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(57) A hybrid quantum-classical computation system
for classifying a grid of features provided as an input,
comprising a convolutional block comprising a convolu-
tional filter configured to receive the grid of features and
to output a plurality of output features for the grid of fea-
tures based on a trainable configuration of the convolu-
tional filter; a flattening layer for transforming the filtered
grid of output features received from the convolutional
block into a flattened feature vector ;a classifying block
configured to receive the flattened feature vector and to
generate an output classification, wherein the classifying
block comprises a plurality of independent variational
quantum circuits; wherein the variational quantum cir-
cuits of the plurality of independent variational quantum
circuits receive different subsets of features from the flat-
tened feature vector as an input feature vector; and
wherein measured outputs of the plurality of independent
variational quantum circuits are combined to determine
a label as the output classification.
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Description

FIELD OF THE INVENTION

[0001] The present invention is in the field of quantum computing. More precisely, the present invention relates to a
hybrid quantum-classical computation system as part of a trainable classifier.

BACKGROUND

[0002] Quantum computers provide a platform of controllable quantum mechanical systems whose state and interaction
can be controlled in order to perform a computation. The computation is realized by a deterministic evolution of the
controllable quantum mechanical systems, e.g. qubits as quantum analogues of classical bits, and the state of the
quantum mechanical systems can be measured to determine the outcome of the computation.
[0003] Control operations on these qubits are termed Quantum gates. Quantum gates can coherently act on qubits
for inducing changes of the state of a single qubit (so called single-qubit gates) and for acting on multiple qubits (so
called multi-qubit gates), e.g. to entangle the states of the multiple qubits, and any combination thereof. For example,
a single-qubit gate may induce a rotation of the spin state of an electron by a selectable value, e.g. π/2. A multi-qubit
gate may coherently act on two or more qubits, such as a coherent CNOT operation on the state of two qubits. A plurality
of quantum gates can be applied to the qubits of the quantum computer in parallel or in sequence for performing a
computation. Finally, the state of the qubits may be measured repeatedly after applying a sequence of quantum gates
to determine the probabilities for each possible outcome of the computation.
[0004] In order to compute solutions to problems which are considered intractable on classical computers, a quantum
computer can leverage the special properties of quantum mechanical states, in particular the superposition and entan-
glement of different quantum states, to find solutions with a comparatively low number of calculation steps.
[0005] However, the superposition/entangled states of quantum mechanical systems are inherently volatile (e.g. suffer
from decoherence) and the control and measurement of these systems is subject to fidelity margins, such that state-of-
the-art quantum computers are currently limited both in the number of controllable quantum mechanical systems (qubits)
as well as the number of successively performed control actions (quantum gates).
[0006] Despite these shortcomings, promising applications for near term available quantum processors exist, i.e. noisy
intermediate-scale quantum (NISQ) devices, such as variational quantum algorithms. In variational quantum algorithms,
the action of the quantum gates is parametrized in terms of variational parameters, and the variational parameters may
be systematically varied with the help of a classical computing resource, in a manner analogous to machine learning.
By varying the variational parameters to extremize a cost function, which attributes a cost to the output of the variational
quantum circuit with respect to an optimal solution, an output of the variational quantum circuit can be "trained" to provide
an optimal solution to an unseen problem. Entanglement between different qubits may give access to a large internal
state space to provide "quantum advantage".
[0007] For example, Henderson et al. ("Quanvolutional Neural Networks: Powering Image Recognition with Quantum
Circuits") study quantum machine learning (QML) methods involving for image classification, including a "quanvolutional
layer" as part of convolutional image encoding. The quanvolutional layer processes the input features according to
randomly determined parametrized actions to generate encoded features for analysis by a decoding module, which
provides a classification result.

SUMMARY OF THE INVENTION

[0008] However, quantum devices are still not widely available and may be limited both in the number of qubits as
well as in circuit depth in practical implementations, which also limits the application of NISQ devices as part of variational
quantum circuits.
[0009] In view of this state-of-the-art, the object of the invention is to provide an improved classifier for a grid of features,
such as a pixel map of an image, including quantum circuit based architectures, which can efficiently employ relatively
small, realizable quantum devices for approximation tasks.
[0010] This object is solved by a system for classifying images, a method, and a computer program according to the
independent claims. The dependent claims relate to preferred embodiments.
[0011] According to a first aspect, the invention relates to a hybrid quantum-classical computation system for classifying
a grid of features provided as an input. The system comprises a convolutional block comprising a convolutional filter
configured to receive the grid of features as an input and to output a plurality of output features for the grid of features
based on a trainable configuration of the convolutional filter. The system further comprises a flattening layer for trans-
forming the filtered grid of output features received from the convolutional block into a flattened feature vector. The
system further comprises a classifying block configured to receive the flattened feature vector and to generate an output
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classification. The classifying block comprises a plurality of independent variational quantum circuits, each comprising
a plurality of quantum gates acting on qubits of a qubit register of the respective variational quantum circuit. The plurality
of quantum gates comprises variational quantum gates, wherein the action of a variational quantum gate on the qubits
of the qubit register is parametrized according to an associated variational parameter, and encoding gates for modifying
a state of the qubits of the qubit register according to an input feature vector. The variational quantum circuits of the
plurality of independent variational quantum circuits receive different subsets of features from the flattened feature vector
as the input feature vector, and measured outputs of the plurality of independent variational quantum circuits are combined
to determine a label for the grid of input features as the output classification.
[0012] Contrary to prior approaches, in which the available variational quantum circuit complexity bounds the number
of possible input features, the system uses a plurality of independent variational quantum circuits to independently
process a subset of flattened features extracted from a grid of input features via a convolutional block. As a result, the
approach is less limited to an achievable maximum number of processable input features, e.g. defined by a maximum
number of features encoded per qubit and the number of available qubits. The inventors surprisingly found in their
experiments that despite the lack of entanglement between all qubits of the plurality of variational quantum circuits, a
quantum advantage for image classification may still be harnessed. Thus, a viable hybrid quantum-classical computation
system for processing and classifying grids of input features can be provided. The label determined for the grid of input
features may correspond to a classification into a plurality of (predetermined) output classes and/or may be an identifier
for an object/pattern detected by the system in the grid of input features.
[0013] The grid of input features may correspond to a two- or multi-dimensional array of numerical values, which may
indicate a visual encoding of an image in data. For example, the grid of input features may be a two-dimension pixel
grid, wherein numerical values of each pixel may correspond to a grayscale image encoding, such as a brightness value
ranging from black to white. The pixel grid may encode an image of an object to be classified, such as a letter, number,
or object, e.g. the face of a human, a scene imagined with a camera of a vehicle, or the like. The classification of the
system may then attribute an output class to the image, e.g. a certain letter, a certain number, or a corresponding entry
in a facial image database.
[0014] Similar to known image classification methods in the art, the grid of input features can initially be processed
using convolutional filters, wherein the convolutional filter may be applied to different subsets of the grid to generate a
filtered grid of output features, wherein the convolutional filter may implement local operations on a group of neighboring
features in a grid of features provided as an input. For example, the grid of input features may be used to generate a
plurality of square grids of features, such as 333 or 535 grids of neighboring features of the grid of input features. Each
of the subsets may be processed by a convolutional filter, which may generate a corresponding filtered feature for the
input subset of the grid of features, e.g. through a trained network of artificial neurons. Each of the square grids of
features may be processed in parallel by different convolutional features, such as to extract different image features
from the square grids of features, e.g. edges or lines in the square grids of feature.
[0015] The filtered features obtained using the convolutional filter may produce filtered grids of features, which may
be processed further by additional convolutional filters. The convolutional block may then output a plurality of filtered
grids of features, e.g. wherein the different filtered grids of features correspond to different filters applied to the grid of
input features.
[0016] The filtered grid of features may be flattened into a flattened feature vector, which may be a list of features
derived from the output of the convolutional block, e.g. using an artificial neural network mapping the filtered grids of
features onto a plurality of features according to a plurality of internal weights and biases.
[0017] In preferred embodiments, the convolutional block and/or the flattening layer is implemented in classical hard-
ware, in particular using a trainable machine learning model.
[0018] The trainable machine learning model may be trained for obtaining a trained machine learning model or may
be provided as a trained machine learning model, and the trained machine learning model may process the filtered grid
of output features according to a plurality of machine learning parameters, such as the weights and biases of an artificial
neural network. The trained machine learning model may be obtained by defining a machine learning architecture, and
by training the corresponding machine learning parameters in a training process, e.g. using stochastic gradient descent,
or another optimization method, based on historical data and corresponding classes. Following the training process, the
trained machine learning model may be configured to produce an optimal output for a subsequent classification stage
of the hybrid quantum-classical computation system.
[0019] In some embodiments, the system comprises a classical processing system and/or AI processing hardware
configured to implement the trained machine learning model, wherein the AI processing hardware in particular comprises
a GPU, a neural processing unit, analog memory based hardware, or neuromorphic hardware.
[0020] The processing system may comprise a single processing unit or may comprise a plurality of processing units,
which may be functionally connected. The processing units may comprise a microcontroller, an ASIC, a PLA (CPLA),
an FPGA, or other processing device, including processing devices operating based on software, hardware, firmware,
or a combination thereof, such as the afore-mentioned AI processing hardware. The processing devices can include an



