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(57) ABSTRACT

An environment-aware prediction and control framework,
which incorporates learned environment and terrain features
into a predictive model for human-robot symbiotic walking,
is disclosed herein. First, a compact deep neural network is
introduced for accurate and efficient prediction of pixel-level
depth maps from RGB inputs. In turn, this methodology
reduces the size, weight, and cost of the necessary hardware,
while adding key features such as close-range sensing,
filtering, and temporal consistency. In combination with
human kinematics data and demonstrated walking gaits, the
extracted visual features of the environment are used to learn
a probabilistic model coupling perceptions to optimal
actions. The resulting data-driven controllers. Bayesian
Interaction Primitives, can be used to infer in real-time
optimal control actions for a lower-limb prosthesis. The
inferred actions naturally take the current state of the envi-
ronment and the user into account during walking.
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FIG. 4A
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FIG. 4B
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FIG. 5A
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FIG. 5B
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FIG. 8B
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RECEIVE, AT A PROCESSOR, IMAGE DATA FROM A CAMERA ASSOCIATED WITH
U2 A PROSTHETIC OR ORTHOTIC JOINT

CAd
N

EXTRACT, BY A DEPTH ESTIMATION NETWORK FORMULATED AT THE
PROCESSOR, A SET OF DEPTH FEATURES INDICATIVE OF PERCEIVED SPATIAL
DEPTH INFORMATION OF A SURROUNDING ENVIRONMENT FROM THE IMAGE
DATA

A
(=)
F SN

GENERATE, BY A CONTROL OUTPUT MODULE FORMULATED AT THE
PROCESSOR, A CONTROL SIGNAL TO BE APPLIED TO THE PROSTHETIC JOINT
BY INFERENCE WITHIN A LATENT SPACE BASED ON THE SET OF DEPTH
FEATURES, AN ORIENTATION OF THE PROSTHETIC OR ORTHOTIC JOINT AND
AN OBSERVED BEHAVIOR MODEL USING ENSEMBLE BAYESIAN INTERACTION
PRIMITIVES

(28]
L=
[=}]

APPLY, BY THE PROCESSOR, THE CONTROL SIGNAL TO THE PROSTHETIC OR
ORTHOTIC JOINT

(28]
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FIG. 11A
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300 (cont'd

EXTRACT, BY A DEPTH ESTIMATION NETWORK FORMULATED AT THE
PROCESSOR, A SET OF DEPTH FEATURES INDICATIVE OF PERCEIVED SPATIAL
DEPTH INFORMATION OF A SURROUNDING ENVIRONMENT FROM THE IMAGE
DATA

l

ESTIMATE, BY THE DEPTH ESTIMATION NETWORK, A PIXEL LEVEL
DEPTH MAP FROM THE IMAGE DATA CAPTURED BY THE CAMERA

l

EXTRACT, BY AN ENCODER NETWORK OF A DEPTH ESTIMATION
NETWORK FORMULATED AT THE PROCESSOR, AN INITIAL
REPRESENTATION INDICATIVE OF DEPTH INFORMATION WITHIN
THE IMAGE DATA

l

RECONSTRUCT, BY A DECODER NETWORK OF THE DEPTH

342 | ESTIMATION NETWORK FORMULATED AT THE PROCESSOR, THE

| IMAGE DATA USING THE INITIAL REPRESENTATION INDICATIVE
OF DEPTH INFORMATION WITHIN THE IMAGE DATA

l

GENERATE, BY THE DEPTH ESTIMATION NETWORK, A
PREDICTED DEPTH FEATURE MAP INCLUDING A SET OF DEPTH
343 FEATURES INDICATIVE OF PERCEIVED SPATIAL DEPTH
INFORMATION OF A SURROUNDING ENVIRONMENT FROM THE

IMAGE DATA

l

SEGMENT, BY A SEGMENTATION MODULE IN COMMUNICATION
WITH THE DEPTH ESTIMATION NETWORK, THE PIXEL LEVEL
344 DEPTH MAP INTO A FIRST AREA AND A SECOND AREA, THE
_ FIRST AREA INCLUDING A LIMB ASSOCIATED WITH THE
PROSTHETIC OR ORTHOTIC JOINT AND THE SECOND AREA
INCLUDING AN ENVIRONMENT AROUND THE LIMB

o
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FIG. 11B
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GENERATE, BY A CONTROL OUTPUT MODULE FORMULATED AT THE
PROCESSOR, A CONTROL SIGNAL TO BE APPLIED TO THE PROSTHETIC OR
ORTHOTIC JOINT BY INFERENCE WITHIN A LATENT SPACE BASED ON THE SET
OF DEPTH FEATURES, AN ORIENTATION OF THE PROSTHETIC OR ORTHOTIC
JOINT AND AN OBSERVED BEHAVIOR MODEL USING ENSEMBLE BAYESIAN
INTERACTION PRIMITIVES

l

DETERMINE, AT THE CONTROL OUTPUT MODULE, AN OBSERVED
BEHAVIOR MODEL BASED ON ONE OR MORE DEPTH FEATURES OF THE
PIXEL LEVEL DEPTH MAP AND AN ORIENTATION OF THE PROSTHETIC
OR ORTHOTIC JOINT

l

UNIFORMLY SAMPLE, AT THE CONTROL OUTPUT MODULE, AN
ENSEMBLE OF LATENT OBSERVATIONS FROM ONE OR MORE
OBSERVED BEHAVIOR DEMONSTRATIONS OF THE PROSTHETIC
OR ORTHOTIC JOINT THAT INCORPORATE HUMAN KINEMATIC
PROPERTIES AND ENVIRONMENTAL FEATURES WITHIN THE
LATENT SPACE, A TRAJECTORY OF THE PROSTHETIC OR
ORTHOTIC JOINT BEING COLLECTIVELY DESCRIBED BY A
PLURALITY OF BASIS FUNCTIONS

3
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FIG. 11C
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300 {cont’d

ITERATIVELY PROPAGATE, AT THE CONTROL OUTPUT MODULE, THE
ENSEMBLE FORWARD BY ONE STEP USING A STATE TRANSITION
FUNCTION AS THE PROSTHETIC OR ORTHOTIC JOINT OPERATES

()
(5

ITERATIVELY UPDATE, AT THE CONTROL OUTPUT MODULE, ONE OR
364 MORE MEASUREMENTS OF THE ENSEMBLE USING THE SET OF DEPTH
= FEATURES FROM THE PIXEL DEPTH MAP AND AN ORIENTATION OF THE
PROSTHETIC OR ORTHOTIC JOINT

Y
ITERATIVELY PROJECT, AT THE CONTROL OUTPUT MODULE, A MEAN
AND VARIANCE OF ONE OR MORE LATENT COMPONENTS OF THE
ENSEMBLE INTO A TRAJECTORY SPACE THROUGH THE PLURALITY OF
BASIS FUNCTIONS AND BASED ON THE ONE OR MORE MEASUREMENTS
OF THE ENSEMBLE

l

UPDATE, AT THE CONTROL OUTPUT MODULE, THE CONTROL SIGNAL
BASED ON A DIFFERENCE BETWEEN A NEW OBSERVATION AT A FIRST
TIME t AND AN EXPECTED OBSERVATION AT A SECOND TIME t+1, THE
EXPECTED OBSERVATION BEING INDICATIVE OF ONE OR MORE
MEASUREMENTS OF THE ENSEMBLE TAKEN AT TIME t-1 AND THE NEW
OBSERVATION BEING INDICATIVE OF ONE OR MORE MEASUREMENTS
OF THE ENSEMBLE TAKEN AT TIME ¢

