of 29 US 2024/0321384 A1l

640
TESTER
f_clk
Wrapper p—~1980
S
Clock s _clk
sclk 50— Congfiguration cuT
TEL el
C_ID B— L~ 190
——¥ decoder Wrapper

FIG. 18B

, . Data SET Q s Combinational SET Q
> logic >
-"i ("LRE (‘LRE
Tlaunch X - A=
\ Tclk2g ‘\
clk "‘ > ,

e Tcapture

FIG. 18C

Patent Application Publication

TEST_INPUT

Function
Cutput

Sep. 26,2024 Sheet 23 of 29

Wrapper

TEST.OUTPUT

-

TEST_EN

SCAN_INT

US 2024/0321384 Al

cuT

SCAN_ENABLE

TEST_ENABLE

SCAN_INZ

SCAN_INRn

SCAN_QUTH

»

{

SCAN_OUTZ

»

»

SCAN_OUTn

»

»

FIG. 19A

US 2024/0321384 Al

Sep. 26,2024 Sheet 24 of 29

Patent Application Publication

dol DId

J1EVND NYOS

- . anding) (nding)
ERTRES

BlED peinided| elep peiiys

Lt

N9 1dING”

N YOS 31831 | 0310343

yIﬁ ERCELENEEN
L (induy) (nduy)

061~ 104dCIM ey SOLOI | lejep peunjdeo | E1ep PeIuS
f#llHlL EEEEN m N
LNARITNOILONN HNALAOTNOILONN 0¥9 _

US 2024/0321384 Al

Sep. 26,2024 Sheet 25 of 29

Patent Application Publication

Blen Hu

0C DI

RIRD BUIHIUS Ut

QINIED

pROLITPRO]

881 iUl |

_ X gitsicl _ peojunTpeo; stels siu) (g0 SASHoUAG) elep Jjiug _

2iCeD

PEOUNTPRG)

8085 Sij} |

s0R1S BiU) 80 SASUOLAG) BIRp g _

_ 8inydeD _

giep BUlius 181

MBS

_ siden _ peojurTpRO; 5085 5:0] [[80 SASOUAS) B1RP LG _ NITNYOS

8imsceD

PROLNTPRO]

180 SASCOLAS) BIBP LS % ainideD _bDOtzqow

— = < N (A -
A0S eme . Jodo | T - e— [UININYOS
)Vj.u)fau
- -4 | -
DIANOTNY0S +—o . o b—- e— [INMNYOS
e— 101N NYOS

US 2024/0321384 Al

Sep. 26,2024 Sheet 26 of 29

Patent Application Publication

1C DId

NITHRVOS

e GLO000 0L LI 0L0001010001 LELD
NITNYOS

O LLLIO0E0LLLL LT 0L000 1010001 LELD
HITNYOS

e GLLLIQQLOL LT LO00 010001 LELD
NITNYOS

- 0 0 i) ()
S _) (
N0 NS 4 uQ 0 ﬁ &0 ﬁ 2Q i
2180} RPUONBUIGWINT
] 0 e ()) (0)
u z
[a ¥Q £0 20 10
m ©
. «— ug C € 90 €0 4 wov
INOTNYDS ol
i
1 ug o B¢ £a 20 |
1NOTHYOS
— ug R e 4 £q 20 1l
100 NYSS

e 0L LLIO0L0LLLLL " 00GICI000E 110
MITNYOS

auy
ey

au
BUIYS

US 2024/0321384 Al

Sep. 26,2024 Sheet 27 of 29

Patent Application Publication

1 b 300N 4 4
300K 1531 10d1N0 8pous dpys NOLYHIL0 WRHON jlo-oeg 300K 1831 1NLNO
BlEp g aInde)) wiep HuS BBp UOROUNS Byuoosl| By |emded RIEp YIS _sa%o_ BIEp YIUS

“LNOTNYOS

Patent Application Publication

TIME TO
STOP
COMPARING

Sep. 26,2024 Sheet 28 of 29

TIME INTERVAL FOR
THE SHIFT

US 2024/0321384 Al

IME INTERVAL FOR

THENOBMA

P

capture

TIME INTERVAL FOR
THE SHIFT

Patent Application Publication

HSE_con

Sep. 26,2024 Sheet 29 of 29

o jo
- o
W -
75 D

JAN

jod
g ©
jsed [0
k=) o
U'J’ o

a {o
[oed @
L —d
[€9] [®]

JAN
g =
o jasd
U! “CS[
P

< e
[oad o
L)
73] [}

A
M (=3

Scan_test_data(S_data}

Function_data(f_data}

FIG. 24

US 2024/0321384 Al

US 2024/0321384 Al

NPU WITH CAPABILITY OF BUILT-IN
SELF-TEST

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser. No. 18/193,351 filed on Mar. 30, 2023,
which is a continuation application of U.S. patent applica-
tion Ser. No. 17/886,463 filed on Aug. 12, 2022, which
claims the priority of Korean Patent Application No.
10-2022-0054878 filed on May 3, 2022, in the Korean
Intellectual Property Office, the disclosure of which is
incorporated herein by reference.

BACKGROUND OF THE DISCLOSURE

Technical Field

[0002] The present disclosure relates to detection of a
failure of a component of a neural processing unit (NPU) in
a running system, i.e., during the NPU’s runtime.

Background Art

[0003] Artificial intelligence (AI) refers to intelligence
which imitates human intelligence. Al technology, which
has been gradually developing, is used in systems for
recognition, classification, inference, prediction, control/
decision making, etc. Recently, in order to increase Al
operating speed, a neural processing unit (NPU) is being
developed.

[0004] Meanwhile, NPUs are comprised of a multitude of
internal components, which include semiconductor devices.
As the density of the semiconductor devices increases, their
manufacture becomes cheaper. However, increased density
also increases complexity, which inherently increases a
defect rate.

SUMMARY OF THE DISCLOSURE

[0005] The inventor of the present disclosure has recog-
nized that defects arising during a manufacturing process of
an NPU device may be found during a test performed before
shipment from the factory. However, there may be compo-
nents in which minor or minute defects are present but are
not found by a pre-shipment test, such that a defective
device may be handed over to users. Such defects are
gradually amplified, over time, due to a fatigue stress or a
physical stress caused by repeated usage, to ultimately result
in an erroneous operation of the NPU.

[0006] Such erroneous operation may not be so problem-
atic when the NPU is installed in electronics applied for user
entertainment. However, the inventor of the present disclo-
sure has recognized that the situation is different when the
NPU is installed in a mission-critical product.

[0007] Specifically, the inventor of the present disclosure
has recognized a problem in that when the NPU erroneously
operates due to the failure, defect, or damage, unpredictable
artificial intelligence (Al) operation results may be output.
[0008] For example, the inventor of the present disclosure
has recognized that when the NPU is used for an electronic
device mounted in an autonomous driving vehicle, a drone,
Urban Air Mobility (UAM) aircraft, an unmanned aerial
vehicle (UAV), or used for an electronic device mounted in
an Al robot, the unpredictable Al operation results may be
output due to the failure, defect, or damage of the NPU.

Sep. 26, 2024

[0009] Therefore, the inventor of the present disclosure
has recognized that it is necessary to propose a method for
performing a test, heretofore performed only before factory
shipment, in the NPU in the runtime.

[0010] In other words, it was recognized that it was
necessary to detect defects through testing.

[0011] According to an aspect of the present disclosure, a
neural processing unit (NPU) is provided. The NPU may
include a plurality of functional components including at
least one functional component which operates for an opera-
tion of an artificial neural network (ANN), and another
functional component which is selected as a component
under test (CUT) and undergoes a scan test.

[0012] The plurality of functional components may
include at least one of at least one memory; at least one
controller; and at least one processing clement.

[0013] The plurality of the functional components may
further include at least one functional component each of
which includes a plurality of memory instances, the plurality
of memory instances includes a first group of memory
instances and a second group of memory instances. The
second group of memory instances may be configured to be
used if the scan test is performed on the first group of
memory instances.

[0014] The CUT may include a plurality of flip-flops. The
scan test may be configured to form one or more scan chains
by connecting the plurality of flip-flops, apply a test input to
at least one of the plurality of flip-flops, and acquire a test
result from operations of combinational logics of the at least
one of the plurality of flip-flops to analyze whether the CUT
is defective or normal during runtime.

[0015] The NPU may further include a component tester
configured to monitor each state of the plurality of func-
tional components.

[0016] The plurality of functional components may
include a first functional component and a second functional
component. The first functional component may include a
plurality of processing elements (PEs), the plurality of PEs
including a first group of PEs and a second group of PEs.
The second group of PEs may be configured to perform the
operation of the artificial neural network if the scan test is
performed on the first group of PEs.

[0017] According to another aspect of the present disclo-
sure, a tester for detecting a defect of a neural processing
unit (NPU) is provided. The tester may include a component
tester configured to communicate with at least one func-
tional component of the NPU, select the at least one func-
tional component as a component under test (CUT), and
perform a scan test for the selected CUT.

[0018] The component tester may be included in the NPU
or disposed external to the NPU.

[0019] The tester may further include an interface config-
ured to enable communication between the component tester
and each of the at least one functional component of the
NPU.

[0020] The component tester may be configured to per-
form the scan test on the at least one functional component
during runtime of the NPU.

[0021] The tester may further include a scan wrapper
arranged in correspondence to each of the at least one
functional component.

[0022] The at least one functional component may further
include a plurality of memory instances, the plurality of
memory instances including a first group of memory

US 2024/0321384 Al

instances and a second group of memory instances. The
second group of memory instances may be configured to be
used if the scan test is performed on the first group of
memory instances.

[0023] Based on a result of the scan test, the tester may be
configured to deactivate at least one of the at least one
functional component of the NPU, revoke at least one
address of at least one functional component of the NPU,
turn off at least one of the at least one functional component
of the NPU, or isolate at least one of the at least one
functional component of the NPU.

[0024] The scan test may be configured to be performed
with at least a portion selected from among a plurality of
pre-stored test patterns.

[0025] According to another aspect of the present disclo-
sure, a system is provided. The system may include a neural
processing unit (NPU) including a plurality of functional
components configured to process at least one artificial
neural network (ANN) model; and a component tester
configured to scan test at least one of the plurality of
functional components.

[0026] The system may further include a plurality of
wrappers respectively connected to the plurality of func-
tional components.

[0027] The component tester may be configured to isolate
at least one of the plurality of functional components for the
scan test.

[0028] The system may further include a plurality of
wrappers connected to the plurality of functional compo-
nents, respectively. The component tester may be configured
to monitor each of the plurality of functional components by
each of the plurality of wrappers.

[0029] The component tester may be configured to per-
form the scan test by at least one scan chain formed by
connecting a plurality of flip-flops.

[0030] The component tester may be configured to gen-
erate a control signal that controls each of the plurality of
functional components to operate in a normal mode or a scan
test mode.

[0031] According to the present disclosure, tests that could
only be performed before shipment from a semiconductor
factory can be performed in the NPU semiconductor during
runtime.

[0032] According to the present disclosure, a defect may
be detected based on a test result.

[0033] According to the present disclosure, even if micro
defects that were not discovered before shipment from the
factory are gradually amplified by fatigue stress or physical
stress caused by repetitive driving, there is an advantage in
detecting them.

[0034] According to the present disclosure, it is advanta-
geous to detect that the NPU outputs unpredictable artificial
intelligence (Al) operation results due to a failure, defect, or
damage.

[0035] Accordingly, according to the present disclosure, a
high reliability of an NPU mounted in an autonomous
vehicle, drone, UAM aircraft, the UAV, or Al robot may be
ensured.

BRIEF DESCRIPTION OF THE DRAWINGS

[0036] FIG. 1 is a schematic conceptual view illustrating
a neural processing unit according to the present disclosure.

Sep. 26, 2024

[0037] FIG. 2 is a schematic conceptual view illustrating
one processing element of a plurality of processing elements
applicable to the present disclosure.

[0038] FIG. 3 is an exemplary view illustrating a modified
example of the neural processing unit 100 of FIG. 1.
[0039] FIG. 4 is a schematic conceptual view illustrating
an exemplary artificial neural network model.

[0040] FIG. 5A is a view illustrating a basic structure of a
convolution neural network.

[0041] FIG. 5B is a view illustrating an overall operation
of a convolution neural network.

[0042] FIG. 6A is a block diagram illustrating the con-
figuration of an NPU with a test function according to a first
example of the present disclosure.

[0043] FIG. 6B is an exemplary diagram illustrating a
modified example of the first example shown in FIG. 6A.
[0044] FIG. 6C is a block diagram illustrating the con-
figuration of an NPU with a test function according to a
second example of the present disclosure.

[0045] FIG. 6D is an exemplary view illustrating a modi-
fied example of the second example shown in FIG. 6C.
[0046] FIG. 7 is a block diagram illustrating the configu-
ration of an NPU with a test function according to a third
example of the present disclosure.