EP 4 432 172 A1

4

5

10

15

20

25

30

35

40

45

50

55

integrated memory, or communicate with an external memory, or both, and may further comprise interfaces for connecting
to sensors, devices, appliances, integrated logic circuits, other controllers, or the like, wherein the interfaces may be
configured to receive or send signals, such as electrical signals, optical signals, wireless signals, acoustic signals, or
the like.
[0021] The processing system may implement a trained machine learning model using classical hardware and may
process an input grid of features to generate the flattened feature vector, which may be subsequently processed by the
plurality of independent variational quantum circuits. Preferably, the number of features in the flattened feature vector
is a multiple of the number of qubits in the plurality of variational quantum networks.
[0022] In preferred embodiments, each of the variational quantum circuits of the plurality of independent variational
quantum circuits is configured to encode a number of inputs into the quantum states of the qubits of its qubit register,
and the input feature vector comprises a number of features, which is a multiple of the number of inputs of the variational
quantum circuits of the plurality of independent variational quantum circuits.
[0023] The number of inputs may be encoded in all or a subset of the qubits of each variational quantum circuit, e.g.
a plurality of input features may be encoded into a single qubit or into a subgroup of a plurality of qubits of a variational
quantum circuit. In some embodiments, the plurality of input features may be encoded into the quantum states of a
plurality of qubits of the variational quantum circuit, wherein the number of qubits may be smaller or greater than the
number of inputs. In some embodiments, the number of input features are spread equally among the qubits of the
respective variational quantum circuit and may be encoded by manipulating the quantum state of the respective qubit.
[0024] For example, the flattening layer may generate a feature vector comprising a number of N features, and each
of the variational quantum networks may comprise M qubits, with N = M ∗ K, wherein K is a natural number greater than
one, i.e. K ∈ {2; 3; 4; ... }. The flattened feature vector may be separated into K subsets of features, which may be
processed independently by K independent variational quantum circuits. Then each feature of one of the K subsets of
features may be encoded in a respective one of the M qubits of the corresponding variational quantum circuit.
[0025] The independent variational quantum circuits may process the subsets of features in parallel and/or sequentially.
In other words, the plurality of different variational quantum circuits may be implemented using the same or different
hardware and the output of each variational quantum circuit may be obtained independently from each other.
[0026] A variational quantum circuit may generally comprise a plurality of qubits, whose quantum states may be
manipulated by the application of quantum gates applied in sequence or in parallel to single qubits and/or multiple qubits.
[0027] The qubits may form a qubit register and can be initialized into an initial state, such as the ground state of each
qubit. In some embodiments, after initialization of the qubits into their ground states, superposition states of each qubit
in the qubit register are prepared, e.g. via the application of Hadamard gates.
[0028] Subsequently, a plurality of quantum gates may be applied to the qubits to transform their state towards an
output state. In variational quantum circuits, the action of at least some of the quantum gates in the variational quantum
network is parametrized, such that the measured output is a function of variational parameters parametrizing variable
actions of the (variational) quantum gates. The combined action of the (at least partially parametrized) quantum gates
may be termed a variational quantum network, as the operating principle may be similar to the operation of a neural
network.
[0029] Further, in the variational quantum circuit, at least one quantum gate is used as an encoding gate, wherein the
action of the encoding gate is based on an input feature vector. For example, a value of the input feature vector may be
encoded into the qubit by rotating the state of one qubit proportional to the value of the input feature vector through a
single qubit rotation.
[0030] In some embodiments, the at least one encoding gate comprises single qubit rotations proportional to a value
of the input feature vector. The encoding gate may be applied a number of k times as part of each variational quantum
circuit, wherein k is an integer value greater than 2, and wherein the variational quantum circuit is parametrized by at
least 2k variational parameters. Applying the encoding gate multiple times may implement a re-uploading of the input
feature vector into the variational quantum circuit, such that the variational quantum circuit may fit a higher order Fourier
series to the labelling function.
[0031] Two- or multi-qubit gates may create superposition states between the qubits, such as to harness the "quantum
advantage" provided by the quantum hardware, wherein such gates may also referred to as entangling gates in the
following. For example, when the variational quantum circuit is implemented in a quantum device based on a trapped
ion system, the states of different ions in the trapped ion system may be coupled through a joint excitation, e.g. mediated
via the Molmer-Sorensen interaction. As another example, pairs of qubits in the qubit register may be entangled via a
(tunable) nearest neighbor interaction or exchange of a quantum particle, in order to implement a two-qubit gate, such
as a CNOT gate.
[0032] In some embodiments, the variational quantum network may be defined in terms of layers of quantum gates,
which may act on the qubits to link the qubits in the qubit register. A layer of quantum gates may comprise a cumulative
action of a plurality of coherent operations on the state of the qubits in the qubit register. The cumulative action of the
coherent operations in one layer should generally act on all qubits of the qubit register which are involved in the com-
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putation, or in other words, a layer of quantum gates should directly affect the state of all qubits in the qubit register.
Each layer should comprise at least one multi-qubit gate and at least one variational quantum gate (which in principle
could be the same gates). The skilled person will appreciate that a plurality of the quantum gates in a layer may be
applied in parallel to the qubits to shorten the sequence of coherent operations on the state of the qubits in a layer. The
subsequent application of a plurality of layers of quantum gates to the qubits may then form the variational quantum
network, with the variational quantum network being parametrized by variational parameters for each layer.
[0033] The layers may contain the same types of quantum gates and may be applied sequentially to the qubit register.
For example, each layer may feature the same architecture of quantum gates while different elements of the variational
parameters may apply to the variational gates of the layer. In other words, the layers may feature the same quantum
gate architecture, but the action of the quantum gates on the qubits in each layer may differ based on the variational
parameters and/or an input feature vector.
[0034] After the layers of quantum gates have acted on the qubits, the qubits can be measured to obtain a characteristic
outcome of the variational quantum circuit with respect to the known initial state. The outcome of the quantum mechanical
computation may be measured based on the computational basis states of the qubits. The computational basis states
may be orthogonal basis states of the Hilbert space spanned by the tensor product of the basis states of each qubit.
[0035] Initial variational parameters for the variational quantum gates can encode an initial (random) guess for an
optimal classifier, and the outcome of the evaluation of the variational quantum circuit with the variational parameters
can be measured (repeatedly) to determine a corresponding label. Based on the label, a cost function may be classically
evaluated to attribute a cost to the label, or in other words, a measure is calculated of how good the label is.
[0036] By training the system, the variational parameters may be systematically varied in an iterative manner, such
that the variational quantum circuit approximates the output label.
[0037] In preferred embodiments, the variational parameters of one of the plurality of independent variational quantum
circuits are different from the variational parameters of another one of the plurality of independent variational quantum
circuits.
[0038] For example, each of the variational quantum circuits may be associated with respective variational parameters,
which can be different from the variational parameters of any one of the other variational quantum circuits of the plurality
of variational quantum circuits.
[0039] In preferred embodiments, each of the plurality of independent variational quantum circuits comprises multiple
layers of quantum gates, wherein each layer of the multiple layers of quantum gates in particular comprises a variational
quantum gate for each of the qubits of the qubit register.
[0040] The inventors found that additional layers of gates may increase an accessible Fourier space for the qubits
and may thereby improve the classification result. Each layer may comprise different variational parameters, which may
be trained, such that the variable action of each layer on the qubits of the variational quantum circuit may be different.
Each layer may also comprise entangling gates and/or encoding gates. The encoding gates in each layer may re-encode
the same features from the subset of features to the respective qubit, or may encode a different feature of the subset
of features, such as to increase a number of features processed by the respective variational quantum circuit, at the
expense of additional gates as part of the quantum circuits.
[0041] In preferred embodiments, the plurality of independent variational quantum circuits each comprise at least two
qubits in their respective qubit registers.
[0042] The variational quantum circuits may in principle be designed according to an availability of quantum processing
resources, wherein an increased number of qubits may generally increase the Fourier space accessible and thereby
the complexity of the internal computation performed by the variational quantum circuit. Generally, each of the variational
quantum circuits may process a subset of features from the flattened feature vector corresponding to the number of
qubits or a multiple thereof, such as to analyze a certain number of features extracted by the convolutional block and to
therefrom determine a value indicative for the output label/class, e.g. a number of numerical values equal to the number
of qubits in the variational quantum circuit. Each of the plurality of variational quantum circuits may comprise entangling
gates to entangle the quantum states of the at least two qubits.
[0043] In preferred embodiments, each of the plurality of independent variational quantum circuits comprises an en-
tangling gate for entangling quantum states of at least two of the qubits of the respective qubit register.
[0044] The entangled states of the qubits in each of the plurality of independent variational quantum circuits may be
measured to determine a corresponding output, which may be used to determine the output classes.