D
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FIG. 11D
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300 (cont’d

TRAIN THE DEPTH ESTIMATION NETWORK USING A GROUND TRUTH
DATASET

[ oY)
-
L)

APPLY THE DEPTH ESTIMATION NETWORK TO THE GROUND
TRUTH DATASET THAT INCLUDES DEPTH INFORMATION FOR
EACH OF A PLURALITY OF IMAGES

(¥4
o
-k

DETERMINE, AT THE PROCESSOR, A LOSS ASSOCIATED WITH A
DECODER STAGE OF THE PLURALITY OF DECODER STAGES OF
THE DECODER NETWORK AND AN ASSOCIATED ENCODER
STAGE OF THE ENCODER NETWORK

(6]
e
N

MINIMIZE, BY THE PROCESSOR, A LOSS BETWEEN A GROUND
TRUTH FEATURE AND A DEPTH FEATURE OF THE PLURALITY OF
DEPTH FEATURES

l

UPDATE, BY THE PROCESSOR, ONE OR MORE PARAMETERS OF
THE DEPTH ESTIMATION NETWORK BASED ON THE LOSS
BETWEEN THE GROUND TRUTH FEATURE AND THE DEPTH
FEATURE OF THE PLURALITY OF DEPTH FEATURES
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FIG. 11E
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300 {cont’d

APPLY, AT THE PROCESSOR, A TEMPORAL CONSISTENCY
TRAINING METHODOLOGY TO THE PLURALITY OF DEPTH
FEATURES

l

OUTLINE ONE OR MORE REGIONS IN THE IMAGE DATA
THAT REQUIRE HIGHER ACCURACY

l

DETERMINE A DISPARITY LOSS BETWEEN A FIRST FRAME
OF THE IMAGE DATA TAKEN AT TIME t AND A SECOND
FRAME OF THE IMAGE DATA TAKEN AT TIME t-1

l

UPDATE, BY THE PROCESSOR, ONE OR MORE
PARAMETERS OF THE DEPTH ESTIMATION NETWORK
BASED ON THE DISPARITY LOSS BETWEEN THE FIRST

FRAME AND THE SECOND FRAME
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SYSTEMS AND METHODS FOR AN
ENVIRONMENT-AWARE PREDICTIVE
MODELING FRAMEWORK FOR
HUMAN-ROBOT SYMBIOTIC WALKING

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This is a PCT application that claims benefit to U.S.
Provisional Patent Application Ser. No. 63/210,187 filed 14
Jun. 2021, which is herein incorporated by reference in its
entirety.

GOVERNMENT SUPPORT

[0002] This invention was made with government support
under 1749783 awarded by the National Science Founda-
tion. The government has certain rights in the invention.

FIELD

[0003] The present disclosure generally relates to human-
robot interactive systems, and in particular to a system and
associated method for an environment-aware predictive
modeling framework for a prosthetic or orthotic joint.

BACKGROUND

[0004] Robotic prostheses and orthotics have the potential
to change the lives of millions of lower-limb amputees or
non-amputees with mobility-related problems for the better
by providing critical support during legged locomotion.
Powered prostheses and orthotics enable complex capabili-
ties such as level-ground walking and running or stair
climbing, while also enabling reductions in metabolic cost
and improvements in ergonomic comfort. However, most
existing devices are tuned toward and heavily focus on
unobstructed level-ground walking, to the detriment of other
gait modes-especially those required in dynamic environ-
ments. Limitations to the range and adaptivity of gaits has
negatively impacted the ability of amputees to navigate
dynamic landscapes. Yet, the primary cause of falls is
inadequate foot clearance during obstacle traversal during
obstacle traversal. In many cases only millimeters decide
whether a gait will be safe or whether it will lead to a
dangerous contact with the environment. In light of this
observation, control solutions are needed to facilitate safe
and healthy locomotion over common and frequent barriers
such as curbs or stairs. A notable challenge for intelligent
prosthetics to overcome is therefore the ability sense and act
upon important features in the environment.

[0005] Prior work in the field has centered on identifying
discrete terrain classes based on kinematics including
slopes, stairs, and uneven terrain. Vision systems in the form
of depth sensors have recently been utilized in several
vision-assisted exoskeleton robots. However, depth sensors
with sufficient accuracy at close range are not portable, e.g.,
Li-DAR, and often prohibitively expensive. There is a
current lack of solutions that provide high fidelity depth
sensing and portability for use in environment-aware pros-
thetics.

[0006] It is with these observations in mind, among others,
that various aspects of the present disclosure were conceived
and developed.

Aug. 29, 2024

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The patent or application file contains at least one
drawing executed in color. Copies of this patent or patent
application publication with color drawing(s) will be pro-
vided by the Office upon request and payment of the
necessary fee.

[0008] FIG.1 is asimplified diagram showing a system for
environment-aware generation of control signals for a pros-
thetic or orthotic joint;

[0009] FIGS. 2A and 2B are simplified diagrams showing
a framework for generating a control model for the system
of FIG. 1,

[0010] FIG. 2C is a simplified diagram showing a depth
and segmentation model for the framework of FIG. 2A;
[0011] FIG. 2D is a simplified diagram showing an
ensemble Bayesian interaction primitive generation model
for the framework of FIG. 2A;

[0012] FIG. 3 is a simplified diagram showing a depth
prediction neural network for the framework of FIG. 2A;
[0013] FIGS. 4A and 4B show a series of images showing
human walking on different ground surfaces;

[0014] FIGS. 5A and 5B show a series of images showing
validation of the framework of FIG. 2A;

[0015] FIG. 6 shows a series of images illustrating a
predicted depth map with respect to a ground truth depth
map by the framework of FIG. 2A;

[0016] FIG. 7 is a graphical representation showing pre-
diction of the ankle angle control trajectory for an entire
phase of walking by the system of FIG. 1;

[0017] FIGS. 8A and 8B show a series of images illus-
trating depth estimation with point cloud view;

[0018] FIG. 9 is an image showing a 3D point cloud for
depth estimation of a subject stepping on a stair;

[0019] FIG. 10 is a graphical representation showing
prediction of an ankle angle control trajectory for a single
step; and

[0020] FIGS. 11A-11F are a series of process flows show-
ing a method that implements aspects of the framework of
FIGS. 2A-2D;

[0021] FIG. 12 is a simplified diagram showing an exem-
plary computing system for implementation of the system of
FIG. 1.

[0022] Corresponding reference characters indicate corre-
sponding elements among the view of the drawings. The
headings used in the figures do not limit the scope of the
claims.

