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Abstract Title: Sparse submanifold deconvolution based on active positions of the output tensor.

(57) A method of implementing a sparse submanifold
deconvolution between an input tensor and a filter,
representable as a direct convolution between an input
tensor and a plurality of sub-filters comprising weights of
the filter, the method comprising: receiving the input
tensor (4104, fig 41) in dense format, identifying active
positions of the output tensor (4102, fig 41), generating,
using an indexed-unfold operation, an input matrix (4106,
fig 41) comprising elements of the input tensor in each
non-zero sub-window (4108, fig 41) relevant to the active
positions of the output tensor, and multiplying the input
matrix with a weight matrix (4202, fig 42) comprising the
sub-filters to generate an output matrix (4204, 42). The
method may further comprise generating, using an
indexed fold operation, the output tensor (4302, fig 43) by
identifying, based on the active positions, the position in
the output tensor of each element in the output matrix,
and placing the elements into the corresponding positions
in the output tensor. Also disclosed is a method of
performing a convolution on the output tensor using a
neural network accelerator to generate partial outputs
which are combined to generate an output tensor.
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METHODS AND SYSTEMS FOR PERFORMING A SPARSE SUBMANIFOLD
DECONVOLUTION ON A GPU

TECHNICAL FIELD

[0001] This application is directed to methods and systems for performing a sparse submanifold

deconvolution on a graphics processing unit (GPU).
BACKGROUND

[0002] As is known to those of sKill in the art, a point cloud is a set of individual data points plotted
in two-dimensional (2D) or three-dimensional (3D) space. For example, each point in a 3D point
cloud may represent a measurement at a particular x, y and z location. A point cloud may be used
to represent an object in space. Point clouds may by generated by a sensor, such as, but not
limited to, a LIiDAR scanner or a depth camera. As is known to those of sKkill in the art, a LIDAR
scanner uses light in the form of a pulsed laser to measure distances. As point clouds do not
typically have a point for each possible co-ordinate, point clouds are considered to be sparse
datasets.

[0003] There are a wide range of real-world artificial intelligence applications which point clouds
can be used in, such as augmented/virtual reality (e.g. layout detection for interior scenes) and
autonomous driving (e.g. to extract the driveable regions). As a result, performing deep learning
tasks on point clouds has received significant attention from both academia and industry and
artificial neural networks (referred to herein simply as neural networks) have been developed to
process point clouds, which may be referred to herein as a point cloud neural networks. As is
known to those of skill in the art, a neural network comprises one or more interconnected layers
that can be used for machine learning applications. In particular, a neural network can be used in
signal processing applications, including, but not limited to, image processing and computer vision
applications.

[0004] FIG. 1 illustrates an example neural network 100 that comprises a plurality of layers 102,
104, 106. Each layer 102, 104, 106 receives input data, and processes the input data in
accordance with the layer to produce output data. The output data is either provided to another
layer as the input data or is output as the final output data of the neural network. For example, in
the neural network 100 of FIG. 1, the first layer 102 receives the original input data 108 to the
neural network 100 and processes the input data in accordance with the first layer 102 to produce
output data 110. The output data 110 of the first layer 102 becomes the input data to the second
layer 104, and the second layer 104 processes the input data 110 in accordance with the second
layer 104 to produce output data 112. The output data 112 of the second layer 104 becomes the
input data to the third layer 106, and the third layer 106 processes the input data 112 in accordance
with the third layer 106 to produce output data 114. The output data 114 of the third layer 106 is
then output as the final output data of the neural network. Where the neural network is used for
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classification, the final output data may be a vector of length A, wherein A is the number of classes

and each value in the vector represents the probability of a certain class.

[0005] The data input to and output from a layer of a neural network can be described as a tensor.
As is known to those of skill in the art, a tensor is a generalization of vectors and matrices and can
be considered an n-dimensional array. A vector is a one-dimensional tensor, and a matrix is a two-
dimensional tensor. The tensors in a neural network are often, but are not necessarily, four-
dimensional. Reference is made to FIG. 2 which illustrates an example four-dimensional (4D)
tensor 200 in which one dimension (e.g. corresponding to the batch size) has been suppressed for
visualisation purposes. The 4D tensor 200 may be described as comprising one or more 3D
tensors, wherein each 3D tensor comprises C planes of data. Each plane has a height H and a
width W. Each plane may be referred to as a channel of the tensor. The number of 3D tensors
may be referred to as the batch size. In a traditional neural network each 3D tensor may be, for
example, an image. An element of a tensor may be referred to as a tensel, akin to how an element

of a picture is referred to as a pixel.

[0006] The processing that is performed on the input tensor to a layer depends on the type of
layer. For example, each layer of a neural network may be one of a plurality of different types.
Common neural network layer types include, but are not limited to, a convolution layer, an
activation layer, a normalisation layer, a pooling layer, a fully connected layer, and a batch
normalisation layer. It will be evident to a person of skill in the art that these are only example

neural network layer types and there may be other neural network layer types.

[0007] A convolution layer convolves the input tensor with weights associated with the layer

Specifically, each convolution layer is associated with a plurality of weights w; ...w,,

which may
also be referred to as filter weights or coefficients. The weights are grouped to form one or more
filters. Each filter is moved or slid across the input tensor in one or more dimensions in accordance
with the stride in that dimension, and the dot-product of the input data and the weights of that filter
is calculated at each filter location. The elements of the input tensor that are applied to the filter
weights at a particular filter location are referred to as a window of the input tensor. There may be a

bias per filter which is added to the result of the corresponding dot products.

[0008] There are many different types of convolution layers. Traditional neural networks often
have one or more 2D or 3D convolution layers. In a 2D convolution (which may be referred to
herein as a standard 2D convolution), each filter has a dimension K, x Ky, X C;,, (i.e., each filter
may comprise a set of K, x K, x C;,, weights w) wherein C;, is the number of channels of the input
tensor such that each filter generates a channel of the output. Each filter channel may be
described as a kernel of size K, x Ky,,. Accordingly, depending on the number of channels, a filter
may comprise one or more kernels. Each filter is slid across the input tensor in steps s, and sy, in

the H and W dimensions respectively, which are referred to as the strides of the convolution.
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[0009] Reference is now made to FIG. 3 which illustrates an example 2D convolution with strides
of 1 (i.e., sy = sy, = 1) between an input tensor 302 with a height H, width W, and one channel (i.e.
¢=1) and a set of weights that form one filter 304 with kernel size K, xK,,, and one channel. The
filter 304 is convolved with the input tensor 302 to produce one channel, or one plane, of the output
tensor 306. Specifically, the filter 304 is slid over the input tensor 302 in the width dimension W

and the height dimension H one element at a time and the dot product of the input elements and
the weights is generated at each filter position. In this example, the first position of the filter with
respect to the input tensor 302 is when the centre of the filter w(0,0) is aligned with x(1,1) such that
the first element of the output y(0,0) is equal to the dot product of the input elements in the window
308 and the weights of the filter 304. Similarly, the last position of the filter with respect to the input
tensor 302 is when the centre of the filter w(0,0) is aligned with x(3,3), such that the last element of
the output tensor y(2,2) is equal to the dot product of the input elements in the window 310 and the
weights of the filter 304. A 3D convolution is similar to a 2D convolution except the filters are also
slid across the input tensor in a third (e.g. z or channel) dimension.

[0010] Point cloud neural networks, however, may comprise one or more 2D or 3D sparse
submanifold convolutions layers. A 2D/3D sparse submanifold convolution is the same as its
corresponding standard 2D/3D convolution except that the output elements are only calculated for
positions of the filter in which one or more predetermined elements of the filter kernel is/are aligned
with an active position of the input tensor. An active position of the input tensor is a height and
width position of the input tensor in which at least one channel of the input tensor has a non-zero
value or element at that position. The one or more predetermined elements of the filter kernel may
comprise the centre element of the filter kernel and/or one or more elements close to the centre of
the filter kernel. In the examples described herein there is a single predetermined element of the
filter kernel that is the centre element of the filter kernel. However, it will be evident to a person of
skill in the art that this is an example only. A sparse submanifold convolution is designed to work

on a sparse input tensor.

[0011] Reference is now made to FIG. 4 which illustrates an example 2D sparse submanifold
convolution with strides of 1 (i.e., s, = s, = 1) between an input tensor 402 with a height H, width
W, and one channel (i.e., ¢=1) and a set of weights that form one filter 404 with a kernel size of
K, xKy,,, and one channel, wherein the one or more predetermined elements of the filter kernel
comprises the element at the centre of the filter kernel (i.e. w(0,0)). The input tensor 402 only has
three non-zero elements, thus the input tensor 402 has three active positions —p1, p2, p3.
Accordingly, there are only three positions of the filter with respect to the input tensor 402 (or three
windows of the input tensor), denoted 406, 408, 410, in which the centre of the filter 404 is aligned
with an active position (which will be referred to herein as the active windows of the input tensor).
Thus, only three elements g1, g2, q3 of the output tensor 412 are generated. Output element g1 is
equal to the dot product of the elements in the first active window 406 and the weights of the filter
404, output element g2 is equal to the dot product of the elements the second active window 408

and the weights of the filter 404, and output element g3 is equal to the dot product of the elements
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of the third active window 410 and the weights of the filter 404. A 3D sparse submanifold

convolution is similar to a 2D sparse submanifold convolution except the filters are also slid across

the input tensor in a third (e.g. z) dimension.

[0012] As sparse submanifold convolution layers are becoming more popular in neural networks it
is important to be able to implement sparse submanifold convolutions in a hardware efficient

manner (e.g., in a manner that requires less silicon area and/or less processing power).

[0013] The embodiments described below are provided by way of example only and are not
limiting of implementations which solve any or all of the disadvantages of known methods and

systems for implementing a sparse submanifold convolution.

SUMMARY

[0014] This Summary is provided to introduce a selection of concepts in a simplified form that
are further described below in the Detailed Description. This Summary is not intended to identify
key features or essential features of the claimed subject matter, nor is it intended to be used to limit

the scope of the claimed subject matter.

[0015] Described herein are methods of implementing a sparse submanifold deconvolution on a
graphics processing unit, the sparse submanifold deconvolution being representable as a direct
convolution between an input tensor to the sparse submanifold deconvolution and each of a
plurality of a sub-filters, each sub-filter of the plurality of sub-filters comprising a subset of weights
of a filter of the sparse submanifold deconvolution. The methods include: receiving, at the graphics
processing unit, the input tensor in a dense format; receiving, at the graphics processing unit,
information identifying target positions of an output tensor of the sparse submanifold deconvolution;
performing, at the graphics processing unit, an indexed unfold operation on the input tensor based
on the identified target positions of the output tensor to generate an input matrix comprising
elements of the input tensor in each sub-window of the input tensor relevant to at least one of the
identified target positions of the output tensor; and performing, at the graphics processing unit, a
matrix multiplication between a weight matrix and the input matrix to generate an output matrix that

comprises elements of the output tensor at the identified target positions.

[0016] A first aspect provides a method of implementing a sparse submanifold deconvolution on
a graphics processing unit, the sparse submanifold deconvolution being representable as a direct
convolution between an input tensor to the sparse submanifold deconvolution and each of a
plurality of a sub-filters, each sub-filter of the plurality of sub-filters comprising a subset of weights
of a filter of the sparse submanifold deconvolution, the method comprising: receiving, at the
graphics processing unit, the input tensor in a dense format; receiving, at the graphics processing
unit, information identifying target positions of an output tensor of the sparse submanifold
deconvolution; performing, at the graphics processing unit, an indexed unfold operation on the
input tensor based on the identified target positions of the output tensor to generate an input matrix

comprising elements of the input tensor in each sub-window of the input tensor relevant to at least
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one of the identified target positions of the output tensor; and performing, at the graphics
processing unit, a matrix multiplication between a weight matrix and the input matrix to generate an

output matrix that comprises elements of the output tensor at the identified target positions.

[0017] The output tensor may have at least a height dimension, a width dimension and a
channel dimension and a target position of the output tensor may be a height and width position of

the output tensor.

[0018] The information identifying the target positions of the output tensor may comprise a target
position list that comprises height and width co-ordinates of each target position of the output

tensor.

[0019] A sub-window of the input tensor may be a window of the input tensor used to compute at

least one element of an output tensor of one of the direct convolutions.

[0020] Performing the indexed unfold operation on the input tensor may comprise identifying,
from the identified target positions of the output tensor and one or more parameters of the sparse
submanifold deconvolution, each sub-window of the input tensor relevant to at least one of the

identified target positions of the output tensor.

[0021] A sub-window of the input tensor may be relevant to a target position if that sub-window
is used to generate an element of the output tensor of the sparse submanifold deconvolution at that

target position.

[0022] The elements of a channel of the output tensor of the sparse submanifold deconvolution
may be divisible into a plurality of blocks wherein each element in a block is generated by a same
sub-window of the input tensor and a different sub-filter of a filter, and identifying the sub-window of
the input tensor relevant to an identified target position may comprise identifying the block of the
output tensor that the identified target position forms part of, and mapping the identified block of the

output tensor to the sub-window of the input tensor used to generate that block.

[0023] An identified block of the output tensor may be mapped to a sub-window of the input
tensor using a position in the output tensor of a predetermined element of the block and the one or

more parameters of the sparse submanifold deconvolution.

[0024] Performing the indexed unfold operation on the input tensor may comprise identifying the
elements of each relevant sub-window from one or more parameters of the sparse submanifold

deconvolution.

[0025] Identifying the elements of a relevant sub-window may comprise identifying a position in
the input tensor of a predetermined element in the sub-window and implementing a series of
nested loops to move through the elements in the sub-window from the identified position, the

series of nested loops comprising a loop for each dimension of the sub-window.
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[0026] Performing the indexed unfold operation on the input tensor may comprise storing the

elements of each relevant sub-window in the input matrix.

[0027] The method may further comprise receiving a zeroed input matrix, and the elements of

the relevant sub-windows of the input tensor may be stored in the received input matrix.

[0028] Performing the indexed unfold operation on the input tensor may comprise identifying,
from one or more parameters of the sparse submanifold deconvolution, which sub-filter of the

plurality of sub-filters is relevant to each of the identified target positions of the output tensor.

[0029] The elements of a channel of the output tensor may be divisible into a plurality of blocks
wherein each element in a block is generated by a same sub-window of the input tensor and a
different sub-filter of a filter, and identifying which sub-filter of the plurality of sub-filters is relevant
to an identified target position of the output tensor may comprise identifying the block that the

target position forms part of and a location of the target position within that block.

[0030] The input matrix may comprise a column for each relevant sub-window of the input tensor
and each column of the input matrix may comprise the elements of the input tensor in the

corresponding relevant sub-window.

[0031] The weight matrix may comprise a row for each sub-filter relevant to at least one
identified target position of the output tensor, and each row of the weight matrix may comprise all

weights forming the corresponding sub-filter.

[0032] The method may further comprise performing, at the graphics processing unit, an indexed
fold operation on the output matrix based on the identified target positions of the output tensor to

generate the output tensor in a dense format.

[0033] Performing the indexed fold operation on the output matrix may comprise identifying,
based on the identified target positions of the output tensor and one or more parameters of the
sparse submanifold deconvolution, elements in the output matrix that correspond to the identified
target positions of the output tensor, and storing each element of the output matrix that

corresponds to an identified target position at that target position of a channel of the output tensor.

[0034] The output matrix may comprise, for each relevant sub-window, an element for each
relevant sub-filter, and an element of the output matrix is determined to correspond to an identified
target position if that element was generated by the sub-window and sub-filter relevant to that

identified target position.

[0035] The method may further comprise receiving, at the graphics processing unit, a zeroed
output tensor, and the elements of the output matrix corresponding to an identified target position

are written to the received output tensor.
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[0036] Performing the indexed fold operation on the output matrix may further comprise storing

zeroes at each position of the output tensor that does not comprise an element of the output matrix.

[0037] A second aspect provides a graphics processing unit configured to perform the method of

the first aspect.

[0038] The graphics processing unit may be embodied in hardware on an integrated circuit.

[0039] A third aspect provides a computer readable storage medium having stored thereon
computer readable code configured to cause a graphics processing unit to perform the method of

the first aspect when the code is run.

[0040] The method of the first aspect may be implemented as part of processing data in

accordance with a neural network to perform a signal processing task.

[0041] The input tensor of the first aspect may comprise image data such that performing the

sparse submanifold deconvolution comprises a method of processing image data.

[0042] The image data may comprise a point cloud data set generated by an image sensor.

[0043] The sparse submanifold deconvolution of the first aspect may be a 3D sparse

submanifold deconvolution and the input tensor may comprise a 3D point cloud data set.

[0044] A fourth aspect provides a method of implementing a standard convolution on a central
processing unit, the method comprising: receiving, at the central processing unit, an input tensor in
a dense format; performing, at the central processing unit, an indexed unfold operation on the input
tensor based on the identified active positions of the input tensor to generate an input matrix
comprising elements of the input tensor in each non-zero window of the input tensor; and
performing, at the central processing unit, a matrix multiplication between a weight matrix and the
input matrix to generate an output matrix that comprises elements of an output tensor of the
standard convolution based on the non-zero windows of the input tensor.

[0045] A fifth aspect provides a method of implementing a sequence of two sparse submanifold
convolutions, the method comprising: receiving, at a graphics processing unit, an input tensor, in a
dense format, to a first sparse submanifold convolution of the sequence; identifying, at the graphics
processing unit, active positions of the input tensor; performing, at the graphics processing unit, an
indexed unfold operation on the input tensor based on the identified active positions to generate an
input matrix comprising elements of the input tensor in each active window of the input tensor;
performing, at the graphics processing unit, a matrix multiplication between a weight matrix and the
input matrix to generate an output matrix that comprises elements of an output tensor of the first
sparse submanifold convolution based on the active windows; providing the output matrix to a
neural network accelerator as an input tensor, in a sparse format, to a second sparse submanifold

convolution of the sequence; performing, at the neural network accelerator, for each position of a
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kernel of the second sparse submanifold convolution, a 1x1 convolution between the received input
matrix and weights of filters of the sparse submanifold convolution at that kernel position to
generate a plurality of partial outputs; and combining appropriate partial outputs of the plurality of
partial outputs to generate an output tensor, in sparse format, of the second sparse submanifold

convolution.

[0046] The neural network accelerators, convolution processing units, convolution engines, and
graphics processing units described herein may be embodied in hardware on an integrated circuit.
There may be provided a method of manufacturing, at an integrated circuit manufacturing system,
a neural network accelerator, convolution processing unit, convolution engine or graphics
processing unit described herein. There may be provided an integrated circuit definition dataset
that, when processed in an integrated circuit manufacturing system, configures the system to
manufacture an integrated circuit that embodies a neural network accelerator, convolution
processing unit, convolution engine or graphics processing unit described herein. There may be
provided a non-transitory computer readable storage medium having stored thereon a computer
readable description of a neural network accelerator, convolution processing unit, convolution
engine or graphics processing unit that, when processed in an integrated circuit manufacturing
system, causes the integrated circuit manufacturing system to manufacture an integrated circuit
embodying the neural network accelerator, convolution processing unit, convolution engine or

graphics processing unit.

[0047] There may be provided an integrated circuit manufacturing system comprising: a non-
transitory computer readable storage medium having stored thereon a computer readable
description of a neural network accelerator, convolution processing unit, convolution engine or
graphics processing unit described herein; a layout processing system configured to process the
computer readable description so as to generate a circuit layout description of an integrated circuit
embodying the neural network accelerator, convolution processing unit, convolution engine or
graphics processing unit; and an integrated circuit generation system configured to manufacture an
integrated circuit embodying the neural network accelerator, convolution processing unit,
convolution engine or graphics processing unit according to the circuit layout description.

[0048] There may be provided computer program code for performing any of the methods
described herein. There may be provided non-transitory computer readable storage medium
having stored thereon computer readable instructions that, when executed at a computer system,

cause the computer system to perform any of the methods described herein.