[0045] In preferred embodiments, output states of all qubits in the qubit register of one of the plurality of independent
variational quantum circuits are independent from the actions of quantum gates of another one of the plurality of inde-
pendent variational quantum circuits.
[0046] As a result, the variational quantum circuits may be implemented independently, and may be computed in
parallel, e.g. using separate hardware implementations, or sequentially, e.g. using the same hardware implementation.
[0047] In preferred embodiments, the quantum states of qubits of different variational quantum circuits of the plurality
of independent variational quantum circuits are not entangled prior to measurement.
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[0048] In other words, the qubits of different variational quantum circuits may remain independent throughout the
computation.
[0049] In preferred embodiments, the plurality of independent variational quantum circuits is implemented in quantum
hardware.
[0050] In the preliminary experiments of the inventors, the variational quantum circuits were generally implemented
in a simulation of a quantum device running on classical hardware, and the experiments showed that the resulting virtual
hybrid quantum classical device can achieve similar results, when compared to classical approaches in machine learning,
while relying on less trainable parameters which have to be optimized during training. Thus, even a simulated variational
quantum circuit may be beneficial in some embodiments, i.e. the plurality of variational quantum circuits may be imple-
mented on a classical computer using a quantum simulator. However, the system is preferably implemented with the
variational quantum circuits computed on quantum hardware, such as to reduce a classical processing power and
computation time required for simulating complex quantum hardware.
[0051] The output of the variational quantum circuits may be measured and mapped to an output feature, e.g. between
0 and 1, for each of the qubits and/or for each of the variational quantum circuits. Said output feature may subsequently
be used by the system to determine the output label/class corresponding to the grid of input features.
[0052] In preferred embodiments, the measured outputs of the plurality of independent variational quantum circuits
are combined using a trainable layer of artificial neurons implemented in classical hardware, in particular a fully connected
layer of artificial neurons implemented in classical hardware.
[0053] The layer of artificial neurons may implement a coupling between the outputs of the different independent
variational quantum circuits, wherein the fully connected layer may introduce a coupling between each one of the
variational quantum circuits. The trainable layer of artificial neurons may be trained for optimally combining the measured
outputs to obtain a label or may be obtained as a trained layer of artificial neurons. The skilled person will appreciate
that not all qubits need to be measured or that some of the measured outputs of one of the variational quantum circuits
may be combined or discarded prior to the determination of the classification result using the layer of artificial neurons.
[0054] In preferred embodiments, trainable parameters of the convolutional block, the flattening layer, and the clas-
sifying block are obtained based on a joint training process, in particular of a machine learning model implemented in
classical hardware and the plurality of independent variational quantum circuits implemented in quantum hardware.
[0055] The joint training process may train the classical layer to extract suitable features for the respective classification
task, may train the flattening layer to map the features extracted in the convolutional block towards respective inputs of
the plurality of independent variational quantum circuits, may train the plurality of independent variational quantum
circuits to produce outputs, which advantageously transform the flattened feature vector towards measured output
features, which are indicative for the classification task, and may train a combination layer of artificial neurons for
determining a classification result based on the measured outputs of the plurality of independent variational quantum
circuits.
[0056] The skilled person will appreciate that in some embodiments, the convolutional block may not be trained together
with the variational quantum circuit, but instead a pre-trained convolutional block from a different classification system
may be used, and merely portions of the flattening layer preceding the plurality of variational quantum circuits, the
classifying block comprising the plurality of independent variational quantum circuits, and a combination layer may be
trained in a j oint training, which may reduce the complexity of the training task in some embodiments. In that case, only
the parameters of the flattening layer and the combination layer may be part of trainable machine learning parameters
of a classical part of the hybrid quantum-classical computation system. The flattening layer may comprise a fully connected
layer of artificial neurons, such as to map the output of the convolutional block towards a flattened feature vector as an
input for the plurality of independent variational quantum circuits.
[0057] The system can be trained in an iterative manner, wherein the variational parameters, the machine learning
parameters (of the convolution block and/or the flattening layer), and the combination parameters, in the following also
jointly referred to as trainable parameters, may be jointly optimized in each step of the iterative process, such that the
output label approaches the label of the sample dataset for the same input grid of features.
[0058] The iterative process may mimic the training of classical machine learning models, wherein the output label is
associated with a cost value based on the cost function. For example, the training may be based on a sample dataset
of labels and corresponding sample input feature grids, and the cost function may be a loss function based on the output
label and based on the sample label of the sample dataset for the same input grid of features. The cost function may
be a mean squared error between the output label and the sample label for the same input grid of features. Thus, the
method for training may be based on a sample dataset of labels and corresponding input feature grids. The skilled person
will appreciate that the sample data set may be constructed as the hybrid quantum-classical computation system is
trained, e.g. by obtaining a data point of the sample dataset, e.g. including input grid of features and a corresponding
label, and subsequently training the hybrid quantum-classical computation system based on the data point.
[0059] In other examples, the optimal label may be unknown, but a cost may be attributed to a candidate solution
based on a problem statement, e.g. a travel time for the traveling salesman problem as an illustrative example, and the
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trainable parameters may be varied, such that the cost is extremized (maximized or minimized).
[0060] The trainable parameters may be updated with known techniques employed in classical machine learning,
such as gradient based optimization algorithms, e.g. stochastic gradient descent or adaptive moment estimation, or
gradient free optimization, such as simulated annealing. Preferably, the optimization algorithm is gradient based, and
the method may comprise determining a gradient of the trainable parameters with respect to the cost attributed to the
output label by the cost function.
[0061] Although the system has been illustrated mostly with respect to an example of images as the input feature, the
skilled person will appreciate that the system may be equally suitable to process additional information encoded in terms
of a grid of features, which may not necessarily pertain to visual information.
[0062] According to a second aspect, the invention relates to a method for determining a label for a grid of input
features based on a hybrid quantum-classical computation algorithm. The method comprises receiving the grid of input
features and generating a filtered grid of features based on the grid of input features and a convolutional filter. The
convolutional filter is configured to output a plurality of output features for the grid of input features based on a trainable
configuration of the convolutional filter. The method further comprises flattening the filtered grid of output features into
a flattened feature vector, and separating the flattened feature vector into a plurality of flattened feature vector subsets.
The method further comprises encoding each of the flattened feature vector subsets into qubits of a corresponding
variational quantum circuit of a plurality of independent variational quantum circuits. Each of the plurality of independent
variational quantum circuits comprises an encoding gate configured to act on the quantum states of a qubit based on a
feature of the corresponding subset of the plurality of flattened feature vector subsets, a variational quantum gate,
wherein the action of a variational quantum gate on the qubits of the qubit register is parametrized according to an
associated variational parameter, and an entangling gate for creating a superposition of the quantum states of two qubits
of the corresponding circuit. The method further comprises obtaining measured outputs based on measuring an output
state of each of the plurality of independent variational quantum circuits and combining the measured outputs of the
plurality of independent variational quantum circuits to determine a corresponding output label.
[0063] Preferably, the label is determined by combining the measured outputs using a trained machine learning model,
e.g. a multi-layer perceptron, preferably including a fully connected layer of artificial neurons. However, in some embod-
iments, after the quantum layer there may not be classical layers, but the output after the quantum layer can be a
prediction of the output label for the problem, e.g. by simply concatenating the measured outputs, or combining the
measured outputs according to a pre-determined combination function. Determining the label may classify the grid of
input features into a pre-determined set of output classes.
[0064] The method may use elements and components of the system according to the first aspect or any combination
of its embodiments, or may implement any functionality of said components. According to a third aspect, the invention
relates to a method for training a hybrid quantum-classical computation system for approximating a labeling function for
a grid of input features. The system comprises a machine learning model, implemented on a classical processing system,
configured to generate a flattened feature vector based on the grid of input features according to a parametrized transfer
function, wherein the parametrized transfer function is parametrized by machine-learning parameters, and wherein the
machine learning model comprises convolutional layers of artificial neurons. The system further comprises a plurality of
independent variational quantum circuits each comprising a plurality of quantum gates acting on qubits of a respective
qubit register, the plurality of quantum gates comprising variational quantum gates, wherein a parametrized action of a
variational quantum gate on the qubits of the qubit register is parametrized according to an associated variational
parameter, and encoding gates for modifying a state of the qubits of the qubit register according to an input feature
vector. The variational quantum circuits of the plurality of independent variational quantum circuits receive different