DETAILED DESCRIPTION

[0023] Various embodiments of an environment-aware
prediction and control system and associated framework for
human-robot symbiotic walking are disclosed herein. The
system takes a single, monocular RGB image from a leg-
mounted camera to generate important visual features of the
current surroundings, including the depth of objects and the
location of the foot. In turn, the system includes a data-
driven controller that uses these features to generate adap-
tive and responsive actuation signals. The system employs a
data-driven technique to extract critical perceptual informa-
tion from low-cost sensors including a simple RGB camera
and IMUs. To this end, a new, multimodal data set was
collected for walking with the system on variable ground
across 57 varied scenarios, e.g., roadways, curbs, gravel, etc.
In turn, the data set can be used to train modules for
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environmental awareness and robot control. Once trained,
the system can process incoming images and generate depth
estimates and segmentations of the foot. Together with
kinematic sensor modalities from the prosthesis, these visual
features are then used to generate predictive control actions.
To this end, the system builds upon ensemble Bayesian
interaction primitives (enBIP), which have previously been
used for accurate prediction in human biomechanics and
locomotion. However, going beyond prior work on Interac-
tion Primitives, the present system incorporates the percep-
tual features directly into a probabilistic model formulation
to learn a state of the environment and generate predictive
control signals. As a result of this data-driven training
scheme, the prosthesis automatically adapts to variations in
the ground for mobility-related actions such as lifting a leg
to step up a small curb.

Environment-Aware Prediction and Control System

[0024] Referring to FIGS. 1-4B, an environment-aware
prediction and control system 100 (hereinafter, system 100)
integrates depth-based environmental terrain information
into a holistic control model for human-robot symbiotic
walking. The system 100 provides a prosthetic or orthotic
joint 130 in communication with a computing device 120
and a camera 110 that collectively enable the prosthetic or
orthotic joint 130 to take environmental surroundings into
account when performing various actions. In one example
embodiment shown in FIG. 1, the prosthetic or orthotic joint
130 is a powered, electronically assisted prosthetic or
orthotic that includes an ankle joint. The prosthetic or
orthotic joint 130 can receive one or more control signals
from the computing device 120 that dictate movement of
various sub-components of the prosthetic or orthotic joint
130. As such, the prosthetic or orthotic joint 130 can be
configured to assist a wearer in performing various mobility-
related tasks such as walking, stepping onto stairs and/or
curbs, shifting weight, etc.

[0025] The computing device 120 receives image and/or
video data from the camera 110 which captures information
about various environmental surroundings and enables the
computing device 120 to make informed decisions about the
control signals applied to the prosthetic or orthotic joint 130.
The computing device 120 includes a processor in commu-
nication with a memory, the memory including instructions
that enable the processor to implement a framework 200 that
receives the image and/or video data from the camera 110 as
the wearer uses the prosthetic or orthotic joint 130, extracts
a set of depth features from the image and/or video data that
indicate perceived spatial depth information of a surround-
ing environment, and determines a control signal to be
applied to the prosthetic or orthotic joint 130 based on the
perceived depth features. Following determination of the
control signal by the framework 200 implemented at the
processor, the computing device 120 applies the control
signal to the prosthetic or orthotic joint 130. The present
disclosure investigates the efficacy of the system 100 by
evaluating how well the prosthetic or orthotic joint 130
performs on tasks such as stepping onto stairs or curbs aided
by the framework 200 of the computing device 120. In some
embodiments, the camera 110 can be leg-mounted or
mounted in a suitable location that enables the camera 110
to capture images of an environment that is in front of the
prosthetic or orthotic joint 130. To achieve environmental
awareness in human-robot symbiotic walking of the system
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100, the following is achieved: (a) perform visual and
kinematic data collection from an able-bodied subject, (b)
augment the data set with segmented depth features from a
trained depth estimation deep neural network, and (c) train
a probabilistic model to synthesize control signals to be
applied to the prosthetic or orthotic joint 130 given per-
ceived depth features.

[0026] The framework 200 implemented at the computing
device 120 of system 100 is depicted in FIGS. 2A-2D. The
framework 200 is organized into two main sections includ-
ing: a depth and segmentation module 210 (FIG. 2C) that
extracts the set of depth features indicative of spatial depth
information of a surrounding environment from an image
captured by the camera 110 and performs a foot segmenta-
tion task on the image; and a control output module 220
(FIG. 2D) that generates control signals for the computing
device 120 to apply to the prosthetic or orthotic joint 130
based on the set of depth features extracted by depth and
segmentation module 210 from the image captured by the
camera 110. The depth and segmentation module 210
includes a depth estimation network 212 defining a network
architecture, with loss functions and temporal consistency
constraints that enable the depth and segmentation module
210 to estimate a pixel level depth map from image data
captured by the camera 110, while ensuring low noise and
high temporal consistency. In some embodiments, the image
data captured by the camera 110 includes an RGB value for
each respective pixel of a plurality of pixels of the image
data, which the depth and segmentation module 210 uses to
extract depth features of the surrounding environment. As
humans naturally use depth perception to modulate their
own movements during mobility-related tasks, the system
100 extends this ability to the prosthetic or orthotic joint 130
by using depth perception to modulate control inputs applied
to the prosthetic or orthotic joint 130.

[0027] Referring to FIG. 2D, the control output module
220 uses ensemble Bayesian interaction primitives (enBIP)
to generate environmentally-adaptive control outputs via
inference within a latent space based on the extracted depth
features from the depth and segmentation module 210. As
detailed below, enBIP is an extension of interaction primi-
tives which have been utilized extensively for physical
human-robot interaction (HRI) tasks including games of
catch, handshakes with complex artificial muscle based
humanoid robots, and optimal prosthesis control. A critical
feature of enBIPs is their ability to develop learned models
of that describe coupled spatial and temporal relationships
between human and robot partners, paired with powerful
nonlinear filtering, which is why enBIPs work well in
human-robot collaboration tasks. The combination of both
these neural network modules as well as the learned enBIP
model of the framework 200 can be implemented within the
system 100 using off-the-shelf components such as a mobile
Jetson Xavier board evaluated below.

Depth Prediction Network

[0028] Referring to FIGS. 2A-2C and 3, the depth esti-
mation network 212 for depth prediction as implemented by
the depth and segmentation module 210 for navigating
terrain features is described herein. The depth estimation
network 212 uses a combination of convolutional and
residual blocks in an autoencoder architecture (AE) to
generate depth predictions from RGB image data captured
by the camera 110.
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[0029] Network Architecture: The depth estimation net-
work 212, shown in FIG. 3, is an AE network which utilizes
residual learning, convolutional blocks, and skip connec-
tions to ultimately extract a final depth feature estimate f that
describe depth features within an image I, captured by the
camera 110. The depth estimation network 212 starts with a
encoder network 214 (in particular, a ResNet-50 encoder
network, which was shown to be a fast and accurate encoder
model) and includes a decoder network 216. Layers of the
encoder network 214 and the decoder network 216 are
connected via skip connection in a symmetrical manner to
provide additional information at decoding time. Finally, the
depth estimation network 212 uses a DispNet training struc-
ture to implement a loss weight schedule through down-
sampling. This approach enables the depth estimation net-
work 212 to first learn a coarse representation of depth
features from digital RGB images to constrain intermediate
features during training, while finer resolutions impact the
overall accuracy.

[0030] The depth feature extraction process starts with an
input image [, captured by the camera 110, where Ie
R "2 and where the image I, includes RGB data for each
pixel therewithin. The input image I, is provided to the depth
estimation network 212. The encoder network 214 of the
depth estimation network 212 receives the input image I,
first. As shown, in one embodiment, the encoder network
214 includes five stages. Following a typical AE network
architecture, each stage of the encoder network 214 narrows
the size of the representation from 2048 neurons down to 64
neurons at a final convolutional bottleneck layer.