[0047] FIG. 8 is a view illustrating an example of scanning
a flip-flop.
[0048] FIG. 9is aview illustrating an example in which an

architecture for scan test is added in a hardware design.
[0049] FIG. 10 is an exemplary view illustrating an opera-
tion of a wrapper.

[0050] FIG. 11 is an exemplary view illustrating an inter-
nal configuration of an ICT.

[0051] FIG. 12 is a block diagram specifically illustrating
an operation of monitoring whether a functional component
is in an idle state, by an ICT.

[0052] FIG. 13 is an exemplary view illustrating an opera-
tion between a master, a slave, and an arbiter which operate
on a system bus.

[0053] FIG. 14 is a view illustrating an example in which
a shift register is added in a chip.

[0054] FIG. 15 is an exemplary view illustrating an opera-
tion order of an ICT.

[0055] FIG. 16 is a block diagram illustrating for easy
understanding of a test process of an internal memory.
[0056] FIG. 17 is an exemplary view illustrating a process
of testing a function using a random number generator.
[0057] FIG. 18A is a view illustrating an example of
multiple clocks.

[0058] FIG. 18B is an exemplary view illustrating an
operation of a tester under the multiple clocks.

[0059] FIG. 18C is a view illustrating a path of test input
data.
[0060] FIG. 19A is a view illustrating an example of a

functional component.

[0061] FIG. 19B is a view illustrating an example of test
input data (for example, a test vector) injected into a tester
in an ICT.

[0062] FIG. 20 is a view illustrating a test process.
[0063] FIG. 21 is a view illustrating an example of shift
data and capture data during a test process.

[0064] FIG. 22 is a view illustrating an example of switch-
ing a test mode to a normal operation mode.

[0065] FIG. 23 is a view illustrating an example in which
flip-flops operate on a scan chain;

US 2024/0321384 Al

[0066] FIG. 24 is a view illustrating a part of a CUT which
operates in a normal operation mode.

DETAILED DESCRIPTION OF THE
EMBODIMENT

[0067] Specific structural or step-by-step descriptions for
the embodiments according to the concept of the present
disclosure disclosed in the present specification or applica-
tion are merely illustrative for the purpose of describing the
embodiments according to the concept of the present dis-
closure. The examples according to the concept of the
present disclosure may be carried out in various forms and
are not interpreted to be limited to the examples described in
the present specification or application.

[0068] Various modifications and changes may be applied
to the examples in accordance with the concept of the
present disclosure and the examples may have various forms
so that the examples will be described in detail in the
specification or the application with reference to the draw-
ings. However, it should be understood that the examples
according to the concept of the present disclosure is not
limited to the specific examples, but includes all changes,
equivalents, or alternatives which are included in the spirit
and technical scope of the present disclosure.

[0069] Terminologies such as first and/or second may be
used to describe various components but the components are
not limited by the above terminologies. The above termi-
nologies are used to distinguish one component from the
other component, for example, a first component may be
referred to as a second component without departing from a
scope in accordance with the concept of the present inven-
tion and similarly, a second component may be referred to
as a first component.

[0070] It should be understood that, when it is described
that an element is “coupled” or “connected” to another
element, the element may be directly coupled or directly
connected to the other element or coupled or connected to
the other element through a third element. In contrast, when
it is described that an element is “directly coupled” or
“directly connected” to another element, it should be under-
stood that no element is present therebetween. Other expres-
sions which describe the relationship between components,
for example, “between,” “adjacent to,” and “directly adja-
cent t0” should be interpreted in the same manner.

[0071] Terminologies used in the present specification are
used only to describe specific examples, and are not intended
to limit the present disclosure. A singular form may include
a plural form if there is no clearly opposite meaning in the
context. In the present specification, it should be understood
that terms “include” or “have” indicate that a feature, a
number, a step, an operation, a component, a part, or a
combination thereof described in the specification is present,
but do not exclude a possibility of presence or addition of
one or more other features, numbers, steps, operations,
components, parts, or combinations thereof, in advance.

[0072] If it is not contrarily defined, all terms used herein
including technological or scientific terms have the same
meaning as those generally understood by a person with
ordinary skill in the art. Terminologies which are defined in
a generally used dictionary should be interpreted to have the
same meaning as the meaning in the context of the related
art but are not interpreted as an ideally or excessively formal
meaning if it is not clearly defined in this specification.

Sep. 26, 2024

[0073] When the examples is described, a technology
which is well known in the technical field of the present
disclosure and is not directly related to the present disclosure
will not be described. The reason is that unnecessary
description is omitted to clearly transmit the gist of the
present disclosure without obscuring the gist.

Definition of Terminologies

[0074] Terms used in the present specification will here-
inbelow be defined, in brief, to facilitate an understanding of
the present disclosure.

[0075] NPU is an abbreviation for a neural processing unit
and refers to a processor specialized for an operation of an
artificial neural network model separately from the central
processing unit (CPU).

[0076] ANN is an abbreviation for an artificial neural
network and refers to a network which connects nodes in a
layered structure by imitating the connection of the neurons
in the human brain through a synapse to imitate human
intelligence.

[0077] Information about a structure of an artificial neural
network includes information about the number of layers,
the number of nodes in a layer, a value of each node,
information about an operation processing method, and
information about a weight matrix which is applied to each
node.

[0078] Information about data locality of an artificial
neural network is information which predicts an operation
order of an artificial neural network model which is pro-
cessed by the neural processing unit based on a data access
request order which is requested to a separate memory by the
neural processing unit.

[0079] DNN is an abbreviation for a deep neural network
and may mean that the number of hidden layers of the
artificial neural network is increased to implement higher
artificial intelligence.

[0080] CNN is an abbreviation for a convolutional neural
network and is a neural network which functions similar to
the image processing performed in a visual cortex of the
human brain. The convolutional neural network is known to
be appropriate for image processing and is known to be easy
to extract features of input data and identify the pattern of
the features.

[0081] Kernel means a weight matrix which is applied to
the CNN. The value of the kernel can be determined through
machine learning.

[0082] Hereinafter, the present disclosure will be
described in detail by explaining examples of the present
disclosure with reference to the accompanying drawings.
[0083] FIG. 1 illustrates a neural processing unit accord-
ing to the present disclosure.

[0084] A neural processing unit (NPU) 100 illustrated in
FIG. 1 is a processor specialized to perform an operation for
an artificial neural network.

[0085] The artificial neural network refers to a network in
which are collected artificial neurons which, when various
inputs or entry stimulations, multiply a weight by the inputs
or stimulations, add the multiplied values, and convert a
value obtained by additionally adding a deviation using an
active function to transmit. The artificial neural network
trained as described above may be used to output an infer-
ence result from input data.

[0086] The NPU 100 may be a semiconductor device
implemented by an electronic circuit. The electronic circuit

US 2024/0321384 Al

may refer to a circuit including a large number of electronic
elements (transistors, capacitors, etc.).

[0087] The NPU 100 may include a plurality of processing
elements (PE) 110, an NPU internal memory 120, an NPU
scheduler 130, and an NPU interface 140. Each of the
plurality of processing elements 110, the NPU internal
memory 120, the NPU scheduler 130, and the NPU interface
140 may be a semiconductor circuit to which a large number
of the electronic elements are connected. Therefore, some of
electronic elements may be difficult to identify or be distin-
guished with the naked eye, but may be identified only by an
operation.

[0088] For example, an arbitrary circuit may operate as a
plurality of the processing elements 110, or may operate as
an NPU scheduler 130. The NPU scheduler 130 may be
configured to perform the function of the control unit
configured to control the artificial neural network inference
operation of the NPU 100.

[0089] The NPU 100 may include the plurality of pro-
cessing elements 110, the NPU internal memory 120 con-
figured to store an artificial neural network model inferred
from the plurality of processing elements 110, and the NPU
scheduler 130 configured to control the plurality of process-
ing elements 110 and the NPU internal memory 120 based
on data locality information or information about a structure
of the artificial neural network model. Here, the artificial
neural network model may include the data locality infor-
mation or the information about the structure of the artificial
neural network. The artificial neural network model may
refer to an Al recognition model trained to perform a specific
inference function.

[0090] The plurality of processing elements 110 may
perform an operation for an artificial neural network.

[0091] The NPU interface 140 may communicate with
various components connected to the NPU 100, for example,
memories, via a system bus.

[0092] The NPU scheduler 130 may be configured to
control an operation of the plurality of processing elements
110 and read/write instructions of the NPU internal memory
120 for an inference operation of the neural processing unit
100.

[0093] The NPU scheduler 130 may control the plurality
of processing elements 110 and the NPU internal memory
120 based on the data locality information or the information
about the structure of the artificial neural network model.

[0094] The NPU scheduler 130 may analyze or receive
analyzed information on a structure of an artificial neural
network model which may operate in the plurality of pro-
cessing elements 110. For example, data of the artificial
neural network, which may be included in the artificial
neural network model may include node data (i.e., a feature
map) of each layer, data on a layout of layers, locality
information of layers or information about the structure, and
at least a portion of weight data (i.e., weight kernel) of each
of connection networks connecting the nodes of the layers.
The data of the artificial neural network may be stored in a
memory provided in the NPU scheduler 130 or the NPU
internal memory 120.

[0095] The NPU scheduler 130 may schedule an operation
order of the artificial neural network model to be processed
by an NPU 100 based on the data locality information or the
information about the structure of the artificial neural net-
work model.

Sep. 26, 2024

[0096] The NPU scheduler 130 may acquire a memory
address value in which the feature map of a layer of the
artificial neural network model and weight data are stored
based on the data locality information or the information
about the structure of the artificial neural network model.
For example, the NPU scheduler 130 may acquire the
memory address value of the feature map of the layer of the
artificial neural network model and the weight data which
are stored in the memory. Accordingly, the NPU scheduler
130 may acquire the feature map of a layer and weight data
of an artificial neural network model to be driven from the
main memory, to store the acquired data in the NPU internal
memory 120.

[0097] The feature map of each layer may have a corre-
sponding memory address value.

[0098] Each of the weight data may have a corresponding
memory address value.

[0099] The NPU scheduler 130 may schedule an operation
order of the plurality of processing elements 110 based on
the data locality information or the information about the
structure of the artificial neural network model, for example,
the layout information of layers of the artificial neural
network or the information about the structure of the arti-
ficial neural network model.

[0100] The NPU scheduler 130 schedules based on the
data locality information or the information about the struc-
ture of the artificial neural network model so that the NPU
scheduler may operate in a different way from a scheduling
concept of a normal CPU. The scheduling of the normal
CPU operates to provide the highest efficiency in consider-
ation of fairness, efficiency, stability, and reaction time. That
is, the normal CPU schedules to perform the most process-
ing during the same time in consideration of a priority and
an operation time.

[0101] A conventional CPU uses an algorithm which
schedules a task in consideration of data such as a priority
or an operation processing time of each processing.

[0102] In contrast, the NPU scheduler 130 may control the
NPU 100 according to a determined processing order of the
NPU 100 based on the data locality information or the
information about the structure of the artificial neural net-
work model.

[0103] Moreover, the NPU scheduler 130 may operate the
NPU 100 according to the determined the processing order
based on the data locality information or the information
about the structure of the artificial neural network model
and/or data locality information or information about a
structure of the NPU 100 to be used.

[0104] However, the present disclosure is not limited to
the data locality information or the information about the
structure of the NPU 100.

[0105] The NPU scheduler 130 may be configured to store
the data locality information or the information about the
structure of the artificial neural network.

[0106] That is, even though only the data locality infor-
mation or the information about the structure of the artificial
neural network of the artificial neural network model is
utilized, the NPU scheduler 130 may determine a processing
order (sequence).

[0107] Moreover, the NPU scheduler 130 may determine
the processing order of the NPU 100 by considering the data
locality information or the information about the structure of
the artificial neural network model and data locality infor-
mation or information about a structure of the NPU 100.

US 2024/0321384 Al

Furthermore, optimization of the processing is possible
according to the determined processing order.

[0108] The plurality of processing elements 110 refers to
a configuration in which a plurality of processing elements
PE1 to PE12 configured to operate a feature map and weight
data of the artificial neural network is disposed. Each
processing element may include a multiply and accumulate
(MAC) operator and/or an arithmetic logic unit (ALU)
operator, but the examples according to the present disclo-
sure are not limited thereto.

[0109] Each processing element may be configured to
optionally further include an additional special function unit
for processing the additional special function.

[0110] For example, it is also possible for the processing
element PE to be modified and implemented to further
include a batch-normalization unit, an activation function
unit, an interpolation unit, and the like.

[0111] Even though FIG. 1 illustrates a plurality of pro-
cessing elements as an example, operators implemented by
a plurality of multiplier and adder trees may also be con-
figured to be disposed in parallel in one processing element,
instead of the MAC. In this case, the plurality of processing
elements 110 may also be referred to as at least one
processing element including a plurality of operators.
[0112] The plurality of processing elements 110 is config-
ured to include a plurality of processing elements PE1 to
PE12. The plurality of processing elements PE1 to PE12 of
FIG. 1 is just an example for the convenience of description
and the number of the plurality of processing elements PE1
to PE12 is not limited. A size of the processing element array
110 may be determined by the number of the plurality of
processing elements PE1 to PE12. The plurality of process-
ing elements 110 may be implemented by an NxM matrix.
Here, N and M are integers greater than zero. The plurality
of processing elements 110 may include NxM processing
elements. That is, one or more processing elements may be
provided.