[0049] The above features may be combined as appropriate, as would be apparent to a skilled

person, and may be combined with any of the aspects of the examples described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0050] Examples will now be described in detail with reference to the accompanying drawings in

which:
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[0051] FIG. 1 is a schematic diagram of an example neural network;

[0052] FIG. 2 is a schematic diagram illustrating an example tensor;

[0053] FIG. 3 is a schematic diagram illustrating an example 2D convolution;

[0064] FIG. 4 is a schematic diagram illustrating an example 2D sparse submanifold convolution;

[0055] FIG. 5is a flow diagram of an example method of performing a sparse submanifold
convolution using a GPU,

[0056] FIG. 6 is a schematic diagram illustrating an example method of generating a list of active

positions for an example input tensor;

[0057] FIG. 7 is a schematic diagram illustrating an example unfold operation;

[0058] FIG. 8 is a schematic diagram illustrating an example indexed unfold operation to

implement a sparse submanifold convolution;

[0059] FIG. 9is a schematic diagram illustrating an example padded input tensor;

[0060] FIG. 10 is a schematic diagram illustrating an example matrix multiplication between a

weight matrix and an input matrix to implement a sparse submanifold convolution;

[0061] FIG. 11 is a schematic diagram illustrating an example indexed fold operation to

implement a sparse submanifold convolution;

[0062] FIG. 12is a graph of the mean duration to implement an example sparse submanifold
convolution on a GPU for different sized 3D input tensors using different methods and different

levels of sparsity;

[0063] FIG. 13 is a flow diagram of an example method of implementing a sparse submanifold

convolution using a neural network accelerator,

[0064] FIG. 14 is a schematic diagram illustrating dense and sparse formats of an example

tensor;

[0065] FIG. 15 is a schematic diagram illustrating the sub-filters for an example filter to

implement a sparse submanifold convolution;

[0066] FIG. 16 is a schematic diagram illustrating 1x1 convolutions performed on the input
tensor in sparse format of FIG. 14 using the sub-filters of FIG. 15 to implement an example sparse
submanifold convolution;
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[0067] FIG. 17 is a schematic diagram illustrating matrix multiplications between the 1x1
convolution outputs of FIG. 16 and corresponding scatter matrices to implement an example

sparse submanifold convolution;

[0068] FIG. 18 is a schematic diagram illustrating combining the matrix multiplication outputs of
FIG. 17 to implement an example sparse submanifold convolution;

[0069] FIG. 19 is an example inference graph to implement the method of FIG. 13 for an

example sparse submanifold convolution in accordance with a first example;

[0070] FIG. 20 is an example inference graph to implement the method of FIG. 13 for an

example sparse submanifold convolution in accordance with a second example;

[0071] FIG. 21 is a flow diagram of an example method to implement a standard convolution
using a GPU;

[0072] FIG. 22 is a schematic diagram illustrating an example indexed unfold operation
performed on an example input tensor to implement an example standard convolution;

[0073] FIG. 23 is a schematic diagram illustrating identifying the windows that each of a plurality

of active positions form part of to implement a standard convolution;

[0074] FIG. 24 is a schematic diagram illustrating an example unfold operation performed on

another example input tensor to implement an example standard convolution;

[0075] FIG. 25 is a schematic diagram illustrating a matrix multiplication between the input

matrix generated in FIG. 24 and a weight matrix to implement an example standard convolution;

[0076] FIG. 26 is a schematic diagram illustrating an example indexed fold operation performed

on the output of the matrix multiplication of FIG. 25 to implement an example standard convolution;

[0077] FIG. 27 is a graph of the mean duration to implement an example 2D convolution
operation on a GPU or CPU for different sized 2D input tensors and different levels of sparsity

using different methods;

[0078] FIG. 28 is a schematic diagram illustrating an example 2D convolution;

[0079] FIG. 29 is a schematic diagram illustrating an example 2D deconvolution;

[0080] FIG. 30 is a schematic diagram illustrating an example 2D deconvolution;

[0081] FIG. 31 is a schematic diagram illustrating implementing an example 2D deconvolution

using a transposed sparse matrix;
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[0082] FIG. 32 is a schematic diagram illustrating implementing an example 2D deconvolution

using a padded input tensor;

[0083] FIG. 33 is a schematic diagram illustrating implementing an example 2D deconvolution

using multiple direct convolutions;

[0084] FIG. 34 is a schematic diagram illustrating the sub-filters for implementing an example 2D

deconvolution using multiple direct convolutions;

[0085] FIG. 35 is a schematic diagram illustrating interleaving the outputs of multiple direct

convolutions;

[0086] FIG. 36 is a flow diagram of an example method of implementing a deconvolution using a
GPU;

[0087] FIG. 37 is a schematic diagram illustrating an example indexed unfold operation
performed on an example input tensor to generate an input matrix to perform an example
deconvolution;

[0088] FIG. 38 is a schematic diagram illustrating a matrix multiplication between the input

matrix of FIG. 37 and a weight matrix to perform an example deconvolution;

[0089] FIG. 39 is a schematic diagram illustrating an indexed fold operation performed on the

output matrix of FIG. 38 to perform an example deconvolution;

[0090] FIG. 40 is a flow diagram of an example method of implementing a sparse submanifold

deconvolution using a GPU,;

[0091] FIG. 41 is a schematic diagram illustrating an example indexed unfold operation
performed on an input tensor to generate an input matrix to implement an example sparse

submanifold deconvolution;

[0092] FIG. 42 is a schematic diagram illustrating a matrix multiplication between the input

matrix of FIG. 41 and a weight matrix to implement an example sparse submanifold deconvolution;

[0093] FIG. 43 is a schematic diagram illustrating an indexed fold operation performed on the

output matrix of FIG. 42 to implement an example sparse submanifold deconvolution;
[0094] FIG. 44 is a block diagram of an example neural network accelerator for implementing
any of the NNA-based methods described herein;

[0095] FIG. 45 is a block diagram of an example implementation of the convolution processing
unit of FIG. 44;

[0096] FIG. 46 is a block diagram of an example implementation of a convolution engine of FIG.
45;
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[0097] FIG. 47 is a block diagram of an example computer system in which a graphics

processing unit and/or a neural network accelerator described herein may be implemented; and

[0098] FIG. 48 is a block diagram of an integrated circuit manufacturing system for generating
an integrated circuit embodying a graphics processing unit, a neural network accelerator, a

convolution processing unit or a convolution engine described herein.

[0099] The accompanying drawings illustrate various examples. The skilled person will
appreciate that the illustrated element boundaries (e.g., boxes, groups of boxes, or other shapes)
in the drawings represent one example of the boundaries. It may be that in some examples, one
element may be designed as multiple elements or that multiple elements may be designed as one
element. Common reference numerals are used throughout the figures, where appropriate, to

indicate similar features.

DETAILED DESCRIPTION

[0100] The following description is presented by way of example to enable a person skilled in the
art to make and use the invention. The present invention is not limited to the embodiments
described herein and various modifications to the disclosed embodiments will be apparent to those
skilled in the art.

[0101] Embodiments will now be described by way of example only.

[0102] As described above, as sparse submanifold convolution layers are becoming more
popular in neural networks it is important to be able to implement sparse submanifold convolutions
in a hardware efficient manner (e.g., in a manner that requires less silicon area or less processing

power).

[0103] Methods which are known to the Applicant, which is not an admission that they are
known outside of the Applicant company or that they are well-known, for implementing a sparse
submanifold convolution on a GPU, such as those implemented by TorchSparse and SpConv,
include performing a gather operation, a matrix multiply (MatMul) operation, and a scatter
operation. Specifically, in GPU implementations: (1) the active points in the input tensor are
determined; (2) a HashMap is then built to store the information of which (active) points need to be
multiplied by each weight; (3) a gather operation is then used to generate, from the HashMap, an
input data matrix (or a set of input data matrices) and a parameter/weight matrix (or a set of
parameter matrices) so that each (active) point is multiplied by the relevant weight; (4) a matrix
multiplication is performed between the input matrix/matrices and the parameter matrix/matrices to
generate partial results; and (5) a scatter-add operation is then performed, based on the HashMap,
to combine the partial results to generate the final outputs and put them in the correct location in
the output tensor. However, the gather and scatter operations can be time and resource intensive

to implement.
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[0104] Accordingly, the inventors have developed methods for implementing a sparse
submanifold convolution in a more hardware efficient manner, compared to the methods known to
the Applicant, using a GPU and/or a neural network accelerator (NNA) which take advantage of the
hardware features of GPUs and NNAs respectively. Specifically, the methods described herein for
implementing a submanifold convolution are particularly adapted to take into consideration the
internal functioning of a GPU and/or an NNA. In particular, as described in more detail below, the
GPU-based methods are designed to take advantage of the parallel architecture (e.g. SIMD
architecture) of GPUs and the NNA-based methods are designed to take advantage of the
architecture of NNAs that enable convolution operations to be implemented in a hardware efficient

(in terms of time and resources) manner.

GPU Implementations of Sparse Submanifold Convolution

[0105] The inventors have determined that a sparse submanifold convolution can be performed
efficiently on a GPU by performing an indexed unfold operation on an input tensor in dense format
to generate an input matrix of active windows of the input tensor, performing a matrix multiplication
between a weight matrix and the input matrix, and, optionally, performing an indexed fold operation
on the output of the matrix multiplication to generate an output tensor in dense format. GPUs are
often implemented using a single instruction multiple data (SIMD) architecture. The inventors have
determined that indexed unfold operations, matrix multiplications, and indexed fold operations can
all be performed very efficiently in a parallelised manner using a SIMD architecture allowing a
sparse submanifold convolution to be performed in a very hardware and resource efficient manner

using the specific hardware structure of a GPU in the manner described herein.

[0106] Reference is now made to FIG. 5 which illustrates an example method 500 of
implementing a sparse submanifold convolution using a GPU. The method 500 begins at block
502 where an input tensor in dense format is received at the GPU. An input tensor in dense
format, which may also be referred to as a densified input tensor, comprises each possible element
of the tensor regardless of whether the element is at an active position or not. As described above,
an active location or position in an input tensor is a height and width position or location (which may
also be referred to as an x,y position, a y,x position, a column and row position, or a row and
column position) in which at least one channel of the input tensor has a non-zero value. For
example, if the element at height and width position (1,2) of the first channel of an input tensor is
non-zero, then that element is at an active position, and the elements at height and width position
(1,2) of the other channels are also at an active position, regardless of whether they are non-zero.
In contrast, an input tensor in sparse format includes only elements of the corresponding tensor in
dense format that are at an active location or position. In other words, an input tensor in sparse
format does not include the elements of the input tensor in dense format at non-active positions or
locations. For example, if all of the elements at height and width position (1,1) of the input tensor in
dense format are zero then the height and width position (1,1) is not an active position and thus the

sparse version of that input tensor will not include any elements at height and width position (1,1) of
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the input tensor in dense format. Once the input tensor in dense format has been received, the
method 500 proceeds to block 504.

[0107] At block 504, the GPU identifies the active locations or positions in the received input
tensor. As noted above, an active location is a height and width position or location of the input
tensor in which at least one channel of the input tensor has a non-zero value. Each active location
or position may be identified with a set of indices — a height or row index, and a width or column

index.

[0108] The active locations or positions in the received input tensor may be identified using any
suitable technique. For example, there are available software modules, such as the nonzero
function in PyTorch®, which can be run efficiently on a GPU, which, when provided with an input
tensor will return a list of non-zero co-ordinates of that input tensor. This list will include the co-
ordinates of every non-zero element in the input tensor. This means that if there are two channels
that have non-zero elements at the same height and width position, then that height and width
position will be identified twice, once for each channel. Since an active location is a height and
width position in which at least one channel has a non-zero value, the list of co-ordinates generated
by the nonzero function may be further processed to identify only the unique height and width
positions or co-ordinates in the list. In other words, the list of the co-ordinates generated by the
nonzero function may be further processed to eliminate duplicate height and width positions or co-
ordinates. In another example, the active locations or positions in the received input tensor may be
identified by first using SpConv's from_dense function (which relies on the PyTorch®’s to_sparse
function) to generate a tensor in sparse format, in coordinate format, from the input tensor in dense

format and then identifying the active locations from the tensor in sparse format.

[0109] In some cases, the output of this block 504 may be a list of the height and width (or
column and row) co-ordinates or indices of the active positions. For example, FIG. 6 shows an
example 6x6 input tensor 602 with a single channel. The input tensor 602 has only two active
positions 604, 606. Accordingly, the output of block 504 for this example input tensor 602 may be
an active position list 608 that comprises the height and width co-ordinates or indices for each of
the two active positions 604, 606. Specifically, the active position list 608 may comprise an entry
for each active position that identifies a height (e.g. row) and width (e.g. column) location or
position. For example, as shown in FIG. 6, the active position list 608 may comprise an entry for
the first active position 604 that identifies its location as a height (row) of 1 and a width (column) of
1, and an entry for the second active position 606 that identifies its location as a height (row) of 3

and a width (column) of 3.

[0110] Once the active locations or positions in the received input tensor have been identified,
the method 500 proceeds to block 506.

[0111] At block 506, the GPU performs an indexed unfold operation (which may also be referred

to as a sparse unfold operation) on the received input tensor based on the active locations or
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positions identified in block 504 to generate an input matrix that comprises the elements of the
active windows of the input tensor. In a standard unfold operation (which may also be referred to
as an image to column (im2col) operation or a default unfold operation), the elements of the input
tensor in each window are placed in a column of the input matrix. As described above, each
window generates one output element per channel of the output tensor. Accordingly, if there are P
elements in each channel of the output tensor (meaning there are P windows of the input tensor),
there will be P columns in the input matrix of a standard unfold operation. An unfold operation can
also be described as a flattening operation. A standard unfold operation will now be explained via

an example.

[0112] Reference is now made to FIG. 7 which illustrates a standard unfold operation performed
on the example 6x6 input tensor 602 of FIG. 6 to perform a 2D convolution with filters with 3x3
kernels to generate an input matrix 702. In this example, each channel of the output tensor will be
of size 4x4, therefore there are sixteen elements in each channel of the output tensor. Each
element in a channel of the output tensor is generated from a different window of the input tensor
602. Since there are sixteen windows of the input tensor used to generate the output tensor, there
are sixteen columns in the input matrix 702. Each column of the input matrix 702 comprises the
elements of one window of the input tensor 602, wherein each element in a window is placed in a
different row. In this example each window comprises a 3x3 block of elements in the input tensor
602 thus there are nine elements per window. As a result, the input matrix 702 has nine rows.
Each row corresponds to a position in the window, and the elements of a window are placed in the
rows in accordance with their position in the window. In the example shown in FIG. 7 the elements
in a window are unrolled from left to right and top to bottom, such that the element in the top left
corner of the window is placed in the first row, the element in the centre of the window is placed in
the fifth row, and the element in the bottom right of the window is placed in the last or ninth row. For
example, the elements in the first window 704 of the input tensor 602 are placed in the first column
706 of the input matrix 702 as shown in FIG. 7; and the elements in the last window 708 of the
input tensor 602 are placed in the last column 710 of the input matrix 702 as shown in FIG. 7.
However, it is evident that this is an example only and the elements of a window can be placed in
the input matrix in any order so long as the elements of each window are placed in the same order
(e.g. the elements of the first window are placed in a column in the same order as the elements of

a second window are placed in a second column).

[0113] Although in the example of FIG. 7 the input tensor 602 only has one channel, it will be
evident that a standard unfold operation can be equally applied to input tensors with more than one
channel by adding n rows to the input matrix for each additional channel, where n is the number of
elements in the filter kernel. For example, where each kernel is 3x3 such that each window
comprises 9 elements of the input tensor per channel, then 9 rows are added to the input matrix for

each additional channel of the input tensor.

[0114] However, as explained above, in a sparse submanifold convolution, elements of the

output tensor are only generated for windows of the input tensor in which one or more
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predetermined elements (the centre element in this example) of the window is/are active (which
may be referred to herein as the active windows). Therefore, only the columns of the input matrix
702 corresponding to active windows are used in a sparse submanifold convolution. As a result,
there are lot of columns in an input matrix generated by a standard unfold operation that are not

required for a sparse submanifold convolution.

[0115] Accordingly, the inventors have developed an indexed unfold operation in which the input
tensor only comprises a column for each active window, wherein the active windows are identified
from the active locations or positions identified in block 504. Specifically, the indexed unfold
operation uses the active locations or positions, and the sparse submanifold convolution
parameters (e.g. stride, dilation, kernel size) to determine the active windows of the input tensor,
and then generates an input matrix with a column for each active window, wherein each column
comprises the elements in the corresponding active window. For example, as shown in FIG. 8, if a
sparse submanifold convolution with 3x3 kernels at strides of 1 is to be performed on the input
tensor 602 of FIG. 6 (with only two active positions) then there are only two active windows 804,
806. An indexed unfold operation performed on the input tensor 602 therefore results in an input
matrix 802 with only two columns — the first column corresponds to the first active window 804 with
the first active position at the centre, and the second column corresponds to the second active

window 806 with the second active position at the centre.

[0116] In some cases, padding may be applied to the input tensor so that any active point on an
edge (i.e. in the first/last column or first/last row) of the input tensor can be the centre of a window.

The number of rows and columns of padding that are added are based on the size of the kernel.
For example, where a filter has a kernel with a height K, then lKZ—”J rows of padding may be added
to each of the top and the bottom of the input tensor; and where a filter has a kernel with a width
K, then lKTWJ columns of padding may be added to each of the left and the right of the input tensor.

For example, as shown in FIG. 9, for a 3x3 kernel, a row of padding 902, 904 may be added to
each of the top and bottom of the input tensor 602, and a column of padding 906, 908 may be
added to each of the left and right of the tensor. Where the input tensor has been padded in this
manner, and the stride is one in each dimension, there will be an active window for each active
position of the input tensor and the input matrix generated by an indexed unfold operation will have

a column for each active position.

[0117] Using an indexed unfold operation, as opposed to a standard unfold operation, to
generate an input matrix can significantly reduce the size of the input matrix which can significantly
reduce the computations to implement the matrix multiplication of block 508 (described below).
Table 1 illustrates the size of the input matrix when generated from an indexed unfold operation
compared to the size of the input matrix when generated from a standard unfold operation for an
example input tensor of size [1, 1, 1000, 1000] (i.e. one batch, one channel, a height of 1000 and a
width of 1000) for a sparse submanifold convolution with a 3x3 kernel, strides and dilations of 1 and

no padding, for different levels of sparsity. Generally the sparser the input tensor, the smaller the
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input matrix generated by an indexed unfold operation and the more memory efficient the method

described with respect to FIG. 5 is.

Table 1

Sparsity 0% 50% 80% 90% 99%

Standard
Unfold

Operation [1,9,996004]

Indexed
Unfold

Operation [1,9,996004] | [1,9,500000] | [1,9,200000] | [1,9,100000] | [1,9,10000]

[0118] The indexed unfold operation may be implemented on the GPU in any suitable manner.
In one example, where there is an active window per active position, the indexed unfold operation
may be implemented by indexing each active location (e.g. from 0 to the number of active
locations) and, for each active position/location, identifying the surrounding positions/locations (i.e.
the positions/locations in the window of the input tensor centred at the active position) using
multiple nested loops, one for each dimension of a window. For example, where the windows are
2D windows with a height dimension and a width dimension, there may be one loop for the height

dimension and another for the width dimension. Specifically, for a 2D convolution with 2D
k—
windows, an offset may be created for each of the height and width dimensions that is equal to 71

where k is the size of the kernel in that dimension, and then the GPU is configured to loop from -
offset to +offset from the respective active location. Where the windows are 3D with a channel
dimension, there may be an additional loop that loops through the channels. The element at each
identified position is then copied into the appropriate position of the input matrix. As described
above, each column in the input matrix may correspond to one active window. The values at the
offset positions, starting from top left, may be ordered from top down. This may be implemented by
having a separate thread for each active location/position. Since the same operations are
performed for each active position, this can be efficiently implemented by a SIMD architecture —
e.g. applying a single instruction (or set of instructions) to multiple pieces of input data (i.e., multiple

active positions).

[0119] Where there are less active windows than there are active positions due to the stride,
dilation, or other sparse submanifold convolution parameters, then the indexed unfold operation
may be implemented on the GPU by, prior to identifying the positions/locations surrounding the
active position (e.g. using the nested loops), performing a validity check to determine if the active

position produces or induces an active window, and only identifying the surrounding
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positions/locations and adding the elements from the identified positions to the input matrix if the

active position induces an active window.

[0120] In some cases, in addition to receiving the input tensor in dense format, and the active
positions, the indexed unfold operation may also receive a zeroed input matrix with the desired
shape (e.g. height = elements per kernel x number of channels, width = number of active windows)
and the GPU may be configured to write the active window elements to the appropriate location in

the received input matrix.

[0121] Once the GPU has performed an indexed unfold operation on the input tensor to
generate an input matrix with the elements of each active window of the input tensor, the method
500 proceeds to block 508.

[0122] At block 508, the GPU performs a matrix multiplication operation (which may be referred
to as a MatMul operation) between a weight matrix and the input matrix generated in block 506 to
generate an output matrix. FIG. 10 illustrates an example of a matrix multiplication between a
weight matrix 1002 and the input matrix 802 of FIG. 8. The weight matrix 1002 may comprise a
row for each filter, and a column for each weight in a filter. For example, in FIG. 10 there are five
filters with 3x3 kernels and one channel (thus each filter comprises nine weights). Therefore, the
weight matrix 1002 comprises five rows and nine columns. Each column corresponds to a position
in the filter and the weights of a filter are placed in the columns in accordance with their place in the
filter. In the example shown in FIG. 10 the weights in a filter are unrolled from left to right and top
to bottom, such that the weight in the top left corner of a filter is placed in the first column, the
weight in the centre of the filter is placed in the fifth column, and the weight in the bottom right of
the filter is placed in the last or ninth column. It will be evident to a person of skill in the art that this
is an example only and that the weights can be placed in any order in the weight matrix so long as
their order corresponds to the order of the elements of each active window in the input matrix.
Specifically, if element at position (-1,-1) of an active window is placed in row 0, then the weight at

position (-1,-1) of the filter should be placed in column 0.

[0123] The matrix multiplication between the weight matrix 1002 and the input matrix 802
generates an output matrix 1004 which comprises, for each active window, an output element for
each channel of the output tensor (i.e., for each filter of the sparse submanifold convolution). The
output matrix 1004 may have a column for each active window and a row for each output channel
such that each column comprises an output element for the corresponding active window for each
output channel. In the example shown in FIG. 10 there are two active windows and five output
channels, so the example output matrix 1004 has two columns and five rows. The matrix
multiplication may be parallelised on the GPU, by, for example, processing each column of the

input matrix in a separate thread.

[0124] Once the GPU has performed the matrix multiplication the method 500 may end or the
method 500 may proceed to block 510. Specifically, the output matrix 1004 generated in block 508
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comprises all of the non-zero elements of the output tensor (in other words the output matrix
corresponds to the output tensor in sparse format) and thus the output matrix 1004 may be simply
output, or an output tensor in dense format may be first generated from the output matrix 1004.
When the method is performed as part of a neural network, whether or not the output matrix is
converted to an output tensor in dense format may depend on what input tensor format is expected
by the next layer in the neural network.

[0125] At block 510, the GPU performs an indexed fold operation on the output matrix generated
in block 508 to generate an output tensor 1102 in dense format. The indexed fold operation is the
opposite of the indexed unfold operation performed in block 506. Specifically, the indexed fold
operation uses the active windows to generate an output tensor in dense format (e.g. a densified
output tensor) from the output matrix 1004 generated in block 508. In other words, the indexed fold
operation generates an output tensor with the elements of the output matrix 1004 in the correct
position of the output tensor in dense format and zeros elsewhere.