[0031] The decoder network 216 increases the network
size at each layer after the final convolutional bottleneck
layer of the encoder network 214 in a pattern symmetrical
with that of the encoder network 214. While the first two
stages of the decoder network 216 are transpose residual
blocks of 3x3 size kernels, the third and fourth stages of the
decoder network 216 are convolutional projection layers
with two 1x1 kernels each. Although ReLU activation
functions connect each stage of the decoder network 216,
additional sigmoid activation function outputs facilitate dis-
parity estimation in the decoder network 216 by computing
the loss for each output of varied resolutions. The output of
the depth estimation network 212 is a combination of a final
depth feature estimate fe g “*" for the input image I, as
well as intermediate feature map outputs f € R """ with
n<5 for each stage of the decoder network 216 starting at the
final convolutional bottleneck layer of the encoder network
and R=[r, r, >, r2, r~'] being a resolution modifier
defined by a resolution coefficient r. In one implementation
shown in FIG. 3, the decoder network of the depth estima-
tion network 212 provides 1 output and 5 hidden feature map
predictions in different resolutions, including estimated
depth values for each pixel within the input image [,, with
the combination of all outputs denoted as D where D=[fs, f,,
f;, £, 1, f].

[0032] Loss Function: In order to use the full combination
of final and intermediate outputs of D in a loss function of
the depth estimation network 212 during training, it is
necessary to first define a loss £ as a summation of a depth
image reconstruction loss ER over each of the prediction of
various resolutions (e.g., the final feature map output from
a final output layer of the decoder network 216 in addition
to intermediate feature map outputs). The loss £ can be
described as:
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6 . 48]

where estimated depth values at each stage D of the decoder
network 216 are compared to a ground truth vector D,
downsampled for each corresponding feature map resolution
using average pooling operations. The depth estimation
network 212 uses a loss weight vector to adjust for each
feature size with associated elements of w'=[ Y64, V32, Vis, VY5,
V4, 12]. The depth estimation network 212 uses a reconstruc-
tion loss £  for depth image reconstruction that includes
four loss elements, including: (1) a mean squared error
measure [ ,,, (2) a structural similarity measure £ ., (3) an
inter-image gradient measure [ ., and (4) a total variation
measure [,

(d, d) = 01.Lim +02Ls + 3Ly + Qs Ley @

where d is an iterated depth feature output deDanddisa
ground truth feature de D, and hyperparameters o,=102,
a,=1, 0z=1, and 0,=107", influence the importance of each
respective loss element on £ . The mean squared error
measure can be represented as:

2 3)

Ln(d, d)=||d-d|3

[0033] A structural similarity index measure (SSIM) is
adopted since it can be used to avoid distortions by capturing
a covariance alongside an average of a ground truth feature
map and a predicted depth feature map. A SSIM loss £ , can
be represented as:

o 1-SSiM(d, d “®
Ly(d, d) = %

[0034] Losses based on inter-image gradient primarily
ensure illumination-invariance such that bright lights or
shadows cast across the image do not affect the end depth
prediction. The inter-image gradient measure £, can be
implemented as:

R N N 5)
L(d, d)= - (|Vsdi = Vid|| +||V:d; - ¥, 4]
=1

>

where V denotes a gradient calculation, and || is the
absolute value. Since £ . is computed pixelwise both hori-
zontally and vertically, a number of pixels of the output
image is denoted as n. In order to add an additional loss to
facilitate image deblurring and denoising, the total variation
measure £, passes the gradient strictly over the output
depth feature maps to minimize noise and round terrain
features:
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[0035] Temporal Consistency: Prediction consistency over
time is a critical necessity for stable and accurate control of
a robotic prosthesis. Temporal consistency of the depth
predictions provided by framework 200 is achieved during
training via the four loss functions, £, £ .. £ o and £, by
fine-tuning the depth estimation network 212. In particular,
the framework 200 fine-tunes the depth estimation network
212 through application of a temporal consistency training
methodology to the resultant depth feature output deD,
which includes employing binary masks to outline one or
more regions within an image which require higher accu-
racy, and further includes applying a disparity loss £ ..
between two consecutive frames including a first frame
taken at time t—1 and a second frame taken at time t (e.g.,
images within video data captured by camera 110). An
overlapping mask of the two frames can be defined as M and
can be set to equal to the size of a ground truth feature d. As
such, the disparity loss £ ., is formulated as:

Ldis(ar:h ar) = ™

ﬁllm( 1 d )tﬁzls( 1 d )t)’(LR(dr 1 diot) + Le(dy, dy)).

[0036] where d M indicates for a predlcted frame at time t
with a binary mask applied: d —d -M. Additionally, to
sustain the precision of predlctlon over time, the framework
200 applies £ , is on each frame individually. Each loss
element of the fine-tuning process is weighted by corre-
sponding hyperparameters, 3,=0.7, §,=0.3, y—10. The fine-
tuning step, therefore, makes the predicted frames more
similar to one another in static regions while maintaining the
reconstruction accuracy from prior network training.

Control Outputs Using Ensemble Bayesian Interaction
Primitives

[0037] Given the extracted environmental information
provided by depth and segmentatlon module 210 including
depth features D= [fs, 4 13, T, T, f]. for each pixel within
images captured by the camera 110, the control output
module 220 uses enBIP to generate appropriate responses
for the prosthetic or orthotic joint 130. As a data-driven
method, enBIP uses example demonstrations of interactions
between multiple agents to generate a behavior model that
represents an observed system of human kinematics with
respect to the prosthetic or orthotic joint 130. enBIP was
selected as a modeling formulation for this purpose because
enBIP enables inference of future observable human-robot
states as well as non-observable human-robot states. Addi-
tionally, enBIP supplies uncertainty estimates which can
allow a controller such as computing device 120 to validate
predicted control actions, possibly adding modifications if
the model is highly unsure. Lastly, enBIP provides robust-
ness against sensor noise as well as real-time inference
capabilities in complex human-robot interactive control
tasks.

[0038] Inone aspect, assisted locomotion with a prosthetic
or orthotic is cast as a close interaction between the human
kinematics, environmental features, and robotic prosthetic.
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The control output module 220 incorporates environmental
information in the form of predicted depth features along
with sensed kinematic information from an inertial measure-
ment unit (IMU) 160 (FIGS. 2A and 2B) and prosthesis
control signals into a single holistic locomotion model. The
control output module 220 uses kinematic sensor values,
along with processed depth features and prosthesis control
signals from n E N observed behavior demonstrations (e.g.,
demonstrated strides using the prosthetic or orthotic joint
130), to form an observation vector [y,, . . . Y5,], € R?>7"
for D, variables in T, time steps. As such, by capturing the
observed behavior demonstrations of the prosthetic or
orthotic joint 130, the control output module 220 can incor-
porate human kinematic properties and environmental fea-
tures within the latent space to generate appropriate control
signals that take into account human kinematic behavior
especially in terms of observable environmental features
(which can be captured at the depth and segmentation
module 210).

