US012093172B2

a2 United States Patent

ao) Patent No.: US 12,093,172 B2

Kanno 45) Date of Patent: *Sep. 17, 2024
(54) MEMORY SYSTEM AND METHOD OF (52) US. CL
CONTROLLING NONVOLATILE MEMORY CPC ... GOG6F 12/0246 (2013.01); GOGF 12/1009
(2013.01); GO6F 13/1673 (2013.01); G1IC
(71) Applicant: KIOXIA CORPORATION, Tokyo (JP) 16/08 (2013.01); G11C 16/26 (2013.01); GO6F
2212/7201 (2013.01)
(72) Inventor: Shinichi Kanno, Ota (JP) (58) Field of Classification Search
None
(73) Assignee: KIOXIA CORPORATION, Tokyo (IP) See application file for complete search history.
(*) Notice: Subject to any disclaimer, the term of this (56) References Cited
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. U.S. PATENT DOCUMENTS
This patent is subject to a terminal dis- 8,856,468 B2* 10/2014 Fukuda GOGF 12/0246
claimer. 711/158
9,977,611 B2 5/2018 Sekido
10,725,690 B2* 7/2020 Radtke GOG6F 3/0604
(21) Appl. No.: 18/337,205 2003/0135685 Al 7/2003 Cowan
. 2016/0019160 Al* 12016 Mohan GOGF 12/0246
(22) Filed: Jun. 19, 2023 711/208
(65) Prior Publication Data (Continued)
Primary Examiner — Elias Mamo
US 2023/0333980 Al Oct. 19, 2023 (74) Attorney, Agent, or Firm — Oblon, McClelland,
Maier & Neustadt, L.L.P.
Related U.S. Application Data
(63) Continuation of application No. 17/500,465, filed on 7 ABSTRACT
Oct. 13, 2021, now Pat. No. 11,720,487, which is a According to one embodiment, a memory system includes a
continuation of application No. 16/815,894, filed on nonvolatile memory and a controller. In response to receiv-
Mar. 11, 2020, now Pat. No. 11,176,032. ing a first write command from a host, the controller
determines a first physical address indicative of a physical
(30) Foreign Application Priority Data storage location of the nonvolatile memory to which first
write data associated with the first write command is to be
Aug. 28,2019 (JP) cecrvveiiiiiicccee. 2019-155834 written, and updates an address translation table such that
the first physical address is associated with a logical address
(51) Int. CL of the first write data. The controller starts updating the
GOGF 13/16 (2006.01) address translation table before the transfer of the first write
GOGF 12/02 (2006.01) data is finished or before the write of the first write data to
GOGF 12/1009 (2016.01) the nonvolatile memory is finished.
G1IC 16/08 (2006.01)
G11C 1626 (2006.01) 12 Claims, 20 Drawing Sheets

L Receive write command }4-311

Allocate physical address to

write data 812
v

| setuptaeoiiopae |-st3
Y

| Start data transfer |--s14

Address

allocation and data transfer
finished?

815

No

| Wrte datatofiasn [—ste

US 12,093,172 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2016/0048328 Al* 2/2016
2016/0154594 Al1* 6/2016

2016/0266793 Al 9/2016
2017/0147499 Al 5/2017
2017/0168951 Al 6/2017
2017/0344287 Al 11/2017
2019/0012099 Al* 1/2019
2019/0294350 Al 9/2019
2019/0317894 Al 10/2019
2020/0057578 Al 2/2020

* cited by examiner

GO6F 12/0246
711/103
GO6F 12/0246
711/103

GOG6F 3/0619

US 12,093,172 B2

Sheet 1 of 20

Sep. 17,2024

U.S. Patent

ass ass ass , .
¢ ¢ ¢
] [fele ysey
06 pajlouo)
J05WANfBUIBYIT -
SNAN/BIO »
UOI}O8UUOOIB)UI jeuaju]
09
!
(usyD) (usiD) (uanD)

[eUILLIS) Jasn pug

[eullwia) Jash pu3

[eulwial lesn pu3j

{
19

{
19

~
19

US 12,093,172 B2

Sheet 2 of 20

Sep. 17,2024

U.S. Patent

[Juabeq [puehieq]| |[jusbed || |[-wsbed H-1ud ¢914
N |_ooefed || [[_oobed || |[_osbed H-od
L-wo0ig ¢0ig | 300|g 000|g
v] w w —S
|-wx1d g IXg oxd fowsw ysey ANYN
A A
yo +---+ (Y9) A A A A >
Y 4 0} [i y
Jiun 8po2ap/apooud lajnq 41 < >
4 . 003 puisp || OYAd By [> 150K
ANVYN D 3]) 7
Ll 9l Gl b
mv —
< 27— JUN |013U00 pesy
Ndd
311 - .
Wwvda > Z-2l w-wﬁ LC— 1N j0JU0d SN
) A Y |
v Jgjjosuon v
Y
9|ge} Juswabeuew
Yoo Uojeuysep s [V€ | seyng hiy
—~¢€
L))
a|qe} Juswabeuew ¥o0|g ee 7 e Avaa 9 ass

US 12,093,172 B2

Sheet 3 of 20

Sep. 17, 2024

U.S. Patent

U8 N J_ W8 N o J_ ‘.
RS | RS m N
g | i | g | 1 |
! diyo " “ 914 diyo !
eg | a%mws.ﬂmmz m eXg || Aowswysey |
ona_| | aNWN | e | | aNVN |
|+ m g |- | 91uD
o | g\ |
T N A I U
g | o | g | o |
| diyo “ i ¢# diyo !
eng | b%&m& ﬂ_mm_ y | 8 | 1| fowswysey | | 41
g | | aNWN | ong_| | ANYN | NN
bng_| .-+ | 211 I L Zw
e]\ ! Dl |
o i I I m
g | 1 i g | 1 _
i diyo “ ! L# diyo “
end o aom&we.mwm_% ! e | aoE%mE usey | !
o | ! aNYN m o8 | ANYN |
g | -+ i 18 |-+ LU
 iweg | omweg |

€9l

US 12,093,172 B2

Sheet 4 of 20

Sep. 17,2024

U.S. Patent

ds 390(q
ladng

Aowaw ysey

Ze# diyo
anNvVN

| zobed
| |obed
| 0obed

G# diyo i diyo ¢4 diyo ¢# diyo L diyo
frowsaw ysey Alowsw ysey Aowsw yseyy Aowsw ysey Alowsw ysey
ANVN ONVN aNVN ONVN aNVN
(og | | e | | g | [eng | | o]

US 12,093,172 B2

Sheet 5 of 20

Sep. 17,2024

U.S. Patent

aui|

GOl

A

< ajepdn

dz €#NdO

4 ~ AN
ajlIm yse \ Aowaw ysey)
- \ W 5ol \\\w\\ ;o owmuser ONUN
D v i \ #NdO
uoljedojje uoijeaoje co_“mwo__m
S$Salppy Ssalppy sSaIppy
JNJNJ\JNV.
< aloe ayoe’ ayoe
) Sz oy R cHNdd
Beleg
N \ m
< Iajsuel) eje] —
Jajsuely
Bleg
uone|dwon | uonejdwon anssy uopsjdwon anss| anss] pe1o1duI00
pX
< | PUBLULLOD
w@f i MM A M /PUBLLILLIOD BN

US 12,093,172 B2

Sheet 6 of 20

Sep. 17,2024

U.S. Patent

9914

o]
\ 7, Alowaw ysey}
ajumyse|q \H QUM yse(aNVYN
> Jgjsuel) eleq = Jajsuel) gje 1 \Jaisuel) eje
JSUE]] EJEQ &y\\, :o\ /h EleQ OVING
uoleao|je Luonedojje uoljedoje
mm% JppY §sal UAU< wm@;ﬂﬁ(
]
b \ W L#NdD
]
- \QT mmﬂ_\d ejepdn n_ﬁ/ #NdOD
anss| co_ﬁm_QEAoo\ anssy | [enss] ——
- < UBWLWOD
< ZM XM >\>> XM WncmEEoo SILM

U.S. Patent Sep. 17,2024 Sheet 7 of 20 US 12,093,172 B2

(st)

Y

Receive write command ~—S11
Y
Allocate physical address to 519
write data
Y
Start update of L2P table — 513
Y
Start data transfer ~—S14
Y S15

Address
allocation and data transfer
finished?

Write data to flash ~—S16

U.S. Patent Sep. 17,2024 Sheet 8 of 20 US 12,093,172 B2

Block management table 3§3

Metadata for

BLK1 Un-readable pointer (URP)
Metadata for

BLK2 Un-readable pointer (URP)
Metadata for

BLK3 Un-readable pointer (URP)
Metadata for

BLK4 Un-readable pointer (URP)
Metadata for

BLK5 Un-readable pointer (URP)
Metadata for

BLKn Un-readable pointer (URP)

FIG.8

U.S. Patent Sep. 17,2024 Sheet 9 of 20 US 12,093,172 B2

Write destination block (opend block)
Page 0 A
Page 1

Readable

Page i Y
ﬂp—» Page i+1 A

Page i+2

Un-readable

Page |
— WP I Pagej+1 (New data)
Page j+2

Unwritten

Page k Y

FIG.9

Closed block (active block)
Page 0 A
Page 1

Page i
Page i+1
Page i+2

Readable

Page |
Page j+1
Page j+2

URP Page k Y

FI1G. 10

Y

U.S. Patent Sep. 17,2024 Sheet 10 of 20 US 12,093,172 B2

34
Write destination block management table S

Metadata for

BLK10 Write buffer address list
Metadata for

BLK02 Write buffer address list
Metadata for

BLK30 Write buffer address list
Metadata for

BLK40 Write buffer address list
Metadata for

BLK30 Write buffer address list
Metadata for

BLKn Write buffer address list

FIG. 11

US 12,093,172 B2

Sheet 11 of 20

Sep. 17, 2024

U.S. Patent

4>

1 —

19jng

NWvdd

1§
{

¢l 9l4

Ssalppe Jayng silpM 'Yad

.
»
»

ssalppe Jagnq s}lIpM Ved

/)

Jang SN

rye

Aiowsuw }SOH

ssaippe Jaynq sluM vdd

uspumun

\

(01)17G) 18!l SsauIppE Jagng S}

s|qepesy

0119

|

A) abed

2+[abeg
|+ abed
[ebed

-
-

¢+ abed

A | abed

| abed

\: 0 obed
(oo|q puado) o0|q uoHEUNSEP SIIM

\) |+ obed ~ a0

ddn

U.S. Patent Sep. 17,2024 Sheet 12 of 20 US 12,093,172 B2
(st)
Y
Receive read command ~—S21
Y
Acquire physical address
(block address and in-block offset) — S22
by referring to L2P table
Y
Acquire URP corresponding to g3
read target block

URP>in-block offset?