[0126] A standard fold operation (which may also be referred to as a column to image (col2im)
operation) receives an output matrix in dense format — i.e. an output matrix that comprises a row
per output channel with an output element for each element of that channel - and converts each
row of the received matrix to a plane of the output tensor in accordance with the size of a channel
of the output tensor. For example, if each channel of the output tensor is of size 5x5, then a
standard fold operation places every five elements in the same row of the received matrix in a
different row of the corresponding channel. For example, the first five elements in the first row of
the received matrix would be placed in the first row of the first channel of the output tensor, the next
five elements in the first row of the received matrix would be placed in the second row of the first
channel and so on; the first five elements in the second row of the received matrix would be placed
in the first row of the second channel of the output tensor, the next five elements in the second row

of the received matrix would be placed in the second row of the second channel and so on.

[0127] In contrast to a standard fold operation, an indexed fold operation receives an output
matrix in sparse format - i.e., the received matrix does not comprise an element for every element
of the output tensor in dense format. An indexed fold operation also receives information indicating
the position in the output tensor corresponding to each active window of the input tensor (this may
be information (e.g. indices) identifying the active positions identified in block 504; information
specifically identifying the active windows (e.g. indices of an element of each active window) (which
may be generated as part of block 506); or information specifically identifying the position in the
output tensor corresponding to each active window (which may be generated as part of block
506)). The information indicating the position in the output tensor corresponding to each active
window is then used to place the elements of the sparse output matrix in the correct location of the
output tensor in dense format. The elements at all other positions may then be set to zero.

[0128] Where there is an active window per active position (e.g. because the input is padded

and the stride is 1 in all directions), then the height and width of the input tensor will be the same as
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the height and the width of the output tensor, and the elements in the sparse output matrix 1004
can be simply placed in the same location in the output tensor as the corresponding active position.
For example, in such cases, if an active window is centred at active position (1,1) then the output
elements based on that active window will be placed at position (1,1) of the corresponding output
channel. If, however, there is not an active window per active position and the received information
does not explicitly identify the output position corresponding to each active window, the location of
each element in the output matrix 1004 is determined from the received information and/or the
parameters of the sparse submanifold convolution. For example, active windows can be
determined from the active locations and the parameters of the sparse submanifold convolution
(e.g. filter dimensions, strides, dilations), and the position in the output tensor corresponding to
each active window can be determined from the active window and the parameters of the sparse

submanifold convolution.

[0129] FIG. 11 illustrates an example indexed fold operation performed on the output matrix
1004 of FIG. 10. It can be seen that, based on the active position list 608 and the sparse
submanifold convolution parameters, it can be determined that each element of the output matrix
1004 associated with the first active window is to be placed at location (0,0) of the corresponding
channel of the output tensor 1102, and each element in the output matrix 1004 associated with the
second active window is to be placed at location (2,2) of the corresponding channel of the output
tensor 1102.

[0130] The indexed fold operation may be implemented on the GPU in any suitable manner. In
one example, where there is an active window per active position of the input tensor, an indexed
fold operation may be implemented on the GPU by, for example, creating an index for each active
position/location (e.g. from 0 to n where there are n + 1 active locations in the input tensor). Then,
for each active position/location, the GPU may be configured to determine the associated location
in the output tensor from the location of the corresponding active position and the kernel
parameters, then loop through each output channel and place or copy the appropriate element of
the output matrix in the determined location in the corresponding channel of the output tensor.
Each active location may get its own thread.

[0131] Where there are less active windows than active positions, due to, for example, the
stride, dilation, or other convolution parameters, then the indexed fold operation may be
implemented on the GPU by, prior to determining the associated location in the output tensor for an
active position, performing a validity check on the active position to determine if the active position
produces or induces an active window, and only determining the associated location in the output
tensor and performing the copying if the active position induces an active window. For example, if
the stride is two for a sparse submanifold convolution, then the validity check may comprise
determining if the active position is at or on an odd index, and if it is determined that the active
position is at or on an odd index determining that the active position does not induce an active

window.
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[0132] In some cases, in addition to receiving the sparse submanifold convolution parameters,
information identifying the active windows, and the output matrix generated in block 508, the
indexed fold operation may also receive a zeroed output tensor of the appropriate dimensions and
may write the elements of the received matrix to the received output tensor. In such cases, a zero
may not have to be explicitly written to the positions of the output tensor that do not comprise an

element of the output matrix.

[0133] Once the indexed fold operation has been performed, the method 500 may end.

[0134] Inthe examples described above, a row of the weight matrix corresponds to a filter (i.e.,
comprises all of the weights of a filter) and a column of the input matrix corresponds to a window of
the input tensor (i.e., comprises all of the elements in the window of the input tensor), and the
weight matrix is multiplied with the input matrix, such that the dot product of a row of the weight
matrix and a column of the input matrix is calculated, to obtain the output matrix. However, it will
be evident to a person of skill in the art that this is an example only and in other examples, the rows
and columns of the weight matrix and the input matrix may be reversed (in other words the weight
matrix and the input matrix may be transposed) and the transposed input matrix may be multiplied

with the transposed weight matrix to obtain the transpose of the output matrix.

[0135] In some cases, the input matrix may be transposed after the indexed unfold operation,
and the output matrix may be transposed prior to the indexed fold operation. However the weight
matrix may be transposed offline and simply provided to the GPU as an input. In some cases,
where a sequence of two or more sparse submanifold convolutions are performed only the input
matrix of the first sparse submanifold convolution may be transposed and only the output matrix of
the last sparse submanifold convolution is transposed. Specifically, the middle convolutions are

simply performed with transposed matrices.

[0136] As described in more detail below, testing has shown that the described method of
implementing a sparse submanifold convolution allows a sparse submanifold convolution to be
implemented more efficiently in terms of computing time and resources than known GPU-based

methods.

Test Results

[0137] Reference is now made to FIG. 12 which shows a graph of the mean duration, in ms, to
implement an example sparse submanifold convolution on a GPU (i) for different sized 3D input
tensors (MNIST), (ii) using different methods (TorchSparse, SpConv, PyTorch Conv3D and the
method described herein with respect to FIG. 5 which is referred to as the “Sparse Unfold”
method); and (iii) with different levels of sparsity. Table 2 summarises the different combinations of
sparse submanifold convolution implementation methods, and input tensor sparsity shown in FIG.
12.



22

Table 2

Element in FIG. 12 Method Sparsity
1202 TorchSparse 99%
1204 TorchSparse 90%
1206 TorchSparse 80%
1208 TorchSparse 50%
1210 TorchSparse 25%
1212 TorchSparse 0%
1214 SpConv 99%
1216 SpConv 90%
1218 SpConv 80%
1220 SpConv 50%
1222 SpConv 25%
1224 SpConv 0%
1226 PyTorch Conv3D 99%
1228 PyTorch Conv3D 90%
1230 PyTorch Conv3D 80%
1232 PyTorch Conv3D 50%
1234 PyTorch Conv3D 25%
1236 PyTorch Conv3D 0%
1238 Sparse Unfold 99%
1240 Sparse Unfold 90%
1242 Sparse Unfold 80%
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1244 Sparse Unfold 50%
1246 Sparse Unfold 25%
1248 Sparse Unfold 0%

[0138] It can be seen from FIG. 12 that the method described herein with respect to FIG. 5 for
implementing a sparse submanifold convolution outperforms known GPU-based methods for
implementing a sparse submanifold convolution when the input data is highly sparse (e.g. at least
90% sparsity).

NNA Implementations of Sparse Submanifold Convolution

[0139] Performing forward and backward passes of a neural network is often expensive to

implement on a CPU or GPU in terms of computations, bandwidth and power. Accordingly, neural
network accelerators (NNAs) have been developed that allow neural networks to be implemented
in a hardware efficient manner (e.g., in a manner that requires less silicon area or less processing

power).

[0140] An NNA is hardware that is designed to accelerate the processing of a neural network. As
is known to those of skill in the art, a hardware accelerator is hardware designed to perform a
specific set of one or more functions more efficiently than a general processing unit, such as a
central processing unit (CPU). Accordingly, in contrast to a general CPU which can be configured
to perform any number of functions, an accelerator can only perform a limited set of one or more
functions. NNAs have one or more network processing hardware units (which may simply be
referred to as processing units) which are each designed to accelerate one or more neural network
operations. A neural network operation is defined herein as an operation that is used to implement
all or a part of a neural network layer. A neural network layer may be implemented by one or more
neural network operations. Example neural network operations include, but are not limited to,

convolution operations, non-linear operations, pooling operations and normalisation operations.

[0141] An NNA may therefore have, for example, a convolution processing unit which is
configured to accelerate convolution operations, an activation processing unit which is configured
to accelerate non-linear operations, a pooling processing unit which is configured to accelerate
pooling operations, and/or a normalisation processing unit configured to accelerate normalisation
operations. It will be evident to a person of skill in the art that this is just an example set of network
processing hardware units that an NNA may have, and NNAs may have additional network
processing hardware units, fewer network processing hardware units or a different combination of
network processing hardware units. An example NNA is described below with reference to FIG.
44,
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[0142] The inventors have determined that a sparse submanifold convolution can be performed
efficiently using an NNA by performing, for each kernel location, a 1x1 convolution between the
input tensor in sparse format and the weight(s) at that kernel location to generate partial outputs
and then combining the appropriate partial outputs to generate the final output elements. The
combining of the partial outputs generated by the 1x1 convolutions may be implemented in a
number of different ways. In some cases, where, for example, the NNA comprises a hardware
component that can perform a scatter-add operation, the combining of the partial outputs may be
implemented by performing a scatter-add operation on the partial outputs using that hardware
component. In other cases, where, for example the NNA does not have a hardware component
that can perform a scatter-add operation, the combining may be implemented by performing a
matrix multiplication between the output of each 1x1 convolution and a corresponding scatter
matrix, and combining the results of the matrix multiplications. These methods take advantage of
the hardware structure of NNAs that allows convolution operations to be performed in a hardware

efficient manner.

[0143] Reference is now made to FIG. 13 which illustrates an example method 1300 for
implementing a sparse submanifold convolution using an NNA. The method 1300 begins at block
1302 where an input tensor in sparse format is received at the NNA. As described above, an input
tensor in dense format comprises each element of an input tensor, regardless of whether the
element is at an active position. In contrast, an input tensor in sparse format includes only
elements of an input tensor in dense format that are at an active position. For example, FIG. 14
shows the input tensor of FIG. 4 with three active positions/locations (p1, p2, p3) in dense format
402 and the same input tensor in sparse format 1404. It can be seen in FIG. 14 that the input
tensor in sparse format 1404 only includes the elements of the input tensor in dense format 402 at
the active locations or positions. In the example shown in FIG. 14 the input tensor in dense format
402 only has one channel, thus the input tensor in sparse format only has one channel; however, if
the input tensor in dense format has multiple channels, then the input tensor in sparse format will
also have multiple channels. In other words, an input tensor in sparse format will comprise, for
each active position, an element for each channel. Once the input tensor in sparse format has
been received at the NNA, the method 1300 proceeds to block 1304.

[0144] At block 1304, the NNA performs, for each position or location within the kernel of the
filter(s) of the sparse submanifold convolution, a 1x1 convolution on the received input tensor using
the weight(s) at that kernel position or location. As described above, an NNA often comprises
hardware, such as a convolution processing unit (i.e., a convolution hardware accelerator), to
accelerate convolution operations. Accordingly, the NNA may efficiently perform the 1x1

convolutions using such hardware.

[0145] As described above, a sparse submanifold convolution applies one or more filters of
weights to active windows of an input tensor. Each filter of a sparse submanifold convolution may
be referred to herein as a sparse submanifold filter. Each sparse submanifold filter comprises one

or more kernels of size K, x K;,,, where K, is the height of the kernel (i.e., the number of weights in
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the height or y dimension) and K, is the width of the kernel (i.e., the number of weights in the width
or x dimension). Each kernel thus comprises K,; x Ky, weights, each at a different position or
location within the kernel. FIG. 15 illustrates the example sparse submanifold filter 404 of FIG. 4
with a single 3x3 kernel. The kernel comprises nine different weights, each at a different location
or position within the kernel. Each location or position in the kernel may be identified by a set of
height and width (or y and x) co-ordinates or indices. For example, the nine positions within the
kernel 404 in FIG. 15 can be expressed as pairs of height and width co-ordinates or indices where
(0,0) is the centre of the kernel. For example, the nine positions within the kernel can be
expressed by the following indices (-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1), (1,0), (1,1). It will
be evident to a person of skill in the art that this is only one example of indices that can be used to
identify the positions or locations within a kernel.

[0146] Foreach position within a kernel of a sparse submanifold filter, the weight(s) at that
position are extracted to form a sub-filter. For example, the weights at position (-1,-1) form one
sub-filter, the weights at position (-1,0) form another sub-filter and so on. FIG. 15 illustrates the
nine sub-filters 1504, 1506, 1508, 1510, 1512, 1514, 1516, 1518, 1520 that are generated from the
example sparse submanifold filter 404 of FIG. 15. It will be evident to a person of skill in the art
that since the sparse submanifold filter 404 of FIG. 15 comprises only one channel, each sub-filter
only comprises one channel. However, if the sparse submanifold filter has multiple channels, each
sub-filter will also have multiple channels. In other words, a sub-filter comprises, for each channel
of the filter, the weight at a particular kernel position. For example, if the sparse submanifold filter

comprises three channels, then each sub-filter comprises three weights, one for each channel.

[0147] A 1x1 convolution is then performed on the received input tensor in dense format for each
kernel position, using the sub-filter(s) that correspond to that position (i.e. using the weights at that
kernel position). The term “1x1” convolution is used herein to mean a convolution with a kernel that
is of size 1x1 (i.e. Ky = Ky, = 1). For example, if the sparse submanifold convolution is to apply the
filter 404 of FIG. 15 to the input tensor in dense format 402 of FIG. 14 then there are nine kernel
positions and so, as shown in FIG. 16, nine 1x1 convolutions 1602, 1604, 1606, 1608, 1610, 1612,
1614, 1616, 1618 are performed on the input tensor in sparse format 1404, wherein each 1x1
convolution applies the sub-filter(s) 1504, 1506, 1508, 1510, 1512, 1514, 1516, 1518, 1520 that
correspond to a particular position within the kernel. For example, the first 1x1 convolution 1602
applies the first sub-filter 1504 (the sub-filter corresponding to the first kernel position (-1,-1)) to the
input tensor in sparse format 1404; the second 1x1 convolution 1604 applies the second sub-filter
1506 (the sub-filter corresponding to the second kernel position (-1,0)) to the input tensor in sparse
format 1404; the third 1x1 convolution 1606 applies the third sub-filter 1508 (the sub-filter
corresponding to the third kernel position (-1,1)) to the input tensor in sparse format 1404; and so

on.

[0148] Each 1x1 convolution generates a tensor 1620, 1622, 1624, 1626, 1628, 1630, 1632,
1634, 1636 that comprises partial outputs that can be combined to generate the elements of the

output tensor. Specifically, each element of the output tensor can be expressed as the sum of K,
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X Ky, dot products, where each dot product is the dot product of the weights at one kernel location
and the elements of the input tensor at the corresponding location in a window of the input tensor.
Where the corresponding location in a window is not active then that dot-product will be zero and
can be ignored. The 1x1 convolution outputs will produce a dot product for each kernel position for
each active position, thus any element in the output can be generated by combining the partial

outputs generated by the 1x1 convolutions.

[0149] For ease of illustration, in the example of FIG. 16 there is only one sparse submanifold
convolution filter thus each 1x1 convolution only has one filter. This means that each 1x1
convolution output tensor 1620, 1622, 1624, 1626, 1628, 1630, 1632, 1634, 1636 only has one
channel. However, it will be evident to a person of skill in the art that if there are multiple sparse
submanifold filters then each 1x1 convolution will have multiple filters which will result in a multi-

channel output.

[0150] Once the 1x1 convolutions have been performed the method 1300 proceeds to block
1306.

[0151] At block 1306, the NNA combines the appropriate partial outputs generated in block 1306
to generate the active elements of the output tensor (i.e. the elements of the output tensor at the

active positions).

[0152] The appropriate partial outputs that are to be combined can be determined from the
active positions of the input tensor and the sparse submanifold convolution parameters (e.g. kernel
size, strides, dilation). For example, for the example sparse submanifold convolution of FIG. 4
there are only three active positions (q1, g2, ¢3) of the output tensor. As shown in FIG. 4, the
element or value g1 at the first active position in the first (and only) channel of the output tensor
412 is equal to the dot product of the first active window 406 of the input tensor 402 and the filter
404, and thus will be equal to p1 * w(0,0) + p2 * w(1,1). It can be seen from FIG. 16 that the first
output of the fifth 1x1 convolution 1610 g1 — 5 is equal to p1 * w(0,0); and that the second output
of the ninth 1x1 convolution 1618 g2 — 9 is equal to p2 * w(1,1). Thus g1 can be generated by
combining g1 — 5 and g2 — 9.

[01563] The element or value g2 at the second active position in the first (and only) channel of the
output tensor 412 is equal to the dot product of the second active window 408 of the input tensor
402 and the filter 404, and thus will be equal to p1 * w(—1,-1) + p2 * w(0,0) + p3 * w(1,0). It
can be seen from FIG. 16 that the first output of the first 1x1 convolution 1602, g1 — 1, is equal to
pl * w(—1,—1); the second output of the fifth 1x1 convolution 1610, q2 — 5, is equal to p2 *
w(0,0); and the third output of the eighth 1x1 convolution 1616, g3 — 8, is equal to p3 * w(1,0).
Thus g2 can be generated by combining g1 —1, g2 —5 and g3 — 8.

[0154] Finally, the element or value g3 at the third active position in the first (and only) channel

of the output tensor is equal to the dot product of the third active window 410 of the input tensor



10

15

20

27
402 and the filter 404, and thus will be equal to p2 * w(—1,0) + p3 * w(0,0). It can be seen from
FIG. 16 that the second output of the second 1x1 convolution 1604, g2 — 2, is equal to p2 *
w(—1,0) ; and that the third output of the fifth 1x1 convolution 1610, g3 — 5, is equal to p3 * w(0,0).

Thus g3 can be generated by combining g2 — 2 and g3 — 5. This is summarized in Table 3.

Table 3
Active Position of | Kernel Position 1x1 Convolution | Offset/Position of | Active Position of
Input Tensor Partial Output 1x1 Convolution Output Tensor
pl w(=1,-1) ql—1 1 q2
p2 w(—=1,0) q2—2 2 q3
pl w(0,0) ql—>5 5 ql
p2 w(0,0) q2—-5 5 q2
p3 w(0,0) q3—5 5 q3
p3 w(1,0) q3—8 8 q2
p2 w(l1,1) q2—9 9 q1

[0155] The combining of the appropriate partial outputs generated at block 1304 may be
implemented in number of different ways. In some cases, the combining of the appropriate partial
outputs may be implemented by the NNA by (i) performing a matrix multiplication between each
channel of each 1x1 convolution output tensor and a corresponding scatter matrix to group or align
the partial outputs that are relevant to each output element; and (ii) combining, via addition
operations, the grouped or aligned partial outputs. As described above, an NNA often comprises
hardware, such as a convolution processing unit (i.e., a convolution hardware accelerator), to
accelerate convolution operations. Hardware that is efficient at performing convolution operations
can also efficiently perform matrix multiplications. Accordingly, the NNA may efficiently perform the
matrix multiplications using such hardware. An NNA may also comprise hardware that is
configured to accelerate performing per-element operations, such as, but not limited to, addition
and multiplication, on an input tensor using another tensor (which may be referred to as an
element-wise operations processing unit). Such hardware may be able to efficiently (in terms of
processing resources and time) perform the addition operations.

[0156] In these cases, there may be a scatter matrix for each 1x1 convolution that identifies the
elements of the output tensor of that 1x1 convolution that are relevant to an element of the output

tensor and if relevant, identifies which element of the output tensor it is relevant to. The scatter
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matrix for a 1x1 convolution is configured such that when it is applied to a channel of the output
tensor of that 1x1 convolution the result is a matrix that comprises only the relevant partial outputs
and an indication of which element of the output tensor each of those partial outputs is relevant to.
In some cases, the scatter matrix may comprise only ones and zeros. In some cases, the scatter
matrix may be configured such that when it is multiplied with a channel of the output tensor of a 1x1
convolution the result is a matrix that only comprises the partial outputs that are relevant to an
element of the output tensor, and each relevant partial output is in a row (or column) of the matrix

that corresponds to the corresponding element of the output tensor.

[0157] Where, as shown in FIG. 16, each channel of the output tensor of a 1x1 convolution
comprises a row for each active position of the input tensor, and each row comprises the partial
output(s) that relate to the corresponding active position, each scatter matrix may comprise a
column for each active position of the input tensor and a row for each active position of the output
tensor. Then, if a partial output in row A of a 1x1 convolution output tensor is relevant to active
position B of the final output tensor, then the scatter matrix may comprise a ‘1’ in row B, column A.
For example, if the partial output in the first row of a 1x1 convolution output tensor is relevant to the
2" active element of the final output tensor then a ‘1’ may be placed at position (2,0) of the scatter
matrix, wherein a position in the scatter matrix is identified by (row, column) and the rows and
columns are numbered starting from 0. Where the number of active positions in the input tensor is
the same as the number of active positions in the output tensor (e.g. due to padding and strides of
1) each scatter matrix may be a NxN matrix where N is the number active positions in the input
tensor. However, where the number of active positions in the tensor is greater than the number of

active positions in the output tensor then each scatter matrix may be an MxN matrix where M < N.