[0039] Latent Space Formulation: Generating an accurate
model from an example demonstration matrix would be
difficult due to high internal dimensionality, especially with
no guarantee of temporal consistency between demonstra-
tions. One main goal of a latent space formulation deter-
mined by control output module 220 is therefore to reduce
modeling dimensionality by projecting training demonstra-
tions (e.g., recorded demonstrations of human-prosthesis
behavior) into a latent space that encompasses both spatial
and temporal features. Notably, this process must be done in
a way that allows for estimation of future state distributions
for both observed and unobserved variables Y, ;.- with only
a partial observation of the state space and the example
demonstration matrix Y1/1:T,, YN/1:T,:

P(f’wl:T |)’1:r> Yll:Tl’ e YIIYTN)' ®

[0040] Basis function decomposition sidesteps the signifi-
cant modeling challenges of requiring a generative model
over all variables and a nonlinear transition function. Basis
function decomposition enables the control output module
220 to approximate each trajectory as a linear combination
of B functions in tt}e form of: Y, —CD o) Tw +e . Each basis
function @€ R % is modified w1th Correspondlng weight
parameters w”e [ % to minimize an approximation error € 3
As a time-invariant dimensionality reduction method, the
control output module 220 includes a temporal shift to the
relative time measure phase ¢(t)e R, where 0<¢(H)<1.
[0041] Although the time-invariant latent space formula-
tion facilitates estimation of entire trajectories, filtering over
both spatial and temporal features interactions was more
robust and accurate. As such, the control output module 220
incorporates phase, phase Velomty, and weight vectors,
w=[0, 0, w7, ..., wPTle R & where B=X ,PB into the state
representation. By assuming that a training demonstration
advances linearly in time, the phase velocity is estimated
with, ¢=1/T,. Substituting the weight vector into 8 and
applying the Bayes’ rule yields:

p(WrYl;,, WO) o p(y |Wr)p(WrY1;p WO) O
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since the time-invariant weight vector p(w, Y .,, W), models
the entire trajectory Y.

[0042] Inference: In order to accommodate a variety of
control modifications based on observed or predicted envi-
ronmental features, the control output module 220 leverages
ensemble Bayesian estimation from enBIP to produce
approximate inferences of the posterior distribution accord-
ing to Equation (9), which include human kinematics and
environmental features. Assuming, of course, that higher-
order statistical moments between states are negligible and
that the Markov property holds. Algorithmically, enBIP first
generates an ensemble of latent observation models, taken
randomly from the demonstration set. As the subject walks
with the prosthetic or orthotic joint 130, the control output
module 220 propagates the ensemble forward one step with
a state transition function. Then, as new sensor and depth
observations periodically become available as the camera
110 and the depth and segmentation module 210 work, the
control output module 220 performs a measurement update
step across the entire ensemble. From the updated ensemble,
the control output module 220 calculates the mean and
variance of each latent component, and subsequently proj-
ects the mean and variance into a trajectory space by
applying the linear combination of basis functions to the
weight vectors.

[0043] The control output module 220 uniformly samples
the initial ensemble of E members X=[x', . . ., x] from the
observed demonstrations x4=[0, 0, w,], 1<j<E with i~
U (1,N), and E<N. Inference through Bayesian estimation
begins as the control output module 220 iteratively propa-
gates each ensemble member forward one step to approxi-
mate p(w,ly, ;,Wq) with:

xr]irfl = g(xr];lpfl) = 1= ] SE, (10)

which utilizes a constant-velocity state transition function
g(-) and stochastic error € =N(0, Q,), estimated with a
normal distribution from the sample demonstrations. Next,
the control output module 220 updates each ensemble mem-
ber with the observation through the nonlinear observation
operator h(-),

Hyr = [l ) 1T an

followed by computing a deviation of the ensemble from the
sample mean:

1E ] 1E ) (12)
Hd = HXp1 - EZh(le,,l), . EZh(x,fl,,l) .

-1 =1

[0044] The control output module 220 uses the deviation
H,A, and observation noise R to compute an innovation
covariance:

1 . (13)
Wy = H(HrAr)(HrAr) +R.
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[0045] The control output module 220 uses the innovation
covariance as well as the deviation of the ensemble to
calculate the Kalman gain from the ensemble members
without a covariance matrix through:

1E (14)
4, = )(r|rfl - sz;pfla
1

1 _ (15)
K = HAr(HrAr)TWr L

[0046] Finally, the control output module 220 realizes a
measurement update by applying a difference between a new
observation at time t and an expected observation given t—1
to the ensemble through the Kalman gain,

)71=[)’r+%1;, >)’r+E§], (16)

Xy = Xy + K(3, - Hi Xym)- an

[0047] The control output module 220 accommodates for
partial observations by artificially inflating the observation
noise for non-observable variables such as the control sig-
nals such that the Kalman filter does not condition on these
unknown input values.

Experiments and Results

[0048] To validate the system 100, a number of experi-
ments were conducted with a focus on real-world human-
subject data. The following describes in detail how the data
was collected, processed, and how the models were trained,
including specific hardware and software utilized. To better
discuss specific model results, the following experimental
section is further broken up into experiments and results for
(1) the network architecture and (2) the enBIP model with
environmental awareness. Experiment 1 examines the effi-
cacy of our network architecture in predicting accurate depth
values from RGB images collected from a body mounted
camera. While Experiment 2 applies the network architec-
ture on embedded hardware to infer environmentally con-
ditioned control trajectories for a lower-limb prosthesis in a
testbed environment.

Data Collection

[0049] Multimodal data sets were collected from partici-
pants who were outfitted with advanced inertial measure-
ment units (IMUs) and a camera/depth sensor module. The
IMUs are BNOO80 system-in-package and include a triaxial
accelerometer, a triaxial gyroscope, and a magnetometer
with a 32-bit ARM Cortex microcontroller running Hillcrest
Labs proprietary SH-2 firmware for sensor filtering and
fusion. IMU devices are combined with an ESP32 micro-
processor, in ergonomic cases that can easily be fitted to
subjects’ bodies over clothing, to send Bluetooth data pack-
ages out at 100 Hz. These inertial sensor modules were
mounted to the subjects’ lower limb and foot during the data
collection process to collect kinematic data. However, dur-
ing the testing phase, the foot sensor is removed. Addition-
ally, an Intel RealSense D435 depth camera module was
mounted to the subjects’ lower limb.
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[0050] A custom vision data set of 57 varied scenes was
collected with over 30,000 RGB-depth image pairs from the
lower-limb, during locomotion tasks in a dynamic urban
environment. Data collection involved a subject walking
over various obstacles and surfaces, including, but not
limited to: sidewalks, roadways, curbs, gravel, carpeting,
and up/down stairs; in differing lighting conditions at a fixed
depth range (0.0-1.0 meters). Example images from the
custom data set are visible in the upper row of FIGS. 4A and
4B with images of the subject walking in various scenes. The
second row of FIGS. 4A and 4B visualizes the depth values
of the same image using a color gradient; darker coloring
indicates closer pixels while lighter pixels are further away.
A custom annotated mask is shown in the third row of FIGS.
4A and 4B. These masks are used to train a masked RCNN
model predicting human stepping areas. The semantic masks
are also implemented to improve the temporal consistency.

Experiment 1: Neural Network Evaluation

[0051] In order for the network architecture of depth
estimation network 212 to operate under real-world condi-
tions, it must have both a low depth-prediction error, as well
as real-time computation capabilities. The following section
details the learning process and accuracy of our network
architecture on the custom human-subject data set.

