»UK Patent .,GB

2020381

(13)B

(45)Date of B Publication 07.08.2024

(54) Title of the Invention: VeCtor extract and merge instruction

(51) INT CL: GO6F 9/30 (2018.01)

(21) Application No: 2209637.4
(22) Date of Filing: 30.06.2022
(43) Date of A Publication 10.01.2024

(56) Documents Cited:
GB 2548601 A
US 20050108312 A1

WO 2003/038601 At

(58) Field of Search:

As for published application 2620381 A viz:
INT CL GO6F
updated as appropriate

Additional Fields
Other: None

(72) Inventor(s):
Thomas Christopher Grocutt

(73) Proprietor(s):
ARM Limited
110 Fulbourn Road, CAMBRIDGE, Cambridgeshire,
CB1 9NJ, United Kingdom

(74) Agent and/or Address for Service:
D Young & Co LLP
3 Noble Street, LONDON, EC2V 7BQ, United Kingdom

g 18¢0¢9¢ 89

2

~

30
Z

4
<

1/20

beat
control

processing
circuitry

¥

& &

N/

instruction
decoder

8

¥

registers 10
scalar
registers “\\42
vector
registers “\\1 4
PC
T
LR
18
SP
20
beat status
register *~22

memory system

FIG. 1

2/20

12 3 4 5

VLDR Q1, [RO], #16

VMUL Q0, Q1, Q2

VSHR Q0, QO, #1

FIG. 2

1 beat / tick
VLDR
VMLA

2 beats / tick
VLDR
VMLA

4 beats / tick
VLDR
VMLA

3/20

Al

A2

A3

Ad

B1

B2

B3

B4

Al

A2

%

Ad

B1

BZ

B3

B4

Al

AZ

A3

Ad

FIG. 3

B1

B2

B3

B4

4/20

22
.

;?ﬁgffiﬁii completed beals
0000 Inactive
0001 A1
0010 A A2
0011 A1 A2 B1
0100 A1 A2 A3
0101 A1 A2 A3 B1
0110 A1 A2 A3 B1 B2
0111 A1 A2 A3 B1 B2 Cf
XXX RESERVED

Ax = x" beat of oldest uncompleted instruction
Bx = x" beat of next vector instruction after A
Cx = x" beat of next vector instruction after B

FIG. 4

#A
#B
#C
#D

#A
#B
#C

5/20

1 2 3 4
Al L A2 1 AS | A
Bt | B2 | B3 | B4
C11C21C3 C4
DI | D2 | D3| D4
¢
debug event/ —= raturn address = #A
exception beat status = 0111
1 2 3 4 5 6 7 8 9
Al | A2 | A3 | Ad
Bt {1 B2 | B3| B4
Cl1C21C3) C4

|

debug event/ —= refurn address = #A
beat status = 0110

exception

FIG. 5

6/20

debug/ suppress beats indicated as
exception completed by beat status information
return - A ~
1 2 3 4
#A } - - {1 Ad
return address = #A
beat status = 0111 #B - - { B3| B4
#C - 1021031 C4
#D D11 D2

start fetching
from instruction

indicated by return address

FIG. 6

7120

07—

96—

g/ L |
sisjsfal oy jo Sjiq Jeuyiny 1
uood 181 € 104 YT Y- 1/g J— ,
ssiberay o ALl ”
wood Jey)o %m%wmu_ 05 H
GN aaaaa % Aulgs | 8¥~, — “ L
; toned 158 ey I ;
S uey Jayo suoipod Jo04 H
w m | | _ m |
g7 w’ <
e/ 10MVO | 7y /L STEIS] Aninouo
JapGla
Aynono Buissasold peed
. mm\\
1 HU,
pe/
siajsiboy
/-
45

sniejeddy

LIONONASUl
alsow pue
JORAXS J0J08A

8/20

8 9id

Ayoseiany
Aloula
AInoui
- <
|CJJU0D BlE(] Anoxs
Amnoaio Buissenold 18pooa(]
0’ o | 20
v v
_ _ m | 1]
97
\
99 ssois100y
NM snejeddy

SUQHONASU

M 20 m 6 Ol m gﬂ m

m / m | m
,,, sgsifal
,,, 10}08h UOReUSs

m, P N 1o8# UOjeusa]

m | v m

-00L g5 {6~

"y

T g e A W msiERd ey

e

m 06 m reos/ies | !

| W N W

A I O D A A A Jojsibal

SN T 5 U N R SN NN N e S Semdond | dodindo oL b L IOYIOA BINGS PUOOBS

09— | | |

188 " ! “

BN BN

SN sew CosemN | N Jejeuseied [0RU)

A e [U T

| : e . Jgisbal iojoan

| e e et e L 508 iS4

mm\\ uoilod 1g-N om\\m uoi od Jig-N

10/20

U E

818168,
JO109A 804108 15)14

-<¥
(K]
«©
-
jee)
T
f—
==
—
~—
O
P
o3
=
=¥
—
L
-
Lo
-
P~
—
&3
-
T
pudid

J81siBal
J0)08A UOHBUISS(]

o
(]
<3
o]
oD
P~
[cw)
(o)
D
=
—
—
O
—
(]
~
=3
-
LD
i
€O
-
I~
-

: J8isiBas 101084
9} Ag s 0 b ¢ ¢ ¥ § 9 L 8 9 B BT 20/N0% PUOAS

(iesq £1e9g

0 o 12l
BP0 9] 107

<o
—
J—
e
o
——

e
1]

@

£
oy | R
-

©

®

re)

11/20

LL Old

ghamus f o b Ltz A v b S 19l L8l e o el)n]s
ieag 512 go £o
0 0ieed L 1es8q ¢ e £ 1eeq /7L
IRCRIIES BNV B 777 77 B0 2 BT B A B BT N ST A T I A]
el ge g8 B3
0 0 ieaq L e8q ¢ ieed £ 1esq /7l
AN ISR R 777 777 %57 AR U N 2N VA BB B (VO BV AT BT I 4 T
0 iesd L jesd ¢ iesq £ 1esq

0 o L1

12/20

g Agus

7 Ag us

clvtstotlslslesiotulalatinlaloalaia HOLoMSY!
PJiY} JO§ UsHeLSa
0 {1esq | jeag 7 1eaq £ 1esq e
e \
UOIONASUI DAY 4O} JaisiBay J0j08A
v A P LS9 L8 s 10l 2T EL LG 191 4} 1 80IN03 DUSIRSUCHONASU! PUOIES
J0j Jorsifisl ioio8a uoieLise
g UED | 8o 7 1800 glesq g
L > \
LoIoNSUl
U038 10} Je1siBa) J0jooA
Vvt v S 9 L8 ﬂ V170 BEA BN IR I 2% IR] 3N0S puoIBs/uCHoNSUL 184y
3650 Jo; 18131884 J0100A UOHBUISEQ
0 C/ | 1e8g 128 £rsy 7y
)
" “ m UCHONASU! 1SJY JOy
\W77.%%.%%7 R R EEE \ w\ U RN K RN AR KL Jei3iBa) J0108A BUIN0S PUOIBS
B8 28 28 B8
0 {1esq | 1e8q 7 1esq ¢ jesq 2
[)
20 VI T I VA I BT 11 RO AT IR A IR AV SRVT N1 AR BT Y 8151884 J0108A 82IN0S 18U
0 {1esq | 1e8q 7 1esq ¢ jesad A

Elep iId g 404

13/20

@yt~ O~ ~El il -
L12C 1€ | ¥ G 1 911 L 181 joperuceusag
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! O S N R, S £/
L L 18 |
LoIoN/B8]
ypno
00— 8 1 6
,,, N S
| ‘m m m‘ | i818168)
oy iBjeng
uoniodnesq
L
Bh—, 79 T 7 l—
.. 1| S S S—
LE | ¥ | 18181681
JBjEaS
uoiodnesq
U008s
S 9~ v Tk
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, S I S FNSSU IS R
Lol ¢ | i8151Bel
1 IB[eog
LOILIO/ESq 15414
_Hm 01 b 1 [21 ¢ & {001 (gl)01
AT Oli—~ @i~ Wz~ (aon . . ™~
Co T e el 15 ls [1] Ve lEIF T8 1B 1215 6
0 18151581 JOI09A §3INCS PUCSS LT} 0 se15/68) J0198A B2IN0S 1S4 LCl

14/20

7l Oid

(O — Ol AL L e,
G eiviGi]9iLi8 6 j0LLHeHEl (WHSLONIL io0ea co._wmgwwmm
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, O T O o O Y A
RAENER
josibas 7
IBBOS
uolodaeag Lo waol Aued
,,, I I e
osber LOMILLITH] m: ool
Beas .
“Em,,a Alen Je|eas o} Alen
uolpodseaq pay |
8L~ | S EV PGl fe—
,, T BT 1)] U SS NUS S
b0 19.1L 18 | m | 1sisiBa
1Ros JB[eos o} ALep
uoniodnesq puoos woy Aue
HOBNERH PEDSES 0l — EIA
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 152 T 2 AU S S—
A :mm SIS
LORI0dNBaq 1944 lejeas o) Auen
rLOlbiel 8 LPISI9[4x — Doy | {gort | (Wowl
Qs Oy~ @Tri— Wz~ @y~ N ~ >
Nl elel Tvlalol 2] Tslelolll Tzdelvuct P1G191 211816 0bLL (CHEUVLSGH 191 L18L6L

0 je131Ba) J0108A 80IN0S PUODBS 12l 0 iesiBel 10}08A 80IN0S 18114 4}

15/20

(@99 — {0199 19— {y) 99 st
cleivici 191218161 0LLLieliEl] mimmmomtﬁ 10108 UORBUISAE
TAEIEAM
sibal % 605
uoiiodjesq yuned wol Alien
PR 0 (ST LT 8 6k
... 7T I U R
mo::mN:m: »
[a1816e 1igos 11 ma,:e
uopiodieat piy %_gmo 08 0)
e L St She—
,, 5 11 [Pt S M
EINREN
1gjsifal sepens [‘ 33e
Uonodnest pioses 04 as_w.wo EEOS QAR
0%} —1—, | 81 610L 1L
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I 172 SRS NRSSSSSSSSAS SHSSISISSSSS MO
uolod/esq | ﬁmw ﬁm L 13jsibsl
18§ RIS O MRS
Olbriel el [PIS]9 1Lk - ol | | o
Q791 Dlgi~ B~ W —~ (08~ N N N
R (] Nmm::ms_ | 1816 @;;Sm _%Fm 171519111816 [OWIY JehiEnwhSH j91iL1BIEY

0 1o181Ba1 J0j08A 30in0S PUCDSS L2l 0 19151844 01984 8R0S 15U L2l

16/20

(@98l (0)¥8l—— @8 s st
ABACREN 33 msm:s_g _smesmw r 10084 U0}
E2EAERM
uonJodesg
\ing; pue piy Fol il eiel
13sibal S
Emom
woy Aen
98—, WEQ ZEN mer:w;m:
,,, T T e e
19121816} isibal
wpiodpesg T T T 1 JejEos q?mo
£UCoss
0} Aleny
vodmsq Lol &1 71§
topjodnes -
[U0oRs wwm wm_m —
olbielel [pfslolef (81610
- a . [()08l ()08 (v) 08}
e~ | Wlwi~ @w—~ Wi~ (g N N N
01 N_E:ﬁ@::wmm_ NP EDED /_:m 9111816 o;:m MN%%_E 191121181161}

x4’

0 ses10a) 0084 20INCS PUCDSS 12l Iy

17/20

L1 Ol

0) 97— o LI
eiviisloiLis]l6loMtz Wemsm%;
A Y L
¢l ‘i
Jisifial lejeas
UORI0dABSY Yno- Eﬁ Auen
—i 0l W el g 05
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I I e B
ssiba mm_m:m‘wm
B mgmo Auen Q@ m“me Jejeos
uolodesq piy | oy Auen
—— b1 61 91L] | o8
.. T T 1 e
1asifal [610LTLie)]
12[E05 0} i) ®] c_mmam: 238
uoodieag puoseg Ui
» 8161001} L
,, | N,F m m § _\,F e —
b _m:: 61191}
ionodieaa jsi B Smo)
- » (AR Ry FIAVDET 1y
\\\L,Ecwm \\:_, 74 o \g) 0rz A vl 0y — (0lzez \\\, N7y mmwmww O ¥
IREBIEEERIEE s_:m_%:;m; HREamERDN wa_ﬁ_smem 19112118 em
0 2isiBal J0j0an 20INCS 164 LC) 0 1)sfi8) J0j99A 80IN0S PUCSAS Lc)

18/20

gl 9lid

815

+y) & Ul passsocid

a4 0} 4831021 uoneunsep sy

Uf pRICIS J0U I8 wa& 10}99A
80IN0S 181 Y} {0 UON 50; y
3l Jo JIg aue 1ses) 18 Auen

;uchod 188
st yonod g

ig
cOmm:_dmmU
Syl %o insal & 81018

+

SHG Jeyn
SI0WU 10 BUO BU} Ui)G
DEIORING U] 81BUSIEOUOD

@ @
oy
et

ig)51Ba
.§ SA 20N0S 1811} BY) 1O UO
E (e mga%%mtoo 853
J

S1i JOULIN] BIOW 4 BUO Uielq0

08l s

.\u.
Z

pueoes

ioysiBei j0108A B2INCS
841 J0 ucod 184} B W0l
S1) JSUMN] BI0W JO U0 2RI

s uaiiod 18y
st Uoodyy

10400 2 Ag paipoads s)ig 1p8ixe

Jeysi081 101094 80iN0S 181 8Y)

o uonod gl 8y wodj igeuwiesed

4

UORELLIOJUI SMYEIS UO PaSEq Y 188

7 i pensssl
g tonanasul
~ abiauwi pue
108X J0j08A

19/20

non-transitory computer-readable
medium /, 000
Computer readable code
1002
Fabrication 1004
¥ /
30
2
Apparalus 32
Registers
F—" m— ————
: /
I i i i 1 i
3 "
Decoder - P A
g4 circuitry 1
1 4 4
I I i E | l l i
Forpofions other than - _____ Y
TR ~‘; the last portion g
L”“l 48 ay 29
For each other portion
R /90 Yot the registers
- One or more For a frst portion
Y further bits of the registers
\
R

FiG. 19

20/20

SIMULATOR
IMPLEMENTATION
TARGET | 900
CODE
VIRTUAL HARDWARE INTERFACE
532
Z
Registers
s I | g
S— ; : ; E /
-3
¥
Decoder S
circuitry Processing circuitry
238 540
505
-510
HosTos
515
HOST HARDWARE |~

FIG. 20

10

15

20

25

30

VECTOR EXTRACT AND MERGE INSTRUCTION

The present techniques relate to an apparatus, a method of operating an apparatus
and a computer readable medium to store computer-readable code for fabrication of an

apparatus.