subsets of features from the flattened feature vector as the input feature vector. The system further comprises a com-
bination module, implemented on a classical processing system, configured to receive measured outputs generated by
the plurality of independent variational quantum circuits and to combine measured outputs of the plurality of independent
variational quantum circuits to determine a classification result, wherein the combination is based on a plurality of trainable
combination parameters. The method comprises the steps of providing a sample grid of features to the machine learning
model, and receiving the output flattened feature vector from the machine learning model. The method further comprises
separating the output flattened feature vector into a plurality of flattened feature vector subsets, and providing each of
the flattened feature vector subsets to a corresponding variational quantum circuit of the plurality of variational quantum
circuits, and receiving an output label from the combination module based on the measured outputs of the plurality of
independent variational quantum circuits. The method further comprises determining a parameter update of the variational
parameters and the trainable combination parameters based on a value of a loss function for the output label.
[0065] In principle, the machine learning model may already be (partially) trained, and merely a portion of the machine
learning model, e.g. as part of a flattening layer, may be trained together with the plurality of independent variational
quantum circuits. For example, a portion of a conventional machine learning model based on convolutional layers may
be used as an encoder portion, and an output of the encoder portion of the conventional machine learning model may
be mapped by a second portion of the machine learning model to the flattened feature vector, such as to prepare the
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extracted features for processing by the plurality of independent variational quantum circuits. Thus, only the second
portion of the machine learning parameters may be trained together with the variational parameters and the combination
parameters. In other examples, all of the machine-learning parameters may be trained together with the variational
parameters and the combination parameters. In other words, the quantum and classical layers of the hybrid quantum-
classical computation system may be trained simultaneously, and the parameter update may update both the parameters
of the machine learning model and the variational parameters.
[0066] In some embodiments, determining the parameter update comprises determining a vector of derivatives for
the variational parameters as part of a parameter update gradient.
[0067] The trainable parameters may be updated based on the parameter update gradient, wherein a subset or all of
the trainable parameters may be modified based on a value of the gradient and a value for a learning rate quantifying
a size of an update step.
[0068] In some embodiments, determining the parameter update is based on stochastic gradient descent, preferably
including a momentum coefficient based on a previously determined gradient of the cost function.
[0069] The gradient of the cost function for the variational parameters may be accessible through the parameter shift
rule, in which the variational quantum circuit is evaluated with shifted variational parameters in order to determine partial
derivatives of the cost function with respect to the shifted variational parameters.
[0070] In some embodiments, the method comprises determining a vector of derivatives for the variational parameters,
wherein determining the vector of derivatives may comprise applying the parameter shift rule to a subset of or all of the
variational gates at each iteration of the iterative process.
[0071] Specifically, for quantum gates with eigenvalues 6©, e.g. one-qubit rotation generators in © {σx, σy, σz}, the
partial derivative of a function f with respect to a variational parameter θj may be determined according to ∂θjf = r(f(θj +
π/2) - f(θj - π/2)).
[0072] The partial derivatives of the cost function with respect to the machine learning parameters may be determined
with known methods. Hence, the different parts of the hybrid quantum-classical computation system may be jointly
optimized based on a gradient composed of the partial derivatives of the cost function with respect to the trainable
parameters of both the variational quantum circuit and the machine learning model. For example, the quantum mechanical
network can be evaluated repeatedly to determine the partial derivatives of the layers of quantum gates with respect to
the variational parameters, and the gradient may be classically computed from the measured partial derivatives as well
as classically computed derivatives of the machine learning parameters.
[0073] However, the skilled person will appreciate that the variational parameters can equally be optimized in an
optimization algorithm without access to the derivatives, e.g. by (randomly) sampling the cost function, such as in the
Constrained Optimization By Linear Approximation (COBYLA) algorithm or similar algorithms, and the gradient may be
an estimated gradient based on an estimate of the energy landscape of the cost function.
[0074] The cost function may then be minimized/maximized by iteratively updating the trainable parameters according
to the determined/estimated gradient of the cost function with respect to the trainable parameters, e.g. with an adaptive
moment based update function.
[0075] In some embodiments, determining the parameter update is based on an update function of a moving average
over a gradient of the cost function and of a moving average over the squared gradient of the cost function.
[0076] As the adaptive moment based update function depends on the moving average over the gradient of the cost
function and the (element) square of the moving average over the gradient of the cost function, the update of the
variational parameters may be smoothed by first order and second order moments of the gradient, enabling the descent
towards an optimized solution also for a "noisy" quantum system.
[0077] In some embodiments, a learning rate for updating the variational parameters and the machine-learning pa-
rameters is different.
[0078] An optimal performance of the hybrid quantum-classical computation system may require a tuning of a relative
speed at which the variational parameters and the machine learning parameters are updated during the training, such
that the training converges towards a set of trainable parameters in which both the variational quantum circuit and the
machine learning model contribute optimally to the output label. For example, the variational quantum circuit and the
machine learning model may converge towards an individual optimal solution at different rates. If the learning rates are
not tuned correctly, during training, the system may get stuck in a local minimum, in which one of the variational quantum
circuit and the machine learning model contributes less to the output label than in an optimally configured hybrid quantum-
classical computation system.
[0079] In some embodiments, the learning rate of the variational parameters is larger than the learning rate of the
machine learning parameters.
[0080] The different learning rates may be estimated based on individual rates of convergence for the machine learning
model and the variational parameters, may be based on historical optimization results, or may be determined empirically
for the hybrid quantum-classical computation system, e.g. for a sample dataset of input grids of features and corre-
sponding labels.
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[0081] In some embodiments, the hybrid quantum-classical computation system may be trained with different ratios
of the learning rate for updating the variational parameters and the machine-learning or combination parameters to
determine an optimal ratio of learning rates for updating the variational parameters and the machine-learning parameters
with respect to the labeling function.
[0082] For example, the hybrid quantum-classical computation system may be initialized at a fixed initialization point,
including the same, e.g. randomly determined, starting values for the trainable parameters each time, and the training
may be repeated from the fixed initialization point with different values of the learning rates for the machine learning
model and the variational quantum circuit while recording the final results for the cost function for input grids of features
not used during training (e.g. not part of the training dataset). In practice, one learning rate may be fixed, e.g. the learning
rate associated with the variational parameters, and the other learning rate(s) may be varied, e.g. the learning rate of
the machine learning parameters and the combination parameters, which may be the same or different learning rates
in some embodiments. The skilled person will appreciate that the learning rate(s) may also decay or be stepped, and
the different learning rates may pertain to base learning rates for the machine-learning parameters and the variational
parameters, respectively.
[0083] Based on the resulting values of the cost function, optimal learning rates may be selected, and the hybrid
quantum-classical computation system may subsequently be implemented or further trained based on the previously
determined optimal learning rates or their ratio.
[0084] By training the system using the method according to the third aspect, the hybrid quantum-classical computation
system of the first aspect may be obtained.
[0085] According to a fourth aspect, the invention relates to a computer program comprising machine readable in-
structions, which when the computer program is executed by a processing system cause the processing system to
implement a method according to any embodiment of the second or third aspects and/or to implement a system according
to any embodiment of the first aspect.
[0086] The computer program may be stored on a non-transitory medium as machine readable instructions, which,
when the computer program is executed by a processing system, cause the processing system to implement a method
according to any embodiment of the second aspect or the third aspect and/or to implement a system according to any
embodiment of the first aspect.
[0087] The computer program may coordinate a training of the hybrid quantum-classical computation system, and or
may implement a hybrid quantum-classical computation system for approximating a given labelling function based on
previously obtained trainable parameters.
[0088] The computer program may configure the plurality of variational quantum circuits, e.g. by determining an ar-
chitecture and/or variational parameters of the variational quantum circuits. During an implementation of the system
and/or method, the computer program may provide the flattened feature vector subsets to the plurality of independent
variational quantum circuits and may receive measured outputs of the variational quantum circuits.
[0089] The computer program may further implement and control a machine learning model, which may implement
the convolutional block and the flattening layer, and may also implement a machine learning model for combining the
measured outputs of the plurality of independent variational quantum circuits to determine the output label for the grid
of input features.
[0090] In some embodiments, the computer program may control a training of the hybrid quantum-classical computation
system, and may determine parameter updates for machine learning parameters, combination parameters and the
variational parameters.

