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CLASSIFICATION OF ERROR RATE OF
DATA RETRIEVED FROM MEMORY CELLS

RELATED APPLICATIONS

[0001] The present application is a continuation applica-
tion of U.S. patent application Ser. No. 16/807,065 filed
Mar. 2, 2020 and issued as U.S. Pat. No. 12,009,034 on Jun.
11, 2024, the entire disclosures of which application are
hereby incorporated herein by reference.

TECHNICAL FIELD

[0002] At least some embodiments disclosed herein relate
to memory systems in general, and more particularly, but not
limited to memory systems having a binary classification
decision tree for classification of error rate of data retriev-
able from memory cells in an integrated circuit memory
device.

BACKGROUND

[0003] A memory sub-system can include one or more
memory devices that store data. The memory devices can be,
for example, non-volatile memory devices and volatile
memory devices. In general, a host system can utilize a
memory sub-system to store data at the memory devices and
to retrieve data from the memory devices.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The embodiments are illustrated by way of
example and not limitation in the figures of the accompa-
nying drawings in which like references indicate similar
elements.

[0005] FIG. 1 illustrates an example computing system
having a memory sub-system in accordance with some
embodiments of the present disclosure.

[0006] FIG. 2 illustrates an integrated circuit memory
device having a calibration circuit configured to measure
signal and noise characteristics according to one embodi-
ment.

[0007] FIG. 3 shows an example of measuring signal and
noise characteristics to improve memory operations accord-
ing to one embodiment.

[0008] FIGS. 4-7 illustrate self adapting iterative read
calibration during the execution of a read command accord-
ing to one embodiment.

[0009] FIG. 8 illustrates the generation of compound
features for the classification of the error rate of data
retrieved from memory cells according to one embodiment.
[0010] FIG. 9 illustrates an implementation of a data
integrity classifier implemented based on binary classifica-
tion decision tree according to one embodiment.

[0011] FIG. 10 shows a method of classifying the integrity
of data retrieved from memory cells using features generated
according to one embodiment.

[0012] FIG. 11 is a block diagram of an example computer
system in which embodiments of the present disclosure can
operate.

DETAILED DESCRIPTION

[0013] At least some aspects of the present disclosure are
directed to a memory sub-system having a data integrity
classifier implemented efficiently using a binary classifica-
tion decision tree technique. A memory sub-system can be a
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storage device, a memory module, or a hybrid of a storage
device and memory module. Examples of storage devices
and memory modules are described below in conjunction
with FIG. 1. In general, a host system can utilize a memory
sub-system that includes one or more components, such as
memory devices that store data. The host system can provide
data to be stored at the memory sub-system and can request
data to be retrieved from the memory sub-system.

[0014] An integrated circuit memory cell (e.g., a flash
memory cell) can be programmed to store data by the way
of its state at a threshold voltage. For example, if the
memory cell is configured/programmed in a state that allows
a substantial current to pass the memory cell at the threshold
voltage, the memory cell is storing a bit of one; and
otherwise, the memory cell is storing a bit of zero. Further,
a memory cell can store multiple bits of data by being
configured/programmed differently at multiple threshold
voltages. For example, the memory cell can store multiple
bits of data by having a combination of states at the multiple
threshold voltages; and different combinations of the states
of the memory cell at the threshold voltages can be inter-
preted to represent different states of bits of data that is
stored in the memory cell.

[0015] However, after the states of integrated circuit
memory cells are configured/programmed using write
operations to store data in the memory cells, the optimized
threshold voltage for reading the memory cells can shift due
to a number of factors, such as charge loss, read disturb,
cross-temperature effect (e.g., write and read at different
operating temperatures), etc., especially when a memory cell
is programmed to store multiple bits of data.

[0016] Conventional calibration circuitry has been used to
self-calibrate a memory region in applying read level signals
to account for shift of threshold voltages of memory cells
within the memory region. During the calibration, the cali-
bration circuitry is configured to apply different test signals
to the memory region to count the numbers of memory cells
that output a specified data state for the test signals. Based
on the counts, the calibration circuitry determines a read
level offset value as a response to a calibration command.
[0017] At least some aspects of the present disclosure
address the above and other deficiencies by classifying the
bit error rate of data retrievable from memory cells using
signal and noise characteristics measured near estimated
locations of optimized read voltages of the memory cells and
using at least compound features computed from the signal
and noise characteristics measured for the multiple opti-
mized read voltages. For example, a data integrity classifier
generates a classification of the bit error rate of data retriev-
able from memory cells based on features calculated from
signal and noise characteristics of memory cells measured
for multiple read voltages. The features can include com-
pound features that are calculated iteratively or progres-
sively using signal and noise characteristics of memory cells
measured for lower read voltages, while signal and noise
characteristics of the memory cells are being measured for
a higher read voltage. The classification of the bit error rate
of the data retrievable from the memory cells can be used to
control the operations to read data from the memory cells.
The compound features can be computed efficiently using an
iterative or progressive technique where the compound
features are calculated initially based on signal and noise
characteristics measured for lower optimized read voltages
while signal and noise characteristics for higher optimized
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read voltages are being measured or have not yet been
measured. The compound features are further updated based
on the signal and noise characteristics measured for each
higher optimized read voltage when the signal and noise
characteristics for the higher optimized read voltage become
available. The classification result of the bit error rate can be
used to select a processing path in reading data from the
memory cells. For example, based on the bit error rate
classification, the memory sub-system can decide whether to
further calibrate the read voltages, to skip error detection and
data recovery, to skip reading the memory cells for soft bit
data by applying read voltages that have a predetermined
offset from the optimized read voltages, etc.

[0018] For example, a memory cell programmed to store
multiple bits of data is to be read using multiple read
voltages to determine the states of the memory cells at the
read voltages and thus the multiple bits stored in the memory
cell. The optimized read voltages for reading the multiple
states can shift due to data retention effects, such as quick
charge loss (QCL), storage charge loss (SCL), etc., and/or
other effects. A calibration operation can be performed for
each of the read voltages to determine the respective opti-
mized read voltages. During the calibration of each read
voltage, a set of signal and noise characteristics of the
memory cells can be measured. The multiple set of signal
and noise characteristics associated with the multiple opti-
mized read voltages can be used to construct features as
input for a predictive model for classifying the bit error rate
of data that can be retrieved from the memory cells using the
multiple optimized read voltages. Such features can include
compound features. A compound feature is based on mul-
tiple sets of signal and noise characteristics associated with
multiple optimized read voltages respectively.

[0019] In some situations, the optimized read voltages can
shift over a period of time in a same direction (e.g., towards
lower voltages, or towards higher voltages). In general,
different optimized read voltages can shift by different
amounts, where the higher ones in the optimized read
voltages may shift more than the lower ones in the optimized
read voltages. A predictive model can be used to predict the
shift of a higher optimized read voltage based on the shift(s)
of one or more lower optimized read voltages. Thus, once
the lower optimized read voltages are determined through
calibration, the shift of an optimized read voltage higher
than the lower optimized read voltages can be predicted/
estimated to correct the initial estimation of the expected
location of the higher optimized read voltage. Using the
corrected estimation, the calibration for the higher optimized
read voltage can be performed to identify an optimized read
voltage with improved precision and/or to avoid a failure in
calibration.

[0020] FIG. 1 illustrates an example computing system
100 that includes a memory sub-system 110 in accordance
with some embodiments of the present disclosure. The
memory sub-system 110 can include media, such as one or
more volatile memory devices (e.g., memory device 140),
one or more non-volatile memory devices (e.g., memory
device 130), or a combination of such.

[0021] A memory sub-system 110 can be a storage device,
a memory module, or a hybrid of a storage device and
memory module. Examples of a storage device include a
solid-state drive (SSD), a flash drive, a universal serial bus
(USB) flash drive, an embedded multi-media controller
(eMMC) drive, a universal flash storage (UFS) drive, a
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secure digital (SD) card, and a hard disk drive (HDD).
Examples of memory modules include a dual in-line
memory module (DIMM), a small outline DIMM (SO-
DIMM), and various types of non-volatile dual in-line
memory module (NVDIMM).

[0022] The computing system 100 can be a computing
device such as a desktop computer, laptop computer, net-
work server, mobile device, a vehicle (e.g., airplane, drone,
train, automobile, or other conveyance), internet of things
(IoT) enabled device, embedded computer (e.g., one
included in a vehicle, industrial equipment, or a networked
commercial device), or such computing device that includes
memory and a processing device.

[0023] The computing system 100 can include a host
system 120 that is coupled to one or more memory sub-
systems 110. FIG. 1 illustrates one example of a host system
120 coupled to one memory sub-system 110. As used herein,
“coupled to” or “coupled with” generally refers to a con-
nection between components, which can be an indirect
communicative connection or direct communicative connec-
tion (e.g., without intervening components), whether wired
or wireless, including connections such as electrical, optical,
magnetic, etc.

[0024] The host system 120 can include a processor chip-
set (e.g., processing device 118) and a software stack
executed by the processor chipset. The processor chipset can
include one or more cores, one or more caches, a memory
controller (e.g., controller 116) (e.g., NVDIMM controller),
and a storage protocol controller (e.g., PCle controller,
SATA controller). The host system 120 uses the memory
sub-system 110, for example, to write data to the memory
sub-system 110 and read data from the memory sub-system
110.