[0113] A size of the PE array 110 may be designed in
consideration of the characteristic of the artificial neural
network model in which the NPU 100 operates.

[0114] The plurality of processing elements 110 is config-
ured to perform a function such as addition, multiplication,
and accumulation required for the artificial neural network
operation. In other words, the plurality of processing ele-
ments 110 may be configured to perform a multiplication
and accumulation (MAC) operation.

[0115] Hereinafter, a first processing element PE1 among
the plurality of processing elements 110 will be explained
through an example.

[0116] FIG. 2 illustrates one processing element of a
plurality of processing elements applicable to the present
disclosure.

[0117] The NPU 100 according to the examples of the
present disclosure may include the plurality of processing
elements 110, the NPU internal memory 120 configured to
store an artificial neural network model inferred from the
plurality of processing elements 110, and the NPU scheduler
130 configured to control the plurality of processing ele-
ments 110 and the NPU internal memory 120 based on data
locality information or information about a structure of the
artificial neural network model. The plurality of processing
elements 110 is configured to perform the MAC operation
and the plurality of processing elements 110 is configured to

Sep. 26, 2024

quantize and output the MAC operation result, but the
examples of the present disclosure are not limited thereto.
[0118] The NPU internal memory 120 may store all or a
part of the artificial neural network model in accordance
with the memory size and the data size of the artificial neural
network model.

[0119] The first processing element PE1 may include a
multiplier 111, an adder 112, an accumulator 113, and a bit
quantization unit 114. However, the examples according to
the present disclosure are not limited thereto and the plu-
rality of processing elements 110 may be modified in
consideration of the operation characteristic of the artificial
neural network.

[0120] The multiplier 111 multiplies input (N) bit data and
(M) bit data. The operation value of the multiplier 111 is
output as (N+M) bit data.

[0121] The multiplier 111 may be configured to receive
one variable and one constant.

[0122] The variable value may be an operation value of
each layer and the NPU scheduler 130 may recognize a
reusable variable value based on the data locality informa-
tion or the information about the structure of the artificial
neural network model and control the NPU internal memory
120 to reuse the memory.

[0123] The constant value may be weight data of each
connection network and the NPU scheduler 130 may rec-
ognize a constant value of a connection network which is
repeatedly used based on the data locality information or the
information about the structure of the artificial neural net-
work model and control the NPU internal memory 120 to
reuse the memory.

[0124] The accumulator 113 accumulates an operation
value of the multiplier 111 and an operation value of the
accumulator 113 using the adder 112 as many times as the
number of (L) loops. Therefore, a bit width of data of an
output unit and an input unit of the accumulator 113 may be
output to (N+M+log 2(1)) bits. Here, L is an integer greater
than zero.

[0125] When the accumulation is completed, the accumu-
lator 113 is applied with an initialization reset to initialize
the data stored in the accumulator 113 to zero, but the
examples according to the present disclosure are not limited
thereto.

[0126] The bit quantization unit 114 may reduce the bit
width of the data output from the accumulator 113. The bit
quantization unit 114 may be controlled by the NPU sched-
uler 130. The bit width of the quantized data may be output
to (X) bits. Here, X is an integer greater than zero. According
to the above-described configuration, the plurality of pro-
cessing elements 110 is configured to perform the MAC
operation and the plurality of processing elements 110 may
quantize the MAC operation result to output the result. The
quantization may have an effect that the larger the (L) loops,
the smaller the power consumption. Further, when the power
consumption is reduced, the heat generation may also be
reduced. Specifically, when the heat generation is reduced,
the possibility of the erroneous operation of the NPU 100
due to the high temperature may be reduced.

[0127] Output data (X) bits of the bit quantization unit 114
may serve as node data of a subsequent layer or input data
of a convolution. When the artificial neural network model
is quantized, the bit quantization unit 114 may be configured
to be supplied with quantized information from the artificial
neural network model. However, it is not limited thereto and

US 2024/0321384 Al

the NPU scheduler 130 may also be configured to extract
quantized information by analyzing the artificial neural
network model. Accordingly, the output data (X) bit is
converted to a quantized bit width to be output so as to
correspond to the quantized data size. The output data (X) bit
of the bit quantization unit 114 may be stored in the NPU
internal memory 120 with a quantized bit width.

[0128] The plurality of processing elements 110 of the
NPU 100 according to an example of the present disclosure
may include a multiplier 111, an adder 112, and an accu-
mulator 113. The bit quantization unit 114 may be selected
according to whether quantization is applied or not.

[0129] FIG. 3 illustrates a modified example of the NPU
100 of FIG. 1.
[0130] The NPU 100 of FIG. 3 is substantially the same as

the processing unit 100 exemplarily illustrated in FIG. 1,
except for the plurality of processing elements 110. Thus,
redundant description will be omitted for the convenience of
description.

[0131] The plurality of processing elements 110 exemplar-
ily illustrated in FI1G. 3 may further include register files RF1
to RF12 corresponding to processing elements PE1 to PE12
in addition to a plurality of processing elements PE1 to
PE12.

[0132] The plurality of processing elements PE1 to PE12
and the plurality of register files RF1 to RF12 of FIG. 3 are
just an example for the convenience of description and the
number of the plurality of processing elements PE1 to PE12
and the plurality of register files RF1 to RF12 is not limited.
[0133] A size of, or the number of, processing element
array 110 may be determined by the number of the plurality
of processing elements PE1 to PE12 and the plurality of
register files RF1 to RF12. The size of the plurality of
processing elements 110 and the plurality of register files
RF1 to RF12 may be implemented by an NxM matrix. Here,
N and M are integers greater than zero.

[0134] An array size of the plurality of processing ele-
ments 110 may be designed in consideration of the charac-
teristic of the artificial neural network model in which the
NPU 100 operates. For additional explanation, the memory
size of the register file may be determined in consideration
of a data size, a required operating speed, and a required
power consumption of the artificial neural network model to
operate.

[0135] The register files RF1 to RF12 of the NPU 100 are
static memory units which are directly connected to the
processing elements PE1 to PE12. For example, the register
files RF1 to RF12 may be configured by flip-flops and/or
latches. The register files RF1 to RF12 may be configured to
store the MAC operation value of the corresponding pro-
cessing elements PE1 to PE12. The register files RF1 to
RF12 may be configured to provide or be provided with the
weight data and/or node data to or from the NPU internal
memory 120.

[0136] Itis also possible that the register files RF1 to RF12
are configured to perform a function of a temporary memory
of the accumulator during MAC operation.

[0137] FIG. 4 illustrates an exemplary artificial neural
network (ANN) model.

[0138] Hereinafter, an operation of an exemplary artificial
neural network model 110-10 which may operate in the NPU
100 will be explained.

[0139] The exemplary artificial neural network model
110-10 of FIG. 4 may be an artificial neural network which

Sep. 26, 2024

is trained in the NPU 100 as shown in FIG. 1 or FIG. 4 or
trained in a separate machine learning device. The artificial
neural network model may be an artificial neural network
which is trained to perform various inference functions such
as object recognition or voice recognition.

[0140] The artificial neural network model 110-10 may be
a deep neural network (DNN).

[0141] However, the artificial neural network model 110-
10 according to the examples of the present disclosure is not
limited to the deep neural network.

[0142] For example, the artificial neural network model
may be a trained model to perform inference such as object
detection, object segmentation, image/video reconstruction,
image/video enhancement, object tracking, event recogni-
tion, event prediction, anomaly detection, density estima-
tion, event search, measurement, and the like.

[0143] For example, the artificial neural network model
can be a model such as Bisenet, Shelfnet, Alexnet, Densenet,
Efficientnet, EfficientDet, Googlenet, Mnasnet, Mobilenet,
Resnet, Shufflenet, Squeezenet, VGG, Yolo, RNN, CNN,
DBN, RBM, LSTM, and the like. However, the present
disclosure is not limited thereto, and new artificial neural
network models to operate in the NPU are being continu-
ously released.

[0144] However, the present disclosure is not limited
thereto. Further, the artificial neural network model 110-10
may be an ensemble model based on at least two different
models.

[0145] The artificial neural network model 110-10 may be
stored in the NPU internal memory 120 of the NPU 100.
[0146] Hereinafter, an inference process by the exemplary
artificial neural network model 110-10, being performed by
the NPU 100, will be described with reference to FIG. 4.
[0147] The artificial neural network model 110-10 may be
an exemplary deep neural network model including an input
layer 110-11, a first connection network 110-12, a first
hidden layer 110-13, a second connection network 110-14, a
second hidden layer 110-15, a third connection network
110-16, and an output layer 110-17. However, the present
disclosure is not limited only to the artificial neural network
model illustrated in FIG. 4. The first hidden layer 110-13 and
the second hidden layer 110-15 may also be referred to as a
plurality of hidden layers.

[0148] The input layer 110-11 may exemplarily include
input nodes x1 and x2. That is, the input layer 110-11 may
include information about two input values. The NPU sched-
uler 130 illustrated in FIG. 1 or 3 may set a memory address
in which information about an input value from the input
layer 110-11 is stored, in the NPU internal memory 120 of
FIG. 1 or 3.

[0149] For example, the first connection network 110-12
may include information about six weight values for con-
necting nodes of the input layer 110-11 to nodes of the first
hidden layer 110-13, respectively. The NPU scheduler 130
of FIG. 1 or 3 may set a memory address, in which
information about a weight value of the first connection
network 110-12 is stored, in the NPU internal memory 120.
Each weight value is multiplied with the input node value,
and an accumulated value of the multiplied values is stored
in the first hidden layer 110-13. Here, the nodes may be
referred to as a feature map.

[0150] For example, the first hidden layer 110-13 may
include nodes al, a2, and a3. That is, the first hidden layer
110-13 may include information about three node values.

US 2024/0321384 Al

The NPU scheduler 130 illustrated in FIG. 1 or 3 may set a
memory address for storing information about a node value
of'the first hidden layer 110-13, in the NPU internal memory
120.

[0151] The NPU scheduler 130 may be configured to
schedule an operation order so that the first processing
element PE1 performs the MAC operation of the al node of
the first hidden layer 110-13. The NPU scheduler 130 may
be configured to schedule the operation order so that the
second processing element PE2 performs the MAC opera-
tion of the a2 node of the first hidden layer 110-13. The NPU
scheduler 130 may be configured to schedule an operation
order so that the third processing element PE3 performs the
MAC operation of the a3 node of the first hidden layer
110-13. Here, the NPU scheduler 130 may pre-schedule the
operation order so that the three processing elements per-
form each MAC operation simultaneously in parallel.
[0152] For example, the second connection network 110-
14 may include information about nine weight values for
connecting nodes of the first hidden layer 110-13 to nodes of
the second hidden layer 110-15, respectively. The NPU
scheduler 130 of FIG. 1 or 3 may set a memory address for
storing, in the NPU internal memory 120, information about
a weight value of the second connection network 110-14.
The weight value of the second connection network 110-14
is multiplied with the node value input from the correspond-
ing first hidden layer 110-13 and the accumulated value of
the multiplied values is stored in the second hidden layer
110-15.

[0153] For example, the second hidden layer 110-15 may
include nodes b1, b2, and b3. That is, the second hidden
layer 110-15 may include information about three node
values. The NPU scheduler 130 may set a memory address
for storing information about a node value of the second
hidden layer 110-15, in the NPU internal memory 120.
[0154] The NPU scheduler 130 may be configured to
schedule an operation order so that the fourth processing
element PE4 performs the MAC operation of the b1 node of
the second hidden layer 110-15. The NPU scheduler 130
may be configured to schedule an operation order so that the
fifth processing element PES performs the MAC operation
of the b2 node of the second hidden layer 110-15. The NPU
scheduler 130 may be configured to schedule an operation
order so that the sixth processing element PE6 performs the
MAC operation of the b3 node of the second hidden layer
110-15.

[0155] Here, the NPU scheduler 130 may pre-schedule the
operation order so that the three processing elements per-
form each MAC operation simultaneously in parallel.
[0156] Here, the NPU scheduler 130 may determine
scheduling so that the operation of the second hidden layer
110-15 is performed after the MAC operation of the first
hidden layer 110-13 of the artificial neural network model.
[0157] That is, the NPU scheduler 130 may be configured
to control the plurality of processing elements 100 and the
NPU internal memory 120 based on the data locality infor-
mation or structure information of the artificial neural net-
work model.

[0158] For example, the third connection network 110-16
may include information about six weight values which
connect nodes of the second hidden layer 110-15 and nodes
of the output layer 110-17, respectively. The NPU scheduler
130 may set a memory address for storing, in the NPU
internal memory 120, information about a weight value of

Sep. 26, 2024

the third connection network 110-16. The weight value of
the third connection network 110-16 is multiplied with the
node value input from the second hidden layer 110-15, and
the accumulated value of the multiplied values is stored in
the output layer 110-17.

