w0 2021/046262 A1 | NN 00000 KA Y 0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
11 March 2021 (11.03.2021)

‘O 00T 0 0 0
(10) International Publication Number

WO 2021/046262 Al

WIPO I PCT

(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
GO6F 16/957 (2019.01) Ho041 29/06 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
(21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
DCT/US2020/049263 OR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,
KP,KR,KW,KZ, LA, LC,LK,LR, LS, LU, LY, MA, MD,
(22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
03 September 2020 (03.09.2020) NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
.- . SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN,
(25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.
(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of regional protection available). ARIPO (BW, GH,
62/895,473 03 September 2019 (03.09.2019) US GM, KE, LR, LS, MW, MZ,NA, RW, 8D, 8L, ST, 8Z, TZ,
17/010,783 02 September 2020 (02.09.2020) US UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
i . TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(71) Apphcant: NETFLIX, INC. [US/US], 100 Winchester EE. ES, FIL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
Circle, Los Gatos, California 95032 (US). MC. MK, MT, NL, NO, PL. PT, RO, RS, SE, SI SK. SM,
(72) Inventors: GUPTA, Akanksha; 100 Winchester Circle, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
Los Gatos, California 95032 (US). BRANYEN, Timothy KM, ML, MR, NE, SN, TD, TG).
A.; 100 Winchester Circle, Los Gatos, California 95032
(US). POITREY, Olivier; 100 Winchester Circle, Los Published:

Gatos, California 95032 (US).

Agent: CAREY, John C. et al.; Artegis Law Group, LLP,
7710 Cherry Park Drive, Suite T104, Houston, Texas 77095
USs).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(74)

(54) Title: TECHNIQUES FOR PROXYING NETWORK REQUESTS USING SERVICE WORKERS

(57) Abstract: In various embodiments, a service worker processes network requests by prox-
ying the network requests via a content distribution network. The service worker intercepts a
network request from a client application, generates a duplicate network request, and changes
certain elements of the duplicate network request. The intercepted request can be an initial doc-
ument request used to load a webpage or a subsequent request that includes an application pro-
gramming interface (API) call. The service worker transmits the duplicate network request to
a content distribution network that proxies the duplicate request to a cloud computing system,
thereby accelerating that request.

Duplicated
Request
302

Duplicated
Request
302

Buffered Body of
Request
304

Service Worker 108

Request
200

Client Application 106

Web Browser 306

FIG. 3

10

15

20

25

30

WO 2021/046262 PCT/US2020/049263

TECHNIQUES FOR PROXYING NETWORK REQUESTS USING SERVICE
WORKERS

CROSS-REFERENCE TO RELATED APPLICATIONS

Field of the Invention

[0001] This application claims the benefit of United States provisional patent
application titled, “Web FTL Integration with Service Workers,” filed on September 3,
2019 and having serial number 62/895,473, and claims the benefit of United States
patent application titled, “Techniques For Proxying Network Requests Using Service
Workers,” filed on September 2, 2020, and having serial number 17/010,783. The
subject matter of these related applications is hereby incorporated herein by

reference.

BACKGROUND

Field of the Invention
[0002] Embodiments of the present disclosure relate generally to computer

networking and, more specifically, to techniques for proxying network requests.

Description of the Related Art

[0003] Cloud computing systems, which typically include clusters of server
machines and related networking infrastructure, are designed to provide on-demand
computing resources to customers and other users. Web services, such as streaming

video services, are oftentimes hosted on cloud computing systems.

[0004] For content, such as streaming video and related content, that is stored on
a cloud computing system, a content distribution network (CDN) can be implemented
to accelerate the delivery of that content to customers and other users. A CDN
generally includes a geographically distributed group of server machines (e.g.,
thousands of servers). In some implementations, the server machines within a CDN
proxy requests for dynamic content to a cloud computing system. An example of a
request for dynamic content is an application programming interface (API) request to
update a portion of a webpage in response to user interaction with the webpage (e.q.,
user search input or hovering over a webpage element). A client application can
transmit such a request for dynamic content to a server machine of the CDN that is
located closer to the client application than the cloud computing system. The server

machine then forwards the request to the cloud computing system via a network

1

10

15

20

25

30

WO 2021/046262 PCT/US2020/049263

backbone that provides a more direct and secure connection to the cloud computing
system than the public Internet. When the server machine receives a response to the
request from the cloud computing system via the same network backbone, the server
machine forwards the response back to the client application. Accordingly, the server
machine accelerates the request for dynamic content that would otherwise have to

traverse the public Internet.

[0005] Conventionally, a webpage can include logic (e.g., JavaScript code) that
transmits dynamic requests associated with user interactions to a CDN that proxies
those requests to a cloud computing system. However, such logic in a webpage can
only execute after the webpage has been loaded on a web browser. An initial request
to load the webpage on the web browser cannot be proxied, or otherwise accelerated,

via a CDN using logic in a webpage.

[0006] Alternatively, a conventional CDN can take over the domain of a website to
accelerate webpage(s) of the website. However, if the domain is taken over by a
CDN and no longer associated with a cloud computing system, then requests cannot
be made directly to the cloud computing system if the CDN experiences issues. In
addition, security certificates for sensitive hostnames would need to be hosted on the
CDN, which may be less secure than hosting those security certificates on the cloud

computing system.

[0007] As the foregoing illustrates, what is needed in the art are more effective
techniques for loading webpages on web browsers without requiring the domain of a

website to be taken over by a CDN.

SUMMARY OF THE EMBODIMENTS

[0008] One embodiment of the present disclosure sets forth a computer-
implemented method for processing a network request. The method includes
intercepting a first network request transmitted by a web application. The method
further includes generating a second network request based on the first network
request. In addition, the method includes transmitting the second network request to

a content distribution network for processing.

[0009] Another embodiment of the present disclosure sets forth one or more

computer-readable storage media including instructions that, when executed by one

2

10

15

20

25

30

WO 2021/046262 PCT/US2020/049263

Or more processors, cause the one or more processors to process a network request
by performing the steps of: intercepting a first network request transmitted by a web
application; generating a second network request based on the first network request;
and transmitting the second network request to a content distribution network for

processing.