TABLE 1
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was fine-tuned given masks provided from the custom
dataset using binary cross-entropy loss.

[0055] Results: The depth prediction results shown in FIG.
6 demonstrate prediction accuracy while walking in different
conditions. Comparing the middle row and the bottom row
of FIG. 6, it can be seen that the predicted depth images
exhibit a smoothing effect with less pixel to pixel noise than
the original input. Additionally, sharp features in the envi-
ronment, such as the stairs or curbs result in a delectably
sharper edge between the two surfaces. Finally, the depth
prediction network is shown to be accurate over a range of
ground materials and patterns, such as solid bricks, concrete,
aggregate gravel, carpet, and laminate stairs. The present
depth-prediction network achieves depth estimation regard-
less of the ground material, lighting, or environmental
features. It is particularly important to note that shadows
(which are typically induced by the user) do not negatively
affect the depth prediction performance.

[0056] Evaluation: The evaluation and the ablation study
of the depth prediction results are shown in Table I, the
evaluation process takes the RGB data from testing set and
compared the model predictions with the ground truth in
terms of commonly accepted evaluation metrics-absolute
REL, sq REL, RMSE, RMSE log, 8,, 6, and &, where §,,
is the percentage of the ground truth pixels under the

Comparisons of different decoder architectures on the custom dataset.

Result Evaluations and Ablation Study

abs sq RMSE RMSE

Encoder Decoder REL! REL/ l log 4 8,7 8,1 8,7 TC!
ResNet- Residual 0.2292 0.0530 0.0841 0.0615 0.8144 09140 0.9575 0.000194
50 Blocks

Conv 0.2285 0.0504 0.0808 0.0605 0.8057 0.9423 0.9656 0.000184

Blocks +

DispNet

Residual 0.2250 0.0494 0.0856 0.0633 0.7860 0.9175 0.9643 0.000195

Blocks +

Dispnet

System 0.2205 0.0480 0.0753 0.0567 0.8227 0.9227 0.9658 0.000179

100

[0052] The last row shows results from the present depth
estimation model. 1 indicates the higher the better; \ indi-
cates the lower the better.

[0053] Training: 80% (46 scenes) of the custom data set
was utilized for training and 20% (11 scenes) were utilized
for testing. Adam was selected as the optimizer with learning
rate n;=10">. The input has the shape 90x160x3, whereas
the ground truth and the output have the shape of 90x160x1.
The ground truth is down-sampled to 3x5, 6x10, 12x20,
23%40, and 45x80 for the loss weight schedule of DispNet.
Training was performed on 3 other AE architectures for
comparison in an empirical manner. Residual learning, Dis-
pNet, and the combination of using convolutional layers are
investigated for the decoder network 216 (see Table. ). All
models were trained for 100 epochs and fine-tuned by
applying a disparity loss with learning rate n,=107" for 30
epochs. FIGS. 5A and 5B show the validation among 4
models using the absolute REL and RMSE metrics.

[0054] A pre-trained masked RCNN was used as the
masking network for object detection. The masked RCNN

constraint: max(ai/di,di/ai)<1.25N) since the for temporal
consistency, 7 C is proposed as the metric for consistency
evaluation:

as)
aty-al')

T
TT-14ALL M

t

where T is the number of frames in a video sequence. Since
the terrain from the camera view is dynamic, we conclude
the lower 7C the better under the constrain: 7 C_70.
Another visual way in evaluating depth estimation models is
to review 3D point clouds generated with predicted depth
maps. FIG. 8B shows one sample point cloud for an image
(FIG. 8A) of the NYU-v2 data set (on which the system 100
did not train). In a similar vein, FIG. 9 depicts point clouds
generated during an example task of stepping on a stair.

[0057] Because the final version of the framework 200
must integrate with the prosthetic or orthotic joint 130 and
it must be capable of fast inference over a range of envi-
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ronmental variables. Therefore, the framework 200 was
deployed on an embedded hardware serving as the comput-
ing device 120, which is in some embodiments a Jetson
Xavier NX, which is a system on module (SOM) device
capable of up to 21 TOPS of accelerated computing and
tailored toward streaming data from multiple sensors into
modern deep neural networks. The framework 200 per-
formed inference in an average of 0.0860 sec (11.57 FPS)
with a standard deviation of 0.0013 sec.

Experiment 2: Prosthesis Evaluation

[0058] One critical use of environmental and terrain
awareness is in stepping over curbs or onto stairs. If a terrain
prediction algorithm is even 99% effective in stair prediction
it would still pose a grave safety concern, due to the chances
of causing the subject to fall down a set of stairs. Since
environmental features are directly incorporated with a very
high accuracy, the evaluation focuses experimentally on two
criteria in the prosthesis experiments (1) “Can enBIP model
stair stepping over a range of step distances?” and (2) “For
a given step, does incorporating environmental features
produce a more accurate model?”.

[0059] Training: Collected data for stair stepping was used
to train an enBIP model with modalities from tibia-mounted
inertial sensors, predicted depth features, and the ankle angle
control trajectory. To produce depth features from the pre-
dicted depth map, the system 100 took the average over two
masks which bisect the image horizontally and subtracting
the area behind the shoe from the area in front. A one-
dimensional depth feature was produced which showed the
changes in terrain due to slopes or steps. While the depth
features for this experiment were simplified, other and more
complex features were possible, such as, calculating curva-
ture, detecting stair edges, or incorporating the entire pre-
dicted depth map. Subjects were asked to perform 50 steps
of stair-stepping up onto a custom built curb during which
the subject was instructed to start from with their toe at
varying positions away from the curb in a range from 0
inches to 16 inches. Applying the framework 200, the
system 100 ends up with a generic model to predict ankle
angle control actions given IMU observations and depth
features. The compiled point cloud in FIG. 9 from one
example demonstration illustrates the accuracy of the depth
prediction method of depth and segmentation module 210
during experimentation.

[0060] Results: The system 100 produced an average
control error of 1.07° over 10 withheld example demonstra-
tion when using depth features for the stair stepping task
compared to an average control error of 6.60° without depth
features. The system 100 performed even better when exam-
ined at 35% phase, the approximate temporal location where
the foot traverses the leading edge of the stair, with average
control error of 2.32° compared to 9.25° for inference with
kinematics only. FIG. 10 highlights the difference between
inference with and without environmental awareness, where
from the partial observation of a stepping trajectory the
system 100 produced two estimates of the control trajectory
both with and without environmental awareness. Inference
with environmental awareness (blue) has a low variance,
which shows high confidence by the model, and withdraws
the toe substantially based on the observed depth features.
However, without environmental awareness (green) the
model does not have adequate information to form an
inference with high confidence leading to both an increase in
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variance, as well as a control trajectory which does not
sufficient dorsiflexion to the foot to clear the curb.

[0061] FIG. 7 shows the range of possible control actions
at the start of the stride given the position of the step as seen
through the predicted depth features. Given the same initial
conditions the horizontal position of the step in reference to
the foot clearly modifies the ankle angle control trajectory.
When the step is very close, the ankle angle must increase
dramatically to pull the toe up such that there is no collision
with the edge of the step. Likewise, as the step is moved
away from the foot the ankle must first apply plantarflexion
to push off the ground before returning to the neutral
position before heel-strike.