[0025] The host system 120 can be coupled to the memory
sub-system 110 via a physical host interface. Examples of a
physical host interface include, but are not limited to, a serial
advanced technology attachment (SATA) interface, a periph-
eral component interconnect express (PCle) interface, uni-
versal serial bus (USB) interface, fibre channel, serial
attached SCSI (SAS), a double data rate (DDR) memory
bus, small computer system interface (SCSI), a dual in-line
memory module (DIMM) interface (e.g., DIMM socket
interface that supports double data rate (DDR)), open
NAND flash interface (ONFI), double data rate (DDR), low
power double data rate (LPDDR), or any other interface. The
physical host interface can be used to transmit data between
the host system 120 and the memory sub-system 110. The
host system 120 can further utilize an NVM express
(NVMe) interface to access components (e.g., memory
devices 130) when the memory sub-system 110 is coupled
with the host system 120 by the PCle interface. The physical
host interface can provide an interface for passing control,
address, data, and other signals between the memory sub-
system 110 and the host system 120. FIG. 1 illustrates a
memory sub-system 110 as an example. In general, the host
system 120 can access multiple memory sub-systems via a
same communication connection, multiple separate commu-
nication connections, and/or a combination of communica-
tion connections.

[0026] The processing device 118 of the host system 120
can be, for example, a microprocessor, a central processing
unit (CPU), a processing core of a processor, an execution
unit, etc. In some instances, the controller 116 can be
referred to as a memory controller, a memory management
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unit, and/or an initiator. In one example, the controller 116
controls the communications over a bus coupled between the
host system 120 and the memory sub-system 110. In general,
the controller 116 can send commands or requests to the
memory sub-system 110 for desired access to memory
devices 130,140. The controller 116 can further include
interface circuitry to communicate with the memory sub-
system 110. The interface circuitry can convert responses
received from the memory sub-system 110 into information
for the host system 120.

[0027] The controller 116 of the host system 120 can
communicate with the controller 115 of the memory sub-
system 110 to perform operations such as reading data,
writing data, or erasing data at the memory devices 130,140
and other such operations. In some instances, the controller
116 is integrated within the same package of the processing
device 118. In other instances, the controller 116 is separate
from the package of the processing device 118. The con-
troller 116 and/or the processing device 118 can include
hardware such as one or more integrated circuits (ICs)
and/or discrete components, a buffer memory, a cache
memory, or a combination thereof. The controller 116 and/or
the processing device 118 can be a microcontroller, special
purpose logic circuitry (e.g., a field programmable gate array
(FPGA), an application specific integrated circuit (ASIC),
etc.), or another suitable processor.

[0028] The memory devices 130, 140 can include any
combination of the different types of non-volatile memory
components and/or volatile memory components. The vola-
tile memory devices (e.g., memory device 140) can be, but
are not limited to, random access memory (RAM), such as
dynamic random access memory (DRAM) and synchronous
dynamic random access memory (SDRAM).

[0029] Some examples of non-volatile memory compo-
nents include a negative-and (or, NOT AND) 1(NAND) type
flash memory and write-in-place memory, such as three-
dimensional cross-point (“3D cross-point”) memory. A
cross-point array of non-volatile memory can perform bit
storage based on a change of bulk resistance, in conjunction
with a stackable cross-gridded data access array. Addition-
ally, in contrast to many flash-based memories, cross-point
non-volatile memory can perform a write in-place operation,
where a non-volatile memory cell can be programmed
without the non-volatile memory cell being previously
erased. NAND type flash memory includes, for example,
two-dimensional NAND (2D NAND) and three-dimen-
sional NAND (3D NAND).

[0030] Each of the memory devices 130 can include one or
more arrays of memory cells. One type of memory cell, for
example, single level cells (SL.C) can store one bit per cell.
Other types of memory cells, such as multi-level cells
(MLCs), triple level cells (TLCs), quad-level cells (QLCs),
and penta-level cells (PLC) can store multiple bits per cell.
In some embodiments, each of the memory devices 130 can
include one or more arrays of memory cells such as SI.Cs,
MLCs, TLCs, QLCs, or any combination of such. In some
embodiments, a particular memory device can include an
SLC portion, and an ML.C portion, a TLC portion, or a QLC
portion of memory cells. The memory cells of the memory
devices 130 can be grouped as pages that can refer to a
logical unit of the memory device used to store data. With
some types of memory (e.g., NAND), pages can be grouped
to form blocks.
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[0031] Although non-volatile memory devices such as 3D
cross-point type and NAND type memory (e.g., 2D NAND,
3D NAND) are described, the memory device 130 can be
based on any other type of non-volatile memory, such as
read-only memory (ROM), phase change memory (PCM),
self-selecting memory, other chalcogenide based memories,
ferroelectric transistor random-access memory (FeTRAM),
ferroelectric random access memory (FeRAM), magneto
random access memory (MRAM), spin transfer torque
(STT)-MRAM, conductive bridging RAM (CBRAM), resis-
tive random access memory (RRAM), oxide based RRAM
(OxRAM), negative-or (NOR) flash memory, and electri-
cally erasable programmable read-only memory (EE-
PROM).

[0032] A memory sub-system controller 115 (or controller
115 for simplicity) can communicate with the memory
devices 130 to perform operations such as reading data,
writing data, or erasing data at the memory devices 130 and
other such operations (e.g., in response to commands sched-
uled on a command bus by controller 116). The controller
115 can include hardware such as one or more integrated
circuits (ICs) and/or discrete components, a buffer memory,
or a combination thereof. The hardware can include digital
circuitry with dedicated (i.e., hard-coded) logic to perform
the operations described herein. The controller 115 can be a
microcontroller, special purpose logic circuitry (e.g., a field
programmable gate array (FPGA), an application specific
integrated circuit (ASIC), etc.), or another suitable proces-
sor.

[0033] The controller 115 can include a processing device
117 (processor) configured to execute instructions stored in
a local memory 119. In the illustrated example, the local
memory 119 of the controller 115 includes an embedded
memory configured to store instructions for performing
various processes, operations, logic flows, and routines that
control operation of the memory sub-system 110, including
handling communications between the memory sub-system
110 and the host system 120.

[0034] In some embodiments, the local memory 119 can
include memory registers storing memory pointers, fetched
data, etc. The local memory 119 can also include read-only
memory (ROM) for storing micro-code. While the example
memory sub-system 110 in FIG. 1 has been illustrated as
including the controller 115, in another embodiment of the
present disclosure, a memory sub-system 110 does not
include a controller 115, and can instead rely upon external
control (e.g., provided by an external host, or by a processor
or controller separate from the memory sub-system).
[0035] In general, the controller 115 can receive com-
mands or operations from the host system 120 and can
convert the commands or operations into instructions or
appropriate commands to achieve the desired access to the
memory devices 130. The controller 115 can be responsible
for other operations such as wear leveling operations, gar-
bage collection operations, error detection and error-correct-
ing code (ECC) operations, encryption operations, caching
operations, and address translations between a logical
address (e.g., logical block address (LBA), namespace) and
a physical address (e.g., physical block address) that are
associated with the memory devices 130. The controller 115
can further include host interface circuitry to communicate
with the host system 120 via the physical host interface. The
host interface circuitry can convert the commands received
from the host system into command instructions to access
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the memory devices 130 as well as convert responses
associated with the memory devices 130 into information for
the host system 120.

[0036] The memory sub-system 110 can also include
additional circuitry or components that are not illustrated. In
some embodiments, the memory sub-system 110 can include
a cache or buffer (e.g., DRAM) and address circuitry (e.g.,
a row decoder and a column decoder) that can receive an
address from the controller 115 and decode the address to
access the memory devices 130.

[0037] In some embodiments, the memory devices 130
include local media controllers 150 that operate in conjunc-
tion with the memory sub-system controller 115 to execute
operations on one or more memory cells of the memory
devices 130. An external controller (e.g., memory sub-
system controller 115) can externally manage the memory
device 130 (e.g., perform media management operations on
the memory device 130). In some embodiments, a memory
device 130 is a managed memory device, which is a raw
memory device combined with a local controller (e.g., local
controller 150) for media management within the same
memory device package. An example of a managed memory
device is a managed NAND (MNAND) device.

[0038] The controller 115 and/or a memory device 130 can
include a data integrity classifier 114 that has a feature
generator configured to generate compound features as input
for the classification of the bit error rate of data retrievable
from the memory cells using multiple optimized read volt-
ages. The compound features are generated based on mul-
tiple sets of signal and noise characteristics measured during
the calibration of the multiple optimized read voltages
respectively. In some embodiments, the controller 115 in the
memory sub-system 110 includes at least a portion of the
data integrity classifier 114. In other embodiments, or in
combination, the controller 116 and/or the processing device
118 in the host system 120 includes at least a portion of the
data integrity classifier 114. For example, the controller 115,
the controller 116, and/or the processing device 118 can
include logic circuitry implementing the data integrity clas-
sifier 114. For example, the controller 115, or the processing
device 118 (processor) of the host system 120, can be
configured to execute instructions stored in memory for
performing the operations of the data integrity classifier 114
described herein. In some embodiments, the data integrity
classifier 114 is implemented in an integrated circuit chip
disposed in the memory sub-system 110. In other embodi-
ments, the data integrity classifier 114 can be part of
firmware of the memory sub-system 110, an operating
system of the host system 120, a device driver, or an
application, or any combination therein.