Some data processing systems support processing of vector instructions for
which a source operand or result value of the instruction is a vector comprising multiple
portions. By supporting the processing of a number of distinct portions of the vectors
in response to a single instruction, code density can be improved and the overhead of
fetching and decoding of instructions reduced. Sometimes, it is desirable that vector
instructions are performed where the portions of the vectors are dependent on one

another.

According to some configurations there is provided an apparatus comprising:

a plurality of vector registers;

decoder circuitry responsive to a vector extract and merge instruction to generate
control signals, the vector extract and merge instruction specifying a control parameter
and, as specified registers of the plurality of vector registers, a first source vector
register, a second source vector register, and a destination vector register; and

processing circuitry responsive to the control signals to perform a plurality of
beats of processing, each beat comprising combination processing corresponding to a
portion of at least the first source vector register and the destination vector register,
wherein the processing circuitry is configured to set beat status information indicative
of which beats of the vector extract and merge instruction have completed, and to
suppress completed beats of the vector extract and merge instruction indicated by the
beat status information as having completed,

wherein the combination processing for a K™ beat corresponding to a K" portion
of each of the specified registers comprises:

extracting bits, as specified by the control parameter, from the K% portion of the
first source vector register, concatenating the extracted bits with one or more further

bits, and storing a result of the concatenation in the K portion of the destination register;

10

15

20

25

30

when the K™ portion is not a last portion of the specified registers, carrying at
least one bit of the K™ portion of the first source vector register not stored in the
destination register to be processed in a (K+1)" beat of the plurality of beats;

for a first portion of the specified registers the one or more further bits are
extracted from a first portion of the second source vector register; and

for each portion other than the first portion of the specified registers, the one or

more further bits are carried from a (K-1)™ portion of the first source vector register.

According to some configurations there is provided a method of operating an
apparatus comprising a plurality of vector registers, decoder circuitry and processing
circuitry, the method comprising:

generating, using the decoder circuitry and in response to a vector extract and
merge instruction, control signals, the vector extract and merge instruction specifying a
control parameter and, as specified registers of the plurality of vector registers, a first
source vector register, a second source vector register, and a destination vector register;,
and

performing, using the processing circuitry and in response to the control signals,
a plurality of beats of processing, each beat comprising combination processing
corresponding to a portion of at least the first source vector register and the destination
vector register, setting beat status information indicative of which beats of the vector
extract and merge instruction have completed, and suppressing completed beats of the
vector extract and merge instruction indicated by the beat status information as having
completed,

wherein the combination processing for a K™ beat corresponding to a K" portion
of each of the specified registers comprises:

extracting bits specified by the control parameter from the K" portion of the first
source vector register, concatenating the extracted bits with one or more further bits, and
storing a result of the concatenation in the K portion of the destination register;

when the K™ portion is not a last portion of the specified registers, carrying at
least one bit of the K™ portion of the first source vector register not stored in the

destination register to be processed in a (K+1)" beat of the plurality of beats;

10

15

20

25

30

for a first portion of the specified registers the one or more further bits are
extracted from a first portion of the second source vector register; and
for each portion other than the first portion of the specified registers, the one or

more further bits are carried from a (K-1)™ portion of the first source vector register

According to some configurations there is provided a computer-readable
medium to store computer-readable code for fabrication of an apparatus comprising:

a plurality of vector registers;

decoder circuitry responsive to a vector extract and merge instruction to generate
control signals, the vector extract and merge instruction specifying a control parameter
and, as specified registers of the plurality of vector registers, a first source vector
register, a second source vector register, and a destination vector register; and

processing circuitry responsive to the control signals to perform a plurality of
beats of processing, each beat comprising combination processing corresponding to a
portion of at least the first source vector register and the destination vector register,
wherein the processing circuitry is configured to set beat status information indicative
of which beats of the vector extract and merge instruction have completed, and to
suppress completed beats of the vector extract and merge instruction indicated by the
beat status information as having completed,

wherein the combination processing for a K™ beat corresponding to a K" portion
of each of the specified registers comprises:

extracting bits specified by the control parameter from the K™ portion of the first
source vector register, concatenating the extracted bits with one or more further bits, and
storing a result of the concatenation in the K portion of the destination register;

when the K™ portion is not a last portion of the specified registers, carrying at
least one bit of the K" portion of the first source vector register not stored in the
destination register to be processed in a (K+1)" beat of the plurality of beats;

for a first portion of the specified registers the one or more further bits are
extracted from a first portion of the second source vector register; and

for each portion other than the first portion of the specified registers, the one or

more further bits are carried from a (K-1)™ portion of the first source vector register.

10

15

20

25

30

In some configurations the computer-readable medium is a non-transitory

computer-readable medium.

According to some configurations there is provided a computer program for
controlling a host data processing apparatus to provide an instruction execution
environment, comprising;

register logic comprising a plurality of vector registers;

decoder logic responsive to a vector extract and merge instruction to generate
control signals, the vector extract and merge instruction specifying a control parameter
and, as specified registers of the plurality of vector registers, a first source vector
register, a second source vector register, and a destination vector register; and

processing logic responsive to the control signals to perform a plurality of beats
of processing, each beat comprising combination processing corresponding to a portion
of at least the first source vector register and the destination vector register, wherein the
processing logic is configured to set beat status information indicative of which beats of
the vector extract and merge instruction have completed, and to suppress completed
beats of the vector extract and merge instruction indicated by the beat status information
as having completed,

wherein the combination processing for a K" beat corresponding to a K® portion
of each of the specified registers comprises:

extracting bits specified by the control parameter from the K™ portion of the first
source vector register, concatenating the extracted bits with one or more further bits, and
storing a result of the concatenation in the K portion of the destination register;

when the K™ portion is not a last portion of the specified registers, carrying at
least one bit of the K™ portion of the first source vector register not stored in the
destination register to be processed in a (K+1)" beat of the plurality of beats;

for a first portion of the specified registers the one or more further bits are
extracted from a first portion of the second source vector register; and

for each portion other than the first portion of the specified registers, the one or

more further bits are carried from a (K-1)™ portion of the first source vector register.

10

15

20

25

30

In some configurations the computer program is recorded on a non-transitory

computer-readable medium.

The present techniques will be described further, by way of example only, with
reference to configurations thereof as illustrated in the accompanying drawings, in
which:

Figure 1 schematically illustrates a data processing apparatus supporting
processing of vector instructions according to various configurations of the present
techniques;

Figure 2 schematically illustrates an example of overlapped execution of vector
instructions according to various configurations of the present techniques;

Figure 3 schematically illustrates three examples of scaling the amount of
overlap between successive vector instructions between different processor
implementations or at run time between different instances of execution of the
instructions according to various configurations of the present techniques;

Figure 4 schematically illustrates an example encoding for beat status
information for indicating which beats of a block of multiple vector instructions have
completed according to various configurations of the present techniques;

Figure 5 schematically illustrates two examples of recording beat status
information on the occurrence of a debug event or exception according to various
configurations of the present techniques;

Figure 6 schematically illustrates an example of using beat status information to
resume processing following return from the debug event or exception according to
various configurations of the present techniques;

Figure 7 schematically illustrates a data processing apparatus according to
various configurations of the present techniques;

Figure 8 schematically illustrates a data processing apparatus according to
various configurations of the present techniques;

Figure 9 schematically illustrates an example of a vector extract and merge
instruction according to various configurations of the present techniques;

Figure 10 schematically illustrates an example of a vector extract and merge

instruction according to various configurations of the present techniques;

10

15

20

25

30

Figure 11 schematically illustrates an example of a vector extract and merge
instruction according to various configurations of the present techniques;

Figure 12 schematically illustrates an example of a vector extract and merge
instruction according to various configurations of the present techniques;

Figure 13 schematically illustrates an example of a vector extract and merge
instruction according to various configurations of the present techniques;

Figure 14 schematically illustrates an example of a vector extract and merge
instruction according to various configurations of the present techniques;

Figure 15 schematically illustrates an example of a vector extract and merge
instruction according to various configurations of the present techniques;

Figure 16 schematically illustrates an example of a vector extract and merge
instruction according to various configurations of the present techniques;

Figure 17 schematically illustrates an example of a vector extract and merge
instruction according to various configurations of the present techniques;

Figure 18 schematically illustrates a sequence of steps carried out by an
apparatus according to various configurations of the present techniques;

Figure 19 schematically illustrates an apparatus according to various
configurations of the present techniques; and

Figure 20 schematically illustrates a simulator that can be used in accordance

with some example configurations.

Software written in accordance with a given instruction set architecture can be
executed on a range of different data processing apparatuses having different hardware
implementations. As long as a given set of instructions when executed gives the results
expected by the architecture, then a particular implementation is free to vary its micro-
architectural design in any way which achieves this architecture compliance. For
example, for some applications, energy efficiency may be more important than
performance and so the micro-architectural design of processing circuitry provided for
executing instructions from the instruction set architecture may be designed to consume
as little energy as possible even if this is at the expense of performance. Other
applications may see performance as a more important criterion than energy efficiency

and so may include more complex hardware structures which enable greater throughput

10

15

20

25

30

of instructions, but which may consume more power. Hence, it can be desirable to
design the instruction set architecture so that it supports scaling across a range of

different energy or performance points.

In some configurations there is provided an apparatus comprising: a plurality of
vector registers and decoder circuitry responsive to a vector extract and merge
instruction to generate control signals. The vector extract and merge instruction
specifies a control parameter and, as specified registers of the plurality of vector
registers, a first source vector register, a second source vector register, and a destination
vector register. The apparatus also comprises processing circuitry responsive to the
control signals to perform a plurality of beats of processing. Each beat comprising
combination processing corresponding to a portion of at least the first source vector
register and the destination vector register. The processing circuitry is configured to set
beat status information indicative of which beats of the vector extract and merge
instruction have completed, and to suppress completed beats of the vector extract and
merge instruction indicated by the beat status information as having completed. The
combination processing for a K™ beat corresponding to a K™ portion of each of the
specified registers comprises: extracting bits, as specified by the control parameter, from
the K' portion of the first source vector register, concatenating the extracted bits with
one or more further bits, and storing a result of the concatenation in the K portion of
the destination register. The combination processing for the K® portion comprises,
when the K" portion is not a last portion of the specified registers, carrying at least one
bit of the K™ portion of the first source vector register not stored in the destination
register to be processed in a (K+1)™ beat of the plurality of beats. For a first portion of
the specified registers the one or more further bits are extracted from a first portion of
the second source vector register, and for each portion other than the first portion of the
specified registers, the one or more further bits are carried from a (K-1)" portion of the

first source vector register.

This arrangement enables a micro-architecture supporting vector instructions to
scale more efficiently to different performance and energy points. By providing beat

status information which tracks the completed beats of two or more vector instructions,

10

15

20

25

30

this gives freedom for a particular micro-architectural implementation to vary the
amount by which execution of different vector instructions is overlapped, so that it is
possible to perform respective beats of different vector instructions in parallel with each
other while still tracking the progress of each partially executed instruction. Some
micro-architectural implementations may choose not to overlap execution of respective
vector instructions at all, so that all the beats of one vector instruction are completed
before the next instruction starts. Other micro-architectures may stagger the execution
of consecutive vector instructions so that a first subset of beats of a second vector
instruction is performed in parallel with a second subset of beats from the first vector

instruction.

The vector extract and merge instruction is an instruction of an instruction set
architecture which is interpreted by decoder circuitry. The instruction set architecture
forms a complete set of instructions that can be used by a programmer or compiler to
instruct the processing circuitry to perform operations. As discussed, so long as the
processing circuitry is compliant with the instruction set architecture, the actual
implementation of the micro architecture, i.e., the physical arrangement of the circuits
and logical blocks that make up the processing circuitry can vary from implementation
to implementation. Some micro-architectural implementations may process all of the
portions of the vectors in parallel, while other implementations may process one or more
portions of the vector at a time. Some vector instructions, may lend themselves well to
such flexibility. For example, a vector instruction that supports element-wise addition
of a plurality of elements of two source vectors can be split into plural scalar additions,
each corresponding to an element of the vector. However, instructions for which data
propagates between different elements or between different portions (which may
comprise plural elements of the vector), i.e., instructions in which the different portions
are dependent on one another, may not be so readily adapted to such flexibility of the

micro-architectural implementation.