[0010] Another embodiment of the present disclosure sets forth a system including
one or more memories that include instructions, and one or more processors that are
coupled to the one or more memories and, when executing the instructions are
configured to: intercept a first network request transmitted by a web application,
generate a second network request based on the first network request, and transmit

the second network request to a content distribution network for processing.

[0011] At least one technical advantage of the disclosed techniques relative to the
prior art is an initial request to load a webpage on a web browser can be accelerated
via a content distribution network that is in communication with a cloud computing
system. When a request to the content distribution network encounters an error, the
request can be re-transmitted directly to the cloud computing system as a fallback
route that improves resiliency. In addition, the content distribution network does not
need to host security certificates for sensitive hostnames. These technical
advantages represent one or more technological advancements over prior art

approaches.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] So that the manner in which the above recited features of the present
disclosure can be understood in detail, a more particular description of the disclosure,
briefly summarized above, may be had by reference to embodiments, some of which
are illustrated in the appended drawings. It is to be noted, however, that the
appended drawings illustrate only typical embodiments of this disclosure and are
therefore not to be considered limiting of its scope, for the disclosure may admit to

other equally effective embodiments.

[0013] Figure 1 is a conceptual illustration of a system that is configured to

implement one or more aspects of the various embodiments;

10

15

20

25

30

WO 2021/046262 PCT/US2020/049263

[0014] Figure 2 is a more detailed illustration of the client device of Figure 1,

according to various embodiments;

[0015] Figure 3 illustrates an approach for intercepting and handling network

requests using a service worker, according to various embodiments;

[0016] Figure 4 is a flow diagram of method steps for registering and executing a

service worker, according to various embodiments; and

[0017] Figure 5 is a flow diagram of method steps for proxying a network request
via a content distribution network using a service worker, according to various

embodiments.

DETAILED DESCRIPTION

[0018] In the following description, numerous specific details are set forth to
provide a more thorough understanding of the present disclosure. However, it will be
apparent to one skilled in the art that the present disclosure may be practiced without

one or more of these specific details.

[0019] Conventional content distribution networks (CDN) can be used to proxy
dynamic requests associated with user interactions with a webpage to a cloud
computing system, after the webpage is loaded on a web browser. However, an
initial request to load the webpage on the web browser cannot be proxied, or
otherwise accelerated, via a CDN using logic in a webpage. Alternatively, a
conventional CDN can take over the domain of a website to accelerate webpage(s) of
the website. However, if the domain is taken over by the CDN and no longer
associated with the cloud computing system, then requests cannot be made directly
to the cloud computing system if the CDN experiences issues. In addition, security
certificates for sensitive hostnames would need to be hosted on the CDN, which may

be less secure than hosting those security certificates on the cloud computing system.

[0020] In the disclosed techniques, a service worker processes network requests
by proxying the network requests via a CDN. The service worker is a JavaScript
program that is loaded by a web browser in a dedicated thread to handle logic that
does not require a website to be open in a webpage. A client application first
registers a service worker with a web browser, after which the web browser executes

the service worker when webpages associated with the client application are being

4

10

15

20

25

30

WO 2021/046262 PCT/US2020/049263

subsequently loaded. In some embodiments, the service worker intercepts a network
request from the client application, generates a duplicate network request, and
changes certain elements of the duplicate network request. The intercepted request
can be an initial document request used to load a webpage or a subsequent request
that includes an application programming interface (API) call (also referred to herein
as an APl request). The service worker transmits the duplicate of the intercepted
requests to a CDN that proxies the duplicate request to a cloud computing system,
thereby accelerating that request. If the service worker detects an error indicating
that the proxy path is not accessible, the service worker sends the network request
directly to the cloud computing system (after retrying the proxy path in some cases).
In particular, CDN acceleration can be enabled on webpage load and subsequent
dynamic requests only when there is an ability to fallback to the cloud computing

system when the CDN experiences an issue.

[0021] Advantageously, the disclosed techniques permit an initial request to load a
webpage on a web browser to be accelerated via a content distribution network that is
in communication with a cloud computing system. When a request to the content
distribution network encounters an error, the request can be re-transmitted directly to
the cloud computing system as a fallback route that improves resiliency. In addition,
the content distribution network does not need to host security certificates for

sensitive hostnames.

System Overview
[0022] Figure 1 is a conceptual illustration of a system 100 that is configured to
implement one or more aspects of the various embodiments. As shown, the system

100 includes a client device 102, a CDN 120, and a cloud computing system 130.

[0023] The cloud computing system 130 may include one or more data centers,
each of which may include, without limitation, any number and type of compute
instances. Each such compute instance may include, without limitation, a processor
such as a central processing unit (CPU), a graphics processing unit (GPU), a
controller, a microcontroller, a state machine, or any combination thereof that is
capable of executing instructions and a memory that stores content used by the
processor, such as a random access memory (RAM), read only memory (ROM), flash
drive, hard disk, and/or any other form of digital storage, local or remote. Examples of

cloud computing systems include Amazon Web Services (AWS®), Microsoft Azure®
5

10

15

20

25

30

WO 2021/046262 PCT/US2020/049263

Cloud, and Google Cloud Platform®. In general, compute instances included in the
cloud computing system 130 are configured to implement one or more applications

and/or subsystems of applications. For example, applications could execute in the

cloud regions 212 to host one or more webpages that provide a video streaming

service.

[0024] The CDN 120 may include one or more server machines, such as a
geographically distributed group of server machines (e.g., thousands of servers). The
server machines of a CDN can be used to (1) accelerate the delivery of static content
by caching static content (e.q.. images, videos) on edge servers of the CDN that
communicate with clients, and/or (2) accelerate the delivery of dynamic content by
proxying requests for dynamic content to the cloud computing system 130. As
described, an example of a dynamic request is an API request to update a portion of
a webpage in response to user interaction with the webpage, such as a user search
input or hovering over an element of the webpage. Although described herein
primarily with respect to API requests as a reference example, some embodiments

may handle other types of dynamic requests in addition to, or in lieu of, APl requests.