[0039] The feature generator of the data integrity classifier
114 can receive multiple sets of signal and noise character-
istics measured for multiple optimized read voltages of the
memory cells in the memory device 130 and process the
signal and noise characteristics to generate compound fea-
tures for the data integrity classifier 114 of the bit error rate
of the data retrievable using the multiple optimized read
voltages.

[0040] Forexample, the data integrity classifier 114 can be
implemented using a binary classification decision tree
(BCDT) technique, or another decision tree based classifi-
cation technique. For example, the data integrity classifier
114 can be implemented using an artificial neural network
(ANN). The data integrity classifier 114 can be trained using
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a machine learning technique (e.g., a supervised machine
learning technique) to compute a classification of the bit
error rate in data retrievable from memory cells using a set
of optimized read voltages, based on features constructed
using signal and noise characteristics of the memory cells
measured during the calibration/determination of the opti-
mized read voltages.

[0041] Forexample, data can be encoded to contain redun-
dant information for storing in memory cells. For example,
error correction code (ECC) or low-density parity-check
(LDPC) code can be used to encode data for storing in
memory cells. The data retrieved from the memory cells can
be decoded in error detection and recovery operations. When
the decoding is successful, the bit error rate in the retrieved
data can be calculated and/or classified. When the decoding
is not successtul, the bit error rate is in a category of too high
for decoding. A training data set can be generated by
computing features from signal and noise characteristics of
the memory cells measured during the calibration/determi-
nation of optimized read voltages and the bit error rate/
classification of the data retrieved using the optimized read
voltages, where the bit error rate/classification is calculated
from the result of decoding the retrieved data. The training
data set can be used to train the data integrity classifier 114
to minimize the differences between the bit error rate/
classification predicted by the data integrity classifier 114
using the features and the corresponding the bit error rate/
classification calculated from the result of decoding the
retrieved data.

[0042] Forexample, the data integrity classifier 114 can be
trained to predict whether the retrieved data can decode
successfully, and if so the estimated bit error rate of the
retrieved data. For example, the memory sub-system 110 can
have multiple decoders that have different requirements/
inputs and different performance levels in power consump-
tion, error recovery capability, latency, etc. The data integ-
rity classifier 114 can be trained to predict which of the
decoders, if any, can successfully decode the retrieved data.
After the data integrity classifier 114 is trained, the predic-
tion of the data integrity classifier 114 can be used to select
a decoder before attempting to decode.

[0043] A compound feature can be constructed as a func-
tion of multiple sets of signal and noise characteristics
measured for multiple optimized read voltages respectively.
An example of the compound feature is a minimum (or a
maximum) of a quantity across the multiple sets of signal
and noise characteristics. Another example of the compound
feature is a minimum (or a maximum) of the sum (or
difference) of a quantity in two sets of signal and noise
characteristics associated with two adjacent optimized read
voltages when the optimized read voltages are sorted in an
increasing order.

[0044] Optionally, the feature generator 113 can start the
computation of the compound feature after receiving the
multiple sets of signal and noise characteristics associated
with the multiple optimized read voltages respectively.
[0045] Preferably, the feature generator 113 can start the
computation of the compound feature before the multiple
sets of signal and noise characteristics are all available. The
feature generator 113 can iteratively or progressively com-
pute the compound feature based on available sets of signal
and noise characteristics. When the signal and noise char-
acteristics associated with an optimized read voltage
becomes available, the compound feature computed based
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on signal and noise characteristics of optimized read volt-
ages lower than the optimized read voltage can be updated,
while another optimized read voltage is being calibrated to
measure its signal and noise characteristics. Thus, the com-
pound feature can be built on the fly as more optimized read
voltages are calibrated and their signal and noise character-
istics measured. Such an iterative or progressive approach in
calculating the compound feature can reduce the resource
requirements of the feature generator 113 and/or its latency
in providing the computation results relative to the avail-
ability of the last set of signal and noise characteristics of the
highest optimized read voltage.

[0046] FIG. 2 illustrates an integrated circuit memory
device 130 having a calibration circuit 145 configured to
measure signal and noise characteristics according to one
embodiment. For example, the memory devices 130 in the
memory sub-system 110 of FIG. 1 can be implemented using
the integrated circuit memory device 130 of FIG. 2.

[0047] The integrated circuit memory device 130 can be
enclosed in a single integrated circuit package. The inte-
grated circuit memory device 130 includes multiple groups
131, . . ., 133 of memory cells that can be formed in one or
more integrated circuit dies. A typical memory cell in a
group 131, . . ., 133 can be programmed to store one or more
bits of data.

[0048] Some of the memory cells in the integrated circuit
memory device 130 can be configured to be operated
together for a particular type of operations. For example,
memory cells on an integrated circuit die can be organized
in planes, blocks, and pages. A plane contains multiple
blocks; a block contains multiple pages; and a page can have
multiple strings of memory cells. For example, an integrated
circuit die can be the smallest unit that can independently
execute commands or report status; identical, concurrent
operations can be executed in parallel on multiple planes in
an integrated circuit die; a block can be the smallest unit to
perform an erase operation; and a page can be the smallest
unit to perform a data program operation (to write data into
memory cells). Each string has its memory cells connected
to a common bitline; and the control gates of the memory
cells at the same positions in the strings in a block or page
are connected to a common wordline. Control signals can be
applied to wordlines and bitlines to address the individual
memory cells.

[0049] The integrated circuit memory device 130 has a
communication interface 147 to receive an address 135 from
the controller 115 of a memory sub-system 110 and to
provide the data 137 retrieved from the memory address
135. An address decoder 141 of the integrated circuit
memory device 130 converts the address 135 into control
signals to select the memory cells in the integrated circuit
memory device 130; and a read/write circuit 143 of the
integrated circuit memory device 130 performs operations to
determine data stored in the addressed memory cells or to
program the memory cells to have states corresponding to
storing the data 137.

[0050] The integrated circuit memory device 130 has a
calibration circuit 145 configured to determine measure-
ments of signal and noise characteristics 139 of memory
cells ina group (e.g., 131, . . ., or 133) and provide the signal
and noise characteristics 139 to the controller 115 of a
memory sub-system 110 via the communication interface
147.
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[0051] In at least some embodiments, the calibration cir-
cuit 145 also provides, to the controller 115 via the com-
munication interface 147, the signal and noise characteris-
tics 139 measured to determine the read level offset value.
In some embodiments, the read level offset value can be
used to understand, quantity, or estimate the signal and noise
characteristics 139. In other embodiments, the statistics of
memory cells in a group or region that has a particular state
at one or more test voltages can be provided as the signal and
noise characteristics 139.

[0052] For example, the calibration circuit 145 can mea-
sure the signal and noise characteristics 139 by reading
different responses from the memory cells in a group (e.g.,
131, . .., 133) by varying operating parameters used to read
the memory cells, such as the voltage(s) applied during an
operation to read data from memory cells.

[0053] For example, the calibration circuit 145 can mea-
sure the signal and noise characteristics 139 on the fly when
executing a command to read the data 137 from the address
135. Since the signal and noise characteristics 139 is mea-
sured as part of the operation to read the data 137 from the
address 135, the signal and noise characteristics 139 can be
used in the feature generator 113 with reduced or no penalty
on the latency in the execution of the command to read the
data 137 from the address 135.

[0054] The calibration circuit 145 is configured to cali-
brate the read voltages of a group of memory cells (e.g., 131
or 133) one after another in the order of ascending read
voltages, starting from the lowest optimized read voltage to
the highest optimized read voltage. During a calibration/
determination of a particular optimized read voltage, the
signal and noise characteristics 139 measured for the opti-
mized read voltages lower than the particular optimized read
voltage are available to the feature generator 113 to gener-
ate/calculate compound features from the available signal
and noise characteristics 139. When the calibration circuit
145 completes the calibration of the particular optimized
read voltage, its signal and noise characteristics 139
becomes available for the feature generator 113 to update the
compound features to include the consideration of the signal
and noise characteristics 139 of the particular optimized read
voltage. The feature generator 113 can perform the updating
of the compound features during the time period in which
the calibration circuit 145 calibrates the next optimized read
voltage that is higher than the particular optimized read
voltage. The updating can be repeated for successive higher
optimized read voltages until all optimized read voltages are
calibrated, their signal and noise characteristics 139 mea-
sured and used to update the compound features.

[0055] FIG. 3 shows an example of measuring signal and
noise characteristics 139 to improve memory operations
according to one embodiment.

[0056] In FIG. 3, the calibration circuit 145 applies dif-
ferent read voltages V,, Vg, Vo, Vp, and V to read the
states of memory cells in a group (e.g., 131, . . ., or 133).
In general, more or less read voltages can be used to generate
the signal and noise characteristics 139.

[0057] As a result of the different voltages applied during
the read operation, a same memory cell in the group (e.g.,
131, .. ., or 133) may show different states. Thus, the counts
C,, Cg, Cpy Cp, and Cp of memory cells having a prede-
termined state at different read voltages V,, V5, Vo, V5, and
V can be different in general. The predetermined state can
be a state of having substantial current passing through the
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memory cells, or a state of having no substantial current
passing through the memory cells. The counts C,, Cg, C,
Cp, and Cy can be referred to as bit counts.