[0159] For example, the output layer 110-17 may include
nodes yl1 and y2. That is, the output layer 110-17 may
include information about two node values. The NPU sched-
uler 130 may set a memory address for storing, in the NPU
internal memory 120, information about a node value of the
output layer 110-17.

[0160] The NPU scheduler 130 may be configured to
schedule the operation order so that the seventh processing
element PE7 performs the MAC operation of the y1 node of
the output layer 110-17. The NPU scheduler 130 may be
configured to schedule the operation order so that the eighth
processing element PE8 performs the MAC operation of the
y2 node of the output layer 110-15.

[0161] Here, the NPU scheduler 130 may pre-schedule the
operation order so that the two processing elements simul-
taneously perform the MAC operation in parallel.

[0162] Here, the NPU scheduler 130 may determine the
scheduling so that the operation of the output layer 110-17
is performed after the MAC operation of the second hidden
layer 110-15 of the artificial neural network model.

[0163] That is, the NPU scheduler 130 may be configured
to control the plurality of processing elements 100 and the
NPU internal memory 120 based on the data locality infor-
mation or structure information of the artificial neural net-
work model.

[0164] That is, the NPU scheduler 130 may analyze a
structure of an artificial neural network model or receive the
analyzed information which may operate in the plurality of
processing elements 110. Information of the artificial neural
network, which may be included in the artificial neural
network model, may include information about a node value
of each layer, placement data locality information of layers
or information about the structure, and information about a
weight value of each of connection networks connecting the
nodes of the layers.

[0165] The NPU scheduler 130 is provided with data
locality information or information about a structure of the
exemplary artificial neural network model 110-10 so that the
NPU scheduler 130 may determine an operation order from
input to output of the artificial neural network model 110-10.
[0166] Accordingly, the NPU scheduler 130 may set the
memory address in which the MAC operation values of each
layer are stored, in the NPU internal memory 120, in
consideration of the scheduling order.

[0167] That is, the NPU system memory 120 may be
configured to preserve weight data of connection networks
stored in the NPU system memory 120 while the inference
operation of the NPU 100 is maintained. Therefore, fre-
quency of the memory reading and writing operations may
be reduced.

[0168] That is, the NPU system memory 120 may be
configured to reuse the MAC operation value stored in the
NPU system memory 120 while the inference operation is
maintained.

[0169] FIG. 5A illustrates a basic structure of a convolu-
tion neural network.

[0170] Referring to FIG. 5A, a convolutional neural net-
work may be a combination of one or a plurality of convo-
Iutional layers, a pooling layer, and a fully connected layer.

US 2024/0321384 Al

[0171] In the example of the present disclosure, in the
convolutional neural network, there is a kernel for extracting
features of an input image of a channel for each channel. The
kernel may be composed of a two-dimensional matrix, and
convolution operation is performed while traversing input
data. The size of the kernel may be arbitrarily determined,
and the stride at which the kernel traverses input data may
also be arbitrarily determined. A result of convolution of all
input data per kernel may be referred to as a feature map or
an activation map. Hereinafter, the kernel may include a set
of weight values or a plurality of sets of weight values. The
number of kernels for each layer may be referred to as the
number of channels.

[0172] As such, since the convolution operation is an
operation formed by combining input data and a kernel, an
activation function for adding non-linearity may be applied
thereafter. When an activation function is applied to a
feature map that is a result of a convolution operation, it may
be referred to as an activation map.

[0173] Specifically, referring to FIG. 5A, the convolu-
tional neural network includes at least one convolutional
layer, at least one pooling layer, and at least one fully
connected layer.

[0174] For example, convolution can be defined by two
main parameters: the size of the input data (typically a 1x1,
33, or 5x5 matrix) and the depth of the output feature map
(the number of kernels). These key parameters can be
computed by convolution. These convolutions may start at
depth 32, continue to depth 64, and end at depth 128 or 256.
The convolution operation may mean an operation of sliding
a kernel of size 3x3 or 5x5 over an input image matrix that
is input data, multiplying each weight of the kernel and each
element of the input image matrix that overlaps, and then
adding them all.

[0175] An activation function may be applied to the output
feature map generated in this way to finally output an
activation map. In addition, the weight used in the current
layer may be transmitted to the next layer through convo-
Iution. The pooling layer may perform a pooling operation
to reduce the size of the feature map by down-sampling the
output data (i.e., the activation map). For example, the
pooling operation may include, but is not limited to, max
pooling and/or average pooling.

[0176] The maximum pooling operation uses the kernel,
and outputs the maximum value in the area of the feature
map overlapping the kernel by sliding the feature map and
the kernel. The average pooling operation outputs an aver-
age value within the area of the feature map overlapping the
kernel by sliding the feature map and the kernel. As such,
since the size of the feature map is reduced by the pooling
operation, the number of weights of the feature map is also
reduced.

[0177] The fully connected layer may classify data output
through the pooling layer into a plurality of classes (i.e.,
inferenced values), and output the classified class and a
score thereof. Data output through the pooling layer forms
a three-dimensional feature map, and this three-dimensional
feature map can be converted into a one-dimensional vector
and input as a fully connected layer.

[0178] FIG. 5B illustrates an overall operation of a con-
volution neural network.

Sep. 26, 2024

[0179] Referring to FIG. 5B, the input image is a two-
dimensional matrix that is 5x5 in size. Further, in FIG. 5B,
three nodes, that is, a channel 1, a channel 2, and a channel
3, are used.

[0180] First, a convolution operation of the layer 1 will be
described.
[0181] The input image is convoluted with a kernel 1 for

a channel 1 at a first node of the layer 1, and a feature map
1 is output as a result. Further, the input image is convoluted
with a kernel 2 for a channel 2 at a second node of the layer
1, and a feature map 2 is output as a result. The input image
is convoluted with a kernel 3 for a channel 3 at a third node,
and a feature map 3 is output as a result.

[0182] Next, a pooling operation of the layer 2 will be
described.
[0183] The feature map 1, the feature map 2, and the

feature map 3 output from the layer 1 are input to three nodes
of'the layer 2. Layer 2 receives feature maps output from the
layer 1 as inputs to perform the pooling. The pooling may
reduce a size or emphasize a specific value in the matrix. The
pooling method may include max pooling, average pooling,
and minimum pooling. The max pooling is used to collect
maximum values in a specific area of the matrix, and the
average pooling is used to calculate an average in a specific
area.

[0184] In order to process each convolution, the process-
ing elements PE1 to PE12 of the NPU 100 are configured to
perform a MAC operation.

[0185] In the example of FIG. 5B, a feature map of a 5x5
matrix is reduced to a 4x4 matrix by the pooling.

[0186] Specifically, the first node of the layer 2 performs
the pooling with the feature map 1 for the channel 1 as an
input, and then outputs a 4x4 matrix. The second node of the
layer 2 performs the pooling with the feature map 2 for the
channel 2 as an input, and then outputs a 4x4 matrix. The
third node of the layer 2 performs the pooling with the
feature map 3 for the channel 3 as an input, and then outputs
a 4x4 matrix.

[0187] Next, a convolution operation of the layer 3 will be
described.
[0188] A first node of the layer 3 receives the output from

the first node of the layer 2 as an input to perform the
convolution with a kernel 4 and output a result thereof. A
second node of the layer 3 receives the output from the
second node of the layer 2 as an input to perform the
convolution with a kernel 5 for the channel 2 and outputs a
result thereof. Similarly, a third node of the layer 3 receives
the output from the third node of the layer 2 as an input to
perform the convolution with a kernel 6 for the channel 3
and outputs a result thereof.

[0189] As described above, the convolution and the pool-
ing are repeated and finally, as illustrated in FIG. 5A, a fully
connected layer may be output. The output may be input to
the artificial neural network for image recognition again.
[0190] Hereinafter, an NPU semiconductor will be mainly
explained, but the disclosure of the present specification is
not limited thereto and the present disclosure is also appli-
cable to a system in package (SiP) or a printed circuit board
(PCB)-based board level system. For example, each func-
tional component is implemented by an independent semi-
conductor chip and is connected by a system bus which is
implemented by an electrically conductive pattern formed
on the PCB.

US 2024/0321384 Al

[0191] FIG. 6A shows an NPU having a test function
according to a first example.

[0192] Referring to FIG. 6A, the exemplary NPU 100 may
include a plurality of functional components, an In-system
Component Tester (ICT) 170, and at least one wrapper 190.
[0193] A wrapper can adapt the interfaces of components
that communicate with each other. Accordingly, the wrapper
may also be referred to as an interface circuit.

[0194] The plurality of functional components may
include a processing element (PE) array 110, an internal
memory 120, a controller 160, and an interface 140.
[0195] The interface 140 may be referred to as a bus
interface unit (BIU).

[0196] The controller 160 may include a scheduler 130.
[0197] The examples of the present disclosure are not
limited thereto, and at least some of the plurality of func-
tional components may be removed. The examples of the
present disclosure are not limited thereto and may further
include other functional components other than the plurality
of functional components described above.

[0198] The plurality of processing elements 110 may be
connected to the controller 160 directly or through an
interface 140. Similarly, the memory 120 may be connected
to the controller 160 directly or through the interface 140.
The interface 140 is monitored by the wrapper 190. Spe-
cifically, the wrapper 190 may monitor that the controller
160 controls the plurality of processing elements 110
through the interface 140. Also, the wrapper 190 may
monitor that the controller 160 controls the memory 120
through the interface 140.

[0199] The ICT 170 may be connected to the controller
160 through a dedicated signal channel. Also, the ICT 170
may be connected to the wrapper 190 through a dedicated
signal channel.

[0200] The wrapper 190 may be connected to the ICT 170
through a dedicated signal channel. Also, the wrapper 190
may be coupled to the interface 140 through a dedicated
signal channel. Also, the wrapper 190 may be connected to
each functional component through the interface 140.
[0201] The ICT 170 may directly monitor the controller
160 or monitor the states of the plurality of functional
components through the wrapper 190. Each functional com-
ponent may be in an idle state or a busy state.

[0202] When an idle functional component is found, the
ICT 170 may select the corresponding functional component
as a component under test (CUT). In addition, depending on
the circumstance, the ICT 170 may also select a functional
component that is not in an idle state as the CUT.

[0203] When an idle functional component is found, the
ICT 170 may select the corresponding functional component
as a component under test (CUT).

[0204] If a plurality of functional components are in an
idle state, the ICT 170 may select any one functional
component as the CUT according to a preset rule. As an
alternative to application of the preset rule, the ICT 170 may
randomly select, among the idle state functional compo-
nents, any one functional component as a CUT.

[0205] According to a CUT selection as above, the ICT
170 may cut off the connection between the functional
component selected as the CUT and the interface 140, or
ICT 170 may isolate the selected functional component from
the interface 140. To this end, the ICT 170 may instruct the
wrapper 190 to cut off or isolate the functional component
from the interface 140. To be more specific, the ICT 170 cuts

Sep. 26, 2024

off the connection between the functional component
selected as the CUT and the interface 140 by means of the
wrapper 190 and then may instruct the wrapper 190 to
transmit a signal to the interface 140, instead of the func-
tional component selected as the CUT.

[0206] At this time, the signal which is transmitted to the
interface 140 may be a signal which is transmitted to the
interface 140 when the functional component selected as the
CUT is in an idle state. To this end, when the functional
component selected as the CUT is in an idle state, the
wrapper 190 may monitor (or overhear) and store the signal
which is transmitted to the interface 140. The corresponding
wrapper 190 regenerates the stored signal to transmit the
regenerated signal to the interface 140. In the meantime, the
corresponding wrapper 190 may detect a signal from the
interface 140.

[0207] Thereafter, the ICT 170 may test the functional
component selected as the CUT.

[0208] The above-mentioned preset rule may include one
or more of a priority rule according to the mission to be
performed, a rule for priority between functional compo-
nents, a rule according to the presence or absence of a spare
for the corresponding functional component, a rule defined
by the number of tests, and a rule defined by a previous test
result.

[0209] When a collision or conflict occurs due to access
from the interface 140 to a functional component selected as
the CUT at the time of starting the test or during the test, the
ICT 170 may detect the collision.

[0210] Ifso, the ICT 170 may stop (interrupt) the test and
drive a back-off timer with respect to the collision or
conflict.

[0211] The ICT 170 may reinstate the connection of the
functional component selected as the CUT to the interface
140.

[0212] In the meantime, when the back-off time of the
back-off timer for the collision or conflict expires, the ICT
170 may monitor whether the functional components enter
an idle state again. If the functional component enters the
idle state again, the ICT 170 may select the functional
component as a CUT again.

[0213] If no collision or conflict is detected, the ICT 170
may continue the test and, when the test is completed,
analyze the test result.

[0214] The test may be for verifying whether a component
of the system is defective in its manufacture, has been
compromised, or has broken down. The compromising or
the breakdown may be caused by a fatigue stress due to
repeated usage or a physical stress such as heat or electro-
magnetic pulse (EMP). That is, it may be configured to
detect a defect based on the test result.

