
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent
Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the
Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been
paid. (Art. 99(1) European Patent Convention).

Processed by Luminess, 75001 PARIS (FR)

(19)
EP

3
71

6
49

0
B

1
EP003716490B1

(11) EP 3 716 490 B1
(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
24.07.2024 Bulletin 2024/30

(21) Application number: 20157895.2

(22) Date of filing: 18.02.2020

(51) International Patent Classification (IPC):
H03M 13/19 (2006.01) H03M 13/17 (2006.01)

G06F 11/10 (2006.01)

(52) Cooperative Patent Classification (CPC):
H03M 13/19; H03M 13/17

(54) DETECTION OF ADJACENT TWO BIT ERRORS IN A CODEWORD

ERKENNUNG VON BENACHBARTEN ZWEI-BIT-FEHLERN IN EINEM CODEWORT

DÉTECTION D’ERREURS DE DEUX BITS ADJACENTES DANS UN MOT DE CODE

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

(30) Priority: 28.03.2019 US 201916367511

(43) Date of publication of application:
30.09.2020 Bulletin 2020/40

(73) Proprietor: INTEL Corporation
Santa Clara, CA 95054 (US)

(72) Inventors:
• WU, Wei

Portland, OR 97229 (US)
• KOZHIKKOTTU, Vivek

Hillsboro, OR 97124 (US)
• SOMASEKHAR, Dinesh

Portland, OR 97229 (US)
• STEPHAN, Jon

Hopkinton, MA 01748 (US)

• KWON, Kon-Woo
Beaverton, OR 97006 (US)

(74) Representative: Samson & Partner Patentanwälte
mbB
Widenmayerstraße 6
80538 München (DE)

(56) References cited:
EP-A2- 1 156 419 US-B1- 8 560 927

• SANCHEZ-MACIAN ALFONSO ET AL: "Hamming
SEC-DAED and Extended Hamming
SEC-DED-TAED Codes Through Selective
Shortening and Bit Placement", IEEE
TRANSACTIONS ON DEVICE AND MATERIALS
RELIABILITY, IEEE SERVICE CENTER,
PISCATAWAY, NJ, US, vol. 14, no. 1, 1 March 2014
(2014-03-01), pages 574 - 576, XP011542160,
ISSN: 1530-4388, [retrieved on 20140304], DOI:
10.1109/TDMR.2012.2204753

EP 3 716 490 B1

2

5

10

15

20

25

30

35

40

45

50

55

Description

Field of Invention

[0001] This disclosure relates to systems that use error correction codes (ECC) and, more specifically, to single error
correction (SEC) codes with detection of adjacent two bit errors.

Background

[0002] Computing devices may store or communicate data in a binary form. For example, a memory device may store
data as binary bits in memory cells. In another example, a network connection between two computing devices may
transmit data as a sequence of binary bits. However, such stored or communicated data may experience errors that
change the values of bits, thereby resulting in data corruption. Such data errors may be due to, for example, power
surges, external radiation, transmission noise, static electricity, and so forth.

Brief Description of the Drawings

[0003]

FIG. 1 is a block diagram of a portion of a system in accordance with an embodiment of the present invention.
FIG. 2 is a block diagram of a processor in accordance with an embodiment of the present invention.
FIG. 3 is a block diagram of a multi-domain processor in accordance with another embodiment of the present
invention.
FIG. 4 is an embodiment of a processor including multiple cores.
FIG. 5 is a block diagram of a micro-architecture of a processor core in accordance with one embodiment of the
present invention.
FIG. 6 is a block diagram of a micro-architecture of a processor core in accordance with another embodiment.
FIG. 7 is a block diagram of a micro-architecture of a processor core in accordance with yet another embodiment.
FIG. 8 is a block diagram of a micro-architecture of a processor core in accordance with a still further embodiment.
FIG. 9 is a block diagram of a processor in accordance with another embodiment of the present invention.
FIG. 10 is a block diagram of a representative SoC in accordance with an embodiment of the present invention.
FIG. 11 is a block diagram of another example SoC in accordance with an embodiment of the present invention.
FIG. 12 is a block diagram of an example system with which embodiments can be used.
FIG. 13 is a block diagram of another example system with which embodiments may be used.
FIG. 14 is a block diagram of a representative computer system.
FIGs. 15A-15B are block diagrams of systems in accordance with embodiments of the present invention.
FIG. 16 is a block diagram illustrating an IP core development system used to manufacture an integrated circuit to
perform operations according to an embodiment.
FIGs. 17A-17B are block diagrams illustrating a generic vector friendly instruction format and instruction templates
thereof according to embodiments of the invention.
FIGs. 18A-D are block diagrams illustrating an exemplary specific vector friendly instruction format according to
embodiments of the invention.
FIG. 19 is a block diagram of a register architecture according to one embodiment of the invention.
FIG. 20A is a block diagram illustrating both an exemplary in-order pipeline and an exemplary register renaming,
out-of-order issue/execution pipeline according to embodiments of the invention.
FIG. 20B is a block diagram illustrating both an exemplary embodiment of an in-order architecture core and an
exemplary register renaming, out-of-order issue/execution architecture core to be included in a processor according
to embodiments of the invention.
FIGs. 21A-B illustrate a block diagram of a more specific exemplary in-order core architecture, which core would
be one of several logic blocks (including other cores of the same type and/or different types) in a chip.
FIG. 22 is a block diagram of a processor that may have more than one core, may have an integrated memory
controller, and may have integrated graphics according to embodiments of the invention.
FIGs. 23-24 are block diagrams of exemplary computer architectures.
FIG. 25 is a block diagram contrasting the use of a software instruction converter to convert binary instructions in
a source instruction set to binary instructions in a target instruction set according to embodiments of the invention.
FIG. 26 is a diagram of an example system in accordance with one or more embodiments.
FIG. 27 is an illustration of an example parity checking matrix in accordance with one or more embodiments.
FIGs. 28A-28B are simplified illustration of an example parity checking matrix in accordance with one or more

EP 3 716 490 B1

3

5

10

15

20

25

30

35

40

45

50

55

embodiments.
FIG. 29 is a flow diagram of an example method for error detection, in accordance with one or more embodiments.
FIG. 30 is a flow diagram of an example method for generating a parity checking matrix, in accordance with one or
more embodiments.

Detailed Description

[0004] Some computing systems may use error correction codes to attempt to detect and/or correct data corruption
that occur during storage or transmission. Some error correction codes may involve adding parity bits to the original
data bits. Such parity bits may be used to determine the location of the corrupted data bits, and to attempt to correct the
corrupted data bits (i.e., to restore to the original uncorrupted form). For example, a given number of parity bits may be
used to detect a one bit error at a particular location, and that bit can be corrected by flipping to the opposite binary value
(e.g., from 0 to 1). Further, detecting and/or correcting errors in two or more bits may require an increased number of
parity bits, and may thus require increased circuitry size and power consumption. Accordingly, the error correction codes
may be limited to detecting and/or correcting particular types of errors due to the associated cost, size, and power
consumption of such implementations. For example, a typical Peripheral Component Interconnect Express (PCIe) bus
may be limited to 8 parity bits for a 128 data bit channel, and may thus be limited to a conventional SEC (Single Error
Correction) code. However, the conventional SEC code may not accurately detect two bit errors, and may instead
misidentify a two bit error as a one bit error. Further, the conventional SEC code may introduce additional data corruption
by attempting to correct misidentified errors. Moreover, constructing parity check matrices for single error correction and
double adjacent error detection (SEC-DEAD) codes can be found in EP 1 156 419 A2 published 21-11-2001 and in the
article titled "Hamming SEC-DAED and Extended Hamming SEC-DED-TAED Codes Through Selective Shortening and
Bit Placement" authored by Sanchez-Macian et al., published in IEEE TRANSACTIONS ON DEVICE AND MATERIALS
RELIABILITY, vol. 14, no. 1, 1 March 2014, pages 574-576.
[0005] The invention is defined in the appended set of claims. In one or more embodiments, error correction code
(ECC) logic corrects one bit errors and detects adjacent two bit errors without requiring additional parity bits. As used
herein, an "adjacent two bit error" refers to two erroneous data bits that are directly adjacent to each other in a data word
(i.e., without any intervening bits). In some embodiments, the ECC logic generates a syndrome vector using a parity
checking matrix H. The location of a one bit error may be determined by matching the syndrome vector to a single column
of the parity checking matrix H. Further, any possible adjacent two bit error is detected when the syndrome does not
match any column of the parity checking matrix H and is not a zero vector. In this manner, the ECC logic detects an
adjacent two bit error without requiring additional parity bits. Accordingly, some embodiments may provide improved
error detection without increasing hardware costs or power consumption. Various details of some embodiments are
described further below with reference to FIGs. 26-30. Further, exemplary systems and architectures are described
below with reference to FIGs. 1-25.

Exemplary systems and architectures

[0006] Although the following embodiments are described with reference to particular implementations, embodiments
are not limited in this regard. In particular, it is contemplated that similar techniques and teachings of embodiments
described herein may be applied to other types of circuits, semiconductor devices, processors, systems, etc. For example,
the disclosed embodiments may be implemented in any type of computer system, including server computers (e.g.,
tower, rack, blade, micro-server and so forth), communications systems, storage systems, desktop computers of any
configuration, laptop, notebook, and tablet computers (including 2:1 tablets, phablets and so forth).
[0007] In addition, disclosed embodiments can also be used in other devices, such as handheld devices, systems on
chip (SoCs), and embedded applications. Some examples of handheld devices include cellular phones such as smart-
phones, Internet protocol devices, digital cameras, personal digital assistants (PDAs), and handheld PCs. Embedded
applications may typically include a microcontroller, a digital signal processor (DSP), network computers (NetPC), set-
top boxes, network hubs, wide area network (WAN) switches, wearable devices, or any other system that can perform
the functions and operations taught below. Further, embodiments may be implemented in mobile terminals having
standard voice functionality such as mobile phones, smartphones and phablets, and/or in non-mobile terminals without
a standard wireless voice function communication capability, such as many wearables, tablets, notebooks, desktops,
micro-servers, servers and so forth.
[0008] Referring now to FIG. 1, shown is a block diagram of a portion of a system in accordance with an embodiment
of the present invention. As shown in FIG. 1, system 100 may include various components, including a processor 110
which as shown is a multicore processor. Processor 110 may be coupled to a power supply 150 via an external voltage
regulator 160, which may perform a first voltage conversion to provide a primary regulated voltage Vreg to processor 110.
[0009] As seen, processor 110 may be a single die processor including multiple cores 120a - 120n. In addition, each

EP 3 716 490 B1

4

5

10

15

20

25

30

35

40

45

50

55

core may be associated with an integrated voltage regulator (IVR) 125a - 125n which receives the primary regulated
voltage and generates an operating voltage to be provided to one or more agents of the processor associated with the
IVR. Accordingly, an IVR implementation may be provided to allow for fine-grained control of voltage and thus power
and performance of each individual core. As such, each core can operate at an independent voltage and frequency,
enabling great flexibility and affording wide opportunities for balancing power consumption with performance. In some
embodiments, the use of multiple IVRs enables the grouping of components into separate power planes, such that power
is regulated and supplied by the IVR to only those components in the group. During power management, a given power
plane of one IVR may be powered down or off when the processor is placed into a certain low power state, while another
power plane of another IVR remains active, or fully powered. Similarly, cores 120 may include or be associated with
independent clock generation circuitry such as one or more phase lock loops (PLLs) to control operating frequency of
each core 120 independently.
[0010] Still referring to FIG. 1, additional components may be present within the processor including an input/output
interface (IF) 132, another interface 134, and an integrated memory controller (IMC) 136. As seen, each of these
components may be powered by another integrated voltage regulator 125x. In one embodiment, interface 132 may
enable operation for an Intel@ Quick Path Interconnect (QPI) interconnect, which provides for point-to-point (PtP) links
in a cache coherent protocol that includes multiple layers including a physical layer, a link layer and a protocol layer. In
turn, interface 134 may communicate via a Peripheral Component Interconnect Express (PCIe™) protocol.
[0011] Also shown is a power control unit (PCU) 138, which may include circuitry including hardware, software and/or
firmware to perform power management operations with regard to processor 110. As seen, PCU 138 provides control
information to external voltage regulator 160 via a digital interface 162 to cause the voltage regulator to generate the
appropriate regulated voltage. PCU 138 also provides control information to IVRs 125 via another digital interface 163
to control the operating voltage generated (or to cause a corresponding IVR to be disabled in a low power mode). In
various embodiments, PCU 138 may include a variety of power management logic units to perform hardware-based
power management. Such power management may be wholly processor controlled (e.g., by various processor hardware,
and which may be triggered by workload and/or power, thermal or other processor constraints) and/or the power man-
agement may be performed responsive to external sources (such as a platform or power management source or system
software).
[0012] In FIG. 1, PCU 138 is illustrated as being present as a separate logic of the processor. In other cases, PCU
138 may execute on a given one or more of cores 120. In some cases, PCU 138 may be implemented as a microcontroller
(dedicated or general-purpose) or other control logic configured to execute its own dedicated power management code,
sometimes referred to as P-code. In yet other embodiments, power management operations to be performed by PCU
138 may be implemented externally to a processor, such as by way of a separate power management integrated circuit
(PMIC) or another component external to the processor. In yet other embodiments, power management operations to
be performed by PCU 138 may be implemented within BIOS or other system software.
[0013] Embodiments may be particularly suitable for a multicore processor in which each of multiple cores can operate
at an independent voltage and frequency point. As used herein the term "domain" is used to mean a collection of hardware
and/or logic that operates at the same voltage and frequency point. In addition, a multicore processor can further include
other non-core processing engines such as fixed function units, graphics engines, and so forth. Such processor can
include independent domains other than the cores, such as one or more domains associated with a graphics engine
(referred to herein as a graphics domain) and one or more domains associated with non-core circuitry, referred to herein
as a system agent. Although many implementations of a multi-domain processor can be formed on a single semiconductor
die, other implementations can be realized by a multi-chip package in which different domains can be present on different
semiconductor die of a single package.
[0014] While not shown for ease of illustration, understand that additional components may be present within processor
110 such as non-core logic, and other components such as internal memories, e.g., one or more levels of a cache
memory hierarchy and so forth. Furthermore, while shown in the implementation of FIG. 1 with an integrated voltage
regulator, embodiments are not so limited. For example, other regulated voltages may be provided to onchip resources
from external voltage regulator 160 or one or more additional external sources of regulated voltages.
[0015] Note that the power management techniques described herein may be independent of and complementary to
an operating system (OS)-based power management (OSPM) mechanism. According to one example OSPM technique,
a processor can operate at various performance states or levels, so-called P-states, namely from P0 to PN. In general,
the P1 performance state may correspond to the highest guaranteed performance state that can be requested by an
OS. In addition to this P1 state, the OS can further request a higher performance state, namely a P0 state. This P0 state
may thus be an opportunistic, overclocking, or turbo mode state in which, when power and/or thermal budget is available,
processor hardware can configure the processor or at least portions thereof to operate at a higher than guaranteed
frequency. In many implementations, a processor can include multiple so-called bin frequencies above the P1 guaranteed
maximum frequency, exceeding to a maximum peak frequency of the particular processor, as fused or otherwise written
into the processor during manufacture. In addition, according to one OSPM mechanism, a processor can operate at

EP 3 716 490 B1

5

5

10

15

20

25

30

35

40

45

50

55

various power states or levels. With regard to power states, an OSPM mechanism may specify different power con-
sumption states, generally referred to as C-states, C0, C1 to Cn states. When a core is active, it runs at a C0 state, and
when the core is idle it may be placed in a core low power state, also called a core non-zero C-state (e.g., C1-C6 states),
with each C-state being at a lower power consumption level (such that C6 is a deeper low power state than C1, and so
forth).
[0016] Understand that many different types of power management techniques may be used individually or in combi-
nation in different embodiments. As representative examples, a power controller may control the processor to be power
managed by some form of dynamic voltage frequency scaling (DVFS) in which an operating voltage and/or operating
frequency of one or more cores or other processor logic may be dynamically controlled to reduce power consumption
in certain situations. In an example, DVFS may be performed using Enhanced Intel SpeedStep™ technology available
from Intel Corporation, Santa Clara, CA, to provide optimal performance at a lowest power consumption level. In another
example, DVFS may be performed using Intel TurboBoost™ technology to enable one or more cores or other compute
engines to operate at a higher than guaranteed operating frequency based on conditions (e.g., workload and availability).
[0017] Another power management technique that may be used in certain examples is dynamic swapping of workloads
between different compute engines. For example, the processor may include asymmetric cores or other processing
engines that operate at different power consumption levels, such that in a power constrained situation, one or more
workloads can be dynamically switched to execute on a lower power core or other compute engine. Another exemplary
power management technique is hardware duty cycling (HDC), which may cause cores and/or other compute engines
to be periodically enabled and disabled according to a duty cycle, such that one or more cores may be made inactive
during an inactive period of the duty cycle and made active during an active period of the duty cycle.
[0018] Power management techniques also may be used when constraints exist in an operating environment. For
example, when a power and/or thermal constraint is encountered, power may be reduced by reducing operating frequency
and/or voltage. Other power management techniques include throttling instruction execution rate or limiting scheduling
of instructions. Still further, it is possible for instructions of a given instruction set architecture to include express or implicit
direction as to power management operations. Although described with these particular examples, understand that many
other power management techniques may be used in particular embodiments.
[0019] Embodiments can be implemented in processors for various markets including server processors, desktop
processors, mobile processors and so forth. Referring now to FIG. 2, shown is a block diagram of a processor in
accordance with an embodiment of the present invention. As shown in FIG. 2, processor 200 may be a multicore processor
including a plurality of cores 210a - 210n. In one embodiment, each such core may be of an independent power domain
and can be configured to enter and exit active states and/or maximum performance states based on workload. One or
more cores 210 may be heterogeneous to the other cores, e.g., having different micro-architectures, instruction set
architectures, pipeline depths, power and performance capabilities. The various cores may be coupled via an interconnect
215 to a system agent 220 that includes various components. As seen, the system agent 220 may include a shared
cache 230 which may be a last level cache. In addition, the system agent may include an integrated memory controller
240 to communicate with a system memory (not shown in FIG. 2), e.g., via a memory bus. The system agent 220 also
includes various interfaces 250 and a power control unit 255, which may include logic to perform the power management
techniques described herein.
[0020] In addition, by interfaces 250a-250n, connection can be made to various off-chip components such as peripheral
devices, mass storage and so forth. While shown with this particular implementation in the embodiment of FIG. 2, the
scope of the present invention is not limited in this regard.
[0021] Referring now to FIG. 3, shown is a block diagram of a multi-domain processor in accordance with another
embodiment of the present invention. As shown in the embodiment of FIG. 3, processor 300 includes multiple domains.
Specifically, a core domain 310 can include a plurality of cores 310a-310n, a graphics domain 320 can include one or
more graphics engines, and a system agent domain 350 may further be present. In some embodiments, system agent
domain 350 may execute at an independent frequency than the core domain and may remain powered on at all times
to handle power control events and power management such that domains 310 and 320 can be controlled to dynamically
enter into and exit high power and low power states. Each of domains 310 and 320 may operate at different voltage
and/or power. Note that while only shown with three domains, understand the scope of the present invention is not
limited in this regard and additional domains can be present in other embodiments. For example, multiple core domains
may be present each including at least one core.
[0022] In general, each of the cores 310a-310n may further include low level caches in addition to various execution
units and additional processing elements. In turn, the various cores may be coupled to each other and to a shared cache
memory formed of a plurality of units of a last level cache (LLC) 340a - 340n. In various embodiments, LLC 340 may be
shared amongst the cores and the graphics engine, as well as various media processing circuitry. As seen, a ring
interconnect 330 thus couples the cores together, and provides interconnection between the cores, graphics domain
320 and system agent domain 350. In one embodiment, interconnect 330 can be part of the core domain. However, in
other embodiments the ring interconnect can be of its own domain.