S25
{

No

S26
[{

Read data from flash memory

Read data from host write buffer

or DRAM buffer, based on
write buffer address corresponding
to read target block
(write destination block)

US 12,093,172 B2

Sheet 13 of 20

Sep. 17,2024

U.S. Patent

7l

014

00 FN_._m omvw_._m omvm:m_ ovvw_._m_ omvm:m_ omﬂ_._m_ ocm:m_
100[9 L 1009 0[] 1009 190(9 320|q 120(0
uoneunsap uoleuisap uoieunsep uoneulsap uoijeunsep uoljeursap uoijeunsep
SJIM QUM SJIM SIM SlM SlIM SHIM
AN 7% 7N AN 7% 7~ AN
U#dI weans g#aI wesns || GHQI WesnS || pHQI WesllS | CHQ] WealS || 40 weans || L#Q] weans
Buipnjoul ceaenn Buipnjoul Buipnjoul Buipnjoul Buipnpou Buipnoul Buipnjout
PUBLLLLIOD PUBLILIOD PUBLULLIOD PUBLILIOD PUBLULIOD PUBLLLLOD pUBWILWOD
SIIM S SIIM SllIM SJIM 9M ALM
(ug (o8 (# (v (c4 (z# (14
auIyoeW [BnuIA) SUIYORLL [ENUIA) BUIYOBW [eNHIA) BUIYDeW [BNLIA) SUIYDBW [BNMIA) SUIYDRW [BNYIA) SUIYDRW [BNLIA)
U# Jasn pu3 9# Jesn pu3 GHlesnpug 4 Jesn pul C# Josn pu3 Z# Jasn pug L# Josn pu3

US 12,093,172 B2

Sheet 14 of 20

Sep. 17,2024

U.S. Patent

Gl D14

ol

Y

U# Weans

YJIM PoIRIdoSSe BJep Sl

gl
By

| # Weals

300(q 0[] 019 | .
SAIPY ONIRY SAIRY as0}D m
U-10} — _
10019 100/ 00118 oneuly
iy | | oy uojeusep
Uf# [ood %00|q BAIOY ! I
a1oH| " ajesoiy
Y |
10019 100(q
9914 9.4
00¢—
¥00(q $0(q
LT 904
|ood %00)q 8814 A !
Cenopy oesoy |
Y
¥00|[q %00 00 100|q
BAIOY m>_ﬁ_v@ mv_>_L@ 019 co_wm__‘.___“mmb
1-L01— #._>>
%00[q wogq | [Lm
Sy SARY as0|)

J# [00d 00| BAIDY

UJiM PoIeInosse elep sl

US 12,093,172 B2

Sheet 15 of 20

Sep. 17,2024

U.S. Patent

00119~

$00[q
uoneuisep

SJIM

s

9ZS 9)lIM WNLWIUIW UBY) SS9

A

S|qejuM-UN

0EM 19—

300(q
uoneulsap

S

d

d

UM

A

9ZIS B)LIM WINWIUILW UeY) SS9

aqejm-UN

d

d

eHaM

A

U# WealS Ypm
paJeIosse ejep Sl

02X 19—

190[q
uoljeunsap

M

=~

9ZIS B)LIM WUNWIUIW JO BJeq
AL

O|qEeIM

d

d

d

d

d

ala|a

C# WeallS yim
PaJeI0SSe BJep S)AS

CHAM

A

0IM19~—

400[q
uoneunsep

SJM

9ZIS S)lM LNWIUILI UBY) SS9

A IIIIIIIIIIIIIIIIIIIIIII
S|qejm-un

L#aM

C# WealS yim
PoIBIsoSSE Blep Sl

A

| # WESILS UM
POJBIOOSSE Blep sl

91 914

US 12,093,172 B2

Sheet 16 of 20

Sep. 17,2024

U.S. Patent

00IXT19~

0EMT19

018~

018

430|q
uoneunssp

S

=

%30[9
] uoneursap

SJM

100[q
~ uoneunssp

SJIM

120[q
| uojeunsep

M

Alowsw ysey
aNVN

M

\..

=

Z# Weang Jo snanb

PUBLILLIOD Ul PBIO)S 8Je

(g)ze ‘eidwexs 1))
9ZIS BJUM WnwiIuIL

Buiaey spueLwILIOD B)LAA

\

diajqiaiqjajqia

(avze ‘e/dwexs Joj)
Jayng [euseu]

)
9l

anenb puewiwon |U# Weeils Ll 914
J
u-1y
ananb puewwo) | ¢4 weans
eLp A\\.A/\\/\ Aysse) |- —
A ovzm:c PUBLIWOY |74 weans PUBLLO SJU
cly
ov:msc puewwo) b weans
47
9IS ejep
J 109190
IG
i
P Jgysueny | BYnq |
h | ¢eea | 74 Weals SlM [T
UM pajeloosse
(@)lze ‘ojdurexs Joj) Alowaw JS0H
elep ajlm
Jajjoyuon

8l OlI4

US 12,093,172 B2

Sheet 17 of 20

Sep. 17,2024

U.S. Patent

- ass i 1S0H -
(ssaippe Jayng !
aoﬁw msw o< INVYQ 10 SSaippe Jayng ajLim Jsoy) 17 m
LSEl > sselppe Joyng ‘vad ‘uibue ‘e |
ONVN : “
: SNEIS “ j (1sanba: g g
- uononssu uielboid A v" mmmww&mﬁmv ananb uops|dwon
AYSE U#QI wesl
aoﬂﬂs ysej} <> msoﬂwwcme%oo SjM ajg|duiod
VN . - |
ol de1 (| by : Jun m
, \ Weal i _ _ .
aom_ﬁm_,c%mm_v, <> i ¢ o%ﬂmwcg&wc OM : fajuod eleq ‘qr weans "yibueT ‘v
aNVN o1y~ = —=
oyn i el e
ANVN i (z#a1 weasng) ! el T
. 74 dIyo mm ahanb puewwio) m
oW Yse) > Wy -~ CMEM [PMGM
(ONVYN §v<mo , (1#Q1 weans) | ucm_m_eoo
9 1 ananb puewwon m all ananb uoissigns
L diyo Y by \ !
Kowsw yse|| > |
ONVYN INved uons|dwod mm:ue_
) A A i A H 1§
s P (n_mw _ Jojsuel AoN ,x&mce | jsenbal ﬁ
. ole ! Igjsuel
Hloliaw Lsely <> joyng [eso] [Mm_o m - ovna || —F P
v v 1ep 8l ERTRET ases|oy
ﬂ) 9l m Aiowaw JsoH
¢ !

US 12,093,172 B2

Sheet 18 of 20

Sep. 17,2024

U.S. Patent

6l Ol

< ass i 1SOH _
w diyo !
Alowaul ysey) (<>~ >~ | >
aNVN sniels puBWILLIOD
< oM 8j8|dwion) 7
. peal 1onisug I 7 ananb uopajdwon
d o w Jajuiod ejeq ‘yibue 'va
g4 diyo [0JJu02 ! .
Alowaw yse)) <> PERlIYNG Wy NASUL | pegy “ ==
aNVYN i “ S
on_@z 4 m TTT
3|qe) - B _
(ol diyo ‘ound deT g ! puBWWO? &
JoWaW yseyj e s 77 “ pesy] ; b
aNYN 7 1 AvNa “ [, enenb uoissiugng
m uopajdwoo 4 | jsenbes | 1S
L# diyo Ijsuel) AjioN | yJejsuel] ! (
Alowsw ysel} <> eeq ! e o
aNVN B " }senbai Jajsuel] S
i ee
Kiowaw ysej} <> _| seunq peas [“Tsanber rosues ; > Jayng
GNYN g | pwon } } W m 1sanbal Jajsuel| | peay
v] eje(] " Eled]
ﬂ €l Il gl “ s
g ; fiowsw }soH

U.S. Patent Sep. 17, 2024

(Stat)

Y

Sheet 19 of 20

Receive write commands
each including Stream ID

~—S61

Y

Classify write commands by
stream and execute address
allocation and L2P table update

~— 562

Y

Check size of write data waiting
for being written corresponding
to stored write commands, with
respect to each of streams

—S63

S64

Stream in
which size of write data

minimum write size
detected?

S§5

waiting for being written reaches

Transfer write data of minimum
write size associated with
detected stream from host

write buffer to internal buffer

Y

3?6

Write write data to write
destination block allocated to

detected stream

A

No

Write command,
since reception of which

predetermined time has
elapsed, detected?

86(38

Transfer write data associated
with detected write command
from host wriée fl?uffer to DRAM

uffer

Y

End

FI1G. 20

US 12,093,172 B2

U.S. Patent

Sep. 17,2024

(Stat)

Y

Sheet 20 of 20

Receive write commands
each including Stream ID

—S71

Y

Classify write commands by
stream and execute address
allocation and L2P table update

~—S72

Y

Check sum of size of write data
waiting for being written and
size of write data of DRAM
buffer for each stream

—S73

S74

Stream in
which total size reaches
minimum write size
detected?

Transfer write data associated
with detected stream from
DRAM write buffer to internal
buffer

y SZS

Transfer write data associated
with detected stream from host
write buffer to internal buffer

ST7
Y {

Write write data to write
destination block allocated to
detected stream

-«

No

~ Write command,
since reception of which
predetermined time has
elapsed, detected?

86(38

Transfer write data associated
with detected write command
from host writt)eftf)uffer to DRAM

uffer

\
End

FIG

.21

US 12,093,172 B2

US 12,093,172 B2

1
MEMORY SYSTEM AND METHOD OF
CONTROLLING NONVOLATILE MEMORY

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of and claims benefit
under 35 U.S.C. § 120 to U.S. application Ser. No. 17/500,
465, filed Oct. 13, 2021, which is a continuation of and
claims benefit under 35 U.S.C. § 120 to U.S. application Ser.
No. 16/815,894, filed Mar. 11, 2020, which is based upon
and claims the benefit of priority under 35 U.S.C. § 119 from
Japanese Patent Application No. 2019-155834, filed Aug.
28, 2019, the entire contents of each of which are incorpo-
rated herein by reference.

FIELD

Embodiments described herein relate generally to a tech-
nology of controlling a nonvolatile memory.

BACKGROUND

In recent years, memory systems comprising nonvolatile
memories have been widely prevalent. As such a memory
system, a solid state drive (SSD) based on a NAND flash
technology is known.

The SSD are used as storage devices of various host
computing systems such as data center servers.

In the storage device used in the host computing system,
improvement of its performance is required.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a relationship
between a host and a memory system according to an
embodiment.

FIG. 2 is a block diagram illustrating a configuration
example of the memory system of the embodiment.

FIG. 3 is a block diagram illustrating a relationship
between a plurality of channels and a plurality of NAND
flash memory chips, which are used in the memory system
according to the embodiment.

FIG. 4 is a diagram illustrating a configuration example of
a super block used in the memory system according to the
embodiment.

FIG. 5 is a chart illustrating an example of a write
sequence of updating an address translation table after data
write.

FIG. 6 is a chart illustrating a write sequence executed in
the memory system according to the embodiment.

FIG. 7 is a flowchart illustrating a procedure of a write
operation executed in the memory system according to the
embodiment.

FIG. 8 is a diagram illustrating an example of a data
structure of a block management table used in the memory
system according to the embodiment.

FIG. 9 is a diagram illustrating an un-readable pointer
(URP) corresponding to each write destination block.

FIG. 10 is a diagram illustrating an un-readable pointer
(URP) corresponding to each active block (i.e., closed
block).

FIG. 11 is a diagram illustrating an example of a data
structure of a write destination block management table used
in the memory system according to the embodiment.

15

30

35

40

45

55

2

FIG. 12 is a block diagram illustrating an example of a
write buffer address list in the write destination block
management table.

FIG. 13 is a flowchart illustrating a procedure of a read
operation executed in the memory system according to the
embodiment.

FIG. 14 is a block diagram illustrating a stream write
operation which writes plural types of write data associated
with a plurality of streams, to a plurality of write destination
blocks corresponding to the plurality of streams, respec-
tively.

FIG. 15 is a block diagram illustrating an operation which
allocates the plurality of write destination blocks corre-
sponding to the plurality of streams, from a group of free
blocks.

FIG. 16 is a block diagram illustrating a write operation
executed by using a plurality of buffer areas corresponding
to the plurality of streams.

FIG. 17 is a block diagram illustrating a write operation
executed in the memory system according to the embodi-
ment.

FIG. 18 is a block diagram illustrating configuration
examples of the host and the memory system according to
the embodiment in relation to data write.

FIG. 19 is a block diagram illustrating configuration
examples of the host and the memory system according to
the embodiment in relation to data read.

FIG. 20 is a flowchart illustrating a procedure of a write
operation executed in the memory system according to the
embodiment.

FIG. 21 is a flowchart illustrating another procedure of a
write operation executed in the memory system according to
the embodiment.

DETAILED DESCRIPTION

Various embodiments will be described hereinafter with
reference to the accompanying drawings.