[0215] The test is performed on the plurality of processing
elements 110 will be described below. The test may be one
of two types, namely, a function test and a scan test.
[0216] When the function test is performed on the plural-
ity of processing elements 110, the ICT 170 may input a
predetermined ANN test model and a test input to the
plurality of processing elements 110. When the plurality of
processing elements 110 outputs an inference result for the
test input using the input ANN test model, the ICT 170
compares an intended inference result and the inference
result from the plurality of processing elements 110 to
analyze whether the plurality of processing elements 110 is
normal or defective. For example, when the ANN test model

US 2024/0321384 Al

is a predetermined CNN and the test input is a simple test
image, the plurality of processing elements 110 performs the
convolution and the pooling on the test image using the
ANN test model to output a fully connected layer.

[0217] When the scan test is performed on the plurality of
processing elements 110, as it will be described below, the
ICT 170 may thread the flip-flops in the plurality of pro-
cessing elements 110 with a scan chain. The ICT 170 may
inject the test input to at least one flip-flop and may acquire
atest result from an operation of a combinational logic of the
flip-flop to analyze whether the plurality of processing
elements 110 is defective or normal during the runtime.
[0218] The test performed by the ICT 170 may be a test
performed to determine a fair quality before shipment of an
NPU semiconductor which is mass-produced in a factory.
[0219] According to the present disclosure, it is noted that
the test for determining a fair quality may also be performed
during the runtime of the NPU.

[0220] That is, according to a known art, a test for deter-
mining a fair quality is possible before the NPU semicon-
ductor ships from the factory.

[0221] However, according to the present disclosure, func-
tional components in the idle state are found from a plurality
of functional components in the NPU to be sequentially
tested so that the fair quality test may be performed on the
NPU in the runtime.

[0222] As a test analysis result, when the corresponding
functional component is determined as normal, the ICT 170
returns the connection with the functional component to the
interface 140. That is, the ICT 170 may allow the connection
between the functional component and the interface 140. To
be more specific, the ICT 170 may initialize the functional
component to be connected to the interface 140 and then
instruct the wrapper 190 to stop a signal which is transmitted
to the interface 140.

[0223] However, if the test analysis result determines the
corresponding functional component as defective, the ICT
170 may repeat the test several times.

[0224] When as a result of several times repeated tests, the
functional component is determined as defective. That is,
when it is determined that the functional component in the
NPU is defective in its manufacture, has been compromised,
or has broken down, the ICT 170 may deactivate the
functional component.

[0225] As an alternative, when an error code included in
a one-time test analysis result indicates that the functional
component in the NPU is defective in its manufacture, has
been compromised, or has broken down, the ICT 170 may
deactivate the functional component.

[0226] In order to deactivate the functional component,
the ICT 170 may cut-off or disconnect the connection of the
functional component determined as defective to isolate the
functional component determined as defective from the
interface 140. Alternatively, in order to deactivate the defec-
tive functional component, the ICT 170 may power off (turn
off) the functional component. When the functional compo-
nent is powered off, the erroneous operation of the defective
functional component is prevented and the power consump-
tion may be reduced.

[0227] Further, in order to deactivate the defective func-
tional component, the ICT 170 may revoke the address of the
functional component on the interface 140 or transmit a
signal for deleting it to the interface 140. That is, the ICT
170 may transmit a signal for deleting an address of the

Sep. 26, 2024

defective functional component to a component having
addresses used on the interface 140.

[0228] In the meantime, when the deactivation is com-
pleted, the ICT 170 may determine whether there is a spare
for the functional component.

[0229] That is, various examples of the present disclosure
may be configured to include at least one spare component
corresponding to at least one functional component.
[0230] That is, various examples of the present disclosure
may be configured to include each spare component corre-
sponding to each of a plurality of functional components.
[0231] Even though a spare may exist, when the spare is
not in an active state, the ICT 170 may activate the spare.
That is, the ICT 170 may transmit a signal including a
request for updating an address of the activated spare in a
table to a component having the table of addresses used on
the interface 140.

[0232] When an address on the interface 140 is not allo-
cated to the spare in the deactivated state, the ICT 170 may
transmit a signal for reallocating an address of the defective
functional component to the spare to the interface 140.
[0233] After monitoring whether the spare is in an idle
state, the ICT 170 may perform the test.

[0234] InFIG. 6A, the ICT 170 is shown to be included in
the NPU 100, but may be disposed outside the NPU 100 as
will be described later. This will be described with reference
to FIG. 6B.

[0235] FIG. 6B illustrates a modified example of the first
example shown in FIG. 6A.

[0236] As shown in FIG. 6B, the component tester 170
may be located outside the NPU 100. In this case, the
component tester 170 may be called an out-system compo-
nent tester (OCT) rather than an ICT. The component tester
170 illustrated in FIG. 6B may select at least one of a
plurality of functional components as a CUT through the
wrapper 190 to perform a test. Depending on the situation,
the component tester 170 may select a functional component
that is not in an idle state as a CUT to perform the test.
[0237] FIG. 6C shows an NPU having a test function
according to a second example.

[0238] Referring to FIG. 6C, the exemplary NPU 100 may
include a plurality of functional components, an in-system
component tester (ICT) 170, and a plurality of wrappers
190a, 1905, 190c, 190d. The plurality of wrappers may be
collectively referred to as wrappers 190.

[0239] The wrappers 190 may adapt the interfaces of
components that communicate with each other. Accordingly,
a wrapper may also be referred to as an interface circuit.
[0240] The plurality of functional components may
include a plurality of processing elements (or PE array) 110,
a memory 120, a scheduler 130, and an NPU interface 140.
[0241] The interface 140 may be referred to as a bus
interface unit (BIU). The interface 140 may be in charge of
communication with a semiconductor device disposed out-
side the NPU, for example, a main memory or a central
processing unit (CPU).

[0242] The plurality of processing elements 110 may be
connected to the scheduler 130 through the wrapper 190c¢,
the ICT 170, and the wrapper 1905. Similarly, the memory
120 may be connected to the scheduler 130 through the
wrapper 1904, the ICT 170, and the wrapper 1905.

[0243] The ICT 170 may monitor and control each func-
tional component through a plurality of wrappers 190. For
example, the ICT 170 may monitor and control the access of

US 2024/0321384 Al

the NPU scheduler 130 to the plurality of processing ele-
ments 110 through the wrapper 1905 and the wrapper 190c.
In addition, the ICT 170 may monitor and control access to
the memory 120 by the NPU scheduler 130 through the
wrapper 1906 and the wrapper 190d. Similarly, the ICT 170
may monitor and control access of the plurality of process-
ing elements 110 to the memory 120 through the wrapper
190¢ and the wrapper 1904.

[0244] The ICT 170 may be connected to each wrapper
190 through a dedicated signal channel.

[0245] The ICT 170 monitors the plurality of processing
elements 110 through the wrapper 190¢, monitors the
memory 120 through the wrapper 1904, or the scheduler 130
through the wrapper 1905. By monitoring, it is possible to
monitor whether each of the plurality of processing elements
110, the memory 120, and the scheduler 130 is in an idle
state or a busy state.

[0246] When an idle functional component is found, the
ICT 170 may select the corresponding functional component
as a component under test (CUT).

[0247] If a plurality of functional components are in an
idle state, the ICT 170 may select any one functional
component as the CUT according to a preset rule.

[0248] If a plurality of functional components are in an
idle state, the ICT 170 may randomly select any one
functional component as the CUT. Then, the ICT 170 may
block or isolate the connection of the functional component
selected as the CUT. To this end, the ICT 170 may instruct
the wrapper 190 to block or isolate the corresponding
functional component.

[0249] More specifically, after the ICT 170 may block the
connection with the functional component selected as the
CUT through the wrapper 190, the wrapper 190 instructs the
corresponding wrapper 190 to imitate and transmit a nec-
essary signal on behalf of the functional component selected
as the CUT. In this case, the transmitted signal may be a
signal transmitted when the functional component selected
as the CUT is in an idle state. To this end, the wrapper 190
may monitor (or overhear) and store a transmitted signal
when the functional component selected as the CUT is in the
idle state. Then, the wrapper 190 may regenerate the stored
signal and transmit it.

[0250] Thereafter, the ICT 170 may perform a test on the
functional component selected as the CUT. This is similar to
the description provided with reference to FIG. 6A, and thus
redundant descriptions will be omitted.

[0251] When a collision occurs due to access to the
functional component selected as the CUT at the time of
starting the test or during the test, the ICT 170 may detect the
collision.

[0252] Then, the ICT 170 may stop the test and drive a
back-off timer for the collision.

[0253] Then, the ICT 170 may return the functional com-
ponent selected to the CUT.

[0254] Meanwhile, when the back-off timer for the colli-
sion expires, the ICT 170 may monitor whether the corre-
sponding functional component enters the idle state again. If
the corresponding functional component enters the idle state
again, the ICT 170 may select the corresponding functional
component as the CUT again.

[0255] If the collision is not detected, the ICT 170 may
continue the test and, when the test is completed, analyze the
test result.

Sep. 26, 2024

[0256] Since other descriptions are similar to those pro-
vided with reference to FIG. 6 A, redundant descriptions will
not be repeated. Instead, the description provided with
reference to FIG. 6A will be cited.

[0257] InFIG. 6C, the ICT 170 is shown to be included in
the NPU 100, but may be disposed outside the NPU 100 as
will be described later. This will be described with reference
to FIG. 6D.

[0258] FIG. 6D illustrates a modified example of the
second example shown in FIG. 6C.

[0259] As shown in FIG. 6D, the component tester 170
may be located outside the NPU 100. In this case, the
component tester 170 may be called an out-system compo-
nent tester (OCT) rather than an ICT. The component tester
170 illustrated in FIG. 6D may select at least one of a
plurality of functional components as a CUT through the
wrapper 190 to perform a test. Depending on the situation,
the component tester 170 may select a functional component
that is not in an idle state as a CUT to perform a test.
[0260] FIG. 7 shows an NPU with a test function accord-
ing to a third example.

[0261] Referring to FIG. 7, the exemplary NPU 100 may
be connected to a central processing unit (CPU) 200 and a
main memory 300 through a system bus. Additionally, the
NPU 100 may be connected to an image sensor 400 through
a system bus. Additionally, the NPU 100 may be connected
to a decoder 500 through a system bus.

[0262] The exemplary NPU 100 shown in FIG. 7 includes
a plurality of functional components, an in-system compo-
nent tester (ICT) 170, and a plurality of wrappers 190e, 1907,
190g, 190/, 1907, 1905, 190%. The plurality of wrappers may
be collectively referred to as wrappers 190.

[0263] The plurality of functional components may
include a plurality of processing elements (or PE array) 110,
an internal memory 120, a direct memory access (DMA)
125, a controller 160, and a special function unit (SFU) 180.
[0264] The controller 160 may include a scheduler 130 as
shown in FIG. 6A. In addition, the controller 160 may also
include the interface 140 shown in FIG. 6B. That is, the
controller 160 may include both the scheduler 130 and the
interface 140. The operation of the scheduler 130 and the
interface 140 are described above.

[0265] The DMA 125 controls access to the memory 120.
To this end, the DMA 125 may manage a physical address
of the memory 120.

[0266] The plurality of processing elements 110 may
include a plurality of PEs 111, 112, 113, and 114. Each PE
may include a multiply-accumulate (MAC) operator.
[0267] A wrapper may be disposed between each func-
tional component and the controller 160. For example, the
wrapper 190e may be disposed between the DMA 125 and
the controller 160. The wrapper 190f may be disposed
between the memory 120 and the controller 160. The
wrapper 190g may be disposed between the plurality of
processing elements 110 and the controller 160. The wrapper
190~ may be disposed between the SFU 180 and the
controller 160. The wrapper 190i may be disposed between
the SFU 180 and the memory 120. The wrapper 190j may be
disposed between the plurality of processing elements 110
and the SFU 180. The wrapper 190k may be disposed
between the plurality of processing elements 110 and the
memory 120.

[0268] The ICT 170 may monitor and control each func-
tional component through the plurality of wrappers 190. For

US 2024/0321384 Al

example, the ICT 170 may monitor and control the interac-
tion between the plurality of processing element 110 and the
memory 120 through the wrapper 190%. Also, the ICT 170
may monitor and control the memory 120 through the
wrapper 1907, Also, the ICT 170 may monitor and control
the DMA 125 through the wrapper 190e. Also, the ICT 170
may monitor and control the interaction between the con-
troller 160 and the plurality of processing elements 110
through the wrapper 190g. The ICT 170 may monitor and
control the SFU 180 through the wrapper 190i. In addition,
the ICT 170 may monitor and control the interaction
between the controller 160 and the SFU 180 through the
wrapper 1904.

[0269] The ICT 170 may be connected to each wrapper
190 through a dedicated signal channel.