[0058] The calibration circuit 145 can measure the bit
counts by applying the read voltages V,, V5, V., V. and

V one at a time on the group (e.g., 131, . . ., or 133) of
memory cells.
[0059] Alternatively, the group (e.g., 131, ..., or 133) of

memory cells can be configured as multiple subgroups; and
the calibration circuit 145 can measure the bit counts of the
subgroups in parallel by applying the read voltages V ,, V,
Ve, Vp, and V. The bit counts of the subgroups are
considered as representative of the bit counts in the entire
group (e.g., 131, . . ., or 133). Thus, the time duration of
obtaining the counts C,, Cz, C, Cp, and Cy can be reduced.
[0060] In some embodiments, the bit counts C,, Cz, C,
Cp, and C, are measured during the execution of a com-
mand to read the data 137 from the address 135 that is
mapped to one or more memory cells in the group (e.g., 131,
..., or 133). Thus, the controller 115 does not need to send
a separate command to request for the signal and noise
characteristics 139 that is based on the bit counts C,, Cz, C,
Cp, and Cy.

[0061] The differences between the bit counts of the
adjacent voltages are indicative of the errors in reading the
states of the memory cells in the group (e.g., 133, ..., or
133).

[0062] For example, the count difference D, is calculated
from C,-Cg, which is an indication of read threshold error
introduced by changing the read voltage from V, to V.

[0063] Similarly, D,=Cz—C_; D~C.~Cp; and D,=C,~
Cg.
[0064] The curve 157, obtained based on the count dif-

ferences D, Dy, D, and D, represents the prediction of
read threshold error E as a function of the read voltage. From
the curve 157 (and/or the count differences), the optimized
read voltage V, can be calculated as the point 153 that
provides the lowest read threshold error D, on the curve
157.

[0065] In one embodiment, the calibration circuit 145
computes the optimized read voltage V, and causes the
read/write circuit 143 to read the data 137 from the address
135 using the optimized read voltage V.

[0066] Alternatively, the calibration circuit 145 can pro-
vide, via the communication interface 147 to the controller
115 of the memory sub-system 110, the count differences
D, Dg, D, and Dy, and/or the optimized read voltage V,
calculated by the calibration circuit 145.

[0067] FIG. 3 illustrates an example of generating a set of
statistical data (e.g., bit counts and/or count differences) for
reading at an optimized read voltage V. In general, a group
of memory cells can be configured to store more than one bit
in a memory cell; and multiple read voltages are used to read
the data stored in the memory cells. A set of statistical data
can be similarly measured for each of the read voltages to
identify the corresponding optimize read voltage, where the
test voltages in each set of statistical data are configured in
the vicinity of the expected location of the corresponding
optimized read voltage. Thus, the signal and noise charac-
teristics 139 measured for a memory cell group (e.g., 131 or
133) can include multiple sets of statistical data measured
for the multiple threshold voltages respectively.

[0068] For example, the controller 115 can instruct the
memory device 130 to perform a read operation by provid-
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ing an address 135 and at least one read control parameter.
For example, the read control parameter can be a read
voltage that is suggested, estimated, or predicted by the
controller 115.

[0069] The memory device 130 can perform the read
operation by determining the states of memory cells at the
address 135 at a read voltage and provide the data 137
according to the determined states.

[0070] During the read operation, the calibration circuit
145 of the memory device 130 generates the signal and noise
characteristics 139. The data 137 and the signal and noise
characteristics 139 are provided from the memory device
130 to the controller 115 as a response. Alternatively, the
processing of the signal and noise characteristics 139 can be
performed at least in part using logic circuitry configured in
the memory device 130. For example, the processing of the
signal and noise characteristics 139 can be implemented
partially or entirely using the processing logic configured in
the memory device 130. For example, the processing logic
can be implemented using complementary metal-oxide-
semiconductor (CMOS) circuitry formed under the array of
memory cells on an integrated circuit die of the memory
device 130. For example, the processing logic can be
formed, within the integrated circuit package of the memory
device 130, on a separate integrated circuit die that is
connected to the integrated circuit die having the memory
cells using through-silicon vias (TSVS) and/or other con-
nection techniques.

[0071] The signal and noise characteristics 139 can be
determined based at least in part on the read control param-
eter. For example, when the read control parameter is a
suggested read voltage for reading the memory cells at the
address 135, the calibration circuit 145 can compute the read
voltages V,, Vg, Vo, Vp, and V. that are in the vicinity of
the suggested read voltage.

[0072] The signal and noise characteristics 139 can
include the bit counts C, Cz, C, Cp, and Cy. Alternatively,
or in combination, the signal and noise characteristics 139
can include the count differences D, Dz, D, and D,
[0073] Optionally, the calibration circuit 145 uses one
method to compute an optimized read voltage V, from the
count differences D, D, D, and D,; and the controller 115
uses another different method to compute the optimized read
voltage V, from the signal and noise characteristics 139 and
optionally other data that is not available to the calibration
circuit 145.

[0074] When the calibration circuit 145 can compute the
optimized read voltage V , from the count differences D,
Dg, D, and D, generated during the read operation, the
signal and noise characteristics can optionally include the
optimized read voltage V. Further, the memory device 130
can use the optimized read voltage V,, in determining the
hard bit data in the data 137 from the memory cells at the
address 135. The soft bit data in the data 137 can be obtained
by reading the memory cells with read voltages that are a
predetermined offset away from the optimized read voltage
V. Alternatively, the memory device 130 uses the control-
ler-specified read voltage provided in the read control
parameter in reading the data 137.

[0075] The controller 115 can be configured with more
processing power than the calibration circuit 145 of the
integrated circuit memory device 130. Further, the controller
115 can have other signal and noise characteristics appli-
cable to the memory cells in the group (e.g., 133, . .., or
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133). Thus, in general, the controller 115 can compute a
more accurate estimation of the optimized read voltage V,
(e.g., for a subsequent read operation, or for a retry of the
read operation).

[0076] In general, it is not necessary for the calibration
circuit 145 to provide the signal and noise characteristics
139 in the form of a distribution of bit counts over a set of
read voltages, or in the form of a distribution of count
differences over a set of read voltages. For example, the
calibration circuit 145 can provide the optimized read volt-
age V,, calculated by the calibration circuit 145, as signal
and noise characteristics 139.

[0077] The calibration circuit 145 can be configured to
generate the signal and noise characteristics 139 (e.g., the bit
counts, or bit count differences) as a byproduct of a read
operation. The generation of the signal and noise character-
istics 139 can be implemented in the integrated circuit
memory device 130 with little or no impact on the latency
of the read operation in comparison with a typical read
without the generation of the signal and noise characteristics
139. Thus, the calibration circuit 145 can determine signal
and noise characteristics 139 efficiently as a byproduct of
performing a read operation according to a command from
the controller 115 of the memory sub-system 110.

[0078] In general, the calculation of the optimized read
voltage V , can be performed within the memory device 130,
or by a controller 115 of the memory sub-system 110 that
receives the signal and noise characteristics 139 as part of
enriched status response from the memory device 130.
[0079] Insome instances, the calibration circuit 145 of the
memory sub-system 110 is configured to use the signal and
noise characteristics 139, measured during calibration of one
or more lower optimized read voltages of a group of memory
cells (e.g., 131 or 133), to identify an estimated location of
a higher optimized read voltage and thus improve the
calibration operation performed for the higher optimized
read voltage.

[0080] For example, the calibration circuit 145 can use a
predictive model, trained via machine learning or estab-
lished via an empirical formula, to predict the location of the
higher optimized read voltage. The predication can be based
on an initial estimation of the location of the higher opti-
mized read voltage, the initial estimation(s) of the location
of the one or more lower optimized read voltages, and the
calibrated locations of the one or more lower optimized read
voltages, where the calibrated locations of the one or more
lower optimized read voltages are determined from the
signal and noise characteristics 139 measured during the
calibration of the one or more lower optimized read volt-
ages. The prediction can be used in the calibration of the
higher optimized read voltage, during which further signal
and noise characteristics 139 can be measured in the vicinity
of the predicted location to identify a calibrated location of
the higher optimized read voltage. The result of the calibra-
tion of the higher optimized read voltage can be further used
in the calibration of even further higher optimized read
voltage iteratively.

[0081] For example, a controller 115 of the memory
sub-system 110 can initially identify the expected/estimated/
predicted locations of the multiple optimized read voltages
for reading the states of each memory cell in a group for
executing a read command. In response to the read com-
mand, the memory device 130 starts to calibrate the lowest
one of the multiple optimized read voltages first, using the

Sep. 19, 2024

expected/estimated/predicted location of the lowest opti-
mized read voltage initially identified by the controller 115.
The calibration results in the identification of an optimized
location of the lowest optimized read voltage, which can
have an offset or shift from the expected/estimated/predicted
location of the lowest optimized read voltage. The offset or
shift of the lowest optimized read voltage can be used to
predict/estimate the offset or shift of the second lowest
optimized read voltage, and thus improve or correct the
expected/estimated/predicted location of the second lowest
optimized read voltage. The improved or corrected location
for the estimation of the second lowest optimized read
voltage can be used in its calibration, which results in the
identification of an optimized location of the second lowest
optimized read voltage. Subsequently, a further higher opti-
mized read voltage of the memory cells can be calibrated
using an improved or corrected location determined from its
initial estimated identified by the controller 115 and one or
more offsets/shifts of one or more optimized read voltages as
calibrated from their initial estimations. Thus, the higher
optimized read voltages of a memory cell can be iteratively
and adaptively calibrated based on the results of the lower
optimized read voltages of the memory cell.