[0025] The client device 102, which is described in greater detail below in
conjunction with Figure 2, may be any computing device capable of running a web
browser 104 that communicates with the cloud computing system 130 to retrieve
static and/or dynamic content associated with one or more webpages. As shown, the
web browser 104 can communicate directly with the cloud computing system 130 via
a path 122 over the Internet. Alternatively, the web browser 104 can transmit
requests to the CDN 120, which as described above caches static content and/or
proxies requests for dynamic content to the cloud computing system 130, thereby

accelerating the delivery of static and/or dynamic content.

[0026] As shown, the web browser 104 executes a client application 106 as well
as a service worker 108. As described, the service worker 108 is a JavaScript
program that is loaded by a web browser in a dedicated thread to handle logic that
does not require a website to be open in a webpage. Typically, a single service
worker can be loaded by a web browser for all of the webpages of a managed
website domain. For example, if several tabs of the web browser are opened to
webpages of a particular domain, the web browser 104 could execute only one

instance of an associated service worker to handle network requests for those tabs.
6

10

15

20

25

30

WO 2021/046262 PCT/US2020/049263

The client application 106 is a web application that registers the service worker 108
with the web browser 104 when a webpage of the client application is first loaded. In
particular, the service worker 108 is registered to control a particular domain and to
execute on page load. The registered service worker 108 can then be downloaded as
a file from a server machine that is on the same domain and installed. Thereafter, the
web browser executes the service worker 108 when webpages of the domain are
subsequently loaded. It should be understood that different web browsers can
implement different techniques for installing and executing service workers. In
addition, service workers can be unregistered and updated differently by different web

browsers.

[0027] When executed, the service worker 108 is a distinct process that intercepts
network requests associated with the domain of the client application 106 and proxies
some or all of those requests via the CDN 120, as described in greater detail below in
conjunction with Figures 4-5. As shown, the web browser 104 also includes a cache
110 (e.q., a database) in which pre-flight header(s) are stored, and the CDN 120 also
includes a cache 121 in which pre-flight response(s) are stored. As described in
greater detail below in conjunction with Figure 5, the web browser 104 will generally
not permit a request that is intended for the cloud computing system 130 to instead be
sent to the CDN 120. In order to enable requests to be sent to the CDN 120 instead
of the cloud computing system 130, the service 108 needs to make a pre-flight
request, called an OPTIONS request, to request permission from the cloud computing
system 130 to send the requests to the CDN 120. However, making such a pre-flight
request to the cloud computing system 130 prior to sending every request to the CDN
120 is inefficient. To avoid such pre-flight requests to the cloud computing system
130, a response to the pre-flight request is stored in the cache 121 of the CDN 120.
Pre-flight requests can then be sent to the CDN 120 rather than the 130, which is
faster. A pre-flight header that is generated in response to the pre-flight response can
also be stored in the cache 110 of the browser 104, and added to subsequent
requests, to avoid making additional pre-flight requests (to the CDN 120 or the cloud
computing system 130). In addition, the service worker 108 can add the pre-flight
header to a duplicate of the request that is to be proxied via the CDN 120, set a mode
of the duplicate request to cross-origin resource sharing (CORS) so that the
hostname in the request 300 can be changed to a different hosthame associated with
one of the server machines of the CDN 120, set a credentials field to true so that

7

10

15

20

25

30

WO 2021/046262 PCT/US2020/049263

cookies are also sent, set a body of the duplicate request to point to a body of the
original request that was read and temporarily stored in a buffer as a blob or array
buffer object, and add an origin header for initial document requests to indicate when
those initial document requests were proxied via the CDN 120 and subsequent
dynamic requests should also be proxied via the CDN 120, as described in greater

detail below in conjunction with Figure 5.

[0028] Although described herein primarily with respect to service workers,
techniques disclosed herein can be performed by any technically feasible software,

such as middleman processes or web browser extensions.

[0029] For explanatory purposes only, one cloud computing system 130, one CDN
120, one client device 102, and one web browser 104 are shown in Figure

1. However, as persons skilled in the art will recognize, the system 100 may
generally include any number of cloud computing systems, CDNSs, client devices, and
web browsers. Further, functionality of software running in the cloud computing
systems, CDNs, and client devices may be distributed across any number of other
computing devices, and functionality of any number of applications may be

consolidated into a single application or subsystem.

[0030] Figure 2 is a more detailed illustration of the client device 102 of Figure 1,
according to various embodiments. As shown, the client device 102 includes, without
limitation, a processor 202 and a memory 204. The processor 202 may be any
instruction execution system, apparatus, or device capable of executing

instructions. For example, the processor 202 could comprise a CPU, a GPU, a
controller, a microcontroller, a state machine, or any combination thereof. The
memory 204 stores content, such as software applications and data, for use by the

processor 202.

[0031] The memory 204 may be one or more of a readily available memory, such
as random access memory (RAM), read only memory (ROM), floppy disk, hard disk,
or any other form of digital storage, local or remote. In some embodiments, a storage
(not shown) may supplement or replace the memory 204. The storage may include
any number and type of external memories that are accessible to the processor

202. For example, and without limitation, the storage may include a Secure Digital

Card, an external Flash memory, a portable compact disc read-only memory (CD-

8

10

15

20

25

30

WO 2021/046262 PCT/US2020/049263

ROM), an optical storage device, a magnetic storage device, or any suitable

combination of the foregoing.

[0032] As shown, the system memory 204 stores a web browser 104 and an
operating system 308. The operating system 308 may be, €.g., Linux®, Microsoft
Windows®, or Android™. The web browser 104 is a software application for
accessing information on the Internet. Examples of web browsers include Google
Chrome®, Safari®, and Microsoft Edge®. lllustratively, the web browser 104
executes the service worker 108. As described, the service worker 108 can be
registered by a webpage and thereafter executes to intercept and handle network
requests associated with a domain of the webpage. In some embodiments, the
service worker 108 handles both initial document requests to load a webpage as well
as dynamic content requests associated with the domain by proxying the requests via

the CDN 120, as described in greater detail below in conjunction with Figures 3-5.