[0270] The ICT 170 may monitor whether a corresponding
functional component is in an idle state or a busy state
through each wrapper.

[0271] When an idle functional component is found, the
ICT 170 may select the corresponding functional component
as a component under test (CUT).

[0272] If the plurality of functional components are in the
idle state, as described above, the ICT 170 may select any
one functional component as the CUT according to a preset
rule. And as described above, the ICT 170 may block or
isolate the connection of the functional component selected
as the CUT.

[0273] Thereafter, the ICT 170 may perform a test on the
functional component selected as the CUT. This is similar to
the description provided with reference to FIG. 6A, and thus
will not be repeated.

[0274] If no collision is detected, as described above, the
ICT 170 continues the test, and when the test is completed,
the ICT 170 may analyze the test result.

[0275] As described above, if it is determined that the test
analysis result is abnormal, the ICT 170 may repeat the test
several more times.

[0276] As a result of repeating the test several times, if it
is determined that the corresponding functional component
is abnormal, that is, if it is determined that the corresponding
functional component is incorrectly manufactured, dam-
aged, or broken in the NPU, the ICT 170 can deactivate the
corresponding functional component.

[0277] When there is no spare for the deactivated func-
tional component, the ICT 170 may allow the SFU 180 to be
programmed to imitate the same operation as the deactivated
functional component. To this end, the SFU 180 may be
implemented as a field programmable gate array (FPGA).
Information for programming the SFU 180 may be stored in
the internal memory 120. Alternatively, the information for
programming the SFU 180 may be stored in a cache memory
of the SFU 180.

[0278] As described above, when the SFU 180 is pro-
grammed to imitate the same operation as the deactivated
functional component, the ICT 170 may transmit a signal
including a request for updating an address table used in the
controller 130. As an alternative, a signal including a request
for reallocating the address of the defective functional
component to the SFU 180 may be transmitted to the
controller 130. In other words, the existing address of the
SFU 180 may be revoked and replaced by an address of the
defective functional component.

[0279] In FIG. 7, the ICT 170 is shown to be included in
the NPU 100, but may be disposed outside the NPU 100 as

Sep. 26, 2024

described above. In this case, the ICT 170 may be referred
to be as an out-system component tester (OCT).

[0280] Hereinafter, for deeper understanding of the above-
mentioned content, it will be described in more detail with
a table of contents.

1. Why Testing During Runtime is Important

[0281] In order to prevent potential accidents which may
be caused by hardware defects in the autonomous computing
system, various studies have been conducted.

[0282] Among various tests, a pre-deployment test is
included. According to this test technique, all hardware
designs are checked before selling the product to clients.
After the manufacturing, the design is tested from various
viewpoints to detect and correct various problems which
may be found during the actual operation. For example, in
order to test a chip design, a test pattern is provided to
perform the scanning of an input and inspection for an
output result. Even though this technique may minimize a
potential problem for the hardware design before the ship-
ment of the products, the problems of the defect during the
runtime which may be caused due to the aging of the
integrated circuits (ICs), external environments, and vulner-
abilities of the complex designs cannot be solved.

[0283] As described above, the above-described pre-de-
ployment test cannot effectively solve the hardware defects
so that the inventor began to be interested in test methods
during the runtime.

[0284] From a viewpoint of test mechanism, the pre-
deployment test and the post-deployment test seem to be
similar, but there is an obvious difference in when the test
can be performed. Specifically, the pre-deployment test may
be performed only at a specific time and generally may be
allowed only shortly after the manufacturing. In contrast, the
test during the runtime may be performed at any time in a
normal operation situation.

[0285] There may be two test techniques for the test
during the runtime including a function test and a scan test.
[0286] According to the function test, a test input is
generated and an output result obtained by inputting the
generated test input to an original design is compared with
an intended pattern. Alternatively, based on an original
design, according to the function test, input and output
signals are monitored to detect an abnormality.

[0287] According to the scan test, architectures for the
scan test are inserted into the original design and various test
patterns, as many as possible, need to be created. As
described, after preparing the scan architectures and the test
patterns, the test during the runtime may be performed in
various ways.

[0288] In order to perform the scan test, the ICT may
connect the plurality of flip-flops in each CUT, inject the test
input to at least one flip-flop, and acquire a test result from
an operation of a combinational logic of the flip-flop to
analyze whether the CUT is defective or normal during the
runtime.

[0289] FIG. 8 illustrates an example of scanning a flip-
flop.
[0290] In order to more easily design the hardware and

minimize the manufacturing defect, it is very important to
apply a design for testability (DFT).

[0291] To this end, an architecture for the scan test reflects
the design (DFT), and a test range with a specific ratio for
all detectable defects is defined to perform the test.

US 2024/0321384 Al

[0292] When D-type flip-flops are used, the architecture
for the scan test may easily reflect the design. During the
test, all flip-flops in the CUT may operate as scan flip-flops
including D-flip-flops and multiplexers.

[0293] As compared with the normal D-type flip-flop, as
shown in FIG. 8, the flip-flop may use two additional ports,
that is, ports for scan enable (SE) and scan in (SI) signals,
respectively. The SI port is for a test input, and the SE port
enables switching between the D input for a normal opera-
tion and the test input (SI port) for a test operation.

[0294] FIG. 9 illustrates an example in which an archi-
tecture for scan test is added in a hardware design.

[0295] As illustrated in FIG. 9, all the SE ports of the scan
flip-flops are connected in common, and the SI port of each
flip-flop is connected to the Q port of a preceding flip-flop
or to another scan input port, and the Q port of each flip-flop
is connected to the SI port of a subsequent flip-flop.

[0296] These connections create multiple scan chains.
That is, the flip-flops are threaded to each other to create a
scan chain.

[0297] When the SE (scan_enable) port is enabled, all
scan flip-flops transmit data from the SI port to the Q port,
via the flip-flop, and thus the data may be transmitted from
a scan_in port to a corresponding scan_out port. All the
flip-flops on each scan chain shift the test input from the
scan_in port to the scan_out port.

[0298] The smaller the number of flip-flops on the scan
chain, the faster the speed of shifting the data. However, the
number of flip-flops on each scan chain and the number of
scan chains are dependent on each other. The more scan
chains created, the fewer flip-flops on each scan chain.

I1. Test Via ICT

[0299] There may be two test techniques, namely, a func-
tional test and a scan test.

[0300] The functional test is to generate a test input, input
the generated test input to the original design, and compare
the output result with an intended pattern. Alternatively,
based on the original design, the functional test may monitor
input and output signals to detect anomalies. Alternatively,
based on the original design, the functional test may monitor
input and output signals to detect anomalies.

[0301] In the scan test, in order to analyze during opera-
tion whether the CUT is defective or normal, a plurality of
flip-flops in each CUT are connected to each other, a test
input is injected into at least one flip-flop, and a test result
is obtained from an operation of a coupling logic of the
flip-flops.

[0302] The above-described test is performed as a back-
ground task so that the test may be performed without
degrading a system performance. Based on the monitoring
of an operation of a component to be tested, the ICT may
determine whether the component is in an idle state. When
the component is in an idle state, the test is performed so that
the degradation of the system performance may not be
caused. The ICT consistently monitors the operation state of
the CUT on the system bus and the CUT may respond to an
unexpected access. When there is access to the CUT, an
operation of the CUT is switched from a test operation to a
normal operation to recover the CUT and come back the
CUT to the normal operation. A slight time delay may occur
for the switching. According to the present disclosure, the

Sep. 26, 2024

system bus may be efficiently used during the time delay to
minimize the degradation of the system performance due to
the recovery.

II-1. Increase in Complexity of Semiconductor

[0303] The design of the integrated circuit (IC) is gradu-
ally becoming more and more complex, and the degree of
integration is also increasing significantly. The NPU is a
semiconductor device having a very high degree of integra-
tion so that the defects of some functional components may
cause the degradation of the entire system performance.
Accordingly, it is becoming increasingly important to per-
form the test to find out the defect of the functional com-
ponents in the NPU.

1I-2. Necessity of Wrapper

[0304] A wrapper can be placed between each functional
component and the tester, i.e., ICT or OCT, for two test
techniques: functional test or scan test. According to an
example, wrappers may be divided into a first group of
wrappers for the function test and a second group of wrap-
pers for the scan test. That is, the first group of wrappers may
include dedicated wrappers for the function test, and the
second group of wrappers may include dedicated wrappers
for the scan test.

[0305] FIG. 10 illustrates an operation of a wrapper.
[0306] As described above, the ICT may test a plurality of
functional components (that is, IP, I/O interfaces, memories,
etc.) in the NPU during the runtime of the NPU. To this end,
during the test of the functional component selected as a
CUT, a collision problem due to the access to the functional
component from the system bus needs to be solved.
[0307] In order to solve the collision problem, after moni-
toring whether the functional component is in an idle state,
when the functional component is monitored to be in an idle
state, the functional component is switched from a normal
operation mode to a test operation mode and then the test
needs to be performed. When a collision is detected during
the test, the functional component needs to be switched to
the normal operation mode. After switching the operation to
the normal operation mode, the functional component needs
to correctly process the input data.

[0308] To this end, the illustrated wrapper 190 needs to be
disposed between the functional components and the con-
troller 130. The wrapper 190 may include multiplexer gates
which selectively control the input and the output for each
operation mode.

[0309] As illustrated in FIG. 10, when a TEST_ENABLE
port is on, a test vector may be input to the CUT and a
TEST_OUTPUT port may transmit the output. General data
output from the wrapper 190 may be transmitted to other
functional components via the system bus. In contrast, the
test result may be directly transmitted to the ICT 170. The
ICT 170 may receive a test vector for the test from an
external memory or an internal memory and store the test
result in the internal memory or the external memory or
transmit the test result to the outside.

[0310] Inorder to test the NPU in the runtime, the ICT 170
may perform a plurality of processes. First, the ICT 170 may
select a functional component to be tested as a CUT based
on a predetermined rule. Since the NPU is in the runtime, the
CUT needs to respond to the access from the system bus.
Accordingly, it is effective to select a functional component

US 2024/0321384 Al

in an idle state as a CUT as much as possible. To this end,
the ICT 170 may monitor whether the functional component
enters the idle state. When the functional component enters
the idle state, the wrapper 190 may turn on the TEST_
ENABLE port. The ICT 170 may inject the test vector to the
CUT via the TEST_ENABLE port.

[0311] The ICT 170 may collect and analyze the test result
from the CUT via the TEST_OUTPUT port of the wrapper
190. When the test result indicates that a problem is
detected, the ICT 170 may perform a post action. During the
test, when a general access to the CUT from the controller
130 is detected, the ICT 170 may temporally delay the
access from the controller 130 and then may immediately
stop (interrupt) the test operation. Thereafter, the ICT 170
may recover previous values for register setting of the CUT
and turn off (disable) the TEST_ENABLE port of the
wrapper 190. When a normal operation of the CUT is ready,
the ICT 170 may control the wrapper 190 to return the
connection for input and output with the CUT to the con-
troller 130.

[0312] FIG. 11 illustrates an internal configuration of an
ICT.
[0313] Referring to FIG. 11, the ICT 170 may include a

configuration data (CONF_DATA) restorer 610, a state
detector 620, a scheduler 630, a tester 640, a test vector
generator 650, a host interface 660, and a post action
(POST_ACT) unit 670.

[0314] The state detector 620 may detect whether the
functional components in the NPU are in an idle state or a
busy state (or a processing state). When an arbitrary func-
tional component enters an idle state, the state detector 620
transmits an ID (C_ID) of the functional component to the
scheduler 630 to perform the test.

[0315] The scheduler 630 may manage an overall opera-
tion of the ICT 170. The scheduler 630 may receive a state
of the functional component from the state detector 620 and
trigger the test. The scheduler 630 may transmit the ID of the
component to the tester.

[0316] The tester 640 controls the wrapper 190, transmits
a test vector, acquires a test result, and then compares
whether the test result matches an intended test result.
Thereafter, the tester 640 may transmit the test result to the
post-action unit 670. The tester 640 may restore the register
setting for the functional component selected as the CUT to
its original value.

[0317] The test vector generator 650 may generate a test
vector (or a predefined test input data) and a corresponding
intended test result. The test vector generator 650 may
include a buffer, a memory interface, a memory which stores
the test vector and the intended test result, and a random
number generator. When the test starts, a test pattern for
generating the test vector may be loaded in the buffer. The
random number generator may be used to generate the test
vector. The random number generator may allow the
memory not to store all the test vectors, but generate various
test vectors.

[0318] When the ID (for example, C_ID) of the functional
component from which a problem is found is received from
the tester 640, the post action unit 670 may perform the post
action. The post action may isolate the defective functional
component or notify a defect to the user or a remote host
device.

[0319] The host interface 660 may report the functional
component from which the problem is found during the test

Sep. 26, 2024

process to the user or the remote host device. If there is a
change related to the test operation, the host interface 660
may notify the remote host device.