[0082] FIGS. 4-7 illustrate self adapting iterative read
calibration during the execution of a read command accord-
ing to one embodiment. For example, the self adapting
iterative read calibration can be controlled by the controller
115 of the memory sub-system 110 of FIG. 1, and/or by the
calibration circuit 145 of an integrated circuit memory
device 130 of FIG. 2, using the signal and noise character-
istics 139 measured according to FIG. 3.

[0083] FIG. 4 illustrates a read threshold error distribution
157 for reading a group of memory cells (e.g., 131 or 133)
at various read voltages. The optimized read voltages V,,
Vs, and V ,, have locations corresponding to local mini-
mum points of the read threshold error distribution 157.
When the group of memory cells (e.g., 131 or 133) is read
at the optimized read voltages V;, V,, and V; respec-
tively, the errors in the states determined from the read
operations are minimized.

[0084] FIG. 4 illustrates an example with multiple opti-
mized read voltages V,, V., and V ,, for reading a group
of memory cells (e.g., 131 or 133). In general, a group of
memory cells (e.g., 131 or 133) can be programmed to be
read via more or less optimized read voltages as illustrated
in FIG. 4.

[0085] The read threshold error distribution 157 can be
measured using the technique illustrated in FIG. 3 (e.g., by
determining bit count differences of neighboring read volt-
ages).

[0086] When the group of memory cells (e.g., 131 or 133)
is initially programmed, or recently calibrated, the locations
of the optimized read voltages V,,, V,, and V,, are
known. However, after a period of time, the locations of the
optimized read voltages V,,, V,, and V , can shift, e.g.,
due to quick charge loss (QCL), storage charge loss (SCL),
etc.

[0087] FIGS. 5-7 illustrate a read threshold error distribu-
tion 161 where the locations of the optimized read voltages
have shifted on the axis of read voltage. For example, the
locations of the optimized read voltages V 5;, V55, and V o5
can shift downwards such that the new location has a voltage
smaller than the corresponding prior location. In other
examples, the locations of the optimized read voltages V,,
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V oss and V 5 can shift upwards such that the new location
has a voltage larger than the corresponding prior location.

[0088] The calibration technique of FIG. 3 determines the
location of an optimized read voltage (e.g., V,) on the axis
of the read voltage by sampling a portion of the read
threshold error distribution 157 in the vicinity of an esti-
mated location (e.g., V) and determine the location of the
local minimum point of the sampled read threshold error
distribution 157.

[0089] To determine locations of the optimized read volt-
ages that have shifted, the previously known locations of the
optimized read voltages V,,, Vs, and V 5 can be used as
estimated locations (e.g., V) for the application of the
calibration technique of FIG. 3.

[0090] FIGS. 5-7 illustrate the estimated locations V.,
Vs, and V 5 of the optimized read voltages V, Vo,, and
V o5 relative to the new read threshold error distribution 161.
In some instances, the controller 115 can compute the
estimated locations V., V,, and V5, based on a formula
and/or a predictive model, using parameters available to the
controller 115.

[0091] FIG. Sillustrates the application of the technique of
FIG. 3 to determine the location of the lowest optimized read
voltage V. Test voltages in the range of V,, to V, are
configured in the vicinity of the estimated location V,. The
test voltages V ,, to V, can be applied to read the group of
memory cells (e.g., 131 or 133) to determine bit counts at the
test voltages, and the count differences that are indicative of
the magnitude of read threshold errors. The optimized read
voltage V,, can be determined at the local minimum of the
portion of the read threshold error distribution 161 sampled
via the measured bit differences; and the offset or shift Vg,
from the estimated location V., to the calibrated location
Vo, can be used to determine the estimated shift Vu from the
estimated location V., for the next, higher optimized read
voltage V.

[0092] For example, the estimated shift V,, can be deter-
mined as the same as the measured shift Vg, in the lower
optimized read voltage V,, from its initial estimation V ;.
An alternative empirical formula or predictive model can be
used to calculate the estimated shift V,; of the higher
optimized read voltage V , from at least the measured shift
Vs, of the lower optimized read voltage V ,,.

[0093] The estimated shift V,; determines the improved
estimation V,,, of the location of the optimized read
voltage V.

[0094] FIG. 6 illustrates the application of the technique of
FIG. 3 to determine the location of the optimized read
voltage V,. After adjusting the estimation from V., to
V o p test voltages in the range of V , to V, are configured
in the vicinity of the improved estimation V ,,, (instead of
relative to V,). As a result of the improved estimation
Vearn the test voltage range from V, to Vi, is better
positioned to capture the optimized read voltage V ,,. The
test voltages V 4, to V, can be applied to read the group of
memory cells (e.g., 131 or 133) to determine bit counts at the
test voltages, and the count differences that are indicative of
the magnitude of read threshold errors. The optimized read
voltage V ,, can be determined at the local minimum of the
portion of the read threshold error distribution 161 sampled
via the measuring of the bit differences; and the offset or
shift Vg, from the initial estimated location V., to the
calibrated location V,, can be used in determining the
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estimated shift V,, from the estimated location V., for the
next, higher optimized read voltage V ;.

[0095] For example, the estimated shift V,, can be deter-
mined as the same as the measured shift V, in the lower
optimized read voltage V,, from its initial estimation V.
Alternatively, the estimated shift V,, can be determined as a
function of both the measured shift Vg, in the lower opti-
mized read voltage V, from its initial estimation V., and
the measured shift Vg, in the further lower optimized read
voltage V,, from its initial estimation V,. An alternative
empirical formula or predictive model can be used to
calculate the estimated shift V, of the higher optimized read
voltage V5 from at least the measured shift(s) (e.g., Vs,
and/or V,) of one or more lower optimized read voltages
(e.g., Vo, and/or V).

[0096] The estimated shift V,, provides the improved
estimation V5., of the location of the optimized read
voltage V 5,.

[0097] FIG. 7 illustrates the application of the technique of
FIG. 3 to determine the location of the optimized read
voltage V ,,. Test voltages in the range of V ; to V, are
configured in the vicinity of the improved estimation V 5.
The test voltages V ,, to V., can be applied to read the group
of memory cells (e.g., 131 or 133) to determine bit counts at
the test voltages, and the count differences that are indicative
of the magnitude of read threshold errors. The optimized
read voltage V 55 can be determined at the local minimum of
the portion of the read threshold error distribution 161
sampled via the bit differences.

[0098] As illustrated in FIGS. 6 and 7, the improved
estimates V., and V 5., calculated adaptively and itera-
tively, allow the calibrations of higher optimized read volt-
ages V, and V ; to be performed in improved test voltage
ranges that are close to the optimized read voltages V ,, and
V5. If the test voltages were to be constructed using the
initial estimations V., and V,, the test ranges might not
capture the optimized read voltages V,, and V5 and
calibrations might fail to identify the optimized read volt-
ages V, and V , or fail to identify the optimized read
voltages V,, and V ,; with sufficient accuracy.

[0099] FIG. 8 illustrates the generation of compound
features for the classification of the error rate of data
retrieved from memory cells according to one embodiment.
For example, the compound features can be calculated
according to FIG. 8 using the signal and noise characteristics
of successively higher optimized read voltages, such as the
calibrated/calculated read voltages optimized in a way as
illustrated in FIGS. 4-7.

[0100] In FIG. 8, an ordered list 171 of estimations of
optimized read voltages is identified to, or in, an integrated
circuit memory device 130. The calibration circuit 145 starts
to perform calibration for the lowest read voltage that is to
be calibrated using a technique of FIG. 3.

[0101] For example, the corresponding estimations in the
list 171 can be used to identify a set of test voltages. The bit
counts and/or count differences of a group of memory cells
(e.g., 131 or 133) can be measured for the set of test
voltages, as illustrated in FIG. 3.

[0102] Optionally, when one or more lower optimized
read voltages have been computed through calibration, the
set of test voltages can be identified based on the corre-
sponding estimations in the list 171 and the offsets of the
lower optimized read voltages from their calibrated read
voltages, in a way as illustrated in FIGS. 4-7.
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[0103] During the calibration of the lowest read voltage
173, the read/write circuit 143 applies the test voltages to
read the group of memory cell 131. A set of signal and noise
characteristics 139 is generated from the statistics (e.g., bit
counts and count differences) of the states of the memory
cells in the group 131 as read using the test voltages.

[0104] After the calibration of the lowest read voltage 173
to be calibrated, the calibration circuit 145 can proceed to
calibrate the next 177 lowest read voltage 173 to be cali-
brated.

[0105] During the time period of the calibration circuit
145 calibrating the next 177 lowest read voltage 173 to be
calibrated, the feature generator 113 uses the signal and
noise characteristics 139 measured for the just calibrated
read voltage to generate the updated compound features 175
to include the considerations of the signal and noise char-
acteristics 139 that have been obtained so far.

[0106] For example, each set of signal and noise charac-
teristics can include the lowest error indicator D, ., 155 of
the calculated read voltage V, optimized for reading the
group 133 of memory cells. D, can be used as a feature
associated with the optimized read voltage V. A compound
feature can be the minimum (or the maximum) of D, of
the multiple calibrated/optimized read voltages V that
correspond to the ordered list 171.