Proxying Network Requests using Service Workers
[0033] Figure 3 illustrates an approach for intercepting and handling network
requests using the service worker 108, according to various embodiments. As
shown, the service worker 108 intercepts a request 300 associated with a webpage
included in the webpage(s) of a domain the service worker 108 was registered to
control. In particular, the service worker 108 receives fetch events from the web
browser 104 whenever the client application 106 issues requests associated with
webpage(s) controlled by the service worker 108. The service worker 108 handles
the fetch events and responds back to the web browser 104 through the
respondWith() method on those events. Accordingly, the service 108 is able to
control network requests and responses associated with the domain and associated

webpage(s) that the service worker 108 was registered to control.

[0034] In some embodiments, the service worker 108 handles fetch events by
attempting to proxy some or all of the requests associated with those fetch events via
the CDN 120. The service worker 108 can be configured to proxy certain types of
requests, but not others, via the CDN 120. In some embodiments, the service worker
108 proxies initial document requests used to load webpages and dynamic content
requests when a user interacts with those webpages. In such cases, the initial
document request can be used to request a markup, such as the Hypertext Transfer

Protocol (HTTP) content, that provides instructions on how the webpages look and
9

10

15

20

25

30

WO 2021/046262 PCT/US2020/049263

function. The dynamic content requests can include APl requests to update portion(s)
of the webpages in response to, €.g., search input by the user, hovering of a cursor
over a webpage element, or the like. In addition, in some embodiments, when the
initial markup for a webpage is loaded via the service worker 108, the service worker
108 may modify the markup such that the web browser 104 adds a query parameter
to subsequent API requests associated with the webpage, indicating that those API
requests should be proxied via the CDN 120. In such cases, the service worker 108
will attempt to proxy requests having the added query parameter via the CDN 120. It
should be understood that usage of the service worker 108 differs from that of
conventional service workers, which are primarily used to cache content of webpages

so that those webpages can be viewed when a web browser is offline.

[0035] Assuming the service worker 108 determines that the request 300 should
be proxied via the CDN 120, the service worker 108 generates a duplicate of the
request, shown as duplicate request 302, and send the duplicate request 302 to one
of the server machine in the CDN 120 via the path 112. The server machine in the
CDN 120 then proxies the duplicate request 302 to the cloud 130. lllustratively, the
request is forwarded to the cloud computing system 120 via a network backbone 114
that provides a more direct and secure connection to the cloud computing system
than the public Internet. When the server machine in the CDN 120 receives a
response to the request from the cloud computing system via the network backbone

140, the server machine forwards the response back to the client application 106.

[0036] It should be understood that the request 300 will include various elements,
such as a hostname, headers, a body, query parameters, etc. When the service
worker 108 duplicates the request 300, the service worker 108 may re-create the
same request, but change some elements of the request. In some embodiments, the
service worker 108 can set a mode of the duplicate request to CORS so that the
hostname in the request 300 can be changed to a different hosthame associated with
one of the server machines of the CDN 120, set a credentials field to true so that
cookies are also sent, as well as add a cached pre-flight header and an origin header
for initial document requests to indicate that those initial document requests were
proxied via the CDN 120 and subsequent dynamic requests should also be proxied

via the CDN 120, as described in greater detail below in conjunction with Figure 5.

10

10

15

20

25

30

WO 2021/046262 PCT/US2020/049263

[0037] Some requests (e.g., POST and PUT requests) may have bodies that
include stream elements that cannot be copied directly into the duplicate request 302.
In some embodiments, the service worker 108 reads the body of such a request 300
and temporarily stores contents of the body in a buffer, shown as the buffered body of
the request 304. For example, the buffered body of the request 304 could be a blob
or array buffer object. Thereafter, the service worker sets a body of the duplicate

request 302 to point to the buffered body of the request 304.

[0038] Unlike conventional service workers that cache static webpage content so
that the static content can be loaded faster when the webpage is visited again, the
service worker 108 permits requests for dynamic content to be accelerated by
proxying such requests via the CDN 120. In addition, the service worker 108 permits
initial document requests to load a webpage to be accelerated via the CDN 120, in
contrast to the conventional use of CDNs to accelerate dynamic requests after a

webpage has already been loaded.

[0039] In some embodiments, the service worker 108 also handles failovers when
an error is encountered and a request cannot be proxied via the CDN 120 because,
e.g., the service worker 108 detects that the path 112 is unreachable. In such cases,
the service worker 108 may send the request 300 directly to the cloud computing
system 130 via the path 122. However, if the request 300 is an initial document
request, the service worker 108 first retries sending the duplicate request 302 to the
CDN 120 multiple times, before sending the request 300 to the cloud computing
system 130 if the service worker 108 continues encountering the error. Further, in
some embodiments, CDN acceleration may be enabled on webpage load and
subsequent dynamic requests only when there is an ability to fallback to the cloud

computing system 130 when the CDN 120 experiences an issue.

[0040] Figure 4 is a flow diagram of method steps for registering and executing the
service worker 108, according to various embodiments. Although the method steps
are described with reference to the systems of Figures 1-3, persons skilled in the art
will understand that any system configured to implement the method steps, in any

order, falls within the scope of the present disclosure.

11

10

15

20

25

30

WO 2021/046262 PCT/US2020/049263

[0041] At step 402, the web browser 104 loads a webpage for a first time. It is
assumed that the webpage includes logic (e.g., JavaScript code) for registering the

service worker 108.

[0042] At step 404, the webpage registers the service worker 108. Registration of
the service worker 108 causes the web browser 104 to download file(s) associated
with the service worker 108 and to install the service worker 108 from those files. The
service worker 108 files may be downloaded from any technically feasible location,
such as a server machine associated with the domain of the webpage. As described,
different web browsers can implement different techniques for registering, installing,

executing, unregistering, and/or updating service workers.