[0158] Reference is now made to FIG. 17 which illustrates (i) example scatter matrices 1702,
1704, 1706, 1708, 1710 for the 1x1 convolutions of FIG. 16 to implement the sparse submanifold
convolution of FIG. 4 and (ii) the matrix multiplications 1712, 1714, 1716, 1718, 1720 of those
scatter matrices 1702, 1704, 1706, 1708, 1710 with the corresponding 1x1 convolution outputs
1620, 1622, 1628, 1634, 1636. As shown in FIG. 4, in this example sparse submanifold
convolution there are three active positions (p1, p2, p3) in the input tensor and three active
positions (g1, g2, g3) in the final output tensor, thus each scatter matrix 1702, 1704, 1706, 1708,
1710 comprises 3 rows and 3 columns. If a partial output in row A of a 1x1 convolution output is
relevant to active position B in the final output tensor then the scatter matrix comprises a ‘1’ in row
B, column A; otherwise the scatter matrix comprises a ‘0’ in row B, column A.

[0159] As described above with respect to Table 3, the first partial output (g1 — 1) of the first 1x1
convolution (i.e. the 1x1 convolution related to kernel position (-1,-1)) is relevant to the second
active element (g2) of the final output tensor. Accordingly, the scatter matrix 1702 for the first 1x1
convolution has a ‘1’ at position (1, 0) (i.e. second row, first column). None of the other partial
outputs of the first 1x1 convolution are relevant to an active element of the final output tensor, so
the remaining elements of the scatter matrix 1702 are set to ‘0’. Multiplying this scatter matrix 1702

with the output of the first 1x1 convolution 1620 results in a matrix 1722 with the first partial output
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(g1 — 1) in the second row. All other elements of the output matrix 1722 are zero. This indicates
that the first partial output is relevant to an active position of the final output tensor, and specifically,

to the second active position of the final output tensor.

[0160] Similarly, since the second partial output (g2 — 2) of the second 1x1 convolution (i.e. the
1x1 convolution related to kernel position (-1,0)) is relevant to the third active element (g3) of the
final output tensor, the scatter matrix 1704 for the second 1x1 convolution has a ‘1’ at position (2,
1) (i.e. the third row, second column). Multiplying this scatter matrix 1704 with the output of the
second 1x1 convolution 1622 results in a matrix 1724 with the second partial output (g2 — 2) in the
third row. All other elements of the output matrix 1724 are zero. This indicates that the second
partial output is relevant to an active position of the final output tensor, and specifically, to the third

active position of the final output tensor.

[0161] Since the first, second and third partial outputs of the fifth 1x1 convolution (i.e. the 1x1
convolution related to kernel position (0,0)) are relevant to the first, second and third active
elements (q1, g2, q3) of the final output tensor respectively, the scatter matrix 1706 for the fifth 1x1
convolution has a ‘1’ at positions (0, 0) (i.e. the first row, first column), (1, 1) (i.e. the second row,
second column), and (2,2) (i.e. third row, third column). Multiplying this scatter matrix 1706 with the
output of the fifth 1x1 convolution 1628 results in a matrix 1726 with the first, second, and third
partial outputs in the first, second and third rows respectively. This indicates that the first, second
and third partial outputs are relevant to an active position of the final output tensor, and specifically

to the first, second and third active positions respectively.

[0162] Since the third partial output (g3 — 8) of the eighth 1x1 convolution (i.e. the 1x1
convolution related to kernel position (1,0)) is relevant to the second active element (g2) of the final
output tensor, the scatter matrix 1708 for the eighth 1x1 convolution has a ‘1’ at position (1, 2) (i.e.
the second row, third column). Multiplying this scatter matrix 1708 with the output of the eighth 1x1
convolution 1634 results in a matrix 1728 with the third partial output (g3 — 8) in the second row.
All other elements of the output matrix 1728 are zero. This indicates that the third partial output is
relevant to an active position of the final output tensor, and specifically, to the second active

position of the final output tensor.

[0163] Finally, since the second partial output (g2 — 9) of the ninth 1x1 convolution (i.e. the 1x1
convolution related to kernel position (1,1)) is relevant to the first active element (g1) of the final
output tensor, the scatter matrix 1710 for the ninth 1x1 convolution has a ‘1’ at position (0, 1) (i.e.
the first row, second column). Multiplying this scatter matrix 1710 with the output of the ninth 1x1
convolution 1636 results in a matrix 1730 with the second partial output (g2 — 9) in the first row. All
other elements of the output matrix 1730 are zero. This indicates that the second partial output is
relevant to an active position of the final output tensor, and specifically, to the first active position of

the final output tensor.
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[0164] None of the other 1x1 convolutions in this example produce partial outputs that are
relevant to an active position of the final output tensor thus the scatter matrices for each of these

1x1 convolutions (not shown) are all zeros.

[0165] It can be seen that multiplying the scatter matrices and the 1x1 convolution outputs
identifies the relevant partial outputs and groups the partial outputs that are relevant to each output
element together — i.e., all of the partial elements that are relevant to the i*” output element are

placed in the i** row of the output of the matrix multiplication.

[0166] The scatter matrices may be generated offline (e.g. by a component external to the NNA)
such as a CPU or a GPU and provided to the NNA as an input. For example, a CPU or a GPU
may be configured to identify from the input tensor in dense format the active locations (e.g. using
a nonzero PyTorch® function). The CPU or GPU may then be configured to generate a HashTable
from the identified active locations and the sparse submanifold convolution parameters (e.g. kernel
size, strides, dilation) which stores information that indicates which active position of the input
tensor needs to be multiplied with which kernel position or offset and which active position of the
output tensor it is relevant to. An example HashMap is shown below in Table 4. The example
HashMap is similar to what is shown in Table 3. A HashMap can be efficiently generated on GPU

in a parallel manner by using well-known data structures in literature.

Table 4

pl, w(-1,-1),q2

p2,w(—1,0), q3

pl, w(0,0), g1

p2, w(0,0), g2

p3, w(0,0), g3

p3, w(1,0), g2

p2,w(l,1), q1

[0167] In this example, once the matrix multiplications between the scatter matrices and the
corresponding 1x1 convolution outputs have been completed, the partial outputs that have been
identified as being relevant to each of the output elements are combined to generate the final
output elements. This may be implemented through one or more tensor addition operations. In a
tensor addition operation each element of a first tensor is added to the corresponding element of a

second tensor. For example, as shown in FIG. 18, the active elements (q1, g2, g3) of the output
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tensor 1802 are generated by adding the matrices 1722, 1724, 1726, 1728, 1730 generated by the
matrix multiplications 1712, 1714, 1716, 1718, 1720 respectively.

[0168] Inthe example shown in FIGS. 14-18 the input tensor and the output tensor have only
one channel. However, it will be evident to a person of skill in the art that the same techniques can
be applied to sparse submanifold convolutions with an input tensor and/or an output tensor with
multiple channels. For example, where the input tensor has multiple channels (i.e. C;,, > 1), instead
of each 1x1 convolution simply computing the product of the input element x with the
corresponding weight w, each 1x1 convolution computes the dot product of the input elements at
the same location of each channel and the corresponding weights. \Where the output tensor has
multiple channels (i.e. C,,; > 1), meaning that the sparse submanifold convolution has multiple
filters then each 1x1 convolution will generate a channel per filter. Then, in the matrix multiplication
stage each scatter matrix is multiplied with each channel of the corresponding 1x1 convolution

output to produce a 3D tensor, and then the tensor additions are performed on a per channel basis.

[0169] Reference is now made to FIG. 19 which illustrates an example inference graph 1900 for
a sparse submanifold 2D convolution with 256 filters with 3x3 kernels performed on an input tensor
with 1000 active positions and 128 channels in accordance with the method described above (i.e.,
1x1 convolutions, matrix multiplications, and additions), wherein the stride is 1 in the height and
width dimensions. The input tensor in sparse format is thus a [1, 128, 1, 1000] tensor of the form
[batch, channel, height, width] —i.e., the input tensor in sparse format has, for each active position

of the input tensor, an element for each channel.

[0170] Since the kernel is 3x3 there are nine kernel positions, thus nine 1x1 convolutions are
performed on the input tensor in sparse format — one for each kernel position. Since there are 256
filters, each 1x1 convolution receives a [256, 128, 1, 1] weight tensor of the form [output channels,
input channels, kernel height, kernel width]. In other words, the weight tensor comprises 256 filters
of size 128x1x1. The output of each 1x1 convolution is thus a [1, 256, 1, 1000] tensor of partial
outputs— i.e. the output tensor for each 1x1 convolution has 256 channels with 1000 partial outputs

per channel.

[0171] A matrix multiplication is performed on the output of each 1x1 convolution in which a
corresponding scatter matrix is multiplied with each channel of the 1x1 convolution output. In this
example the number of active positions (1000) in the input tensor is the same as the number of
active positions (1000) in the output tensor, thus each scatter matrix is a 1000 x 1000 matrix. The
result of each matrix multiplication operation is thus a [1, 256, 1, 1000] tensor which comprises the
partial outputs of the corresponding 1x1 convolution that are relevant to an active output position.

[0172] The outputs of the matrix multiplications are then combined through a series of tensor
addition or accumulation operations. Each addition or accumulation operation adds the elements
at corresponding positions. In the example shown in FIG. 19 the first addition operation combines

the first two matrix multiplication outputs and then each other addition operation combines an
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addition operation output and a matrix multiplication output. The final output tensor in sparse
format is thus a [1, 256, 1, 1000] tensor.

[0173] The efficiency of implementing operations on an NNA may be measured by the number
of multiply accumulate (MAC) operations to implement the operation, wherein a MAC operation is
an operation that computes the product of two numbers and adds the product to another number.
The number of MACs to implement a sparse submanifold convolution in this manner (i.e., via 1x1
convolutions, matrix multiplication, addition operations) can be represented by equation (1) wherein
K is the size of the kernel (i.e. K = K, X Ky,), N is the number of active positions in the input
tensor, C;, is the number of channels in the input tensor, and C,,, is the number of channels in the

output tensor (which is equal to the number of filters).
MACs =K XN X Cypy X Cppe + K X N2 X Cppy m

[0174] In other cases, instead of combining the relevant partial outputs generated by the 1x1
convolutions in block 1304 via matrix multiplications with scatter matrices and addition operations,
where an NNA has a hardware component, such as a processor, that can selectively combine
elements of one or more received tensors, then the combining of the relevant partial outputs may
be performed by that hardware component. In these cases the hardware component may be
configured to receive the outputs of the 1x1 convolutions and information identifying which partial
outputs are relevant to each active element of the final output tensor. The hardware component
(e.g. processor) may then be configured to retrieve the partial outputs relevant to each output

element and combine them (e.g. via an addition operation) to generate that output element.

[0175] Forexample, if the 1x1 convolutions shown in FIG. 16 are performed in block 1304, the
hardware component (e.g. processor) of the NNA may be provided with information that indicates
partial outputs g1 — 5, and g2 — 9 are relevant to the first active output element q1; partial outputs
ql —1, q2 — 5 and g3 — 8 are relevant to the second active output element ¢2; and partial outputs
q2 — 2 and g3 — 5 are relevant to the third active output element g3. The hardware component
may then retrieve or select the identified partial outputs and combine them in the identified manner.
Similar to how the scatter matrices may be generated offline (i.e., by a component external to the
NNA) the information that is provided to the hardware component (e.g. processor) that identifies
which partial outputs are relevant to each output element may be generated offline from, for

example, a HashTable.

[0176] Reference is now made to FIG. 20 which illustrates an example inference graph 2000 for
a sparse submanifold 2D convolution with 256 filters with 3x3 kernels performed on an input tensor
with 1000 active positions and 128 channels in accordance with the second method described
above (i.e., 1x1 convolutions, scatter-add via hardware component of NNA), wherein the stride is 1
in the height and width dimensions. The input tensor in sparse format is thus a [1, 128, 1, 1000]
tensor of the form [batch, channel, height, width] —i.e., the input tensor in sparse format has, for

each active position of the input tensor, an element for each channel.
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[0177] Like the inference graph of FIG. 19, since the kernel is 3x3 there are nine kernel
positions, thus nine 1x1 convolutions are performed on the input tensor in sparse format — one for
each kernel position. Since there are 256 filters, each 1x1 convolution receives a [256, 128, 1, 1]
weight tensor of the form [output channels, input channels, kernel height, kernel width]. In other
words, the weight tensor comprises 256 filters of size 128x1x1. The output of each 1x1 convolution
is thus a [1, 256, 1, 1000] tensor of partial outputs — i.e. the output tensor for each 1x1 convolution
has 256 channels with 1000 partial outputs per channel.

[0178] However, instead of performing matrix multiplications and additions via hardware
accelerators of the NNA, the outputs of the 1x1 convolutions are provided to a hardware
component, such as a processor, of the NNA that can selectively combine elements of the 1x1
convolution outputs, along with information identifying the partial outputs relevant to each active

element of the output tensor.

[0179] The maximum number of MACs to implement a sparse submanifold convolution in this
manner (i.e., via 1x1 convolutions + scatter-add operations) can be represented by equation (2)
wherein K is the size of the kernel (i.e. K = K, x Ky), N is the number of active positions in the
input tensor, C;, is the number of channels in the input tensor, and C,,,, is the number of channels
in the output tensor (which is equal to the number of filters). K x N x C;, x C,,,, MAC operations
are used to perform the 1x1 convolutions, and K x N x C,,, MAC operations are used to perform

the scatter-add.

MACs =K X NXCypy X Copye + KX N X Cpppp 2

[0180] It will be evident to a person of skill in the art that references to rows and columns of
tensors and matrices herein are exemplary only and that rows and columns may be switched as
appropriate. It can be seen, from equations (1) and (2), that performing scatter-add operations
may, in some cases, be more efficient than combining the relevant partial outputs via matrix

multiplications and additions.

[0181] While it is described above that block 1306 of the method 1300 of FIG. 13 is implemented
by the NNA, in some cases it may be more efficient to perform all or a portion of the combining of
the partial outputs generated by the 1x1 convolutions on a GPU or CPU. For example, in some
cases, one or more of the matrix multiplications may be performed on a CPU or a GPU and/or one
or more of the addition operations may be performed on a CPU or a GPU. Similarly, in some
cases one or more of the scatter-add operations may be performed on a CPU or a GPU. Whether
or not it is more efficient to implement all or part of block 1306 on a CPU or a GPU may depend on

the configuration of the NNA.

Test Results

[0182] Table 5 shows the results of implementing a 3x3 sparse submanifold convolution on an
input tensor with 1000 active positions using the first NNA method described above (1x1
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convolutions, matrix multiplications, additions), the second NNA method described above (1x1
convolutions, scatter-add via processor of NNA), and as a standard convolution on a 256x256 input
tensor with 1.25% density (i.e., 1000 active positions) when run on the Applicant’'s PowerVR 3NX
NNA running at 800 MHz and 20.48 GB/s. In these tests the MatMuls of the first NNA method were
implemented on a CPU and thus the time taken to implement the MatMuls were not included in the
timing numbers in Table 5; and the scatter-add operations performed by the processor of the NNA

were not included in the timing numbers in Table 5.

Table 5
Inferences per Latency (ms)
second
NNA Method 1 430.0 2.32
NNA Method 2 637.7 1.56
Standard 2D 74.9 13.35
Convolution

[0183] The number of MACs to implement a standard 2D convolution is expressed by equation
(3). This can be written in terms of N as shown in equation (4), where the denseRatio is as set out

in equation (5).

MACs = K X Hyyy X Wyye X Cipy X Coe 3

MACs = K XNXCinXCout 4)

denseRatio

denseRatio = ——— ®)
HoutXWout
[0184] It can be seen from Table 5 that a sparse submanifold convolution can be implemented
much more efficiently using an NNA via either of the described methods which take advantage of
the sparsity of the input and the hardware components of the NNA, compared to implementing the

sparse submanifold convolution as a standard convolution on the NNA.

[0185] Table 6 shows the results of implementing a 3x3 sparse submanifold convolution on an
input tensor with 1000 active positions using the second NNA method described above (1x1
convolutions, scatter-add via processor of NNA), and as a standard convolution on a 256x256 input
tensor with 1.25% density (i.e., 1000 active positions) when run on the Applicant’'s PowerVR 4NX
MC1 NNA running at 1.5GHz and 38.4 GB/s.
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Table 6
Inferences per Latency (ms)
second
NNA Method 2 1261.58 0.79
Standard 2D 140.39 712
Convolution

[0186] Tables 5 and 6 show that a sparse submanifold convolution can be implemented
significantly faster via an NNA using the described method(s), which take advantage of the sparsity
of the input tensor, than implementing the sparse submanifold convolution via an NNA as a

standard 2D convolution, which does not take advantage of the sparsity of the input tensor.
Combination of GPU and NNA Implementations of Sparse Submanifold Convolution

[0187] A sequence of sparse submanifold convolutions may be implemented using a
combination of the GPU and NNA implementations described above. Specifically, the first sparse
submanifold convolution in the sequence may be implemented in accordance with the GPU method
described above with respect to FIG. 5, without the final indexed fold operation (so that the output
is just the active points in the output tensor — in other words the output tensor is in a sparse
format). This unfolded output is then provided as the input to the NNA method described above
with respect to FIG. 13 to perform the next sparse submanifold convolution in the sequence. For
each subsequent sparse submanifold convolution in the sequence, the NNA method may be used.
Then, after the last sparse submanifold convolution in the sequence is performed, an indexed

unfold operation may be performed to generate a final output tensor in dense format.

[0188] A method of implementing a sequence of two sparse submanifold convolutions may
comprise: receiving, at a graphics processing unit, an input tensor, in a dense format, to a first
sparse submanifold convolution of the sequence; identifying, at the graphics processing unit, active
positions of the input tensor; performing, at the graphics processing unit, an indexed unfold
operation on the input tensor based on the identified active positions to generate an input matrix
comprising elements of the input tensor in each active window of the input tensor; performing, at
the graphics processing unit, a matrix multiplication between a weight matrix and the input matrix to
generate an output matrix that comprises elements of an output tensor of the first sparse
submanifold convolution based on the active windows; providing the output matrix to a neural
network accelerator as an input tensor, in a sparse format, to a second sparse submanifold
convolution of the sequence; performing, at the neural network accelerator, for each position of a
kernel of the second sparse submanifold convolution, a 1x1 convolution between the received input

matrix and weights of filters of the sparse submanifold convolution at that kernel position to
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generate a plurality of partial outputs; and combining appropriate partial outputs of the plurality of
partial outputs to generate an output tensor, in sparse format, of the second sparse submanifold

convolution.

[0189] It has been described above how indexed unfold and fold operations can be used to
implement a sparse submanifold convolution on a GPU. The inventors have determined that
similar indexed unfold and fold operations can be used to more efficiently implement standard
convolutions, standard deconvolutions and sparse submanifold deconvolutions with sparse inputs
on a GPU. Methods for implementing these convolutions and deconvolutions using similar indexed
unfold and fold operations will now be described. Each of these methods are particularly adapted
to take into consideration the internal functioning of a GPU. In particular, the described methods

are designed to take advantage of the parallel architecture (e.g. SIMD architecture) of GPUs.

GPU Implementation of Standard Convolution Operation

[0190] As described above, with respect to FIG. 3, in a standard 2D convolution, each filter has
a dimension K, x Ky, x C;,, (i.e., each filter may comprise a set of K, x Ky, x C;,, weights w) wherein
C;,, is the number of channels of the input tensor such that each filter generates a channel of the
output. Each filter channel may be described as a kernel of size K, x K;,,. Accordingly, depending
on the number of input channels, a filter may comprise one or more kernels. Each filter is slid
across the input tensor in steps s, and s, in the H and W dimensions respectively, which are
referred to as the strides of the convolution. A 3D convolution is the same as a 2D convolution

except there is an extra dimension.

[0191] The inventors have determined that standard 2D and 3D convolutions with a sparse input
can be performed more efficiently on a GPU by using similar indexed unfold and fold operations as
those described above with respect to the method 500 of FIG. 5 to implement a sparse

submanifold convolution on a GPU.

[0192] Reference is now made to FIG. 21 which illustrates an example method 2100 of
implementing a standard convolution using a GPU. The method 2100 begins at block 2102 where
an input tensor in dense format is received at the GPU. As described above, an input tensor in
dense format, which may also be referred to as a densified input tensor, comprises each element
of the complete tensor, regardless of whether the element is at an active position. In contrast, an
input tensor in sparse format only comprises the elements of the input tensor in dense format that
are at an active position or location. Once the input tensor in dense format has been received, the
method 2100 proceeds to block 2104.

[0193] Atblock 2104, the GPU identifies the active locations or positions in the received input
tensor. As described above, an active location of an input tensor is a height and width position or
location in which at least one channel of the input tensor has a non-zero value. Each active
location or position may be identified by a set or pair of indices — a height or row index, and a width

or column index. The active locations or positions in the received input tensor may be identified
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using any suitable technique, such as, but not limited to, those described above with respect to
block 504 of the method 500 of FIG. 5.

[0194] In some cases, the output of this block 2104 may be a list of the height and width (or
column and row) co-ordinates or indices of the active positions. As described above, FIG. 6 shows
an active position list 608 for an example 6x6 input tensor 602 with two active positions 604, 606.
Specifically, as shown in FIG. 6, the active position list 608 comprises an entry for the first active
position 604 that identifies its location as a height (row) of 1 and a width (column) of 1, and an entry
for the second active position 606 that identifies its location as a height (row) of 3 and a width

(column) of 3.

[0195] Once the active locations or positions in the received input tensor have been identified,
the method 2100 proceeds to block 2106.

[0196] At block 21086, the GPU performs an indexed unfold operation (which may also be
referred to as a sparse convolution unfold operation) on the received input tensor based on the
active locations or positions identified in block 2104 to generate an input matrix that comprises the
elements of the non-zero windows of the input tensor. A non-zero window is a window of the input
tensor used in the standard convolution that comprises at least one non-zero element. As
described above with respect to FIG. 7, in a standard unfold operation (e.g. im2col operation), an
input matrix is generated from the input tensor which comprises a column for each window of the
input tensor used in the standard convolution, wherein each column comprises the elements of the
input tensor in the corresponding window. As described above, each window of the input tensor
generates one output element per channel of the output tensor. Accordingly, if there are P
elements in each channel of the output tensor (meaning there are P windows of the input tensor),

there will be P columns in an input matrix generated by a standard unfold operation.