DETAILED DESCRIPTION OF EMBODIMENTS

[0091] The features and numerous advantages of the method and system according to the present invention will best
be understood from a detailed description of preferred embodiments with reference to the accompanying drawings, in
which:

Fig. 1 schematically illustrates an example of a hybrid quantum-classical computation system;

Fig. 2 illustrates a flowchart of a method for determining a label for a grid of input features according to an
example;

Fig. 3A, 3B schematically illustrates a hybrid quantum-classical computation system according to another example;

Fig. 4A, 4B illustrate examples of different handwritten symbols taken from the Modified National Institute of Standards
and Technology (MNIST) database;
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Fig. 5 illustrates a method for training a hybrid quantum-classical computation system for approximating a la-
beling function for a grid of input features, according to an example;

Fig. 6A, 6B illustrate results from training a hybrid quantum-classical computation system as illustrated in Fig. 3A,
3B, according to an example implementation; and

Fig. 7 schematically illustrates an example of a convolutional block comprising a quanvolutional layer.

[0092] Fig. 1 schematically illustrates an example of a hybrid quantum-classical computation system 10 for classifying
a grid of input features into a predetermined set of output classes. The grid of input features may be image data, and
the hybrid quantum-classical computation system 10 may identify an object depicted in the image data according to the
predetermined set of output classes, such as specific objects, specific letters, or specific facial features. The system 10
can receive the grid of input features at an input of the system 10, which may take the form of an array of numerical
values encoded in any suitable format. For example, the grid of input for may be a pixel array, in which color/grayscale
values can be encoded as a bit sequence for each pixel of the pixel array.
[0093] The grid of input features may be preprocessed, e.g. normalized, and may be received in a convolutional block
12, which may process the grid of input features according to convolutional filters to extract detectable features present
in the image information. The output of the convolutional block 12 may be a plurality of filtered grids of features, which
may be flattened by a flattening layer 14. The flattening layer 14 may process the features of the filtered grids of features
to obtain entries of a flattened feature vector 16, e.g. by pooling the features of the filtered grids of features into pooled
feature maps and/or by flattening the pooled feature maps onto the flattened feature vector 16.
[0094] The convolutional block 12 and/or the flattening layer 14 may be executed by a machine learning model, which
can be implemented in a classical processing system. The classical processing system may comprise a GPU and/or an
AI processing device, and may process the grid of input features according to an internal multilayer perceptron (MLP)
with layers of artificial neurons processing inputs based on an activation function, which can be parametrized by trainable
weights and/or biases for each artificial neuron. An output of the machine learning model may then be generated based
on the activations of the artificial neurons in an output layer of the multilayer perceptron. The outputs of the convolutional
block 12 may be pooled and may be flattened by the flattening layer 14 of artificial neurons into the flattened feature
vector 16.
[0095] The flattened feature vector 16 may be separated into a plurality of flattened feature vector subsets 18 (indicated
by dashed lines separating the flattened feature vector 16 in figure 1), and each of the subsets 18 may be received by
an independent variational quantum circuit 20 of a plurality of variational quantum circuits 20 in a classifying block 22
of the system 10. The plurality of independent variational quantum circuits 20 can each process a respective flattened
feature vector subset 18 and may each generate measured outputs, which may be combined in a combination layer 24
for classifying the grid of input features into the predetermined output classes.
[0096] The variational quantum circuits 20 may be implemented at least partially on a quantum device, wherein the
flattened feature vector 16 or a feature vector derived therefrom is encoded in a quantum state of the quantum device.
For example, each subset 18 of the flattened feature vector 16 may comprise a number of Q values, which may be

encoded into quantum states of M=Q/J qubits, wherein J and M are natural numbers, i.e. J,  , and Q mod J =
0, pertaining to an encoding of multiple features into a single qubit as part of an execution of the independent variational
quantum circuit 20.
[0097] The quantum state of the quantum device may be manipulated based on a configuration of variational quantum
gates, whose action can be parametrized by variational parameters. An output state of the quantum device can be
measured (repeatedly) and a measured output can be generated based on the repeatedly measured output state.
[0098] The combination layer 24 may combine the measured outputs, e.g. based on a weighted linear addition with
trainable weights, and preferably based on a fully connected layer of artificial neurons, e.g. an MLP, which may generate
output labels based on the measured outputs according to internal combination parameters.
[0099] The combination parameters, the machine learning parameters, and the variational parameters can be jointly
trained, e.g. based on stochastic gradient descent or a variant thereof, such that the output produced by the combination
layer 24 can be used as a label approximating a generally unknown labelling function, which may map the grid of input
feature to an output class.
[0100] Fig. 2 schematically illustrates a method for determining a label for a grid of input features, e.g. for classifying
the grid of input features into a pre-determined set of output classes, which may be implemented using the system 10
illustrated in Fig. 1. The method comprises receiving a grid of input features and generating a filtered grid of features
based on the grid of input features and a convolutional filter (S10), and flattening the filtered grid of features into a
flattened feature vector 16 (S12). The method further comprises separating the flattened feature vector 16 into a plurality
of flattened feature vector subsets 18 (S14), and encoding each of the flattened feature vector subsets 18 into qubits of
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a corresponding variational quantum circuit 20 of a plurality of independent variational quantum circuits 20 (S16). The
method further comprises obtaining measured outputs based on measuring an output state of each of the plurality of
independent variational quantum circuits 20 (S18), and combining the output states of the plurality of independent
variational quantum circuits 20 to determine a corresponding output label (S20).
[0101] The convolutional filter is configured to output a plurality of output features for the grid of input features based
on a trainable configuration of the convolutional filter, and the convolutional filter may be applied to different subgroups
of the grid of input features to generate the filtered grid of features, e.g. as part of a convolutional block 12. The different
subgroups may be small grids of neighboring features, e.g. a 333 or 535 sub-grids, which may be processed according
to a convolutional filter to generate a filtered value of a filtered grid of features. The convolutional filter may be applied
multiple times in parallel, e.g. to process all possible sub-grids of a certain size for the grid of input features, and different
convolutional filters may be applied to the grid of input features, such as to extract different characteristics from the data,
as known in the art for convolutional neural networks. The output of a convolutional filter may be further processed by
additional convolutional filters, such as to concatenate multiple convolutional layers.
[0102] The filtered grid of features may be flattened by a pooling and flattening layer 14, which may subsequently be
processed by the plurality of independent variational quantum circuits 20. Each of the plurality of independent variational
quantum circuits 20 comprises an encoding gate configured to act on the quantum states of a qubit of the relational
quantum circuit 20 based on a feature of the corresponding subset of the plurality of flattened feature vector subsets
18, and will generally comprise at least one encoding gate for each qubit of the variational quantum circuit 20. The
information encoded in the variational quantum circuit 20 may be processed according to a plurality of variational quantum
gates, wherein the action of a variational quantum gate on the qubits of the qubit register is parametrized according to
an associated variational parameter, and a plurality of entangling gates for creating a superposition of the quantum
states of at least two qubits of the corresponding variational quantum circuit 20.
[0103] For example, the variational quantum circuits 20 may initialize a plurality of M qubits in the state |0〉⊗M, and
encode input features, e.g. {x1,···,xM}, using unitary transformations on the state of the qubits, e.g. as part of single qubit
rotations. The variational quantum gates may equally be described by unitaries that encapsulate the variational quantum
circuit model parameters as an operator that can be applied to the quantum state of the qubits. The operator may be
parametrized by the variational parameters w0,···,L. Finally, the quantum state of the qubits of the variational quantum
circuit 20 can be measured by a detector, such that the quantum information collapses into, e.g. M, classical outputs,
which can be mapped to a measured output by taking the expectation value of the circuit 20, 