[0107] When D, ;155 is calculated for the lowest one in
the ordered list 171, the compound feature can take the value
of the D, ., 155 of the lowest one in the ordered list 171.
When D, 155 is calculated for the next lowest one in the
ordered list 171, the feature generator 113 can update the
compound feature by comparing the existing value of the
compound feature and the D, ,;,, 155 calculated for the next
lowest one in the ordered list 171. If the existing value of the
compound feature is higher than the D, ;. 155 calculated for
the next lowest one in the ordered list 171, the compound
feature is updated to be equal to the D, 155 calculated for
the next lowest one in the ordered list 171; otherwise, the
existing value of the compound feature is not changed in
view of the D, 155 calculated for the next lowest one in
the ordered list 171. After the updating is performed itera-
tively/progressively for the entire list 171, the compound
feature has the value corresponding to the minimum/small-
est of D, of the corresponding optimized read voltages
Vo

[0108] The maximum/largest of D, of the correspond-
ing optimized read voltages V, 151 can be calculated in a
similar way as a compound feature.

[0109] In some implementations, D, can be estimated
as the smallest one of the bit differences D, to D,,.

[0110] In another example, the count differences D, to D,
measured to calculate the optimized voltages V, 151 can be
evaluated to identify an indication of the maximum D, , of
the sampled read threshold error (e.g., the maximum of D,
to Dy). D, can be used as a feature associated with the
optimized voltages V. The smallest of D,,, of the opti-
mized voltages can be used as a compound feature; and the
largest of D, of the optimized voltages can be used as
another compound feature.

[0111] In a further example, the range of read threshold
error sampled for the optimized voltage V, can be deter-
mined as R=D,,,+~D, . Such a range R can be used as a
feature associated with the optimized voltage V. The
largest of such ranges R of the optimized voltages can be
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used as a compound feature; and the smallest of such ranges
R of the optimized voltages can be used as another com-
pound feature.

[0112] The compound features updated for all of the
optimized read voltages and other features corresponding to
the signal and noise characteristics 139 can be used in the
data integrity classifier 114 to generate a classification of the
bit error rate of data retrievable from the group 131 of
memory cells using the multiple calibrated/optimized read
voltages V, 151.

[0113] In general, the data integrity classifier 114 and/or
the feature generator 113 can be implemented in the memory
device 130 and/or in the controller 115 of the memory
sub-system 110. For example, a feature generator 113 can be
implemented in the memory device 130 and configured to
iteratively or progressively update 175 the compound fea-
tures using the most recently obtained signal and noise
characteristics 139 of an optimized read voltage, before the
signal and noise characteristics 139 of the next optimized
read voltage become available.

[0114] Alternatively, a data integrity classifier 114 and/or
a feature generator 113 can be implemented in the controller
150. After the memory device 130 reports the calibration
result of lower read voltages (e.g., Vo, and V,) to the
controller 150, the feature generator 113 updates 175 the
compound features 175 using the signal and noise charac-
teristics 139 included in the calibration result, while the
calibration circuit 145 measures the signal and noise char-
acteristics 139 of higher read voltages (e.g., V53).

[0115] A data integrity classifier 114 and/or a feature
generator 113 implemented in the controller 115 can use not
only the signal and noise characteristics 139 received from
the memory device 130 for the data 137 but also other
information that may not be available in the memory device
130, such as charge loss, read disturb, cross-temperature
effect, program/erase, data retention, etc. The data integrity
classifier 114/feature generator 113 implemented in the
controller 115 and the data integrity classifier 114/feature
generator 113 implemented in the memory device 130 can
have different complexity, and/or different levels of accuracy
in their predictions. The data integrity classifier 114/feature
generator 113 implemented in the controller 115 and the data
integrity classifier 114/feature generator 113 implemented in
the memory device 130 can communicate with each other to
collaboratively control the calibration operations performed
by the calibration circuit 145.

[0116] The processing logic of the data integrity classifier
114/feature generator 113 can be implemented using
complementary metal-oxide-semiconductor (CMOS) cir-
cuitry formed under the array of memory cells on an
integrated circuit die of the memory device 130. For
example, the processing logic can be formed, within the
integrated circuit package of the memory device 130, on a
separate integrated circuit die that is connected to the
integrated circuit die having the memory cells using
through-silicon vias (TSVS) and/or other connection tech-
niques.

[0117] FIG. 9 illustrates an implementation of a data
integrity classifier implemented based on binary classifica-
tion decision tree according to one embodiment. For
example, the technique of FIG. 9 can be used to implement
the data integrity classifier 114 of FIGS. 1, 2, and/or 8.
[0118] For example, the data integrity classifier 114 of
FIG. 9 has feature registers 181 that are configured to store
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the value of the features generated by the feature generator
113. The features can include compound features generated
iteratively or progressively in a way as illustrated in FIG. 8,
while the calibration circuit 145 progresses from calibrating
low read voltages to high read voltages.

[0119] The data integrity classifier 114 of FIG. 9 can store
a set of thresholds 182. For example, the thresholds 182 can
be stored in programmable memory and/or registers.
[0120] The data integrity classifier 114 of FIG. 9 further
includes two sets 185 and 186 of term selection registers.
Each of the term selection register sets (e.g., 185 or 186) has
multiple registers, identifying features or thresholds to be
selected from the feature registers 181 and the stored thresh-
olds 182 for a comparator 189.

[0121] The selection logic 183 is controlled by the term
selection register sets 185 and 186 to output two terms 187
and 188 as the input for the comparator 189. In general, the
term selection register sets 185 and 186 can be programmed
to select two features as terms 187 and 188, a feature as the
term 187 and a threshold as the term 188, or a threshold as
the term 187 and a feature as the term 188.

[0122] The comparator 189 is configured to compare the
terms 187 and 188 to determine whether a pre-defined
relation is satisfied between the terms 187 and 188. For
example, the comparator 189 can be configured to determine
whether the term A 187 is greater than or equal to the term
B 188 (or whether the term A 187 is less than or equal to the
term B 188).

[0123] The data integrity classifier 114 of FIG. 9 has a leaf
path register file 193 configured to store data identifying the
connectivity of nodes in the binary classification decision
tree of the data integrity classifier 114.

[0124] In general, a node in the binary classification
decision tree is either a branch node or a leaf node. A leaf
node identifies a classification result/decision. A branch
node has an associated comparison and two child nodes. The
result of the associated comparison determines which of the
child nodes is to be selected in the search for a leaf node that
provides a classification result/decision.

[0125] The data integrity classifier 114 of FIG. 9 has a leaf
selection logic 191. After the comparator 189 generates the
comparison result of a branch node, the leaf selection logic
191 identifies a child node based on the leaf path register file
193.

[0126] If the leaf path register file 193 indicates that the
child node is a further branch node, the leaf selection logic
191 determines the registers in the term selection register
sets 185 and 186 associated with the child node (i.e., the
further branch node), causing the selection logic 183 to
select the corresponding terms 187 and 188 of the compari-
son of the child node.

[0127] However, if the leaf path register file 193 indicates
that the child node is a leaf node, the leaf selection logic 191
provides the classification result of the leaf node as the
decision 195.

[0128] For example, the leaf selection logic 191 can be
used to initially identify the registers that stores, in the term
selection register sets 185 and 186, the identifications of
inputs for a top node in the binary classification decision
tree. The identifications provided by the term selection
register sets 185 and 186 from the registers identified for the
top node causes the selection logic 183 to output terms 187
and 188 by selecting from the feature registers 181 and the
thresholds 182 according to the identifications. The com-
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parator 189 generates a comparison result of the top node
from the terms 187 and 188 received from the selection logic
183. Based on the result of the comparator 189 and the leaf
path register file 193, the leaf selection logic 191 identifies
the next node and its associated registers in the term selec-
tion register sets 185 and 185. The operation of selecting the
next node can be repeated until a leaf node is reached. In
response to reaching the leaf node, the leaf selection logic
191 provides the classification result pre-associated with the
leaf node as the classification decision 195.

[0129] The structure of the data integrity classifier 114 of
FIG. 9 can minimize/reduce the number of states for tree-
based classification, minimize/reduce the logic circuit
required to implement a tree-based classifier, and provide
flexibility to configure and re-configure the decision tree.
[0130] The data integrity classifier 114 of FIG. 9 evaluates
the decision tree one node at a time. Thus, the data integrity
classifier 114 of FIG. 9 uses one comparator at a time.
[0131] In general, the data integrity classifier 114 of FIG.
9 can use a plurality of different types of comparisons in
evaluating the decisions of the branch nodes. Since the data
integrity classifier 114 uses one comparator at a time, one
comparator for each type of comparisons is sufficient for the
data integrity classifier 114 of FIG. 9.

[0132] FIG. 9 illustrates an implementation of a data
integrity classifier 114 using a binary classification decision
tree. The technique of FIG. 9 can be extended to other types
of decision trees. In general, a branch node in the decision
tree can have more than two child nodes; and the selection
of the child nodes can be based on more than two terms.
Thus, multiple sets of term selection registers can be used to
select the respective terms for the decision of a branch node;
and a node decision generator can be used to generate the
child selection result from the terms selected from the
feature registers 181 and the thresholds 182. The child
selection result can be used in the leaf selection logic 191 to
select the registers of the next branch node based on the leaf
path register file 193 and the child selection result, until a
leaf node is reached for the decision 195.