[0043] At step 406, the web browser 104 executes the service worker 108 as a
process that is independent of the webpage. As described, the web browser 104
executes the service worker 104 when webpages associated with the domain of the
client application 106 are subsequently loaded. Because the service worker 108 is
executed before initial document requests to load the webpages again are processed,
the service worker 108 can proxy such initial document requests via the CDN 120.
Doing so enables faster loading of the webpages on the web browser 104 relative to
transmitting the initial document requests to the cloud computing system 130. In
addition, because the CDN 120 does not need to take over the domain of the website,
webpage loading can be accelerated using the same (non-main) domain as
subsequent dynamic requests. As a result, duplicate Transmission Control Protocol
(TCP)/Transport Layer Security (TLS) handshakes to two different endpoints, namely
the main domain and the non-main domain, can be avoided. Further, the service
worker can fallback to the main domain that is associated with the cloud computing
system 130 when the CDN 120 experiences issues, as described in greater detalil

below.

[0044] At step 408, the service worker 108 retrieves configuration information from
a database of the web browser 104, or from an external source. In some
embodiments, the webpage can include logic (€.g., JavaScript) that communicates
the configuration information to the service worker 108 via a messaging system (e.qQ.,
the PostMessage method), after which the configuration information is stored in a
database of the web browser 104 and can subsequently be retrieved for use by the

service worker 108 from that database. For example, the configuration information
12

10

15

20

25

30

WO 2021/046262 PCT/US2020/049263

could indicate specific server(s) of the CDN 102 that the service worker 108 should
communicate with in order to proxy network requests. In such cases, the service
worker 108 can either receive the configuration information directly from the webpage,
or retrieve the configuration that was previously stored in the database of the web
browser 104. In other embodiments, the service worker 108 can retrieve
configuration information from any technically feasible location, such as a server

machine where such information is stored.

[0045] At step 410, the service worker 108 intercepts and handles initial document
requests and API requests associated with a domain of the webpage based on the
retrieved configuration. In some embodiments, the service worker 108 handles the
initial document and API requests according to the steps described in detail below in

conjunction with Figure 5.

[0046] Figure 5 is a flow diagram of method steps for using a service worker to
proxy a network request via a content distribution network, according to various
embodiments. Although the method steps are described with reference to the
systems of Figures 1-3, persons skilled in the art will understand that any system
configured to implement the method steps, in any order, falls within the scope of the

present disclosure.

[0047] As shown, at step 502, the service worker 108 receives a request from the
client application 106. As described, the service worker 108 can receive fetch events
from the web browser 104 in response to network requests associated with the
webpage(s) controlled by the service worker 108. In particular, once installed, all
network requests, including the initial document request for the markup, can be

intercepted by the service worker by default.

[0048] At step 504, the service worker 108 determines whether to proxy the
request via the CDN 120. The service worker 108 may proxy some or all of the
received requests. In some embodiments, when the initial markup for a webpage is
loaded via the service worker 108, the service worker 108 may modify the markup
such that the web browser 104 adds a query parameter to subsequent APl requests
associated with the webpage, indicating that those API requests should be proxied via
the CDN 120. In such cases, the service worker 108 will attempt to proxy requests

having the added query parameter via the CDN 120. In some embodiments, the

13

10

15

20

25

30

WO 2021/046262 PCT/US2020/049263

service worker 108 may be configured to proxy certain types of requests, such as
document navigation requests and API requests, but not other types of requests, such
as requests for streaming media content, via the CDN 120. As described, because
the CDN 120 does not need to take over the domain of the website, the service
worker 108 can proxy requests via the CDN 120 webpage loading using the same
(non-main) domain for initial document requests as subsequent dynamic requests.

As a result, duplicate TCP/TLS handshakes to two different endpoints, namely the

main domain and the non-main domain, can be avoided.

[0049] At step 506, if the request is not proxied via the CDN 120, then the service
worker 108 allows the request to be handled by the web browser 104. For example,
the web browser 104 could transmit the request directly to the cloud computing

system 130 via the Internet.

[0060] On the other hand, if the request is to be proxied via the CDN 120, then the
service worker 108 duplicates the request at step 508. Then, at step 510, the service
worker 108 sets a mode of the duplicate request to CORS and a credentials field to
true. CORS needs to be configured to permit the hostname in the request, which is
initially associated with the cloud computing system 130, to be changed to a different
hostname associated with one of the server machines of the CDN 120. As described,
security of the web browser 104 may prevent a non-CORS request from being sent to
the different hostname. In addition, the credentials field is set to true so that cookies

can be sent.

[0051] At step 512, the service worker 108 adds a cached pre-flight header to the
duplicate request. Step 512 assumes that the pre-flight header has been cached in,
e.g., a database of the web browser 104. As described, the pre-flight header can be
cached to avoid an additional pre-flight request for permission to transmit a request
intended for the cloud computing system 130 to the CDN 120. If, however, the pre-
flight header has not been cached, then the service worker 108 may make a pre-flight

request to the CDN 120, which returns a cached response to the pre-flight request.

[0052] At step 514, if the service worker 108 determines that the request is an
initial document request, then, at step 516, the service worker 108 adds an origin
request header to the duplicate request to indicate that the request is proxied via the
CDN 120 and subsequent API requests should also be proxied via the CDN 120. As

14

10

15

20

25

30

WO 2021/046262 PCT/US2020/049263

described, when the initial markup for a webpage is loaded via the service worker
108, the service worker 108 can also modify the markup such that the web browser
104 adds a query parameter to subsequent API requests associated with the

webpage, indicating that those API requests should be proxied via the CDN 120.