where |ψ(x,θ)〉 denotes the state of the quantum circuit prior to the measurement, x is the input feature vector and θ are
the variational parameters.
[0104] However, the skilled person will appreciate that the number of classical outputs of the variational quantum
circuit 20, and M, the number of qubits, does not need to be the same, as it may be sufficient to measure some of the
qubits to determine the output label.
[0105] The measured outputs can be combined using a machine learning model (MLP), such as a fully connected
MLP which may take in the measured outputs of all variational quantum circuits 20 as input features, and which can
output an output label corresponding to the grid of input features.
[0106] Fig. 3A illustrates a detailed example of a system 10 for classifying images as a grid of input features 26, e.g.
according to the method illustrated in Fig. 2. The system 10 comprises a convolutional block 12, which processes the
grid of input features 26 according to a plurality of concatenated convolutional filters into filtered grids of features 28a-
d. The processing of the grid of input features 26 is illustrated with an example subgroup of features (pictured as a white
rectangle in the sample image) being mapped to a feature of the filtered grid of features 28a along solid lines in the figure.
[0107] In the illustrated example, the sample image is a 28328 feature grayscale image of a handwritten number
(digit), which may be mapped to a tensor, e.g. a 16328328 tensor, as a first filtered grid of features 28a by means of
multiple convolutional filters, extracting filtered features from the respective subsets of features according to different
filter functions. As an example, the convolutional filter may comprise a square kernel with size of 5 3 5, which may
operate with 1 pixel stride and may apply a 2-pixel padding to process all pixels of the sample image. The resulting filter
may be subjected to Batch Normalization, and subsequently an activation function, such as ReLU to obtain the first
filtered grid of features 28a. The first filtered grid of features 28a may be pooled (e.g. according to a max-pooling of
features), for example towards a 16314314 tensor as a second filtered grid of features 28b, which may be processed
by a further convolutional filter arrangement towards a 32314314 third filtered grid of features 28c. The third filtered
grid of features 28c may be further pooled, e.g. towards a 323737 grid of features 28d, and may be flattened into an
intermediate flattened feature vector 30 with 1568 features. The intermediate flattened feature vector 30 may subse-
quently be mapped to a flattened feature vector 16 through a fully connected MLP as part of a flattening layer 14, which
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may reduce the size of the flattened feature vector 16 towards a number of N features.
[0108] The features of the flattened feature vector 16 may be divided into a number of flattened feature vector subsets
18, which may each be passed to a respective one of a plurality of independent variational quantum circuits 20 and
processed according to trainable variational parameters. Measured outputs 32 of the variational quantum circuits 20
may subsequently be processed by a fully connected classification MLP 34 to obtain an output label 36. Each of the
variational quantum circuits 20 may comprise M qubits, such that the N features may be divided into K = N/M flattened
feature vector subsets 18, wherein K is a natural number greater than one, i.e. K ∈ {2; 3; 4; ...}, assuming that one
feature is encoded in each qubit of the variational quantum circuit 20.
[0109] Fig. 3B illustrates an example of a variational quantum circuit 20, which may be used in the system 10 depicted
in Fig. 3A.
[0110] As shown in Fig. 3B each variational quantum circuit 20 of the plurality of variational quantum circuits 20
comprises a plurality of qubits 38, which may be initialized into an initial quantum state at the beginning of a computation,
e.g. each qubit may be initialized in one of the computational basis states, |0〉 or |1〉, as shown in the figure. Subsequently,
a number of encoding gates 40 may be applied to the states of the qubits 38 to encode input features {x1,...,x5} into the
quantum states of the qubits 38, which in the example can be achieved through single-qubit (X) rotations, with a rotation
angle being proportional to the respective input feature.
[0111] Rotations about different axes in the computational space of the qubits 38 may be described by rotation operators 

defining respective rotations about a respective angle θ. In the figure, vertical connections between horizontal lines with
a filled circle on one end and an open circle with an inlaid cross on the other end represent "CNOT" gates, which may
be mathematically described by 