The vector extract and merge instruction is one such instruction. In the vector
extract and merge instruction, one or more bits from a first source vector register are

concatenated with one or more bits from a second source vector register. The inventor

10

15

20

25

30

has realised that a vector extract and merge instruction providing such micro-
architectural flexibility can be implemented by providing processing circuitry arranged
to process one or more beats (corresponding to one or more portions of each specified
vector register), either in parallel or in a staggered manner, and to carry at least one bit
between beats of processing (i.e. from one portion to another). As a result, the
processing circuitry does not consider each beat as being truly independent of each other
beat. Instead, specific information can be propagated from one processed beat to another
processed beat. In particular, the vector extract and merge instruction specifies, as
inputs, a control parameter and a plurality of vector registers. The plurality of vector
registers includes a first source vector register, a second source vector register and a
destination vector register. The control parameter indicates a number of bits that are to
be extracted from the first source vector register during each beat of processing and can
be specified explicitly in the instruction as a parameter that is passed to the decoder
circuitry or can be specified implicitly in the instruction as having a fixed value. For
example, the instruction set architecture could define one or more vector extract and
merge instructions, each of which implicitly defines a fixed control parameter. The
control parameter may be an indicative value and therefore may indirectly specify the

number of bits to extract.

The combination processing defined in this way causes a propagation of bits
from a first beat (first portion) in which one or more further bits of the second source
vector register are concatenated with one or more bits (as specified by the control
parameter) that are extracted from the first source vector register. Bits from the first
source vector register of the first beat (K=1) are then carried (propagated) to a second
beat (K=2) and are concatenated with one or more bits of the first source vector register
in the subsequent beat at a time of processing of the subsequent beat. The process is
then repeated with one or more bits of the K" beat being carried to the (K+1) beat. The
carry is generated when the K portion is not the last portion of the specified registers.
In some configurations, no carry is generated for the last portion of the specified vector
registers. In some alternative configurations, a carry of at least one bit of the last portion
of the first source vector register is generated. It will be appreciated that the ordering of

the beats may be independent of the ordering of bits within the vector registers. In one

10

15

20

25

30

10

configuration the first beat (K=1) may correspond to a least significant set of bits of the
vector registers, and the last beat may correspond to a most significant set of bits of the
vector register. However in some alternative configurations the first beat (K=1) may
correspond to the most significant set of bits of the vector register, and the last beat may

correspond to the least significant set of bits of the vector register.

In this way, the apparatus provides processing circuitry that enables an
implementation of a vector extract and merge instruction for which the micro-
architectural implementation can be varied whilst still allowing compliance with the
instruction set architecture, thereby resulting in a flexible implementation that can be

adapted based on power constraints and circuit size requirements.

In some configurations the decoder circuitry is responsive to the vector extract
and merge instruction specifying a scalar register; the plurality of beats comprises a
currently executing subset of one or more beats, wherein the currently executing subset
of beats excludes the completed beats; and the processing circuitry is responsive to the
control signals, to store at least one item of carry data in the scalar register, the at least
one item of carry data comprising one or more bits to be carried between the currently
executing subset of one or more beats and a further subset of one or more beats of the
plurality of beats. The currently executing subset of beats comprises one or more beats
of the plurality of beats and excludes a further subset of at least one beat of the plurality
of beats. In such configurations, the scalar register is used to carry the at least one item
of carry data between the currently executing subset of beats and the one or more further
subset of one or more beats. The scalar register can either be explicitly specified as one
of a plurality of scalar registers, for example, as a parameter in the vector extract and
merge instruction. Alternatively, the processing circuitry can comprise specific carry

register which is implicitly defined in the vector extract and merge instruction.

The carry register can be used to propagate the carry data into the currently
executing subset of beats or out of the one currently executing subset of beats. In some
configurations, the processing circuitry is responsive to the control signals, for a first

beat of the currently executing set of one or more beats and when the beat status

10

15

20

25

30

11

information prior to execution of the vector extract and merge instruction indicates that
at least one beat is to be supressed, to retrieve the one or more further bits from the scalar
register. The subsets of one or more beats of processing are executed in order with one
or more bits of information being propagated from a first subset of beats to a next subset
of beats. During execution, the processing circuitry reads the control information to
determine which beats comprise the first beat of the currently executing subset of one
or more beats. When one or more beats of processing have previously executed, the
control information indicates that these one or more beats are to be suppressed. The
processing circuitry is therefore able to infer that carry data is available in the scalar

register and extracts the one or more further bits from the carry data in the scalar register.

The data that is comprised in the carry data can take various forms. In some
configurations the one or more bits to be carried comprises all bits of a portion of the
first source vector register; and retrieving the one or more further bits from the scalar
register comprises retrieving a last subset of bits from the scalar register. As a result,
the extraction of the one or more further bits follows a same pattern independent as to
whether the extraction is from the scalar register or from the second source vector
register resulting in a simpler implementation, thereby resulting in a simplified
implementation. In some configurations the one or more bits to be carried comprises a
last set of M bits from a portion of the first source vector register stored to a temporary
set of bit positions in the scalar register; and retrieving the one or more further bits from
the scalar register comprises retrieving bits from the temporary set of bit positions of the
scalar register. As a result fewer bits are required to be carried in the scalar register. In
some configurations, the last subset of bits is a most significant subset of bits resulting
in a propagation of data from a most significant bits of a (K-1)® portion to a K portion
of the vector registers. In alternative implementations data may be propagated in the
opposite direction and, in such configurations, the last subset of bits is a least significant

subset of bits.

In some configurations concatenating the extracted bits comprises storing the
extracted bits in a first contiguous set of bit positions of the K portion of the destination

register and storing the one or more further bits in a second contiguous set of bit

10

15

20

25

30

12

positions of the K™ portion of the destination register. In some configurations the union
of the first subset of bit positions and the second subset of bit positions comprises all bit
positions of the K™ portion of the destination register. In some configurations the first
contiguous set of bit positions and the second contiguous set of bit positions are non-
overlapping bit positions. As a result, all bit positions in the K" portion of the
destination register are defined as being either one of the one or more further bits or one

of the extracted bits.

The ordering of the first contiguous set of bit positions and the second set of bit
positions can be implementation dependent. In some configurations the first contiguous
set of bit positions are a most significant set of bit positions of the K" portion of the
destination register and the second contiguous set of bit positions are a least significant
set of bit positions of the K portion of the destination register. Alternatively, an order
of processing of the specified vectors can be reversed. Hence, in some configurations
the first contiguous set of bit positions are a least significant set of bit positions of the
K" portion of the destination register and the second contiguous set of bit positions are

a most significant set of bit positions of the K' portion of the destination register.

In some configurations the extracted bits are extracted from contiguous bit
positions of the K™ portion of the first source vector register. The contiguous bit
positions are specified by the control parameter and can be defined, for example, based
on a first bit position and a second bit position, or based on first bit position and a number

of bits to extract.

In some configurations the contiguous bit positions are a set of least significant
contiguous bit positions of the K portion of the first source vector register. In such
configurations, the control parameter is only required to specify a number of contiguous
bit positions to be extracted. The number of contiguous bit positions to be extracted
may be specified as an immediate value or contained within a register that is specified
in the vector extract and merge instruction. In alternative configurations the contiguous
bit positions are a set of most significant contiguous bit positions of the K™ portion of

the first source vector register. In some configurations only a subset of the possible

10

15

20

25

30

13

number of contiguous bit positions to be extracted may be supported. For example, some
configurations may only support the contiguous bit positions being 8, 16, or 24 bits in
length. Hence in such configurations the control parameter may indirectly specify the
number of contiguous bit positions to be extracted by selecting one of the supported
lengths. Such configurations reduce the number of bits required to represent the control

parameter.

In some configurations each portion of each of the specified registers is an N-bit
portion; the control parameter is indicative of a shift distance M specifying a number of
bits; the one or more further bits comprises M bits; and the extracted bits from the K
portion of the first source vector register comprise N minus M bits. As a result, the
vector extract and merge instruction combines M bits from the first portion of the second
source vector register with N minus M bits of the first portion of the first source vector
register to form the first portion of the destination register. Furthermore, the vector
extract and merge instruction combines M bits from a (K-1)% portion of the first source
vector register with N minus M bits of the K™ portion of the first source vector register.
In other words, M bits of each portion of the first source vector register are shifted to be

stored in a next portion of the destination vector register.

For the first portion of the specified registers, the one or more further elements
can be chosen in a variety of ways. In some configurations, each N-bit portion is divided
into a plurality of elements; the shift distance corresponds to an integer number of
elements; and for the first portion of the specified registers, the one or more further bits
comprise a most significant subset of elements of the first portion of the second source
vector register. As a result, the shift and merge instruction takes the most significant
subset of the second source vector register which are concatenated with bits of the first

source vector register to generate the result vector register.

Alternatively, in some configurations each N-bit portion is divided into a
plurality of elements; the shift distance corresponds to an integer number of elements;
and for the first portion of the specified registers, the one or more further bits comprise

a least significant subset of elements of the first portion of the second source vector

10

15

20

25

30

14

register excluding a least significant element. There are some use case scenarios in
which it may be beneficial to repeatedly apply the vector extract and merge instruction
to sequentially generate shifted vectors that are shifted by a number of bits (or a number
of elements). For example, when implementing a finite impulse response filter it may
be required to sequentially generate vectors that are shifted by a single element from a
previous vector in the sequence. The vector extract and merge instruction allows a
sequence of shift vectors to be generated by taking an initial vector, for example, the
second source vector register, and generating a sequence of vectors shifted by one
element. In such cases, rather than retaining first and second source vector registers, a
previous destination register may be used as the second source vector register. In such
a situation, a location of the necessary bits to be comprised in the one or more further
bits has already been shifted by one or more bit positions away from the most significant
element. Hence, by selecting as the one or more further bits, in the case of the first
portion of the specified register, a least significant subset of elements excluding a least
significant element, the vector extract and merge instruction can be adapted for a case
in which the second source vector register comprises a result of a preceding vector
extract and merge instruction. In some configurations the element width may be
controlled by a width parameter of the vector extract and merge instruction. In some
configurations the control parameter may be indicative of both which bits to extract, and
the element width. In such configurations, the number of bits required to encode the
parameters is reduced in situations where only a limited number of combinations of

element width and number and position of bits from which to extract are supported.

Rather than specifying separate vector register for each of the first source vector
register, the second source vector register and the destination vector register, in some
configurations the destination vector register is the second source vector register.
Repurposing the second source vector register as the destination register reduces the
register requirements and the encoding space required for the vector extract and merge

instruction.

As discussed, the vector extract and merge instruction can be flexibly

implemented using hardware capable of performing one or more of the plurality of beats

10

15

20

25

30

15

of processing in a given cycle. In some configurations the processing circuitry is
configured to process at least two of the plurality of beats in parallel. The hardware
provision of such processing circuity may only be sufficient to process the at least two
beats and the processing circuitry may be configured to process beats of an adjacent
instruction in parallel to processing the at least two of the plurality of beats.
Alternatively, the processing circuitry may be sufficient to process all beats of the

plurality of beats in parallel.

In some configurations the processing circuitry comprises hardware insufficient
for performing all of the plurality of beats of the given vector instruction in parallel.
Hence, the processing circuitry may perform a second subset of the beats of a given
vector instruction after completing a first subset. The first and second subsets may
comprise a single beat or could comprise multiple beats depending on the processor

implementation.

In some configurations the processing circuitry is configured to process all of the
plurality of beats of the given vector instruction in parallel. Processing circuitry with
such hardware can still generate and use the beat status information as specified above,
but the beat status information will normally indicate that there were no completed beats.
Hence, by defining the beat status information, the architecture can support a range of

different implementations.

In some configurations the decoder circuitry is responsive to a memory data
transfer instruction, adjacent to the vector extract and merge instruction in program
counter order, specifying a memory address and a transfer register of the plurality of
vector registers to generate data transfer control signals; the apparatus further comprises
data control circuitry responsive to the data transfer control signals to perform a plurality
of beats of memory data transfer processing, each beat comprising performing data
transfer to a corresponding portion of the transfer register and to set the beat status
information indicative of which beats of the data transfer instruction have completed,
and to suppress completed beats of the memory data transfer instruction indicated by the

beat status information as having completed; and the apparatus is configured to, when

10

15

20

25

30

16

the transfer register is one of the specified registers, perform a first subset of the plurality
of beats of memory data transfer processing corresponding to a first subset of portions
of the transfer register in parallel to the processing circuitry performing, in response to
the vector extract and merge instruction, a second subset of the plurality beats of
processing corresponding to a second subset of portions of the transfer register. The
first subset of beats and the second subset of beats may each comprise the same number
of beats or a different number of beats. For example, in some configurations, the
apparatus may be provided with hardware that is sufficient for performing a memory
data transfer operation for plural portions (corresponding to plural beats of data transfer
processing) but only with hardware sufficient for performing a single beat of processing
for the vector extract and merge instruction. Alternatively, the apparatus may be
provided with sufficient hardware to perform a memory data transfer operation for half
of the portions and with hardware sufficient to perform beats of processing for the vector
extract and merge instruction for half of the portions of the vector length. In each of
these situations, there is no overlap between the data and hardware that is being used for
the first subset of the plurality of beats of processing and the second subset of the
plurality of beats of processing. Hence, by providing a processing apparatus that is able
to parallelise the first subset of beats and the second subset of beats, a greater instruction

throughput can be achieved.

In some configurations the control parameter is specified as an immediate value
in the vector extract and merge instruction. In some alternative configurations, the

control parameter can be specified as a register in which the control parameter is defined.