[0053] At step 518, the service worker 108 determines whether the request
includes a POST or PUT request with a body that is not O bytes. If the request
includes a POST or PUT request with a body that is not O bytes, then at step 520, the
service worker 108 reads and temporarily stores the body of the request in a buffer.
As described, some requests (e.g., POST and PUT requests with bodies that are not
0 bytes) may have bodies that include stream elements that cannot be copied directly
into the duplicate request, in which case the service worker 108 may read the body of
those requests and buffer the bodies as blob or array buffer objects. Then, at step
522, the service worker 108 sets a body of the duplicate request, created at step 508,
to point to the buffered body of the request, such as the buffered blob or array buffer

object.

[0064] Subsequent to setting the body of the duplicate request to point to the
buffered body of the request, or if the service worker 108 determines at step 514 that
the request does not include a POST or PUT request with a body that is not O bytes,
the service worker 108 sends the duplicate request to the CDN 120 at step 524. As
described, the CDN 120 proxies the request to the cloud 130, thereby accelerating
loading of a webpage in response to an initial document request or delivery of

dynamic content in response to an API request.

[0055] At step 526, if the service worker 108 detects an error, such as if the path
112 via the CDN 120 cannot be reached, then at step 528, the service 108 further
determines whether the request is an initial document request to load a webpage,

which is handled differently than an API request after the webpage has loaded.

[0056] If the request is an initial document request, then at step 530, the service
worker 108 retries sending the duplicate request to the CDN 120 a number of times.
If the service worker 108 continues detecting an error at step 532, or if the service
worker 108 determines at step 528 that the request is not an initial document request,
then at step 534, the service worker 108 sends the request to the cloud computing

system 130. In some embodiments, the service worker 108 may additionally enter a

15

10

15

20

25

30

WO 2021/046262 PCT/US2020/049263

“error mode” in which the service worker 108 also sends subsequent requests to the

cloud computing system 130, rather than the CDN 120.

[0057] At least one technical advantage of the disclosed techniques relative to the
prior art is an initial request to load a webpage on a web browser can be accelerated
via a content distribution network that is in communication with a cloud computing
system. When a request to the content distribution network encounters an error, the
request can be re-transmitted directly to the cloud computing system as a fallback
route that improves resiliency. In addition, the content distribution network does not
need to host security certificates for sensitive hostnames. These technical
advantages represent one or more technological advancements over prior art

approaches.

[0058] 1. In some embodiments, a computer-implemented method for processing
a network request comprises intercepting a first network request transmitted by a web
application, generating a second network request based on the first network request,
and transmitting the second network request to a content distribution network for

processing.

[0059] 2. The computer-implemented method of clause 1, wherein generating the
second network request comprises duplicating the first network request to generate a
duplicated first network request and modifying one or more elements of the duplicated

first network request.

[0060] 3. The computer-implemented method of clauses 1 or 2, wherein the one

or more elements include at least one of a header, a mode field, or a credentials field.

[0061] 4. The computer-implemented method of any of clauses 1-3, wherein
modifying the one or more elements of the duplicated first network request comprises
adding at least one of a cached pre-flight header or an origin header to the duplicated

first network request.

[0062] 5. The computer-implemented method of any of clauses 1-4, wherein the
first network request comprises an application programming interface (API) call, and
modifying the one or more elements comprises reading a body of the first network

request, storing the body of the first network request, and setting a body of the

16

10

15

20

25

WO 2021/046262 PCT/US2020/049263

duplicated first network request to reference the body of the first network request that

is stored.

[0063] 6. The computer-implemented method of any of clauses 1-5, wherein the
first network request comprises one of an initial document request or an application

programming interface (API) request.

[0064] 7. The computer-implemented method of any of clauses 1-6, further
comprising retrieving configuration data from a web browser database or a server
machine that specifies one or more server machines to which the second network

request is transmitted in the content distribution network.

[0065] 8. The computer-implemented method of any of clauses 1-7, further
comprising transmitting the first network request to a cloud computing system in
response to detecting an error when transmitting the second network request to the

content distribution network.

[0066] 9. The computer-implemented method of any of clauses 1-8, further
comprising, re-transmitting the second network request to the content distribution
network in response to detecting an error when transmitting the second network

request to the content distribution network.

[0067] 10.The computer-implemented method of any of clauses 1-9, wherein a
service worker performs the steps of intercepting, generating, and transmitting, and
wherein the service worker receives fetch events from a web browser and responds

back to the web browser.

[0068] 11.In some embodiments, one or more computer-readable storage media
include instructions that, when executed by one or more processors, cause the one or
more processors to process a network request, by performing the steps of
intercepting a first network request transmitted by a web application, generating a
second network request based on the first network request, and transmitting the

second network request to a content distribution network for processing.

[0069] 12.The one or more computer-readable storage media of clause 11,

wherein generating the second network request comprises duplicating the first

17

10

15

20

25

30

WO 2021/046262 PCT/US2020/049263

network request to generate a duplicated first network request and modifying one or

more elements of the duplicated first network request.

[0070] 13.The one or more computer-readable storage media of clauses 11 or 12,
wherein modifying the one or more elements of the duplicated first network request
comprises adding at least one of a pre-flight header or an origin header to the

duplicated first network request.

[0071] 14.The one or more computer-readable storage media of any of clauses
11-13, the steps further comprising retrieving the pre-flight header from a web

browser cache.

[0072] 15.The one or more computer-readable storage media of any of clauses
11-14, the steps further comprising obtaining the pre-flight header by transmitting a

pre-flight request to the content distribution network.

[0073] 16.The one or more computer-readable storage media of any of clauses
11-15, wherein the first network request comprises an application programming
interface (API) call, and modifying the one or more elements comprises reading a
body of the first network request, storing the body of the first network request, and
setting a body of the duplicated first network request to reference the body of the first

network request that is stored.

[0074] 17.The one or more computer-readable storage media of any of clauses
11-16, wherein the first network request comprises one of an initial document request

or an application programming interface (API) request.

[0075] 18.The one or more computer-readable storage media of any of clauses
11-17, the steps further comprising transmitting the first network request to a cloud
computing system in response to detecting an error when transmitting the second

network request to the content distribution network.

[0076] 19.The one or more computer-readable storage media of any of clauses
11-18, wherein a process that executes independently of a web application performs

the steps of intercepting, generating, and transmitting.