In general, according to one embodiment, a memory
system connectable to a host, comprises a nonvolatile
memory including a plurality of blocks each including a
plurality of pages, and a controller electrically connected to
the nonvolatile memory and configured to control the non-
volatile memory. In response to receiving a first write
command from the host, the controller determines a first
physical address indicative of a physical storage location of
the nonvolatile memory to which first write data associated
with the first write command is to be written, and updates an
address translation table such that the first physical address
is associated with a logical address of the first write data.
The controller transfers the first write data from a write
buffer in a memory of the host to the controller, and writes
the first write data to a write destination location in the first
write destination block of the nonvolatile memory, which is
designated by the first physical address. The controller starts
updating the address translation table before the transfer of
the first write data is finished or before the write of the first
write data to the nonvolatile memory is finished.

FIG. 1 is a block diagram illustrating a relationship
between a host and a memory system according to the
embodiment.

This memory system is a semiconductor storage device
configured to write data to a nonvolatile memory and to read
data from the nonvolatile memory. The memory system is
implemented as a solid-state drive (SSD) 3 based on the
NAND flash technology.

US 12,093,172 B2

3

A host (i.e., host device) 2 is configured to control a
plurality of SSDs 3. The host 2 is implemented by an
information processing apparatus configured to use a flash
array including the SSDs 3 as storage. This information
processing apparatus may be a personal computer or a server
computer.

The SSD 3 may be used as one of a plurality of storage
devices provided in a storage array. The storage array may
be connected to the information processing apparatus such
as a server computer via a cable or a network. The storage
array comprises a controller which controls a plurality of
storages (for example, a plurality of SSDs 3) in the storage
array. When the SSD 3 is applied to the storage array, the
controller of the storage array may function as a host of the
SSD 3.

An example that the information processing apparatus
such as a server computer functions as the host 2 will be
described below.

The host (i.e., server) 2 and the plurality of SSD 3 are
interconnected via an interface 50 (i.e., internal intercon-
nection). The interface 50 for the interconnection is not
limited to this, but PCI Express (PCle) (registered trade-
mark), NVM Express (NVMe) (registered trademark), Eth-
ernet (registered trademark), NVMe over Fabrics
(NVMeOF), and the like can be used as the interface 50 for
the interconnection.

A typical example of the server computer which functions
as the host 2 is a server computer (hereinafter referred to as
a server) in a data center.

In a case where the host 2 is implemented by the server
in the data center, the host (i.e., server) 2 may be connected
to a plurality of end user terminals (i.e., clients) 61 via a
network 60. The host 2 can provide various services to the
end user terminals 61.

Examples of services which can be provided by the host
(server) 2 are (1) Platform as a Service (PaaS) which
provides a system running platform to each client (i.e., each
end user terminal 61), (2) Infrastructure as a Service (IaaS)
which provides an infrastructure such as a virtual server to
each client (i.e., each end user terminal 61), and the like.

A plurality of virtual machines may be executed on a
physical server which functions as the host (i.e., server) 2.
Each of the virtual machines running on the host (i.e.,
server) 2 can function as a virtual server configured to
provide various services to the client (i.e., end user terminal
61) corresponding to the virtual machine. In each virtual
machine, an operating system and a user application that are
used by the corresponding end user terminal 61 are
executed. The operating system corresponding to each vir-
tual machine includes an I/O service. The /O service may be
a block /O service based on a logical block address (LBA)
or a key-value store service.

In the operating system corresponding to each virtual
machine, the I/O service issues /O commands (i.e., write
commands and read commands) in response to a write/read
request from the user application. The /O commands are
input to a submission queue in the host 2 and sent to the SSD
3 via the submission queue.

The SSD 3 includes a nonvolatile memory such as a
NAND flash memory. The SSD 3 can execute data write to
each of a plurality of write destination blocks allocated from
a plurality of blocks of the nonvolatile memory. The write
destination blocks are indicative of the blocks to which data
are to be written.

The SSD 3 supports stream write of writing a plurality of
types of write data associated with different streams to
different write destination blocks, respectively. In the case of

15

25

30

35

40

45

50

4

executing the stream write, each of the write commands sent
from the host 2 to the SSD 3 includes a stream identifier
(stream ID) indicative of one of a plurality of streams. When
the SSD 3 receives the write command including the stream
ID of a certain stream from the host 2, the SSD 3 writes the
write data associated with the write command to the write
destination block corresponding to the stream. When the
SSD 3 receives the write command including the stream 1D
of the other stream from the host 2, the SSD 3 writes the
write data associated with the write command to the other
write destination block corresponding to the other stream.
When the overall write destination block corresponding to
the certain stream is filled with the data, a new write
destination block for this stream is allocated.

Therefore, the host 2 can implement the data placement
that, by issuing the write commands each including the
stream 1D for the SSD 3, for example, a group of specific
data such as data of a user application corresponding to a
certain end user terminal 61 (i.e., client) is written to one or
more specific blocks, and a group of the other specific data
such as data of a user application corresponding to the other
end user terminal 61 (i.e., client) is written to one or more
other blocks.

FIG. 2 illustrates a configuration example of the SSD 3.

The SSD 3 comprises a controller 4 and a nonvolatile
memory (i.e., NAND flash memory) 5. The SSD 3 may
comprise a random access memory, for example, a DRAM
6.

The NAND flash memory 5 comprises a memory cell
array including a plurality of memory cells arrayed in a
matrix. The NAND flash memory 5 may be a NAND flash
memory of a two-dimensional structure or a NAND flash
memory of a three-dimensional structure.

The memory cell array of the NAND flash memory 5
includes a plurality of blocks BLKO to BLKm-1. Each of
the blocks BLKO to BLKm-~1 includes a plurality of pages
(in this example, pages PO to Pn-1). The blocks BLKO to
BLKm-1 function as erase units. Blocks may also be
referred to as erase blocks, physical blocks or physical erase
blocks. The pages PO to Pn-1 are units for a data write
operation and a data read operation.

The controller 4 is electrically connected to the NAND
flash memory 5 that is a nonvolatile memory via a NAND
interface 13 such as Toggle NAND flash interface or Open
NAND Flash Interface (ONFI). The controller 4 operates as
a memory controller configured to control the NAND flash
memory 5. The controller 4 may be implemented by a circuit
such as a System-on-a-chip (SoC).

As illustrated in FIG. 3, the NAND flash memory 5 may
include a plurality of NAND flash memory chips (i.e.,
NAND flash memory dies). Each of the NAND flash
memory chips is operable independently. For this reason, the
NAND flash memory chips function as units possible par-
allel operations.

FIG. 3 illustrates an example in which sixteen channels
Ch.1 to Ch.16 are connected to the NAND interface 13, and
two NAND flash memory chips are connected to each of
sixteen channels Ch.1 to Ch.16. In this case, sixteen NAND
flash memory chips #1 to #16 connected to channels Ch.1 to
Ch.16 may be organized as bank #0, and the remaining
sixteen NAND flash memory chips #17 to #32 connected to
channels Ch.1 to Ch.16 may be organized as bank #1. The
banks function as units for allowing a plurality of memory
modules to execute operations in parallel by bank interleav-
ing. In the configuration example of FIG. 3, a maximum of
32 NAND flash memory chips can be operated in parallel by
sixteen channels and bank interleaving of two banks.

US 12,093,172 B2

5

An erase operation may be executed in units of single
block (i.e., physical block) or in units of parallel unit (i.e.,
super block) including a set of plural physical blocks
capable of parallel operation. One single parallel unit, i.e.,
one single super block including a set of physical blocks are
not limited to this, but may include a total of thirty-two
physical blocks selected one by one from NAND flash
memory chips #1 to #32. Each of NAND flash memory
chips #1 to #32 may have a multi-plane configuration. For
example, when each of NAND flash memory chips #1 to #32
comprises a multi-plane structure including two planes, each
super block may include sixty-four physical blocks selected
one by one from sixty-four planes corresponding to NAND
flash memory chips #1 to #32.

FIG. 4 illustrates an example of one super block (SB)
including thirty-two physical blocks (in this case, a physical
block BLK2 in the NAND flash memory chip #1, a physical
block BLK3 in the NAND flash memory chip #2, a physical
block BLK7 in the NAND flash memory chip #3, a physical
block BLLK4 in the NAND flash memory chip #4, a physical

block BLKG6 in the NAND flash memory chip #5, . . ., and
a physical block BLK3 in the NAND flash memory chip
#32).

The write destination block may be a single physical
block or a single super block. Each super block may include
only one physical block and, in this case, a single super
block is equivalent to a single physical block.

Next, the configuration of the controller 4 illustrated in
FIG. 2 will be described.

The controller 4 can function as a flash translation layer
(FTL) configured to execute data management and block
management of the NAND flash memory 5. The data
management executed by the FTL includes (1) management
of mapping information indicating correspondences
between logical addresses and physical addresses of the
NAND flash memory 5, (2) process for concealing restric-
tions of the NAND flash memory 5 (for example, read/write
operations in units of pages and an erase operation in units
of blocks), and the like. The logical address is an address
used by the host 2 to designate an address of the location in
the logical address space. As the logical address, a logical
block address (addressing) (LBA) can be used.

The management of mapping between each of the logical
addresses used by the host 2 to access the SSD 3 and each
of the physical addresses of the NAND flash memory 5 is
executed by using an address translation table (i.e., a logical-
to-physical address translation table: L2P table) 31. The
controller 4 manages mapping between the logical addresses
and the physical addresses in units of predetermined man-
agement sizes, by using the L2P table 8. A physical address
corresponding to a certain logical address indicates the latest
physical storage location to which the data of the logical
address is written in the NAND flash memory 5. The L2P
table 31 may be loaded from the NAND flash memory 5 into
the DRAM 6 at power-on of the SSD 3.

In the NAND flash memory 5, data write to pages can be
executed only once per erase cycle. That is, new data cannot
be written directly in the region of the block in which some
data is already written. For this reason, to update the already
written data, the controller 4 writes new data to an unwritten
area in the block (or the other block), and handles the
previous data as invalid data. In other words, the controller
4 writes the updating data corresponding to one logical
address not into the physical storage location where the
previous data is stored corresponding to this logical address,
but into another physical storage position. Then, the con-

10

15

20

25

30

35

40

45

50

55

60

65

6

troller 4 associates the logical address with the other physi-
cal storage location by updating the [2P table 31, and
invalidates the previous data.

In the present embodiment, update of the L.2P table 31
(i.e., L2P update) is not executed after data to be written
(write data) is written to the NAND flash memory 5, but
executed in parallel to transfer of the write data from the host
2 to the SSD 3 or the write of the write data to the NAND
flash memory 5. In a case where the L.2P update is executed
after the write to the NAND flash memory 5 (i.e., flash
write), the time necessary for the [.2P update directly affects
the write performance. This is because, in general, until the
L2P update with respect to a certain write command is
finished, the operation of allocating a physical address to the
write data associated with a next write command cannot be
started. Therefore, a high calculation performance enabling
the L2P update to be executed at a high speed is considered
necessary to prevent degradation of the write performance.
In the present embodiment, since the L.2P update is executed
on a background of a process (i.e., data transfer or flash
write) that requires a comparatively long time, improvement
of the write performance can be realized without using a
high calculation performance.

The block management includes management of defec-
tive blocks, wear leveling, garbage collection (GC), and the
like. The wear leveling is an operation of leveling the
number of times of rewrite of each block (i.e., number of
program/erase cycles).

GC is an operation of increasing the number of free
blocks. The free block is indicative of a block including no
valid data. In the GC, the controller 4 copies valid data in
several blocks where the valid data and invalid data exist
together to the other block (for example, a free block). The
valid data is indicative of data associated with the certain
logical address. For example, data referred to by the L2P
table 31 (i.e., data linked to the logical address as the latest
data) is valid data and may be read later by the host 2. The
invalid data is indicative of data which is not associated with
any logical addresses. The data which is not associated with
any logical addresses is data which may not be read any
more by the host 2. Then, the controller 4 updates the L.2P
table 31 and maps physical addresses of the copy destination
to the logical addresses of copied valid data, respectively. A
block which contains only invalid data after the valid data
have been copied to the other block is released as a free
block. The block can be therefore reused after an erase
operation on this block is executed.