EP 3 716 490 B1

6

5

10

15

20

25

30

35

40

45

50

55

[0023] As further seen, system agent domain 350 may include display controller 352 which may provide control of
and an interface to an associated display. As further seen, system agent domain 350 may include a power control unit
355 which can include logic to perform the power management techniques described herein.
[0024] As further seen in FIG. 3, processor 300 can further include an integrated memory controller (IMC) 370 that
can provide for an interface to a system memory, such as a dynamic random access memory (DRAM). Multiple interfaces
380a - 380n may be present to enable interconnection between the processor and other circuitry. For example, in one
embodiment at least one direct media interface (DMI) interface may be provided as well as one or more PCIe™ interfaces.
Still further, to provide for communications between other agents such as additional processors or other circuitry, one
or more QPI interfaces may also be provided. Although shown at this high level in the embodiment of FIG. 3, understand
the scope of the present invention is not limited in this regard.
[0025] Referring to FIG. 4, an embodiment of a processor including multiple cores is illustrated. Processor 400 includes
any processor or processing device, such as a microprocessor, an embedded processor, a digital signal processor
(DSP), a network processor, a handheld processor, an application processor, a co-processor, a system on a chip (SoC),
or other device to execute code. Processor 400, in one embodiment, includes at least two corescores 401 and 402,
which may include asymmetric cores or symmetric cores (the illustrated embodiment). However, processor 400 may
include any number of processing elements that may be symmetric or asymmetric.
[0026] In one embodiment, a processing element refers to hardware or logic to support a software thread. Examples
of hardware processing elements include: a thread unit, a thread slot, a thread, a process unit, a context, a context unit,
a logical processor, a hardware thread, a core, and/or any other element, which is capable of holding a state for a
processor, such as an execution state or architectural state. In other words, a processing element, in one embodiment,
refers to any hardware capable of being independently associated with code, such as a software thread, operating
system, application, or other code. A physical processor typically refers to an integrated circuit, which potentially includes
any number of other processing elements, such as cores or hardware threads.
[0027] A core often refers to logic located on an integrated circuit capable of maintaining an independent architectural
state, wherein each independently maintained architectural state is associated with at least some dedicated execution
resources. In contrast to cores, a hardware thread typically refers to any logic located on an integrated circuit capable
of maintaining an independent architectural state, wherein the independently maintained architectural states share
access to execution resources. As can be seen, when certain resources are shared and others are dedicated to an
architectural state, the line between the nomenclature of a hardware thread and core overlaps. Yet often, a core and a
hardware thread are viewed by an operating system as individual logical processors, where the operating system is able
to individually schedule operations on each logical processor.
[0028] Physical processor 400, as illustrated in FIG. 4, includes two cores, cores 401 and 402. Here, cores 401 and
402 are considered symmetric cores, i.e., cores with the same configurations, functional units, and/or logic. In another
embodiment, core 401 includes an out-of-order processor core, while core 402 includes an in-order processor core.
However, cores 401 and 402 may be individually selected from any type of core, such as a native core, a software
managed core, a core adapted to execute a native instruction set architecture (ISA), a core adapted to execute a
translated ISA, a co-designed core, or other known core. Yet to further the discussion, the functional units illustrated in
core 401 are described in further detail below, as the units in core 402 operate in a similar manner.
[0029] As depicted, core 401 includes two architectural state registers 401a and 401b, which may be associated with
two hardware threads (also referred to as hardware thread slots). Therefore, software entities, such as an operating
system, in one embodiment potentially view processor 400 as four separate processors, i.e., four logical processors or
processing elements capable of executing four software threads concurrently. As alluded to above, a first thread is
associated with architecture state registers 401a, a second thread is associated with architecture state registers 401b,
a third thread may be associated with architecture state registers 402a, and a fourth thread may be associated with
architecture state registers 402b. Here, the architecture state registers (401a, 401b, 402a, and 402b) may be associated
with processing elements, thread slots, or thread units, as described above. As illustrated, architecture state registers
401a are replicated in architecture state registers 401b, so individual architecture states/contexts are capable of being
stored for logical processor 401a and logical processor 401b. In core 401, other smaller resources, such as instruction
pointers and renaming logic in allocator and renamer block 430 may also be replicated for threads 401a and 401b. Some
resources, such as re-order buffers in reorder/retirement unit 435, branch target buffer and instruction translation looka-
side buffer (BTB and I-TLB) 420, load/store buffers, and queues may be shared through partitioning. Other resources,
such as general purpose internal registers, page-table base register(s), low-level data-cache and data-TLB 450, execution
unit(s) 440, and portions of reorder/retirement unit 435 are potentially fully shared.
[0030] Processor 400 often includes other resources, which may be fully shared, shared through partitioning, or ded-
icated by/to processing elements. In FIG. 4, an embodiment of a purely exemplary processor with illustrative logical
units/resources of a processor is illustrated. Note that a processor may include, or omit, any of these functional units,
as well as include any other known functional units, logic, or firmware not depicted. As illustrated, core 401 includes a
simplified, representative out-of-order (OOO) processor core. But an in-order processor may be utilized in different

EP 3 716 490 B1

7

5

10

15

20

25

30

35

40

45

50

55

embodiments.
[0031] Core 401 further includes decode module 425 coupled to a fetch unit to decode fetched elements. Fetch logic,
in one embodiment, includes individual sequencers associated with thread slots 401a, 401b, respectively. Usually core
401 is associated with a first ISA, which defines/specifies instructions executable on processor 400. Often machine code
instructions that are part of the first ISA include a portion of the instruction (referred to as an opcode), which referenc-
es/specifies an instruction or operation to be performed. Decode module 425 includes circuitry that recognizes these
instructions from their opcodes and passes the decoded instructions on in the pipeline for processing as defined by the
first ISA. For example, decoder module 425, in one embodiment, includes logic designed or adapted to recognize specific
instructions, such as transactional instructions. As a result of the recognition by the decoder module 425, the architecture
or core 401 takes specific, predefined actions to perform tasks associated with the appropriate instruction. It is important
to note that any of the tasks, blocks, operations, and methods described herein may be performed in response to a
single or multiple instructions; some of which may be new or old instructions.
[0032] In one example, allocator and renamer block 430 includes an allocator to reserve resources, such as register
files to store instruction processing results. However, threads 401a and 401b are potentially capable of out-of-order
execution, where allocator and renamer block 430 also reserves other resources, such as reorder buffers to track
instruction results. The renamer block 430 may also include a register renamer to rename program/instruction reference
registers to other registers internal to processor 400. Reorder/retirement unit 435 includes components, such as the
reorder buffers mentioned above, load buffers, and store buffers, to support out-of-order execution and later in-order
retirement of instructions executed out-of-order.
[0033] Scheduler and execution unit(s) block 440, in one embodiment, includes a scheduler unit to schedule instruc-
tions/operation on execution units. For example, a floating point instruction is scheduled on a port of an execution unit
that has an available floating point execution unit. Register files associated with the execution units are also included to
store information instruction processing results. Exemplary execution units include a floating point execution unit, an
integer execution unit, a jump execution unit, a load execution unit, a store execution unit, and other known execution units.
[0034] Lower level data cache and data translation lookaside buffer (D-TLB) 450 are coupled to execution unit(s) 440.
The data cache is to store recently used/operated on elements, such as data operands, which are potentially held in
memory coherency states. The D-TLB is to store recent virtual/linear to physical address translations. As a specific
example, a processor may include a page table structure to break physical memory into a plurality of virtual pages.
[0035] Here, cores 401 and 402 share access to higher-level or further-out cache 410, which is to cache recently
fetched elements. Note that higher-level or further-out refers to cache levels increasing or getting further away from the
execution unit(s). In one embodiment, higher-level cache 410 is a last-level data cache-last cache in the memory hierarchy
on processor 400-such as a second or third level data cache. However, higher level cache 410 is not so limited, as it
may be associated with or includes an instruction cache. A trace cache-a type of instruction cache-instead may be
coupled after decoder module 425 to store recently decoded traces.
[0036] In the depicted configuration, processor 400 also includes bus interface 405 and a power control unit 460,
which may perform power management in accordance with an embodiment of the present invention. In this scenario,
bus interface 405 is to communicate with devices external to processor 400, such as system memory and other com-
ponents.
[0037] A memory controller 470 may interface with other devices such as one or many memories. In an example, bus
interface 405 includes a ring interconnect with a memory controller for interfacing with a memory and a graphics controller
for interfacing with a graphics processor. In an SoC environment, even more devices, such as a network interface,
coprocessors, memory, graphics processor, and any other known computer devices/interface may be integrated on a
single die or integrated circuit to provide small form factor with high functionality and low power consumption.
[0038] Referring now to FIG. 5, shown is a block diagram of a micro-architecture of a processor core in accordance
with one embodiment of the present invention. As shown in FIG. 5, processor core 500 may be a multi-stage pipelined
out-of-order processor. Core 500 may operate at various voltages based on a received operating voltage, which may
be received from an integrated voltage regulator or external voltage regulator.
[0039] As seen in FIG. 5, core 500 includes front end units 510, which may be used to fetch instructions to be executed
and prepare them for use later in the processor pipeline. For example, front end units 510 may include a fetch unit 501,
an instruction cache 503, and an instruction decoder 505. In some implementations, front end units 510 may further
include a trace cache, along with microcode storage as well as a micro-operation storage. Fetch unit 501 may fetch
macro-instructions, e.g., from memory or instruction cache 503, and feed them to instruction decoder 505 to decode
them into primitives, i.e., micro-operations for execution by the processor.
[0040] Coupled between front end units 510 and execution units 520 is an out-of-order (OOO) engine 515 that may
be used to receive the micro-instructions and prepare them for execution. More specifically OOO engine 515 may include
various buffers to re-order microinstruction flow and allocate various resources needed for execution, as well as to
provide renaming of logical registers onto storage locations within various register files such as register file 530 and
extended register file 535. Register file 530 may include separate register files for integer and floating point operations.

EP 3 716 490 B1

8

5

10

15

20

25

30

35

40

45

50

55

For purposes of configuration, control, and additional operations, a set of machine specific registers (MSRs) 538 may
also be present and accessible to various logic within core 500 (and external to the core).
[0041] Various resources may be present in execution units 520, including, for example, various integer, floating point,
and single instruction multiple data (SIMD) logic units, among other specialized hardware. For example, such execution
units may include one or more arithmetic logic units (ALUs) 522 and one or more vector execution units 524, among
other such execution units.
[0042] Results from the execution units may be provided to retirement logic, namely a reorder buffer (ROB) 540. More
specifically, ROB 540 may include various arrays and logic to receive information associated with instructions that are
executed. This information is then examined by ROB 540 to determine whether the instructions can be validly retired
and result data committed to the architectural state of the processor, or whether one or more exceptions occurred that
prevent a proper retirement of the instructions. Of course, ROB 540 may handle other operations associated with
retirement.
[0043] As shown in FIG. 5, ROB 540 is coupled to a cache 550 which, in one embodiment may be a low level cache
(e.g., an L1 cache) although the scope of the present invention is not limited in this regard. Also, execution units 520
can be directly coupled to cache 550. From cache 550, data communication may occur with higher level caches, system
memory and so forth. While shown with this high level in the embodiment of FIG. 5, understand the scope of the present
invention is not limited in this regard. For example, while the implementation of FIG. 5 is with regard to an out-of-order
machine such as of an Intel@ x86 instruction set architecture (ISA), the scope of the present invention is not limited in
this regard. That is, other embodiments may be implemented in an in-order processor, a reduced instruction set computing
(RISC) processor such as an ARM-based processor, or a processor of another type of ISA that can emulate instructions
and operations of a different ISA via an emulation engine and associated logic circuitry.
[0044] Referring now to FIG. 6, shown is a block diagram of a micro-architecture of a processor core in accordance
with another embodiment. In the embodiment of FIG. 6, core 600 may be a low power core of a different micro-architecture,
such as an Intel® Atom™-based processor having a relatively limited pipeline depth designed to reduce power consump-
tion. As seen, core 600 includes an instruction cache 610 coupled to provide instructions to an instruction decoder 615.
A branch predictor 605 may be coupled to instruction cache 610. Note that instruction cache 610 may further be coupled
to another level of a cache memory, such as an L2 cache (not shown for ease of illustration in FIG. 6). In turn, instruction
decoder 615 provides decoded instructions to an issue queue (IQ) 620 for storage and delivery to a given execution
pipeline. A microcode ROM 618 is coupled to instruction decoder 615.
[0045] A floating point pipeline 630 includes a floating point (FP) register file 632 which may include a plurality of
architectural registers of a given bit width such as 128, 256 or 512 bits. Pipeline 630 includes a floating point scheduler
634 to schedule instructions for execution on one of multiple execution units of the pipeline. In the embodiment shown,
such execution units include an arithmetic logic unit (ALU) 635, a shuffle unit 636, and a floating point (FP) adder 638.
In turn, results generated in these execution units may be provided back to buffers and/or registers of register file 632.
Of course understand while shown with these few example execution units, additional or different floating point execution
units may be present in another embodiment.
[0046] An integer pipeline 640 also may be provided. In the embodiment shown, pipeline 640 includes an integer (INT)
register file 642 which may include a plurality of architectural registers of a given bit width such as 128 or 256 bits.
Pipeline 640 includes an integer execution (IE) scheduler 644 to schedule instructions for execution on one of multiple
execution units of the pipeline. In the embodiment shown, such execution units include an ALU 645, a shifter unit 646,
and a jump execution unit (JEU) 648. In turn, results generated in these execution units may be provided back to buffers
and/or registers of register file 642. Of course, understand while shown with these few example execution units, additional
or different integer execution units may be present in another embodiment.
[0047] A memory execution (ME) scheduler 650 may schedule memory operations for execution in an address gen-
eration unit (AGU) 652, which is also coupled to a TLB 654. As seen, these structures may couple to a data cache 660,
which may be a L0 and/or L1 data cache that in turn couples to additional levels of a cache memory hierarchy, including
an L2 cache memory.
[0048] To provide support for out-of-order execution, an allocator/renamer 670 may be provided, in addition to a reorder
buffer 680, which is configured to reorder instructions executed out of order for retirement in order. Although shown with
this particular pipeline architecture in the illustration of FIG. 6, understand that many variations and alternatives are
possible.
[0049] Note that in a processor having asymmetric cores, such as in accordance with the micro-architectures of FIGs.
5 and 6, workloads may be dynamically swapped between the cores for power management reasons, as these cores,
although having different pipeline designs and depths, may be of the same or related ISA. Such dynamic core swapping
may be performed in a manner transparent to a user application (and possibly kernel also).
[0050] Referring to FIG. 7, shown is a block diagram of a micro-architecture of a processor core in accordance with
yet another embodiment. As illustrated in FIG. 7, a core 700 may include a multi-staged in-order pipeline to execute at
very low power consumption levels. As one such example, core 700 may have a micro-architecture in accordance with

EP 3 716 490 B1

9

5

10

15

20

25

30

35

40

45

50

55

an ARM Cortex A53 design available from ARM Holdings, LTD., Sunnyvale, CA. In an implementation, an 8-stage
pipeline may be provided that is configured to execute both 32-bit and 64-bit code. Core 700 includes a fetch unit 710
that is configured to fetch instructions and provide them to a decode unit 715, which may decode the instructions, e.g.,
macro-instructions of a given ISA such as an ARMv8 ISA. Note further that a queue 730 may couple to decode unit 715
to store decoded instructions. Decoded instructions are provided to an issue logic 725, where the decoded instructions
may be issued to a given one of multiple execution units.
[0051] With further reference to FIG. 7, issue logic 725 may issue instructions to one of multiple execution units. In
the embodiment shown, these execution units include an integer unit 735, a multiply unit 740, a floating point/vector unit
750, a dual issue unit 760, and a load/store unit 770. The results of these different execution units may be provided to
a writeback (WB) unit 780. Understand that while a single writeback unit is shown for ease of illustration, in some
implementations separate writeback units may be associated with each of the execution units. Furthermore, understand
that while each of the units and logic shown in FIG. 7 is represented at a high level, a particular implementation may
include more or different structures. A processor designed using one or more cores having a pipeline as in FIG. 7 may
be implemented in many different end products, extending from mobile devices to server systems.
[0052] Referring to FIG. 8, shown is a block diagram of a micro-architecture of a processor core in accordance with
a still further embodiment. As illustrated in FIG. 8, a core 800 may include a multi-stage multi-issue out-of-order pipeline
to execute at very high performance levels (which may occur at higher power consumption levels than core 700 of FIG.
7). As one such example, processor 800 may have a microarchitecture in accordance with an ARM Cortex A57 design.
In an implementation, a 15 (or greater)-stage pipeline may be provided that is configured to execute both 32-bit and 64-
bit code. In addition, the pipeline may provide for 3 (or greater)-wide and 3 (or greater)-issue operation. Core 800 includes
a fetch unit 810 that is configured to fetch instructions and provide them to a decoder/renamer/dispatcher unit 815
coupled to a cache 820. Unit 815 may decode the instructions, e.g., macro-instructions of an ARMv8 instruction set
architecture, rename register references within the instructions, and dispatch the instructions (eventually) to a selected
execution unit. Decoded instructions may be stored in a queue 825. Note that while a single queue structure is shown
for ease of illustration in FIG 8, understand that separate queues may be provided for each of the multiple different types
of execution units.
[0053] Also shown in FIG. 8 is an issue logic 830 from which decoded instructions stored in queue 825 may be issued
to a selected execution unit. Issue logic 830 also may be implemented in a particular embodiment with a separate issue
logic for each of the multiple different types of execution units to which issue logic 830 couples.
[0054] Decoded instructions may be issued to a given one of multiple execution units. In the embodiment shown,
these execution units include one or more integer units 835, a multiply unit 840, a floating point/vector unit 850, a branch
unit 860, and a load/store unit 870. In an embodiment, floating point/vector unit 850 may be configured to handle SIMD
or vector data of 128 or 256 bits. Still further, floating point/vector execution unit 850 may perform IEEE-754 double
precision floating-point operations. The results of these different execution units may be provided to a writeback unit
880. Note that in some implementations separate writeback units may be associated with each of the execution units.
Furthermore, understand that while each of the units and logic shown in FIG. 8 is represented at a high level, a particular
implementation may include more or different structures.
[0055] Note that in a processor having asymmetric cores, such as in accordance with the micro-architectures of FIGs.
7 and 8, workloads may be dynamically swapped for power management reasons, as these cores, although having
different pipeline designs and depths, may be of the same or related ISA. Such dynamic core swapping may be performed
in a manner transparent to a user application (and possibly kernel also).
[0056] A processor designed using one or more cores having pipelines as in any one or more of FIGs. 5-8 may be
implemented in many different end products, extending from mobile devices to server systems. Referring now to FIG.
9, shown is a block diagram of a processor in accordance with another embodiment of the present invention. In the
embodiment of FIG. 9, processor 900 may be a SoC including multiple domains, each of which may be controlled to
operate at an independent operating voltage and operating frequency. As a specific illustrative example, processor 900
may be an Intel® Architecture Core™-based processor such as an i3, i5, i7 or another such processor available from
Intel Corporation. However, other low power processors such as available from Advanced Micro Devices, Inc. (AMD)
of Sunnyvale, CA, an ARM-based design from ARM Holdings, Ltd. or licensee thereof or a MIPS-based design from
MIPS Technologies, Inc. of Sunnyvale, CA, or their licensees or adopters may instead be present in other embodiments
such as an Apple A7 processor, a Qualcomm Snapdragon processor, or Texas Instruments OMAP processor. Such
SoC may be used in a low power system such as a smartphone, tablet computer, phablet computer, Ultrabook™ computer
or other portable computing device, which may incorporate a heterogeneous system architecture having a heterogeneous
system architecture-based processor design.
[0057] In the high level view shown in FIG. 9, processor 900 includes a plurality of core units 910a-910n. Each core
unit may include one or more processor cores, one or more cache memories and other circuitry. Each core unit 910
may support one or more instruction sets (e.g., an x86 instruction set (with some extensions that have been added with
newer versions); a MIPS instruction set; an ARM instruction set (with optional additional extensions such as NEON)) or