[0077] 20.In some embodiments, a system comprises one or more memories that
include instructions, and one or more processors that are coupled to the one or more
18

10

15

20

25

30

WO 2021/046262 PCT/US2020/049263

memories and, when executing the instructions are configured to intercept a first
network request transmitted by a web application, generate a second network request
based on the first network request, and transmit the second network request to a

content distribution network for processing.

[0078] Any and all combinations of any of the claim elements recited in any of the
claims and/or any elements described in this application, in any fashion, fall within the

contemplated scope of the present disclosure and protection.

[0079] The descriptions of the various embodiments have been presented for
purposes of illustration, but are not intended to be exhaustive or limited to the
embodiments disclosed. Many modifications and variations will be apparent to those
of ordinary sKkill in the art without departing from the scope and spirit of the described

embodiments.

[0080] Aspects of the present embodiments may be embodied as a system,
method or computer program product. Accordingly, aspects of the present disclosure
may take the form of an entirely hardware embodiment, an entirely software
embodiment (including firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that may all generally be

1113

referred to herein as a ““module” or “system.” Furthermore, aspects of the present
disclosure may take the form of a computer program product embodied in one or
more computer readable medium(s) having computer readable program code

embodied thereon.

[0081] Any combination of one or more computer readable medium(s) may be
utilized. The computer readable medium may be a computer readable signal medium
or a computer readable storage medium. A computer readable storage medium may
be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor system, apparatus, or device, or any suitable combination
of the foregoing. More specific examples (a non-exhaustive list) of the computer
readable storage medium would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-

only memory (CD-ROM), an optical storage device, a magnetic storage device, or any

19

10

15

20

25

30

WO 2021/046262 PCT/US2020/049263

suitable combination of the foregoing. In the context of this document, a computer
readable storage medium may be any tangible medium that can contain, or store a
program for use by or in connection with an instruction execution system, apparatus,

or device.

[0082] Aspects of the present disclosure are described above with reference to
flowchart illustrations and/or block diagrams of methods, apparatus (systems) and
computer program products according to embodiments of the disclosure. It will be
understood that each block of the flowchart illustrations and/or block diagrams, and
combinations of blocks in the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These computer program
instructions may be provided to a processor of a general purpose computer, special
purpose computer, or other programmable data processing apparatus to produce a
machine. The instructions, when executed via the processor of the computer or other
programmable data processing apparatus, enable the implementation of the
functions/acts specified in the flowchart and/or block diagram block or blocks. Such
processors may be, without limitation, general-purpose processors, special-purpose

processors, application-specific processors, or field-programmable gate arrays.

[0083] The flowchart and block diagrams in the figures illustrate the architecture,
functionality, and operation of possible implementations of systems, methods and
computer program products according to various embodiments of the present
disclosure. In this regard, each block in the flowchart or block diagrams may
represent a module, segment, or portion of code, which comprises one or more
executable instructions for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the functions noted in the
block may occur out of the order noted in the figures. For example, two blocks shown
in succession may, in fact, be executed substantially concurrently, or the blocks may
sometimes be executed in the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hardware-based systems that
perform the specified functions or acts, or combinations of special purpose hardware

and computer instructions.

20

WO 2021/046262 PCT/US2020/049263

[0084] While the preceding is directed to embodiments of the present disclosure,
other and further embodiments of the disclosure may be devised without departing

from the basic scope thereof, and the scope thereof is determined by the claims that

follow.

21

10

15

20

25

30

WO 2021/046262 PCT/US2020/049263
WHAT IS CLAIMED IS:

1. A computer-implemented method for processing a network request, the
method comprising:
intercepting a first network request transmitted by a web application;
generating a second network request based on the first network request; and
transmitting the second network request to a content distribution network for

processing.

2. The computer-implemented method of claim 1, wherein generating the second
network request comprises duplicating the first network request to generate a
duplicated first network request and modifying one or more elements of the duplicated

first network request.

3. The computer-implemented method of claim 2, wherein the one or more

elements include at least one of a header, a mode field, or a credentials field.

4. The computer-implemented method of claim 2, wherein modifying the one or
more elements of the duplicated first network request comprises adding at least one
of a cached pre-flight header or an origin header to the duplicated first network

request.

. The computer-implemented method of claim 2, wherein the first network
request comprises an application programming interface (API) call, and modifying the
one or more elements comprises:

reading a body of the first network request;

buffering the body of the first network request; and

setting a body of the duplicated first network request to reference the body of

the first network request that is buffered.

6. The computer-implemented method of claim 1, wherein the first network
request comprises one of an initial document request or an application programming

interface (API) request.

7. The computer-implemented method of claim 1, further comprising retrieving
22

10

15

20

25

30

WO 2021/046262 PCT/US2020/049263

configuration data from a web browser database or a server machine that specifies
one or more server machines to which the second network request is transmitted in

the content distribution network.

8. The computer-implemented method of claim 1, further comprising transmitting
the first network request to a cloud computing system in response to detecting an
error when transmitting the second network request to the content distribution

network.

9. The computer-implemented method of claim 1, further comprising, re-
transmitting the second network request to the content distribution network in
response to detecting an error when transmitting the second network request to the

content distribution network.

10. The computer-implemented method of claim 1, wherein a service worker
performs the steps of intercepting, generating, and transmitting, and wherein the
service worker receives fetch events from a web browser and responds back to the

web browser.

11. One or more computer-readable storage media including instructions that,
when executed by one or more processors, cause the one or more processors to
process a network request, by performing the steps of:
intercepting a first network request transmitted by a web application;
generating a second network request based on the first network request; and
transmitting the second network request to a content distribution network for

processing.

12. The one or more computer-readable storage media of claim 11, wherein
generating the second network request comprises duplicating the first network
request to generate a duplicated first network request and modifying one or more

elements of the duplicated first network request.

13. The one or more computer-readable storage media of claim 12, wherein

modifying the one or more elements of the duplicated first network request comprises

23

10

15

20

25

30

WO 2021/046262 PCT/US2020/049263

adding at least one of a pre-flight header or an origin header to the duplicated first

network request.