The controller 4 includes a host interface 11, a CPU 12-1,
a CPU 12-2, a NAND interface 13, a DRAM interface 14,
a direct memory access controller (DMAC) 15, an internal
buffer 16, an ECC encoding/decoding unit 17, and the like.
The host interface 11, the CPU 12-1, the CPU 12-2, the
NAND interface 13, the DRAM interface 14, the direct
memory access controller (DMAC) 15, the internal buffer
16, and the ECC encoding/decoding unit 17 are intercon-
nected via a bus 10.

The host interface 11 is a host interface circuit configured
to execute communication with the host 2. The host interface
11 may be, for example, a PCle controller (i.e., an NVMe
controller). Alternatively, when the SSD 3 is configured to
be connected to the host 2 via Ethernet (registered trade-
mark), the host interface 11 may be an NVMe over Fabrics
(NVMeOF) controller.

The host interface 11 receives various commands from the
host 2. These commands include various commands such as
a write command, a read command, a de-allocation (unmap/
trim) command, and the like.

US 12,093,172 B2

7

The write command is a command (i.e., a write request)
of writing the data to be written (i.e., write data) to the
NAND flash memory 5. For example, the write command
for stream write includes a logical address (i.e., start LBA)
of the data to be written (i.e., write data), the length of the
write data, a stream identifier (i.e., stream ID) indicative of
a stream associated with the write data, a data pointer
indicative of a position in a write buffer in the memory of the
host 2 where the write data is stored, etc.

The read command is a command (i.e., read request) of
reading the data from the NAND flash memory 5 and
includes a logical address (i.e., start LBA) of the data to be
read, the length of the data, a data pointer indicative of a
position in a read buffer in the memory of the host 2 to which
the data is to be transferred, etc.

The de-allocation (unmap/trim) command is a command
to invalidate data corresponding to a certain logical address.
The de-allocation (unmap/trim) command designates a logi-
cal address range (i.e., an LBA range) to be invalidated.

Each of the CPU 12-1 and CPU 12-2 is a processor
configured to control the host interface 11, the NAND
interface 13, and the DRAM interface 14. Each of the CPU
12-1 and CPU 12-2 loads a control program (i.e., firmware)
from the NAND flash memory 5 or a ROM (not illustrated)
into the DRAM 6 in response to power-on of the SSD 3, and
executes the firmware and thus various processes. The
firmware may be loaded onto an SRAM in the controller 4
(not illustrated). Each of the CPU 12-1 and CPU 12-2 can
execute a command process for processing various com-
mands from the host 2, and the like. Operations of each of
the CPU 12-1 and CPU 12-2 can be controlled by the
above-described firmware. Several or all parts of the com-
mand process may be executed by dedicated hardware in the
controller 4. The command process for one command
includes a plurality of processes. The processes may be
executed separately by the CPU 12-1 and CPU 12-2 or
executed by either of the CPU alone.

At least one of the CPU 12-1 and CPU 12-2 can function
as a write control unit 21 and a read control unit 22. Several
or all parts of each of the write control unit 21 and the read
control unit 22 may also be implemented by dedicated
hardware in the controller 4.

The write control unit 21 executes a process of writing the
write data associated with the write command to the NAND
flash memory 5, in response to the write command received
from the host 2. The write control unit 21 supports the
above-described stream write operation. The write control
unit 21 can allocate a plurality of write destination blocks
corresponding to a plurality of streams from a plurality of
blocks of the NAND flash memory 5, and manage the
allocated write destination blocks.

In some NAND flash memories, data written in one page
of'a plurality of pages in a block becomes readable after data
is written to one or more pages subsequent to the page in
order to reduce program disturbance. The timing at which
data in each page becomes readable varies according to
write methods applied to the NAND flash memories.

For example, in a triple-level cell (TLC)-flash memory
capable of storing 3-bit data per memory cell, a lower page,
a middle page, and an upper page are allocated to a group of
memory cells connected to a word line WLO, a lower page,
a middle page, and an upper page are allocated to a group of
memory cells connected to a next word line WL1, a lower
page, a middle page, and an upper page are allocated to a
group of memory cells connected to a further next word line
WL2, a lower page, a middle page, and an upper page are
allocated to a group of memory cells connected to a further

5

10

15

20

25

30

35

40

45

50

55

60

65

8

next word line WL3, and a lower page, a middle page, and
an upper page are allocated to a group of memory cells
connected to a last word line WLn. In the memory cells
connected to each word line, data cannot be correctly read
from each of the lower page and the middle page until the
write operation to the upper page is completed.

In addition, in a NAND flash memory, the page write
order indicative of the order of pages necessary to write data
to each block is defined. For example, in a TLC flash
memory, in order to suppress the influence of program
disturbance, the page write order is determined such that a
write operation is executed for adjacent several word lines
alternately.

For example, the write operation is executed in the write
order of a write to the lower page of the word line WLO, a
write to the lower page of the word line WL1, a write to the
middle page of the word line WLO, a write to the lower page
of'the word line WL2, a write to the middle page of the word
line WL1, a write to the upper page of the word line WLO,
a write to the lower page of the word line WL3, a write to
the middle page of the word line WL2, and a write to the
upper page of the word line WL1. Thus, data written in one
page of a plurality of pages in a block becomes readable
after data is written to several pages subsequent to the page.

In the present embodiment, the nonvolatile memory that
includes a plurality of blocks each including a plurality of
pages and enables read of the data written to one of the pages
of each block to be executed after writing the data to one or
more pages subsequent with the page, is used as the NAND
flash memory 5.

The write control unit 21 is configured to write the data to
the write destination blocks allocated from the blocks of the
NAND flash memory 5. The data write to each of the write
destination blocks is executed in the above-described page
write order. The write control unit 21 receives each of the
write commands and executes the write operation of writing
the write data associated with each write command to the
NAND flash memory 5. The write operation includes (1) an
address allocation operation of allocating the physical
address indicative of a storage location in the NAND flash
memory 5 to which the write data is to be written, to the
write data, (2) an L.2P update operation of updating the L.2P
table 31 such that the physical address allocated to the write
data is associated with the logical address of the write data,
(3) a data transfer operation of transferring the write data
from the write buffer in the memory of the host 2 to the
controller 4, (4) a flash write operation (program operation)
of writing the write data transferred from the write buffer in
the memory of the host 2 to the write destination block, and
the like.

In the present embodiment, in response to receiving a
write command from the host 2, the write control unit 21
determines a physical address indicative of the physical
storage location of the NAND flash memory 5 to which the
write data associated with the write command is to be
written (i.e., address allocating operation). The determined
physical address includes a block address and an offset
(in-block offset), the block address is indicative of a write
destination block to which the write data is to be written, and
the offset is indicative of the write destination location (i.e.,
apage address, and an in-page offset) in the write destination
block to which the write data is to be written.

The write control unit 21 updates the L2P table 31 such
that the determined physical address is associated with the
logical address of the write data (i.e., L2P update operation).

US 12,093,172 B2

9

The write control unit 21 transfers the write data from the
write buffer in the memory of the host 2 to the controller 4
(i.e., data transfer).

The data transter from the write buffer in the memory of
the host 2 to the controller 4 may be executed every time the
write command is received or when the total size of the write
data associated with a set of write commands belonging to
a same stream reaches a minimum write size of the NAND
flash memory 5. The minimum write size of the NAND flash
memory 5 may be the page size, i.e., the size of one page (for
example, 16K bytes). Alternatively, in a case where a NAND
flash memory chip including two planes is used as the
NAND flash memory 5, the write operations to two blocks
selected from each of the two planes are often executed
parallel. In this case, twice the page size (for example, 32K
bytes) may be used as the minimum write size of the NAND
flash memory 5.

After finishing the data transfer, the write control unit 21
writes the write data to the write destination location in the
write destination block of the NAND flash memory 5, which
is designated by the determined physical address (i.e., flash
write).

The write control unit 21 may start updating the L2P table
31 before transfer of the write data is finished or before write
of the NAND flash memory 5 is finished, such that the L.2P
update operation is executed in parallel with the data transfer
or the flash write. Thus, the L2P update can be executed on
the background of the process (i.e., data transfer or flash
write) that requires a comparatively long time by making the
start timing of the L2P update operation earlier, and
improvement of the write performance can be realized
without using a high calculation performance.

The read control unit 22 receives a read command from
the host 2 and reads read target data designated by the
received read command from the NAND flash memory 5, a
first buffer in the SSD 3, or a write buffer in the memory of
the host 2. The first buffer in the SSD 3 is a buffer for
temporarily storing write data received from the host 2. A
buffer 32 in the DRAM 6 can be used as the first buffer.

When the read target data designated by the read com-
mand received from the host 2 is readable from the read
target block of a plurality of blocks of the NAND flash
memory 5, the read control unit 22 reads the read target data
from the read target block and transmits the read target data
to the host 2. The read target block is a block having a block
address which is represented by a physical address allocated
to a logical address of the read target data.

In contrast, when the read target block is the block
currently used as the write destination block and the physical
storage location allocated to the logical address of the read
target data is in an un-readable area of the write destination
block, the read control unit 22 reads the read target data from
the first buffer in the SSD 3 or the write buffer of the host
2, and transmits the read target data that is read from the first
buffer or the write buffer of the host 2 to the host 2.

That is, in response to receiving the read command from
the host 2, the read control unit 22 first acquires from the
L2P table 31 a physical address of read target data desig-
nated by the read command. When the acquired physical
address is indicative of a physical storage location that is not
readable in the write destination location, the read control
unit 22 reads the read target data from the buffer (i.e., the
first buffer in the SSD 3 or the write buffer of the host 2). The
data read from the buffer is executed, based on information
indicative of a location in the buffer storing the data which
is being written to or waiting for write to each physical
address un-readable in the write destination block.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

Thus, when the read target data that is designated by the
read command is un-readable from the NAND flash memory
5, the read control unit 22 reads the read target data from the
first buffer in the SSD 3 or the write buffer of the host 2.
Therefore, even when the data which is being written to a
certain write destination block or the data waiting for being
written, which has not started being written to the write
destination block, is required by the read command from the
host 2, the data can be returned to the host 2, and improve-
ment of performance of the data read can be thereby
realized.

The NAND interface 13 is a memory control circuit
configured to control the NAND flash memory 5 under the
control of the CPU 12-1 or the CPU 12-2.

The DRAM interface 14 is a DRAM control circuit
configured to control the DRAM 6 under the control of the
CPU 12-1 or the CPU 12-2. Several parts of the storage area
of the DRAM 6 may be used as the storage area for the L.2P
table 31 and the storage area for the buffer 32. In addition,
the other parts of the storage area of the DRAM 6 may be
used for storing a block management table 33 and a write
destination block management table 34.

The DMAC 15 executes data transfer between the
memory of the host 2 and the internal buffer 16 (or the buffer
32 of the DRAM 6) under the control of the CPU 12-1 or the
CPU 12-2. The internal buffer 16 may be implemented by
SRAM in the controller 4.

When data is to be written to the NAND flash memory 5,
the ECC encoding/decoding unit 17 encodes the data (data
to be written) (ECC encoding), thereby adding an error
correction code (ECC) to the data as a redundant code. When
data is read from the NAND flash memory 5, the ECC
encoding/decoding unit 17 uses the ECC added to the read
data to execute error correction of the data (ECC decoding).

FIG. 5 illustrates an example of a write sequence accord-
ing to a comparative example. In the write sequence accord-
ing to the comparative example, the L.2P table 31 is updated
after writing the data.