[0133] In some implementations, the leaf path register file
193 further stores the term identifications of features and/or
thresholds to be selected by the selection logic 183 from the
feature registers 181 and the pre-defined thresholds 182. To
process a branch node, the leaf selection logic 191 provides
the term identifications of the branch node and update the
term selection register sets 185 and 186 to cause the selec-
tion logic 183 to output the terms 187 and 188 for the branch
node.

[0134] FIG. 10 shows a method of classifying the integrity
of data retrieved from memory cells using features generated
according to one embodiment. The method of FIG. 10 can
be performed by processing logic that can include hardware
(e.g., processing device, circuitry, dedicated logic, program-
mable logic, microcode, hardware of a device, integrated
circuit, etc.), software/firmware (e.g., instructions run or
executed on a processing device), or a combination thereof.
In some embodiments, the method of FIG. 10 is performed
at least in part by the controller 115 of FIG. 1, or processing
logic in the memory device 130 of FIG. 2. Although shown
in a particular sequence or order, unless otherwise specified,
the order of the processes can be modified. Thus, the
illustrated embodiments should be understood only as
examples, and the illustrated processes can be performed in
a different order, and some processes can be performed in
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parallel. Additionally, one or more processes can be omitted
in various embodiments. Thus, not all processes are required
in every embodiment. Other process flows are possible.
[0135] For example, the method of FIG. 10 can be imple-
mented in a computing system of FIG. 1 with a memory
device of FIG. 2 and signal noise characteristics illustrated
in FIG. 3 and generated in a way as illustrated in FIGS. 4-7.
The method of FIG. 10 can optionally use compound
features calculated using the technique of FIG. 8 and imple-
mented at least in part using the structure of a data integrity
classifier 114 illustrated in FIG. 9.

[0136] Atblock 301, a set of feature registers 181 of a data
integrity classifier 114 stores features generated from signal
and noise characteristics 139 of a group of memory cells
(e.g., 131 or 133) in a memory device 130.

[0137] At block 303, a leaf path register file 193 stores
data identifying node connectivity in a decision tree of the
data integrity classifier 114.

[0138] At block 305, a selection logic 183 selects, from
the feature registers, at least one feature as input (e.g., 187
and/or 188) to a node decision logic (e.g., 189).

[0139] At block 307, the node decision logic (e.g., 189)
generates an output based at least in part on the at least one
feature selected from the feature registers 181. The output
identifies or indicates a selected child node in the decision
tree of the data integrity classifier 114.

[0140] At block 309, the data integrity classifier 114
determines whether the child node is a leaf node or a branch
node.

[0141] If the child node is a branch node, at block 311, a
leaf selection logic 191 controls further selection from the
feature registers for the node decision logic (e.g., 189) in
evaluating the child node according to the data stored in the
leaf path register file 193. Operations in blocks 305 to 311
can be repeated until reaching a child node that is a leaf
node.

[0142] If the child node is a leaf node, at block 313, the
leaf selection logic 191 provide a classification pre-associ-
ated with the leaf node, in response to the node decision
logic (e.g., 189) providing an output that selects the leaf
node according to the data stored in the leaf path register file
193.

[0143] For example, the classification characterizes a bit
error rate of data retrievable from the group of memory cells
(e.g., 131 or 133) using the read voltages optimized accord-
ing to the signal and noise characteristics 139 of the group
of memory cells (e.g., 131 or 133). The classification can be
used to control an operation to read the group of memory
cells (e.g., 131 or 133). For example, based on the classi-
fication decision 195, the memory device 130 and/or the
memory sub-system 110 can decide to further calibrate the
read voltages, to skip error detection and recovery operation,
to select a decoder from a plurality of decoders available in
the memory device 130 and/or the memory sub-system 110
in decoding the read retrieved from the group of memory
cells (e.g., 131 or 133) using the optimized read voltages,
etc.

[0144] Using the data in the leaf path register file 193, the
leaf selection logic 191 can control the selection of the
features from the feature registers 181 as inputs (e.g., 187
and/or 188) to the node decision logic (e.g., 189).

[0145] Optionally, a set of threshold registers is provided
in the data integrity classifier 114 to store pre-defined
thresholds. Using the data in the leaf path register file 193,
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the leaf selection logic 191 can also control the selection of
the thresholds from the threshold registers (e.g., 182) as
input (e.g., 187 or 188) to the node decision logic (e.g., 189).
[0146] For example, a plurality of term selection register
sets (e.g., 185 and 186) can be used to store locations in the
feature registers (e.g., 181) and the threshold registers (e.g.,
182). The outputs of the plurality of term selection register
sets (e.g., 185 and 186) instructs the selection logic 183 to
select, from the feature registers (e.g., 181) and the threshold
registers (e.g., 182) respective terms (e.g., 187, 188) as
inputs to the node decision logic (e.g., 189). The node
decision log (e.g., 189) computes an output based a pre-
defined function of the input terms (e.g., 187, 188). The
output identifies or indicates a selected child node according
to the connectivity specified in the leaf path register file 193.
[0147] For example, the connectivity specified in the leaf
path register file 193 can correspond to a binary classifica-
tion decision tree; and the node decision logic includes a
comparator 189.

[0148] Operations in blocks 305 to 311 can be performed
for branch nodes in the decision one at a time until the leaf
node is reached in the decision tree.

[0149] Optionally, the data integrity classifier 113 can
include a feature generator 113 that computes compound
features based on measured sets signal and noise character-
istics for some optimized read voltages, while the calibration
circuit 145 is measuring further sets of measured sets signal
and noise characteristics other optimized read voltages, as
illustrated in FIG. 8.

[0150] For example, the calibration circuit 145 can mea-
sure multiple sets of signal and noise characteristics to
calculate multiple optimized read voltages respectively. The
multiple sets of signal and noise characteristics can include
first sets of signal and noise characteristics, and a second set
of signal and noise characteristics measured after measuring
the first sets of signal and noise characteristics. The feature
generator 113 calculates a first compound feature from the
first sets of signal and noise characteristics, at least in part
in parallel with the calibration circuit 145 measuring the
second set. The feature generator 113 updates the first
compound feature according to the second set of signal and
noise characteristics after the second set becomes available.
After the multiple sets of signal and noise characteristics are
all measured, the first compound feature can be updated and
stored into one of the feature registers 181.

[0151] A non-transitory computer storage medium can be
used to store instructions of the firmware of a memory
sub-system (e.g., 113 and/or 114). When the instructions are
executed by the controller 115 and/or the processing device
117, the instructions cause the controller 115 and/or the
processing device 117 to perform the methods discussed
above.

[0152] FIG. 11 illustrates an example machine of a com-
puter system 400 within which a set of instructions, for
causing the machine to perform any one or more of the
methodologies discussed herein, can be executed. In some
embodiments, the computer system 400 can correspond to a
host system (e.g., the host system 120 of FIG. 1) that
includes, is coupled to, or utilizes a memory sub-system
(e.g., the memory sub-system 110 of FIG. 1) or can be used
to perform the operations of a data integrity classifier 114
(e.g., to execute instructions to perform operations corre-
sponding to the data integrity classifier 114 described with
reference to FIGS. 1-10). In alternative embodiments, the
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machine can be connected (e.g., networked) to other
machines in a LAN, an intranet, an extranet, and/or the
Internet. The machine can operate in the capacity of a server
or a client machine in client-server network environment, as
a peer machine in a peer-to-peer (or distributed) network
environment, or as a server or a client machine in a cloud
computing infrastructure or environment.

[0153] The machine can be a personal computer (PC), a
tablet PC, a set-top box (STB), a personal digital assistant
(PDA), a cellular telephone, a web appliance, a server, a
network router, a switch or bridge, or any machine capable
of executing a set of instructions (sequential or otherwise)
that specify actions to be taken by that machine. Further,
while a single machine is illustrated, the term “machine”
shall also be taken to include any collection of machines that
individually or jointly execute a set (or multiple sets) of
instructions to perform any one or more of the methodolo-
gies discussed herein.

[0154] The example computer system 400 includes a
processing device 402, a main memory 404 (e.g., read-only
memory (ROM), flash memory, dynamic random access
memory (DRAM) such as synchronous DRAM (SDRAM)
or Rambus DRAM (RDRAM), static random access
memory (SRAM), etc.), and a data storage system 418,
which communicate with each other via a bus 430 (which
can include multiple buses).

[0155] Processing device 402 represents one or more
general-purpose processing devices such as a microproces-
sor, a central processing unit, or the like. More particularly,
the processing device can be a complex instruction set
computing (CISC) microprocessor, reduced instruction set
computing (RISC) microprocessor, very long instruction
word (VLIW) microprocessor, or a processor implementing
other instruction sets, or processors implementing a combi-
nation of instruction sets. Processing device 402 can also be
one or more special-purpose processing devices such as an
application specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. The processing device
402 is configured to execute instructions 426 for performing
the operations and steps discussed herein. The computer
system 400 can further include a network interface device
408 to communicate over the network 420.