EP 3 716 490 B1

10

5

10

15

20

25

30

35

40

45

50

55

other instruction set or combinations thereof. Note that some of the core units may be heterogeneous resources (e.g.,
of a different design). In addition, each such core may be coupled to a cache memory (not shown) which in an embodiment
may be a shared level two (L2) cache memory. A non-volatile storage 930 may be used to store various program and
other data. For example, this storage may be used to store at least portions of microcode, boot information such as a
BIOS, other system software or so forth.
[0058] Each core unit 910 may also include an interface such as a bus interface unit to enable interconnection to
additional circuitry of the processor. In an embodiment, each core unit 910 couples to a coherent fabric that may act as
a primary cache coherent on-die interconnect that in turn couples to a memory controller 935. In turn, memory controller
935 controls communications with a memory such as a DRAM (not shown for ease of illustration in FIG. 9).
[0059] In addition to core units, additional processing engines are present within the processor, including at least one
graphics unit 920 which may include one or more graphics processing units (GPUs) to perform graphics processing as
well as to possibly execute general purpose operations on the graphics processor (so-called GPGPU operation). In
addition, at least one image signal processor 925 may be present. Signal processor 925 may be configured to process
incoming image data received from one or more capture devices, either internal to the SoC or off-chip.
[0060] Other accelerators also may be present. In the illustration of FIG. 9, a video coder 950 may perform coding
operations including encoding and decoding for video information, e.g., providing hardware acceleration support for high
definition video content. A display controller 955 further may be provided to accelerate display operations including
providing support for internal and external displays of a system. In addition, a security processor 945 may be present
to perform security operations such as secure boot operations, various cryptography operations and so forth.
[0061] Each of the units may have its power consumption controlled via a power manager 940, which may include
control logic to perform the various power management techniques described herein.
[0062] In some embodiments, processor 900 may further include a non-coherent fabric coupled to the coherent fabric
to which various peripheral devices may couple. One or more interfaces 960a-960d enable communication with one or
more off-chip devices. Such communications may be via a variety of communication protocols such as PCIe™, GPIO,
USB, I2C, UART, MIPI, SDIO, DDR, SPI, HDMI, among other types of communication protocols. Although shown at this
high level in the embodiment of FIG. 9, understand the scope of the present invention is not limited in this regard.
[0063] Referring now to FIG. 10, shown is a block diagram of a representative SoC. In the embodiment shown, SoC
1000 may be a multi-core SoC configured for low power operation to be optimized for incorporation into a smartphone
or other low power device such as a tablet computer or other portable computing device. As an example, SoC 1000
may be implemented using asymmetric or different types of cores, such as combinations of higher power and/or low
power cores, e.g., out-of-order cores and in-order cores. In different embodiments, these cores may be based on an
Intel@ Architecture™ core design or an ARM architecture design. In yet other embodiments, a mix of Intel and ARM
cores may be implemented in a given SoC.
[0064] As seen in FIG. 10, SoC 1000 includes a first core domain 1010 having a plurality of first cores 1012a - 1012d.
In an example, these cores may be low power cores such as in-order cores. In one embodiment, these first cores may
be implemented as ARM Cortex A53 cores. In turn, these cores couple to a cache memory 1015 of core domain 1010.
In addition, SoC 1000 includes a second core domain 1020. In the illustration of FIG. 10, second core domain 1020 has
a plurality of second cores 1022a - 1022d. In an example, these cores may be higher power-consuming cores than first
cores 1012. In an embodiment, the second cores may be out-of-order cores, which may be implemented as ARM Cortex
A57 cores. In turn, these cores couple to a cache memory 1025 of core domain 1020. Note that while the example shown
in FIG. 10 includes 4 cores in each domain, understand that more or fewer cores may be present in a given domain in
other examples.
[0065] With further reference to FIG. 10, a graphics domain 1030 also is provided, which may include one or more
graphics processing units (GPUs) configured to independently execute graphics workloads, e.g., provided by one or
more cores of core domains 1010 and 1020. As an example, GPU domain 1030 may be used to provide display support
for a variety of screen sizes, in addition to providing graphics and display rendering operations.
[0066] As seen, the various domains couple to a coherent interconnect 1040, which in an embodiment may be a cache
coherent interconnect fabric that in turn couples to an integrated memory controller 1050. Coherent interconnect 1040
may include a shared cache memory, such as an L3 cache, in some examples. In an embodiment, memory controller
1050 may be a direct memory controller to provide for multiple channels of communication with an off-chip memory,
such as multiple channels of a DRAM (not shown for ease of illustration in FIG. 10).
[0067] In different examples, the number of the core domains may vary. For example, for a low power SoC suitable
for incorporation into a mobile computing device, a limited number of core domains such as shown in FIG. 10 may be
present. Still further, in such low power SoCs, core domain 1020 including higher power cores may have fewer numbers
of such cores. For example, in one implementation two cores 1022 may be provided to enable operation at reduced
power consumption levels. In addition, the different core domains may also be coupled to an interrupt controller to enable
dynamic swapping of workloads between the different domains.
[0068] In yet other embodiments, a greater number of core domains, as well as additional optional IP logic may be

EP 3 716 490 B1

11

5

10

15

20

25

30

35

40

45

50

55

present, in that an SoC can be scaled to higher performance (and power) levels for incorporation into other computing
devices, such as desktops, servers, high performance computing systems, base stations forth. As one such example,
4 core domains each having a given number of out-of-order cores may be provided. Still further, in addition to optional
GPU support (which as an example may take the form of a GPGPU), one or more accelerators to provide optimized
hardware support for particular functions (e.g. web serving, network processing, switching or so forth) also may be
provided. In addition, an input/output interface may be present to couple such accelerators to off-chip components.
[0069] Referring now to FIG. 11, shown is a block diagram of another example SoC. In the embodiment of FIG. 11,
SoC 1100 may include various circuitry to enable high performance for multimedia applications, communications and
other functions. As such, SoC 1100 is suitable for incorporation into a wide variety of portable and other devices, such
as smartphones, tablet computers, smart TVs and so forth. In the example shown, SoC 1100 includes a central processor
unit (CPU) domain 1110. In an embodiment, a plurality of individual processor cores may be present in CPU domain
1110. As one example, CPU domain 1110 may be a quad core processor having 4 multithreaded cores. Such processors
may be homogeneous or heterogeneous processors, e.g., a mix of low power and high power processor cores.
[0070] In turn, a GPU domain 1120 is provided to perform advanced graphics processing in one or more GPUs to
handle graphics and compute APIs. A DSP unit 1130 may provide one or more low power DSPs for handling low-power
multimedia applications such as music playback, audio/video and so forth, in addition to advanced calculations that may
occur during execution of multimedia instructions. In turn, a communication unit 1140 may include various components
to provide connectivity via various wireless protocols, such as cellular communications (including 3G/4G LTE), wireless
local area protocols such as Bluetooth™, IEEE 802.11, and so forth.
[0071] Still further, a multimedia processor 1150 may be used to perform capture and playback of high definition video
and audio content, including processing of user gestures. A sensor unit 1160 may include a plurality of sensors and/or
a sensor controller to interface to various off-chip sensors present in a given platform. An image signal processor (ISP)
1170 may perform image processing with regard to captured content from one or more cameras of a platform, including
still and video cameras.
[0072] A display processor 1180 may provide support for connection to a high definition display of a given pixel density,
including the ability to wirelessly communicate content for playback on such display. Still further, a location unit 1190
may include a Global Positioning System (GPS) receiver with support for multiple GPS constellations to provide appli-
cations highly accurate positioning information obtained using as such GPS receiver. Understand that while shown with
this particular set of components in the example of FIG. 11, many variations and alternatives are possible.
[0073] Referring now to FIG. 12, shown is a block diagram of an example system with which embodiments can be
used. As seen, system 1200 may be a smartphone or other wireless communicator. A baseband processor 1205 is
configured to perform various signal processing with regard to communication signals to be transmitted from or received
by the system. In turn, baseband processor 1205 is coupled to an application processor 1210, which may be a main
CPU of the system to execute an OS and other system software, in addition to user applications such as many well-
known social media and multimedia apps. Application processor 1210 may further be configured to perform a variety of
other computing operations for the device.
[0074] In turn, application processor 1210 can couple to a user interface/display 1220, e.g., a touch screen display.
In addition, application processor 1210 may couple to a memory system including a non-volatile memory, namely a flash
memory 1230 and a system memory, namely a dynamic random access memory (DRAM) 1235. As further seen, appli-
cation processor 1210 further couples to a capture device 1241 such as one or more image capture devices that can
record video and/or still images.
[0075] Still referring to FIG. 12, a universal integrated circuit card (UICC) 1246 comprising a subscriber identity module
and possibly a secure storage and cryptoprocessor is also coupled to application processor 1210. System 1200 may
further include a security processor 1250 that may couple to application processor 1210. A plurality of sensors 1225
may couple to application processor 1210 to enable input of a variety of sensed information such as accelerometer and
other environmental information. An audio output device 1295 may provide an interface to output sound, e.g., in the
form of voice communications, played or streaming audio data and so forth.
[0076] As further illustrated, a near field communication (NFC) contactless interface 1260 is provided that communi-
cates in a NFC near field via an NFC antenna 1265. While separate antennae are shown in FIG. 12, understand that in
some implementations one antenna or a different set of antennae may be provided to enable various wireless functionality.
[0077] A power management integrated circuit (PMIC) 1215 couples to application processor 1210 to perform platform
level power management. To this end, PMIC 1215 may issue power management requests to application processor
1210 to enter certain low power states as desired. Furthermore, based on platform constraints, PMIC 1215 may also
control the power level of other components of system 1200.
[0078] To enable communications to be transmitted and received, various circuitry may be coupled between baseband
processor 1205 and an antenna 1290. Specifically, a radio frequency (RF) transceiver 1270 and a wireless local area
network (WLAN) transceiver 1275 may be present. In general, RF transceiver 1270 may be used to receive and transmit
wireless data and calls according to a given wireless communication protocol such as 3G or 4G wireless communication

EP 3 716 490 B1

12

5

10

15

20

25

30

35

40

45

50

55

protocol such as in accordance with a code division multiple access (CDMA), global system for mobile communication
(GSM), long term evolution (LTE) or other protocol. In addition a GPS sensor 1280 may be present. Other wireless
communications such as receipt or transmission of radio signals, e.g., AM/FM and other signals may also be provided.
In addition, via WLAN transceiver 1275, local wireless communications can also be realized.
[0079] Referring now to FIG. 13, shown is a block diagram of another example system with which embodiments may
be used. In the illustration of FIG. 13, system 1300 may be mobile low-power system such as a tablet computer, 2:1
tablet, phablet or other convertible or standalone tablet system. As illustrated, a SoC 1310 is present and may be
configured to operate as an application processor for the device.
[0080] A variety of devices may couple to SoC 1310. In the illustration shown, a memory subsystem includes a flash
memory 1340 and a DRAM 1345 coupled to SoC 1310. In addition, a touch panel 1320 is coupled to the SoC 1310 to
provide display capability and user input via touch, including provision of a virtual keyboard on a display of touch panel
1320. To provide wired network connectivity, SoC 1310 couples to an Ethernet interface 1330. A peripheral hub 1325
is coupled to SoC 1310 to enable interfacing with various peripheral devices, such as may be coupled to system 1300
by any of various ports or other connectors.
[0081] In addition to internal power management circuitry and functionality within SoC 1310, a PMIC 1380 is coupled
to SoC 1310 to provide platform-based power management, e.g., based on whether the system is powered by a battery
1390 or AC power via an AC adapter 1395. In addition to this power source-based power management, PMIC 1380
may further perform platform power management activities based on environmental and usage conditions. Still further,
PMIC 1380 may communicate control and status information to SoC 1310 to cause various power management actions
within SoC 1310.
[0082] Still referring to FIG. 13, to provide for wireless capabilities, a WLAN unit 1350 is coupled to SoC 1310 and in
turn to an antenna 1355. In various implementations, WLAN unit 1350 may provide for communication according to one
or more wireless protocols.
[0083] As further illustrated, a plurality of sensors 1360 may couple to SoC 1310. These sensors may include various
accelerometer, environmental and other sensors, including user gesture sensors. Finally, an audio codec 1365 is coupled
to SoC 1310 to provide an interface to an audio output device 1370. Of course understand that while shown with this
particular implementation in FIG. 13, many variations and alternatives are possible.
[0084] Referring now to FIG. 14, shown is a block diagram of a representative computer system 1400 such as notebook,
Ultrabook™ or other small form factor system. A processor 1410, in one embodiment, includes a microprocessor, multi-
core processor, multithreaded processor, an ultra low voltage processor, an embedded processor, or other known
processing element. In the illustrated implementation, processor 1410 acts as a main processing unit and central hub
for communication with many of the various components of the system 1400, and may include power management
circuitry as described herein. As one example, processor 1410 is implemented as a SoC.
[0085] Processor 1410, in one embodiment, communicates with a system memory 1415. As an illustrative example,
the system memory 1415 is implemented via multiple memory devices or modules to provide for a given amount of
system memory.
[0086] To provide for persistent storage of information such as data, applications, one or more operating systems and
so forth, a mass storage 1420 may also couple to processor 1410. In various embodiments, to enable a thinner and
lighter system design as well as to improve system responsiveness, this mass storage may be implemented via a SSD
or the mass storage may primarily be implemented using a hard disk drive (HDD) with a smaller amount of SSD storage
to act as a SSD cache to enable non-volatile storage of context state and other such information during power down
events so that a fast power up can occur on re-initiation of system activities. Also shown in FIG. 14, a flash device 1422
may be coupled to processor 1410, e.g., via a serial peripheral interface (SPI). This flash device may provide for non-
volatile storage of system software, including a basic input/output software (BIOS) as well as other firmware of the system.
[0087] Various input/output (I/O) devices may be present within system 1400. Specifically shown in the embodiment
of FIG. 14 is a display 1424 which may be a high definition LCD or LED panel that further provides for a touch screen
1425. In one embodiment, display 1424 may be coupled to processor 1410 via a display interconnect that can be
implemented as a high performance graphics interconnect. Touch screen 1425 may be coupled to processor 1410 via
another interconnect, which in an embodiment can be an I2C interconnect. As further shown in FIG. 14, in addition to
touch screen 1425, user input by way of touch can also occur via a touch pad 1430 which may be configured within the
chassis and may also be coupled to the same I2C interconnect as touch screen 1425.
[0088] For perceptual computing and other purposes, various sensors may be present within the system and may be
coupled to processor 1410 in different manners. Certain inertial and environmental sensors may couple to processor
1410 through a sensor hub 1440, e.g., via an I2C interconnect. In the embodiment shown in FIG. 14, these sensors may
include an accelerometer 1441, an ambient light sensor (ALS) 1442, a compass 1443 and a gyroscope 1444. Other
environmental sensors may include one or more thermal sensors 1446 which in some embodiments couple to processor
1410 via a system management bus (SMBus) bus.
[0089] As also seen in FIG. 14, various peripheral devices may couple to processor 1410 via a low pin count (LPC)