In the write sequence according to the comparative
example, when write command Wx is received from the host
2, the write data is first transferred from the write buffer of
the host memory to the write cache in the SSD (i.e., data
transfer). After the data transfer, the physical address indica-
tive of the physical storage location in the NAND flash
memory 5 to which the write data is to be stored is allocated
to the write data (address allocation), and the write data is
written to the NAND flash memory. Then, the L2P table 31
is updated after finishing the write to the NAND flash
memory. In this case, in general, since the address allocation
operation to the write data associated with a next write
command Wy cannot be started until the update of the L.2P
table 31 is finished, the start timing of the flash write
operation corresponding to the next write command Wy is
often delayed. A high calculation performance enabling the
L2P update to be executed at a high speed is considered
necessary to prevent degradation of the write performance.

FIG. 6 illustrates a sequence of the write operation
executed by the SSD 3.

When receiving write command Wx from the host 2, CPU
#1 (for example, CPU 12-1) of the controller 4 determines
the physical address (i.e., block address, page address, and
in-page offset) indicative of the physical storage location in
the NAND flash memory 5 where the write data associated
with the write command WX is to be stored, and allocates
this physical address to the write data (address allocation
operation). CPU #2 (for example, CPU 12-2) of the con-
troller 4 updates the L2P table 31 such that the physical

US 12,093,172 B2

11

address is associated with the logical address designated by
the write command Wx (L2P update).

The DMAC 15 transfers the write data associated with the
write command Wx from the write buffer of the host
memory to the controller 4 (i.e., data transfer). This data
transfer may be started when the length of the write data
associated with a set of received write commands including
the same stream ID as that of the write command Wx reaches
the minimum write size of the NAND flash memory 5. Then,
the controller 4 writes the write data transferred from the
write buffer of the host memory to the write destination
location in the write destination block, which is designated
by the determined physical address in the NAND flash
memory 5 (flash write).

After completing both the L.2P update of mapping the
physical address to the logical address designated by the
write command Wx and the transfer of the write data
associated with the write command Wx, the controller 4
returns a response (i.e., completion) indicative of comple-
tion of the write command Wx to the host 2.

It should be noted that, after completing both the L2P
update of mapping the physical address to the logical
address designated by the write command Wx and the flash
write of the write data associated with the write command
Wx, the controller 4 may return a response (i.e., completion)
indicative of completion of the write command Wx to the
host 2.

In addition, the controller 4 may return, to the host 2, a
response indicating that the write command Wx has been
received when the L.2P update is finished, and may thereby
notify the host 2 that the update data written by the write
command Wx is readable from the SSD 3.

The write command Wy and the write command Wz are
processed similarly to the write command Wx.

The flowchart of FIG. 7 illustrates a procedure of the write
operation executed by the SSD 3.

The controller 4 receives the write command from the
host 2 (step S11). In response to receiving the write com-
mand, the controller 4 determines the physical address
indicative of the physical storage location of the NAND
flash memory 5 to which the write data associated with the
received command is to be written, and allocates the deter-
mined physical address to the write data (step S12).

The controller 4 updates the L2P table 31 such that the
determined physical address is associated with the logical
address of the write data (step 313). The controller 4
transfers this write data from the write buffer in the memory
of the host 2 to the internal buffer 16 (or the DRAM buffer
32) by using the DMAC 15 (step S14).

When the transfer of the write data from the write buffer
in the memory of the host 2 to the internal buffer 16 (or the
DRAM buffer 32) is finished (YES in step S15), the con-
troller 4 writes the write data to the write destination location
in the write destination block of the NAND flash memory 5,
which is designated by the determined physical address (step
S16).

FIG. 8 illustrates an example of a data structure of the
block management table 33 stored in the DRAM 6.

The block management table 33 includes a plurality of
areas corresponding to all blocks (in this example, block
BLK1 to block BLKn) in the NAND flash memory 5,
respectively. These blocks (BLK1 to BLKn) include a
plurality of blocks (i.e., opened blocks; write destination
blocks) to which data are being written, a plurality of blocks
(i.e., closed blocks; active blocks) that are entirely filled with
data and include valid data, a plurality of free blocks
including no valid data, and the like.

20

40

45

55

12

Each of areas in the block management table 33 stores
metadata with respect to the block corresponding to this
area. For example, the metadata of the area corresponding to
the block BLK1 includes un-readable pointer (URP) indica-
tive of a minimum physical address of un-readable area in
the block BLK1. The metadata of the area corresponding to
the block BLK2 includes un-readable pointer (URP) indica-
tive of a minimum physical address of un-readable area in
the block BLK2. Similarly, the metadata of the area corre-
sponding to the block BLKn includes un-readable pointer
(URP) indicative of a minimum physical address of un-
readable area in the block BLKn. The minimum physical
address of un-readable area is also referred to un-readable
minimum physical address.

FIG. 9 is a diagram illustrating an un-readable pointer
(URP) corresponding to each write destination block.

In each write destination block, two pointers, i.e., the
un-readable pointer (URP) and the write pointer (WP) are
managed. WP corresponding to a certain write destination
block is indicative of the physical storage location (page
address) in this write destination block to which data is to be
next written. URP corresponding to a certain write destina-
tion block is indicative of the minimum physical address
(i.e., minimum page address) of un-readable area in this
write destination block as described above. FIG. 9 illustrates
a case where the physical storage location where data is to
be next written is page j+1 and the un-readable minimum
physical address is i+1. A page range corresponding to page
0 to page i is a readable area where the data can be normally
read from the write destination block, and a page range
corresponding to page i+1 to page k is an un-readable area
where the data cannot be normally read from the write
destination block.

A page range corresponding to page i+1 to page j, of the
un-readable area, is an area where data is being written, and
a page range corresponding to page j+1 to page k is an
unwritten area where writing of data is not started.

New data is written to the page designated by WP. When
the data is written to the page designated by WP, URP is
updated and WP is also updated.

FIG. 10 is a diagram illustrating an un-readable pointer
(URP) corresponding to each active block (i.e., closed
block).

URP of any of active blocks is indicative of a value larger
than the physical address (i.e., last page address in the block)
of the block end.

The controller 4 acquires from the L2P table 31 a physical
address allocated to the logical address of the read target
data designated by the read command received from the host
2. The physical address includes a block address indicative
of the read target block and an offset indicative of the read
target location in this read target block. The offset is referred
to as an in-block offset. This in-block offset may be repre-
sented by the page address and the in-page offset.

The controller 4 acquires from the block management
table 33 URP corresponding to the read target block having
the block address in the physical address acquired from the
L2P table 31. The controller can compare the offset (i.e.,
in-block offset) in the acquired physical address with URP
of the read target block and can immediately determine
whether the read target data is readable from the read target
block or not, i.e., which of the readable area and the
un-readable area of the read target block the physical address
allocated to the logical address of the read target data
belongs to. In this case, the controller 4 does not need to
check whether the read target block is a block currently used
as the write destination block or a closed block, and may

US 12,093,172 B2

13

compare the offset (i.e., the in-block offset) in the acquired
physical address with URP of the read target block.

FIG. 11 illustrates an example of a data structure of the
write destination block management table 34.

The write destination block management table 34 includes
a plurality of areas corresponding to respective blocks (in
this example, block BLK10, block BLK20, block BLK30,
block BLK40, block BLKS50, . . . block BLKn) currently
used as the write destination blocks.

Each of areas in the write destination block management
table 34 stores metadata with respect to the write destination
block corresponding to this area. For example, the metadata
of the area corresponding to the write destination block
BLK10 includes a write buffer address list indicative of a list
of the buffer addresses where the write data to be written to
the un-readable area of the write destination block BLK10
are stored. Similarly, the metadata of the area corresponding
to the write destination block BLKn includes a write buffer
address list indicative of a list of the buffer addresses where
the write data to be written to the un-readable area of the
write destination block BLKn are stored.

A write buffer address list corresponding to a certain write
destination block is buffer management information indica-
tive of correspondence between each of physical addresses
(for example, in-block offsets) of the un-readable area in this
write destination block and each of locations in the buffer
where the data which are being written to or waiting for
being written to these physical addresses of the write des-
tination block are stored.

In the read operation, when the physical address acquired
from the L2P table 31 is indicative of the physical storage
location which is not readable in the read target block, i.e.,
when the read target block is a block currently used as the
write destination block and the read target physical storage
location belongs to the un-readable area in the write desti-
nation block, the controller 4 acquires the location in the
buffer where the read target data is stored, by referring to the
information (buffer address list) indicative of the locations in
the buffer where the data which is being written to or waiting
for being written to each un-readable physical address in the
write destination block are stored. Then, the controller 4
reads the read target data from the acquired location in the
buffer.

Thus, not a process of searching the entire buffer for
desired data based on the logical address designated by the
read command, but a process of referring the only small
table (buffer address list) associated with specific read target
block (in this example, specific write destination block)
having the block address allocated to this logical address is
performed, and the location (buffer address) in the buffer
where the read target data is stored can be thereby acquired
with a good efficiency.

FIG. 12 illustrates an example of a write buffer address
list in the write destination block management table 34.

In FIG. 12, a write buffer address list corresponding to the
write destination block BLK10 is illustrated.

In the area in the write destination block management
table 34 corresponding to the write destination block
BLK10, buffer addresses where the write data to be written
to the un-writable area of the write destination block BLK10
are present are stored. Each of the buffer addresses is
indicative of the region in the buffer 32 in the DRAM 6 or
the region in the write buffer 51 in the host memory. As
regards the write data already transferred from the write
buffer 51 in the host memory to the buffer 32 in the DRAM
6, the buffer address of the write data is indicative of the
region in the buffer 32 in the DRAM 6. As regards the write

5

10

15

20

25

30

35

40

45

55

60

65

14
data that is still not transferred from the write buffer 51 in the
host memory to the buffer 32 in the DRAM 6, the buffer
address of the write data is indicative of the region in the
write buffer 51 in the host memory.

In the area in the write destination block management
table 34 corresponding to the write destination block
BLK10, buffer addresses are associated with respective
physical addresses (PBA) in the un-writable area of the write
destination block BLK10. For example, as regards the write
data to be written to write page i+1, the buffer address of the
write data is associated with the physical address (PBA)
indicative of page i+1. In addition, as regards the write data
to be written to write page j, the buffer address of the write
data is associated with the physical address (PBA) indicative
of page j.

When an unwritten area (for example, page j+1) of the
write destination block BLK10 is already allocated as the
write destination physical address, to the logical address of
the write data associated with the write command received
from the host 2, the buffer address of the write data to be
written to page j+1 may also be included in the write buffer
address list.

The flowchart of FIG. 13 illustrates a procedure of the
read operation executed by the SSD 3.

The controller 4 receives the read command from the host
2 (step S21). With reference to the L2P table 31, the
controller 4 acquires from the L2P table 31 the physical
address (i.e., the block address and the in-block offset)
corresponding to the logical address of the read target data
designated by the received read command (step S22). The
in-block offset may be represented by the page address and
the in-page offset. The controller 4 acquires URP corre-
sponding to the read target block (step S23).

The controller 4 determines whether or not the read target
data is readable from the read target block having the block
address included in the acquired physical address (step S24).
In step S24, the controller 4 compares the in-block offset
included in the acquired physical address with URP corre-
sponding to the read target block.

In this case, when the in-block offset is smaller than URP
(YES in step S24), the controller 4 can determine that the
read target data is readable from the read target block. In
contrast, when the block offset is larger than or equal to URP
(NO in step S24), the controller 4 can determine that the read
target data is not readable from the read target block, i.e.,
that the read target block is the write destination block and
the read target physical storage location is in the un-readable
area in the write destination block.

When the read target data is readable from the read target
block (YES in step S24), the controller 4 reads the data from
the read target physical storage location in the read target
block, which is indicated by the acquired physical address,
and returns the read data to the host 2 (step S25).