Methods

[0062] FIGS. 11A-11F are a series of process flows show-
ing a method 300 for implementing aspects of the system
100 and associated framework.

[0063] At block 302 of method 300 shown in FIG. 11A, a
processor receives image data from a camera associated with
a prosthetic or orthotic joint. At block 304, the processor
extracts, by a depth estimation network formulated at the
processor, a set of depth features indicative of perceived
spatial depth information of a surrounding environment
from the image data. At block 306, the processor generates,
by a control output module formulated at the processor, a
control signal to be applied to the prosthetic or orthotic joint
by inference within a latent space based on the set of depth
features, an orientation of the prosthetic or orthotic joint and
an observed behavior model using ensemble Bayesian inter-
action primitives. At block 308, the processor applies the
control signal to the prosthetic or orthotic joint.

[0064] With reference to FIG. 11B, block 304 includes a
sub-block 340, at which the processor estimates, by the
depth estimation network, a pixel level depth map from the
image data captured by the camera. Sub-block 340 includes
sub-block 341 in which the processor extracts, by an encoder
network of a depth estimation network formulated at the
processor, an initial representation indicative of depth infor-
mation within the image data. At sub-block 342, the pro-
cessor reconstructs, by a decoder network of the depth
estimation network, the image data using the initial repre-
sentation indicative of depth information within the image
data. At sub-block 343, the processor generates, by the depth
estimation network, a predicted depth feature map including
a set of depth features indicative of perceived spatial depth
information of a surrounding environment from the image
data. At block 344, the processor segments, by a segmen-
tation module in communication with the depth estimation
network, the pixel level depth map into a first area and a
second area, the first area including a limb associated with
the prosthetic or orthotic joint and the second area including
an environment around the limb.

[0065] With reference to FIG. 11C, block 306 includes a
sub-block 361, at which the processor determines, at the
control output module, an observed behavior model based
on one or more depth features of the pixel level depth map
and an orientation of the prosthetic or orthotic joint. Sub-
block 361 includes a further sub-block 362 at which the
processor samples, at the control output module, an
ensemble of latent observations from one or more observed
behavior demonstrations of the prosthetic or orthotic joint
that incorporate human kinematic properties and environ-
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mental features within the latent space, a trajectory of the
prosthetic or orthotic joint being collectively described by a
plurality of basis functions.

[0066] Continuing with FIG. 11D, sub-block 363 includes
iteratively propagating, at the control output module, the
ensemble forward by one step using a state transition
function as the prosthetic or orthotic joint operates. Sub-
block 364 includes iteratively updating, at the control output
module, one or more measurements of the ensemble using
the set of depth features from the pixel depth map and an
orientation of the prosthetic or orthotic joint. Sub-block 365
includes iteratively projecting, at the control output module,
amean and variance of one or more latent components of the
ensemble into a trajectory space through the plurality of
basis functions and based on the one or more measurements
of the ensemble. Sub-block 366 includes updating, at the
control output module, the control signal based on a differ-
ence between a new observation at a first time t and an
expected observation at a second time t-1, the expected
observation being indicative of one or more measurements
of the ensemble taken at time t-1 and the new observation
being indicative of one or more measurements of the
ensemble taken at time t. This control signal can be applied
to the prosthetic or orthotic joint at block 308 of FIG. 11A.

[0067] FIG. 11E shows training the depth estimation net-
work using a ground truth dataset, which is outlined at block
310. At sub-block 311, the processor applies the depth
estimation network to the ground truth dataset that includes
depth information for each of a plurality of images. At
sub-block 312, the processor determines, a loss associated
with a decoder stage of a plurality of stages of the decoder
network and an associated encoder stage of the depth
estimation network. At sub-block 313, the processor mini-
mizes a loss between a ground truth feature and a depth
feature of the set of depth features. At block 314, the
processor updates one or more parameters of the depth
estimation network based on the loss between the ground
truth feature and the depth feature of the set of depth
features.

[0068] Continuing with FIG. 11F, at sub-block 315, the
processor applies a temporal consistency training method-
ology to the set of depth features. Sub-block 315 can be
divided further into sub-blocks 316, 317 and 318. At sub-
block 316, the processor outlines one or more regions in the
image data that require higher accuracy. At sub-block 317,
the processor determines a disparity loss between a first
frame of the image data taken at time t and a second frame
of the image data taken at t-1. At sub-block 318, the
processor updates one or more parameters of the depth
estimation network based on the disparity loss between the
first frame and the second frame.

Computer-Implemented System

[0069] FIG. 12 is a schematic block diagram of an
example computing device 400 that may be used with one or
more embodiments described herein, e.g., as a component of
system 100 and/or implementing aspects of framework 200
in FIGS. 2A-2D and/or method 300 in FIGS. 11A-11F.
[0070] Device 400 comprises one or more network inter-
faces 410 (e.g., wired, wireless, PLC, etc.), at least one
processor 420, and a memory 440 interconnected by a
system bus 450, as well as a power supply 460 (e.g., battery,
plug-in, etc.).
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[0071] Network interface(s) 410 include the mechanical,
electrical, and signaling circuitry for communicating data
over the communication links coupled to a communication
network. Network interfaces 410 are configured to transmit
and/or receive data using a variety of different communica-
tion protocols. As illustrated, the box representing network
interfaces 410 is shown for simplicity, and it is appreciated
that such interfaces may represent different types of network
connections such as wireless and wired (physical) connec-
tions. Network interfaces 410 are shown separately from
power supply 460, however it is appreciated that the inter-
faces that support PL.C protocols may communicate through
power supply 460 and/or may be an integral component
coupled to power supply 460.
[0072] Memory 440 includes a plurality of storage loca-
tions that are addressable by processor 420 and network
interfaces 410 for storing software programs and data struc-
tures associated with the embodiments described herein. In
some embodiments, device 400 may have limited memory
or no memory (e.g., no memory for storage other than for
programs/processes operating on the device and associated
caches).
[0073] Processor 420 comprises hardware elements or
logic adapted to execute the software programs (e.g.,
instructions) and manipulate data structures 445. An oper-
ating system 442, portions of which are typically resident in
memory 440 and executed by the processor, functionally
organizes device 400 by, inter alia, invoking operations in
support of software processes and/or services executing on
the device. These software processes and/or services may
include prosthetic or orthotic joint processes/services 490
described herein. Note that while prosthetic or orthotic joint
processes/services 490 is illustrated in centralized memory
440, alternative embodiments provide for the process to be
operated within the network interfaces 410, such as a
component of a MAC layer, and/or as part of a distributed
computing network environment.
[0074] It will be apparent to those skilled in the art that
other processor and memory types, including various com-
puter-readable media, may be used to store and execute
program instructions pertaining to the techniques described
herein. Also, while the description illustrates various pro-
cesses, it is expressly contemplated that various processes
may be embodied as modules or engines configured to
operate in accordance with the techniques herein (e.g.,
according to the functionality of a similar process). In this
context, the term module and engine may be interchange-
able. In general, the term module or engine refers to model
or an organization of interrelated software components/
functions. Further, while the prosthetic or orthotic joint
processes/services 490 is shown as a standalone process,
those skilled in the art will appreciate that this process may
be executed as a routine or module within other processes.
[0075] It should be understood from the foregoing that,
while particular embodiments have been illustrated and
described, various modifications can be made thereto with-
out departing from the spirit and scope of the invention as
will be apparent to those skilled in the art. Such changes and
modifications are within the scope and teachings of this
invention as defined in the claims appended hereto.