EP 3 716 490 B1

13

5

10

15

20

25

30

35

40

45

50

55

interconnect. In the embodiment shown, various components can be coupled through an embedded controller 1435.
Such components can include a keyboard 1436 (e.g., coupled via a PS2 interface), a fan 1437, and a thermal sensor
1439. In some embodiments, touch pad 1430 may also couple to EC 1435 via a PS2 interface. In addition, a security
processor such as a trusted platform module (TPM) 1438 may also couple to processor 1410 via this LPC interconnect.
[0090] System 1400 can communicate with external devices in a variety of manners, including wirelessly. In the
embodiment shown in FIG. 14, various wireless modules, each of which can correspond to a radio configured for a
particular wireless communication protocol, are present. One manner for wireless communication in a short range such
as a near field may be via a NFC unit 1445 which may communicate, in one embodiment with processor 1410 via an
SMBus. Note that via this NFC unit 1445, devices in close proximity to each other can communicate.
[0091] As further seen in FIG. 14, additional wireless units can include other short range wireless engines including
a WLAN unit 1450 and a Bluetooth™ unit 1452. Using WLAN unit 1450, Wi-Fi™ communications can be realized, while
via Bluetooth™ unit 1452, short range Bluetooth™ communications can occur. These units may communicate with
processor 1410 via a given link.
[0092] In addition, wireless wide area communications, e.g., according to a cellular or other wireless wide area protocol,
can occur via a WWAN unit 1456 which in turn may couple to a subscriber identity module (SIM) 1457. In addition, to
enable receipt and use of location information, a GPS module 1455 may also be present. Note that in the embodiment
shown in FIG. 14, WWAN unit 1456 and an integrated capture device such as a camera module 1454 may communicate
via a given link.
[0093] To provide for audio inputs and outputs, an audio processor can be implemented via a digital signal processor
(DSP) 1460, which may couple to processor 1410 via a high definition audio (HDA) link. Similarly, DSP 1460 may
communicate with an integrated coder/decoder (CODEC) and amplifier 1462 that in turn may couple to output speakers
1463 which may be implemented within the chassis. Similarly, amplifier and CODEC 1462 can be coupled to receive
audio inputs from a microphone 1465 which in an embodiment can be implemented via dual array microphones (such
as a digital microphone array) to provide for high quality audio inputs to enable voice-activated control of various operations
within the system. Note also that audio outputs can be provided from amplifier/CODEC 1462 to a headphone jack 1464.
Although shown with these particular components in the embodiment of FIG. 14, understand the scope of the present
invention is not limited in this regard.
[0094] Embodiments may be implemented in many different system types. Referring now to FIG. 15A, shown is a
block diagram of a system in accordance with an embodiment of the present invention. As shown in FIG. 15A, multi-
processor system 1500 is a point-to-point interconnect system, and includes a first processor 1570 and a second proc-
essor 1580 coupled via a point-to-point interconnect 1550. As shown in FIG. 15A, each of processors 1570 and 1580
may be multicore processors, including first and second processor cores (i.e., processor cores 1574a and 1574b and
processor cores 1584a and 1584b), although potentially many more cores may be present in the processors. Each of
the processors can include a PCU or other power management logic to perform processor-based power management
as described herein.
[0095] Still referring to FIG. 15A, first processor 1570 further includes an integrated memory controller (IMC) 1572
and point-to-point (P-P) interfaces 1576 and 1578. Similarly, second processor 1580 includes an IMC 1582 and P-P
interfaces 1586 and 1588. As shown in FIG. 15, IMCs 1572 and 1582 couple the processors to respective memories,
namely a memory 1532 and a memory 1534, which may be portions of system memory (e.g., DRAM) locally attached
to the respective processors. First processor 1570 and second processor 1580 may be coupled to a chipset 1590 via
P-P interconnects 1562 and 1564, respectively. As shown in FIG. 15A, chipset 1590 includes P-P interfaces 1594 and
1598.
[0096] Furthermore, chipset 1590 includes an interface 1592 to couple chipset 1590 with a high-performance graphics
engine 1538, by a P-P interconnect 1539. In turn, chipset 1590 may be coupled to a first bus 1516 via an interface 1596.
As shown in FIG. 15A, various input/output (I/O) devices 1514 may be coupled to first bus 1516, along with a bus bridge
1518 which couples first bus 1516 to a second bus 1520. Various devices may be coupled to second bus 1520 including,
for example, a keyboard/mouse 1522, communication devices 1526 and a data storage unit 1528 such as a disk drive
or other mass storage device which may include code 1530, in one embodiment. Further, an audio I/O 1524 may be
coupled to second bus 1520. Embodiments can be incorporated into other types of systems including mobile devices
such as a smart cellular telephone, tablet computer, netbook, Ultrabook™, or so forth.
[0097] Referring now to FIG. 15B, shown is a block diagram of a second more specific exemplary system 1501 in
accordance with an embodiment of the present invention. Like elements in FIG. 15A and FIG. 15B bear like reference
numerals, and certain aspects of FIG. 15A have been omitted from FIG. 15B in order to avoid obscuring other aspects
of FIG. 15B.
[0098] FIG. 15B illustrates that the processors 1570, 1580 may include integrated memory and I/O control logic ("CL")
1571 and 1581, respectively. Thus, the control logic 1571 and 1581 include integrated memory controller units and
include I/O control logic. FIG. 15N illustrates that not only are the memories 1532, 1534 coupled to the control logic 1571
and 1581, but also that I/O devices 1513 are also coupled to the control logic 1571 and 1581. Legacy I/O devices 1515

EP 3 716 490 B1

14

5

10

15

20

25

30

35

40

45

50

55

are coupled to the chipset 1590.
[0099] One or more aspects of at least one embodiment may be implemented by representative code stored on a
machine-readable medium which represents and/or defines logic within an integrated circuit such as a processor. For
example, the machine-readable medium may include instructions which represent various logic within the processor.
When read by a machine, the instructions may cause the machine to fabricate the logic to perform the techniques
described herein. Such representations, known as "IP cores," are reusable units of logic for an integrated circuit that
may be stored on a tangible, machine-readable medium as a hardware model that describes the structure of the integrated
circuit. The hardware model may be supplied to various customers or manufacturing facilities, which load the hardware
model on fabrication machines that manufacture the integrated circuit. The integrated circuit may be fabricated such
that the circuit performs operations described in association with any of the embodiments described herein.
[0100] FIG. 16 is a block diagram illustrating an IP core development system 1600 that may be used to manufacture
an integrated circuit to perform operations according to an embodiment. The IP core development system 1600 may be
used to generate modular, reusable designs that can be incorporated into a larger design or used to construct an entire
integrated circuit (e.g., an SoC integrated circuit). A design facility 1630 can generate a software simulation 1610 of an
IP core design in a high-level programming language (e.g., C/C++). The software simulation 1610 can be used to design,
test, and verify the behavior of the IP core. A register transfer level (RTL) design can then be created or synthesized
from the simulation model. The RTL design 1615 is an abstraction of the behavior of the integrated circuit that models
the flow of digital signals between hardware registers, including the associated logic performed using the modeled digital
signals. In addition to an RTL design 1615, lower-level designs at the logic level or transistor level may also be created,
designed, or synthesized. Thus, the particular details of the initial design and simulation may vary.
[0101] The RTL design 1615 or equivalent may be further synthesized by the design facility into a hardware model
1620, which may be in a hardware description language (HDL), or some other representation of physical design data.
The HDL may be further simulated or tested to verify the IP core design. The IP core design can be stored for delivery
to a third-party fabrication facility 1665 using non-volatile memory 1640 (e.g., hard disk, flash memory, or any non-volatile
storage medium). Alternately, the IP core design may be transmitted (e.g., via the Internet) over a wired connection
1650 or wireless connection 1660. The fabrication facility 1665 may then fabricate an integrated circuit that is based at
least in part on the IP core design. The fabricated integrated circuit can be configured to perform operations in accordance
with the components and/or processes described herein.
[0102] FIGs. 17A-25 described below detail exemplary architectures and systems to implement embodiments of the
components and/or processes described herein. In some embodiments, one or more hardware components and/or
instructions described herein are emulated as detailed below, or are implemented as software modules.
[0103] Embodiments of the instruction(s) detailed above are embodied may be embodied in a "generic vector friendly
instruction format" which is detailed below. In other embodiments, such a format is not utilized and another instruction
format is used, however, the description below of the writemask registers, various data transformations (swizzle, broad-
cast, etc.), addressing, etc. is generally applicable to the description of the embodiments of the instruction(s) above.
Additionally, exemplary systems, architectures, and pipelines are detailed below. Embodiments of the instruction(s)
above may be executed on such systems, architectures, and pipelines, but are not limited to those detailed.
[0104] An instruction set may include one or more instruction formats. A given instruction format may define various
fields (e.g., number of bits, location of bits) to specify, among other things, the operation to be performed (e.g., opcode)
and the operand(s) on which that operation is to be performed and/or other data field(s) (e.g., mask). Some instruction
formats are further broken down though the definition of instruction templates (or subformats). For example, the instruction
templates of a given instruction format may be defined to have different subsets of the instruction format’s fields (the
included fields are typically in the same order, but at least some have different bit positions because there are less fields
included) and/or defined to have a given field interpreted differently. Thus, each instruction of an ISA is expressed using
a given instruction format (and, if defined, in a given one of the instruction templates of that instruction format) and
includes fields for specifying the operation and the operands. For example, an exemplary ADD instruction has a specific
opcode and an instruction format that includes an opcode field to specify that opcode and operand fields to select
operands (source1/destination and source2); and an occurrence of this ADD instruction in an instruction stream will
have specific contents in the operand fields that select specific operands. A set of SIMD extensions referred to as the
Advanced Vector Extensions (AVX) (AVX1 and AVX2) and using the Vector Extensions (VEX) coding scheme has been
released and/or published (e.g., see Intel@ 64 and IA-32 Architectures Software Developer’s Manual, September 2014;
and see Intel@ Advanced Vector Extensions Programming Reference, October 2014).

Exemplary Instruction Formats

[0105] Embodiments of the instruction(s) described herein may be embodied in different formats. Additionally, exem-
plary systems, architectures, and pipelines are detailed below. Embodiments of the instruction(s) may be executed on
such systems, architectures, and pipelines, but are not limited to those detailed.

EP 3 716 490 B1

15

5

10

15

20

25

30

35

40

45

50

55

Generic Vector Friendly Instruction Format

[0106] A vector friendly instruction format is an instruction format that is suited for vector instructions (e.g., there are
certain fields specific to vector operations). While embodiments are described in which both vector and scalar operations
are supported through the vector friendly instruction format, alternative embodiments use only vector operations the
vector friendly instruction format.
[0107] FIGs. 17A-17B are block diagrams illustrating a generic vector friendly instruction format and instruction tem-
plates thereof according to embodiments of the invention. FIG. 17A is a block diagram illustrating a generic vector friendly
instruction format and class A instruction templates thereof according to embodiments of the invention; while FIG. 17B
is a block diagram illustrating the generic vector friendly instruction format and class B instruction templates thereof
according to embodiments of the invention. Specifically, a generic vector friendly instruction format 1700 for which are
defined class A and class B instruction templates, both of which include no memory access 1705 instruction templates
and memory access 1720 instruction templates. The term generic in the context of the vector friendly instruction format
refers to the instruction format not being tied to any specific instruction set.
[0108] While embodiments of the invention will be described in which the vector friendly instruction format supports
the following: a 64 byte vector operand length (or size) with 32 bit (4 byte) or 64 bit (8 byte) data element widths (or
sizes) (and thus, a 64 byte vector consists of either 16 doubleword-size elements or alternatively, 8 quadword-size
elements); a 64 byte vector operand length (or size) with 16 bit (2 byte) or 8 bit (1 byte) data element widths (or sizes);
a 32 byte vector operand length (or size) with 32 bit (4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit (1 byte) data element
widths (or sizes); and a 16 byte vector operand length (or size) with 32 bit (4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8
bit (1 byte) data element widths (or sizes); alternative embodiments may support more, less and/or different vector
operand sizes (e.g., 256 byte vector operands) with more, less, or different data element widths (e.g., 128 bit (16 byte)
data element widths).
[0109] The class A instruction templates in FIG. 17A include: 1) within the no memory access 1705 instruction templates
there is shown a no memory access, full round control type operation 1710 instruction template and a no memory access,
data transform type operation 1715 instruction template; and 2) within the memory access 1720 instruction templates
there is shown a memory access, temporal 1725 instruction template and a memory access, non-temporal 1730 instruc-
tion template. The class B instruction templates in FIG. 17B include: 1) within the no memory access 1705 instruction
templates there is shown a no memory access, write mask control, partial round control type operation 1712 instruction
template and a no memory access, write mask control, vsize type operation 1717 instruction template; and 2) within the
memory access 1720 instruction templates there is shown a memory access, write mask control 1727 instruction template.
[0110] The generic vector friendly instruction format 1700 includes the following fields listed below in the order illustrated
in FIGs. 17A-17B.
[0111] Format field 1740 - a specific value (an instruction format identifier value) in this field uniquely identifies the
vector friendly instruction format, and thus occurrences of instructions in the vector friendly instruction format in instruction
streams. As such, this field is optional in the sense that it is not needed for an instruction set that has only the generic
vector friendly instruction format.
[0112] Base operation field 1742 - its content distinguishes different base operations.
[0113] Register index field 1744 - its content, directly or through address generation, specifies the locations of the
source and destination operands, be they in registers or in memory. These include a sufficient number of bits to select
N registers from a PxQ (e.g. 32x512, 16x128, 32x1024, 64x1024) register file. While in one embodiment N may be up
to three sources and one destination register, alternative embodiments may support more or less sources and destination
registers (e.g., may support up to two sources where one of these sources also acts as the destination, may support up
to three sources where one of these sources also acts as the destination, may support up to two sources and one
destination).
[0114] Modifier field 1746 - its content distinguishes occurrences of instructions in the generic vector instruction format
that specify memory access from those that do not; that is, between no memory access 1705 instruction templates and
memory access 1720 instruction templates. Memory access operations read and/or write to the memory hierarchy (in
some cases specifying the source and/or destination addresses using values in registers), while non-memory access
operations do not (e.g., the source and destinations are registers). While in one embodiment this field also selects
between three different ways to perform memory address calculations, alternative embodiments may support more,
less, or different ways to perform memory address calculations.
[0115] Augmentation operation field 1750 - its content distinguishes which one of a variety of different operations to
be performed in addition to the base operation. This field is context specific. In one embodiment of the invention, this
field is divided into a class field 1768, an alpha field 1752, and a beta field 1754. The augmentation operation field 1750
allows common groups of operations to be performed in a single instruction rather than 2, 3, or 4 instructions.
[0116] Scale field 1760 - its content allows for the scaling of the index field’s content for memory address generation
(e.g., for address generation that uses 2scale * index + base).

EP 3 716 490 B1

16

5

10

15

20

25

30

35

40

45

50

55

[0117] Displacement Field 1762A- its content is used as part of memory address generation (e.g., for address gener-
ation that uses 2scale * index + base + displacement).
[0118] Displacement Factor Field 1762B (note that the juxtaposition of displacement field 1762A directly over dis-
placement factor field 1762B indicates one or the other is used) - its content is used as part of address generation; it
specifies a displacement factor that is to be scaled by the size of a memory access (N) - where N is the number of bytes
in the memory access (e.g., for address generation that uses 2scale * index + base + scaled displacement). Redundant
low-order bits are ignored and hence, the displacement factor field’s content is multiplied by the memory operands total
size (N) in order to generate the final displacement to be used in calculating an effective address. The value of N is
determined by the processor hardware at runtime based on the full opcode field 1774 (described later herein) and the
data manipulation field 1754C. The displacement field 1762A and the displacement factor field 1762B are optional in
the sense that they are not used for the no memory access 1705 instruction templates and/or different embodiments
may implement only one or none of the two.
[0119] Data element width field 1764 - its content distinguishes which one of a number of data element widths is to
be used (in some embodiments for all instructions; in other embodiments for only some of the instructions). This field is
optional in the sense that it is not needed if only one data element width is supported and/or data element widths are
supported using some aspect of the opcodes.
[0120] Write mask field 1770 - its content controls, on a per data element position basis, whether that data element
position in the destination vector operand reflects the result of the base operation and augmentation operation. Class
A instruction templates support merging-writemasking, while class B instruction templates support both merging- and
zeroingwritemasking. When merging, vector masks allow any set of elements in the destination to be protected from
updates during the execution of any operation (specified by the base operation and the augmentation operation); in
other one embodiment, preserving the old value of each element of the destination where the corresponding mask bit
has a 0. In contrast, when zeroing vector masks allow any set of elements in the destination to be zeroed during the
execution of any operation (specified by the base operation and the augmentation operation); in one embodiment, an
element of the destination is set to 0 when the corresponding mask bit has a 0 value. A subset of this functionality is the
ability to control the vector length of the operation being performed (that is, the span of elements being modified, from
the first to the last one); however, it is not necessary that the elements that are modified be consecutive. Thus, the write
mask field 1770 allows for partial vector operations, including loads, stores, arithmetic, logical, etc. While embodiments
of the invention are described in which the write mask field’s 1770 content selects one of a number of write mask registers
that contains the write mask to be used (and thus the write mask field’s 1770 content indirectly identifies that masking
to be performed), alternative embodiments instead or additional allow the mask write field’s 1770 content to directly
specify the masking to be performed.
[0121] Immediate field 1772 - its content allows for the specification of an immediate. This field is optional in the sense
that is it not present in an implementation of the generic vector friendly format that does not support immediate and it is
not present in instructions that do not use an immediate.
[0122] Class field 1768 - its content distinguishes between different classes of instructions. With reference to FIGs.
17A-B, the contents of this field select between class A and class B instructions. In FIGs. 17A-B, rounded corner squares
are used to indicate a specific value is present in a field (e.g., class A 1768A and class B 1768B for the class field 1768
respectively in FIGs. 17A-B).

Instruction Templates of Class A

[0123] In the case of the non-memory access 1705 instruction templates of class A, the alpha field 1752 is interpreted
as an RS field 1752A, whose content distinguishes which one of the different augmentation operation types are to be
performed (e.g., round 1752A.1 and data transform 1752A.2 are respectively specified for the no memory access, round
type operation 1710 and the no memory access, data transform type operation 1715 instruction templates), while the
beta field 1754 distinguishes which of the operations of the specified type is to be performed. In the no memory access
1705 instruction templates, the scale field 1760, the displacement field 1762A, and the displacement scale filed 1762B
are not present.

No-Memory Access Instruction Templates - Full Round Control Type Operation

[0124] In the no memory access full round control type operation 1710 instruction template, the beta field 1754 is
interpreted as a round control field 1754A, whose content(s) provide static rounding. While in the described embodiments
of the invention the round control field 1754A includes a suppress all floating point exceptions (SAE) field 1756 and a
round operation control field 1758, alternative embodiments may support may encode both these concepts into the same
field or only have one or the other of these concepts/fields (e.g., may have only the round operation control field 1758).
[0125] SAE field 1756 - its content distinguishes whether or not to disable the exception event reporting; when the

EP 3 716 490 B1

17

5

10

15

20

25

30

35

40

45

50

55

SAE field’s 1756 content indicates suppression is enabled, a given instruction does not report any kind of floating-point
exception flag and does not raise any floating point exception handler.
[0126] Round operation control field 1758 - its content distinguishes which one of a group of rounding operations to
perform (e.g., Round-up, Round-down, Round-towards-zero and Round-to-nearest). Thus, the round operation control
field 1758 allows for the changing of the rounding mode on a per instruction basis. In one embodiment of the invention
where a processor includes a control register for specifying rounding modes, the round operation control field’s 1750
content overrides that register value.