In some configurations the first portion of the specified registers is a least
significant portion of the specified registers and the last portion of the specified registers
is a most significant portion of the specified registers. In alternative configurations the
first portion of the specified registers is a most significant portion of the specified
registers and the last portion of the specified registers is a least significant portion of the
specified registers. In this way, the processing apparatus can be provided with circuitry
that performs the vector extract and merge instruction by shifting the one or more further

bits extracted from the second source vector register into the destination register from a

10

15

20

25

30

17

least significant end or a most significant end dependent upon the particular

implementation choice.

Concepts described herein may be embodied in computer-readable code for
fabrication of an apparatus that embodies the described concepts. For example, the
computer-readable code can be used at one or more stages of a semiconductor design
and fabrication process, including an electronic design automation (EDA) stage, to
fabricate an integrated circuit comprising the apparatus embodying the concepts. The
above computer-readable code may additionally or alternatively enable the definition,
modelling, simulation, verification and/or testing of an apparatus embodying the

concepts described herein.

For example, the computer-readable code for fabrication of an apparatus
embodying the concepts described herein can be embodied in code defining a hardware
description language (HDL) representation of the concepts. For example, the code may
define a register-transfer-level (RTL) abstraction of one or more logic circuits for
defining an apparatus embodying the concepts. The code may define a HDL
representation of the one or more logic circuits embodying the apparatus in Verilog,
SystemVerilog, Chisel, or VHDL (Very High-Speed Integrated Circuit Hardware
Description Language) as well as intermediate representations such as FIRRTL.
Computer-readable code may provide definitions embodying the concept using system-
level modelling languages such as SystemC and SystemVerilog or other behavioural
representations of the concepts that can be interpreted by a computer to enable

simulation, functional and/or formal verification, and testing of the concepts.

Additionally or alternatively, the computer-readable code may define a low-level
description of integrated circuit components that embody concepts described herein,
such as one or more netlists or integrated circuit layout definitions, including
representations such as GDSII. The one or more netlists or other computer-readable
representation of integrated circuit components may be generated by applying one or
more logic synthesis processes to an RTL representation to generate definitions for use

in fabrication of an apparatus embodying the invention. Alternatively or additionally,

10

15

20

25

30

18

the one or more logic synthesis processes can generate from the computer-readable code
a bitstream to be loaded into a field programmable gate array (FPGA) to configure the
FPGA to embody the described concepts. The FPGA may be deployed for the purposes
of verification and test of the concepts prior to fabrication in an integrated circuit or the

FPGA may be deployed in a product directly.

The computer-readable code may comprise a mix of code representations for
fabrication of an apparatus, for example including a mix of one or more of an RTL
representation, a netlist representation, or another computer-readable definition to be
used in a semiconductor design and fabrication process to fabricate an apparatus
embodying the invention. Alternatively or additionally, the concept may be defined in
a combination of a computer-readable definition to be used in a semiconductor design
and fabrication process to fabricate an apparatus and computer-readable code defining

instructions which are to be executed by the defined apparatus once fabricated.

Such computer-readable code can be disposed in any known transitory
computer-readable medium (such as wired or wireless transmission of code over a
network) or non-transitory computer-readable medium such as semiconductor, magnetic
disk, or optical disc. An integrated circuit fabricated using the computer-readable code
may comprise components such as one or more of a central processing unit, graphics
processing unit, neural processing unit, digital signal processor or other components that

individually or collectively embody the concept.

Specific configurations of the invention will now be described with reference to

the accompanying figures.

Figure 1 schematically illustrates an example of a data processing apparatus 2
supporting processing of vector instructions. It will be appreciated that this is a
simplified diagram for ease of explanation, and in practice the apparatus may have many
elements not shown in Figure 1 for conciseness. The apparatus 2 comprises processing
circuitry 4 for carrying out data processing in response to instructions decoded by an

instruction decoder 6. Program instructions are fetched from a memory system 8 and

10

15

20

25

30

19

decoded by the instruction decoder to generate control signals which control the
processing circuitry 4 to process the instructions in the way defined by the architecture.
For example the decoder 6 may interpret the opcodes of the decoded instructions and
any additional control fields of the instructions to generate control signals which cause
a processing circuitry 4 to activate appropriate hardware units to perform operations
such as arithmetic operations, load/store operations or logical operations. The apparatus
has a set of registers 10 for storing data values to be processed by the processing circuitry
4 and control information for configuring the operation of the processing circuitry. In
response to arithmetic or logical instructions, the processing circuitry 4 reads operands
from the registers 10 and writes results of the instructions back to the registers 10. In
response to load/store instructions, data values are transferred between the registers 10
and the memory system 8 via the processing circuitry. The memory system 8 may

include one or more levels of cache as well as main memory.

The registers 10 include a scalar register file 12 comprising a number of scalar
registers for storing scalar values which comprise a single data element. Some
instructions supported by the instructions decoder 6 and processing circuitry 4 are scalar
instructions which process scalar operands read from scalar registers 12 to generate a

scalar result written back to a scalar register.

The registers 10 also include a vector register file 14 which includes a number
of vector registers each for storing a vector value comprising multiple data elements. In
response to a vector instruction, the instruction decoder 6 controls the processing
circuitry 4 to perform a number of lanes of vector processing on respective elements of
a vector operand read from one of the vector registers 14, to generate either a scalar
result to be written to the scalar registers 12 or a further vector result to be written to a
vector register 14. Some vector instructions may generate a vector result from one or
more scalar operands, or may perform an additional scalar operation on a scalar operand
in the scalar register file as well as lanes of vector processing on vector operands read
from the vector register file 14. Hence, some instructions may be mixed-scalar-vector
instructions for which at least one of one or more source registers and a destination

register of the instruction is a vector register 14 and another of the one or more source

10

15

20

25

30

20

registers and the destination register is a scalar register 12. Vector instructions may also
include vector load/store instructions which cause data values to be transferred between
the vector registers 14 and locations in the memory system 8. The load/store instructions
may include contiguous vector load/store instructions for which the locations in memory
correspond to a contiguous range of addresses, or scatter/gather type vector load/store
instructions which specify a number of discrete addresses and control the processing
circuitry 4 to load data from each of those addresses into respective elements of a vector
register or store data from respective elements of a vector register to the discrete

addresses.

The processing circuitry 4 may support processing of vectors with a range of
different data element sizes. For example a 128-bit vector register 14 could be
partitioned into sixteen 8-bit data elements, eight 16-bit data elements, four 32-bit data
elements or two 64-bit data elements for example. A control register within the register
bank 10 may specify the current data element size being used, or alternatively this may

be a parameter of a given vector instruction to be executed.

The registers 10 also include a number of control registers for controlling
processing of the processing circuitry 4. For example these may include a program
counter register 16 for storing a program counter address which indicates an address of
an instruction corresponding to a current execution point being processed, a link register
18 for storing a return address to which processing is to be directed following handling
of a function call, a stack pointer register 20 indicating the location within the memory
system 8 of a stack data structure, and a beat status register 22 for storing beat status
information which will be described in more detail below. It will be appreciated that
these are just some of the types of control information which could be stored, and in
practice a given instruction set of architecture may store many other control parameters
as defined by the architecture. For example, a control register may specify the overall
width of a vector register, or the current data element size being used for a given instance

of vector processing.

10

15

20

25

30

21

The processing circuitry 4 may include a number of distinct hardware blocks for
processing different classes of instructions. For example, load/store instructions which
interact with a memory system 8 may be processed by a dedicated load/store unit, while
arithmetic or logical instructions could be processed by an arithmetic logic unit (ALU).
The ALU itself may be further partitioned into a multiply-accumulate unit (MAC) for
performing in operations involving multiplication, and a further unit for processing other
kinds of ALU operations. A floating-point unit can also be provided for handling
floating-point instructions. Pure scalar instructions which do not involve any vector
processing could also be handled by a separate hardware block compared to vector

instructions, or reuse the same hardware blocks.

In some applications such as digital signal processing (DSP), there may be a
roughly equal number of ALU and load/store instructions and therefore some large
blocks such as the MACs can be left idle for a significant amount of the time. This
inefficiency can be exacerbated on vector architectures as the execution resources are
scaled with the number of vector lanes to gain higher performance. On smaller
processors (e.g. single issue, in-order cores) the area overhead of a fully scaled out vector
pipeline can be prohibitive. One approach to minimise the area impact whilst making
better usage of the available execution resource is to overlap the execution of
instructions, as shown in Figure 2. In this example, three vector instructions include a
load instruction VLDR, a multiply instruction VMUL and a shift instruction VSHR, and
all these instructions can be executing at the same time, even though there are data
dependencies between them. This is because element 1 of the VMUL is only dependent
on element 1 of Q1, and not the whole of the Q1 register, so execution of the VMUL
can start before execution of the VLDR has finished. By allowing the instructions to

overlap, expensive blocks like multipliers can be kept active more of the time.

Hence, it can be desirable to enable micro-architectural implementations to
overlap execution of vector instructions. However, if the architecture assumes that there
is a fixed amount of instruction overlap, then while this may provide high efficiency if

the micro-architectural implementation actually matches the amount of instruction

10

15

20

25

30

22

overlap assumed by architecture, it can cause problems if scaled to different micro-

architectures which use a different overlap or do not overlap at all.

Instead, an architecture may support a range of different overlaps as shown in
the examples of Figure 3. The execution of a vector instruction is divided into parts
referred to as “beats”, with each beat corresponding to processing of a portion of a vector
of a predetermined size. A beat is an atomic part of a vector instruction that is either
executed fully or not executed at all, and cannot be partially executed. The size of the
portion of a vector processed in one beat is defined by the architecture and can be an
arbitrary fraction of the vector. In the examples of Figure 3 a beat is defined as the
processing corresponding to one quarter of the vector width, so that there are four beats
per vector instruction. Clearly, this is just one example and other architectures may use
different numbers of beats, e.g. two or eight. The portion of the vector corresponding
to one beat can be the same size, larger or smaller than the data element size of the vector
being processed. Hence, even if the element size varies from implementation to
implementation or at run time between different instructions, a beat is a certain fixed
width of the vector processing. If the portion of the vector being processed in one beat
includes multiple data elements, carry signals can be disabled at the boundary between
respective elements to ensure that each element is processed independently. If the
portion of the vector processed in one beat corresponds to only part of an element and
the hardware is insufficient to calculate several beats in parallel, a carry output generated
during one beat of processing may be input as a carry input to a following beat of

processing so that the results of the two beats together form a data element.

As shown in Figure 3 different micro-architecture implementations of the
processing circuit 4 may execute different numbers of beats in one “tick” of the abstract
architectural clock. Here, a “tick” corresponds to a unit of architectural state
advancement (e.g. on a simple architecture each tick may correspond to an instance of
updating all the architectural state associated with executing an instruction, including
updating the program counter to point to the next instruction). It will be appreciated by
one skilled in the art that known micro-architecture techniques such as pipelining may

mean that a single tick may require multiple clock cycles to perform at the hardware

10

15

20

25

30

23

level, and indeed that a single clock cycle at the hardware level may process multiple
parts of multiple instructions. However such microarchitecture techniques are not
visible to the software as a tick is atomic at the architecture level. For conciseness the

micro-architecture is ignored during further description of this disclosure.

As shown in the lower example of Figure 3, some implementations may schedule
all four beats of a vector instruction in the same tick, by providing sufficient hardware
resources for processing all the beats in parallel within one tick. This may be suitable
for higher performance implementations. In this case, there is no need for any overlap
between instructions at the architectural level since an entire instruction can be

completed in one tick.

On the other hand, a more area efficient implementation may provide narrower
processing units which can only process two beats per tick, and as shown in the middle
example of Figure 3, instruction execution can be overlapped with the first and second
beats of a second vector instruction carried out in parallel with the third or fourth beats
of a first instruction, where those instructions are executed on different execution units
within the processing circuitry (e.g. in Figure 3 the first instruction is a load instruction
executed using the load/store unit and the second instruction is a multiply accumulate

instruction executed using the MAC).

A yet more energy/area-efficient implementation may provide hardware units
which are narrower and can only process a single beat at a time, and in this case one beat
may be processed per tick, with the instruction execution overlapped and staggered by
one beat as shown in the top example of Figure 3 (this is the same as the example shown

in Figure 2 above).

It will be appreciated that the overlaps shown in Figure 3 are just some examples,
and other implementations are also possible. For example, some implementations of the
processing circuitry 4 may support dual issue of multiple instructions in parallel in the

same tick, so that there is a greater throughput of instructions. In this case, two or more

10

15

20

25

30

24

vector instructions starting together in one cycle may have some beats overlapped with

two or more vector instructions starting in the next cycle.

As well as varying the amount of overlap from implementation to
implementation to scale to different performance points, the amount of overlap between
vector instructions can also change at run time between different instances of execution
of vector instructions within a program. Hence, the processing circuitry 4 may be
provided with beat control circuitry 30 as shown in Figure 1 for controlling the timing
at which a given instruction is executed relative to the previous instruction. This gives
the micro-architecture the freedom to select not to overlap instructions in certain corner
cases that are more difficult to implement, or dependent on resources available to the
instruction. For example, if there are back to back instructions of a given type (e.g.
multiply accumulate) which require the same resources and all the available MAC or
ALU resources are already being used by another instruction, then there may not be
enough free resources to start executing the next instruction and so rather than

overlapping, the issuing of the second instruction can wait until the first has completed.