[0112] The CNOT gate may entangle the states of the respective two qubits 38, and may therefore result in a super-
position state for harnessing a quantum advantage of the quantum circuit.
[0113] After a quantum state has been encoded in the qubits 38 by the encoding gates 40, the quantum states of the
qubits 38 may be transformed according to a plurality of i layers 42 of quantum gates, wherein each layer 42 may
comprise a plurality of variational quantum gates 44 and a plurality of entangling gates 46. The variational quantum
gates 44 transform the states of the qubits 38 according to variational parameters {w1,w2,...,w15}, which may correspond
to respective rotation angles of single qubit rotation gates as the variational quantum gates 44, and each layer 42 may
have respective different variational parameters. The entangling gates 46 can entangle the states of a plurality of qubits
38, such as through the application of CNOT gates as shown in Fig. 3B.
[0114] Although not shown in Fig. 3B, the skilled person will appreciate that the encoding gates 40 may also be part
of the layers 42 of quantum gates, e.g. to implement a data re-uploading of the input features and/or to encode multiple
input features into each qubit 38 of the variational quantum circuit 20.
[0115] After the i layers 42 of quantum gates have been sequentially applied to the quantum states of the qubits 38,
the states of the qubits 38 may be measured by a detector 48, such as a plurality of single qubit detectors. Each variational
quantum circuit 20 may be executed repeatedly to determine the measured output 32 as an expectation value of the
finally measured quantum state of the qubits 38.
[0116] As shown in Fig. 3A, each of the independent variational quantum circuits 20 receives a respective flattened
feature vector subset 18 and may independently process its respective input features to determine a respective measured
output. Each of the independent variational quantum circuits 20 may feature different variational parameters
{w1,w2,...,w15}, such that each of the different flattened feature vector subsets 18 may be effectively processed by a
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different variational quantum circuit 20.
[0117] The measured outputs 32 can be passed to a machine learning model, in particular a fully connected layer of
artificial neurons 34, such as to combine the information obtained from the measured outputs 32 of the plurality of
variational quantum circuits 20 and to obtain the output label 36.
[0118] The hybrid quantum-classical computation system 10 may be trained based on a training dataset of sample
data, which may comprise a plurality of sample grids of input features 26 and corresponding sample output labels, such
as the digits corresponding to the handwritten symbols.
[0119] Fig. 4A and 4B illustrate examples of different handwritten symbols taken from the Modified National Institute
of Standards and Technology (MNIST) database, which may be classified into fitting decimal digits 0-9 (as indicated
above the symbols) by a classification system 10. Each of the pictures has a resolution of 28328 pixels and may be
considered as a grid of input features 26, wherein each pixel may be an input feature according to its associated grayscale
color value. While the handwritten symbols in Fig. 4A may generally be unambiguously mapped to a corresponding digit,
the examples in Fig. 4B may be misinterpreted by a human classifier.
[0120] The handwritten number dataset is widely used for testing the performance of various Neural Network (NN)
models. In such models, the main goal is generally to classify each image by labeling it with a fitting class label using a
machine based classifier, which usually involves recognizing which digit is in the image.
[0121] There are a total of 70000 images in the MNIST database, which in the following will be divided into two groups:
60000 images will be designated as training images and the remaining 10000 images will be designated as testing
images for assessing a performance of the machine based classifier.
[0122] Fig. 5 illustrates a method for training a hybrid quantum-classical computation system 10 for approximating a
labeling function for a grid of input features 26. The method comprises the steps of providing a sample grid of features
26 of the sample dataset to a machine learning model (S20), and receiving an output flattened feature vector 16 from
the machine learning model (S22). The method further comprises separating the output flattened feature vector 16 into
a plurality of flattened feature vector subsets 18, providing each of the flattened feature vector subsets 18 to a corre-
sponding variational quantum circuit 20 of the plurality of variational quantum circuits 20 (S24), and receiving an output
label from a combination module 24 based on measured outputs 32 of the plurality of independent variational quantum
circuits 20 (S26). The method further comprises determining a parameter update of variational parameters and trainable
combination parameters based on a value of a loss function for the output label 36 and the label (S28).
[0123] The machine learning model may be implemented as a multilayer perceptron, and the method may start with
a step of initializing the trainable parameters of the plurality of variational quantum circuits 20 (variational parameters),
the machine learning model, and the trainable weighting factors forming the combination parameters for combining the
outputs of the plurality of independent variational quantum circuits 20. The subsequent step may comprises the choice
of a loss (cost) function for comparing the output label 36 produced by the hybrid quantum-classical computation system
10 with a sample label of a training dataset, such as the mean squared error (MSE).
[0124] The training algorithm may then iteratively select a data point, including a grid of input features 26 and a
corresponding sample label, of the training dataset and process it with the machine learning model and subsequently
the plurality of independent variational quantum circuits 20. The variational quantum circuits 20 encode respective
subsets 18 of a flattened feature vector 18 produced by the machine learning model using a chosen encoding routine
(e.g. angle embedding as shown in Fig. 3B). The expectation value of the chosen measurement operator may be
measured after executing the plurality of independent variational quantum circuits 20 in parallel or sequentially, e.g. the
expectation value of the qubits 38 being in "0" or "1" states, based on a Z-axis projection.
[0125] A prediction is obtained as an output label 36 by combining the outputs of the variational quantum circuits 20
according to the trainable weights of the combination layer 24 and the predicted output label 36 is compared to the
sample label of the training dataset.
[0126] Further, a gradient of the comparison value (cost) may be determined with respect to a portion or all trainable
parameters. Subsequently, the next data point may be processed, e.g. until all data points of the training dataset have
been passed. The gradient may be determined with respect to all the parameters in the system 10 and the average
gradient for all the data points may be used to update the trainable parameters, e.g. based on an optimization algorithm,
such as adaptive moment estimation algorithm (Adam). The iterative training process may terminate at any point during
the training, e.g. if the cost function reaches a certain value, reaches a plateau, or is stuck in a loop about a point in the
parameter space. The skilled person will appreciate that it may not be necessary to evaluate the cost function at each
iterative step, but it may be sufficient to compute the gradient during the training.
[0127] Based on the computed gradients, an average gradient for the processed data points may be determined and
may be used to update the trainable parameters based on the chosen optimization algorithm and the selected learning
rates, which may terminate one epoch of the training.
[0128] The training may subsequently recommence with the first data point, e.g. until it is determined that the parameter
update no longer improves the comparison value, until a pre-determined number of epochs, or until a pre-determined
comparison value has been reached.
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[0129] The composition of the hybrid quantum-classical computation system 10 and the hyper-parameters of the
training may be selected based on the labeling function. For example, for a task of labeling a series of handwritten
characters, such as the examples recorded for handwritten numbers in the Modified National Institute of Standards and
Technology (MNIST) database, the input layers may be adapted to the size of the database images, and the output
layers may be adapted to conform to a labeling according to the actual digit, e.g. ranging from 0-9.
[0130] As part of implementing the variational quantum circuits 20, the initial circuit definition may be passed to a
quantum circuit implementation device, which may adapt the variational quantum circuits 20 based on the architecture
of the quantum device, such as to optimize the variational quantum circuits 20 for the quantum hardware. For example,
when the initial variational quantum circuit 20 specifies a CNOT operation, a hardware implementation may comprise a
combination of single qubit and multi qubit state rotations. Moreover, multiple gates may be combined into a different
arrangement of quantum gates, such as to implement the variational quantum circuit 20 with hardware efficient quantum
gates.
[0131] The skilled person will appreciate that the number of features in the flattened feature vector 16 preferably is a
multiple of the number of qubits 38 in the plurality of variational quantum circuits 20 to avoid wasting of processing
resources. However, the skilled person will appreciate that some inputs to one of the variational quantum circuits 20
may be left at a fixed value, or that one of the plurality of variational quantum circuits 20 may have a different circuit
architecture, e.g. fewer qubits 38, such as to adapt the system 10 or method to a pre-defined convolutional filtering
architecture with a number of features in the flattened feature vector 16, which is not a multiple of the general number
of qubits 38 in the plurality of independent variational quantum circuits 20.
[0132] To test the hybrid quantum-classical computation system 10 obtainable by the aforementioned training method,
the plurality of independent variational quantum circuits 20 were implemented on a classical simulator based on the
illustrated circuit configuration in Fig. 3B including four different independent variational quantum circuits 20, which each
have three layers 42 of quantum gates acting on five qubits 38. The system 10 was compared to purely classical machine-
learning classifiers which differ from the hybrid quantum-classical computation system 10 mainly in that the classifying
block 22 comprises a fully connected MLP device implemented on classical hardware instead of the plurality of variational
quantum circuits 20.
[0133] Fig. 6A illustrates results from training a hybrid quantum-classical computation system 10 as illustrated in Fig.
3A, 3B (HQNN), when compared to the performance of a purely classical convolutional neural network (CNN), wherein
the variational quantum circuits 20 are replaced with a multilayer perceptron, MLP, and both systems are trained based
on the MNIST dataset to predict the correct digit. The left figure tracks the training loss over epochs of training the
respective systems, whereas the right figure tracks the accuracy of the respective system of predicting the correct label
for handwritten samples of the testing images of the MNIST dataset. As indicated in the figure legend, the hybrid quantum-
classical computation system 10 comprises less trainable weights (parameters) than the CNN against which it is tested.
[0134] Fig. 6B illustrates a bar chart of the relative performance, i.e. accuracy of predicting the correct label for unseen
handwritten symbols in the validation dataset, for the CNN on the left and the hybrid quantum-classical computation
system 10 on the right. Despite the about 8 times lower number of parameters used for constructing the hybrid quantum-
classical computation system 10 as compared with the CNN, the hybrid quantum-classical computation system 10 is
better at predicting the correct label than the CNN, wherein the probability of attributing a false label is reduced by 38%,
and the final accuracy is at about 99.21%.
[0135] Thus, the system 10 using the plurality of variational quantum circuits 20 may achieve similar or greater accuracy
than a corresponding classical classifier with less trainable parameters. This can be advantageous in situations, where
the number of samples in a sample dataset for training the classifier is low, or comparatively low for complex tasks, in
which the classical classifier may scale in complexity with the complexity of the task. The inventors found that despite
the plurality of variational quantum circuits 20 processing only respective subsets of the flattened feature vector 16, and
despite the correct label generally depending on the complex arrangement of the features in the grid of features 26, the
system 10 may nevertheless correctly attribute a matching label to the images, indicating that the system 10 may be
advantageously applied for classification tasks of feature grids 26 in near-term quantum computing devices.
[0136] In the preceding description, the convolutional block 12 was generally implemented as a classical convolutional
block 12, based on classical convolutional filters implemented on classical features. The skilled person will however
appreciate that the system 10 and method are not generally limited to such an embodiment, but portions of the convo-
lutional block 12 may also be implemented using quantum circuits, e.g. using quanvolutional layers.
[0137] Fig. 7 illustrates an example of a convolutional block 12 comprising a quanvolutional layer 50. In the illustrated
example, the quanvolutional layer 50 is configured to receive a subset of a grid of features, such as the grid of input
features 26, or an intermediate filtered grid of features 28a-d, and encode the features into qubits 52 of the quanvolutional
layer 50. The illustrated quanvolutional layer 50 comprises four qubits 52 and may be configured to receive a subset of
the grid of input features 26 comprising four features, such as a 232 subset of the grid of input features 26, similar to
the action of a classical convolutional filter.
[0138] The quanvolutional layer 50 may encode the input features via encoding gates 54, e.g. via angle embedding,
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into the quantum states of the qubits 52, and may transform the states of the qubits 52 through the action of a layer of
quantum gates 56. The layer of quantum gates 56 may comprise multi-qubit gates, such as CNOT gates and may further
comprise variational quantum gates, wherein an action of the variational quantum gates on the quantum states of the
qubits 52 may be determined by respective trainable variational parameters. In the illustrated example, the layer of
quantum gates 56 is applied once, but the skilled person will appreciate that the layer of quantum gates 56 may be
applied multiple times for transforming the initial states of the qubits 52.
[0139] After the layer of quantum gates 56 has acted on the quantum states of the qubits 52, the quantum states may
be measured by a detection assembly 58, e.g. a plurality of single qubit detectors, which may measure a Z-projection
of the quantum states of all qubits 52.
[0140] The quanvolutional layer 50 may be applied in parallel to all possible matching subgroups of a grid of features
26, 28a-d provided as an input, e.g. all subgroups of 232 squares of neighboring features in the input, and may provide
an output for each measured qubit, i.e. four measured outputs. The quanvolutional layer 50 may feature the same
variational parameters for all subgroups of the grid of features 26, 28a-d, or in other words, the same quanvolutional
layer 50 may be applied to different subgroups of the grid of features 26, 28a-d provided as an input. Each of the
measured outputs may be considered as an output of a different filter, such that the result of applying the quanvolutional
layer 50 to a grid of features 26, 28a-d as an input may be four different filtered grids of features 60, which may be
processed further by additional quanvolutional layers 50, or by classical convolutional filters (not shown in Fig. 7).
[0141] The quanvolutional layer 50 may be trained similar to a classical convolutional layer as described above for
the independent variational quantum circuits 20, e.g. by optimizing the variational parameters based on an optimization
algorithm including adaptive moment estimation as well as gradient computation for the variational parameters, for
example based on the parameter shift rule.
[0142] The filtered grids of features 60 may be flattened by a flattening layer 14 to obtain a flattened feature vector
16, and the flattened feature vector may be processed by a classifying block 22 to obtain an output label 36 for the grid
of input features 26, wherein the classifying block 22 may be implemented at least partially using a variational quantum
circuit 20, as described above.
[0143] The description of the preferred embodiments and the figures merely serve to illustrate the invention and the
beneficial effects associated therewith, but should not be understood to imply any limitation. The scope of the invention
is to be determined solely by the appended claims.