14. The one or more computer-readable storage media of claim 13, the steps

further comprising retrieving the pre-flight header from a web browser cache.

15. The one or more computer-readable storage media of claim 13, the steps
further comprising obtaining the pre-flight header by transmitting a pre-flight request

to the content distribution network.

16. The one or more computer-readable storage media of claim 11, wherein the
first network request comprises an application programming interface (API) call, and
modifying the one or more elements comprises:

reading a body of the first network request;

buffering the body of the first network request; and

setting a body of the duplicated first network request to reference the body of

the first network request that is buffered.

17. The one or more computer-readable storage media of claim 11, wherein the
first network request comprises one of an initial document request or an application

programming interface (API) request.

18. The one or more computer-readable storage media of claim 11, the steps
further comprising transmitting the first network request to a cloud computing system
in response to detecting an error when transmitting the second network request to the

content distribution network.

19. The one or more computer-readable storage media of claim 11, wherein a
process that executes independently of a web application performs the steps of

intercepting, generating, and transmitting.

20. A system, comprising:
one or more memories that include instructions; and

one or more processors that are coupled to the one or more memories and,

24

WO 2021/046262 PCT/US2020/049263

when executing the instructions are configured to:

intercept a first network request transmitted by a web application,

generate a second network request based on the first network request,
and

transmit the second network request to a content distribution network for

processing.

25

1/5

PCT/US2020/049263

WO 2021/046262

il

l "Old

ocl
Ndd

121
ayoe)
asuodsay
b1 4-8.d

2ol
so1Ae(JUSID

¥0l
Jesmolg gepa

oLl
ayoe? JepesH

b1 4-a1d

90l
uoneolddy

uald

cll

301
NENTIOIY
90IAJ8S

2/5
WO 2021/046262 PCT/US2020/049263

Processor 202

Memory 204

Web Browser 104

Service Worker 108

Client Application 106

Pre-Flight Header Cache 110

Operating System 208

Client Device
102

FIG. 2

3/5
WO 2021/046262 PCT/US2020/049263

Duplicated
Request
302

Duplicated
Request
302

Buffered Body of
Request
304

Service Worker 108

Request
300

Client Application 106

Web Browser 306

FIG. 3

4/5
WO 2021/046262 PCT/US2020/049263

/ 400

Web browser loads webpage for first time |~ 402

A

Webpage registers service worker _~ 404

'

Web browser executes service workeras | - 406
process that is independent of webpage

:

Service worker retrieves configuration
information from web browser database or |~ 408
external source

:

Service worker intercepts and handles initial

document requests and AP| requests - 410

associated with domain based on
configuration

FIG. 4

5/5
WO 2021/046262 PCT/US2020/049263

Receive request from client application P— 502 o 410

Proxy request
via CDN?

A 4

Duplicate request L — 508

Allow web browserto | __ 506
handle request

Set mode of duplicate request to
CORS and credentials fieldto }— 510
‘include’

Add cached pre-flight headerto | _ 5192
duplicate request

nitial documen
request?

Add origin header |— 516
I

518

Request

No

includes POST or PU
equest with body that ig
not O bytes?

Read and buffer body of request |-— 520

N 522
Set body of duplicate request to —
point to buffered body of request
y
Send duplicate request to CDN 524
No
nitial documen 928 Yes
request?
\ 4
Send request to Retry sending duplicate request
cloud computing | 534 tc CDN a number of times . [~ >0
system

A
Yes

FIG. 5

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2020/049263

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F16/957 HO4L29/06
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

HO4L GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X,0 webpwnized:

Burp-Suite",
Youtube,

XP054981042,
Retrieved from the Internet:

hldrc
[retrieved on 2020-10-29]
the whole document

14 January 2012 (2012-01-14), page 1 pp.,

URL:https://www.youtube.com/watch?v=qsEOQ4A

"Introduction to Web Request 1-5,
and Response Interception with

10-15,
19,20

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

30 October 2020

Date of mailing of the international search report

20/01/2021

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Ecolivet, Stéphane

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2020/049263

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X Anonymous: "Proxy server - Wikipedia",

1 September 2019 (2019-09-01),
XP055745129,

Retrieved from the Internet:
URL:https://en.wikipedia.org/w/index.php?t
itle=Proxy server&oldid=913512943
[retrieved on 2020-10-29]

page 1 - page 3

page 6 - page 7

X Nick Ramirez: "Enabling CORS in HAProxy -
HAProxy Technologies",

30 August 2019 (2019-08-30), XP055745168,
Retrieved from the Internet:
URL:https://www.haproxy.com/blog/enabling-
cors-in-haproxy/

[retrieved on 2020-10-29]

page 3, last paragraph - page 6

X EP 2 874 078 Al (INSTART LOGIC INC [US])
20 May 2015 (2015-05-20)

the whole document

1-5,
10-15,
19,20

1-5,
10-16,
19,20

1-5,
10-16,
19,20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

International application No.
INTERNATIONAL SEARCH REPORT PCT/US2020/043263
Box No.ll Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. I:' Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. I:' Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful international search can be carried out, specifically:

3. |:| Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. lll Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. I:' As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of
additional fees.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
1-5, 10-16, 19, 20
Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the

payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

I:' No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2005)

International Application No. PCT/ US2020/ 049263

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of)
inventions in this international application, as follows:

1. claims: 1-5, 10-16, 19, 20

Modifying a network request

2. claims: 1, 6, 11, 17

making an API request

3. claims: 1, 7

Retrieving configuration data

4. claims: 1, 8, 9, 11, 18

Transmitting a request to a cloud computing system in case
of error

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2020/049263
Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 2874078 Al 20-05-2015 EP 2874078 Al 20-05-2015
US 2015143223 Al 21-05-2015

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - wo-search-report
	Page 33 - wo-search-report
	Page 34 - wo-search-report
	Page 35 - wo-search-report
	Page 36 - wo-search-report