In contrast, when the read target data is not readable from
the write target block (NO in step S24), i.e., when the read
target block is the write destination block and the read target
data is not readable from the read target block, the controller
4 acquires the buffer address associated with the acquired
in-block offset from the write buffer address list correspond-
ing to the read target block (write destination block), reads
the read target data from the buffer (i.e., the write bufter 51
in the host memory or the buffer 32 in the DRAM 6) based
on the acquired buffer address, and returns the read data to
the host 2 (step S26).

FIG. 14 illustrates a stream write operation of writing a
plurality of types of write data associated with a plurality of

US 12,093,172 B2

15

streams, to a plurality of write destination blocks corre-
sponding to the streams, respectively.

In FIG. 14, the write destination block BLK10 is associ-
ated with the stream of stream ID #1, the write destination
block BLLK20 is associated with the stream of stream 1D #2,
the write destination block BLK30 is associated with the
stream of stream ID #3, the write destination block BLK40
is associated with the stream of stream 1D #4, the write
destination block BLKS50 is associated with the stream of
stream ID #5, the write destination block BLK60 is associ-
ated with the stream of stream ID #6, and the write desti-
nation block BLK 100 is associated with the stream of stream
1D #n.

For example, I/O service (i.e., virtual machine #1) corre-
sponding to end user #1 issues write commands each includ-
ing the stream ID #1, 1/O service (i.e., virtual machine #2)
corresponding to end user #2 issues write commands each
including the stream ID #2, and I/O service (i.e., virtual
machine #n) corresponding to end user #n issues write
commands each including the stream ID #n.

The write data associated with the write commands
including the stream ID #1 are written to the write destina-
tion block BLK10, the write data associated with the write
commands including the stream 1D #2 are written to the
write destination block BLK20, and the write data associ-
ated with the write commands including the stream ID #n are
written to the write destination block BLK100.

FIG. 15 illustrates an operation of allocating the write
destination blocks corresponding to the streams, from a
group of free blocks.

In FIG. 15, only two streams, i.e., a stream (stream #1) of
stream ID #1 and a stream (stream #2) of stream ID #2, are
illustrated to simplify the illustration.

The states of the respective blocks in the NAND flash
memory 5 are roughly classified into an active block which
stores valid data and a free block which does not store valid
data. Each block that is the active block is managed by a list
referred to as an active block pool. In contrast, each block
that is the free block is managed by a list referred to as a free
block pool. An active block pool 101-1 is a list of blocks
each storing the valid data associated with the stream #1. An
active block pool 101-% is a list of blocks each storing the
valid data associated with the stream #n. A free block pool
200 is a list of all the free blocks. The free blocks are shared
by the streams.

When the controller 4 receives the write command includ-
ing stream ID #1, the controller 4 determines whether or not
the write destination block (opened block) for stream #1 is
already allocated.

When the write destination block for stream #1 still is not
allocated, the controller 4 allocates one of free blocks in the
free block pool 200 as the write destination block for stream
#1. In FIG. 15, an example that block BLK10 is allocated as
the write destination block for stream #1 is illustrated. The
controller 4 writes write data associated with the respective
write commands including the stream ID #1 to the block
BLK10. When the write destination block for stream #1 is
already allocated, the controller 4 does not need to execute
the operation of allocating the free block as the write
destination block for stream #1.

When the whole write destination block (in this example,
BLK 10) for stream #1 is filled with the write data from the
host 2, the controller 4 manages (closes) the write destina-
tion block BLLK10 by active block pool 101-1 and allocates
a free block in a free block pool 200 as a new write
destination block (opened block) for stream #1.

10

15

20

25

30

35

40

45

50

55

60

65

16

When all the valid data in a certain block in the active
block pool 101-1 are invalidated by data update, de-alloca-
tion (unmap and trim), garbage collection, and the like, the
controller 4 moves this block to the free block pool 200 to
transition this block to a state of being reusable as a write
destination block.

When the controller 4 receives the write command includ-
ing stream ID #n, the controller 4 determines whether or not
the write destination block (opened block) for stream #n is
already allocated.

When the write destination block for stream #n still is not
allocated, the controller 4 allocates one of free blocks in the
free block pool 200 as the write destination block for stream
#n. In FIG. 15, an example that block BLK100 is allocated
as the write destination block for stream #n is illustrated. The
controller 4 writes write data associated with the respective
write commands including the stream ID #n to the block
BLK100. When the write destination block for stream #n is
already allocated, the controller 4 does not need to execute
the operation of allocating the free block as the write
destination block for stream #n.

When the whole write destination block (in this example,
BLK 100) for stream #n is filled with the write data from the
host 2, the controller 4 manages (i.e., closes) the write
destination block BLK100 by active block pool 101-» and
allocates a free block in the free block pool 200 as a new
write destination block (opened block) for stream #n.

When all the valid data in a certain block in the active
block pool 101-» are invalidated by data update, de-alloca-
tion (unmap and trim), garbage collection, and the like, the
controller 4 moves this block to the free block pool 200 to
transition the block to a state of being reusable as a write
destination block.

FIG. 16 illustrates a write operation executed by using a
plurality of buffer areas corresponding to the streams.

In FIG. 16, write buffer area WB #1, write buffer area WB
#2, write buffer area WB #3, . . . write buffer area WB #n
corresponding to the stream #1, the stream #2, the stream
#3, . . . the stream #n respectively are prepared as first buffers
in the SSD 3.

The write data associated with respective write commands
including the stream ID #1 are transferred from the write
buffer 51 in the memory of the host 2 to the write buffer area
WB #1, and stored in the write buffer area WB #1. When the
total size of the write data stored in the write buffer WB #1
reaches the minimum write size of the NAND flash memory
5, the write data are written to the write destination block
BLK10.

As described above, the minimum write size of the

NAND flash memory 5 may be the page size, i.e., the size
of one page (for example, 16K bytes).
Alternatively, in a case where a NAND flash memory
including two planes is used as the NAND flash memory 5,
twice the page size (for example, 32K bytes) may be used as
the minimum write size of the NAND flash memory 5.

The minimum length of the write data designated by each
write command is, for example, 4K bytes (or 512 bytes). The
minimum write size of the NAND flash memory 5 is
therefore larger than the minimum size of the write data
designated by each write command.

The write data associated with respective write commands
including the stream ID #2 are transferred from the write
buffer 51 in the memory of the host 2 to the write buffer area
WB #2, and stored in the write buffer area WB #2. When the
total size of the write data stored in the write buffer WB #2

US 12,093,172 B2

17

reaches the minimum write size of the NAND flash memory
5, the write data are written to the write destination block
BLK20.

The write data associated with respective write commands
including the stream ID #3 are transferred from the write
buffer 51 in the memory of the host 2 to the write buffer area
WB #3, and stored in the write buffer area WB #1. When the
total size of the write data stored in the write buffer WB #3
reaches the minimum write size of the NAND flash memory
5, the write data are written to the write destination block
BLK30.

Similarly, the write data associated with respective write
commands including the stream ID #n are transferred from
the write buffer 51 in the memory of the host 2 to the write
buffer area WB #n, and stored in the write buffer area WB
#n. When the total size of the write data stored in the write
buffer WB #n reaches the minimum write size of the NAND
flash memory 5, the write data are written to the write
destination block BLK100.

In the configuration illustrated in FIG. 16, the write buffer
having a large size including the write buffer area WB #1,
write buffer area WB #2, write buffer area WB #3, . . . write
buffer area WB #n corresponding to the stream #1, the
stream #2, the stream #3, . . . the stream #n, respectively, is
provided in the SSD 3.

FIG. 17 illustrates an example of the write operation for
reducing the write buffer size necessary to be provided in the
SSD 3.

Every time the controller 4 of the SSD 3 receives the write
command from the host 2, the controller 4 stores the write
command in a command queue 41. That is, the controller 4
classifies the received write commands into n+1 groups
corresponding to streams #1 to #n by storing each of the
received write commands in one of command queues 41-1
to 41-n corresponding to streams #1 to #n.

In this case, each write command including stream 1D #1
is stored in the command queue 41-1, each write command
including stream ID #2 is stored in the command queue
41-2, each write command including stream ID #3 is stored
in the command queue 41-3, and each write command
including stream ID #n is stored in the command queue
41-n.

The controller 4 determines whether or not the length of
the write data associated with a set of write commands
belonging to the same group reaches the minimum write
size, by calculating the sum (i.e., data size) of the lengths
designated by the respective write commands belonging to
the same group.

For example, as regards the group corresponding to
stream #1, the controller 4 calculates the sum of the lengths
included in the respective write commands stored in the
command queue 41-1. When the sum of the lengths included
in the respective write commands stored in the command
queue 41-1 reaches the minimum write size, the controller 4
determines that the length of the write data associated with
the set of the write commands belonging to the group
corresponding to stream #1 has reached the minimum write
size.

Similarly, as regards the group corresponding to stream
#2, the controller 4 calculates the sum of the lengths
included in the respective write commands stored in the
command queue 41-2. When the sum of the lengths included
in the respective write commands stored in the command
queue 41-2 reaches the minimum write size, the controller 4
determines that the length of the write data associated with
the set of the write commands belonging to the group
corresponding to stream #2 reaches the minimum write size.

10

15

20

25

30

35

40

45

50

55

60

18

When the length of the write data associated with a set of
the write commands belonging to a certain group reaches the
minimum write size, for example, when the length desig-
nated by each of the write commands belonging to the group
corresponding to stream #2 reaches the minimum write size,
the controller 4 transfers the write data of the minimum write
size associated with stream #2 from the write buffer 51 in the
host memory to the internal buffer 16. Then, the controller
4 writes the write data transferred to the internal buffer 16 to
the write destination block BLK 20 corresponding to the
stream #2. When the write data is written to the write
destination block BLK 20, the write data in the internal
buffer 16 becomes unnecessary.

Therefore, for example, when the sum of the lengths
included in the respective write commands stored in the
command queue 41-3 reaches the minimum write size then,
the controller 4 can transfer the write data of the minimum
write size associated with the set of the write commands
belonging to the group corresponding to stream #3 from the
write buffer 51 in the host memory to the internal buffer 16,
and can write the write data transferred to the internal buffer
16, to the write destination block BLK 30 corresponding to
stream #3.

Thus, in the write operation illustrated in FIG. 17, the
controller 4 checks the length (size) of the write data
corresponding to the received write command group, for
each stream, and detects the stream where the size of the
write data reaches the minimum write size of the NAND
flash memory 5. Then, the write data of the minimum write
size associated with the stream where the size of the write
data reaches the minimum write size is transferred from the
write buffer 51 in the host memory to the internal buffer 16.
Write of the write data of the minimum write size transferred
to the internal buffer 16 can be started immediately. The
internal buffer 16 can be therefore shared by a plurality of
streams. Therefore, when the write operation of FIG. 17 is
employed, the stream write operation can be executed with
a good efficiency by preparing the only internal buffer 16 of
the minimum write size, even when the number of streams
to be supported by the SSD 3 is increased.

FIG. 18 illustrates a configuration example of each of the
host 2 and the SSD 3 in relation to the data write.

Use of the write operation of FIG. 17 is assumed here.

In the host 2, each write command is stored in a submis-
sion queue 71. Each write command includes LBA of the
write data, the length of the write data, stream 1D, and a data
pointer indicative of a location in the write buffer 51 where
the write data is stored. A response indicative of completion
of each write command is stored in a completion queue 72.

The write data associated with each write command is
stored in the write buffer 51 in the host memory. In the write
buffer 51, a plurality of corresponding areas may be allo-
cated to stream #1 to stream #n. In this case, the write data
associated with stream #1 is stored in the area in the write
buffer 51 corresponding to stream #1, the write data asso-
ciated with stream #2 is stored in the area in the write buffer
51 corresponding to stream #2, and the write data associated
with stream #n is stored in the area in the write buffer 51
corresponding to stream #n.