While permitting a range of different overlaps of execution vector instructions
can allow more efficient use of hardware resources across a range of performance points,
it can cause some complexity for handling of exceptions or debug events or other events
which trigger a suspension of the current thread of execution. For example, in the
example shown in Figure 2 if an exception was raised on the fourth tick then the register
file would contain a partial update from several instructions. One way of handling this
would be to treat the partial updates as speculative states that can be reverted if an
exception occurs, but this can increase the amount of hardware required since it may be
necessary to bufter store requests for storing data out to the memory system 8 until they
are committed and to provide additional registers in hardware for tracking the
speculative state. Another approach would be to disable exceptions being taken partway
through a vector instruction at all, and delay taking the exception until the oldest
uncompleted instruction has completed, but increasing exception handling latency can
be undesirable, and in the case where an exception is a precise fault such behaviour may

break architecture guarantees associated with the fault.

10

15

20

25

30

25

Instead, as shown in Figure 4, the beat status register 22 can be used to record a
beat status value which tracks which beats of a group of adjacent instructions have
completed at the point of an exception, debug event or other event leading to suspension
of the current thread. By exposing the overlapping nature of the execution to the
architecture, this can help reduce the microarchitecture complexity and increase power

and area efficiency.

In the example of Figure 4, the beat status information tracks the completed beats
of a group of three vector instructions A, B, C, where instruction A corresponds to the
oldest uncompleted vector instruction, instruction B is the next vector instruction after
instruction A and the instruction C is the next vector instruction after instruction B. The
notation Ax refers to the x beat of instruction A, where x is between 1 and 4 for a 4-
beat vector implementation, e.g. A2 is the second beat of instruction A. While Figure 4
shows an example where three instructions are tracked using the beat status information,
in other examples which permit a greater number of instructions to be partially
completed at a given point, the beat status information could track a greater number of
instructions. For example, if dual issue is supported then it may be desirable to indicate
beat progress for more than 3 instructions. Each value of the beat status field is allocated
to a given combination of completed beats. For example, beat status value 0011
indicates that the first and second beats of instruction A and the first beat of instruction
B were completed. The particular mapping of particular encoded values of the beat
status information to particular sets of beats of the respective group of instructions is
arbitrary and could be varied. The beat status value 0000 in this example indicates that
there are no incomplete instructions, and therefore no completed beats of incomplete
instructions. This may occur for example when the processor has executed a scalar

instruction.

Figure 5 shows some examples of the beat status information recorded at a point
when there is a suspension of the current thread of execution. In the top example of
Figure 5 vector instructions are executed with one beat per tick and on the fourth tick a

debug event or exception occurs. Hence, at this point the first three beats of instruction

10

15

20

25

30

26

A, the first two beats of instruction B and the first beat of instruction C have already
completed but beats A4, B3, C2, D1 are still to be performed. Hence the beat status
information would have the value 0111 which according to the example of Figure 4

indicates that the beats A1, A2, A3, B1, B2 and C1 have completed already.

Similarly, in the bottom of the example of Figure 5, the instructions being
executed were such that instructions B and C could not be overlapped (e.g. because they
required use of the same hardware unit), and so this time the instructions C and D had
not started yet at the time of the debug event or exception. This time an exception
occurring on tick four would trigger the recording of beat status information 0110

indicating that beats A1, A2, A3, B1 and B2 had already completed, but not C1.

Similarly, with the two beats per tick example of Figure 3, if an exception occurs
on tick 2 then only beats A1 and A2 would have completed and the beat status value
would be 0010. Note that, while values 0001 and 0010 of the beat status information
indicate that only one instruction A was partially completed at the time of the exception,
the beat status information still indicates which beats of a group of multiple instructions
have completed, since it identifies that none of the beats of the next two instructions B,

C have completed.

With the four beat per tick example of Figure 3 the beat status value would be
0000 regardless of when the exception occurs because there would be no partially
completed instructions at the time of the exception since each instruction completes

within one tick.

When a debug event or exception occurs, the return address is set to the current
value of the program counter 16, which represents the address of the oldest uncompleted
instruction. Hence in both the examples of Figure 5 the return address would be set to
the address of instruction A. The return address could be stored in a variety of places,
including at a location on a stack relative to the value of a stack pointer register, or in a

return address register.

10

15

20

25

30

27

As shown in Figure 6, this enables the processor in response to a return-from-
event request (e.g. on return from the debug mode or the exception handler) to resume
processing from a point determined based on the return address and the beat status
information in the beat status register 22. The return-from-event request could be made
by the debugger in the case of a debug event, or by the exception handler in the case of
an exception event. Following the return-from-event request, fetching of instructions to
be processed resumes from the address indicated by the return address, which
corresponds to instruction A in this case. Instructions B, C and D follow (this example
corresponds to the top example of Figure 5). However, for the first few cycles after the
return any beats indicated by the beat status information as already completed are
suppressed. The processor may suppress these beats by preventing the corresponding
processing operation being performed at all (e.g. suppressing requests to load or store
data or disabling of an ALU or MAC). Alternatively, the operation could still be
performed in the case of an ALU operation, but the processor may suppress writing of
the result of the operation (i.e. suppress updating of a portion of a destination vector
register) so that it does not affect the register state. Once the fourth tick is reached then
the pipeline has reached the point at which the debug event or exception previously
occurred and then processing continues as normal. Hence, for the first few cycles after
an exception return, the processor may not perform any useful work and is essentially
just refetching multiple instructions that were in flight when the original exception or
debug event occurred. However, as exception return latency is often not critical for
some applications, this may be a good trade off to reduce the latency at the time of taking
the exception, and also this helps to reduce the amount of architectural state that needs
to be stored on an exception since it is not necessary to speculatively store results of
uncompleted instructions. This approach also enables the handling of exceptions which

are precise faults raised by a beat of a vector instruction.

In some cases the beat status information indicating the completed beats of the
group of multiple instructions could be set in response to the debug event or exception
occurring. However in some implementations it may be easier to update the beat status

register each time an instruction completes, regardless of whether an exception has

10

15

20

25

30

28

occurred, so that if an exception occurs in the following tick then the beat status register

22 already indicates the already completed beats of the group of instructions.

While Figure 4 shows one example encoding of the beat status information,
another possibility is to provide the beat status information as a bitmap comprising a
number of bits each corresponding to one beat of one of the group of instructions A, B,
C etc., with each bit set to one if the corresponding beat has completed and zero if the
corresponding beat has not completed (or vice versa). However, in practice since a later
beat of a given instruction cannot have completed if an earlier beat has not yet
completed, then it is not required to provide bits for every beat and it may be more
efficient to allocate certain encodings of a smaller bit field to particular combinations of

completed beats as in the example of Figure 4.

Figure 7 schematically illustrates details of an apparatus 30 arranged according
to various configurations of the present techniques. In particular, the apparatus 30 is
provided with decoder circuitry 38, processing circuitry 40 and a set of registers 32. The
registers 32 comprise one or more scalar registers 34 and one or more vector registers
36. The decoder circuitry is arranged to receive instructions (for example, based on
program code generated by a programmer or a compiler) and to interpret the instructions
based on an instruction set architecture. In particular, the decoder circuitry is arranged
to interpret a vector extract and merge instruction specifying a first source vector register
44, a second source vector register 46, a destination register 54 and a control parameter
43. The decoder circuitry, on receipt of the vector extract and merge instruction
generates control signals to cause the processing circuitry 40 to perform vector extract
and merge processing. The processing circuitry 40 is responsive to the control signals
to perform vector extract and merge processing by performing one or more beats 48 of
a plurality of beats of processing. Each beat of processing corresponds to a portion of
each of at least the first source vector register 44 and the destination vector register 54.
The processing circuitry 40 is arranged to perform one or more beats of processing
corresponding to one or more portions 48 of the first source vector register 44, one or
more portions 49 of the second source vector register to generate one or more portions

50 to be stored in the destination vector register 50. The processing circuitry 40 is

10

15

20

25

30

29

arranged, for a K" beat of processing of the plurality of beats of processing to extract
one or more bits from the K™ portion of the first source vector register 48 and to
concatenate those bits with one or more further bits. Where the K' beat is the first beat
of the plurality of beats, the one or more further bits are extracted from a first portion
(K™ portion for K=1) of the second source vector register 49. Where the K" beat is a
beat other than the first beat (K>1), the one or more further bits are carry bits 52 carried
from a (K-1)" beat, corresponding to a (K-1)" portion, of the first source vector register
44. Furthermore, the processing circuitry is arranged to output, where the K" beat is not
a last beat of the plurality of beats, one or more bits as carry data to be used in a (K+1)®

beat of processing.

Figure 8 schematically illustrates details of a processing apparatus 60 arranged
according to some configurations of the present techniques. In particular, the processing
apparatus 60 1s provided with registers 62, decoder circuitry 68, processing circuitry70
and data control circuitry 72. The registers 62 comprise a plurality of scalar registers 64
and a plurality of vector registers 66. The decoder circuitry 68 is arranged to generate
control signals in response to instructions which form part of the instruction set
architecture. The control signals are passed (routed) to the processing circuitry 70 and
the data control circuitry 72. The processing circuitry 70 is arranged to perform a
plurality of beats of processing in response to a vector extract and merge instruction.
The details of the processing circuitry are the same as those of the processing circuitry
40 referred to in figure 7. The data control circuitry 72 is responsive to data control
signals, that are generated by the decoder circuitry 68 in response to a data transfer
instruction, to perform a plurality of beats of memory transfer processing. For a given
tick, the apparatus 60 is arranged to perform a plurality of beats comprising a first subset
of the plurality of beats of memory transfer processing performed by the data control
circuitry 72, and a second subset of the plurality of beats of combination processing in
response to the vector extract and merge instruction performed by the processing
circuitry 70. The apparatus 60 is arranged to perform the first subset of the plurality of
beats and a second subset of the plurality of beats whilst referencing non-overlapping

portions of a same vector register 72.

10

15

20

25

30

30

Figure 9 schematically illustrates details of a vector extract and merge instruction
according to some configurations of the present techniques. The vector extract and
merge instruction specifies a first source vector register, a second source vector register,
a destination vector register and a control parameter M. In the illustrated example, the
processing circuitry performs two beats of processing, each corresponding to an N-bit
portion of the first source vector register, the second source vector register and the
destination register. The first source vector register comprises a first N-bit portion 82.
The first N-bit portion 82 comprises a most significant M bits 84 and a least significant
N-M bits 86. The processing circuitry is arranged, for the first beat of processing
corresponding to the first portion of the first source vector register 82, the first portion
of the second source vector register 88, and the first portion of the destination vector
register 102 to extract N-M bits 86 of the first portion of the first source vector register
82 and to concatenate the extracted N-M bits with M-bits (one or more further bits) 90
which are extracted from the first portion of the second source vector register 88.
Specifically, the N-M bits 86 extracted from the first portion of the first source vector
register 82 are stored as a most significant N-M bits 98 of the first portion of the
destination vector register 102. The M-bits 90 extracted from the first portion of the
second source vector register 88 are stored as a least significant M-bits 100 of the first
portion of the destination vector register 102. The processing circuitry is further
configured to carry the most significant M-bits 84 of the first portion of the first source
vector register 82 as carry bits 96. The carry bits may be carry bits that are carried
between beats of processing that are executed in parallel or that are output to a scalar
register arranged to carry bits between beats of processing that are not executed in
parallel. In a second beat of processing, the M-bits 96 that are carried from the first
portion of the first source vector register 82 are stored as a least significant M-bits 94 of
the second portion of the destination register. During the second beat of processing, the
processing circuitry is arranged to extract a least significant N-M bits 95 of the second
N-bit portion of the first source vector register 80 and to store the N-M bits 95 of the
second portion of the first source vector register 80 as a most significant N-M bits 92 of
the second portion of the destination vector register 104. In this way, the processing
circuitry supports a vector extract and merge instruction across a plurality of beats. In

this example the control parameter is indicative of the number of M bits 84 to carry

10

15

20

25

30

31

between portions (one or more further bits). In other examples the control parameter
could be indicative of the number of bits to extract from the first portion of the first

source vector register 86 and store in the first portion of the destination vector register.

Figures 10-12 schematically illustrate the bits that are extracted from the first
portion of the second source vector register according to various configurations of the
present techniques. A particular use case of the vector extract and merge instruction is
to generate vectors that are not aligned to a 32-bit boundary. In particular, some
apparatuses are arranged to load data that is aligned to a 32-bit boundary. Hence, it is
relatively straightforward to generate a vector of data values that are shifted by 32-bits.
However, generating data that is not aligned with a 32-bit boundary may not be possible
using only a load instruction, or may incur a performance penalty such that using aligned
loads may be preferable. One approach to generating the data that is not aligned with

the 32-bit boundary requires a shift to be performed.

Figure 10 schematically illustrates a case in which the data stored in the specified
registers is 16-bit data. The illustrated first source vector register is split into four beats
each comprising four bytes (32 bits). The data that is stored in the first and second
source vector registers corresponds to different portions of a same dataset. The data that
is stored in the second source vector register has been offset from the data loaded into
the first source vector register by 32-bits. For 16-bit data, in accordance with the
aforementioned use case, it is desirable to generate a vector shifted by 16 bits. In such
a situation, the one or more further bits that are extracted from the second source vector
register are bytes 2 and 3 (bits 16 — 31) of the first portion of the second source vector
register. The combination of extracting these bits from the illustrated portion of the
second source vector register with the shifted data that is stored in the first source vector
register results in the generation of data in the destination vector register that is not

aligned to the 32-bit boundary.

Figure 11 schematically illustrates the portions of the second source vector
register that would need to be extracted in order to perform such a shift for 8-bit data.