1. A system, comprising:

a prosthetic or orthotic joint configured to receive one or

more control signals and operate in response to the one
or more control signals;
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a camera that captures image data indicative of a sur-
rounding environment around the prosthetic or orthotic
joint; and
a computing device in operative communication with the
prosthetic or orthotic joint and the camera, the com-
puting device including a processor in communication
with a memory, the memory including instructions,
which, when executed, cause the processor to:
receive, at the processor, the image data from the
camera;

extract, by a depth estimation network formulated at
the processor, a set of depth features indicative of
perceived spatial depth information of a surrounding
environment from the image data; and

generate, by a control output module formulated at the
processor, a control signal to be applied to the
prosthetic or orthotic joint based on the set of depth
features.

2. The system of claim 1, wherein the memory further
includes instructions, which, when executed, cause the pro-
cessor to:

estimate, by the depth estimation network, a pixel level
depth map from the image data captured by the camera.

3. The system of claim 2, wherein the memory further
includes instructions, which, when executed, cause the pro-
cessor to:

segment, by a segmentation module formulated at the
processor and in communication with the depth esti-
mation network, the pixel level depth map into a first
area and a second area, the first area including a limb
associated with the prosthetic or orthotic joint and the
second area including an environment around the limb.

4. The system of claim 2, wherein the memory further
includes instructions, which, when executed, cause the pro-
cessor to:

determine, at the control output module, the control signal
for the prosthetic or orthotic joint based on the pixel
level depth map and an observed behavior model.

5. The system of claim 4, wherein the memory further
includes instructions, which, when executed, cause the pro-
cessor to:

determine, at the control output module, the observed
behavior model based on one or more depth features of
the pixel level depth map and an orientation of the
prosthetic or orthotic joint.

6. The system of claim 5, further comprising:

an inertial measurement unit in communication with the
control output module that determines the orientation
of the prosthetic or orthotic joint.

7. The system of claim 1, wherein the memory further
includes instructions, which, when executed, cause the pro-
cessor to:

generate, at the control output module, one or more
control signals by inference within a latent space based
on the set of depth features and using ensemble Bayes-
ian interaction primitives.

8. The system of claim 7, wherein the memory further
includes instructions, which, when executed, cause the pro-
cessor to:

uniformly sample, at the control output module, an
ensemble of latent observations from one or more
observed behavior demonstrations of the prosthetic or
orthotic joint that incorporate human kinematic prop-
erties and environmental features within the latent
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space, a trajectory of the prosthetic or orthotic joint
being collectively described by a plurality of basis
functions;

iteratively propagate, at the control output module, the
ensemble forward by one step using a state transition
function as the prosthetic or orthotic joint operates;

iteratively update, at the control output module, one or
more measurements of the ensemble using the set of
depth features and an orientation of the prosthetic or
orthotic joint;

iteratively project, at the control output module, a mean
and variance of one or more latent components of the
ensemble into a trajectory space through the plurality of
basis functions and based on the one or more measure-
ments of the ensemble; and

update, at the control output module, the control signal
based on a difference between a new observation at a
first time t and an expected observation at a second time
t-1, the expected observation being indicative of one or
more measurements of the ensemble taken at time t-1
and the new observation being indicative of one or
more measurements of the ensemble taken at time t.

9. The system of claim 1, wherein the image data captured

by the camera includes RGB image data, wherein each pixel
of a plurality of pixels within the image data includes a
corresponding RGB value.

10. A system, comprising:

a computing device including a processor in communi-
cation with a memory, the memory including instruc-
tions, which, when executed, cause the processor to:
receive, at the processor, image data from an image

capture device;

extract, by an encoder network of a depth estimation
network formulated at the processor, an initial rep-
resentation indicative of depth information within
the image data;

reconstruct, by a decoder network of the depth estima-
tion network formulated at the processor, the image
data using the initial representation indicative of
depth information within the image data; and

generate, by the depth estimation network, a predicted
depth feature map including a set of depth features
indicative of perceived spatial depth information of
a surrounding environment from the image data.

11. The system of claim 10, wherein the image data
includes a plurality of pixels and wherein the set of depth
features include a depth prediction for one or more pixels of
the plurality of pixels of the image data.

12. The system of claim 10, wherein the depth estimation
network is an autoencoder network.

13. The system of claim 10, the decoder network includ-

ing:

a plurality of decoder stages that result in the set of depth
features based on the image data at varying resolutions
between each respective decoder stage of the plurality
of decoder stages, the plurality of decoder stages
including at least one transpose residual block, at least
one convolutional projection layer, and an output layer,
each respective decoder stage of the plurality of
decoder stages being associated with a respective
encoder stage of a plurality of encoder stages of the
encoder network.
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14. The system of claim 13, wherein the memory further
includes instructions, which, when executed, cause the pro-
cessor to:

determine, at the processor, a loss associated with a
decoder stage of the plurality of decoder stages of the
decoder network and an associated encoder stage of the
encoder network.

15. The system of claim 10, wherein the memory further
includes instructions, which, when executed, cause the pro-
cessor to:

minimize, by the processor, a loss between a ground truth
feature and a depth feature of the set of depth features;
and

update, by the processor, one or more parameters of the
depth estimation network based on the loss between the
ground truth feature and the depth feature of the set of
depth features.

16. The system of claim 15, the loss including:

a mean squared error measure indicative of an error
between the ground truth feature and the depth feature
of the set of depth features;

a structural similarity index measure indicative of a
covariance and/or an average of a ground truth feature
map and a predicted depth feature map indicative of the
set of depth features;

an inter-image gradient measure indicative of a gradient
difference between the ground truth feature map and
the predicted depth feature map; and

a total variation measure indicative of a total variation
ground truth feature map and the predicted depth
feature map.

17. The system of claim 10, wherein the memory further

includes instructions, which, when executed, cause the pro-
cessor to:
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apply, at the processor, a temporal consistency method-

ology to the set of depth features.

18. The system of claim 17, wherein the memory further
includes instructions, which, when executed, cause the pro-
cessor to:

outline one or more regions in the image data that require

higher accuracy; and

determine a disparity loss between a first frame of the

image data taken at time t and a second frame of the
image data taken at t-1.

19. The system of claim 18, wherein the memory further
includes instructions, which, when executed, cause the pro-
cessor to:

update, by the processor, one or more parameters of the

depth estimation network based on the disparity loss
between the first frame and the second frame.
20. A method, comprising:
receiving, at a processor, image data from a camera
associated with a prosthetic or orthotic joint;

extracting, by a depth estimation network formulated at
the processor, a set of depth features indicative of
perceived spatial depth information of a surrounding
environment from the image data;

generating, by a control output module formulated at the

processor, a control signal to be applied to the pros-
thetic or orthotic joint by inference within a latent space
based on the set of depth features, an orientation of the
prosthetic or orthotic joint and an observed behavior
model using ensemble Bayesian interaction primitives;
and

applying, by the processor, the control signal to the

prosthetic or orthotic joint.
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