[0197] However, where a window comprises all zeros (which may be referred to a zero window)
it is not necessary to compute the output based on that window. Instead a zero can be placed at
the corresponding output position. Accordingly, only the outputs corresponding to non-zero

windows may be computed.

[0198] Therefore, the inventors have developed an indexed unfold operation for a standard
convolution operation in which an input matrix is generated that only comprises a column for each
non-zero window of the input tensor, wherein the non-zero windows of the input tensor are
identified from the active locations or positions identified in block 2104 and the convolution
parameters (e.g. kernel size, strides, dilations etc.). Specifically, the indexed unfold operation for a
standard convolution operation uses the active locations or positions, and the convolution
parameters (e.g. strides, dilation, kernel size) to identify the non-zero windows of the input tensor,
and generates an input matrix with a column for each non-zero window that comprises the
elements of the input tensor in that non-zero window. For example, if the input tensor 602 of FIG. 6
with only two active positions is to be convolved with filters having 3x3 kernels at strides of 1 such
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that there are twelve non-zero windows, then, as shown in FIG. 22, an indexed unfold operation
performed on that input tensor for that convolution results in an input matrix 2202 with twelve
columns. The first column 2208 of the input matrix 2202 corresponds to the first non-zero window
2204 of the input tensor 602 and the last (or twelfth) column 2210 of the input matrix 2202
corresponds to the last non-zero window 2206 of the input tensor 602. It can be seen that the input
matrix 2202 of FIG. 22 does not comprise the third, fourth, ninth and fourteenth columns of the
input matrix 702 of FIG. 7 generated in accordance with a standard unfold operation as each of

these columns comprises only zeros values.

[0199] Using an indexed unfold operation, as opposed to a standard unfold operation, to
implement a standard convolution can significantly reduce the size of the input matrix. This can
significantly reduce the computations to implement the matrix multiplication of block 2108
(described below). Generally the sparser the input tensor, the smaller the input matrix generated
by an indexed unfold operation, and the more memory efficient the method described with respect
to FIG. 21 is.

[0200] The indexed unfold operation may be implemented on the GPU in any suitable manner.
In one example, the GPU may be configured to, for each identified active position, determine from
the parameters of the convolution (kernel dimensions, strides, dilation), which window(s) that active
position forms part of, and identify each such window as a non-zero window. Each non-zero
window may be identified by a particular location in the window, such as, but not limited to, the first
(e.g. top-left) element of the window, the middle element of the window, or the last (e.g. the bottom
right) element of the window. For example, FIG. 23 illustrates an input tensor 2302 with four active
positions numbered 1 to 4 which is the input to a 3x3 convolution with a stride of 2 in both the
height and width dimensions. In this example the GPU may implement an indexed unfold operation
by determining, for each of the four active positions which window(s) that active position falls
within. For example, the GPU may determine that the first active position falls within only one
window 2304; the GPU may determine that the second active position falls within two windows
2306, 2308; the GPU may determine that the third active position falls within four windows 2310,
2312, 2314, 2316; and the GPU may determine that the fourth active position falls within two
windows 2318, 2320. The analysis of each active position may be performed by a separate thread

so that the active position analysis can be performed in parallel.

[0201] Once the non-zero windows have been identified, the elements forming each non-zero
windows are extracted from the input tensor and placed in a column of the input matrix. The
elements forming each non-zero window may be extracted using any suitable technique. For
example, the elements forming each non-zero window may be identified by indexing each non-zero
window (e.g. from 0 to the number of non-zero windows) and, for each non-zero window,
identifying the elements in that non-zero window using multiple nested loops, one for each
dimension of a window. For example, where the windows are 2D with a height dimension and a
width dimensions, there may be loop for the height and another for the width may be implemented.

Specifically, for a 2D convolution with 2D windows, an offset may be created for each of the height
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k—
and width dimensions that is equal to Tl where k is the size of the kernel in that dimension, and

then the GPU may be configured to loop from -offset to +offset from the non-zero window centre.
Where the windows are 3D with a channel dimension there may also be a channel loop that loops
through the channels. The element at each identified position is then copied into the appropriate

position of the input matrix.

[0202] As described above, each column in the input matrix corresponds to one non-zero
window. The values at the offset positions, starting from top left, may be ordered from top down.
In the example shown in FIG. 23 there are only 4 windows, and each window is active so the input
matrix would comprise a column for each window. It will be evident to a person of skill in the art
that this is only an example method of identifying the elements of each non-zero window and that
the elements of each non-zero window may be identified in another manner. Specifically, it will be
evident to a person of skill in the art that there are other methods of traversing/indexing each

element in a window.

[0203] Reference is now made to FIG. 24 which illustrates another example of performing an
indexed unfold operation on an input tensor of an example 2D convolution operation. In this
example the 2D convolution is a 3x3 convolution with a stride of 2 in each of the height and width
dimensions with padding. The input tensor 2402 is a 17 x 21 matrix which has eight active

positions (identified by grey shading). The active positions are listed in Table 7.

Table 7
Active Positions of Input Centre of Each Window Active Position of Output Tensor

Tensor Position Forms Part of
2,2) 2,2 a,1
(13,2 (12,2) 6, 2)
(14, 2) @1
(8,5) 8, 4) “4,2)
8,6) 4, 3)
(14,10) (14, 10) (7, 5)
411 4,10) 2, 5)
4,12) (2, 6)
9,13) 8,12) 4, 6)
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(8, 14) @, 7)
(10, 12) (5, 6)
(10, 14) (5,7
(0, 19) ©, 18) ©, 9)
(0, 20) (0, 10)
(12, 20) (12, 20) 6, 10)

[0204] As described above, in some examples, performing an indexed unfold operation to
implement a standard convolution may comprise determining, for each active position of the input
tensor 2402 (each element shown in grey), the windows that the active position falls within. In FIG.
24 the centre of each 3x3 window of the input tensor used in the convolution is outlined in bold.
Since, in this example, the stride is greater than 1, not every element of the input tensor 2402 is the
centre of a window. For example, position (0,0) of the input tensor is the centre of a window of the
input tensor for this example convolution, but position (0,1) is not the centre of a window of the
input tensor for this example convolution. It will be evident to a person of skill in the art that this is
only an example technique of identifying a window. In other examples, each window may be
identified by another element/position of the window. As described in more detail below, each
window of the input tensor maps to (or is used to generate) one element of each channel of the

output tensor.

[0205] The windows of the input tensor that an active position falls within can be determined
from the indices of the active positions, and the convolution parameters (e.g. kernel size, the
strides and the padding). In general, the size of the kernel and strides determine the number of
windows that an active position belongs to. For instance, a 3x3 kernel with stride 2x2, there are 2x2
different cases — as described in more detail below, in one case the active position will form part of
only one window, in another case an active position will form part of two windows, in another case
an active position will form part of two windows, and in another case an active position will form
part of four windows. In contrast, a 3x3 kernel with stride 1x1, there is only single case and each

active position will form part of nine different windows.

[0206] Inthe example shown in FIG. 24, based on the convolution parameters (e.g. kernel size
(3x3) and strides (2x2) and padding (1 row at top and bottom, and 1 column on the right and left)
any active position with even indices (e.g. both the horizontal index and the width index are even)
will be the centre of a window and will not belong to any other windows. For example, active
positions (2,2) and (12, 20) belong to only one window and it is a window that those active

positions are the centre of. Specifically, active position (2,2) falls within a window that is centred at
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(2,2) and active position (12, 20) falls within a window that is centred at (12, 20). In contrast, an
active position with at least one odd index will belong to at least two windows. Specifically, an
active position will belong to two windows for each odd index. The centre positions of those
windows can be determined by subtracting 1 from each of the odd indices (or selecting the closest
even index in one direction) and adding 1 to each of the odd indices (or selecting the closest even
index in the other direction). For example, active position (13, 2), with one odd index, belongs to a
first window centred at (12, 2) and a second window centred at (14, 2). Similarly, active position (9,
13), with two odd indices, belongs to a first window centred at (8, 12), a second window centred at
(8, 14), a third window centred at (10, 12) and a fourth window centred at (10, 14). The active
windows that each of the active positions of the input tensor 2402 of FIG. 24 fall within are shown
in Table 7. Each of these windows, which are identified by an X’ in the input tensor 2402 of FIG.

24, comprises at least one active position and thus is a non-zero window.

[0207] Once the non-zero windows have been identified the elements forming each non-zero
window are extracted from the input tensor 2402 and placed in a column of the input matrix 2404.
As described above, in the example shown in FIG. 24 the centre of each non-zero window is
identified by an ‘X’. Accordingly, for each ‘x’ shown in the input tensor 2402, the elements forming a
3x3 window centred on that position are extracted. For example, for the ‘X’ at (0, 18), the elements
forming a 3x3 window 2406 centred at (0, 18) are extracted from the input tensor 2402 and are
placed in the first column 2408 of the input matrix 2404. Since in this example, there are fifteen

non-zero windows, there are fifteen columns of the input matrix 2404.

[0208] In some cases, in addition to receiving the input tensor in dense format, and the active
positions, the indexed unfold operation may also receive a zeroed input matrix with the desired
shape (e.g. height = elements per kernel x number of channels, width = number of non-zero
windows) and the GPU may be configured to write the non-zero window elements to the

appropriate location in the input matrix.

[0209] Once the GPU has performed an indexed unfold operation on the input tensor to
generate an input matrix with the elements of each non-zero window of the input tensor, the
method 2100 proceeds to block 2108.

[0210] At block 2108, the GPU performs a matrix multiplication operation (which may be referred
to as a MatMul operation) between a weight matrix and the input matrix generated in block 2106 to
generate an output matrix. FIG. 25 illustrates an example matrix multiplication between an
example weight matrix 2502 and the input matrix 2404 of FIG. 24. The weight matrix may
comprise a row for each filter, and a column for each weight in a filter. In the example shown in
FIG. 25 there is only one filter with a 3x3 kernel and one channel (thus nine weights per filter).
Therefore the weight matrix 2502 comprises one row and nine columns. Each column corresponds
to a position in the filter and the weights of a filter are placed in the columns in accordance with
their place in the filter. In the example shown in FIG. 25 the weights in a filter are unrolled from left

to right and top to bottom, such that the weight in the top left corner of a kernel is placed in the first
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column, the weight in the centre of the filter is placed in the fifth column, and the weight in the
bottom right of the kernel is placed in the last or ninth column. It will be evident to a person of skill
in the art that this is an example only and the weights can be placed in any order in the weight
matrix so long as their order corresponds to the order of the elements of each non-zero window in
the input matrix. Specifically, if element at position (-1,-1) of a non-zero window is placed in row 0
of the input matrix, then the weight at position (-1,-1) of the filter would be placed in column O of the

weight matrix.

[0211] The matrix multiplication between the weight matrix 2502 and the input matrix 2404
generates an output matrix 2504 which comprises, for each non-zero window, an output element
for each channel of the output (i.e., for each filter). The output matrix 2504 may have a column for
each non-zero window and a row for each output channel such that each column comprises an
output element for the corresponding non-zero window for each output channel. In the example
shown in FIG. 25 there are fifteen non-zero windows and one output channel, so the example
output matrix 2504 has fifteen columns and one row. The matrix multiplication may be parallelised

on the GPU, by, for example, processing each column of the input matrix in a separate thread.

[0212] Once the GPU has performed the matrix multiplication the method 2100 may end or the
method 2100 may proceed to block 2110. Specifically, the output matrix 2504 generated in block
2108 comprises all of the non-zero elements of the output-tensor (in other words the output matrix
corresponds to the output tensor in sparse format) and thus the output matrix 2504 may be simply
output, or an output tensor in dense format may be first generated from the output matrix 2504.

[0213] Atblock 2110, the GPU performs an indexed fold operation on the output matrix
generated in block 2108 to generate an output tensor in dense format. The indexed fold operation
is the opposite of the indexed unfold operation performed in block 2106. Specifically, each non-
zero window can be mapped to a 2D position in the output tensor in dense format, and the indexed
fold operation uses this information to generate an output tensor in dense format (e.g. a densified
output tensor) from the output matrix generated in block 2108. In other words, the indexed fold
operation generates an output tensor with each element in the output matrix in the correct position

and zeros elsewhere.

[0214] As described above, a standard fold operation (e.g. a col2im operation) receives an
output matrix in dense format — i.e. an output matrix that comprises a row per output channel with
an output element for each element of that channel - and converts each row of the received matrix

to a plane of the output tensor in accordance with the size of a channel of the output tensor.

[0215] In contrast to a standard fold operation, an indexed fold operation receives an output
matrix in sparse format - i.e., the received matrix does not necessarily comprise a value or element
for each element of the output tensor. An indexed fold operation also receives information
indicating the output position corresponding to each non-zero window. The information indicating

the output position corresponding to each non-zero window may be the co-ordinates of the active
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locations in the input tensor determined in block 2104; the location of the non-zero windows
identified in block 2106 to perform the indexed unfold operation; or the co-ordinate of the position in
the output tensor corresponding to each non-zero window (which may be determined in block 2106
as part of the indexed unfold operation). The position in the output tensor corresponding to each
non-zero window is then used to place the elements of the sparse output matrix in the correct
location of the output tensor in dense format. The elements at all other positions of the output

tensor may then be set to zero.

[0216] If the co-ordinates of the position of the output tensor corresponding to each non-zero
window are not explicitly provided then they may be determined from the provided information. For
example, as described above, the non-zero windows can be identified from the active positions of
the input tensor and the convolution parameters (e.g. strides, kernel size etc.). Each non-zero
window can then be mapped to a 2D position in the output tensor based on the convolution
parameters. For example, as shown in FIG. 26, each window of the input tensor 2402 maps to a
position in the final output tensor 2602. In this example, since there is one row and column of
padding in each dimension, the kernel is of size 3x3, and the strides are 2, the position in the
output tensor corresponding to a particular window can be determined by dividing the indices of the
centre of a non-zero window by the stride (i.e. 2 in this case). For example, a window centred at
position (2,2) of the input tensor 2402 maps to position (1,1) of the output tensor. Accordingly, an
indexed fold operation can be performed on the output matrix 2504 of FIG. 25 by mapping each
element of the output matrix to position (y, x) where y = y position of centre of corresponding
window/2, and x = x position of centre of corresponding window/2. Table 7 illustrates a mapping
between each of the non-zero windows and a position in the output tensor 2602 and FIG. 26 shows
the final output tensor in dense format 2602 that is generated from the output matrix 2504 of FIG.
25 in accordance with those window-output position pairings. Although it has been described that
a non-zero window is identified based on the position of its centre element, it will be evident to a
person of skill in the art that this is an example only, and other positions in a window (e.g. the first
or last positions) may be used to (i) identify that window; and (ii) identify the corresponding position
in the output tensor.

[0217] The indexed fold operation may be implemented on the GPU by, for example, creating an
index for each non-zero window (e.g. from 0 to n where there are n + 1 non-zero windows). For
each non-zero window, the GPU may then be configured to determine the associated location in
the output tensor from a location in that window (e.g. the centre of the window) and the convolution
parameters, then loop through each output channel and place or copy the appropriate element of
the output matrix in the determined location in the corresponding channel of the output tensor.
Each non-zero window may get its own thread so that the indexed fold operation can be performed

in parallel on the GPU.

[0218] In some cases, in addition to receiving, information indicating the positions of the final
output tensor corresponding to each non-zero window, the convolution parameters and the output
matrix generated in block 2108, the indexed fold operation may also receive a zeroed output tensor
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of the appropriate dimensions and may write the elements of the received matrix to the received

output tensor. In such cases, zeros may not be explicitly added to the positions of the output tensor
that do not comprise an element of the output matrix.

[0219]

Test Results

[0220]

Once the indexed fold operation has been performed, the method 2100 may end.

Tables 8, 9 and 10 show the average time or duration, in ms, to implement a 2D

convolution on a GPU for 2D input tensors of sizes 128x128, 1000x1000 and 10000x10000

respectively using different methods and different levels of sparsity. The methods include: (1) the

method described above with respect to FIG. 21, which is referred to as the “Indexed Un/Fold”
method, (2) the PyTorch Conv2D method, (3) the PyTorch Un/Fold method, and (4) the UnFoldNd

method.
Table 8
Input Size: 128x128

Method 0% Sparsity | 50% Sparsity | 80% Sparsity | 90% Sparsity | 99% Sparsity
Indexed 0.15 0.15 0.15 0.15 0.15
Un/Fold

PyTorch 0.16 0.16 0.16 0.16 0.16
Conv2D

PyTorch 0.09 0.09 0.09 0.09 0.09
Un/Fold

UnFoldNd 0.34 0.34 0.34 0.34 0.34
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Table 9
Input Size: 1000x1000
Method 0% Sparsity | 50% Sparsity | 80% Sparsity | 90% Sparsity | 99% Sparsity
Indexed 0.58 0.37 0.24 0.21 0.19
Un/Fold
PyTorch 0.33 0.33 0.33 0.33 0.33
Conv2D
PyTorch 0.91 0.91 0.91 0.91 0.91
Un/Fold
UnFoldNd 0.70 0.70 0.70 0.70 0.70
Table 10
Input Size: 10000x10000
Method 0% Sparsity | 50% Sparsity | 80% Sparsity | 90% Sparsity | 99% Sparsity
Indexed 65.04 32.72 17.02 11.83 7.14
Un/Fold
PyTorch 20.20 20.20 20.20 20.20 20.20
Conv2D
PyTorch 105.80 105.80 105.80 105.80 105.80
Un/Fold
UnFoldNd - - - - -
[0221] The UnFoldNd, PyTorch Conv2D, and PyTorch Un/Fold methods are known 2D

convolution methods which do not take into account sparsity. Accordingly, the time to implement a

2D convolution operation using these methods doesn’t change with the sparsity because each of

these methods perform the same operations regardless of the sparsity (i.e., perform the full 2D

convolution). It can be seen from Tables 8 to 10 that when the input is large enough and the

sparsity is high enough (e.g. 80% or above), the method described herein with respect to FIG. 21
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for implementing a standard 2D convolution consistently outperforms these known 2D convolution

methods.

[0222] Reference is now made to FIG. 27 which shows a graph of the mean duration, in ms, to
implement an example 2D convolution on a GPU or CPU (i) for different sized 2D input tensors
(MNIST), (ii) using different methods (FoldNd, PyTorch Conv2D, PyTorch Fold and the method
described herein with respect to FIG. 21 which is referred to as the “Indexed Un/Fold” method); and
(i) with different levels of sparsity. Table 11 summarises the different combinations of 2D
convolution implementation methods, and input tensor sparsity shown in FIG. 27.

Table 11
Element in FIG. 27 | Method Sparsity
2702 FoldNd (cpu) -
2704 FoldNd (gpu) -
2706 PyTorch Convad (cpu) -
2708 PyTorch Conv2d (gpu) -
2710 PyTorch Un/Fold (cpu) -
2712 PyTorch Un/Fold (gpu) -
2714 Indexed Un/Fold (cpu) 99%
2716 Indexed Un/Fold (cpu) 90%
2718 Indexed Un/Fold (cpu) 80%
2720 Indexed Un/Fold (cpu) 50%
2722 Indexed Un/Fold (cpu) 25%
2724 Indexed Un/Fold (cpu) 0%
2726 Indexed Un/Fold (gpu) 99%
2728 Indexed Un/Fold (gpu) 90%
2730 Indexed Un/Fold (gpu) 80%
2732 Indexed Un/Fold (gpu) 50%
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2734 Indexed Un/Fold (gpu) 25%

2736 Indexed Un/Fold (gpu) 0%

[0223] It can be seen from FIG. 27 that the method described above with respect to FIGS. 21 to
26 outperforms known methods for implementing a 2D convolution when the input data is highly
sparse (at least 80% sparsity when implement on a GPU, and at least 90% sparsity when
implemented on a CPU). Accordingly, the described method provides significant speed-ups when
presented with a highly sparse input both when the method is performed on a GPU and a CPU.
Accordingly, the method 2100 of FIG. 21 may alternatively be performed on a CPU.

GPU Implementation of Standard Deconvolution Operation

[0224] A deconvolution, which may also be referred to a convolution transpose or a fractionally
strided convolution, is the reverse operation of a convolution. Specifically, a convolution can
typically be represented as a matrix multiplication between an input vector A” and a sparse matrix
C as shown in equation (6) where the non-zero elements of the sparse matrix C are the weights w
of the filter W. The input vector AV is the elements of the input tensor unrolled from left to right and
top to bottom (and front to back if 3D). For example, as shown in FIG. 28, the input vector 4V 2802
for the 5 x 5 input tensor A 2804 is a flattened 25-element vector. Similarly the output vector BY is
the elements of the output tensor B unrolled. For example, as shown in FIG. 28, the output vector
BY 2806 for the 2 x 2 output tensor B 2808 is a flattened 4-element vector. An example sparse

matrix C 2810 for the example filter 2812 is also shown in FIG. 28.
BV =C x4" (6)

[0225] In contrast, in a deconvolution the input tensor A is processed by transposing the sparse
matrix C for the corresponding direct convolution to generate a transposed sparse matrix C™ and
performing a matrix multiplication between the input vector AV and the transposed sparse matrix CT

as shown in equation (7).
B"=CT"xA" (T)

[0226] As is known to those of sKill in the art, a matrix is transposed by converting the rows of the
matrix into columns and converting the columns into rows. For example, FIG. 29 illustrates the
transposed sparse matrix CT 2902 of the sparse matrix ¢ 2810 of FIG. 28. It can be seen that the
first row of the sparse matrix ¢ 2810 of FIG. 28 has become the first column of the transposed
sparse matrix €7 2902 of FIG. 29, the second row of the sparse matrix ¢ 2810 of FIG. 28 has
become the second column of the transposed sparse matrix CT 2902 of FIG. 9 and so on. FIG. 29

also shows the output vector BY 2904 and the input vector AV 2906 for the deconvolution.
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[0227] Where a convolution may produce an output tensor B that is smaller, in the height and/or
width dimension, relative to the input tensor A, a deconvolution may produce an output tensor B
that is larger, in the height and/or width dimension, relative to the input tensor A. For example, as
shown in FIG. 30 a deconvolution between a 2x2 input tensor A 3002 and a 3x3 filter W 3004 with
a stride of 2 in the height and width dimensions, produces a 5x5 output tensor B 3006.
Accordingly, a deconvolution may be used in a neural network to perform up-sampling. However, a
deconvolution may also, or alternatively, be used in a neural network to perform image
segmentation, image super-resolution, and/or objection detection. A deconvolution may also be
used in training a neural network. Specifically, during training both a forward pass and a backward
pass of a neural network may be implemented. In a forward pass of a neural network, data is
processed in accordance with the layers of the DNN. For example, if the neural network comprises
a convolution layer followed by a pooling layer, then the input data to the neural network is
processed in accordance with the convolution layer and the output of the convolution layer is
processed in accordance with the pooling layer. In a backward pass of a neural network, data is
passed backwards through the neural network such that the reverse operations of those performed
in the forward pass are performed on the data. Accordingly, a deconvolution may be used in a
backward pass of a neural network to implement the reverse of a convolution operation in the

forward pass.