No Memory Access Instruction Templates - Data Transform Type Operation

[0127] In the no memory access data transform type operation 1715 instruction template, the beta field 1754 is inter-
preted as a data transform field 1754B, whose content distinguishes which one of a number of data transforms is to be
performed (e.g., no data transform, swizzle, broadcast).
[0128] In the case of a memory access 1720 instruction template of class A, the alpha field 1752 is interpreted as an
eviction hint field 1752B, whose content distinguishes which one of the eviction hints is to be used (in FIG. 17A, temporal
1752B.1 and non-temporal 1752B.2 are respectively specified for the memory access, temporal 1725 instruction template
and the memory access, non-temporal 1730 instruction template), while the beta field 1754 is interpreted as a data
manipulation field 1754C, whose content distinguishes which one of a number of data manipulation operations (also
known as primitives) is to be performed (e.g., no manipulation; broadcast; up conversion of a source; and down conversion
of a destination). The memory access 1720 instruction templates include the scale field 1760, and optionally the dis-
placement field 1762A or the displacement scale field 1762B.
[0129] Vector memory instructions perform vector loads from and vector stores to memory, with conversion support.
As with regular vector instructions, vector memory instructions transfer data from/to memory in a data element-wise
fashion, with the elements that are actually transferred is dictated by the contents of the vector mask that is selected as
the write mask.

Memory Access Instruction Templates - Temporal

[0130] Temporal data is data likely to be reused soon enough to benefit from caching. This is, however, a hint, and
different processors may implement it in different ways, including ignoring the hint entirely.

Memory Access Instruction Templates - Non-Temporal

[0131] Non-temporal data is data unlikely to be reused soon enough to benefit from caching in the 1st-level cache
and should be given priority for eviction. This is, however, a hint, and different processors may implement it in different
ways, including ignoring the hint entirely.

Instruction Templates of Class B

[0132] In the case of the instruction templates of class B, the alpha field 1752 is interpreted as a write mask control
(Z) field 1752C, whose content distinguishes whether the write masking controlled by the write mask field 1770 should
be a merging or a zeroing.
[0133] In the case of the non-memory access 1705 instruction templates of class B, part of the beta field 1754 is
interpreted as an RL field 1757A, whose content distinguishes which one of the different augmentation operation types
are to be performed (e.g., round 1757A.1 and vector length (VSIZE) 1757A.2 are respectively specified for the no memory
access, write mask control, partial round control type operation 1712 instruction template and the no memory access,
write mask control, VSIZE type operation 1717 instruction template), while the rest of the beta field 1754 distinguishes
which of the operations of the specified type is to be performed. In the no memory access 1705 instruction templates,
the scale field 1760, the displacement field 1762A, and the displacement scale filed 1762B are not present.
[0134] In the no memory access, write mask control, partial round control type operation 1710 instruction template,
the rest of the beta field 1754 is interpreted as a round operation field 1759A and exception event reporting is disabled
(a given instruction does not report any kind of floating-point exception flag and does not raise any floating point exception
handler).
[0135] Round operation control field 1759A - just as round operation control field 1758, its content distinguishes which
one of a group of rounding operations to perform (e.g., Round-up, Round-down, Round-towards-zero and Round-to-
nearest). Thus, the round operation control field 1759A allows for the changing of the rounding mode on a per instruction
basis. In one embodiment of the invention where a processor includes a control register for specifying rounding modes,
the round operation control field’s 1750 content overrides that register value.

EP 3 716 490 B1

18

5

10

15

20

25

30

35

40

45

50

55

[0136] In the no memory access, write mask control, VSIZE type operation 1717 instruction template, the rest of the
beta field 1754 is interpreted as a vector length field 1759B, whose content distinguishes which one of a number of data
vector lengths is to be performed on (e.g., 128, 256, or 512 byte).
[0137] In the case of a memory access 1720 instruction template of class B, part of the beta field 1754 is interpreted
as a broadcast field 1757B, whose content distinguishes whether or not the broadcast type data manipulation operation
is to be performed, while the rest of the beta field 1754 is interpreted the vector length field 1759B. The memory access
1720 instruction templates include the scale field 1760, and optionally the displacement field 1762A or the displacement
scale field 1762B.
[0138] With regard to the generic vector friendly instruction format 1700, a full opcode field 1774 is shown including
the format field 1740, the base operation field 1742, and the data element width field 1764. While one embodiment is
shown where the full opcode field 1774 includes all of these fields, the full opcode field 1774 includes less than all of
these fields in embodiments that do not support all of them. The full opcode field 1774 provides the operation code
(opcode).
[0139] The augmentation operation field 1750, the data element width field 1764, and the write mask field 1770 allow
these features to be specified on a per instruction basis in the generic vector friendly instruction format.
[0140] The combination of write mask field and data element width field create typed instructions in that they allow
the mask to be applied based on different data element widths.
[0141] The various instruction templates found within class A and class B are beneficial in different situations. In some
embodiments of the invention, different processors or different cores within a processor may support only class A, only
class B, or both classes. For instance, a high performance general purpose out-of-order core intended for general-
purpose computing may support only class B, a core intended primarily for graphics and/or scientific (throughput) com-
puting may support only class A, and a core intended for both may support both (of course, a core that has some mix
of templates and instructions from both classes but not all templates and instructions from both classes is within the
purview of the invention). Also, a single processor may include multiple cores, all of which support the same class or in
which different cores support different class. For instance, in a processor with separate graphics and general purpose
cores, one of the graphics cores intended primarily for graphics and/or scientific computing may support only class A,
while one or more of the general purpose cores may be high performance general purpose cores with out of order
execution and register renaming intended for general-purpose computing that support only class B. Another processor
that does not have a separate graphics core, may include one more general purpose in-order or out-of-order cores that
support both class A and class B. Of course, features from one class may also be implement in the other class in different
embodiments of the invention. Programs written in a high level language would be put (e.g., just in time compiled or
statically compiled) into an variety of different executable forms, including: 1) a form having only instructions of the
class(es) supported by the target processor for execution; or 2) a form having alternative routines written using different
combinations of the instructions of all classes and having control flow code that selects the routines to execute based
on the instructions supported by the processor which is currently executing the code.

Exemplary Specific Vector Friendly Instruction Format

[0142] FIG. 18A-18C are block diagrams illustrating an exemplary specific vector friendly instruction format according
to embodiments of the invention. FIG. 18A shows a specific vector friendly instruction format 1800 that is specific in the
sense that it specifies the location, size, interpretation, and order of the fields, as well as values for some of those fields.
The specific vector friendly instruction format 1800 may be used to extend the x86 instruction set, and thus some of the
fields are similar or the same as those used in the existing x86 instruction set and extension thereof (e.g., AVX). This
format remains consistent with the prefix encoding field, real opcode byte field, MOD R/M field, SIB field, displacement
field, and immediate fields of the existing x86 instruction set with extensions. The fields from FIGs. 17A-17B into which
the fields from FIGs. 18A-18C map are illustrated.
[0143] It should be understood that, although embodiments of the invention are described with reference to the specific
vector friendly instruction format 1800 in the context of the generic vector friendly instruction format 1700 for illustrative
purposes, the invention is not limited to the specific vector friendly instruction format 1800 except where claimed. For
example, the generic vector friendly instruction format 1700 contemplates a variety of possible sizes for the various
fields, while the specific vector friendly instruction format 1800 is shown as having fields of specific sizes. By way of
specific example, while the data element width field 1764 is illustrated as a one bit field in the specific vector friendly
instruction format 1800, the invention is not so limited (that is, the generic vector friendly instruction format 1700 con-
templates other sizes of the data element width field 1764).
[0144] The generic vector friendly instruction format 1700 includes the following fields listed below in the order illustrated
in FIG. 18A.
[0145] EVEX Prefix (Bytes 0-3) 1802 - is encoded in a four-byte form.
[0146] Format Field 1740 (EVEX Byte 0, bits [7:0]) - the first byte (EVEX Byte 0) is the format field 1740 and it contains

EP 3 716 490 B1

19

5

10

15

20

25

30

35

40

45

50

55

0x62 (the unique value used for distinguishing the vector friendly instruction format in one embodiment of the invention).
[0147] The second-fourth bytes (EVEX Bytes 1-3) include a number of bit fields providing specific capability.
[0148] REX field 1805 (EVEX Byte 1, bits [7-5]) - consists of a EVEX.R bit field (EVEX Byte 1, bit [7] - R), EVEX.X bit
field (EVEX byte 1, bit [6] - X), and EVEX.B byte 1, bit[5] - B). The EVEX.R, EVEX.X, and EVEX.B bit fields provide the
same functionality as the corresponding VEX bit fields, and are encoded using 1s complement form, i.e. ZMM0 is encoded
as 1111B, ZMM15 is encoded as 0000B. Other fields of the instructions encode the lower three bits of the register
indexes as is known in the art (rrr, xxx, and bbb), so that Rrrr, Xxxx, and Bbbb may be formed by adding EVEX.R,
EVEX.X, and EVEX.B.
[0149] REX’ field 1810 - this is the first part of the REX’ field 1810 and is the EVEX.R’ bit field (EVEX Byte 1, bit [4] -
R’) that is used to encode either the upper 16 or lower 16 of the extended 32 register set. In one embodiment of the
invention, this bit, along with others as indicated below, is stored in bit inverted format to distinguish (in the well-known
x86 32-bit mode) from the BOUND instruction, whose real opcode byte is 62, but does not accept in the MOD R/M field
(described below) the value of 11 in the MOD field; alternative embodiments of the invention do not store this and the
other indicated bits below in the inverted format. A value of 1 is used to encode the lower 16 registers. In other words,
R’Rrrr is formed by combining EVEX.R’, EVEX.R, and the other RRR from other fields.
[0150] Opcode map field 1815 (EVEX byte 1, bits [3:0] - mmmm) - its content encodes an implied leading opcode byte
(0F, 0F 38, or 0F 3).
[0151] Data element width field 1764 (EVEX byte 2, bit [7] - W) - is represented by the notation EVEX.W. EVEX.W is
used to define the granularity (size) of the datatype (either 32-bit data elements or 64-bit data elements).
[0152] EVEX.vvvv 1820 (EVEX Byte 2, bits [6:3]-vvvv)- the role of EVEX.vvvv may include the following: 1) EVEX.vvvv
encodes the first source register operand, specified in inverted (1s complement) form and is valid for instructions with
2 or more source operands; 2) EVEX.vvvv encodes the destination register operand, specified in 1s complement form
for certain vector shifts; or 3) EVEX.vvvv does not encode any operand, the field is reserved and should contain 1111b.
Thus, EVEX.vvvv field 1820 encodes the 4 low-order bits of the first source register specifier stored in inverted (1s
complement) form. Depending on the instruction, an extra different EVEX bit field is used to extend the specifier size to
32 registers.
[0153] EVEX.U 1768 Class field (EVEX byte 2, bit [2]-U) - If EVEX.U = 0, it indicates class A or EVEX.U0; if EVEX.U
= 1, it indicates class B or EVEX.U1.
[0154] Prefix encoding field 1825 (EVEX byte 2, bits [1:0]-pp) - provides additional bits for the base operation field. In
addition to providing support for the legacy SSE instructions in the EVEX prefix format, this also has the benefit of
compacting the SIMD prefix (rather than requiring a byte to express the SIMD prefix, the EVEX prefix requires only 2
bits). In one embodiment, to support legacy SSE instructions that use a SIMD prefix (66H, F2H, F3H) in both the legacy
format and in the EVEX prefix format, these legacy SIMD prefixes are encoded into the SIMD prefix encoding field; and
at runtime are expanded into the legacy SIMD prefix prior to being provided to the decoder’s PLA (so the PLA can
execute both the legacy and EVEX format of these legacy instructions without modification). Although newer instructions
could use the EVEX prefix encoding field’s content directly as an opcode extension, certain embodiments expand in a
similar fashion for consistency but allow for different meanings to be specified by these legacy SIMD prefixes. An
alternative embodiment may redesign the PLA to support the 2 bit SIMD prefix encodings, and thus not require the
expansion.
[0155] Alpha field 1752 (EVEX byte 3, bit [7] - EH; also known as EVEX.EH, EVEX.rs, EVEX.RL, EVEX.write mask
control, and EVEX.N; also illustrated with α) - as previously described, this field is context specific.
[0156] Beta field 1754 (EVEX byte 3, bits [6:4]-SSS, also known as EVEX.s2-0, EVEX.r2-0, EVEX.rr1, EVEX.LL0,
EVEX.LLB; also illustrated with βββ) - as previously described, this field is context specific.
[0157] REX’ field 1810 - this is the remainder of the REX’ field and is the EVEX.V’ bit field (EVEX Byte 3, bit [3] - V’)
that may be used to encode either the upper 16 or lower 16 of the extended 32 register set. This bit is stored in bit
inverted format. A value of 1 is used to encode the lower 16 registers. In other words, V’VVVV is formed by combining
EVEX.V’, EVEX.vvvv.
[0158] Write mask field 1770 (EVEX byte 3, bits [2:0]-kkk) - its content specifies the index of a register in the write
mask registers as previously described. In one embodiment of the invention, the specific value EVEX.kkk=000 has a
special behavior implying no write mask is used for the particular instruction (this may be implemented in a variety of
ways including the use of a write mask hardwired to all ones or hardware that bypasses the masking hardware).
[0159] Real Opcode Field 1830 (Byte 4) is also known as the opcode byte. Part of the opcode is specified in this field.
[0160] MOD R/M Field 1840 (Byte 5) includes MOD field 1842, Reg field 1844, and R/M field 1846. As previously
described, the MOD field’s 1842 content distinguishes between memory access and non-memory access operations.
The role of Reg field 1844 can be summarized to two situations: encoding either the destination register operand or a
source register operand, or be treated as an opcode extension and not used to encode any instruction operand. The
role of R/M field 1846 may include the following: encoding the instruction operand that references a memory address,
or encoding either the destination register operand or a source register operand.

EP 3 716 490 B1

20

5

10

15

20

25

30

35

40

45

50

55

[0161] Scale, Index, Base (SIB) Byte (Byte 6) - As previously described, the scale field’s 1850 content is used for
memory address generation. SIB.xxx 1854 and SIB.bbb 1856 - the contents of these fields have been previously referred
to with regard to the register indexes Xxxx and Bbbb.
[0162] Displacement field 1762A (Bytes 7-10) - when MOD field 1842 contains 10, bytes 7-10 are the displacement
field 1762A, and it works the same as the legacy 32-bit displacement (disp32) and works at byte granularity.
[0163] Displacement factor field 1762B (Byte 7) - when MOD field 1842 contains 01, byte 7 is the displacement factor
field 1762B. The location of this field is that same as that of the legacy x86 instruction set 8-bit displacement (disp8),
which works at byte granularity. Since disp8 is sign extended, it can only address between -128 and 127 bytes offsets;
in terms of 64 byte cache lines, disp8 uses 8 bits that can be set to only four really useful values -128, -64, 0, and 64;
since a greater range is often needed, disp32 is used; however, disp32 requires 4 bytes. In contrast to disp8 and disp32,
the displacement factor field 1762B is a reinterpretation of disp8; when using displacement factor field 1762B, the actual
displacement is determined by the content of the displacement factor field multiplied by the size of the memory operand
access (N). This type of displacement is referred to as disp8*N. This reduces the average instruction length (a single
byte of used for the displacement but with a much greater range). Such compressed displacement is based on the
assumption that the effective displacement is multiple of the granularity of the memory access, and hence, the redundant
low-order bits of the address offset do not need to be encoded. In other words, the displacement factor field 1762B
substitutes the legacy x86 instruction set 8-bit displacement. Thus, the displacement factor field 1762B is encoded the
same way as an x86 instruction set 8-bit displacement (so no changes in the ModRM/SIB encoding rules) with the only
exception that disp8 is overloaded to disp8*N. In other words, there are no changes in the encoding rules or encoding
lengths but only in the interpretation of the displacement value by hardware (which needs to scale the displacement by
the size of the memory operand to obtain a byte-wise address offset). Immediate field 1772 operates as previously
described.

Full Opcode Field

[0164] FIG. 18B is a block diagram illustrating the fields of the specific vector friendly instruction format 1800 that
make up the full opcode field 1774 according to one embodiment of the invention. Specifically, the full opcode field 1774
includes the format field 1740, the base operation field 1742, and the data element width (W) field 1764. The base
operation field 1742 includes the prefix encoding field 1825, the opcode map field 1815, and the real opcode field 1830.

Register Index Field

[0165] FIG. 18C is a block diagram illustrating the fields of the specific vector friendly instruction format 1800 that
make up the register index field 1744 according to one embodiment of the invention. Specifically, the register index field
1744 includes the REX field 1805, the REX’ field 1810, the MODR/M.reg field 1844, the MODR/M.r/m field 1846, the
VVVV field 1820, xxx field 1854, and the bbb field 1856.

Augmentation Operation Field

[0166] FIG. 18D is a block diagram illustrating the fields of the specific vector friendly instruction format 1800 that
make up the augmentation operation field 1750 according to one embodiment of the invention. When the class (U) field
1768 contains 0, it signifies EVEX.U0 (class A 1768A); when it contains 1, it signifies EVEX.U1 (class B 1768B). When
U=0 and the MOD field 1842 contains 11 (signifying a no memory access operation), the alpha field 1752 (EVEX byte
3, bit [7] - EH) is interpreted as the rs field 1752A. When the rs field 1752A contains a 1 (round 1752A.1), the beta field
1754 (EVEX byte 3, bits [6:4]- SSS) is interpreted as the round control field 1754A. The round control field 1754A includes
a one bit SAE field 1756 and a two bit round operation field 1758. When the rs field 1752A contains a 0 (data transform
1752A.2), the beta field 1754 (EVEX byte 3, bits [6:4]- SSS) is interpreted as a three bit data transform field 1754B.
When U=0 and the MOD field 1842 contains 00, 01, or 10 (signifying a memory access operation), the alpha field 1752
(EVEX byte 3, bit [7] - EH) is interpreted as the eviction hint (EH) field 1752B and the beta field 1754 (EVEX byte 3, bits
[6:4]- SSS) is interpreted as a three bit data manipulation field 1754C.
[0167] When U=1, the alpha field 1752 (EVEX byte 3, bit [7] - EH) is interpreted as the write mask control (Z) field
1752C. When U=1 and the MOD field 1842 contains 11 (signifying a no memory access operation), part of the beta field
1754 (EVEX byte 3, bit [4]- S0) is interpreted as the RL field 1757A; when it contains a 1 (round 1757A.1) the rest of the
beta field 1754 (EVEX byte 3, bit [6-5]- S2-1) is interpreted as the round operation field 1759A, while when the RL field
1757A contains a 0 (VSIZE 1757.A2) the rest of the beta field 1754 (EVEX byte 3, bit [6-5]- S2-1) is interpreted as the
vector length field 1759B (EVEX byte 3, bit [6-5]- L1-0). When U=1 and the MOD field 1842 contains 00, 01, or 10
(signifying a memory access operation), the beta field 1754 (EVEX byte 3, bits [6:4]- SSS) is interpreted as the vector
length field 1759B (EVEX byte 3, bit [6-5]- L1-0) and the broadcast field 1757B (EVEX byte 3, bit [4]-B).