In particular, to generate a set of data that is out of alignment with a 32-bit boundary by

10

15

20

25

30

32

24 bits, bytes 1, 2, and 3 of the second source vector register are extracted as the one or
more further bits in the first beat of processing. To generate a set of data that is out of
alignment with a 32-bit boundary by 16 bits, bytes 2 and 3 of the second source vector
register are extracted as the one or more further bits in the first beat of processing. To
generate a set of data that is out of alignment with a 32-bit boundary by 8 bits, byte 3 of
the second vector register is extracted as the one or more further bits in the first beat of
processing. In this way, it is possible to generate a sequence of vectors with data

elements that are not aligned to a 32-bit boundary.

Figure 12 schematically illustrates the portions of the second source vector
register that would need to be extracted in order to perform such a shift for 8-bit data in
a case in which the destination data vector is the second source data vector. In the
illustrated example, a sequence of three vector extract and merge instructions are
applied. Each of the vector extract and merge instructions specifies, as the control
parameter, a different number of bits by which to shift the first source vector register.
As in the example of figure 10, the data that is stored in the second source vector register
has been offset from the data loaded into the first source vector register by 32-bits. In
the illustrated example, the one or more further bits that are extracted from the second
source vector register comprises a least significant set of bytes of the first portion of the
second source vector register excluding a least significant byte. In the first vector extract
and merge instruction, a shift of 24 bits (3 bytes) is defined as the control parameter. As
a result, the bytes that are extracted from the second source vector register are bytes 3,
2 and 1. These are concatenated by the processing circuitry during a plurality of beats
of processing to generate, as the content of a destination vector register for the first
vector extract and merge instruction, a vector of values that are misaligned from the 32-
bit boundary by 24 bits. In the second vector extract and merge instruction, a shift of 16
bits (2 bytes) is defined as the control parameter and the destination vector register of
the first vector extract and merge instruction is used as the second source vector register.
As a result, the bytes that are extracted from the second source vector register of the
second instruction are bytes 3 and 2. These are concatenated by the processing circuitry
during a plurality of beats of processing to generate, as the content of a destination vector

register for the second vector extract and merge instruction, a vector of values that are

10

15

20

25

30

33

misaligned from the 32-bit boundary by 16 bits. In the third vector extract and merge
instruction, a shift of 8 bits (1 byte) is defined as the control parameter and the
destination vector register of the second vector extract and merge instruction is used as
the second source vector register. As a result, the byte that is extracted from the second
source vector register is byte 3. This byte is concatenated by the processing circuitry
during a plurality of beats of processing to generate, as the content of a destination vector
register for the third vector extract and merge instruction, a vector of values that are

misaligned from the 32-bit boundary by 8 bits.

Figures 13 to 17 schematically illustrate sequence of operations that are carried
out by the processing circuitry in response to a vector extract and merge instruction. For
illustrative purposes, the elements of the vector registers have been chosen for the use
case in which the vector extract and merge instruction is to generate vectors that are not
aligned to a 32-bit boundary. It would be readily apparent to the skilled person that this
use case example has been chosen purely for illustrative purpose and that the techniques
described herein do not require there to be any relationship between the content of the
first source vector register and the second source vector register. In particular, it would
be apparent that, for the general vector extract and merge instruction described herein,
the vector that is stored in the first source vector register can be any first vector either
loaded from memory or generated, for example, as a result of one or more other
operations. Similarly, the second source vector stored in the second source vector
register can be any second vector and that, in some use cases, the programmer may
choose to select the first vector and the second vector such that there is some overlap
between the elements that are present in the first source vector register and the second
source vector register. In other use cases, the programmer may choose to select the first
source vector and the second source vector such that there is no overlap between the
elements that are present in the first source vector register and the second source vector

register.

Figure 13 schematically illustrates a sequence of operations that are carried out
by the processing circuitry in response to a vector extract and merge instruction

specifying a first source vector register 110, a second source vector register 112, a

10

15

20

25

30

34

destination register 114, a scalar register and control information. Each of the first
source vector register 110, the second source vector register 112 and the destination
register 114 are arranged as a plurality of portions to be processed in a plurality of beats
of processing. In the illustrated example, the processing circuitry is arranged to perform
a single beat of processing for a given tick. Each of the portions comprises two elements
and the control information specifies that a shift corresponding to a single element is to
be performed. For exemplary purposes only, the first source vector register and the
second source vector register are 128 bit vector registers and are illustrated as containing
a set of numbered data items. In particular, the first source vector register contains data
items 9 down to 2 and the second source vector register contains data items 7 down to
0. Hence, the first source vector register and the second source vector register contain
16 bit data items that are loaded from an address in memory that is aligned to a 32 bit
boundary. In the first beat of processing, the processing circuitry extracts a least
significant element (data item 2) of a first portion of the first source vector register
110(D). The extracted least significant element of the first portion of the first source
vector register 110(D) is concatenated with a most significant element (data item 1) of
a first portion of the second source vector register 112(D) and the result of the
concatenation is stored as a first portion of the destination vector register 114(D).
During the first beat of processing, a most significant element (data item 3) of the first
portion of the first source vector register 110(D) is extracted as carry data 116 and is
stored as a most significant element in a scalar register. During a second beat of
processing the processing circuitry extracts a least significant element (data item 4) of
the second portion of the first source vector register 110(C). The extracted least
significant element of the second portion of the first source vector register 110(C) is
concatenated with the carry data 116 stored in a most significant element (data item 3)
of the scalar register and a result of the concatenation is stored in a second portion of the
destination vector register 114(C). During the second beat of processing the processing
circuitry also extracts a most significant element (data item 5) of the second portion of
the first source vector register 110(C) as carry data 118 to be stored as a most significant
element in the scalar register. During a third beat of processing the processing circuitry
extracts a least significant element (data item 6) of the third portion of the first source

vector register 1 10(B). The extracted least significant element of the third portion of the

10

15

20

25

30

35

first source vector register 110(B) is concatenated with the carry data 118 stored in a
most significant element (data item 5) of the scalar register and a result of the
concatenation is stored in a third portion of the destination vector register 114(B).
During the third beat of processing the processing circuitry also extracts a most
significant element (data item 7) of the third portion of the first source vector register
110(B) as carry data 120 to be stored as a most significant element in the scalar register.
During a fourth beat of processing the processing circuitry extracts a least significant
element (data item 8) of the fourth portion of the first source vector register 110(A). The
extracted least significant element of the fourth portion of the first source vector register
110(C) is concatenated with the carry data 120 stored in a most significant element (data
item 7) of the scalar register and a result of the concatenation is stored in a fourth (last)
portion of the destination vector register 114(A). In some alternative configurations,
during the fourth beat of processing the processing circuitry also extracts a most
significant element of the fourth portion of the first source vector register 110(A) as
carry data to be stored as a most significant element in the scalar register. This carry
data remains stored in the scalar register subsequent to execution of the vector extract
and merge instruction. The value in the unused element (the least significant element as
shown in figure 13) of the scalar register is arbitrary. In some examples this element
may be set to a dummy value such as zero. In other examples it may be set to value of

the adjacent element from the current portion of the first source vector register.

Figure 14 schematically illustrates a sequence of operations that are carried out
by the processing circuitry in response to a vector extract and merge instruction
specifying a first source vector register 140, a second source vector register 142, a
destination register 144, a scalar register and control information. As in figure 13, each
of the first source vector register and the second source vector register contain data items
that are extracted from a region of memory that is aligned to a 32-bit boundary. In
contrast to figure 13, each of the data items stored in an element of the first and second
source vector registers is an 8 bit data item. Each of the first source vector register 140,
the second source vector register 142 and the destination register 144 are arranged as a
plurality of portions to be processed in a plurality of beats of processing. In the

illustrated example, the processing circuitry is arranged to perform a single beat of

10

15

20

25

30

36

processing for a given tick. Each of the portions comprises four elements and the control
information specifies that a shift corresponding to two elements is to be performed. In
the first beat of processing, the processing circuitry extracts a least significant two
elements (data items 5 and 4) of a first portion of the first source vector register 140(D).
The extracted least significant two elements of the first portion of the first source vector
register 140(D) are concatenated with a most significant two elements (data items 3 and
2) of a first portion of the second source vector register 142(D) and the result of the
concatenation is stored as a first portion of the destination vector register 144(D).
During the first beat of processing, the first portion (data items 7 down to 4) of the first
source vector register 140(D) is extracted as carry data 146 is stored in a scalar register.
During a second beat of processing the processing circuitry extracts a least significant
two elements (data items 9 and 8) of the second portion of the first source vector register
140(C). The extracted least significant two elements of the second portion of the first
source vector register 140(C) are concatenated with the most significant two elements
(data items 7 and 6) of the carry data 146 stored the scalar register and a result of the
concatenation is stored in a second portion of the destination vector register 144(C).
During the second beat of processing the processing circuitry also extracts the second
portion (data items 11 down to 8) of the first source vector register 140(C) as carry data
148 to be stored in the scalar register. During a third beat of processing the processing
circuitry extracts a least significant two elements (data items 13 and 12) of the third
portion of the first source vector register 140(B). The extracted least significant two
elements of the third portion of the first source vector register 140(B) are concatenated
with the most significant two elements (items 11 and 10) of the carry data 148 stored in
the scalar register and a result of the concatenation is stored in a third portion of the
destination vector register 144(B). During the third beat of processing the processing
circuitry also extracts the third portion (items 15 down to 12) of the first source vector
register 140(B) as carry data 150 to be stored in the scalar register. During a fourth beat
of processing the processing circuitry extracts a least significant two elements (data
items 17 and 16) of the fourth portion of the first source vector register 140(A). The
extracted least significant two elements of the fourth portion of the first source vector
register 140(A) are concatenated with the two most significant elements (data items 15

and 14) of the carry data 150 stored in the scalar register and a result of the concatenation

10

15

20

25

30

37

is stored in a fourth (last) portion of the destination vector register 144(A). In some
alternative configurations, during the fourth beat of processing the processing circuitry
also extracts the fourth portion of the first source vector register 140(A) as carry data to
be stored in the scalar register. This carry data remains stored in the scalar register

subsequent to execution of the vector extract and merge instruction.

Figure 15 schematically illustrates a sequence of operations that are carried out
by the processing circuitry in response to a vector extract and merge instruction
according to an alternative implementation. Figure 15 differs from figure 14 in that, for
each of the first beat of processing, the second beat of processing, and the third beat of
processing, the data that is extracted from the corresponding portion of the first source
vector register 160, to be stored as carry data in the scalar register, is a most significant
two elements of the corresponding portion and is stored as a least significant two
elements of the scalar register. In particular, the operations differ from those described
in relation to figure 14 as follows: In the first beat of processing the processing circuitry
extracts the two most significant elements (data items 7 and 6) of the first portion of the
first source vector register 160(D) to store as carry data 166 in a least significant two
elements of the scalar register. In the second beat of processing the one or more further
bits of data are extracted from the two least significant elements of the scalar register
and the processing circuitry extracts the two most significant elements (data items 11
and 10) of the second portion of the first source vector register 160(C) to store as carry
data 168 in a least significant two elements of the scalar register. In the third beat of
processing the one or more further bits of data are extracted from the two least significant
elements of the scalar register and the processing circuitry extracts the two most
significant elements (data items 15 and 14) of the third portion of the first source vector
register 160(B) to store as carry data 170 in a least significant two elements of the scalar
register. In the fourth beat of processing the one or more further bits of data are
extracted from the two least significant elements of the scalar register. It will be
appreciated that the position of the carry data in the scalar register is arbitrary, and

although figure 14 and 15 show two possibilities, other configurations are also possible.

10

15

20

25

30

38

Figure 16 schematically illustrates a sequence of operations that are carried out
by the processing circuitry in response to a vector extract and merge instruction
specifying a first source vector register 180, a second source vector register 182, a
destination register 184, a scalar register and control information. Each of the first
source vector register 180, the second source vector register 182 and the destination
register 184 are arranged as a plurality of portions to be processed in a plurality of beats
of processing. Figure 16 differs from figures 15 and 14 in that the processing circuitry
is provided with hardware capable of performing two beats of the plurality of beats of
processing for a given tick. In other words, two of the beats are performed in parallel.
Each of the portions of the first source vector register 180 and the second source vector
register 182 comprises four 8-bit elements and the control information specifies that a
shift corresponding to two elements is to be performed. In response to a first tick, the
processing circuitry performs the first and second beats of processing corresponding to
two least significant portions of the first source vector register 180(C), 180(D). The
processing circuitry is arranged to extract the most significant two elements (data items
3 and 2) from least significant portion of the second source vector register 182(D) as the
one or more further bits. The one or more further bits are concatenated with the two
least significant elements (data items 5 and 4)of the least significant portion of the first
source vector register 180(D). A result of the concatenation is stored to the least
significant portion of the destination vector register 184(D). The two most significant
elements (data items 7 and 6) of the least significant portion of the first source vector
register 180(D) are carried to be used in the second beat. As the second beat is
performed in parallel (in the same tick) as the first beat, the two most significant
elements (data items 7 and 6)of the least significant portion of the first source vector
register 180(D) are carried without requiring the scalar register. Hence, in the same tick,
as part of the second beat of processing, the two most significant elements (data items 7
and 6) of the least significant portion of the first source vector register 180(D) are carried
as the one or more further bits to be concatenated with the two least significant elements
(data items 9 and 8) of the second portion of the first source vector register 180(C). A
result of the concatenation is stored to the second portion of the destination vector
register 184(C). The processing circuitry is also arranged to store the two most

significant elements (data items 11 and 10) from the second portion of the first source

10

15

20

25

30

39

vector register 180(C) to the two least significant elements of the scalar register 188 to
be carried for processing during the next tick. The processing circuitry is also arranged
to set status information indicating that processing has been completed for the first and
second beat of processing that is to be carried out in response to the vector extract and

merge instruction.