[0228] As described in the Applicant’s GB Patent No. 2582352, which is incorporated herein by
reference in its entirety, a deconvolution can be implemented by performing a plurality of direct or
standard convolutions on the input tensor to the deconvolution and interleaving the outputs of the
direct convolutions to generate the output of the deconvolution. Specifically, each filter of the
deconvolution is divided into a plurality of sub-filters; a convolution operation is performed between
each sub-filter and the input tensor to generate a sub-output tensor; and the elements of the sub-

output tensors are interleaved to generate a channel of the final output.

[0229] Forexample, FIG. 31 illustrates a deconvolution between a 5-element input tensor A =

[a1 a; a3 a, as] 3102 and a 3-weight fitter W = [wy W, ws] that produces a 10-element
output tensorB =[b, b, b; b, bs by b, bg by b;y] 3104. As noted above, a
deconvolution can be expressed as a matrix multiplication between an input vector A and the
transposed sparse matrix CT 3106. As is shown in FIG. 32 the deconvolution is equivalent to
padding the input tensor A with zeros between each element so that the input elements are spaced
apart by the stride in the height and width dimensions and on one or more edges and convolving

the padded input tensor A” with a reflected version of the filter W=,

[0230] It can be seen in FIGS. 31 and 32 that each even output element is equal to the dot
product of the i** and (i + 1)*" input elements and the third and first filter weights w; and w;,
wherein i = n/2 and n is the output element number. Accordingly, the even output elements can
be generated by performing a direct convolution between the input tensor A and a first sub-filter

W,, = [Ws w]. Similarly, each odd output element is equal to the product of the i*" input
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element a; and the second filter weight w,, wherein i = (n + 1)/2 and n is the output element
number. Accordingly the odd output elements can be generated by performing a direct convolution
between the input tensor A and a second sub-filter W, = [0 w,]. The final output tensor B of the
deconvolution can then be generated by interleaving the outputs of the first convolution and the
second convolution as shown in FIG. 33. Specifically, the final output tensor B of the deconvolution

can be generated by alternating between the outputs of the first and second direct convolutions.

[0231] In general, the number of sub-filters (per filter) to implement a particular deconvolution is
based on the stride(s) of the deconvolution. In particular, there will be stride_h * stride_w *
stride_p sub-filters per filter where stride_h is the stride in the height dimension, stride_w is the
stride in the width dimension, and stride_p is the stride in the p or channel dimension. For
example, where the filter W is one-dimensional (1D) in the width dimension there will be stride_w
sub-filters. In particular, for a deconvolution with a 1D filter and stride_w = 4 there will be 4 sub-
filters. Where the filter W is two-dimensional (2D) and the filter moves in both width and height
dimensions with respect to the input tensor A, there will be stride_w * stride_h sub-filters. Where
the filter W is three-dimensional (3D) the number of sub-filters may depend on the number of
directions or dimensions in which the filter moves with respect to the input tensor. For example, in
a 2D deconvolution a 3D filter is only moved in the width and height dimensions (or the x and y
dimensions) with respect to a 3D input tensor, so there will only be stride_w * stride_h sub-filters
per filter. In contrast, in a 3D convolution a 3D filter moves in the height, width and p dimensions
with respect to the 3D input tensor, thus there will be stride_h * stride_w * stride_p sub-filters per
filter.

[0232] In general, the dimension of the kernel of each sub-filter will be w_sub_filter max *

filter_width

. . , ilter_heigh
h_sub_filter max wherein w_sub_filter_max = [ M]

stride w ] and h_sub_filter max = [ stride_h
[0233] In some cases, the sub-filters of a filter W may be generated by forming a stride_w *
stride_h * stride_p base block of filter weights from the origin of the filter W. The origin of a filter
is the filter weight that is aligned with a particular input element to generate an output element for
that input element. The origin of a filter is typically the first filter weight, the last filter weight or the
centre filter weight, but it can be any filter weight. Once the base block is formed each sub-filter is
formed from the filter weights at the stride increments starting from one of the filter weights in the

base block and generating a reflected version of that filter.

[0234] For example, as shown in FIG. 34, a deconvolution with a 3x3 filter 3402 and a stride of
two in the width and height dimensions results in four 2x2 sub-filters 3404, 3406, 3408 and 3410.

[0235] A direct convolution with strides of 1 is then performed between the input tensor and each
sub-filter. Each sub-filter thus generates a sub-output tensor. The elements of the sub-output
tensors corresponding to the same filter are then interleaved to generate a channel of the output
tensor. In general the output elements of the sub-output tensors are interleaved in sub-filter order

in accordance with the stride in each direction. Specifically, if the deconvolution has a stride in the
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width dimension that is greater than 1 (i.e. stride_w > 1) each row of a channel of the output tensor
is generated by selecting elements from stride_w sub-output tensors in a round-robin manner. If
the deconvolution has a stride in the height dimension that is greater than 1 (i.e. stride_h > 1)
every stride_h™ row is generated by selecting elements from the same stride_w sub-output
tensors. For example for a deconvolution that generates an output tensor with 4x4 channels with
stride_w = 2 and stride_h = 2 there will be four sub-filters per filter numbered 1 to 4. The first row
and the third row of a channel of the output tensor 3502 are generated by alternating between
elements of the 15t and 2™ sub-output tensors and the second and fourth rows are generated by
alternating between elements of the 3™ and 4™ sub-output tensors as shown in FIG. 35.

[0236] The inventors have determined that standard 2D and 3D deconvolutions with a sparse
input can be performed efficiently on a GPU by using similar indexed unfold and fold operations as
those described above with respect to the method 500 of FIG. 5 to implement at sparse
submanifold convolution on a GPU.

[0237] Reference is now made to FIG. 36 which illustrates an example method 3600 of
implementing a standard deconvolution on a GPU. The method 3600 begins at block 3602 where
an input tensor in dense format is received at the GPU. As described above, an input tensor in
dense format, which may also be referred to as a densified input tensor, comprises every element
of the complete tensor, regardless of whether the element is at an active position. In contrast, an
input tensor in sparse format only comprises the elements of the input tensor in dense format that
are at an active position. Once the input tensor in dense format has been received, the method
3600 proceeds to block 3604.

[0238] At block 3604, the GPU identifies the active locations or positions in the received input
tensor. As described above, an active location in an input tensor is a height and width position or
location in which at least one channel of the input tensor has a non-zero value or element. Each
active location or position may be identified by a set or pair of indices — a height or row index, and a
width or column index. The active locations or positions in the received input tensor may be
identified using any suitable technique, such as, but not limited to, those described above with
respect to block 504 of the method 500 of FIG. 5.

[0239] In some cases, the output of this block 3604 may be a list of the height and width (or
column and row) co-ordinates or indices of the active positions. As described above, FIG. 6 shows
an active position list 608 for an example 6x6 input tensor 602 with two active positions 604, 606.
Specifically, as shown in FIG. 6, the active position list 608 comprises an entry for the first active
position 604 that identifies its location as a height (row) of 1 and a width (column) of 1, and an entry
for the second active position 606 that identifies its location as a height (row) of 3 and a width
(column) of 3.

[0240] Once the active locations or positions in the received input tensor have been identified,
the method 3600 proceeds to block 3606.
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[0241] At block 3606, the GPU performs an indexed unfold operation (which may also be

referred to as a sparse deconvolution unfold operation) on the received input tensor based on the
active locations or positions identified in block 3604 to generate an input matrix that comprises the
elements of the non-zero sub-windows of the input tensor. As described above, a deconvolution
can be implemented by performing a direct convolution between the input tensor and each of a
plurality of sub-filters and interleaving the results of the direct convolutions. A non-zero sub-
window is a window of the input tensor used in the direct convolutions that has at least one non-
zero element. The size of the sub-windows for a deconvolution are based on the size of the sub-
filters. As described above, the size of the sub-filters is based on the size of the deconvolution

filters and the strides. Specifically, as described above, the sub-filters for a 2D deconvolution will be

lter_width

of Size Wy firter max X Msub fitter max X Cin Wherein w_sub_filter_max = [ﬂ and

stride_w

lter_height

h_sub_filter max = [ﬁ — ] For example, as described above with respect to FIG. 34, a 3x3

2D deconvolution with a stride of two in both the width and height dimensions has four 2x2 sub-

filters (per filter). Therefore, in that example, each sub-window of the input tensor is a 2x2 window.

[0242] Performing an indexed unfold operation may comprise, identifying, from the active
locations or positions of the input tensor identified in block 3604 and the deconvolution parameters
(e.g. strides, dilation, kernel size), the non-zero sub-windows of the input tensor; and, for each non-
zero sub-window, extracting the elements of that non-zero sub-window from the input tensor and
placing them in the input matrix. In some cases, the input matrix comprises a column for each non-
zero sub-window and a row for each position in a sub-window, and all of the elements that form a
non-zero sub-window are placed in the same column. In some cases, the elements in a sub-
window are unrolled from left to right and top to bottom, such that the element in the top left corner
of the sub-window is placed in the first row, and the element in the bottom right of the sub-window
is placed in the last row. However, it will be evident to a person of skill in the art that this is an

example only.

[0243] The indexed unfold operation may be implemented on the GPU in any suitable manner.
In one example, the GPU may be configured to, for each identified active position of the input
tensor, determine from the parameters of the deconvolution (kernel dimensions, strides, dilation),
which sub-window(s) of the input tensor that active position forms part of, and identify each such
sub-window as a non-zero sub-window. Each non-zero sub-window may be identified by a
particular location in the window, such as, but not limited to, the first (e.g. top-left) element of the
sub-window, the middle element of the sub-window, or the last (e.g. the bottom right) element of

the sub-window.

[0244] For example, FIG. 37 illustrates an example padded input tensor 3702 to a 3x3
deconvolution with strides of 2. The input tensor 3702 has four active positions (which are shown
shaded in grey) and are listed in Table 12. In this example each 3x3 filter will be divided into four
2x2 sub-filters as shown in FIG. 24, thus each sub-window will be a 2x2 window and the sub-

windows will be spaced apart by one element. Therefore in this example, each active position will
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belong to four 2x2 sub-windows. The bottom right position of each of the four sub-windows can be
determined from the H, W position of the active position as follows: sub-window 1: (H, W), sub-
window 2: (H, W+1), sub-window 3: (H+1, W), sub-window 4: (H+1, \W+1). For example, active
position (1,1) belongs to the four sub-windows with a last element (1,1), (1,2), (2,1) and (2,2). The
sub-windows that each active position of the input tensor of FIG. 37 belongs to is shown in Table
12. Each of these identified sub-windows comprises at least one active position thus each of these

sub-windows is a non-zero sub-window. The bottom-right position of each non-zero sub-window is

identified by an ‘X’ in FIG. 37.

Table 12

Active Positions of Input

Last Element of Each Sub-

Corresponding Positions of

Tensor Window Active Position Forms Output Tensor

Part of

A,1 1,1 Sub-Filter 1 - (2,2)

Sub-Filter 2 - (2,3)

Sub-Filter 3 - (3, 2)

Sub-Filter 4 - (3,3)

(1,2) Sub-Filter 1 - (2,4)

Sub-Filter 2 - (2,5)

Sub-Filter 3 - (3, 4)

Sub-Filter 4 - (3,5)

@, 1 Sub-Filter 1 - (4,2)

Sub-Filter 2 - (4,3)

Sub-Filter 3 = (5, 2)

Sub-Filter 4 — (5,3)

2,2 Sub-Filter 1 - (4,4)

Sub-Filter 2 — (4,5)

Sub-Filter 3 — (5, 4)
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Sub-Filter 4 — (5,5)

(3.5

3.9

Sub-Filter 1 - (6,10)

Sub-Filter 2 - (6,11)

Sub-Filter 3 - (7, 10)

Sub-Filter 4 — (7,11)

(3.6)

Sub-Filter 1 - (6,12)

Sub-Filter 2 - (6,13)

Sub-Filter 3 - (7, 12)

Sub-Filter 4 — (7,13)

(4.5

Sub-Filter 1 - (8,10)

Sub-Filter 2 - (8,11)

Sub-Filter 3 - (9, 10)

Sub-Filter 4 — (9,11)

(4.6)

Sub-Filter 1 - (8,12)

Sub-Filter 2 - (8,13)

Sub-Filter 3 - (9, 12)

Sub-Filter 4 — (9,13)

6.2)

6.2)

Sub-Filter 1 - (12,4)

Sub-Filter 2 — (12,5)

Sub-Filter 3 — (13, 4)

Sub-Filter 4 — (13,5)

6.3

Sub-Filter 1 - (12,6)

Sub-Filter 2 - (12,7)
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Sub-Filter 3 — (13, 6)

Sub-Filter 4 — (13,7)

(7.2)

Sub-Filter 1 - (14,4)

Sub-Filter 2 - (14,5)

Sub-Filter 3 — (15, 4)

Sub-Filter 4 — (15,5)

(7.3)

Sub-Filter 1 - (14.,6)

Sub-Filter 2 — (14,7)

Sub-Filter 3 - (15, 6)

Sub-Filter 4 — (15,7)

®.7)

6.7)

Sub-Filter 1 - (12,14)

Sub-Filter 2 — (12,15)

Sub-Filter 3 — (13, 14)

Sub-Filter 4 — (13,15)

®.8)

Sub-Filter 1 - (12,16)

Sub-Filter 2 — (12,17)

Sub-Filter 3 - (13, 16)

Sub-Filter 4 — (13,17)

(7,7

Sub-Filter 1 - (14,14)

Sub-Filter 2 — (14,15)

Sub-Filter 3 - (15, 14)

Sub-Filter 4 — (15,15)

(7.8)

Sub-Filter 1 - (14,16)
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Sub-Filter 2 — (14,17)

Sub-Filter 3 - (15, 16)

Sub-Filter 4 — (15,17)

[0245] Once the non-zero sub-windows have been identified, the elements forming each unique
non-zero sub-window may be extracted from the input tensor and placed in the input matrix. Itis
noted that more than one active position may belong to the same non-zero sub-window, but the
elements of that sub-window only need to be placed in the input matrix once. This may be
implemented by, for example, indexing each unique non-zero sub-window (e.g. from 0 to the
number of unique non-zero sub-windows) and, for each non-zero sub-window, identifying the
elements in that non-zero sub-window using one or more nested loops. There may be one loop for
each dimension of the sub-window. For example, where the sub-window is a 2D window with
height and width dimensions there may be a height loop and a width loop. Specifically, when the
deconvolution is a 2D deconvolution and the sub-windows are 2D, an offset may be created for the

k—
height and the width dimensions that is equal to [Tll where k is the size of the sub-kernel in that

dimension, and then the height loop may be configured to loop from Y-offset_y to Y, the width loop
may be configured to loop from X-offset_x to X where Y,X is the bottom right corner of the sub-
window. If the sub-windows are 3D and have more than one channel, a channel loop may be
configured to loop through the channels. The element at each identified position is then copied into

the appropriate position of the input matrix.

[0246] For example, as described above, the bottom right corner of each non-zero sub-window
is identified in FIG. 37 by an X’. Accordingly, for each X identified in the input tensor 3702, the
elements forming a 2x2 window where the bottom right corner of the window is that ‘X’ position are
extracted and placed in a column of the input matrix 3704. For example, for the first ‘x’ at (1,1), the
elements forming a 2x2 sub-window 3706 with the bottom right corner at (1,1) are extracted from
the input tensor 3702 and are placed in the first column 3708 of the input matrix 3704. In this
example the elements in a sub-window are unrolled from left to right and top to bottom, such that
the element in the top left corner of the sub-window is placed in the first row and the element in the
bottom right of the sub-window is placed in the last or fourth row. However, it will be evident to a
person of skill in the art that this is an example only. Since in this example, there are sixteen non-
zero sub-windows (4 per active position of the input tensor 3702), the input matrix 3704 comprises

sixteen columns.

[0247] In some cases, in addition to receiving the input tensor in dense format, the active
positions, and one or more deconvolution parameters, the indexed unfold operation may also
receive a zeroed input matrix with the desired shape (e.g. height = elements per sub-kernel x

number of channels of input tensor, width = number of non-zero sub-windows) and the GPU may
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be configured to write the non-zero sub-window elements to the appropriate location in the input

matrix.

[0248] Once the GPU has performed an indexed unfold operation on the input tensor to
generate an input matrix with the elements of each unique non-zero sub-window of the input
tensor, the method 3600 proceeds to block 3608.

[0249] At block 3608, the GPU performs a matrix multiplication operation (which may be referred
to as a MatMul operation) between a weight matrix and the input matrix generated in block 3606 to

generate an output matrix.

[0250] FIG. 38 illustrates an example matrix multiplication between an example weight matrix
3802 and the input matrix 3704 of FIG. 37. The weight matrix may comprise a row for each sub-
filter, and a column for each weight in a sub-filter. In the example shown in FIGS. 37-39 there are
four 2x2 sub-filters (so 4 weights per sub-filter). Therefore the weight matrix 3802 comprises four
rows and four columns. Each column corresponds to a position in a sub-filter and the weights of a
sub-filter are placed in the columns in accordance with their place in the sub-filter. In the example
shown in FIG. 38 the weights in a sub-filter are unrolled from left to right and top to bottom, such
that the weight in the top left corner of a sub-filter is placed in the first column, and the weight in the
bottom right of the sub-filter is placed in the last column. It will be evident to a person of skill in the
art that this is an example only and the weights can be placed in any order in the weight matrix so
long as their order corresponds to the order of the elements of each sub-window in the input matrix.
Specifically, if element at position (-1,-1) of a sub-window is placed in row 0 of the input matrix,

then the weight at position (-1,-1) of the sub-filter would be placed in column 0 of the weight matrix.

[0251] The matrix multiplication between the weight matrix 3802 and the input matrix 3704
generates an output matrix 3804 which comprises, for each non-zero sub-window, an output
element for each sub-filter. The output matrix 3804 may have a column for each non-zero sub-
window and a row for each sub-filter such that each column comprises an output element for the
corresponding non-zero sub-window for each sub-filter. In the example shown in FIG. 38 there are
sixteen non-zero sub-windows, four sub-filters (per filter) and one output channel (i.e. one filter), so
the example output matrix 3804 has fifteen columns and four rows. The matrix multiplication may
be parallelised on the GPU, by, for example, processing each column of the input matrix in a

separate thread.

[0252] Once the GPU has performed the matrix multiplication the method 3600 may end or the
method 3600 may proceed to block 3610. Specifically, the output matrix 3804 generated in block
3608 comprises all of the non-zero elements of the output tensor and thus the output matrix 3804
may be simply output, or an output tensor in dense format may be first generated from the output
matrix 3804.

[0253] At block 3610, the GPU performs an indexed fold operation on the output matrix

generated in block 3608 to generate an output tensor in dense format. The indexed fold operation
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is the opposite of the indexed unfold operation. Specifically, each non-zero sub-window can be
mapped to a plurality of positions of the output tensor (one per sub-filter of a filter) and the indexed
fold operation uses this information to generate an output tensor in dense format (e.g. a densified
output tensor) from the output matrix generated in block 3608. In other words, the indexed fold
operation uses this information to generate an output tensor with each element in the output matrix

in the correct position and zeros elsewhere.

[0254] As described above, a standard fold operation (e.g. a col2im operation) receives an
output matrix in dense format — i.e. an output matrix that comprises a row per output channel with
an output element for each element of that channel - and converts each row of the received matrix

to a plane of the output tensor in accordance with the size of a channel of the output tensor.

[0255] In contrast to a standard fold operation, an indexed fold operation receives an output
matrix in sparse format - i.e., the received matrix does not comprise a value or element for each
element of the output tensor. An indexed fold operation also receives information indicating the
plurality of positions of the output tensor associated with each non-zero sub-window. This
information may comprise information identifying the active positions in the input tensor (from which
the positions of the output tensor associated with each non-zero sub-window can be determined),
information identifying the non-zero sub-windows (from which the positions of the output tensor
associated with each non-zero sub-window may be determined), or information explicitly identifying
the co-ordinates of the positions of the output tensor associated with each non-zero window (which
may, for example, be determined as part of block 3606). The received information is then used to
place the elements of the sparse output matrix in the correct location of the output tensor in dense

format. The elements at all other positions may then be set to zero.