EP 3 716 490 B1

21

5

10

15

20

25

30

35

40

45

50

55

Exemplary Register Architecture

[0168] FIG. 19 is a block diagram of a register architecture 1900 according to one embodiment of the invention. In the
embodiment illustrated, there are 32 vector registers 1910 that are 512 bits wide; these registers are referenced as
zmm0 through zmm31. The lower order 256 bits of the lower 16 zmm registers are overlaid on registers ymm0-16. The
lower order 128 bits of the lower 16 zmm registers (the lower order 128 bits of the ymm registers) are overlaid on registers
xmm0-15. The specific vector friendly instruction format 1800 operates on these overlaid register file as illustrated in the
below tables.

[0169] In other words, the vector length field 1759B selects between a maximum length and one or more other shorter
lengths, where each such shorter length is half the length of the preceding length; and instructions templates without
the vector length field 1759B operate on the maximum vector length. Further, in one embodiment, the class B instruction
templates of the specific vector friendly instruction format 1800 operate on packed or scalar single/double-precision
floating point data and packed or scalar integer data. Scalar operations are operations performed on the lowest order
data element position in an zmm/ymm/xmm register; the higher order data element positions are either left the same as
they were prior to the instruction or zeroed depending on the embodiment.
[0170] Write mask registers 1915 - in the embodiment illustrated, there are 8 write mask registers (k0 through k7),
each 64 bits in size. In an alternate embodiment, the write mask registers 1915 are 16 bits in size. As previously described,
in one embodiment of the invention, the vector mask register k0 cannot be used as a write mask; when the encoding
that would normally indicate k0 is used for a write mask, it selects a hardwired write mask of 0xFFFF, effectively disabling
write masking for that instruction.
[0171] General-purpose registers 1925 - in the embodiment illustrated, there are sixteen 64-bit general-purpose reg-
isters that are used along with the existing x86 addressing modes to address memory operands. These registers are
referenced by the names RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP, and R8 through R15.
[0172] Scalar floating point stack register file (x87 stack) 1945, on which is aliased the MMX packed integer flat register
file 1950 - in the embodiment illustrated, the x87 stack is an eight-element stack used to perform scalar floating-point
operations on 32/64/80-bit floating point data using the x87 instruction set extension; while the MMX registers are used
to perform operations on 64-bit packed integer data, as well as to hold operands for some operations performed between
the MMX and XMM registers.
[0173] Alternative embodiments of the invention may use wider or narrower registers. Additionally, alternative embod-
iments of the invention may use more, less, or different register files and registers.

Exemplary Core Architectures, Processors, and Computer Architectures

[0174] Processor cores may be implemented in different ways, for different purposes, and in different processors. For
instance, implementations of such cores may include: 1) a general purpose in-order core intended for general-purpose
computing; 2) a high performance general purpose out-of-order core intended for general-purpose computing; 3) a
special purpose core intended primarily for graphics and/or scientific (throughput) computing. Implementations of different
processors may include: 1) a CPU including one or more general purpose in-order cores intended for general-purpose
computing and/or one or more general purpose out-of-order cores intended for general-purpose computing; and 2) a
coprocessor including one or more special purpose cores intended primarily for graphics and/or scientific (throughput).
Such different processors lead to different computer system architectures, which may include: 1) the coprocessor on a
separate chip from the CPU; 2) the coprocessor on a separate die in the same package as a CPU; 3) the coprocessor
on the same die as a CPU (in which case, such a coprocessor is sometimes referred to as special purpose logic, such
as integrated graphics and/or scientific (throughput) logic, or as special purpose cores); and 4) a system on a chip that
may include on the same die the described CPU (sometimes referred to as the application core(s) or application proc-

Adjustable Vector Length Class Operations Registers

Instruction Templates that do
not include the vector length
field 1759B

A (Figure 17A;
U=0)

1710, 1715,
1725, 1730

zmm registers (the vector length is 64 byte)

B (Figure 17B;
U=1)

1712 zmm registers (the vector length is 64 byte)

Instruction templates that do
include the vector length field
1759B

B (Figure 17B;
U=1)

1717, 1727 zmm, ymm, or xmm registers (the vector
length is 64 byte, 32 byte, or 16 byte)
depending on the vector length field 1759B

EP 3 716 490 B1

22

5

10

15

20

25

30

35

40

45

50

55

essor(s)), the above described coprocessor, and additional functionality. Exemplary core architectures are described
next, followed by descriptions of exemplary processors and computer architectures.

Exemplary Core Architectures

In-order and out-of-order core block diagram

[0175] FIG. 20A is a block diagram illustrating both an exemplary in-order pipeline and an exemplary register renaming,
out-of-order issue/execution pipeline according to embodiments of the invention. Figure 20B is a block diagram illustrating
both an exemplary embodiment of an in-order architecture core and an exemplary register renaming, out-of-order is-
sue/execution architecture core to be included in a processor according to embodiments of the invention. The solid lined
boxes in FIGs. 20A-B illustrate the in-order pipeline and in-order core, while the optional addition of the dashed lined
boxes illustrates the register renaming, out-of-order issue/execution pipeline and core. Given that the in-order aspect is
a subset of the out-of-order aspect, the out-of-order aspect will be described.
[0176] In FIG. 20A, a processor pipeline 2000 includes a fetch stage 2002, a length decode stage 2004, a decode
stage 2006, an allocation stage 2008, a renaming stage 2010, a scheduling (also known as a dispatch or issue) stage
2012, a register read/memory read stage 2014, an execute stage 2016, a write back/memory write stage 2018, an
exception handling stage 2022, and a commit stage 2024.
[0177] FIG. 20B shows processor core 2090 including a front end unit 2030 coupled to an execution engine unit 2050,
and both are coupled to a memory unit 2070. The core 2090 may be a reduced instruction set computing (RISC) core,
a complex instruction set computing (CISC) core, a very long instruction word (VLIW) core, or a hybrid or alternative
core type. As yet another option, the core 2090 may be a special-purpose core, such as, for example, a network or
communication core, compression engine, coprocessor core, general purpose computing graphics processing unit (GPG-
PU) core, graphics core, or the like.
[0178] The front end unit 2030 includes a branch prediction unit 2032 coupled to an instruction cache unit 2034, which
is coupled to an instruction translation lookaside buffer (TLB) 2036, which is coupled to an instruction fetch unit 2038,
which is coupled to a decode unit 2040. The decode unit 2040 (or decoder) may decode instructions, and generate as
an output one or more micro-operations, micro-code entry points, microinstructions, other instructions, or other control
signals, which are decoded from, or which otherwise reflect, or are derived from, the original instructions. The decode
unit 2040 may be implemented using various different mechanisms. Examples of suitable mechanisms include, but are
not limited to, look-up tables, hardware implementations, programmable logic arrays (PLAs), microcode read only mem-
ories (ROMs), etc. In one embodiment, the core 2090 includes a microcode ROM or other medium that stores microcode
for certain macroinstructions (e.g., in decode unit 2040 or otherwise within the front end unit 2030). The decode unit
2040 is coupled to a rename/allocator unit 2052 in the execution engine unit 2050.
[0179] The execution engine unit 2050 includes the rename/allocator unit 2052 coupled to a retirement unit 2054 and
a set of one or more scheduler unit(s) 2056. The scheduler unit(s) 2056 represents any number of different schedulers,
including reservations stations, central instruction window, etc. The scheduler unit(s) 2056 is coupled to the physical
register file(s) unit(s) 2058. Each of the physical register file(s) units 2058 represents one or more physical register files,
different ones of which store one or more different data types, such as scalar integer, scalar floating point, packed integer,
packed floating point, vector integer, vector floating point" status (e.g., an instruction pointer that is the address of the
next instruction to be executed), etc. In one embodiment, the physical register file(s) unit 2058 comprises a vector
registers unit, a write mask registers unit, and a scalar registers unit. These register units may provide architectural
vector registers, vector mask registers, and general purpose registers. The physical register file(s) unit(s) 2058 is over-
lapped by the retirement unit 2054 to illustrate various ways in which register renaming and out-of-order execution may
be implemented (e.g., using a reorder buffer(s) and a retirement register file(s); using a future file(s), a history buffer(s),
and a retirement register file(s); using a register maps and a pool of registers; etc.). The retirement unit 2054 and the
physical register file(s) unit(s) 2058 are coupled to the execution cluster(s) 2060. The execution cluster(s) 2060 includes
a set of one or more execution units 2062 and a set of one or more memory access units 2064. The execution units
2062 may perform various operations (e.g., shifts, addition, subtraction, multiplication) and on various types of data (e.g.,
scalar floating point, packed integer, packed floating point, vector integer, vector floating point). While some embodiments
may include a number of execution units dedicated to specific functions or sets of functions, other embodiments may
include only one execution unit or multiple execution units that all perform all functions. The scheduler unit(s) 2056,
physical register file(s) unit(s) 2058, and execution cluster(s) 2060 are shown as being possibly plural because certain
embodiments create separate pipelines for certain types of data/operations (e.g., a scalar integer pipeline, a scalar
floating point/packed integer/packed floating point/vector integer/vector floating point pipeline, and/or a memory access
pipeline that each have their own scheduler unit, physical register file(s) unit, and/or execution cluster - and in the case
of a separate memory access pipeline, certain embodiments are implemented in which only the execution cluster of this
pipeline has the memory access unit(s) 2064). It should also be understood that where separate pipelines are used,

EP 3 716 490 B1

23

5

10

15

20

25

30

35

40

45

50

55

one or more of these pipelines may be out-of-order issue/execution and the rest in-order.
[0180] The set of memory access units 2064 is coupled to the memory unit 2070, which includes a data TLB unit 2072
coupled to a data cache unit 2074 coupled to a level 2 (L2) cache unit 2076. In one exemplary embodiment, the memory
access units 2064 may include a load unit, a store address unit, and a store data unit, each of which is coupled to the
data TLB unit 2072 in the memory unit 2070. The instruction cache unit 2034 is further coupled to a level 2 (L2) cache
unit 2076 in the memory unit 2070. The L2 cache unit 2076 is coupled to one or more other levels of cache and eventually
to a main memory.
[0181] By way of example, the exemplary register renaming, out-of-order issue/execution core architecture may im-
plement the pipeline 2000 as follows: 1) the instruction fetch 2038 performs the fetch and length decoding stages 2002
and 2004; 2) the decode unit 2040 performs the decode stage 2006; 3) the rename/allocator unit 2052 performs the
allocation stage 2008 and renaming stage 2010; 4) the scheduler unit(s) 2056 performs the schedule stage 2012; 5) the
physical register file(s) unit(s) 2058 and the memory unit 2070 perform the register read/memory read stage 2014; the
execution cluster 2060 perform the execute stage 2016; 6) the memory unit 2070 and the physical register file(s) unit(s)
2058 perform the write back/memory write stage 2018; 7) various units may be involved in the exception handling stage
2022; and 8) the retirement unit 2054 and the physical register file(s) unit(s) 2058 perform the commit stage 2024.
[0182] The core 2090 may support one or more instructions sets (e.g., the x86 instruction set (with some extensions
that have been added with newer versions); the MIPS instruction set of MIPS Technologies of Sunnyvale, CA; the ARM
instruction set (with optional additional extensions such as NEON) of ARM Holdings of Sunnyvale, CA), including the
instruction(s) described herein. In one embodiment, the core 2090 includes logic to support a packed data instruction
set extension (e.g., AVX1, AVX2), thereby allowing the operations used by many multimedia applications to be performed
using packed data.
[0183] It should be understood that the core may support multithreading (executing two or more parallel sets of oper-
ations or threads), and may do so in a variety of ways including time sliced multithreading, simultaneous multithreading
(where a single physical core provides a logical core for each of the threads that physical core is simultaneously multi-
threading), or a combination thereof (e.g., time sliced fetching and decoding and simultaneous multithreading thereafter
such as in the Intel® Hyperthreading technology).
[0184] While register renaming is described in the context of out-of-order execution, it should be understood that
register renaming may be used in an in-order architecture. While the illustrated embodiment of the processor also
includes separate instruction and data cache units 2034/2074 and a shared L2 cache unit 2076, alternative embodiments
may have a single internal cache for both instructions and data, such as, for example, a Level 1 (L1) internal cache, or
multiple levels of internal cache. In some embodiments, the system may include a combination of an internal cache and
an external cache that is external to the core and/or the processor. Alternatively, all of the cache may be external to the
core and/or the processor.

Specific Exemplary In-Order Core Architecture

[0185] FIGs. 21A-B illustrate a block diagram of a more specific exemplary in-order core architecture, which core
would be one of several logic blocks (including other cores of the same type and/or different types) in a chip. The logic
blocks communicate through a high-bandwidth interconnect network (e.g., a ring network) with some fixed function logic,
memory I/O interfaces, and other necessary I/O logic, depending on the application.
[0186] FIG. 21A is a block diagram of a single processor core, along with its connection to the on-die interconnect
network 2102 and with its local subset of the Level 2 (L2) cache 2104, according to embodiments of the invention. In
one embodiment, an instruction decoder 2100 supports the x86 instruction set with a packed data instruction set extension.
An L1 cache 2106 allows low-latency accesses to cache memory into the scalar and vector units. While in one embodiment
(to simplify the design), a scalar unit 2108 and a vector unit 2110 use separate register sets (respectively, scalar registers
2112 and vector registers 2114) and data transferred between them is written to memory and then read back in from a
level 1 (L1) cache 2106, alternative embodiments of the invention may use a different approach (e.g., use a single
register set or include a communication path that allow data to be transferred between the two register files without being
written and read back).
[0187] The local subset of the L2 cache 2104 is part of a global L2 cache that is divided into separate local subsets,
one per processor core. Each processor core has a direct access path to its own local subset of the L2 cache 2104.
Data read by a processor core is stored in its L2 cache subset 2104 and can be accessed quickly, in parallel with other
processor cores accessing their own local L2 cache subsets. Data written by a processor core is stored in its own L2
cache subset 2104 and is flushed from other subsets, if necessary. The ring network ensures coherency for shared
data. The ring network is bi-directional to allow agents such as processor cores, L2 caches and other logic blocks to
communicate with each other within the chip. Each ring data-path is 1012-bits wide per direction.
[0188] FIG. 21B is an expanded view of part of the processor core in FIG. 21A according to embodiments of the
invention. FIG. 21B includes an L1 data cache 2106A part of the L1 cache 2104, as well as more detail regarding the

EP 3 716 490 B1

24

5

10

15

20

25

30

35

40

45

50

55

vector unit 2110 and the vector registers 2114. Specifically, the vector unit 2110 is a 16-wide vector processing unit
(VPU) (see the 16-wide ALU 2128), which executes one or more of integer, single-precision float, and double-precision
float instructions. The VPU supports swizzling the register inputs with swizzle unit 2120, numeric conversion with numeric
convert units 2122A-B, and replication with replication unit 2124 on the memory input. Write mask registers 2126 allow
predicating resulting vector writes.
[0189] FIG. 22 is a block diagram of a processor 2200 that may have more than one core, may have an integrated
memory controller, and may have integrated graphics according to embodiments of the invention. The solid lined boxes
in FIG. 22 illustrate a processor 2200 with a single core 2202A, a system agent 2210, a set of one or more bus controller
units 2216, while the optional addition of the dashed lined boxes illustrates an alternative processor 2200 with multiple
cores 2202A-N, a set of one or more integrated memory controller unit(s) 2214 in the system agent unit 2210, and special
purpose logic 2208.
[0190] Thus, different implementations of the processor 2200 may include: 1) a CPU with the special purpose logic
2208 being integrated graphics and/or scientific (throughput) logic (which may include one or more cores), and the cores
2202A-N being one or more general purpose cores (e.g., general purpose in-order cores, general purpose out-of-order
cores, a combination of the two); 2) a coprocessor with the cores 2202A-N being a large number of special purpose
cores intended primarily for graphics and/or scientific (throughput); and 3) a coprocessor with the cores 2202A-N being
a large number of general purpose in-order cores. Thus, the processor 2200 may be a general-purpose processor,
coprocessor or special-purpose processor, such as, for example, a network or communication processor, compression
engine, graphics processor, GPGPU (general purpose graphics processing unit), a high-throughput many integrated
core (MIC) coprocessor (including 30 or more cores), embedded processor, or the like. The processor may be imple-
mented on one or more chips. The processor 2200 may be a part of and/or may be implemented on one or more
substrates using any of a number of process technologies, such as, for example, BiCMOS, CMOS, or NMOS.
[0191] The memory hierarchy includes one or more levels of cache within the cores, a set or one or more shared
cache units 2206, and external memory (not shown) coupled to the set of integrated memory controller units 2214. The
set of shared cache units 2206 may include one or more mid-level caches, such as level 2 (L2), level 3 (L3), level 4 (L4),
or other levels of cache, a last level cache (LLC), and/or combinations thereof. While in one embodiment a ring based
interconnect unit 2212 interconnects the integrated graphics logic 2208, the set of shared cache units 2206, and the
system agent unit 2210/integrated memory controller unit(s) 2214, alternative embodiments may use any number of
well-known techniques for interconnecting such units. In one embodiment, coherency is maintained between one or
more cache units 2206 and cores 2202-A-N.
[0192] In some embodiments, one or more of the cores 2202A-N are capable of multi-threading. The system agent
2210 includes those components coordinating and operating cores 2202A-N. The system agent unit 2210 may include
for example a power control unit (PCU) and a display unit. The PCU may be or include logic and components needed
for regulating the power state of the cores 2202A-N and the integrated graphics logic 2208. The display unit is for driving
one or more externally connected displays.
[0193] The cores 2202A-N may be homogenous or heterogeneous in terms of architecture instruction set; that is, two
or more of the cores 2202A-N may be capable of execution the same instruction set, while others may be capable of
executing only a subset of that instruction set or a different instruction set.