During a second beat of processing, the processing circuitry can determine, from
the status information, that processing is completed for the first and second beat of
processing. Hence, the processing circuitry begins processing from the third beat
corresponding to a third portion of the first source vector register 180(B). The
processing circuitry extracts the two least significant elements (data items 13 and 12)
from the third portion of the first source vector register 180(B) and concatenates these
elements with one or more further bits. Because the processing circuitry can determine
that the beats that are being processed do not comprise the first beat (least significant
portion), the one or more further bits are extracted from the scalar register 188. In
particular, the one or more further bits comprise the two least significant elements (data
items 11 and 10) of the scalar register 188 which are extracted and concatenate with the
two least significant elements (data items 13 and 12) of the third portion of the first
source vector register 180(B) and a result of the concatenation is stored in the third
portion of the destination register 184(B). The processing circuitry is also arranged to
extract the two most significant elements (data items 15 and 14) of the third portion of
the first source vector register 180(B) to be carried to the fourth beat. Because the
processing circuitry is able to perform two beats of processing in a given tick, beats 3
and 4 are performed in parallel and the carried data does not require storage in the scalar
register 188. Rather, the two most significant elements (data items 15 and 14) of the
third portion of the first source vector register 180(B) are carried as the one or more
further bits to be used in the fourth beat. During the fourth beat the two least significant
elements (data items 17 and 16) of the fourth (most significant) portion of the first source
vector register 180(A) are extracted and concatenated with the carried one or more
further bits from the third portion of the first source vector register. The result of the
concatenation is stored in a fourth portion (most significant portion) of the destination

vector register 184(A).

10

15

20

25

30

40

In some alternative configurations, during the fourth beat of processing the
processing circuitry also extracts the fourth portion of the first source vector register
180(A) as carry data to be stored in the scalar register 188. This carry data remains
stored in the scalar register 188 subsequent to execution of the vector extract and merge

instruction to, potentially, be used as part of a further instruction.

Figure 17 schematically illustrates an alternative configuration in which a
sequence of operations is carried out by the processing circuitry in response to a vector
extract and merge instruction specifying a first source vector register 240, a second
source vector register 242, a destination register 244, a scalar register and control
information. Figure 17 differs from figures 14-16 in that the extract and merge
instruction has been reversed. In particular, the vector extract and merge instruction is
carried out from a most significant portion of the specified registers rather than from a
least significant portion of the source vector registers. In the illustrated example, the
processing circuitry is arranged to perform a single beat of processing for a given tick.
Each of the portions comprises four elements and the control information specifies that
a shift corresponding to one element is to be performed. In the first beat of processing
(in this case, corresponding to the most significant portion of the specified registers), the
processing circuitry extracts a most significant three elements (data items 15 down to
13) of a first portion (most significant portion) of the first source vector register 240(A).
The extracted most significant three elements of the first portion of the first source vector
register 240(A) are concatenated with a least significant element (data item 16) of a first
portion (most significant portion) of the second source vector register 242(A) and the
result of the concatenation is stored as a first portion of the destination vector register
244(A). During the first beat of processing, the first portion (data items 15 down to 12)
of the first source vector register 240(A) is extracted as carry data 246 and is stored in a
scalar register. During a second beat of processing the processing circuitry extracts a
most significant three elements (data items 11 down to 9) of the second portion of the
first source vector register 240(B). The extracted most significant three elements of the
second portion of the first source vector register 240(B) are concatenated with the least

significant element (data item 12) of the carry data 246 stored the scalar register and a

10

15

20

25

30

41

result of the concatenation is stored in a second portion of the destination vector register
244(B). During the second beat of processing the processing circuitry also carries the
second portion (data items 11 down to 8) of the first source vector register 240(B) as
carry data 248 to be stored in the scalar register. During a third beat of processing the
processing circuitry extracts a most significant three elements (data items 7 down to 5)
of the third portion of the first source vector register 240(C). The extracted most
significant three elements of the third portion of the first source vector register 240(C)
are concatenated with the least significant element (data item 8) of the carry data 248
stored in the scalar register and a result of the concatenation is stored in a third portion
of the destination vector register 244(C). During the third beat of processing the
processing circuitry also extracts the third portion (data items 7 down to 4) of the first
source vector register 240(C) as carry data 250 to be stored in the scalar register. During
a fourth beat of processing the processing circuitry extracts a most significant three
elements (data items 3 down to 1) of the fourth portion (least significant portion) of the
first source vector register 210(D). The extracted most significant three elements of the
fourth portion of the first source vector register 210(D) are concatenated with least
significant element (data item 4) of the carry data 250 stored in the scalar register and a
result of the concatenation is stored in a fourth (least significant) portion of the
destination vector register 244(D). In some alternative configurations, during the fourth
beat of processing the processing circuitry also extracts the fourth portion of the first
source vector register 240(D) as carry data to be stored in the scalar register. This carry
data remains stored in the scalar register subsequent to execution of the vector extract
and merge instruction. As shown in the previous figures, the position of the data
elements to be carried within the scalar register, and the value of the unused elements in
the scalar register, are arbitrary. Various combinations of other configurations are
possible, for example, storing the elements to carry in the most significant elements of

the scalar register, and setting unused elements to zero.

Figure 18 schematically illustrates a sequence of steps carried out by the
processing circuitry in response to a vector extract and merge instruction. Flow begins
at step S170 where it is determined if a vector extract and merge instruction specifying

a first source vector register, a second source vector register, a destination vector register

10

15

20

25

30

42

and a control parameter has been received by the decoder circuitry. If no then flow
remains at step S170. If, at step S170, it is determined that the decoder circuitry has
received a vector extract and merge instruction then the decoder circuitry generates
control signals based on the vector extract and merge instruction. Flow then proceeds
to step S172 where, based on the control signals, a value K is set based on the status
information. If the status information indicates that no beats of processing have been
carried out, then K 1is set to indicate the first beat of processing. If on the other hand,
the status information indicates that a first one or more beats of the plurality of beats
have been completed then K is set to indicate a first non-completed beat of the plurality
of beats. Flow then proceeds to step S174 where the processing circuitry extracts the
bits specified by the control parameter from the K™ portion of the first source vector
register. Flow then proceeds to step S176 where it is determined whether K indicates
that the portion is the first portion. If so then flow proceeds to step S178 where the
processing circuitry extracts one or more further bits (as indicated by the control
parameter) from a first portion of the second source vector register. Flow then proceeds
to step S182. If on the other hand, at step S176, it was determined that K indicated that
the K™ portion is not the first portion, then flow proceeds to step S180 where one or
more further bits are obtained as one or more further bits carried from a (K-1)® portion
of the first source vector register. The carry may be an internal carry within the
processing circuitry, for example, if the processing circuitry is provided with sufficient
hardware to perform more than 1 beat per tick. Alternatively, the carry data may be
extracted from a scalar register where the one or more further bits have been stored as
part of a preceding beat of the vector extract and merge instruction. Flow then proceeds
to step S182. At step S182, the one or more extracted bits are concatenated with the one
or more further bits. Flow then proceeds to step S184, where the result of the
concatenation is stored in a K™ portion of the destination register. Flow then proceeds
to step S186, where it is determined if the K® portion is the last portion of the first source
vector register. If yes, then flow returns to step S170. If, at step S186, it was determined
that the K™ portion is not the last portion then flow proceeds to step S188, where at least
one bit of the K™ portion of the first source vector register that has not been stored in the
destination register is carried to be processed in a (K+1)" beat. The carry may be an

internal carry within the processing circuitry, for example, if the processing circuitry is

10

15

20

25

30

43

provided with sufficient hardware to perform multiple (plural) beats of processing per
tick. Alternatively, the carry may be performed by storing the at least one bit of the K
portion of the first source vector register to a scalar register specified in the vector extract
and merge instruction. Flow then proceeds to step S190 where K is incremented and

flow returns to step S174.

Whilst the sequence of steps of figure 18 has been described by sequentially
incrementing K, where hardware is provided that is sufficient to perform plural beats of
processing per tick, the steps corresponding to each beat (each value of K) that are being
performed within that same tick, are performed in parallel. For example, if beats K and
K+1 were being performed in parallel then step S174 would comprise extracting the bits
specified by the control parameter from the K portion of the first source vector register
in parallel to extracting the bits specified by the control parameter for the (K+1)® portion
of the first source vector register. The one or more further bits for each of the K and
(K+1)" beats would then be extracted in parallel. Potentially, if K indicates that the K\t
portion is the first portion, the one or more further bits for the K™ portion would be
extracted from the second source vector register in parallel to the one or more further
bits for the (K+1)® portion being extracted from the K" portion of the first source vector
register. The step of concatenation S182 would be performed in parallel for the K™ and
(K+1)® portions, and the step of storage S184 for the K™ and (K+1)® portions would be
performed in parallel. The determination at step S186 as to whether K corresponds to a
last portion would be made based on the highest portion (most significant portion) of K
that is being processed and, if flow were to continue, based on this determination, to step
S188, the carry would be extracted from the (K+1)® portion for processing in a
subsequent tick. It would be appreciated by the skilled person that, dependent on the
details of the hardware provision, any number of beats of processing could be performed

in parallel.

Figure 19 schematically illustrates a non-transitory computer-readable medium
comprising computer readable code for fabrication of a data processing apparatus
according to various configurations of the present techniques. Fabrication is carried out

based on computer readable code 1002 that is stored on a non-transitory computer-

10

15

20

25

30

44

readable medium 1000. The computer-readable code can be used at one or more stages
of a semiconductor design and fabrication process, including an electronic design
automation (EDA) stage, to fabricate an integrated circuit comprising the apparatus
embodying the concepts. The fabrication process involves the application of the
computer readable code 1002 either directly into one or more programmable hardware
units such as a field programmable gate array (FPGA) to configure the FPGA to embody
the configurations described hereinabove or to facilitate the fabrication of an apparatus
implemented as one or more integrated circuits or otherwise that embody the
configurations described hereinabove. By way of example, the fabricated design 1004
comprises apparatus 30 with registers 32, decoder circuitry 38 and processing circuitry
40 as described in relation to figure 7. However, the fabricated design may correspond
to any of the circuits set out in figures 1, 7, and 8 capable of implementing the vector

extract and merge instruction as described in relation to figures 9-18.

Figure 20 illustrates a simulator implementation that may be used. Whilst the
earlier described examples implement the present invention in terms of apparatus and
methods for operating specific processing hardware supporting the techniques
concerned, it is also possible to provide an instruction execution environment in
accordance with the examples described herein which is implemented through the use
of a computer program. Such computer programs are often referred to as simulators,
insofar as they provide a software based implementation of a hardware architecture.
Varieties of simulator computer programs include emulators, virtual machines, models,
and binary translators, including dynamic binary translators. Typically a simulator
implementation may run on a host processor 515, optionally running a host operating
system 510, supporting the simulator program 505. In some arrangements there may be
multiple layers of simulation between the hardware and the provided instruction
execution environment, and/or multiple distinct instruction execution environments
provided on the same host processor. Historically, powerful processors have been
required to provide simulator implementations which execute at a reasonable speed, but
such an approach may be justified in certain circumstances, such as when there is a
desire to run code native to another processor for compatibility or re-use reasons. For

example, the simulator implementation may provide an instruction execution

10

15

20

25

30

45

environment with additional functionality which is not supported by the host processor
hardware, or provide an instruction execution environment typically associated with a
different hardware architecture. An overview of simulation is given in “Some Efficient
Architecture Simulation Techniques”, Robert Bedichek, Winter 1990, USENIX
Conference, Pages 53 to 63.

To the extent that examples have previously been described with reference to
particular hardware constructs or features, in a simulated implementation equivalent
functionality may be provided by suitable software constructs or features. For example,
particular circuitry may be provided in a simulated implementation as computer program
logic. Similarly, memory hardware, such as register or cache, may be provided in a
simulated implementation as a software data structure. In arrangements where one or
more of the hardware elements referenced in the previously described examples are
present on the host hardware, some simulated implementations may make use of the

host hardware, where suitable.

The simulator program 505 may be stored on a computer readable storage
medium (which may be a non-transitory medium), and provides a virtual hardware
interface (instruction execution environment) to the target code 500 (which may include
applications, operating systems and a hypervisor) which is the same as the hardware
interface of the hardware architecture being modelled by the simulator program 505.
Thus, the program instructions of the target code 500 may be executed from within the
instruction execution environment using the simulator program 505, so that a host
computer 515 which does not actually have the hardware features of the apparatus 30
discussed above can emulate those features. The simulator program may include
register logic 532 to emulate the behaviour of the registers 32, decoder circuitry logic
538 to emulate the behaviour of the decoder circuitry 38 and processing logic 540 to
emulate the behaviour of the processing circuitry 40. In addition, the simulator program
may include logic to implement any of the circuits set out in figures 1, 7, and 8 capable
of implementing the vector extract and merge instruction as described in relation to
figures 9-18. Hence, the techniques described herein can in the example of Figure 20

be performed in software by the simulator program 505.