[0256] For example, as described above, the non-zero sub-windows can be identified from the
active positions and the deconvolution parameters (e.g. strides, kernel size etc.). Each non-zero
sub-window can then be mapped to multiple positions in the output tensor, one for each sub-filter.
For example, as shown in FIG. 39 each sub-window of the input tensor 3702 maps to a 2x2 block
of positions in the output tensor 3904 (i.e. one position per sub-filter). The top-left position in the
2x2 block corresponds to sub-filter 1, the top-right position in the 2x2 block corresponds to sub-filter
2, the bottom left position of the 2x2 block corresponds to sub-filter 3, and the bottom right position
in the 2x2 block corresponds to sub-filter 4. Each sub-window can be mapped to its corresponding
2x2 block in the output tensor based on the position of the sub-window in the input tensor and the
deconvolution parameters. In the example shown in FIG. 39 a sub-window with a bottom right
position of Y,X is mapped to a 2x2 block of the output where the top-left corner of the 2x2 block in
the output is at (stride*Y, stride*X), the top-right corner of the 2x2 block in the output is at (stride*Y,
stride*X+1), the bottom left corner of the 2x2 block in the output is at (stride*Y+1, stride*X), and the
bottom right corner of the 2x2 block in the output is at (stride*Y+1, stride*X+1). For example, with a
stride of 2, a sub-window with a bottom right position of (1,1) is mapped to a 2x2 block of the output
tensor comprising positions (2,2), (2,3), (3,2) and (3,3).
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[0257] Table 12 illustrates a mapping between each of the non-zero sub-windows and the
corresponding 2x2 block in the output tensor, and FIG. 39 shows the final output tensor in dense
format 3904 that is generated from the output matrix 3804 of FIG. 38 in accordance with those sub-
window-output position mappings. Although it has been described that a sub-window is identified
by the bottom right (or last) position of the sub-window, it will be evident to a person of skill in the
art that this is an example only, and other positions in a sub-window (e.g. the first or middle
positions) may be used to (i) identify that sub-window; and (i) identify the corresponding positions
in the output tensor. This mapping between non-zero sub-windows and positions in the output
tensor may be performed as part of block 3606 or as part of block 3610.

[0258] The indexed fold operation may be implemented on the GPU by, for example, creating an
index for each non-zero sub-window (e.g. from 0 to n where there are n + 1 non-zero sub-
windows). For each non-zero sub-window, the GPU may then be configured to determine the
associated locations in the output tensor from a location in that sub-window (e.g. the bottom right of
the sub-window) and the deconvolution parameters, then loop through each sub-filter and place or
copy the element of the output matrix corresponding to that sub-filter in the determined location of
the output tensor. Each non-zero sub-window may get its own thread so that the indexed fold

operation can be performed in parallel on the GPU.

[0259] In some cases, in addition to receiving information indicating the positions of the output
tensor associated with each non-zero sub-window, the deconvolution parameters and the output
matrix generated in block 3608, the indexed fold operation may also receive a zeroed output tensor
of the appropriate dimensions and may write the elements of the received matrix to the received
output tensor. In these cases, a zero does not have to be explicitly placed in the positions of the
output tensor not associated with a non-zero sub-window.

[0260] Once the indexed fold operation has been performed, the method 3600 may end.

GPU Implementations of Sparse Submanifold Deconvolutions

[0261] A sparse submanifold deconvolution is similar to a sparse submanifold convolution in that
not all of the elements of the output tensor are generated. However, where the outputs that are
generated for a sparse submanifold convolution are driven by the active positions in the input
tensor, the outputs that are generated for a sparse submanifold deconvolution are driven by the
desired active positions in the output tensor, which may be referred to as the scatter positions or
the target positions.

[0262] The inventors have determined that sparse submanifold 2D and 3D deconvolutions can
be performed efficiently on a GPU by using similar indexed unfold and fold operations as those
described above with respect to the method 500 of FIG. 5 to implement a sparse submanifold

convolution on a GPU.
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[0263] Reference is now made to FIG. 40 which illustrates an example method 4000 of
implementing a sparse submanifold deconvolution on a GPU. The method 4000 begins at block
4002 where an input tensor in dense format is received at the GPU. As described above, an input
tensor in dense format, which may also be referred to as a densified input tensor, comprises every
element of the complete input tensor, regardless of whether that element is at an active position. In
contrast, an input tensor in sparse format only comprises the elements of the input tensor in dense
format that are at an active position. Once the input tensor in dense format has been received, the
method 4000 proceeds to block 4004.

[0264] At block 4004, the GPU receives information identifying the active positions of the output
tensor, which may be referred to as the target positions of the output tensor or the scatter positions.
Each active location or position may be identified by a set or pair of indices — a height or row index,

and a width or column index.

[0265] For example, the GPU may receive information indicating that the nine positions of the
output tensor 4102 of a 3x3 deconvolution with strides of 2 shown in grey in FIG. 41 are to be

generated. These target positions are listed below in Table 13.

[0266] Once the active locations or positions in the output tensor have been received, the
method 4000 proceeds to block 4006.

[0267] At block 4006, the GPU performs an indexed unfold operation (which may also be
referred to as a sparse submanifold deconvolution unfold operation) on the received input tensor
based on the active locations or positions of the output tensor identified in block 4004 to generate
an input matrix that comprises the elements of the sub-windows of the input tensor that generate
the identified output positions. As described above, a deconvolution can be implemented by
performing a direct convolution between the input tensor and each of a plurality of sub-filters and
interleaving the results of the direct convolutions. The sub-windows for a deconvolution are based
on the size of the sub-filters. As described above, the size of the sub-filters is based on the size of
the filters and the strides of the deconvolution. For example, as described above with respect to
FIG. 34, a 3x3 deconvolution with a stride of two in both the width and height dimensions has four
2x2 sub-filters per filter. Therefore, in that example, each sub-window of the input tensor is a 2x2

window.

[0268] Performing an indexed unfold operation may comprise, identifying, from the active
locations or positions of the output tensor identified in block 4004 and the deconvolution
parameters (e.g. strides, dilation, kernel size), the sub-window of the input tensor and the sub-filter
used to generate each active position of the output tensor; and, for each identified sub-window,
extracting the elements of that sub-window from the input tensor and placing them in the input
matrix. In some cases, the input matrix may comprise a column for each identified sub-window and
a row for each position in a sub-window and all of the elements that form a sub-window are placed

in the same column. In some cases, the elements in a sub-window are unrolled from left to right
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and top to bottom, such that the element in the top left corner of the sub-window is placed in the
first row, and the element in the bottom right of the sub-window is placed in the last row. However,

it will be evident to a person of skill in the art that this is an example only.

[0269] The indexed unfold operation may be implemented on the GPU in any suitable manner.
In one example, the GPU may be configured to, for each identified active position in the output,
determine from the parameters of the deconvolution (kernel dimensions, strides, dilation), which
sub-window of the input tensor and which sub-filter of the plurality of sub-filters are used to
generate the element(s) at that output position. Each sub-window may be identified by a particular
location in the sub-window, such as, but not limited to, the first (e.g. top-left) element of the sub-
window, middle element of the sub-window, or the last (e.g. the bottom right) element of the sub-

window.

[0270] For example, FIG. 41 illustrates an example padded input tensor 4104 from which the
identified active positions in the output tensor 4102 are to be generated. In this example each 3x3
filter will be divided into four 2x2 sub-filters as shown in FIG. 24, thus each sub-window will be a
2x2 window and the sub-windows will be spaced apart by one element in the height and width
dimensions. Each sub-window of the input tensor 4102 will generate a 2x2 block of output
elements (one element for each sub-filter). The element related to the first sub-filter will be in the
top left corner of the 2x2 block of output elements, the element related to the second sub-filter will
be in the top right corner of the 2x2 block of output elements, the element related to the third sub-
filter will be in the bottom left corner of the 2x2 block of output elements, and the element related to
the fourth sub-filter will be in the bottom right corner of the 2x2 block of output elements. Thus the
output tensor can be divided into 2x2 blocks wherein each element within a block is generated by

the same sub-window of the input, but a different sub-filter.

[0271] If each 2x2 block of the output tensor is defined by its bottom right position, then the 2x2
block that an active position in the output tensor belongs to will have a bottom right position defined
by the nearest multiple of two greater than or equal to the indices. For example, the active position
(2,2) has two even indices so the relevant 2x2 block has a bottom right position of (2,2); and the
active position (4,11) has one even index and one odd index so the relevant 2x2 block has a
bottom right position of (4, 12). The 2x2 block of the output to which each active position of the
output belongs is shown in FIG. 41 and listed in Table 13.
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Table 13
Active Positions of Relevant 2x2 Block Relevant 2x2 Sub- Sub-Filter
Output Tensor of Output Tensor Window of Input
Tensor
(bottom-right
element) (bottom-right element)
0, 19) (0, 20) (0, 10) 3
2,2) 2,2) 1.1 4
4, 11) 4,12) 2, 6) 3
(8,5) (8, 6) 4,3) 3
(9,13) (10, 14) 5,7 1
(10, 13) (10, 14) 5,7 3
(12, 20) (12, 20) 6, 10) 4
(13,2) (14, 2) (7,1 2
(14, 10) (14, 10) (7, 5) 4

[0272] The relevant 2x2 sub-window of the input tensor can then be identified from the relevant
2x2 block of the output tensor by dividing the indices of the relevant 2x2 block of the output tensor
by the stride (e.g. 2) in this example. For example, the relevant 2x2 sub-window of the tensor for
an element that belongs to a 2x2 block of the output defined by (0,20) is the 2x2 sub-window of the
input tensor defined by (0, 10). The 2x2 sub-window of the input tensor relevant to each active

position in the output tensor is shown in FIG. 41 and listed in Table 13.

[0273] The sub-filter that is relevant to an active position of the output tensor is based on where
that active position is located within its relevant 2x2 block of the output tensor. If an active position
is in the upper left corner of a block of the output tensor then sub-filter 1 is relevant, if an active
position is the upper right corner of a block of the output tensor then sub-filter 2 is relevant, if an
active position is in the lower left corner of a block of the output tensor then sub-filter 3 is relevant,
and if an active position is in the lower right corner of a block of the output tensor then sub-filter 4 is
relevant. The sub-filter relevant to each active position in the output tensor is shown in FIG. 41 and
listed in Table 13.
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[0274] Once the relevant sub-windows and sub-filters have been identified, the elements forming
each identified sub-window are extracted from the input tensor and placed in the input matrix. This
may be implemented by, for example, indexing each unique relevant sub-window (e.g. from 0 to
the number of relevant sub-windows) and, for each unique relevant sub-window, identifying the
elements in that sub-window using a plurality of nested loops, one for each dimension of the sub-
windows. Where the for example, the sub-window is two dimensional with a height dimension and
a width dimension there may be one offset loop for the height dimension and another for the width
dimension. Specifically, for a 2D sparse submanifold deconvolution with 2D sub-filters with a
height dimension and a width dimension an offset may be created for each of the height and width

k—
dimensions that is equal to [Tll where k is the size of the sub-filter in that dimension, and then

the height loop may be configured to loop from Y-offset_y to Y, and the width loop may be
configured to loop from X-offset_x to X where Y, X is the bottom right corner of the sub-window.
Where the sub-windows are 3D and comprise more than one channel, there may also be a channel
loop that loops through the channels. The element of the input tensor at each identified position is

then copied into the appropriate position of the input matrix.

[0275] For example, for each relevant sub-window of the input tensor 4104 identified in FIG. 41
and Table 13, the elements forming that sub-window are extracted from the input tensor 4104 and
placed in a column of the input matrix 4106. For example, the sub-window relevant to the first
active position (0,19) of the output tensor 4102 is the sub-window of the input tensor 4104 with a
bottom-right position of (0,10), so the elements forming that 2x2 sub-window are extracted from the
input tensor 4104 and placed in the first column 4108 of the input matrix 4106. In this example the
elements in a sub-window are unrolled from left to right and top to bottom, such that the element in
the top left corner of the sub-window is placed in the first row and the element in the bottom right of
the sub-window is placed in the last or fourth row. However, it will be evident to a person of skill in
the art that this is an example only. Since in this example, there are eight unique relevant sub-
windows, the input matrix 4106 comprises eight columns.

[0276] In some cases, in addition to receiving the input tensor in dense format, and the active

positions of the output tensor, the indexed unfold operation may also receive a zeroed input matrix
with the desired shape (e.g. height = elements per sub-kernel x number of input channels, width =
number of unique relevant sub-windows) and the GPU may be configured to write the sub-window

elements to the appropriate location in the input matrix.

[0277] Once the GPU has performed an indexed unfold operation on the input tensor to
generate an input matrix with the elements of each relevant sub-window of the input tensor, the
method 4000 proceeds to block 4008.

[0278] At block 4008, the GPU performs a matrix multiplication operation (which may be referred
to as a MatMul operation) between a weight matrix and the input matrix generated in block 4006 to

generate an output matrix.
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[0279] FIG. 42 illustrates an example matrix multiplication between an example weight matrix
4202 and the input matrix 4106 of FIG. 41. The weight matrix may comprise a row for each
relevant sub-filter, and a column for each weight in a sub-filter. In the example shown in FIGS. 41-
43 there are four 2x2 sub-filters (so 4 weights per sub-filter) and each sub-filter is relevant to at
least one target position of the output tensor. Therefore the weight matrix 4202 comprises four
rows and four columns. Each column corresponds to a position in a sub-filter and the weights of a
filter are placed in the columns in accordance with their place in the sub-filter. In the example
shown in FIG. 42 the weights in a sub-filter are unrolled from left to right and top to bottom, such
that the weight in the top left corner of a sub-filter is placed in the first column, and the weight in the
bottom right of the sub-filter is placed in the last column. It will be evident to a person of skill in the
art that this is an example only and the weights can be placed in any order in the weight matrix so
long as their order corresponds to the order of the elements of each sub-window in the input matrix.
Specifically, if element at position (-1,-1) of a sub-window is placed in row 0 of the input matrix,

then the weight at position (-1,-1) of the sub-filter would be placed in column 0 of the weight matrix.

[0280] The matrix multiplication between the weight matrix 4202 and the input matrix 4106
generates an output matrix 4204 which comprises, for each relevant sub-window, an output
element for each relevant sub-filter. The output matrix 4204 may have a column for each relevant
sub-window and a row for each sub-filter such that each column comprises an output element for
the corresponding relevant sub-window for each relevant sub-filter. In the example shown in FIG.
42 there are eight relevant sub-windows and four relevant sub-filters, so the example output matrix
4204 has eights columns and four rows. The matrix multiplication may be parallelised on the GPU,

by, for example, processing each column of the input matrix in a separate thread.

[0281] Once the GPU has performed the matrix multiplication the method 4000 may end or the
method 4000 may proceed to block 4010. Specifically, the output matrix 4204 generated in block
4008 comprises all of the elements at the target positions of the output tensor and thus the output
matrix 4204 may be simply output, or an output tensor in dense format may be first generated from
the output matrix 4204.

[0282] At block 4010, the GPU performs an indexed fold operation on the output matrix
generated in block 4008 to generate an output tensor in dense format. The indexed fold operation
is the opposite of the indexed unfold operation. Specifically, the indexed fold operation uses the
target output positions, and the relevant sub-filter information to generate an output tensor in dense
format (e.g. a densified output tensor) from the output matrix generated in block 4008. In other
words, the indexed fold operation generates an output tensor with the desired elements from the

output matrix in the correct position and zeros elsewhere.

[0283] As described above, a standard fold operation (e.g. a col2im operation) receives an
output matrix in dense format — i.e. an output matrix that comprises a row per output channel with
an output element for each element of that channel - and converts each row of the received matrix

to a plane of the output tensor in accordance with the size of a channel of the output tensor.
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[0284] In contrast to a standard fold operation, an indexed fold operation receives an output
matrix in sparse format - i.e., the received matrix does not necessarily comprise a value or element
for each element of the output tensor. An indexed fold operation to implement a sparse
submanifold deconvolution also receives information (e.g. indices) indicating the target positions in
the output tensor and information indicating the relevant sub-filter for each desired position in the
output tensor (this may be the relevant sub-filter, if computed in block 4006, or information (such as
the deconvolution parameters (e.g. kernel size, strides etc.)) which can be used to determine the
relevant sub-filter for an active position in the output tensor). The target location/position
information and the information indicating the sub-filter relevant to each target position are used to
identify the desired elements of the sparse output matrix and place them in the correct location of

the output tensor in dense format. The elements at all other positions may then be set to zero.

[0285] The indexed fold operation may be implemented on the GPU by, for example, creating an
index for each active position in the output tensor (e.g. from 0 to n where there are n 4+ 1 active
positions in the output tensor). For each active position in the output tensor, the GPU may then be
configured to select the appropriate element from the output tensor and place it at that active
position in a channel of the output tensor. For example, FIG. 43 illustrates which elements are

selected from the output matrix 4204 and where they are placed in the final output tensor 4302.

[0286] In some cases, in addition to receiving the target output positions, and information
indicating the relevant sub-filters, the deconvolution parameters and the output matrix generated in
block 4008, the indexed fold operation may also receive a zeroed output tensor of the appropriate
dimensions and may write the elements of the received output matrix to the received output tensor.

In such cases, a zero may not be explicitly placed at the non-target positions of the output tensor.

[0287] Once the indexed fold operation has been performed, the method 4000 may end.

Neural Network

[0288] Any of the methods described above for implementing a convolution or a deconvolution
may be implemented as part of processing data in accordance with a neural network to, for
example, perform a signal processing task such as, but not limited to, an image processing task or
a computer vision task. For example, the method of FIG. 5 or the method of FIG. 13 may be used
to implement a sparse submanifold 2D or 2D convolution layer of a neural network; the method of
FIG. 21 may be used to implement a standard 2D or 3D convolution layer of a neural network; the
method of FIG. 36 may be used to implement a standard 2D or 3D deconvolution layer; and the
method of FIG. 40 may be used to implement a sparse submanifold 2D or 3D deconvolution layer.
The method of FIG. 36 may also be used in performing a backward pass of a neural network to
implement the reverse operation of a 2D or 3D convolution layer in the neural network. Similarly,
the method of FIG. 40 may also be used in performing a backward pass of a neural network to
implement the reverse operation of a 2D or 3D sparse submanifold convolution layer in the neural

network.
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[0289] The methods described above have proven particularly efficient, in terms of time and
computing resources, at performing convolutions and deconvolutions on highly sparse input data

(e.g. above 80% sparsity).

Example NNA

[0290] Reference is now made to FIG. 44 which illustrates an example neural network
accelerator (NNA) 4400 suitable for implementing the NNA-based methods described herein (e.g.
the methods described with respect to FIG. 13). The neural network accelerator 4400 comprises
an input unit 4402, a plurality of processing units 4404, 4406, 4408, 4410, an output unit 4412, and
interconnection hardware 4414 which statically or dynamically connects the other units (e.g. the
input unit 4402, the processing units 4404, 4406, 4408, 4410 and the output unit 4412). The NNA
4400 is configured to: receive input data (an input tensor), implement all or a portion of one or more
layers of a neural network by processing the input data (input tensor) using one or more of the
processing units to generate output data (an output tensor), and output the output data (output
tensor) from the NNA. The receiving of input data at the NNA and processing it using one or more
processing units is referred to as a hardware pass of the NNA. It may take one or more hardware
passes of an NNA to implement a neural network. For example, in a first hardware pass input data
may be input to the NNA for processing in accordance with a convolution layer by the convolution
processing unit, and then the output of the first hardware pass may be input to the NNA in a
second hardware pass and processed in accordance with a pooling layer by the pooling processing
unit. A neural network may be mapped to hardware passes of an NNA in any suitable manner.

[0291] The input unit 4402 is hardware configured to receive and store the input data to the
neural network accelerator 4400. The input data may be received from external memory (i.e.,
memory external to the NNA 4400). In some examples, the input unit 4402 may comprise one or
more buffers to store the received input data. Although the example NNA 4400 of FIG. 44
comprises a single input unit 4402, other example NNAs may comprise multiple input units. The
term “input data to the NNA” is used herein to mean the input data to be processed by one or more
processing units (which may or may not be equivalent to the input data to a layer of a neural
network) and may be distinguished from other parameters used in a neural network such as
weights, biases, etc. In some cases, the other input parameters may be input to the NNA in
another manner (e.g. loaded into an internal or external storage unit associated with a specific
processing unit). For example, the weights and biases for a convolution layer may be loaded into a

buffer linked to, or forming part of, the convolution processing unit 4404.

[0292] Each processing unit 4404, 4406, 4408, 4410, is itself an accelerator configured to
accelerate performing one or more neural network operations on input data. Specifically, each
processing unit 4404, 4406, 4408, 4410 is configured to receive an input tensor and perform, via
hardware logic, one or more operations on the input tensor to generate an output tensor. The NNA
4400 of FIG. 44 comprises a convolution processing unit 4404 that is configured to accelerate

convolution operations. An example implementation of a convolution processing unit 4404 is
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described with respect to FIGS. 45 and 46. However, the NNA 4400 may comprise one or more
other processing units. For example, the NNA 4400 may additionally comprise one or more of an
element-wise operations processing unit 4406 which is configured to accelerate performing per-
element operations on an input tensor such as addition, multiplication etc and may receive a
secondary input tensor which can be used to implement the per-element operation, an activation
processing unit 4408 which is configured to accelerate non-linear operations, and a pooling

processing unit 4410 which is configured to accelerate a pooling operation.

[0293] The element-wise operations processing unit 4406 is hardware configured to receive
input data (e.g. an input tensor) and perform an element-wise operation on the input data (e.g.
input tensor), optionally with another data set (e.g. another tensor) which may be obtained or
retrieved from external memory (e.g. memory external to the NNA). An element-wise operation is a
same operation that is performed on each element of the input data/tensor (e.g. each input data
value or each tensel). Element-wise operations which may be performed on the input data include,

but are not limited to, add, multiply, maximum, and minimum.