Exemplary Computer Architectures

[0194] FIGs. 23-24 are block diagrams of exemplary computer architectures. Other system designs and configurations
known in the arts for laptops, desktops, handheld PCs, personal digital assistants, engineering workstations, servers,
network devices, network hubs, switches, embedded processors, digital signal processors (DSPs), graphics devices,
video game devices, set-top boxes, micro controllers, cell phones, portable media players, hand held devices, and
various other electronic devices, are also suitable. In general, a huge variety of systems or electronic devices capable
of incorporating a processor and/or other execution logic as disclosed herein are generally suitable.
[0195] Referring now to FIG. 23, shown is a block diagram of a system 2300 in accordance with one embodiment of
the present invention. The system 2300 may include one or more processors 2310, 2315, which are coupled to a controller
hub 2320. In one embodiment the controller hub 2320 includes a graphics memory controller hub (GMCH) 2390 and an
Input/Output Hub (IOH) 2350 (which may be on separate chips); the GMCH 2390 includes memory and graphics con-
trollers to which are coupled memory 2340 and a coprocessor 2345; the IOH 2350 is couples input/output (I/O) devices
2360 to the GMCH 2390. Alternatively, one or both of the memory and graphics controllers are integrated within the
processor (as described herein), the memory 2340 and the coprocessor 2345 are coupled directly to the processor 2310,
and the controller hub 2320 in a single chip with the IOH 2350.
[0196] The optional nature of additional processors 2315 is denoted in FIG. 23 with broken lines. Each processor
2310, 2315 may include one or more of the processing cores described herein and may be some version of the processor
2200.

EP 3 716 490 B1

25

5

10

15

20

25

30

35

40

45

50

55

[0197] The memory 2340 may be, for example, dynamic random access memory (DRAM), phase change memory
(PCM), or a combination of the two. For at least one embodiment, the controller hub 2320 communicates with the
processor(s) 2310, 2315 via a multi-drop bus, such as a frontside bus (FSB), point-to-point interface such as QuickPath
Interconnect (QPI), or similar connection 2395.
[0198] In one embodiment, the coprocessor 2345 is a special-purpose processor, such as, for example, a high-
throughput MIC processor, a network or communication processor, compression engine, graphics processor, GPGPU,
embedded processor, or the like. In one embodiment, controller hub 2320 may include an integrated graphics accelerator.
[0199] There can be a variety of differences between the physical resources 2310, 2315 in terms of a spectrum of
metrics of merit including architectural, microarchitectural, thermal, power consumption characteristics, and the like.
[0200] In one embodiment, the processor 2310 executes instructions that control data processing operations of a
general type. Embedded within the instructions may be coprocessor instructions. The processor 2310 recognizes these
coprocessor instructions as being of a type that should be executed by the attached coprocessor 2345. Accordingly, the
processor 2310 issues these coprocessor instructions (or control signals representing coprocessor instructions) on a
coprocessor bus or other interconnect, to coprocessor 2345. Coprocessor(s) 2345 accept and execute the received
coprocessor instructions.
[0201] Referring now to FIG. 24, shown is a block diagram of a SoC 2400 in accordance with an embodiment of the
present invention. Similar elements in FIG. 22 bear like reference numerals. Also, dashed lined boxes are optional
features on more advanced SoCs. In FIG. 24, an interconnect unit(s) 2402 is coupled to: an application processor 2410
which includes a set of one or more cores 202A-N and shared cache unit(s) 2206; a system agent unit 2210; a bus
controller unit(s) 2216; an integrated memory controller unit(s) 2214; a set or one or more coprocessors 2420 which
may include integrated graphics logic, an image processor, an audio processor, and a video processor; an static random
access memory (SRAM) unit 2430; a direct memory access (DMA) unit 2432; and a display unit 2440 for coupling to
one or more external displays. In one embodiment, the coprocessor(s) 2420 include a special-purpose processor, such
as, for example, a network or communication processor, compression engine, GPGPU, a high-throughput MIC processor,
embedded processor, or the like.
[0202] Embodiments of the mechanisms disclosed herein may be implemented in hardware, software, firmware, or a
combination of such implementation approaches. Embodiments of the invention may be implemented as computer
programs or program code executing on programmable systems comprising at least one processor, a storage system
(including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output
device.
[0203] Program code may be applied to input instructions to perform the functions described herein and generate
output information. The output information may be applied to one or more output devices, in known fashion. For purposes
of this application, a processing system includes any system that has a processor, such as, for example; a digital signal
processor (DSP), a microcontroller, an application specific integrated circuit (ASIC), or a microprocessor.
[0204] The program code may be implemented in a high level procedural or object oriented programming language
to communicate with a processing system. The program code may also be implemented in assembly or machine language,
if desired. In fact, the mechanisms described herein are not limited in scope to any particular programming language.
In any case, the language may be a compiled or interpreted language.
[0205] One or more aspects of at least one embodiment may be implemented by representative instructions stored
on a machine-readable medium which represents various logic within the processor, which when read by a machine
causes the machine to fabricate logic to perform the techniques described herein. Such representations, known as "IP
cores" may be stored on a tangible, machine readable medium and supplied to various customers or manufacturing
facilities to load into the fabrication machines that actually make the logic or processor.
[0206] Such machine-readable storage media may include, without limitation, non-transitory, tangible arrangements
of articles manufactured or formed by a machine or device, including storage media such as hard disks, any other type
of disk including floppy disks, optical disks, compact disk read-only memories (CD-ROMs), compact disk rewritable’s
(CD-RWs), and magneto-optical disks, semiconductor devices such as read-only memories (ROMs), random access
memories (RAMs) such as dynamic random access memories (DRAMs), static random access memories (SRAMs),
erasable programmable read-only memories (EPROMs), flash memories, electrically erasable programmable read-only
memories (EEPROMs), phase change memory (PCM), magnetic or optical cards, or any other type of media suitable
for storing electronic instructions.
[0207] Accordingly, embodiments of the invention also include non-transitory, tangible machine-readable media con-
taining instructions or containing design data, such as Hardware Description Language (HDL), which defines structures,
circuits, apparatuses, processors and/or system features described herein. Such embodiments may also be referred to
as program products.

EP 3 716 490 B1

26

5

10

15

20

25

30

35

40

45

50

55

Emulation (including binary translation, code morphing, etc.)

[0208] In some cases, an instruction converter may be used to convert an instruction from a source instruction set to
a target instruction set. For example, the instruction converter may translate (e.g., using static binary translation, dynamic
binary translation including dynamic compilation), morph, emulate, or otherwise convert an instruction to one or more
other instructions to be processed by the core. The instruction converter may be implemented in software, hardware,
firmware, or a combination thereof. The instruction converter may be on processor, off processor, or part on and part
off processor.
[0209] FIG. 25 is a block diagram contrasting the use of a software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target instruction set according to embodiments of the invention. In
the illustrated embodiment, the instruction converter is a software instruction converter, although alternatively the in-
struction converter may be implemented in software, firmware, hardware, or various combinations thereof. FIG. 25 shows
a program in a high level language 2502 may be compiled using an x86 compiler 2504 to generate x86 binary code
2506 that may be natively executed by a processor with at least one x86 instruction set core 2516. The processor with
at least one x86 instruction set core 2516 represents any processor that can perform substantially the same functions
as an Intel processor with at least one x86 instruction set core by compatibly executing or otherwise processing (1) a
substantial portion of the instruction set of the Intel x86 instruction set core or (2) object code versions of applications
or other software targeted to run on an Intel processor with at least one x86 instruction set core, in order to achieve
substantially the same result as an Intel processor with at least one x86 instruction set core. The x86 compiler 2504
represents a compiler that is operable to generate x86 binary code 2506 (e.g., object code) that can, with or without
additional linkage processing, be executed on the processor with at least one x86 instruction set core 2516. Similarly,
FIG. 25 shows the program in the high level language 2502 may be compiled using an alternative instruction set compiler
2508 to generate alternative instruction set binary code 2510 that may be natively executed by a processor without at
least one x86 instruction set core 2514 (e.g., a processor with cores that execute the MIPS instruction set of MIPS
Technologies of Sunnyvale, CA and/or that execute the ARM instruction set of ARM Holdings of Sunnyvale, CA). The
instruction converter 2512 is used to convert the x86 binary code 2506 into code that may be natively executed by the
processor without an x86 instruction set core 2514. This converted code is not likely to be the same as the alternative
instruction set binary code 2510 because an instruction converter capable of this is difficult to make; however, the
converted code will accomplish the general operation and be made up of instructions from the alternative instruction
set. Thus, the instruction converter 2512 represents software, firmware, hardware, or a combination thereof that, through
emulation, simulation or any other process, allows a processor or other electronic device that does not have an x86
instruction set processor or core to execute the x86 binary code 2506.

Detection of Adjacent Two Bit Errors

[0210] Referring now to FIG. 26, shown is a block diagram of a system 2600 in accordance with one or more embod-
iments. In some embodiments, the system 2600 may be implemented in one or more electronic devices and/or compo-
nents. For example, the system 2600 may be implemented at least in part in one or more of a cellular telephone, a
computer, a server, a network device, a system on a chip (SoC), a controller, a wireless transceiver, etc. Furthermore,
in some embodiments, the system 2600 may be implemented at least in part in a grouping of related or interconnected
devices (e.g., a datacenter, a computing cluster, etc.).
[0211] As shown in FIG. 26, the system 2600 may include an encoder 2610, a medium 2620, and error correction
code (ECC) logic 2605. The encoder 2610 may receive a data word 2602, and may generate a codeword 2612 using
a generating matrix G 2615. The data word 2602 includes data (e.g., binary bits) without error checking codes. The
codeword 2612 includes the data bits from the data word 2602 and parity bits (also referred to as check bits) generated
by the encoder 2610. In some embodiments, the parity bits in codeword 2612 may be defined as the product of D times
G, where D is a matrix of the data bits, and G is the generating matrix G 2615. In some embodiments, generating the
codeword 2612 includes appending the parity bits to the data bits from the data word 2602.
[0212] In one or more embodiments, the codeword 2612 may be stored or transmitted in a medium 2620. For example,
the medium 2620 may include a memory (e.g., random access memory), a data bus (e.g., Peripheral Component
Interconnect Express bus), a network link (e.g., a Ethernet link, a wireless connection, a fiberoptic link, etc.), and so
forth. In some examples, the codeword 2612 may suffer an error (e.g., a changed data value) while stored or transmitted
in the medium 2620. For example, such an error may be caused by external radiation, power surge, transmission noise,
and so forth. Accordingly, the retrieved codeword 2622 (i.e., the form of codeword 2612 after being stored or transmitted
in medium 2620) may include erroneous bit values.
[0213] In one or more embodiments, the ECC logic 2605 may be implemented in hardware and/or software. For
example, the ECC logic 2605 may be implemented in circuitry, in software or firmware executed by a processing device,
in a specialized controller, in a processor, in a System on a Chip (SoC), in a network device, in a chip set, and so forth.

EP 3 716 490 B1

27

5

10

15

20

25

30

35

40

45

50

55

As shown in FIG. 26, the ECC logic 2605 includes a decoder 2630, error classification logic 2640, and error correction
logic 2650. The decoder 2630 decodes the retrieved codeword 2622 using a parity checking matrix H 2635, and generates
a syndrome 2632 (also referred to herein as a syndrome vector 2632). In some embodiments, the syndrome 2632 may
be calculated as the product of H times CT, where H is the parity checking matrix H 2635, and CT is the transpose of
the retrieved codeword 2622. In some examples, the parity checking matrix H 2635 may be stored in a memory or
nonvolatile storage of the decoder 2630, may be implemented in logic circuitry of the decoder 2630, and so forth.
[0214] In one or more embodiments, the error classification logic 2640 uses the syndrome 2632 to classify or otherwise
identify errors in the retrieved codeword 2622. In some implementations, the error classification logic 2640 compares
the syndrome 2632 to the parity checking matrix H 2635 to classify errors. For example, the error classification logic
2640 may determine that the syndrome 2632 includes only "0" bit values, and may thus determine that no errors occurred
in the codeword 2622. In another example, the error classification logic 2640 may determine that syndrome 2632 matches
a column of the parity checking matrix H 2635, and may thus determine the location of a one bit error in the codeword
2622. In still another example, the error classification logic 2640 may determine that the syndrome 2632 includes non-
zero values but does not match a column of the parity checking matrix H 2635, and may thus determine that an uncor-
rectable error occurred in the codeword 2622. In some implementations, the error classification logic 2640 may provide
error classification data 2642 (e.g., no error, one bit error, uncorrectable error, etc.) associated with the codeword 2622.
[0215] In one or more embodiments, the error correction logic 2650 may receive an indication 2645 from the error
classification logic 2640. The indication 2645 may include data indicating the location of a correctable error in the
codeword 2622. For example, the indication 2645 may indicate that one data bit in the codeword 2622 is erroneous,
and may indicate the location of that single erroneous bit. In response to the indication 2645, the error correction logic
2650 may correct the erroneous bit in the codeword 2622 (e.g., flip the bit value from "0" to "1," or from "1" to "0"), and
may thereby provide a corrected codeword 2652. In some embodiments, the correction logic 2650 may use the syndrome
2632 instead of a separate indication 2645 from the error classification logic 2640.
[0216] In one or more embodiments, the error correction logic 2650 generates the parity checking matrix H 2635 in
response to an indication of a need for a new parity checking matrix (e.g., a received signal or command indicating N
data columns and K parity columns, a time expiration or periodic schedule, etc.). In some embodiments, the error
correction logic 2650 and/or the encoder 2610 may generate the generating matrix G 2615 based on the parity checking
matrix H 2635. For example, the generating matrix G 2615 may be based at least in part on an inverse of a parity segment
of the parity checking matrix H 2635.
[0217] Referring now to FIG. 27, shown is a diagram of an example parity checking matrix H 2700, in accordance with
one or more embodiments. Assume that the parity checking matrix H 2700 may correspond to an example implementation
of the parity checking matrix H 2635 shown in FIG. 26. In some embodiments, the parity checking matrix H 2700 may
be implemented in (or used with) the ECC logic 2605 (shown in FIG. 26).
[0218] Assume that the parity checking matrix H 2700 is configured for codewords having N=128 data bits and K=8
parity bits, according to an example. Thus, as shown in FIG. 27, the parity checking matrix H 2700 may include a data
segment 2710 with N=128 data columns and K=8 rows, and may also include a parity segment 2720 comprising K=8
parity columns and K=8 rows. In some embodiments, the parity segment 2720 may be positioned to the right of the data
segment 2710 in the parity checking matrix H 2700 (e.g., positioned immediately next to the lowest numbered data
column). The data segment 2710 and the parity segment 2720 may also be referred to herein as "submatrixes" or
"portions" of the parity checking matrix H 2700.
[0219] In one or more embodiments, the left-most N+K-2(K-1)+1 columns 2730 (i.e., nine columns labelled E0-E8) of
the parity checking matrix H 2700 are configured to have even weight vectors. Further, the right-most 2(K-1)-1 columns
2740 (i.e., 127 columns labelled O0-O126) of the parity checking matrix H 2700 are configured to have odd weight vectors.
In one or more embodiments, each column of the parity checking matrix H 2700 includes a unique vector. Stated
differently, the vertical sequence of bit values (e.g., from top to bottom row) in each column is unique within the parity
checking matrix H 2700. Note that the parity checking matrix H 2700 shown in FIG. 27 is provided as an example, and
does not limit implementations. For example, it is contemplated that a parity checking matrix H may include different
numbers of rows, data columns, parity columns, and so forth.
[0220] Referring now to FIGs. 28A-28B, shown are simplified representations of the parity checking matrix H 2700,
in accordance with one or more embodiments. Specifically, in FIGs. 28A-28B, each column of the parity checking matrix
H 2700 (shown in FIG. 27) is represented in simplified form as a single cell. For example, the cell E8 shown in FIG. 28A
may represent the left-most column in the data segment 2710 shown in FIG. 27.
[0221] In the embodiments, adjacent pairs of column vectors in the parity checking matrix H 2700 are summed to
calculate combination vectors. Note that, for each pair of column vectors that have the same weight (i.e., odd or even),
the combination vector always has even weight. For example, referring to FIG. 28A, the even column vectors E6 and
E5 are summed to generate the even combination vector Eci. In another example, the odd column vectors O4 and O3
are summed to generate the even combination vector EC2. In the embodiments, the parity checking matrix H 2700 is
configured such that each even column vector is unique, and is not equal to any generated even combination vector

EP 3 716 490 B1

28

5

10

15

20

25

30

35

40

45

50

55

(e.g., even combination vectors EC1, EC2, and so forth).
[0222] In the embodiments, an adjacent pair of column vectors with different weights (i.e., one odd column and one
even column) is summed to generate a combination vector of odd weight. For example, referring to FIG. 28B, the even
column vector E0 and the odd column vector C126 is summed to generate the odd combination vector Oc.
[0223] In the embodiments, the parity checking matrix H 2700 is configured such that each odd column vector is
unique, and is not equal to any generated odd combination vector (e.g., odd combination vector Oc).
[0224] In the embodiments, any one bit error that occurs will generate a syndrome represented by the column vector
in a single column of the parity checking matrix H 2700. Further, any adjacent two bit error that occurs will generate the
syndromes represented by two adjacent columns of the parity checking matrix H 2700, and thus will correspond to the
combination vector associated with those adjacent columns. Note that, as discussed above, the parity checking matrix
H 2700 is configured such that each column vector is not equal to any combination vector. Accordingly, all possible
adjacent two bit errors can be detected, and will not be mis-identified and/or mis-corrected as a one bit error.
[0225] Referring now to FIG. 29, shown is a flow diagram of a method 2900 for error detection, in accordance with
one or more embodiments. In various embodiments, the method 2900 may be performed by processing logic that may
include hardware (e.g., processing device, circuitry, dedicated logic, programmable logic, microcode, etc.), software
(e.g., instructions run on a processing device), or a combination thereof. In some implementations, the method 2900
may be performed using one or more components shown in FIGs. 26-28B (e.g., ECC logic 2605, parity checking matrix
H 2700, and so forth). In firmware or software embodiments, the method 2900 may be implemented by computer executed
instructions stored in a non-transitory machine readable medium, such as an optical, semiconductor, or magnetic storage
device. The machine-readable medium may store data, which if used by at least one machine, causes the at least one
machine to fabricate at least one integrated circuit to perform a method. For the sake of illustration, the actions involved
in the method 2900 may be described below with reference to FIGs. 26-28B, which show examples in accordance with
one or more embodiments. However, the scope of the various embodiments discussed herein is not limited in this regard.
[0226] Block 2910 includes receiving a codeword including a plurality of data bits and a plurality of parity bits. For
example, referring to FIG. 26, the decoder 2630 receives a codeword 2622 that was stored or transmitted in a medium
2620. The codeword 2622 includes N data bits (e.g., 128 data bits) and K parity bits (e.g., 8 parity bits).
[0227] Block 2920 includes generating, using a parity checking matrix H, a syndrome vector associated with the
received codeword, where the parity checking matrix H includes a data segment having N data columns and a parity
segment having K parity columns, where the total quantity of columns in the parity checking matrix H is equal to N+K-
2(K-1)+1. For example, referring to FIG. 26, the decoder 2630 generates the syndrome 2632 using the parity checking
matrix H 2635. In some embodiments, the decoder 2630 may calculate the syndrome 2632 as the product of H times
CT, where H is the parity checking matrix H 2635, and CT is the transpose of the retrieved codeword 2622. Further,
referring to FIG. 27, the parity checking matrix H 2700 includes a data segment 2710 having N=128 data columns, and
a parity segment 2720 having K=8 parity columns. As shown in FIG. 27, the left-most N+K-2(K-1)+1 columns 2730 (i.e.,
the nine columns labelled E0-E8) are the only columns of the parity checking matrix H 2700 that have even weight vectors.
[0228] Diamond 2930 may include determining a classification of the syndrome (generated at block 2920). If it is
determined at diamond 2930 that the syndrome is a zero vector (i.e., includes only zero values), then at block 2940, it
may be determined that no error has been detected. For example, referring to FIG. 26, the error classification logic 2640
may determine that the syndrome 2632 only includes zero values, and may thus determine that no error occurred in the
codeword 2622. After block 2940, the method 2900 may be completed.
[0229] However, if it is determined at diamond 2930 that the syndrome matches a particular column in the parity
checking matrix H, then at block 2950, it is determined that a one bit error has been detected. Further, at block 2960,
the detected one bit error may be corrected. For example, referring to FIG. 26, the error classification logic 2640 may
determine that the syndrome 2632 matches a particular column of the parity checking matrix H 2635, and thus detects
a one bit error in a corresponding location of the codeword 2622. Further, the error correction logic 2650 may correct
the detect error (e.g., by flipping the bit value at the location associated with the column matching the syndrome). After
block 2960, the method 2900 may be completed.
[0230] However, if it is determined at diamond 2930 that the syndrome does not match a column in the parity checking
matrix H and is not a zero vector, then at block 2970, it is determined that a multiple bit error has been detected. For
example, referring to FIG. 26, the error classification logic 2640 may determine that the syndrome 2632 is not a zero
vector and does not match a single column of the parity checking matrix H 2635, and thus detects a multiple bit error in
the codeword 2622 (e.g., a two bit error). Further, the error classification logic 2640 may determine that the detected
multiple bit error is not correctable, and may thus provide an indication 2642 that a non-correctable error was detected.
After block 2970, the method 2900 may be completed.
[0231] Referring now to FIG. 30, shown is a flow diagram of a method 3000 for generating a parity checking matrix
H, in accordance with one or more embodiments. In various embodiments, the method 3000 may be performed by
processing logic that may include hardware (e.g., processing device, circuitry, dedicated logic, programmable logic,
microcode, etc.), software (e.g., instructions run on a processing device), or a combination thereof. In some implemen-