In the SSD 3, the write control unit 21 receives each of the
write commands from the submission queue 71 of the host
2, and classifies the received write commands into a plurality
of groups corresponding to streams #1 to #n by storing each
of the received write commands in one of command queues
41-1 to 41-n. Each write command including stream 1D #1
is stored in the command queue 41-1, each write command
including stream ID #2 is stored in the command queue

US 12,093,172 B2

19

41-2, and each write command including stream ID #n is
stored in the command queue 41-n.

The write control unit 21 executes the address allocation
operation of allocating the physical address (PBA) indica-
tive of the storage location in the NAND flash memory 5 to
which the write data associated with each received write
command is to be written, to the write data. Furthermore, the
write control unit 21 updates the L2P table 31 such that the
physical address is associated with the logical address. This
physical address may be represented by a block address, a
page address, and an in-page offset.

In each command queue, LBA, length, PBA, and buffer
address may be managed for each write command. PBA is
indicative of a physical address (i.e., block address, page
address, and in-page offset) allocated to the write data
associated with the write command. The buffer address is
indicative of a location in the write buffer 51 where the write
data associated with the write command is stored. The
location in the write buffer 51 is designated by a data pointer
included in the write command.

When the write data is transferred from the write buffer 51
of the host memory to the buffer 32 (hereinafter referred to
as a DRAM buffer 32) of the DRAM 6, a value of the buffer
address is updated to a value indicative of the location in the
DRAM buffer 32 where the write data is stored. For
example, the write data associated with the write command
which has spent a predetermined time after the reception of
a certain write command may be transferred from the write
buffer 51 of the host memory to the DRAM buffer 32.

Inthe DRAM buffer 32, a plurality of corresponding areas
may be allocated to stream #1 to stream #n. In this case, the
write data associated with stream #1 is transferred to the area
in the DRAM buffer 32 corresponding to stream #1, the
write data associated with stream #2 is transferred to the area
in the DRAM buffer 32 corresponding to stream #2, and the
write data associated with stream #n is transferred to the area
in the DRAM buffer 32 corresponding to stream #n.

When the length of the write data associated with a set of
the write commands belonging to a group corresponding to
a certain stream reaches the minimum write size, the write
control unit 21 transmits to the DMAC 15 a transfer request
to transfer the write data of the minimum write size asso-
ciated with the stream from the write buffer 51 in the host
memory to the internal buffer 16. In response to receiving
the transfer request, the DMAC 15 transfers the write data
of the minimum write size associated with the stream from
the write buffer 51 in the host memory to the internal buffer
16 by executing the DMA transfer. Then, the write control
unit 21 transmits a program instruction to the NAND
interface 13 and writes the write data of the minimum write
size transferred to the internal buffer 16 to the write desti-
nation block in the NAND flash memory 5.

Basically, when updating the L.2P table 31 is finished and
the transfer of the write data is finished, or when updating
the L2P table 31 is finished and the write of the write data
to the NAND flash memory 5 is finished, the write control
unit 21 returns to the host 2 a response indicative of
completion of the write command corresponding to the write
data. The response indicative of completion of each write
command is input to the completion queue 72 as a buffer
release request to allow the host 2 to release the correspond-
ing write data. Since the response indicative of the comple-
tion includes an identifier of the write command, the host 2
can release the area in the write buffer 51 where the write
data associated with the completed write command desig-
nated by the response indicative of the completion is stored.

10

15

20

25

30

35

40

45

50

55

60

65

20

In addition, after completing the transfer of the write data
of the minimum write size to the internal buffer 16, the write
control unit 21 may delete each of the write commands
corresponding to the write data, from the command queue.

In addition, when a predetermined time has elapsed since
receiving a certain write command belonging in a group
corresponding to a certain stream, the write control unit 21
transfers the only write data associated with the write
command from the write buffer 51 in the host memory to the
DRAM buffer 32 as write data for the stream, by using the
DMAC 15, and returns a response indicative of completion
of this write command to the host 2 even if the length of the
write data associated with a set of the write commands
belonging to the group corresponding to this stream does not
reach the minimum write size.

For example, when a predetermined time has elapsed
since the reception of a write command including the stream
ID #1 but the size of write data associated with a set of write
commands stored in the command queue 41-1 does not
reach the minimum write size, that is, when the time during
which the write command is kept in the command queue
41-1 reaches the predetermined time, the write control unit
21 transfers only write data associated with the write com-
mand from the write buffer 51 in the host memory to the
DRAM buffer 32 in order to prevent a timeout error of the
write command from occurring. In this case, the write data
may be transferred to the area for the stream #1 in the
DRAM buffer 32. The write command is deleted from the
command queue 41-1.

In the period during which the host 2 requests that a large
amount of data be written, that is, the period during which
the number of write commands of each stream received from
the host 2 is relatively large, there is a high possibility that
the length of write data associated with a set of write
commands belonging to the group corresponding to each
stream reaches the minimum write size before a predeter-
mined time has elapsed since the reception of a write
command. Thus, most of write data are transferred, not to the
DRAM buffer 32, but to the internal buffer 16. A case where
the time during which a write command is kept in a
command queue reaches a predetermined time occurs when
the number of write commands received from the host 2 is
relatively small.

Therefore, traffic between the controller 4 and the DRAM
6 is not increased for transfer of the write data. Therefore,
the band width between the controller 4 and the DRAM 6
can be mainly used for a process of updating the L2P table
31 and the process of updating the 2P table 31 can be
executed with a good efficiency.

FIG. 19 illustrates a configuration example of each of the
host 2 and the SSD 3 in relation to the data read.

When the read control unit 22 receives the read command
from the submission queue 71 of the host 2, the read control
unit 22 acquires the physical address (i.e., block address and
in-block offset (page address and in-page offset)) indicative
of the physical storage location in the NAND flash memory
5 allocated to the logical address of the read target data
designated by this read command, from the [.2P table 31, by
referring to the L2P table 31 in the DRAM 6.

When the read target data is readable from the NAND
flash memory 5, the read control unit 22 transmits a read
instruction for reading the read target data to the NAND
flash memory 5 via the NAND interface 13 and reads the
read target data from the NAND flash memory 5. The read
target data which is read may be temporarily stored in an
internal read buffer 16' in the controller 4. The internal read

US 12,093,172 B2

21

buffer 16' may be implemented by SRAM in the controller
4, similarly to the internal buffer 16.

The read control unit 22 transfers the read target data from
the internal read buffer 16' to the read buffer 52 in the host
memory by using the DMAC 15. The location in the read
buffer 52 where the read target data is to be transferred is
designated by the data pointer included in the read com-
mand. Then, the read control unit 22 returns to the host 2 the
response indicative of completion of the read command, and
puts the response indicative of completion of the read
command to the completion queue 72 of the host 2.

When the read target data is still not readable from the
NAND flash memory 5, i.e., when the read target data is the
data waiting for written, which still does not start being
written, or the data which is being written, i.e., starts being
written but cannot be normally read from the NAND flash
memory 5, the read control unit 22 reads the read target data
from the DRAM buffer 32 or the write buffer 51 in the host
memory and returns the read target data to the host 2. When
reading the read target data from the write buffer 51 in the
host memory, the read control unit 22 first transfers the read
target data from the write buffer 51 to the internal read buffer
16' by using the DMAC 15, and transfers the read target data
from the internal read buffer 16' to the read buffer 52 in the
host memory by using the DMAC 15. When reading the read
target data from the DRAM buffer 32, the read control unit
22 reads the read target data from the DRAM buffer 32 to the
internal read buffer 16', and transfers the read target data
from the internal read buffer 16' to the read buffer 52 in the
host memory by using the DMAC 15.

As described above, The controller 4 can manage a buffer
address of data which is to be written to a block and has not
become readable, for each block currently used as a write
destination block, using the write destination block manage-
ment table 34. A buffer address corresponding to data which
has been transferred to the DRAM buffer 32 and has not
become readable from the NAND flash memory 5 is indica-
tive of the location of the data in the DRAM buffer 32. A
buffer address corresponding to data which has not been
transferred to the DRAM buffer 32 and has not become
readable from the NAND flash memory 5 is indicative of the
location of the data in the write buffer 51 in the host memory.
Thus, on the basis of a buffer address corresponding to read
target data which has not become readable from the NAND
flash memory 5, the read control unit 22 can read the read
target data from the DRAM buffer 32 or the write buffer 51
in the host memory, and can return the read target data,
which has been read, to the host 2.

Therefore, the host 2 can receive desired data from the
SSD 3 by merely executing a simple process of issuing each
of the read commands to the SSD 3, without executing a
process of selectively issuing the read request to the write
buffer 51 and the read command to the SSD 3.

The flowchart of FIG. 20 illustrates a procedure of the
write operation executed by the SSD 3.

The controller 4 receives the write commands each
including a stream ID from the host 2 (step S61). The
controller 4 classifies the received write commands by
stream (step S62). In step 362, the controller 4 classifies the
received write commands into a plurality of groups corre-
sponding to streams #1 to #n by storing each of the received
write commands in one of command queues 41-1 to 41-n.
Thus, each write command including stream ID #1 is stored
in the command queue 41-1, each write command including
stream ID #2 is stored in the command queue 41-2, and each
write command including stream ID #n is stored in the
command queue 41-z. In step S62, the controller 4 further

10

15

20

25

30

35

40

45

50

55

60

65

22

executes the address allocation operation and the [.2P update
operation for each of the received write commands.

The controller 4 checks the size of the write data waiting
for being written, which corresponds to the stored write
command, for each stream, and detects the stream where the
size of the write data waiting for being written reaches the
minimum write size (step S63). That is, in step S63, the
controller 4 determines whether or not the length of the write
data (i.e., the size of the write data waiting for being written)
associated with a set of write commands belonging to the
same group reaches the minimum write size, by calculating
the sum of the lengths designated by the respective write
commands belonging to the same group.

When the stream where the size of the write data waiting
for being written reaches the minimum write size is detected
(YES in step S64), the controller 4 transfers the write data
of the minimum write size associated with the detected
stream, from write buffer 51 in the host memory to the
internal buffer 16 (step S65). Then, the controller 4 writes
the write data transferred to the internal buffer 16 to the write
destination block allocated for this stream (step S66).

When the stream where the size of the write data waiting
for being written reaches the minimum write size is not
detected (NO in step S64), the controller 4 detects whether
there is a stream corresponding to a write command, since
the reception of which a predetermined time has elapsed
(step S67).

When it is detected that a predetermined time has elapsed
since the reception of the write command corresponding to
a certain stream (YES in step S67), the controller 4 transfers
the write data associated with this write command from the
write buffer 51 in the host memory to the DRAM buffer 32,
as the write data for the stream (step S68). After transferring
the write data associated with this write command from the
write buffer 51 in the host memory to the DRAM buffer 32,
the controller 4 deletes this write command from the com-
mand queue where this write command is stored. The
controller 4 returns a response indicative of completion of
this write command to the host 2.

Thus, when a predetermined time elapses after the recep-
tion of the write command corresponding to a certain stream,
a process of transferring the write data associated with this
write command from the write buffer 51 in the host memory
to the DRAM buffer 32 and a process of returning a response
indicative of the completion of the write command to the
host 2 are executed by the controller 4.

In addition, in a configuration of thus transferring the
write data associated with the write command belonging to
the group corresponding to a certain stream to the DRAM
buffer 32, the controller 4 executes data transfer from the
write buffer 51 in the host memory to the internal bufter 16
under a condition that the total length of (i) the length of the
write data transferred to the DRAM buffer 32 and (ii) the
length of the write data waiting for being written, associated
with a set of the write commands belonging to the group
corresponding to this stream reaches the minimum write
size.

The flowchart of FIG. 21 illustrates a procedure of the
write operation executed by the SSD 3 using the DRAM
buffer 32.

The controller 4 receives the write commands each
including the stream ID from the host 2 (step S71). The
controller 4 classifies the received write commands by
stream (step S72). In step S72, the controller 4 classifies the
received write commands into a plurality of groups corre-
sponding to streams #1 to #n by storing each of the received
write commands in one of command queues 41-1 to 41-n.