[0156] The data storage system 418 can include a
machine-readable storage medium 424 (also known as a
computer-readable medium) on which is stored one or more
sets of instructions 426 or software embodying any one or
more of the methodologies or functions described herein.
The instructions 426 can also reside, completely or at least
partially, within the main memory 404 and/or within the
processing device 402 during execution thereof by the
computer system 400, the main memory 404 and the pro-
cessing device 402 also constituting machine-readable stor-
age media. The machine-readable storage medium 424, data
storage system 418, and/or main memory 404 can corre-
spond to the memory sub-system 110 of FIG. 1.

[0157] In one embodiment, the instructions 426 include
instructions to implement functionality corresponding to a
data integrity classifier 114 (e.g., the data integrity classifier
114 described with reference to FIGS. 1-10). While the
machine-readable storage medium 424 is shown in an
example embodiment to be a single medium, the term
“machine-readable storage medium” should be taken to
include a single medium or multiple media that store the one
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or more sets of instructions. The term “machine-readable
storage medium” shall also be taken to include any medium
that is capable of storing or encoding a set of instructions for
execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
disclosure. The term “machine-readable storage medium”
shall accordingly be taken to include, but not be limited to,
solid-state memories, optical media, and magnetic media.
[0158] Some portions of the preceding detailed descrip-
tions have been presented in terms of algorithms and sym-
bolic representations of operations on data bits within a
computer memory. These algorithmic descriptions and rep-
resentations are the ways used by those skilled in the data
processing arts to most effectively convey the substance of
their work to others skilled in the art. An algorithm is here,
and generally, conceived to be a self-consistent sequence of
operations leading to a desired result. The operations are
those requiring physical manipulations of physical quanti-
ties. Usually, though not necessarily, these quantities take
the form of electrical or magnetic signals capable of being
stored, combined, compared, and otherwise manipulated. It
has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values,
elements, symbols, characters, terms, numbers, or the like.
[0159] It should be borne in mind, however, that all of
these and similar terms are to be associated with the appro-
priate physical quantities and are merely convenient labels
applied to these quantities. The present disclosure can refer
to the action and processes of a computer system, or similar
electronic computing device, that manipulates and trans-
forms data represented as physical (electronic) quantities
within the computer system’s registers and memories into
other data similarly represented as physical quantities within
the computer system memories or registers or other such
information storage systems.

[0160] The present disclosure also relates to an apparatus
for performing the operations herein. This apparatus can be
specially constructed for the intended purposes, or it can
include a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program can be stored in a computer
readable storage medium, such as, but not limited to, any
type of disk including floppy disks, optical disks, C,,-ROMs,
and magnetic-optical disks, read-only memories (ROMs),
random access memories (RAMs), EPROMs, EEPROMs,
magnetic or optical cards, or any type of media suitable for
storing electronic instructions, each coupled to a computer
system bus.

[0161] The algorithms and displays presented herein are
not inherently related to any particular computer or other
apparatus. Various general purpose systems can be used with
programs in accordance with the teachings herein, or it can
prove convenient to construct a more specialized apparatus
to perform the method. The structure for a variety of these
systems will appear as set forth in the description below. In
addition, the present disclosure is not described with refer-
ence to any particular programming language. It will be
appreciated that a variety of programming languages can be
used to implement the teachings of the disclosure as
described herein.

[0162] The present disclosure can be provided as a com-
puter program product, or software, that can include a
machine-readable medium having stored thereon instruc-
tions, which can be used to program a computer system (or
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other electronic devices) to perform a process according to
the present disclosure. A machine-readable medium includes
any mechanism for storing information in a form readable
by a machine (e.g., a computer). In some embodiments, a
machine-readable (e.g., computer-readable) medium
includes a machine (e.g., a computer) readable storage
medium such as a read only memory (“ROM”), random
access memory (“RAM”), magnetic disk storage media,
optical storage media, flash memory components, etc.
[0163] In this description, various functions and opera-
tions are described as being performed by or caused by
computer instructions to simplify description. However,
those skilled in the art will recognize what is meant by such
expressions is that the functions result from execution of the
computer instructions by one or more controllers or proces-
sors, such as a microprocessor. Alternatively, or in combi-
nation, the functions and operations can be implemented
using special purpose circuitry, with or without software
instructions, such as using application-specific integrated
circuit (ASIC) or field-programmable gate array (FPGA).
Embodiments can be implemented using hardwired circuitry
without software instructions, or in combination with soft-
ware instructions. Thus, the techniques are limited neither to
any specific combination of hardware circuitry and software,
nor to any particular source for the instructions executed by
the data processing system.

[0164] In the foregoing specification, embodiments of the
disclosure have been described with reference to specific
example embodiments thereof. It will be evident that various
modifications can be made thereto without departing from
the broader spirit and scope of embodiments of the disclo-
sure as set forth in the following claims. The specification
and drawings are, accordingly, to be regarded in an illus-
trative sense rather than a restrictive sense.

What is claimed is:

1. A device, comprising:

memory cells having a plurality of read voltages config-

ured at a plurality of levels respectively; and

a circuit configured to:

apply to the memory cells, for each respective read
voltage, a plurality of test voltages centered at the
respective read voltage;

count, when each respective test voltage in the plurality
of test voltages is applied for the respective read
voltage, a number of a subset of the memory cells,
wherein each memory cell in the subset has a pre-
determined state in response to the respective test
voltage; and

determine, based on the number counted for each
respective test voltage in the plurality of test voltages
being applied for the respective read voltage, a
classification of a bit error rate of data retrievable
from the memory cells.

2. The device of claim 1, wherein the circuit is configured
to determine the classification using a decision tree.

3. The device of claim 2, wherein the circuit is configured
to count the number of the subset of the memory cells for a
first read voltage among the plurality of read voltages in
parallel with calculation of a portion of features applied in
the decision tree.

4. The device of claim 3, wherein the portion of features
are compound features determined based on counting the
number of the subset of the memory cells for more than two
of the test voltages being applied for the first read voltage.
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5. The device of claim 3, wherein the portion of features
are compound features determined based on counting the
number of the subset of the memory cells for more than two
of the plurality of read voltages.

6. The device of claim 1, wherein the memory cells are
configured as a plurality of subgroups; and the circuit is
configured to apply different test voltages, among the plu-
rality of test voltages, concurrently to the subgroups respec-
tively in counting memory cells having the predetermined
state.

7. The device of claim 1, wherein the circuit is configured
to apply to the memory cells the plurality of test voltages and
count the number of the subset of the memory cells during
execution of a read command configured with an address
identifying a portion of the memory cells.

8. A method, comprising:

programming a plurality of memory cells of a device to

have a plurality of read voltages configured at a plu-
rality of levels respectively;

applying to the memory cells, for each respective read

voltage, a plurality of test voltages centered at the
respective read voltage;
determining, when each respective test voltage in the
plurality of test voltages is applied for the respective
read voltage, a count of first memory cells, among the
plurality of memory cells, having a predetermined state
in response to the respective test voltage; and

determining, based on the count determined for each
respective test voltage in the plurality of test voltages
being applied for the respective read voltage, a classi-
fication of a bit error rate of data retrievable from the
plurality of memory cells.

9. The method of claim 8, wherein the determining of the
classification is based on a decision tree.

10. The method of claim 9, wherein the determining of the
count for a first read voltage among the plurality of read
voltages is performed in parallel with calculation of a
portion of features applied in the decision tree.

11. The method of claim 10, wherein the portion of
features are compound features determined based on count-
ing the first memory cells for more than two of the test
voltages being applied for the first read voltage.

12. The method of claim 10, wherein the portion of
features are compound features determined based on count-
ing the first memory cells for more than two of the plurality
of read voltages.

13. The method of claim 8, wherein the memory cells are
configured as a plurality of subgroups; and the method
includes:

applying different test voltages, among the plurality of test

voltages, concurrently to the subgroups respectively in
counting the first memory cells.

14. The method of claim 8, wherein the applying the
plurality of test voltages and the determining of the count of
the first memory cells are performed during execution of a
read command configured with an address identifying a
portion of the memory cells.

15. A memory sub-system, comprising:

a processing device; and

at least one memory device, the memory device having:

a plurality of memory cells configured as a plurality of
subgroups; and

a circuit configured to, responsive to a command from
the processing device:
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apply to the plurality of subgroups concurrently, for
each respective read voltage among a plurality of
read voltages configured at a plurality of levels, a
plurality of test voltages centered at the respective
read voltage;

determine, when each respective test voltage in the
plurality of test voltages is applied to a respective
subgroup, a count of first memory cells, within the
respective subgroup, having a predetermined state
in response to the respective test voltage; and

determine, based on the count of the first memory
cells counted within the respective subgroup, a
classification of a bit error rate of data retrievable

from the plurality of memory cells.
16. The memory sub-system of claim 15, wherein the

command is a read command configured with an address
identifying a portion of the memory cells.
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17. The memory sub-system of claim 16, wherein the
circuit is configured to determine the classification using a
decision tree.

18. The memory sub-system of claim 17, wherein the
circuit is configured to determine the count of the first
memory cells for a first read voltage among the plurality of
read voltages in parallel with calculation of a portion of
features applied in the decision tree.

19. The memory sub-system of claim 18, wherein the
portion of features are compound features determined based
on determining the count of the first memory cells for more
than two of the test voltages being applied for the first read
voltage.

20. The memory sub-system of claim 18, wherein the
portion of features are compound features determined based
on determining the count of the first memory cells for more
than two of the plurality of read voltages.
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