10

15

20

25

30

46

In brief overall summary there is provide an apparatus, method and medium.
The apparatus comprises decoder circuitry to generate control signals in response to a
vector extract and merge instruction specifying a control parameter, a first vector
register, a second vector register, and a destination vector register. The apparatus
comprises processing circuitry responsive to the control signals, to perform plural beats
of processing, each beat comprising processing corresponding to a portion of at least the
first vector register and the destination vector register. The processing, for a K™ beat
comprises: extracting bits, specified by the control parameter, from a K™ portion of the
first vector register, concatenating the bits with further bits, and storing the result in the
K™ portion of the destination register. The further bits are, for a first portion, extracted
from a first portion of the second vector register and, otherwise, from a (K-1) portion

of the first vector register.

In the present application, the words “configured to...” are used to mean that an
element of an apparatus has a configuration able to carry out the defined operation. In
this context, a “configuration” means an arrangement or manner of interconnection of
hardware or software. For example, the apparatus may have dedicated hardware which
provides the defined operation, or a processor or other processing device may be
programmed to perform the function. “Configured to” does not imply that the apparatus

element needs to be changed in any way in order to provide the defined operation.

Although illustrative configurations have been described in detail herein with
reference to the accompanying drawings, it is to be understood that the invention is not
limited to those precise configurations, and that various changes, additions and
modifications can be effected therein by one skilled in the art without departing from
the scope and spirit of the invention as defined by the appended claims. For example,
various combinations of the features of the dependent claims could be made with the
features of the independent claims without departing from the scope of the present

invention.

10

15

20

25

30

47

CLAIMS

1. An apparatus comprising:

a plurality of vector registers;

decoder circuitry responsive to a vector extract and merge instruction to generate
control signals, the vector extract and merge instruction specifying a control parameter
and, as specified registers of the plurality of vector registers, a first source vector
register, a second source vector register, and a destination vector register; and

processing circuitry responsive to the control signals to perform a plurality of
beats of processing, each beat comprising combination processing corresponding to a
portion of at least the first source vector register and the destination vector register,
wherein the processing circuitry is configured to set beat status information indicative
of which beats of the vector extract and merge instruction have completed, and to
suppress completed beats of the vector extract and merge instruction indicated by the
beat status information as having completed,

wherein the combination processing for a K™ beat corresponding to a K" portion
of each of the specified registers comprises:

extracting bits, as specified by the control parameter, from the K% portion of the
first source vector register, concatenating the extracted bits with one or more further
bits, and storing a result of the concatenation in the K portion of the destination register;

when the K™ portion is not a last portion of the specified registers, carrying at
least one bit of the K™ portion of the first source vector register not stored in the
destination register to be processed in a (K+1)" beat of the plurality of beats;

for a first portion of the specified registers the one or more further bits are
extracted from a first portion of the second source vector register; and

for each portion other than the first portion of the specified registers, the one or

more further bits are carried from a (K-1)™ portion of the first source vector register.

2. The apparatus of claim 1, wherein:
the decoder circuitry is responsive to the vector extract and merge instruction

specifying a scalar register;

10

15

20

25

30

48

the plurality of beats comprises a currently executing subset of one or more beats,
wherein the currently executing subset of beats excludes the completed beats; and

the processing circuitry is responsive to the control signals, to store at least one
item of carry data in the scalar register, the at least one item of carry data comprising
one or more bits to be carried between the currently executing subset of one or more

beats and a further subset of one or more beats of the plurality of beats.

3. The apparatus of claim 2, wherein the processing circuitry is responsive to the
control signals, for a first beat of the currently executing set of one or more beats and
when the beat status information prior to execution of the vector extract and merge
instruction indicates that at least one beat is to be supressed, to retrieve the one or more

further bits from the scalar register.

4. The apparatus of claim 3, wherein:

the one or more bits to be carried comprises all bits of a portion of the first source
vector register; and

retrieving the one or more further bits from the scalar register comprises

retrieving a last subset of bits from the scalar register.

5. The apparatus of claim 3, wherein:

the one or more bits to be carried comprises a last set of M bits from a portion of
the first source vector register stored to a temporary set of bit positions in the scalar
register; and

retrieving the one or more further bits from the scalar register comprises

retrieving bits from the temporary set of bit positions of the scalar register.

6. The apparatus of any preceding claim, wherein concatenating the extracted bits
comprises storing the extracted bits in a first contiguous set of bit positions of the K
portion of the destination register and storing the one or more further bits in a second

contiguous set of bit positions of the K™ portion of the destination register.

10

15

20

25

30

49

7. The apparatus of claim 6, wherein the first contiguous set of bit positions and the

second contiguous set of bit positions are non-overlapping bit positions.

8. The apparatus of claims 6 or claim 7, wherein the first contiguous set of bit
positions are a most significant set of bit positions of the K portion of the destination
register and the second contiguous set of bit positions are a least significant set of bit

positions of the K™ portion of the destination register.

9. The apparatus of claims 6 or claim 7, wherein the first contiguous set of bit
positions are a least significant set of bit positions of the K portion of the destination
register and the second contiguous set of bit positions are a most significant set of bit

positions of the K portion of the destination register.

10. The apparatus of any preceding claim, wherein the extracted bits are extracted

from contiguous bit positions of the K™ portion of the first source vector register.

11. The apparatus of claim 10, wherein the contiguous bit positions are a set of least

significant contiguous bit positions of the K™ portion of the first source vector register.

12. The apparatus of any of any preceding claim, wherein:
each portion of each of the specified registers is an N-bit portion;

the control parameter is indicative of a shift distance M specifying a number of

bits;

the one or more further bits comprises M bits; and

the extracted bits from the K" portion of the first source vector register comprise
N minus M bits.
13. The apparatus of claim 12, wherein:

each N-bit portion is divided into a plurality of elements;

the shift distance corresponds to an integer number of elements; and

10

15

20

25

30

50

for the first portion of the specified registers, the one or more further bits
comprise a least significant subset of elements of the first portion of the second source

vector register excluding a least significant element.

14. The apparatus of claim 12, wherein:

each N-bit portion is divided into a plurality of elements;

the shift distance corresponds to an integer number of elements; and

for the first portion of the specified registers, the one or more further bits
comprise a most significant subset of elements of the first portion of the second source

vector register.

15. The apparatus of any preceding claim, wherein the destination vector register is

the second source vector register.

16. The apparatus of any preceding claim, wherein the processing circuitry is

configured to process at least two of the plurality of beats in parallel.

17. The apparatus of any preceding claim, wherein the processing circuitry
comprises hardware insufficient for performing all of the plurality of beats of the given

vector instruction in parallel.

18. The apparatus of any of claims 1-16, wherein the processing circuitry is
configured to process all of the plurality of beats of the given vector instruction in

parallel.

19. The apparatus of any preceding claim, wherein:

the decoder circuitry is responsive to a memory data transfer instruction, adjacent
to the vector extract and merge instruction in program counter order, specifying a
memory address and a transfer register of the plurality of vector registers to generate
data transfer control signals;

the apparatus further comprises data control circuitry responsive to the data

transfer control signals to perform a plurality of beats of memory data transfer

10

15

20

25

30

51

processing, each beat comprising performing data transfer to a corresponding portion of
the transfer register and to set the beat status information indicative of which beats of
the data transfer instruction have completed, and to suppress completed beats of the
memory data transfer instruction indicated by the beat status information as having
completed; and

the apparatus is configured to, when the transfer register is one of the specified
registers, perform a first subset of the plurality of beats of memory data transfer
processing corresponding to a first subset of portions of the transfer register in parallel
to the processing circuitry performing, in response to the vector extract and merge
instruction, a second subset of the plurality beats of processing corresponding to a

second subset of portions of the transfer register.

20. The apparatus of any preceding claim, wherein the control parameter is specified

as an immediate value in the vector extract and merge instruction.

21 The apparatus of any preceding claim, wherein the first portion of the specified
registers is a least significant portion of the specified registers and the last portion of the

specified registers is a most significant portion of the specified registers.

22. A method of operating an apparatus comprising a plurality of vector registers,
decoder circuitry and processing circuitry, the method comprising:

generating, using the decoder circuitry and in response to a vector extract and
merge instruction, control signals, the vector extract and merge instruction specifying a
control parameter and, as specified registers of the plurality of vector registers, a first
source vector register, a second source vector register, and a destination vector register;
and

performing, using the processing circuitry and in response to the control signals,
a plurality of beats of processing, each beat comprising combination processing
corresponding to a portion of at least the first source vector register and the destination
vector register, setting beat status information indicative of which beats of the vector

extract and merge instruction have completed, and suppressing completed beats of the

10

15

20

25

30

52

vector extract and merge instruction indicated by the beat status information as having
completed,

wherein the combination processing for a K" beat corresponding to a K™ portion
of each of the specified registers comprises:

extracting bits specified by the control parameter from the K™ portion of the first
source vector register, concatenating the extracted bits with one or more further bits, and
storing a result of the concatenation in the K portion of the destination register;

when the K™ portion is not a last portion of the specified registers, carrying at
least one bit of the K™ portion of the first source vector register not stored in the
destination register to be processed in a (K+1)" beat of the plurality of beats;

for a first portion of the specified registers the one or more further bits are
extracted from a first portion of the second source vector register; and

for each portion other than the first portion of the specified registers, the one or

more further bits are carried from a (K-1) portion of the first source vector register

23. A computer-readable medium to store computer-readable code for fabrication of
an apparatus comprising:

a plurality of vector registers;

decoder circuitry responsive to a vector extract and merge instruction to generate
control signals, the vector extract and merge instruction specifying a control parameter
and, as specified registers of the plurality of vector registers, a first source vector
register, a second source vector register, and a destination vector register; and

processing circuitry responsive to the control signals to perform a plurality of
beats of processing, each beat comprising combination processing corresponding to a
portion of at least the first source vector register and the destination vector register,
wherein the processing circuitry is configured to set beat status information indicative
of which beats of the vector extract and merge instruction have completed, and to
suppress completed beats of the vector extract and merge instruction indicated by the
beat status information as having completed,

wherein the combination processing for a K" beat corresponding to a K® portion

of each of the specified registers comprises:

10

15

20

25

30

53

extracting bits specified by the control parameter from the K™ portion of the first
source vector register, concatenating the extracted bits with one or more further bits, and
storing a result of the concatenation in the K portion of the destination register;

when the K™ portion is not a last portion of the specified registers, carrying at
least one bit of the K™ portion of the first source vector register not stored in the
destination register to be processed in a (K+1)" beat of the plurality of beats;

for a first portion of the specified registers the one or more further bits are
extracted from a first portion of the second source vector register; and

for each portion other than the first portion of the specified registers, the one or

more further bits are carried from a (K-1)™ portion of the first source vector register.

24, A computer program for controlling a host data processing apparatus to provide an
instruction execution environment, comprising:

register logic comprising a plurality of vector registers;

decoder logic responsive to a vector extract and merge instruction to generate
control signals, the vector extract and merge instruction specifying a control parameter
and, as specified registers of the plurality of vector registers, a first source vector
register, a second source vector register, and a destination vector register; and

processing logic responsive to the control signals to perform a plurality of beats
of processing, each beat comprising combination processing corresponding to a portion
of at least the first source vector register and the destination vector register, wherein the
processing logic is configured to set beat status information indicative of which beats of
the vector extract and merge instruction have completed, and to suppress completed
beats of the vector extract and merge instruction indicated by the beat status information
as having completed,

wherein the combination processing for a K" beat corresponding to a K" portion
of each of the specified registers comprises:

extracting bits specified by the control parameter from the K™ portion of the first
source vector register, concatenating the extracted bits with one or more further bits, and

storing a result of the concatenation in the K portion of the destination register;

10

54

when the K™ portion is not a last portion of the specified registers, carrying at
least one bit of the K™ portion of the first source vector register not stored in the
destination register to be processed in a (K+1)" beat of the plurality of beats;

for a first portion of the specified registers the one or more further bits are
extracted from a first portion of the second source vector register; and

for each portion other than the first portion of the specified registers, the one or

more further bits are carried from a (K-1)™ portion of the first source vector register.

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DRAWINGS
	Page 7 - DRAWINGS
	Page 8 - DRAWINGS
	Page 9 - DRAWINGS
	Page 10 - DRAWINGS
	Page 11 - DRAWINGS
	Page 12 - DRAWINGS
	Page 13 - DRAWINGS
	Page 14 - DRAWINGS
	Page 15 - DRAWINGS
	Page 16 - DRAWINGS
	Page 17 - DRAWINGS
	Page 18 - DRAWINGS
	Page 19 - DRAWINGS
	Page 20 - DRAWINGS
	Page 21 - DRAWINGS
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - DESCRIPTION
	Page 46 - DESCRIPTION
	Page 47 - DESCRIPTION
	Page 48 - DESCRIPTION
	Page 49 - DESCRIPTION
	Page 50 - DESCRIPTION
	Page 51 - DESCRIPTION
	Page 52 - DESCRIPTION
	Page 53 - DESCRIPTION
	Page 54 - DESCRIPTION
	Page 55 - DESCRIPTION
	Page 56 - DESCRIPTION
	Page 57 - DESCRIPTION
	Page 58 - DESCRIPTION
	Page 59 - DESCRIPTION
	Page 60 - DESCRIPTION
	Page 61 - DESCRIPTION
	Page 62 - DESCRIPTION
	Page 63 - DESCRIPTION
	Page 64 - DESCRIPTION
	Page 65 - DESCRIPTION
	Page 66 - DESCRIPTION
	Page 67 - DESCRIPTION
	Page 68 - CLAIMS
	Page 69 - CLAIMS
	Page 70 - CLAIMS
	Page 71 - CLAIMS
	Page 72 - CLAIMS
	Page 73 - CLAIMS
	Page 74 - CLAIMS
	Page 75 - CLAIMS