US 12,093,172 B2

23

Thus, each write command including stream ID #1 is stored
in the command queue 41-1, each write command including
stream ID #2 is stored in the command queue 41-2, and each
write command including stream ID #n is stored in the
command queue 41-z. Furthermore, the controller 4
executes the address allocation operation and the [.2P update
operation for each of the received write commands.

The controller 4 checks, for each stream, the total size
(i.e., total length) of the size of the write data waiting for
being written, corresponding to the stored write commands
and the size of the write data in the DRAM buffer 32, and
detects the stream in which the total size reaches the
minimum write size of the NAND flash memory 5 (step
S73). That is, in step S73, the controller 4 determines, for
each of the groups, whether the total length of (i) the length
of the write data waiting for being written, associated with
a set of the write commands in the command queue and (ii)
the length of the write data in the DRAM buffer 32 reaches
the minimum write size.

When detecting the stream where the total length of the
length of the write data waiting for being written, associated
with a set of the write commands in the command queue and
the length of the write data in the DRAM buffer 32 reaches
the minimum write size (YES in step S74), the controller 4
transfers the write data for the detected stream from the
DRAM buffer 32 to the internal buffer 16 (step S75). The
controller 4 transfers the write data associated with the
detected stream from the write buffer 51 in the host memory
to the internal buffer 16 (step S76). Then, the controller 4
writes the write data transferred from the write buffer 51 in
the host memory to the internal buffer 16 to the write
destination block allocated for this stream, together with the
write data transferred from the DRAM buffer 32 to the
internal buffer 16 (step 577).

When the stream where the total length of the length of
the write data waiting for being written, associated with a set
of the write commands in the command queue and the length
of the write data in the DRAM buffer 32 reaches the
minimum write size is not detected (NO in step S74), the
controller 4 executes the processes in steps S67 and S68 in
FIG. 20.

That is, the controller 4 detects whether there is a write
command, since the reception of which a predetermined
time has elapsed (step S67). When it is detected that the
predetermined time has elapsed since the reception of a
write command corresponding to a stream (YES in step
S67), the controller 4 transfers write data associated with the
write command from the write buffer 51 in the host memory
to the DRAM buffer 32 as write data for the stream (step
S68). After transferring the write data associated with this
write command from the write buffer 51 in the host memory
to the DRAM buffer 32, the controller 4 deletes this write
command from the command queue where this write com-
mand has been stored. The controller 4 returns a response
indicative of completion of this write command to the host
2.

As described above, according to the embodiment, updat-
ing the L.2P table 31 is started before transfer of the write
data is finished or before write of the write data to NAND
flash memory 5 is finished. Thus, the L.2P update can be
executed on the background of the process (i.e., data transfer
or flash write) that requires a comparatively long time by
making the start timing of the L2P update operation earlier.
Therefore, improvement of the write performance can be
realized without preparing a high calculating ability to
enable the L.2P update to be executed at a high speed, as
compared with executing the L.2P update after flash write.

10

15

20

25

30

35

40

45

50

55

60

65

24

In addition, in the read operation, when the physical
address acquired from the L2P table 31 is indicative of a
physical storage location that is not readable in the write
destination block, the read target data is read from the buffer
(i.e., the first buffer in the SSD 3 or the write buffer of the
host 2). The data read from the buffer is executed based on
information indicative of a location in the buffer where data
which is being written to or waiting for being written to each
physical address not readable in the write destination block
is stored.

Thus, the write performance can be improved; the data
read from the buffer can also be executed by using the
physical address acquired from the L.2P table 31, by making
the start timing of the L.2P update earlier.

Therefore, even when the data that is being written to a
certain write destination block or the write data waiting for
being written, which has not started being written to the
write destination block is required by the read command
from the host 2, the data can be returned to the host 2, and
improvement of performance of the data read can be thereby
realized.

In addition, in the embodiment, the controller 4 can
compare the offset (i.e., in-block offset) in the physical
address acquired from the L.2P table 31 with URP of the read
target block and can immediately determine whether or not
the read target data is readable from the read target block,
i.e., which of the readable area and the un-readable area of
the read target block the physical address allocated to the
logical address of the read target data belongs to. In this case,
the controller 4 does not need to check whether the read
target block is a block currently used as the write destination
block or a closed block, and may compare the offset (i.e., the
block offset) in the acquired physical address with URP of
the read target block.

In the present embodiment, the NAND flash memory has
been illustrated as a nonvolatile memory. However, the
functions of the present embodiment are also applicable to
various other nonvolatile memories such as a magnetoresis-
tive random access memory (MRAM), a phase change
random access memory (PRAM), a resistive random access
memory (ReRAM), and a ferroelectric random access
memory (FeRAM).

While certain embodiments have been described, these
embodiments have been presented by way of example only,
and are not intended to limit the scope of the inventions.
Indeed, the novel embodiments described herein may be
embodied in a variety of other forms; furthermore, various
omissions, substitutions and changes in the form of the
embodiments described herein may be made without depart-
ing from the spirit of the inventions. The accompanying
claims and their equivalents are intended to cover such
forms or modifications as would fall within the scope and
spirit of the inventions.

What is claimed is:

1. A memory system connectable to a host including a
submission queue and a completion queue, the memory
system comprising:

a nonvolatile memory including a plurality of blocks each

including a plurality of pages; and

a controller configured to control the nonvolatile memory,

wherein

the controller is configured to:

in response to receiving a first write command from the

host through the submission queue of the host, deter-
mine a first physical address indicative of a physical
storage location of the nonvolatile memory to which
first write data associated with the first write command

US 12,093,172 B2

25

is to be written, and update an address translation table
such that the first physical address is associated with a
logical address of the first write data; and

transfer the first write data from a write buffer in a
memory of the host to the controller, and write the first
write data to a write destination location in a first write
destination block of the nonvolatile memory, which is
designated by the first physical address,

the controller is configured to start updating the address
translation table before the transfer of the first write
data is finished or before the write of the first write data
to the nonvolatile memory is finished.

2. The memory system of claim 1, wherein

the nonvolatile memory is configured to enable read of
data written to one page of a plurality of pages in each
block to be executed after writing data to one or more
pages subsequent with the page,

the controller is configured to:

in response to receiving a read command from the host,
acquire a second physical address corresponding to a
logical address of read target data designated by the
read command from the address translation table; and

when the second physical address is indicative of a
physical storage location which is not readable in the
first write destination block, read the read target data
from a buffer, based on information indicative of a
location in the buffer where data which is being written
to or waiting for being written to each physical address
not readable in the first write destination block is
stored, and

the buffer is a first buffer in the memory system or the
write buffer of the host.

3. The memory system of claim 1, wherein

the nonvolatile memory is configured to enable read of
data written to one page of a plurality of pages in each
block to be executed after writing data to one or more
pages subsequent with the page, and

the controller is configured to:

manage, with respect to each of a plurality of write
destination blocks allocated from the plurality of
blocks, a pointer indicative of a minimum physical
address of an un-readable area from which data is
un-readable, and manage, with respect to each of
blocks where data are already written to all pages, a
physical address larger than a physical address of a
block end as the pointer;

acquire a second physical address corresponding to a
logical address of read target data designated by the
read command from the address translation table, the
second physical address including a block address
indicative of a read target block and an offset indicative
of a read target location in the read target block; and

read the read target data from the read target block when
the offset is smaller than a value of a pointer corre-
sponding to the read target block, and read the read
target data from a buffer when the offset is larger than
or equal to the value of the pointer corresponding to the
read target block, the buffer being a first buffer in the
memory system or the write buffer of the host.

4. The memory system of claim 3, wherein

the controller is configured to:

manage, with respect to each of the write destination
blocks, buffer management information indicative of
correspondence between each of physical addresses of
an un-readable area and each of locations in the buffer
where data which are being written to or waiting for
being written to the physical address are stored;

10

15

20

25

30

35

40

45

50

55

60

65

26

acquire a location in the buffer where the read target data
is stored, by referring to buffer management informa-
tion corresponding to the read target block; and
read the read target data from the acquired location in the
buffer.
5. The memory system of claim 1, wherein
the controller is configured to return a response indicative
of completion of the first write command to the host by
storing the response in the completion queue of the host
when updating the address translation table is finished
and when transfer of the first write data is finished, or
when updating the address translation table is finished
and when write of the first write data to the nonvolatile
memory is finished.
6. The memory system of claim 1, wherein
the controller is configured to return a response indicating
that the first write command is received to the host by
storing the response in the completion queue of the host
when updating the address translation table is finished.
7. A method of controlling a memory system connectable
to a host including a submission queue and a completion
queue, the memory system including a nonvolatile memory
including a plurality of blocks each including a plurality of
pages, the method comprising:
in response to receiving a first write command from the
host through the submission queue of the host, deter-
mining a first physical address indicative of a physical
storage location of the nonvolatile memory to which
first write data associated with the first write command
is to be written, and updating an address translation
table such that the first physical address is associated
with a logical address of the first write data;
transferring the first write data from a write buffer in a
memory of the host to the controller; and
writing the first write data to a write destination location
in a first write destination block of the nonvolatile
memory, which is designated by the first physical
address, wherein
the updating the address translation table is started before
the transfer of the first write data is finished or before
the writing of the first write data to the nonvolatile
memory is finished.
8. The method of claim 7, wherein
the nonvolatile memory is configured to enable read of
data written to one page of a plurality of pages in each
block to be executed after writing data to one or more
pages subsequent with the page,
the method further comprises:
in response to receiving a read command from the host,
acquiring a second physical address corresponding to a
logical address of read target data designated by the
read command from the address translation table; and
when the second physical address is indicative of a
physical storage location which is not readable in the
first write destination block, reading the read target data
from a buffer, based on information indicative of a
location in the buffer where data which is being written
to or waiting for being written to each physical address
not readable in the first write destination block is
stored, and
the buffer is a first buffer in the memory system or the
write buffer of the host.
9. The method of claim 7, wherein
the nonvolatile memory is configured to enable read of
data written to one page of a plurality of pages in each
block to be executed after writing data to one or more
pages subsequent with the page, and

US 12,093,172 B2

27

the method further comprising:

managing, with respect to each of a plurality of write
destination blocks allocated from the plurality of
blocks, a pointer indicative of a minimum physical
address of an un-readable area from which data is
un-readable, and managing, with respect to each of
blocks where data are already written to all pages, a
physical address larger than a physical address of a
block end as the pointer;

acquiring a second physical address corresponding to a
logical address of read target data designated by the
read command from the address translation table, the
second physical address including a block address
indicative of a read target block and an offset indicative
of a read target location in the read target block; and

reading the read target data from the read target block
when the offset is smaller than a value of a pointer
corresponding to the read target block, and reading the
read target data from a buffer when the offset is larger
than or equal to the value of the pointer corresponding
to the read target block, the buffer being a first buffer in
the memory system or the write buffer of the host.

10. The method of claim 9, further comprising:

managing, with respect to each of the write destination
blocks, buffer management information indicative of
correspondence between each of physical addresses of

20

28

an un-readable area and each of locations in the buffer
where data which are being written to or waiting for
being written to the physical address are stored,

wherein

the reading the read target data from the buffer comprises
acquiring a location in the buffer where the read target
data is stored, by referring to buffer management infor-
mation corresponding to the read target block, and
reading the read target data from the acquired location
in the buffer.

11. The method of claim 7, further comprising:

returning a response indicative of completion of the first
write command to the host by storing the response in
the completion queue of the host when updating the
address translation table is finished and when transfer
of the first write data is finished, or when updating the
address translation table is finished and when write of
the first write data to the nonvolatile memory is fin-
ished.

12. The method of claim 7, further comprising:

returning a response indicating that the first write com-
mand is received to the host by storing the response in
the completion queue of the host when updating the
address translation table is finished.

#* #* #* #* #*