[0294] The other data set/tensor may be the same size (e.g. have the same dimensions) as the
input data/tensor such that corresponding elements of the two tensors are combined using an
element-wise operation. Alternatively, the other data set/tensor and the input data/tensor may
have a different size or dimensions. If, for example, the mismatching dimension of one of the
tensors is of size 1, an element-wise operation may be performed between the input data/tensor
and the other data set/tensor using a broadcast technique wherein the smaller tensor is broadcast
(or expanded) to the size of the other tensor. For example, a tensor of size [N, H, W, C] =[1, 10,1,
10] can be combined element-wise with a tensor of size [N, H, W, C] =1, 10, 10, 10] by expanding

the W dimension of the first tensor

[0295] It will be evident to a person of skill in the art that this is just an example set of processing
units and that other NNAs may have additional processing units, fewer processing units and/or
different processing units depending, for example, on the type of neural networks they are intended
to process. In some cases, one or more of the processing units may be combined.

[0296] The output unit 4412 is hardware configured to receive the output tensor generated by
processing the input data via one or more processing units 4404, 4406, 4408, 4410. In some
cases, the output unit 4412 may have a buffer or other storage for temporarily storing all or a
portion the output tensor prior to outputting the output tensor from the NNA 4400. In some cases,
the output unit 4412 may be configured to save the output tensor in external memory (i.e., memory

that is external to the neural network accelerator).

[0297] The interconnection hardware 4414 statically or dynamically connects the input unit, one
or more processing units, and the output unit to allow input data to the neural network accelerator
to flow through (e.g. be processed by) one or more processing units and then be output from the

neural network accelerator. In some cases, the interconnection hardware 4414 may comprise fixed
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hardware connections between the input unit 4402, the processing units 4404, 4406, 4408, 4410
and the output unit 4412 that allow data to flow through the units in a limited number of ways.
However, in other cases, the interconnection hardware 4414 may comprises hardware that can
dynamically connect the units 4402-4412 of the neural network accelerator in a plurality of different
ways in response to one or more control signals. For example, the interconnection hardware 4414
may comprise a crossbar and the units 4402-4412 may be connected to the crossbarin such a
manner that the crossbar can dynamically connect the units in a plurality of different ways in
response to one or more control signals. For example, in one hardware pass the crossbar may
connect the output of the input unit 4402 to the input of the convolution processing unit 4404,
connect the output of the convolution processing unit 4404 to the input of the element-wise
operations processing unit 4406, and then connect the output of the element-wise operations
processing unit 4406 to the input of the output unit 4412 so that the input data for the hardware
pass is processed by the convolution processing unit 4404 then the element-wise operations
processing unit 4406. In another hardware pass, the crossbar may connect the output of the input
unit 4402 to the input of the convolution processing unit 4404, and then the output of the
convolution processing unit 4404 to the input of the output unit 4412 so that the input data for the
hardware pass is processed only by the convolution processing unit 4404. Accordingly, in these
cases the connections between the units 4402-4412 of the neural network accelerator (and thus

the manner in which data may flow through the units of the NNA) are not fixed or static.

[0298] Although, not shown, the units 4402-4412 and the interconnection hardware 4414 of the
NNA may receive control information for each hardware pass indicating which units are to be active
or used in the hardware pass and how each active unit and the interconnection hardware 4414 are
to be configured for that hardware pass. The control information may also indicate other

information such as the formats of the input and output data of the units.

[0299] In some cases, the neural network accelerator 4400 may also comprise an embedded
processor 4416 which can receive control instructions to perform more complicated operations

(such as a scatter-add operations).

[0300] Reference is now made to FIG. 45 which illustrates an example implementation of the
convolution processing unit 4404 of FIG. 44. In this example, the convolution processing unit 4404
comprises a plurality of convolution engines 4502, a plurality of accumulators 4504 and an
accumulation buffer 4506.

[0301] Each convolution engine 4502 comprises hardware logic configured to receive a set of
weights {k1, k2 ..., ks} that represent all or a portion of a filter, and a set of input data values {xi, x2,
..., xs} that represent all or a portion of a window of the input data, and perform a multiply-
accumulate calculation on the received weights and input data values. In some examples, as
shown in FIG. 46, each convolution engine 4502 may comprise a plurality of multipliers 4602, each
of which is configured to multiple a weight (kj) and a corresponding input data value (x) to produce

a multiplication output value. The multipliers 4602 are followed by a plurality of adders 4604. The
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adders may form an adder tree to calculate the sum of the multiplication outputs. In the example of
FIG. 46 the convolution engine 4502 comprises eight multipliers 4602, but in other examples there
may be more or fewer multipliers. For example, in some cases there may be 128 multipliers.
Generally, if there are Z multipliers, the adder tree comprises Z-1 adders. The example
convolution processing unit 4404 of FIG. 45 comprises four convolution engines 4502, however, it
will be evident to a person of skill in the art that this is an example only and there may be only one
convolution engine, there may be two convolution engines, or there may be more than two

convolution engines.

[0302] Since it may take more than one hardware pass of the convolution engines 4502 to
generate a complete filter result (e.g. because a convolution engine may only receive and process
a portion of the weights of a filter and/or a portion of the input data values of a window in a cycle),
the convolution processing unit 4404 may comprise a plurality of accumulators 4504. A pass of the
convolution engines comprises receiving a set of weights and a set of input data values and
performing a multiply-accumulate operation thereon. Each accumulator 4504 receives the output
of one convolution engine 4502 and adds the output to previous convolution engine outputs that
relates to the same filter. Since a convolution engine 4502 may not generate or produce outputs
that relate to the same filter in consecutive cycles the partial results of one or more filters may be
stored in an accumulation buffer 4506 and then the appropriate partial results may be provided to

the accumulators 4504 each cycle by the accumulation buffer 4506.

[0303] In some cases, the convolution processing unit 4404 may comprise or have access to an
input buffer 4508 for storing the elements of the input tensor and a coefficient buffer 4510 for
storing the weights of the convolution. In some cases the input buffer 4508 may be implemented
as a plurality of banks of memory. In these cases, there may be a multiplexor (not shown) for each
convolution engine 4502 that is coupled to each of bank of the input buffer to allow the data stored

in any of the banks to be selectively directed to any of the convolution engines 4502.

[0304] FIG. 47 shows an example computer system in which the neural network accelerators
and/or graphics processing units described herein may be implemented. The computer system
comprises a CPU 4702, a GPU 4704, a memory 4706, a neural network accelerator (NNA) 4708
(which may be any of the neural network accelerators described herein) and other devices 4714,
such as a display 4716, speakers 4718 and a camera 4722. The components of the computer
system can communicate with each other via a communications bus 4720.

[0305] The neural network accelerator, convolution processing unit, and convolution engine of
FIGS. 44-46 are shown as comprising a number of functional blocks. This is schematic only and is
not intended to define a strict division between different logic elements of such entities. Each
functional block may be provided in any suitable manner. It is to be understood that intermediate
values described herein as being formed by a neural network accelerator or graphics processing
unit need not be physically generated by the neural network accelerator or the graphics processing

unit at any point and may merely represent logical values which conveniently describe the
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processing performed by the neural network accelerator or graphics processing unit between its

input and output.

[0306] The neural network accelerators and graphics processing units described herein may be
embodied in hardware on an integrated circuit. The neural network accelerators or graphics
processing units described herein may be configured to perform any of the methods described
herein. Generally, any of the functions, methods, techniques or components described above can
be implemented in software, firmware, hardware (e.g., fixed logic circuitry), or any combination

thereof. The terms “module,” “functionality,” “component”, “element”, “unit”, “block” and “logic” may
be used herein to generally represent software, firmware, hardware, or any combination thereof. In
the case of a software implementation, the module, functionality, component, element, unit, block
or logic represents program code that performs the specified tasks when executed on a processor.
The algorithms and methods described herein could be performed by one or more processors
executing code that causes the processor(s) to perform the algorithms/methods. Examples of a
computer-readable storage medium include a random-access memory (RAM), read-only memory
(ROM), an optical disc, flash memory, hard disk memory, and other memory devices that may use
magnetic, optical, and other techniques to store instructions or other data and that can be

accessed by a machine.

[0307] The terms computer program code and computer readable instructions as used herein
refer to any kind of executable code for processors, including code expressed in a machine
language, an interpreted language or a scripting language. Executable code includes binary code,
machine code, bytecode, code defining an integrated circuit (such as a hardware description
language or netlist), and code expressed in a programming language code such as C, Java or
OpenCL. Executable code may be, for example, any kind of software, firmware, script, module or
library which, when suitably executed, processed, interpreted, compiled, executed at a virtual
machine or other software environment, cause a processor of the computer system at which the

executable code is supported to perform the tasks specified by the code.

[0308] A processor, computer, or computer system may be any kind of device, machine or
dedicated circuit, or collection or portion thereof, with processing capability such that it can execute
instructions. A processor may be or comprise any kind of general purpose or dedicated processor,
such as a CPU, GPU, NNA, System-on-chip, state machine, media processor, an application-
specific integrated circuit (ASIC), a programmable logic array, a field-programmable gate array

(FPGA), or the like. A computer or computer system may comprise one or more processors.

[0309] Itis also intended to encompass software which defines a configuration of hardware as
described herein, such as HDL (hardware description language) software, as is used for designing
integrated circuits, or for configuring programmable chips, to carry out desired functions. That is,
there may be provided a computer readable storage medium having encoded thereon computer
readable program code in the form of an integrated circuit definition dataset that when processed

(i.e., run) in an integrated circuit manufacturing system configures the system to manufacture a
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neural network accelerator or graphics processing unit configured to perform any of the methods
described herein, or to manufacture a neural network accelerator or a graphics processing unit
comprising any apparatus described herein. An integrated circuit definition dataset may be, for

example, an integrated circuit description.

[0310] Therefore, there may be provided a method of manufacturing, at an integrated circuit
manufacturing system, a neural network accelerator or a graphics processing unit as described
herein. Furthermore, there may be provided an integrated circuit definition dataset that, when
processed in an integrated circuit manufacturing system, causes the method of manufacturing a

neural network accelerator or a graphics processing unit to be performed.

[0311] An integrated circuit definition dataset may be in the form of computer code, for example
as a netlist, code for configuring a programmable chip, as a hardware description language
defining hardware suitable for manufacture in an integrated circuit at any level, including as register
transfer level (RTL) code, as high-level circuit representations such as Verilog or VHDL, and as
low-level circuit representations such as OASIS (RTM) and GDSII. Higher level representations
which logically define hardware suitable for manufacture in an integrated circuit (such as RTL) may
be processed at a computer system configured for generating a manufacturing definition of an
integrated circuit in the context of a software environment comprising definitions of circuit elements
and rules for combining those elements in order to generate the manufacturing definition of an
integrated circuit so defined by the representation. As is typically the case with software executing
at a computer system so as to define a machine, one or more intermediate user steps (e.g.,
providing commands, variables etc.) may be required in order for a computer system configured for
generating a manufacturing definition of an integrated circuit to execute code defining an integrated

circuit so as to generate the manufacturing definition of that integrated circuit.

[0312] An example of processing an integrated circuit definition dataset at an integrated circuit
manufacturing system so as to configure the system to manufacture a neural network accelerator

or a graphics processing unit will now be described with respect to FIG. 48.

[0313] FIG. 48 shows an example of an integrated circuit (IC) manufacturing system 4802 which
is configured to manufacture a neural network accelerator, or a graphics processing unit as
described in any of the examples herein. In particular, the IC manufacturing system 4802
comprises a layout processing system 4804 and an integrated circuit generation system 4806. The
IC manufacturing system 4802 is configured to receive an IC definition dataset (e.g., defining a
neural network accelerator or a graphics processing unit as described in any of the examples
herein), process the IC definition dataset, and generate an IC according to the IC definition dataset
(e.g., which embodies a neural network accelerator or a graphics processing unit as described in
any of the examples herein). The processing of the IC definition dataset configures the IC
manufacturing system 4802 to manufacture an integrated circuit embodying a neural network

accelerator or a graphics processing unit as described in any of the examples herein.
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[0314] The layout processing system 4804 is configured to receive and process the IC definition
dataset to determine a circuit layout. Methods of determining a circuit layout from an IC definition
dataset are known in the art, and for example may involve synthesising RTL code to determine a
gate level representation of a circuit to be generated, e.g., in terms of logical components (e.g.,
NAND, NOR, AND, OR, MUX and FLIP-FLOP components). A circuit layout can be determined
from the gate level representation of the circuit by determining positional information for the logical
components. This may be done automatically or with user involvement in order to optimise the
circuit layout. When the layout processing system 4804 has determined the circuit layout it may
output a circuit layout definition to the IC generation system 4806. A circuit layout definition may

be, for example, a circuit layout description.

[0315] The IC generation system 4806 generates an IC according to the circuit layout definition,
as is known in the art. For example, the IC generation system 4806 may implement a
semiconductor device fabrication process to generate the IC, which may involve a multiple-step
sequence of photo lithographic and chemical processing steps during which electronic circuits are
gradually created on a wafer made of semiconducting material. The circuit layout definition may be
in the form of a mask which can be used in a lithographic process for generating an IC according to
the circuit definition. Alternatively, the circuit layout definition provided to the IC generation system
4806 may be in the form of computer-readable code which the IC generation system 4806 can use

to form a suitable mask for use in generating an IC.

[0316] The different processes performed by the IC manufacturing system 4802 may be
implemented all in one location, e.g., by one party. Alternatively, the IC manufacturing system
4802 may be a distributed system such that some of the processes may be performed at different
locations, and may be performed by different parties. For example, some of the stages of: (i)
synthesising RTL code representing the IC definition dataset to form a gate level representation of
a circuit to be generated, (ii) generating a circuit layout based on the gate level representation, (iii)
forming a mask in accordance with the circuit layout, and (iv) fabricating an integrated circuit using

the mask, may be performed in different locations and/or by different parties.

[0317] In other examples, processing of the integrated circuit definition dataset at an integrated
circuit manufacturing system may configure the system to manufacture a neural network
accelerator without the IC definition dataset being processed so as to determine a circuit layout.
For instance, an integrated circuit definition dataset may define the configuration of a
reconfigurable processor, such as an FPGA, and the processing of that dataset may configure an
IC manufacturing system to generate a reconfigurable processor having that defined configuration
(e.g., by loading configuration data to the FPGA).

[0318] In some embodiments, an integrated circuit manufacturing definition dataset, when
processed in an integrated circuit manufacturing system, may cause an integrated circuit
manufacturing system to generate a device as described herein. For example, the configuration of

an integrated circuit manufacturing system in the manner described above with respect to FIG. 48
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by an integrated circuit manufacturing definition dataset may cause a device as described herein to

be manufactured.

[0319] Insome examples, an integrated circuit definition dataset could include software which
runs on hardware defined at the dataset or in combination with hardware defined at the dataset. In
the example shown in FIG. 48, the IC generation system may further be configured by an
integrated circuit definition dataset to, on manufacturing an integrated circuit, load firmware onto
that integrated circuit in accordance with program code defined at the integrated circuit definition
dataset or otherwise provide program code with the integrated circuit for use with the integrated

circuit.

[0320] The implementation of concepts set forth in this application in devices, apparatus,
modules, and/or systems (as well as in methods implemented herein) may give rise to performance
improvements when compared with known implementations. The performance improvements may
include one or more of increased computational performance, reduced latency, increased
throughput, and/or reduced power consumption. During manufacture of such devices, apparatus,
modules, and systems (e.g., in integrated circuits) performance improvements can be traded-off
against the physical implementation, thereby improving the method of manufacture. For example,
a performance improvement may be traded against layout area, thereby matching the performance
of a known implementation but using less silicon. This may be done, for example, by reusing
functional blocks in a serialised fashion or sharing functional blocks between elements of the
devices, apparatus, modules and/or systems. Conversely, concepts set forth in this application
that give rise to improvements in the physical implementation of the devices, apparatus, modules,
and systems (such as reduced silicon area) may be traded for improved performance. This may be
done, for example, by manufacturing multiple instances of a module within a predefined area
budget.

[0321] The applicant hereby discloses in isolation each individual feature described herein and
any combination of two or more such features, to the extent that such features or combinations are
capable of being carried out based on the present specification as a whole in the light of the
common general knowledge of a person skilled in the art, irrespective of whether such features or
combinations of features solve any problems disclosed herein. In view of the foregoing description
it will be evident to a person skilled in the art that various modifications may be made within the

scope of the invention.
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CLAIMS

A method (4000) of implementing a sparse submanifold deconvolution on a graphics
processing unit, the sparse submanifold deconvolution being representable as a direct
convolution between an input tensor to the sparse submanifold deconvolution and each of
a plurality of a sub-filters, each sub-filter of the plurality of sub-filters comprising a subset of

weights of a filter of the sparse submanifold deconvolution, the method (4000) comprising:
receiving (4002), at the graphics processing unit, the input tensor in a dense format;

receiving (4004), at the graphics processing unit, information identifying target positions of

an output tensor of the sparse submanifold deconvolution;

performing (4006), at the graphics processing unit, an indexed unfold operation on the
input tensor based on the identified target positions of the output tensor to generate an
input matrix comprising elements of the input tensor in each sub-window of the input tensor
relevant to at least one of the identified target positions of the output tensor; and

performing (4008), at the graphics processing unit, a matrix multiplication between a weight
matrix and the input matrix to generate an output matrix that comprises elements of the

output tensor at the identified target positions.

The method (4000) of claim 1, wherein the output tensor has at least a height dimension, a
width dimension and a channel dimension and a target position of the output tensoris a

height and width position of the output tensor.

The method (4000) of claim 1 or claim 2, wherein the information identifying the target
positions of the output tensor comprises a target position list that comprises height and

width co-ordinates of each target position of the output tensor.

The method (4000) of any preceding claim, wherein a sub-window of the input tensor is a
window of the input tensor used to compute at least one element of an output tensor of one

of the direct convolutions.

The method (4000) of any preceding claim, wherein performing the indexed unfold
operation on the input tensor comprises identifying, from the identified target positions of
the output tensor and one or more parameters of the sparse submanifold deconvolution,
each sub-window of the input tensor relevant to at least one of the identified target

positions of the output tensor.

The method (4000) of claim 5, wherein a sub-window of the input tensor is relevant to a
target position if that sub-window is used to generate an element of the output tensor of the

sparse submanifold deconvolution at that target position.
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The method (4000) of claim 5 or claim 6, wherein the elements of a channel of the output
tensor of the sparse submanifold deconvolution are divisible into a plurality of blocks
wherein each element in a block is generated by a same sub-window of the input tensor
and a different sub-filter of a filter, and identifying the sub-window of the input tensor
relevant to an identified target position comprises identifying the block of the output tensor
that the identified target position forms part of, and mapping the identified block of the

output tensor to the sub-window of the input tensor used to generate that block.

The method (4000) of claim 7, wherein an identified block of the output tensor is mapped to
a sub-window of the input tensor using a position in the output tensor of a predetermined
element of the block and the one or more parameters of the sparse submanifold
deconvolution.

The method (4000) of any preceding claim, wherein performing the indexed unfold
operation on the input tensor comprises identifying the elements of each relevant sub-

window from one or more parameters of the sparse submanifold deconvolution.

The method (4000) of claim 9, wherein identifying the elements of a relevant sub-window
comprises identifying a position in the input tensor of a predetermined element in the sub-
window and implementing a series of nested loops to move through the elements in the
sub-window from the identified position, the series of nested loops comprising a loop for

each dimension of the sub-window.

The method (4000) of any preceding claim, wherein performing the indexed unfold
operation on the input tensor comprises storing the elements of each relevant sub-window

in the input matrix.

The method (4000) of claim 11, further comprising receiving a zeroed input matrix, and the
elements of the relevant sub-windows of the input tensor are stored in the received input

matrix.

The method (4000) of any preceding claim, wherein performing the indexed unfold
operation on the input tensor comprises identifying, from one or more parameters of the
sparse submanifold deconvolution, which sub-filter of the plurality of sub-filters is relevant

to each of the identified target positions of the output tensor.

The method (4000) of claim 13, wherein the elements of a channel of the output tensor are
divisible into a plurality of blocks wherein each element in a block is generated by a same
sub-window of the input tensor and a different sub-filter of a filter, and identifying which
sub-filter of the plurality of sub-filters is relevant to an identified target position of the output
tensor comprises identifying the block that the target position forms part of and a location

of the target position within that block.
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The method (4000) of any preceding claim, wherein the input matrix comprises a column
for each relevant sub-window of the input tensor and each column of the input matrix

comprises the elements of the input tensor in the corresponding relevant sub-window.

The method (4000) of any preceding claim, wherein the weight matrix comprises a row for
each sub-filter relevant to at least one identified target position of the output tensor, and

each row of the weight matrix comprises all weights forming the corresponding sub-filter.

The method (4000) of any preceding claim, further comprising performing (4010), at the
graphics processing unit, an indexed fold operation on the output matrix based on the
identified target positions of the output tensor to generate the output tensor in a dense

format.

The method (4000) of claim 17, wherein performing the indexed fold operation on the
output matrix comprises identifying, based on the identified target positions of the output
tensor and one or more parameters of the sparse submanifold deconvolution, elements in
the output matrix that correspond to the identified target positions of the output tensor, and
storing each element of the output matrix that corresponds to an identified target position at

that target position of a channel of the output tensor.

The method (4000) of claim 18, wherein the output matrix comprises, for each relevant
sub-window, an element for each relevant sub-filter, and an element of the output matrix is
determined to correspond to an identified target position if that element was generated by

the sub-window and sub-filter relevant to that identified target position.

The method (4000) of any of claims 17 to 19, further comprising receiving, at the graphics
processing unit, a zeroed output tensor, and the elements of the output matrix

corresponding to an identified target position are written to the received output tensor.

The method (4000) of claim 18 or claim 19, wherein performing the indexed fold operation
on the output matrix further comprises storing zeroes at each position of the output tensor

that does not comprise an element of the output matrix.

A graphics processing unit configured to perform the method (4000) of any preceding
claim.

The graphics processing unit of claim 22, wherein the graphics processing unit is

embodied in hardware on an integrated circuit.

A computer readable storage medium having stored thereon computer readable code
configured to cause a graphics processing unit to perform the method (4000) of any of

claims 1 to 21 when the code is run.
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