LIST OF REFERENCE SIGNS

[0144]

10 hybrid quantum-classical computation system
12 convolutional block
14 flattening layer
16 flattened feature vector
18 flattened feature vector subset
20 variational quantum circuit
22 classifying block
24 combination layer
26 grid of input features
28a-d filtered grid of input features
30 intermediate flattened feature vector
32 measured outputs
34 fully connected MLP
36 output label
38 qubits
40 encoding gates
42 layers of quantum gates
44 variational quantum gates
46 entangling gates
48 detector
50 quanvolutional layer
52 qubits
54 encoding gates
56 layer of quantum gates
58 detection assembly
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60 filtered grids of features

Claims

1. A hybrid quantum-classical computation system (10) for classifying a grid of features (26, 28, 28a-d) provided as
an input, the system (10) comprising:

a convolutional block (12) comprising a convolutional filter configured to receive the grid of features (26, 28,
28a-d) as an input and to output (32) a plurality of output features (28, 28a-d) for the grid of features (26, 28,
28a-d) based on a trainable configuration of the convolutional filter;
a flattening layer (14) for transforming the filtered grid of output features (28, 28a-d) received from the convo-
lutional block (12) into a flattened feature vector (16);
a classifying block (22) configured to receive the flattened feature vector (16, 18) and to generate an output
classification, wherein the classifying block (22) comprises a plurality of independent variational quantum circuits
(20), each comprising a plurality of quantum gates (40, 44, 46) acting on qubits (38) of a qubit register of the
respective variational quantum circuit (20), the plurality of quantum gates (40, 44, 46) comprising variational
quantum gates (44), wherein the action of a variational quantum gate (44) on the qubits (38) of the qubit register
is parametrized according to an associated variational parameter, and encoding gates (40) for modifying a state
of the qubits (38) of the qubit register according to an input feature vector (16, 18);
wherein the variational quantum circuits (20) of the plurality of independent variational quantum circuits (20)
receive different subsets of features (18) from the flattened feature vector (16) as the input feature vector; and
wherein measured outputs (32) of the plurality of independent variational quantum circuits (20) are combined
to determine a label (36) for the grid of input features (26, 28, 28a-d) as the output classification.

2. The hybrid quantum-classical computation system (10) of any one of the preceding claims, wherein output states
of all qubits (38) in the qubit register of one of the plurality of independent variational quantum circuits (20) are
independent from the actions of quantum gates (40, 44, 46) of another one of the plurality of independent variational
quantum circuits (20).

3. The hybrid quantum-classical computation system (10) of any one of the preceding claims, wherein the variational
parameters of one of the plurality of independent variational quantum circuits (20) are different from the variational
parameters of another one of the plurality of independent variational quantum circuits (20).

4. The hybrid quantum-classical computation system (10) of any one of the preceding claims, wherein each of the
plurality of independent variational quantum circuits (20) comprises multiple layers of quantum gates (42), wherein
each layer (42) of the multiple layers of quantum gates (42) in particular comprises a variational quantum gate (44)
for each of the qubits (38) of the qubit register.

5. The hybrid quantum-classical computation system (10) of any one of the preceding claims, wherein the plurality of
independent variational quantum circuits (20) is implemented in quantum hardware.

6. The hybrid quantum-classical computation system (10) of any one of the preceding claims, wherein the convolutional
block (12) and/or the flattening layer (14) is implemented in classical hardware, in particular using a trainable machine
learning model.

7. The hybrid quantum-classical computation system (10) of any one of the preceding claims, wherein the plurality of
independent variational quantum circuits (20) each comprise at least two qubits (38) in their respective qubit registers.

8. The hybrid quantum-classical computation system (10) of any one of the preceding claims, wherein each of the
plurality of independent variational quantum circuits (20) comprises an entangling gate (46) for entangling quantum
states of at least two of the qubits (38) of the respective qubit register.

9. The hybrid quantum-classical computation system (10) of any one of the preceding claims, wherein the quantum
states of qubits (38) of different variational quantum circuits (20) of the plurality of independent variational quantum
circuits (20) are not entangled prior to measurement.

10. The hybrid quantum-classical computation system (10) of any one of the preceding claims, wherein trainable pa-
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rameters of the convolutional block (12), the flattening layer (14), and the classifying block (22) are obtained based
on a joint training process, in particular of a machine learning model implemented in classical hardware and the
plurality of independent variational quantum circuits (20) implemented in quantum hardware.

11. The hybrid quantum-classical computation system (10) of any one of the preceding claims, wherein each of the
variational quantum circuits (20) of the plurality of independent variational quantum circuits (20) is configured to
encode a number of inputs into the quantum states of the qubits (38) of its qubit register, and the input feature vector
(16, 18) comprises a number of features, which is a multiple of the number of inputs of the variational quantum
circuits (20) of the plurality of independent variational quantum circuits (20).

12. The hybrid quantum-classical computation system (10) of any one of the preceding claims, wherein the measured
outputs (32) of the plurality of independent variational quantum circuits (20) are combined using a trainable layer of
artificial neurons implemented in classical hardware, in particular a fully connected layer (24) of artificial neurons
implemented in classical hardware.

13. A method for determining a label (36) for a grid of input features (26, 28, 28a-d) based on a hybrid quantum-classical
computation algorithm, the method comprising:

receiving the grid of input features (26, 28, 28a-d) and generating a filtered grid of features (26, 28, 28a-d) based
on the grid of input features (26, 28, 28a-d) and a convolutional filter, wherein the convolutional filter is configured
to output a plurality of output features for the grid of input features (26, 28, 28a-d) based on a trainable config-
uration of the convolutional filter;
flattening the filtered grid of output features into a flattened feature vector (16);
separating the flattened feature vector (16) into a plurality of flattened feature vector subsets (16, 18), and
encoding each of the flattened feature vector subsets (18) into qubits (38) of a corresponding variational quantum
circuit (20) of a plurality of independent variational quantum circuits (20), each of the plurality of independent
variational quantum circuits (20) comprising an encoding gate (40) configured to act on the quantum states of
a qubit (38) based on a feature of the corresponding subset (18) of the plurality of flattened feature vector
subsets (16, 18), a variational quantum gate (44), wherein the action of a variational quantum gate (44) on the
qubits (38) of the qubit register is parametrized according to an associated variational parameter, and an en-
tangling gate (46) for creating a superposition of the quantum states of two qubits (38) of the corresponding circuit,
obtaining measured outputs (32) based on measuring an output state of each of the plurality of independent
variational quantum circuits (20) and combining the measured outputs (32) of the plurality of independent
variational quantum circuits (20) to determine a corresponding output label (36).

14. A method for training a hybrid quantum-classical computation system (10) for approximating a labeling function for
an input grid of features (26, 28, 28a-d), the system (10) comprising

a machine learning model, implemented on a classical processing system, configured to generate a flattened
feature vector (16, 18) based on the grid of features (26, 28, 28a-d) according to a parametrized transfer function,
wherein the parametrized transfer function is parametrized by machine-learning parameters, and wherein the
machine learning model comprises convolutional layers (12) of artificial neurons;
a plurality of independent variational quantum circuits (20) each comprising a plurality of quantum gates (40,
44, 46) acting on qubits (38) of a respective qubit register, the plurality of quantum gates (40, 44, 46) comprising
variational quantum gates (44), wherein a parametrized action of a variational quantum gate (44) on the qubits
(38) of the qubit register is parametrized according to an associated variational parameter, and encoding gates
(40) for modifying a state of the qubits (38) of the qubit register according to an input feature vector (16, 18);
wherein the variational quantum circuits (20) of the plurality of independent variational quantum circuits (20)
receive different subsets of features (18) from the flattened feature vector (16) as the input feature vector (16,
18); and
a combination module (24), implemented on a classical processing system, configured to receive measured
outputs (32) generated by the plurality of variational quantum circuits (20) and to combine measured outputs
(32) of the plurality of independent variational quantum circuits (20) to determine a classification result, wherein
the combination is based on a plurality of trainable combination parameters;
the method comprising:

providing a sample grid of features (26, 28, 28a-d) to the machine learning model, and receiving the output
flattened feature vector (16) from the machine learning model;
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separating the output flattened feature vector (16) into a plurality of flattened feature vector (16) subsets,
and providing each of the flattened feature vector (16) subsets to a corresponding variational quantum
circuit (20) of the plurality of variational quantum circuits (20);
receiving an output label (36) from the combination module (24) based on the measured outputs (32) of
the plurality of independent variational quantum circuits (20); and
determining a parameter update of the variational parameters and the trainable combination parameters
based on a value of a loss function for the output label (36).

15. A non-transitory machine readable medium storing machine readable instructions, which when the machine readable
instructions are executed by a processing system cause the processing system to implement and/or to control a
system (10) according to any one of claims 1-12 and/or to implement a method according to claim 13 or 14.
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