EP 3 716 490 B1

29

5

10

15

20

25

30

35

40

45

50

55

tations, the method 3000 may be performed using one or more components shown in FIG. 26 (e.g., one or more
components of system 2600). In firmware or software embodiments, the method 3000 may be implemented by executable
instructions stored in a non-transitory machine readable medium, such as an optical, semiconductor, or magnetic storage
device. Such instructions may be executed by a hardware processor or controller. The machine-readable medium may
store data, which if used by at least one machine, causes the at least one machine to fabricate at least one integrated
circuit to perform a method. For the sake of illustration, the actions involved in the method 3000 may be described below
with reference to FIGs. 26-28B, which show examples in accordance with one or more embodiments. However, the
scope of the various embodiments discussed herein is not limited in this regard.
[0232] Block 3010 includes defining a parity-checking matrix H including a data segment and a parity segment, where
the data segment includes N data columns, where the parity segment includes K parity columns, where the parity segment
is to the right of the data segment, where the matrix H includes K rows. For example, referring to FIGs. 26-27, the ECC
logic 2605 may detect a need for a new parity checking matrix based on a specification of N=128 data columns and K=8
parity bits. The ECC logic 2605 may generate a new parity checking matrix in response to a received signal or command,
according to a time expiration or periodic schedule, in response to determining that no existing parity checking matrix
is available, and so forth. Accordingly, the ECC logic 2605 may define or initiate the parity checking matrix H 2700 to
include a data segment 2710 having N=128 data columns, and to include a parity segment 2720 having K=8 parity
columns.
[0233] Block 3020 includes populating the left-most N+K-2(K-1)+1 columns of the parity checking matrix H with column
vectors having even weight. Block 3030 includes populating the right-most 2(K-1)-1 columns of the parity checking matrix
H with column vectors having odd weights. For example, referring to FIGs. 26-27, the ECC logic 2605 may populate the
left-most nine columns E0-E8 with column vectors having even weight. Further, the ECC logic 2605 may populate the
remaining right-most columns O0-O126 with column vectors having odd weights.
[0234] Block 3040 includes calculating combination vectors by summing pairs of adjacent columns. For example,
referring to FIGs. 26-28B, the ECC logic 2605 sums adjacent even column vectors E6 and E5 to generate the even
combination vector Eci. In another example, the ECC logic 2605 sums adjacent odd column vectors O4 and O3 to
generate the even combination vector EC2. In yet another example, the ECC logic 2605 sums the even column vector
E0 and the adjacent odd column vector C126 to generate the odd combination vector Oc.
[0235] In block 3050, a determination is made as to whether each column vector is unique and not equal to a combination
vector. If so, the parity-checking matrix H is completed and is ready for use in decoding codewords (e.g., in decoder
2630 shown in FIG. 26). However, if a negative determination is made at block 3060 (i.e., as shown by the line labelled
"NO"), the method 3000 may return to block 3020 to re-populate the column vectors with new values. In some examples,
the sequence of blocks 3020-3040 is repeated until a positive determination is made at block 3050. For example, referring
to FIGs. 26-28B, the ECC logic 2605 determines whether, in parity checking matrix H 2700, each column vector is unique
(i.e., different from every other column vector) and is different from the combination vectors calculated from each set of
adjacent columns. If the ECC logic 2605 confirms that each column vector is unique and is different from the combination
vectors, the parity-checking matrix H 2700 is stored for decoding codewords (e.g., in a memory of decoder 2630).
Otherwise, the ECC logic 2605 re-populates the parity checking matrix H 2700 with one or more new column vectors.
After block 3050, the method 3000 is completed.

Claims

1. A method for error detection, comprising:

a) defining (3010) a parity checking matrix H (2700) comprising a data segment (2710) comprising N data
columns and a parity segment (2720) comprising K parity columns:
b) populating (3020) the 2(K-1)-1 columns in the right-most portion of the parity checking matrix H with column
vectors having odd weights;
c) populating (3030) the N+K-2(K-1)+1 columns in the left-most portion of the parity checking matrix H with
column vectors having even weights;
d) calculating (3040) a plurality of combination vectors by summing each pair of adjacent columns of the parity
checking matrix H;
e) determining (3050) whether each column vector of the parity checking matrix H is unique and not equal to
any of the plurality of combination vectors;
f) in response to a determination that each column vector of the parity checking matrix H is unique and not equal
to any of the plurality of combination vectors, storing the parity checking matrix H for use in decoding received
codewords;
g) in response to a determination that at least one column vector of the parity checking matrix H is not unique

EP 3 716 490 B1

30

5

10

15

20

25

30

35

40

45

50

55

or equal to any combination vector, returning to step b) to re-populate the column vectors with new values;
h) receiving (2910), by an error correction code device, a codeword (2622) comprising N data bits and K parity
bits, the codeword being encoded using a generator matrix G, which is based on the parity check matrix H;
i) generating (2920), via the error correction code device, using the parity checking matrix H, a syndrome vector
(2632) associated with the received codeword; and
j) detecting (2970), via the error correction code device, an adjacent two bit error in the codeword based on a
comparison of the syndrome vector to the parity checking matrix H.

2. The method of claim 1, further comprising detecting the adjacent two bit error in response to a determination that
the syndrome vector is not a zero vector and is not equal to any single column of the parity checking matrix H; and
providing an indication (2642) of the adjacent two bit error.

3. The method of any one of the claims 1 or 2, further comprising:

receiving a second codeword (2622), the second codeword comprising N data bits and K parity bits and being
encoded using the generator matrix G, which is based on the parity check matrix H;
generating (2920), using the parity checking matrix H, a second syndrome vector associated with the second
codeword;
detecting (2950) a one bit error in response to a determination that the second syndrome vector is equal to a
particular column of the parity checking matrix H; and
correcting (2960) the detected one bit error in the second codeword.

4. An apparatus for processing instructions, configured to perform the method of any one of claims 1 to 3.

5. The apparatus of claim 4, comprising a processor for error detection, comprising error correction code circuitry
configured to perform the method of any one of claims 1 to 3.

6. Computer-program product for error detection stored on a non-transitory storage medium comprising computer
readable instructions to execute the steps of the method of any one of the claims 1 to 3.

Patentansprüche

1. Verfahren zur Fehlererkennung, das Folgendes umfasst:

a) Definieren (3010) einer Paritätsprüfungsmatrix H (2700), die ein Datensegment (2710) umfasst, das N Da-
tenspalten umfasst, und ein Paritätssegment (2720) umfasst, das K Paritätsspalten umfasst;
b) Auffüllen (3020) der 2(K-1)-1 Spalten im äußersten rechten Teil der Paritätsprüfungsmatrix H mit Spaltenvek-
toren mit ungeraden Gewichten;
c) Auffüllen (3030) der N+K-2(K-1)+1 Spalten im äußersten linken Teil der Paritätsprüfungsmatrix H mit Spal-
tenvektoren mit geraden Gewichten;
d) Berechnen (3040) einer Mehrzahl von Kombinationsvektoren durch Summieren jedes Paares benachbarter
Spalten der Paritätsprüfungsmatrix H;
e) Bestimmen (3050), ob jeder Spaltenvektor der Paritätsprüfungsmatrix H eindeutig und nicht gleich einem
der Mehrzahl von Kombinationsvektoren ist;
f) als Reaktion auf eine Bestimmung, dass jeder Spaltenvektor der Paritätsprüfungsmatrix H eindeutig und nicht
gleich einem der Mehrzahl von Kombinationsvektoren ist, Speichern der Paritätsprüfungsmatrix H zur Verwen-
dung beim Decodieren empfangener Kodewörter;
g) als Reaktion auf eine Bestimmung, dass zumindest ein Spaltenvektor der Paritätsprüfungsmatrix H nicht
eindeutig oder gleich einem beliebigen Kombinationsvektor ist, Zurückkehren zu Schritt b), um die Spaltenvek-
toren mit neuen Werten wieder aufzufüllen;
h) Empfangen (2910) eines Kodeworts (2622), das N Datenbits und K Paritätsbits umfasst, durch eine Fehler-
korrekturcode-Vorrichtung, wobei das Kodewort unter Verwendung einer Erzeugermatrix G kodiert wird, die
auf der Paritätsprüfmatrix H basiert;
i) Erzeugen (2920) eines dem empfangenen Kodewort zugeordneten Syndromvektors (2632) über die Fehler-
korrekturcode-Vorrichtung unter Verwendung der Paritätsprüfungsmatrix H; und
j) Erkennen (2970) eines benachbarten Zwei-Bit-Fehlers in dem Kodewort basierend auf einem Vergleich des
Syndromvektors mit der Paritätsprüfungsmatrix H über die Fehlerkorrekturcode-Vorrichtung.

EP 3 716 490 B1

31

5

10

15

20

25

30

35

40

45

50

55

2. Verfahren nach Anspruch 1, das ferner das Erkennen des benachbarten Zweibitfehlers als Reaktion auf die Be-
stimmung umfasst, dass der Syndromvektor kein Nullvektor ist und nicht gleich einer einzelnen Spalte der Paritäts-
prüfmatrix H ist; und
Bereitstellen einer Angabe (2642) über den benachbarten Zwei-Bit-Fehler.

3. Verfahren nach einem der Ansprüche 1 oder 2, das ferner Folgendes umfasst:

Empfangen eines zweiten Codewortes (2622), wobei das zweite Codewort N Datenbits und K Paritätsbits
umfasst und unter Verwendung der Erzeugermatrix G codiert wird, die auf der Paritätsprüfmatrix H basiert;
Erzeugen (2920), unter Verwendung der Paritätsprüfungsmatrix H, eines zweiten Syndromvektors, der dem
zweiten Kodewort zugeordnet ist;
Erkennen (2950) eines Ein-Bit-Fehlers als Reaktion auf eine Bestimmung, dass der zweite Syndromvektor
gleich einer speziellen Spalte der Paritätsprüfmatrix H ist; und
Korrigieren (2960) des erkannten Ein-Bit-Fehlers im zweiten Kodewort.

4. Einrichtung zum Verarbeiten von Anweisungen, die dazu konfiguriert ist, das Verfahren nach einem der Ansprüche
1 bis 3 durchzuführen.

5. Einrichtung nach Anspruch 4, die einen Prozessor zur Fehlererkennung umfasst, der eine Fehlerkorrekturcode-
Schaltung umfasst, die dazu konfiguriert ist, das Verfahren nach einem der Ansprüche 1 bis 3 durchzuführen.

6. Computerprogrammprodukt zur Fehlererkennung, das auf einem nichtflüchtigen Speichermedium gespeichert ist,
das computerlesbare Anweisungen umfasst, um die Schritte des Verfahrens nach einem der Ansprüche 1 bis 3
auszuführen.

Revendications

1. Procédé de détection d’erreurs, comportant les étapes consistant à :

a) définir (3010) une matrice H (2700) de contrôle de parité comportant un segment (2710) de données com-
portant N colonnes de données et un segment (2720) de parité comportant K colonnes de parité ;
b) garnir (3020) les 2(K-1)-1 colonnes dans la partie la plus à droite de la matrice H de contrôle de parité avec
des vecteurs colonnes dotés de poids impairs ;
c) garnir (3030) les N+K-2(K-1)+1 colonnes dans la partie la plus à gauche de la matrice H de contrôle de parité
avec des vecteurs colonnes dotés de poids pairs ;
d) calculer (3040) une pluralité de vecteurs de combinaison en sommant chaque paire de colonnes adjacentes
de la matrice H de contrôle de parité ;
e) déterminer (3050) si chaque vecteur colonne de la matrice H de contrôle de parité est unique et n’est égal
à aucun de la pluralité de vecteurs de combinaison ;
f) en réponse à une détermination selon laquelle chaque vecteur colonne de la matrice H de contrôle de parité
est unique et n’est égal à aucun de la pluralité de vecteurs de combinaison, stocker la matrice H de contrôle
de parité pour une utilisation dans le décodage de mots de code reçus ;
g) en réponse à une détermination selon laquelle au moins un vecteur colonne de la matrice H de contrôle de
parité n’est pas unique ou est égal à un quelconque vecteur de combinaison, revenir à l’étape b) pour regarnir
les vecteurs colonnes avec de nouvelles valeurs ;
h) faire recevoir (2910), par un dispositif à code de correction d’erreurs, un mot (2622) de code comportant N
bits de données et K bits de parité, le mot de code étant codé à l’aide d’une matrice génératrice G, qui est basée
sur la matrice H de contrôle de parité ;
i) générer (2920), par l’intermédiaire du dispositif à code de correction d’erreurs, à l’aide de la matrice H de
contrôle de parité, un vecteur (2632) de syndrome associé au mot de code reçu ; et
j) détecter (2970), par l’intermédiaire du dispositif à code de correction d’erreurs, une erreur sur deux bits
adjacents dans le mot de code d’après une comparaison du vecteur de syndrome à la matrice H de contrôle
de parité.

2. Procédé selon la revendication 1, comportant en outre la détection de l’erreur sur deux bits adjacents en réponse
à une détermination selon laquelle le vecteur de syndrome n’est pas un vecteur nul et n’est égal à aucune colonne
individuelle de la matrice H de contrôle de parité ; et

EP 3 716 490 B1

32

5

10

15

20

25

30

35

40

45

50

55

la fourniture d’une indication (2642) de l’erreur sur deux bits adjacents.

3. Procédé selon l’une quelconque des revendications 1 ou 2, comportant en outre :

la réception d’un second mot (2622) de code, le second mot de code comportant N bits de données et K bits
de parité et étant codé à l’aide de la matrice génératrice G, qui est basée sur la matrice H de contrôle de parité ;
la génération (2920), à l’aide de la matrice H de contrôle de parité, d’un second vecteur de syndrome associé
au second mot de code ;
la détection (2950) d’une erreur sur un bit en réponse à une détermination selon laquelle le second vecteur de
syndrome est égal à une colonne particulière de la matrice H de contrôle de parité ; et
la correction (2960) de l’erreur sur un bit détectée dans le second mot de code.

4. Appareil de traitement d’instructions, configuré pour réaliser le procédé selon l’une quelconque des revendications
1 à 3.

5. Appareil selon la revendication 4, comportant un processeur servant à la détection d’erreurs, comportant une cir-
cuiterie à code de correction d’erreurs configurée pour réaliser le procédé selon l’une quelconque des revendications
1 à 3.

6. Produit de programme d’ordinateur destiné à la détection d’erreurs conservé sur un support de stockage non
transitoire comportant des instructions lisibles par ordinateur pour exécuter les étapes du procédé selon l’une
quelconque des revendications 1 à 3.

EP 3 716 490 B1

33

EP 3 716 490 B1

34

EP 3 716 490 B1

35

EP 3 716 490 B1

36

EP 3 716 490 B1

37

EP 3 716 490 B1

38

EP 3 716 490 B1

39

EP 3 716 490 B1

40

EP 3 716 490 B1

41

EP 3 716 490 B1

42

EP 3 716 490 B1

43

EP 3 716 490 B1

44

EP 3 716 490 B1

45

EP 3 716 490 B1

46

EP 3 716 490 B1

47

EP 3 716 490 B1

48

EP 3 716 490 B1

49

EP 3 716 490 B1

50

EP 3 716 490 B1

51

EP 3 716 490 B1

52

EP 3 716 490 B1

53

EP 3 716 490 B1

54

EP 3 716 490 B1

55

EP 3 716 490 B1

56

EP 3 716 490 B1

57

EP 3 716 490 B1

58

EP 3 716 490 B1

59

EP 3 716 490 B1

60

EP 3 716 490 B1

61

EP 3 716 490 B1

62

EP 3 716 490 B1

63

EP 3 716 490 B1

64

EP 3 716 490 B1

65

EP 3 716 490 B1

66

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• EP 1156419 A2 [0004]

Non-patent literature cited in the description

• SANCHEZ-MACIAN et al. Hamming SEC-DAED
and Extended Hamming SEC-DED-TAED Codes
Through Selective Shortening and Bit Placement.
IEEE TRANSACTIONS ON DEVICE AND MATERI-
ALS RELIABILITY, 01 March 2014, vol. 14 (1),
574-576 [0004]

• Intel@ 64 and IA-32 Architectures Software Devel-
oper’s Manual. September 2014 [0104]

• Intel@ Advanced Vector Extensions Programming
Reference, October 2014 [0104]

	bibliography
	description
	claims
	drawings
	cited references