[0320] When the test is completed or the access to the
functional component selected as CUT from the system bus
is detected during the test process, the configuration data
restorer 610 may restore the register setting of the CUT to
allow the tester 640 to switch the CUT to the normal
operation mode. Most of the functional components may
have a specific register setting value for a normal operation.
[0321] Accordingly, the configuration data restorer 610
may store the register setting value of the functional com-
ponent before performing the test and restore the register
setting value to the functional component when the CUT
needs to be switched to the normal operation mode.
[0322] Meanwhile, the test vector generator 650 may
include at least one of a random number generator, a
predefined test data storage unit, and a temporary (temp)
register.

[0323] A method of testing a plurality of processing ele-
ments 110 using a random number will be described. The
random number generator may generate a random number
based on a predetermined seed or a programable seed.
[0324] The ICT 170 may instruct to select at least one PE
in a plurality of processing elements to start a test.

[0325] As a specific example, when it is determined that a
certain percentage of PEs (e.g., 20% of all PEs) among the
plurality of processing elements are in an idle state, the ICT
170 may start a test. In other words, when the ratio of idle
PEs among all PEs is equal to or greater than the threshold,
the test can be started.

[0326] As a specific example, the ICT 170 may select a
certain percentage of PEs (e.g., 50% of PEs among all PEs)
and start the test.

[0327] When the test is performed, the inference speed of
the NPU, that is, IPS (inference per second) may be reduced.
That is, the inference speed may be lowered according to the
number of PEs to be tested. For a specific example, if 50%
of PEs among all PEs are tested, the inference speed may be
reduced by about 50%, and if 30% of PEs among all PEs are
tested, the inference speed during testing may be reduced by
about 30%.

[0328] Accordingly, according to an example, the plurality
of processing elements 110 may further include additional
PEs so that the speed degradation according to the test is
improved. That is, the plurality of processing elements 110
may include a first group of PEs and a second group of PEs.
The first group of PEs may be used for learning or inference.
The second group of PEs are redundant PEs. If the test is
performed on the PEs of the first group, the PEs of the
second group are used for learning or inference, thereby
preventing performance degradation due to the test.

[0329] For another example, when the NPU 100 operates
below a predetermined inference per second (IPS) value, the
ICT 170 may instruct the plurality of processing elements
110 to perform a test. Specifically, assuming that the NPU
100 can operate at a maximum of one hundred IPS, and
assuming that the threshold IPS value is thirty IPS, in such
a case, the ICT 170 may instruct the NPU 100 to perform a
test in the remaining time when the NPU 100 operates at
thirty IPS or more. For example, when the NPU 100 operates
at forty IPS, the test may be performed using the remaining
time for sixty IPS. Therefore, a substantial decrease in the
speed of the NPU may not occur.

US 2024/0321384 Al

[0330] For another example, when the data transferred
from the main memory 300 shown in FIG. 7 to the NPU
internal memory 120 is delayed and the NPU 100 becomes
an idle state or enters a data starvation period, the ICT 170
may instruct the plurality of processing elements 110 to
perform a test.

[0331] When the test is performed on the plurality of
processing elements 110, a register file RF corresponding to
a PE is initialized with predetermined test input data, respec-
tively, and the corresponding PE may perform inference
according to the test input data in the register file RF.
[0332] When the test is performed on the plurality of
processing elements 110, the random number generator may
generate a random number as described above. Then, the
register file RF is initialized by the generated random
number, and the corresponding PE performs inference
according to the random number in the register file RF.
[0333] The register file RF may reset flip-flops in each PE
and transmit test input data to the PEs as described above.
[0334] Each registry file RF may be, for example, 1 Kb in
size.

1I-3. To Detect Idle State of Functional Component

[0335] FIG. 12 illustrates an operation of monitoring
whether a functional component is in an idle state by an ICT.
[0336] In order to detect whether the functional compo-
nent is in an idle state during the normal operation mode, the
ICT 170 may use one or both of two techniques.

[0337] First, the ICT 170 may monitor whether the com-
ponent is in an idle state or is in use, based on hardware
signals which directly or indirectly indicate whether to
operate. For example, the ICT 170 may monitor a power
gating control signal to disconnect the connection of the
functional component to reduce the power consumption of
the functional component. Further, the ICT 170 may deter-
mine whether the functional component is in an idle state,
based on an output signal which directly or indirectly
indicates whether the component operates or a value of a
register which stores information related to the operation in
the functional component.

[0338] Second, the ICT 170 monitors a signal from a
system bus via the wrapper 190 or monitors an input/output
port of the functional component during a specific time
period to determine whether the functional component is in
an idle state.

1I-4. Processing of Access Collision

[0339] FIG. 13 illustrates an operation between a master,
a slave, and an arbiter which operate on a system bus.
[0340] The master on the system bus may be an entity
which uses a slave, the slave may be an entity used by the
master, and the arbiter may be an entity which performs
arbitration and determination between the master and the
slave.

[0341] The slave illustrated in FIG. 13 may be a functional
component selected as a CUT, and the arbiter may be an ICT.
[0342] When an access for a normal operation is detected
from the controller 130 while the functional component
selected as a CUT is being tested, the ICT 170 may require
a predetermined amount of time or more to recover the CUT
to its previous state. The ICT 170 may temporally deactivate
(or de-assert) an HREADY signal to temporally stop the
system access from the master, stop (interrupt) the test

Sep. 26, 2024

activity, recover the register setting of the CUT, and change
a direction of data which is input to or output from the
wrapper. When the CUT which is the slave is ready to
perform the task with the master, the HREADY signal may
be turned on. However, according to the present disclosure,
the ICT may induce some time delay for a bus separation
operation. A specific process will be described below.

[0343] First, the master activates (or asserts) an HBUS-
REQ signal for a bus access. Second, during the arbitration
or determination process, the arbiter activates (or asserts) an
HGRANT signal to allow the bus access. By doing this, the
master may transmit the data to the CUT which is a slave via
the system bus. If the ICT is performing a processing
operation for a test, the ICT transmits an HSPLIT signal to
the arbiter together with a bit indicating a current master and
activates (or asserts) a SPLIT signal in the HRESP signal,
simultaneously. After the activation (assertion), the master
nullifies the access to the CUT and the arbiter performs the
arbitration or determination process without having inter-
vention of the master. When the CUT is ready to respond to
the access from the master, the ICT deactivates the HSPLIT
signal and the master waits for a grant from the arbiter to
resume the task to access the CUT.

[0344] FIG. 14 illustrates an example in which a shift
register is added in an NPU.

[0345] The inventor of the present disclosure has recog-
nized that the access to the I/O interface may not cause the
collision on the system bus. For example, when the target
CUT is a master, an external device connected through the
1/O interface does not request the access for itself so that the
collision may not occur. Accordingly, it may be effective to
focus only on solving the collision problem generated when
the CUT is a slave.

[0346] Instead, in order to delay data which is transmitted
from the external device to the CUT during the restoring
time, a shift register may be added between a port of the
NPU and the external interface port of the CUT.

[0347] The shift register may be added to store the access
signal input from the outside of the NPU while the CUT is
restored. When the CUT is ready, the access signals are
regenerated by the shift register to be output.

[0348] A depth of the shift register may be determined by
the number of clock cycles required to restore the CUT to a
normal operation. Specifically, when one or more functional
components need to receive a signal from the outside of the
NPU, the depth of the shift register may be variable. In this
case, the depth of the shift register may be determined by the
ICT.

1I-5. Operation Order of ICT

[0349]

[0350] Referring to FIG. 15, when a timer related to the
test start of the ICT in the runtime expires (S601), the ICT
monitors whether an arbitrary functional component is in an
idle state and detects a functional component in an idle state
(S603).

[0351] By doing this, the ICT performs a test preparation
process (S605). The test preparation process may include
selecting the functional component as a CUT, isolating the
functional component selected as a CUT from the system
bus, and generating a test vector as test input data. The
isolation from the system bus may mean that the ICT

FIG. 15 illustrates an operation order of an ICT.

US 2024/0321384 Al

changes the direction of the input and the output on the
wrapper which communicates with the functional compo-
nent selected as the CUT.

[0352] The ICT injects the test vector which is the test
input data into the CUT (5607).

[0353] When the test is normally completed, the ICT
checks the test result (5609). For the checking, the ICT may
compare whether the test result matches the intended test
result.

[0354] When the test result indicates that there is no
problem in the functional component selected as the CUT
(that is, no defect or damage), the ICT may recover the
functional component to a normal operation state (5611).
[0355] In the meantime, when an access to the functional
component selected as the CUT is detected from the system
bus during the test preparation or the test, the ICT may
recover the functional component selected as the CUT to a
normal operation state (S613). The recovery may mean that
a register setting value of the functional component selected
as the CUT is recovered and the direction of the input and
the output returns to an original state on the wrapper which
communicates with the functional component selected as the
CUT.

[0356] In this case, the ICT drives a back-off timer (5615)
and, when the back-off timer is expired, the operation may
return to the step S603.

[0357] In the meantime, when the test result indicates that
there is a problem in the functional component selected as
the CUT (that is, the defect or damage), the ICT may
perform the post-detection operation (5617).

1I-6. Test for Internal Memory

[0358] The internal memory 120 may include a plurality
of memory instances. The internal memory 120 may further
include extra memory instances. That is, the internal
memory 120 may include a first group of memory instances
and a second group of memory instances. If the test is
performed on the memory instances of the first group, the
memory instances of the second group are used, thereby
solving the problem of insufficient storage capacity.

[0359] FIG. 16 illustrates a test process of an internal
memory.
[0360] The test for the internal memory may be different

from the test for the functional component. Hereinafter, two
test techniques for the internal memory, that is, the internal
memory 120 as illustrated in FIG. 1, FIG. 3, FIG. 6A, and
FIG. 6B will be proposed.

[0361] A first technique is a technique of detecting an error
using an error detection code during a process of reading
data from the internal memory. If an error detection code
acquired during the reading process is different from a
predetermined error detection code, the ICT may determine
the code as an error.

[0362] A second technique is a technique of performing a
read-write test in a hard way during a normal operation.
[0363] FIG. 16 illustrates the second technique. A test
logic which encloses the internal memory may perform the
read-write test during the runtime of the system and bypass
the access from the system bus. In order to completely
process the test, the tester in the ICT may be responsible for
the address management. The illustrated temporally register
file may temporally store original data which is prone to be
deleted due to the test. When the test is completed, the

Sep. 26, 2024

original data in the temporary register file may be recorded
in the internal memory again.

[0364] If an unpredictable access occurs during the test,
data on the system bus may be recorded in the temporary
register file, and in contrast, the data in the temporary
register file may move to the system bus.

[0365] The test technique as described above may be
applied not only to the internal memory, but also to the
external memory in the same way.

1I-7. Operation after Test

[0366] When there is a hardware defect in the NPU, the
operation after the test may be very important. For example,
a user is notified of the defect in order to recommend
stopping usage. To this end, the post action unit 670 of FIG.
11 may provide information about the functional component
from which the defect is detected and information about test
input data (that is, a test vector) which causes the defect. The
above-described information may allow the user to know the
position of the defective functional component. The usage of
the functional component from which the defect is detected
needs to be stopped and isolated. In order to prevent the
defective functional component from degrading the perfor-
mance of the entire system, the output signal of the func-
tional component may be replaced by a predetermined
signal. Alternatively, the functional component may be reset
or gated. Alternatively, the power gating may be performed
on the functional component.

[0367] Inthe meantime, when the functional component is
isolated, the NPU may face another problem. Therefore,
even though some functional components have defects, a
method for allowing the NPU to still operate needs to be
proposed. For example, when the NPU is mounted in a
product which requires a high reliability, the NPU needs to
further include a spare for some functional components. If
some functional components have defects, the spare may
operate instead of the functional component. However,
when some functional components are duplicated, it may
increase an area of the semiconductor device. In order to
solve this problem, it may be effective to add a program-
mable logic in the NPU.

II1. Function Test During Runtime or Test for Combination
of Functions

[0368] FIG. 17 illustrates a process of testing a function
using a random number generator.

[0369] The function test is a test of injecting test input data
(for example, a test vector) into a CUT and comparing
whether an output from the CUT matches an intended
output. In order to correctly evaluate based on the compari-
son, each input data needs to accurately induce an intended
output. A test range of the test input data needs to be high to
detect all defects.

[0370] In a specific design, there may be two test input
data for the function test. First, a random number generator
which is connected to a comparison operation (e.g., an XOR
operation) may be used for the test operation illustrated in
FIG. 17. Generally, the random number generator may
generate a pseudo random number stream based on an input
seed. The random number stream is injected into the CUT
via the wrapper and the output is accumulated and stored in
the test result register by means of the XOR operation. When
the test is completed, the values stored in the test result
register may be compared with the intended result corre-

US 2024/0321384 Al

sponding to the test input data. If there is a difference in the
comparison result, an error notification may be issued.
[0371] Second, all test patterns for test input data and
corresponding prediction results may be fixed, respectively
and stored in the internal memory in the NPU or an external
memory. When the test input data (that is, a test vector) from
the memory is input to the CUT, the output from the CUT
and the intended result corresponding to the test input data
may be compared.

[0372] In order to perform the function test during the
runtime of the NPU, the ICT plays an important role to
transmit data and communicate with the system bus, and
monitor the state of the CUT. Specifically, when the CUT is
in an idle state, the ICT needs to determine when the test is
performed. During the test, the random number generator
generates a random number stream as test input data and
transmits the test input data to the CUT. If there is a
difference between the test result and the intended test result,
the ICT transmits the information to the post action unit.
[0373] During the function test, the functional components
may be used so that generally, a frequency for the test
operation needs to be lower than or equal to a frequency for
a normal operation to avoid the difference of the timing (that
is, timing violation). In order to perform the test in real time
during the normal operation, it is effective to perform the test
when the functional component is in an idle state. Therefore,
there is no choice but to perform the test at a high frequency.

IV. Test in Runtime Using Combination of DFT (Design for
Testability) and ICT

IV-1. Multiple Clocks

[0374] FIG. 18A illustrates an example of multiple clocks,
FIG. 18B is an exemplary view illustrating an operation of
a tester under the multiple clocks, and FIG. 18C illustrates
a path of test input data.

[0375] During the test, with regard to the injection of one
test input data (that is, a test vector), there may be two
techniques.

[0376] A first technique is to use a time period to shift data
as illustrated in FIG. 18A. An SE (scan enable) port is
enabled, and the Q output of a flip-flop is connected to the
D input of another flip-flop. This connection may make a
scan chain which connects the scan input to the scan output
through a chain of the flip-flops.

[0377] Therefore, all the designed combinational logics
may be disabled and there may be no reference logic cell for
a data path (that is, a path from one flip-flop to another
flip-flop).

[0378] Although not shown, T, can be defined as a
clock cycle for one operation, T,,,,,., is defined as a time
delay from a clock source of a first flip-flop to a first port,
T.oprre 18 defined as a time delay from the clock source to
a second port of a second flip-flop, T ., is defined as a time
delay from the clock (CK) port of the first flip-flop to its Q
port, and T, .. is defined as a time delay from the Q port
of the first flip-flop to the D port of the second flip-flop.
ThuS, Tcycle>Tlaunch+Tclk2q+po-max+Tsetup+Tmargin_Tcap’
ae. T is the time required for setup, and T is the

setup

allowable slack time.

[0379] When the scan test is enabled, T,, ., may be
reduced to zero from a viewpoint of the scan test. Ideally,
T 4p-max may be zero. However, in order to solve the timing

margin

Sep. 26, 2024

violation, when a plurality of inverters or buffers is added,
the time delay may be larger than zero.

[0380] As an alternative, T, 0> T oo+ Tsery
Teopure- During a time period to shift data, it may be
processed at a higher frequency.

[0381] During a time period to capture data as illustrated
in FIG. 18A, a scan enable pin is deactivated and thus the
functional component is re-activated and a combinational
logic may be activated on the data path. In order to solve the
violation of the timing while data is captured, a time delay
may be added between a clock cycle located at one end in
a time period to shift data and a clock cycle located at one
end in a time period to capture data.

[0382] The delay between clock cycles may be greater
than or equal to a clock cycle for a normal operation. In
order to detect when the time period to shift data is com-
pleted based on a maximum number of flip-flops on the scan
chain corresponding to a shifted value, a counter is added
and in order to manage the time delay in a time period to
capture data, another counter may be added.

[0383] In FIG. 18B, a tester 640 receives two input clock
signals. One is f_clk used for a normal operation, and the
other is sclk used to shift data. A clock configuration is
inserted into the tester 640, so that the sclk signal may be set
to be used in both the period to shift data and the period to
capture data.

[0384] In order to control the switching between {_clk for
a normal operation and sclk for test operation, a TE signal
corresponding to the CUT may be used. When an ID (that is,
C-ID) of the component is received from the scheduler, the
test block in the ICT is ready to test. TEs of the CUTs which
are available through the decoder may enable the test
process.

[0385] FIG. 19A illustrates an example of a functional
component, and FIG. 19B illustrates an example that test
input data (for example, a test vector) is injected into a tester
in an ICT.

[0386] In order to apply a design for testability (DFT) in
the test during the runtime, a scan chain is added in the CUT
and all flip-flops may be enclosed by the scan flip-flop. A
scan input, a scan output, and TEST_ENABLE, and SCAN_
ENABLE signals are connected to the tester in the ICT and
an original input and an original output of the CUT may
communicate with the system bus via the tester and the
wrapper.

[0387] As illustrated in FIG. 19B, from a viewpoint of the
memory which stores the test pattern, the block may be
divided into four parts. A first part is a part which stores an
input shift vector, a second part is a part which stores an
output shift vector, a third part is a part which stores an input
capture vector, and a fourth part is a part which stores an
output capture vector. In order to start the test, the input shift
data is loaded from the memory to input to the CUT through
the tester.

[0388] In each scan chain, after all the flip-flops are filled
with the shift vector, when the first input capture vector
including a value for a scan input and an initial input is
loaded, a first output capture vector including values for all
scan outputs and initial outputs is loaded, and then compared
with the actual output capture data. Each loaded shift vector
is accompanied by output shift data and the actual output
data and the output shift vector or an output capture vector
may be compared.

+Tlaunch -

US 2024/0321384 Al

[0389] FIG. 20 illustrates a test process, and FIG. 21
illustrates an example of shift data and capture data during
a test process.

[0390] During a step of shifting data, when a scan_enable
port is enabled, a SCAN_IN port may be connected to the
SCAN_OUT port through the flip-flops without the combi-
national logic. An input shift vector may be loaded in all
scan chains until all flop-flops have values shifted from the
input shift vector. One shift value may pass through one
flip-flop at each clock cycle. That is, the D port of a
preceding flip-flop may be connected to the D port of a
subsequent flip-flop.

[0391] When during a capturing step, a scan_enable port
is disabled, and none of the D ports of any flip-flop is
connected to the Q port of a preceded flip-flop but may be
directly connected to the combinational logic.

[0392] The capture vector output may be loaded in the Q
output of all the flip-flops through the combinational logic at
the positive (+) edge of a clock cycle. In a first data capturing
step, a data transmitting process is prepared to compare the
output data with intended output data, and then the com-
parison is performed at the positive-going edge of every
clock cycle. All test vector inputs are loaded, and the process
returns to the first data shift step and each process starts over.
[0393] FIG. 21 illustrates shifting and capturing processes.
A rectangular box in FIG. 21 indicates a flip-flop in each
scan chain, and all flip-flops are filled at the end of the data
shifting step.

[0394] FIG. 22 illustrates an example of switching a test
mode to a normal operation mode.

[0395] As known with reference to FIG. 22, a data shifting
process and a capturing step may be repeated during the
output test mode. If there is an access to the CUT, the CUT
is recovered to a normal operation mode and the test may be
backed off. Thereafter, the skip mode is performed during a
predetermined time period and then the output test mode
may be performed again.

[0396] FIG. 23 illustrates an example in which flip-flops
operate on a scan chain, and FIG. 24 illustrates a part of a
CUT which operates in a normal operation mode.

[0397] When an unexpected access to the CUT from the
system bus is generated, TEST_ENABLE is disabled and
the data shifting or capturing may be quickly stopped. The
CUT is recovered to a normal operation mode and the test
may be backed off.

[0398] When the CUT enters an idle state again, a previ-
ous data shift step may start over for the test. However, in a
first shifting step after shifting from the normal operation
mode to the test operation mode, the comparison of the
output result is deactivated and the comparison of the output
results may be performed from the subsequent capturing
step.

[0399] That is, as illustrated in FIG. 23, the shifted input
values are not loaded in all the flip-flops at the scan chain,
and the comparison may not be performed.

[0400] The function test and the test through the scan
injection have advantages and disadvantages. The test
through scan injection has a disadvantage in that more
memories are used as compared with the function test and
the time is delayed and has an advantage in that the range of
the test is broad.

[0401] Specifically, when the NPU is mounted in a product
which requires a high reliability like an autonomous vehicle,
a drone, a UAM aircraft, or a UAV, a scan injection type test

Sep. 26, 2024

having a broad test range may be advantageous. Further, the
scan injection type test may increase a frequency for a test
operation and reduce the test time. When it takes a long time
to test, the possibility of the car accident may be increased
so that it is not desirable. The scan injection type test may
increase a frequency for a test operation so that more test
patterns may be injected during the idle time and the
hardware defect in the NPU may be more quickly detected.
The normal function test has an advantage in that the power
consumption is small, but in the environment in which the
high reliability is required, such as the autonomous vehicle
the drone, the UAM aircraft, or the UAV, operational sta-
bility may be more important than power consumption.
[0402] The examples of the present disclosure disclosed in
the present specification and the drawings merely provide a
specific example for easy description and better understand-
ing of the technical description of the present disclosure, but
are not intended to limit the scope of the present disclosure.
It is obvious to those skilled in the art that other modifica-
tions are possible in addition to the examples described
above.

[0403] [National R&D Project Supporting This Inven-
tion]

[0404] [Task Identification Number] 1711152858

[0405] [Task Number] 2020-0-01297-003

[0406] [Name of Ministry]| Ministry of Science and ICT

[0407] [Name of Project Management (Specialized)

Institution] Institute of Information & Communications
Technology Planning & Evaluation

[0408] [Research Project Title] Next-generation Intelli-
gent Semiconductor Technology Development (De-
sign)

[0409] [Research Task Title] Technology Development

of a Deep Learning Processor Advanced to Reuse Data
for Ultra-low Power Edge

[0410] [Contribution Rate]1/1

[0411] [Name of Organization Performing the Task]
DeepX Co., Ltd.

[0412] [Research period]2022.01.01~2022.12.31

What is claimed is:

1. A neural processing unit (NPU) for testing a component

during runtime, the NPU comprising:

at least one memory; and

a plurality of processing elements (PEs) which are con-
figured to operate for an operation of an artificial neural
network (ANN),

wherein at least one of the at least one memory and the
plurality of PEs is selected as a component under test
(CUT) and undergoes a test when a collision due to an
access to the at least one is not detected.

2. The NPU of claim 1, wherein the plurality of PEs

comprise: a first group of PEs and a second group of PEs.

3. The NPU of claim 2,

wherein the second group of PEs is configured to perform
the operation of the artificial neural network when the
test is performed on the first group of PEs.

4. The NPU of claim 1,

wherein the at least one memory includes a first group of
memory instances and a second group of memory
instances.

5. The NPU of claim 4,

wherein the second group of memory instances is con-
figured to be used when the test is performed on the first
group of memory instances.

US 2024/0321384 Al
19

6. The NPU of claim 1, wherein the test is a first type of

Sep. 26, 2024

wherein the second group of PEs is configured to perform

test or a second type of test,

wherein the first type of test uses an error detection code,
and

wherein the second type of test is a read-write test.

7. The NPU of claim 1, wherein each state of the at least
one memory and the plurality of PEs is monitored by a
component tester.

8. The tester of claim 7, wherein the component tester is
included in the NPU or is disposed external to the NPU.

9. The NPU of claim 7, wherein the component tester is
configured to:

communicate with the at least one memory and the
plurality of PEs;

select the at least one of the at least one memory and the
plurality of PEs as a component under test (CUT),

prepare or start a test for the selected CUT,

stop the test, based on a detection of a collision due to an
access to the at least one, and

complete the test, when no collision is detected.

10. The NPU of claim 1, further comprising:

a wrapper arranged in correspondence to each of the at
least one memory and the plurality of PEs.

11. A system comprising:

a neural processing unit (NPU) comprising at least one
memory and a plurality of processing elements (PEs)
which are configured to operate for an operation of an
artificial neural network (ANN),

a component tester configured to: select at least one of the
at least one memory and the plurality of PEs, as a
component under test (CUT) and undergo a test when
a collision due to an access to the at least one is not
detected.

12. The system of claim 11, wherein the plurality of PEs

comprise: a first group of PEs and a second group of PEs.

13. The system of claim 12,

the operation of the artificial neural network when the
test is performed on the first group of PEs.

14. The system of claim 11,

wherein the at least one memory includes a first group of

memory instances and a second group of memory
instances.

15. The system of claim 14,

wherein the second group of memory instances is con-

figured to be used when the test is performed on the first
group of memory instances.

16. The system of claim 11, wherein the test is a first type
of test or a second type of test,

wherein the first type of test uses an error detection code,

and

wherein the second type of test is a read-write test.

17. The system of claim 11, wherein the component tester
is configured to monitor each state of the at least one
memory and the plurality of PEs.

18. The system of claim 11, wherein the component tester
is configured to:

communicate with the at least one memory and the

plurality of PEs;

select the at least one of the at least one memory and the

plurality of PEs as a component under test (CUT),
prepare or start a test for the selected CUT,

stop the test, based on a detection of a collision due to an

access to the at least one, and

complete the test, when no collision is detected.

19. The system of claim 11, further comprising:

a wrapper arranged in correspondence to each of the at

least one memory and the plurality of PEs.

#* #* #* #* #*

